
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Real Time Control Framework Using Android
Aaron Pittenger
Marquette University

Recommended Citation
Pittenger, Aaron, "Real Time Control Framework Using Android" (2012). Master's Theses (2009 -). Paper 178.
http://epublications.marquette.edu/theses_open/178

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

REAL TIME CONTROL FRAMEWORK USING ANDROID

by

Aaron Pittenger

A Thesis submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Master of Science

Milwaukee, WI

December 2012

ABSTRACT
REAL TIME CONTROL FRAMEWORK USING ANDROID

Aaron Pittenger

Marquette University, 2012

One potential application for a smartphone-type device is a flight management
and control computer for an unmanned aerial vehicle (UAV). The hardware employed in
most smartphones and tablets has the capabilities necessary to fly an air vehicle without
user interaction. The user can pre-program in a flight plan and the smartphone will do the
rest. In the past, this real time control application has been done using many separate
sensor packages and processors, but never on a single, stand-alone device. Also,
capabilities such as the high definition camera present on most smartphones can take
photographs and store them on the phone for retrieval later. This opens many potential
markets for a device of this nature. Farmers that have large properties could use this to
see if their fences are broken. The general public could use the application to take aerial
views of their properties. Law enforcement could be an application for this project; to
map out house fires or other potentially harmful situations before lives are put at stake.

The real challenge with using a smartphone as a flight management and control
computer is the real time control of the aircraft. In order to accomplish real time control,
the computer must have the sensors necessary for real-time control, a fast processor,
capable of running a periodic process at frequencies greater than 10Hz (the faster the
better) and the ability to read the sensor input and act on it during the time slice given for
that process. With a multi-threaded, embedded, real-time operating system, this typically
is not a problem (given a fast enough processor and enough inputs for all the sensor data).
Doing the same type of calculations and control on a consumer product made to run
many applications at the same time is difficult. This thesis will demonstrate how a real
time control process was implemented on an Android phone.

i

ACKNOWLEDGEMENTS

Aaron Pittenger

I would first like to thank my wonderful wife, Shari, and all my family for all
their love and support during this project. Working on something like this takes valuable
time away from what is most important, family. I would also like to thank my committee
members for their technical expertise along the way; committee chair, Dr. Tom
Kaczmarek, and committee members, Dr. Sheikh Iqbal Ahamed and Dr. Richard Garside.
I would also like to thank the many other informal committee members for their expertise
in their specific areas, namely Aaron Buehner and Grant Hazard for their help with real-
time control and aerodynamics. I would also like to thank those that allowed this project
to come to life away from the simulator, namely fellow Marquette Graduate School
student David VanKampen for his work on the Simulator Centered Design project as well
as Greg Mikowski for his help with the RC aircraft. This project could not have been
completed without all of your help. I sincerely thank you all.

ii

TABLE OF CONTENTS

 ACKNOWLEDGEMENTS...i

 LIST OF TABLES...iv

 LIST OF FIGURES..v

 1 Introduction...1

 1.1 The Problem...1

 1.2 Project Structure...2

 1.3 Criterion for Success..3

 2 Current State...5

 2.1 Background..5

 2.2 Moving into the UAV Market..6

 2.3 Challenges Associated with the UAV Market..7

 2.4 Degree of Autonomy..8

 3 Related Works...10

 3.1 Parrot AR.Drone 2.0..10

 3.2 Ardupilot Mega..11

 4 Solution Prototype..14

 4.1 High Level Design...14

 4.2 Development Environment..15

 5 Detailed Design...17

 5.1 Control Theory...17

 5.2 Flight Controller...18

 5.3 High Level Software Architecture...23

iii

 5.4 Android Architecture..24

 5.5 Low Level Software Architecture..26

 5.6 Moving to Real-world Flight...30

 6 Evaluation...38

 6.1 Performance...38

 6.1.1 40Hz..38

 6.1.2 50Hz..40

 6.1.3 100Hz..41

 6.1.4 Dependencies..43

 6.2 Portability...43

 6.3 Simulated Aircraft Testing...44

 7 Future Work..47

 7.1 Pre-flight: Flight Planning...47

 7.2 Flight Navigation and Guidance..51

 7.3 Control Loop Tuning...53

 7.4 Post Processing..53

 7.5 Real-world Flight...54

 7.6 Conclusion...55

 BIBLIOGRAPHY...56

iv

LIST OF TABLES

Table 3.1: Capabilities of APM vs. Proposed Solution..13

Table 4.1: Samsung Galaxy Nexus Specifications [16]...16

Table 6.1: Statistical Results for 40Hz Frequency...39

Table 6.2: Statistical Results for 50Hz Frequency...40

Table 6.3: Statistical Results for 100Hz Frequency...42

v

LIST OF FIGURES

Figure 1.1: Project Architecture...2

Figure 2.1: Project Management Triangle...7

Figure 2.2: SWaP Triangle...8

Figure 3.1: Ardupilot Mega 2.0..12

Figure 4.1: High Level Architecture..15

Figure 5.1: Feedback Controller..17

Figure 5.2: Aircraft Rudder Control [6]...19

Figure 5.3: Aircraft Aileron Control [3]...20

Figure 5.4: Banked Turn Dynamics [4]...21

Figure 5.5: Aircraft Elevator Control [5]...22

Figure 5.6: High Level Software Architecture...23

Figure 5.7: Android Architecture [9]...25

Figure 5.8: Low Level Software Architecture...29

Figure 5.9: Barometric Equation..30

Figure 5.10: Device Axes Orientation...31

Figure 5.11: Angle Of Attack [7]...35

Figure 6.1: Box Plot of Control Loop Period (40Hz)..40

Figure 6.2: Box Plot of Control Loop Period (50Hz)..41

Figure 6.3: Box Plot of Control Loop Period (100Hz)..43

Figure 6.4: Heading Tracking (Desired vs. Actual)...45

Figure 6.5: Altitude Tracking (Desired vs. Actual) and Aircraft Pitch..............................46

Figure 7.1: Main Screen...48

vi

Figure 7.2: Modify Screen...49

Figure 7.3: Delete Screen...50

Figure 7.4: During Flight Screen...52

Figure 7.5: Post Processing Screen..54

1

 1 Introduction

 1.1 The Problem

The solution to the on-board autonomy problem should be a low-cost, robust,

easily accessible and easily configurable solution for the general public. This allows

applications in both civil and military markets. It should be fully autonomous (navigation,

guidance, and control) and not exceed the size, weight and power requirements of the

vehicle selected.

With these requirements in mind, and with the realization that the smartphone

market is increasing rapidly, a smartphone application presents itself as a viable solution

to the problem. It is readily accessible (most people already have one). Most new

smartphones contain all of the necessary sensors for flight navigation, guidance, and

control. It is a low cost solution. Also, the cell phone has a number of other features that

would be useful in a number of applications. Some examples of this are recording video,

streaming video back to a server via 3G/4G or receiving commands from a ground station

for mid-flight flight plan changes. One problem with using a cell phone for this purpose

is the phone's inability to control flight surfaces through servos. This can be overcome by

making the phone communicate with a separate servo-controller board and send that

board the servo commands via a wireless protocol, for example, Wifi, Bluetooth or Wifi-

Direct. The separate board can be “dumb” and only control the servos based off the

commands of the phone.

2

 1.2 Project Structure

A smartphone based autopilot system for a UAV consists of 3 main components;

the smartphone, which contains software that performs flight navigation, guidance, and

control, an aircraft to be turned into a UAV and a servo controller, used to control the

flight surfaces of the aircraft, as directed by the smartphone. This is displayed pictorially

in Figure 1.1.

Figure 1.1: Project Architecture

From a software perspective, the development of the entire autopilot suite

(including navigation, guidance, and control) is a large task usually completed after years

of hard work with large teams. In order to modularize this application, the control

framework will be the task of this project and thesis. The benefit of creating a control

3

framework is that other control applications could re-use the framework easily.

In order to reduce development risk and to keep project costs to a minimum, a

simulation of the actual aircraft will be used in order to test the control framework. This

will allow development of the servo controller and actual aircraft to be completed

externally. A colleague, David VanKampen, is developing the servo controller as well as

the interface to the aircraft using a paradigm called “Simulation Centered Design” where

using a well designed simulation interface as the real-world interface allows for easy

project integration after testing is completed. After both projects are completed, the goal

is to integrate the projects together and test the application running in the real world.

Real time software control requires very fast, periodic processing of sensor input

in order to dynamically control the aircraft. With a multi-threaded, embedded, real-time

operating system, this typically is not a problem (given a fast enough processor and

enough inputs for all the sensor data). Doing the same type of calculations and control on

a consumer product made to run many applications at the same time is the purpose of this

thesis. An Android (created by Google) phone was selected to be used because of the ease

of application development and popularity. Android is an open-source platform used by

over sixty-five percent (and growing, as of Q2 2012) of the world population [1].

 1.3 Criterion for Success

In order to properly evaluate the performance of the framework, criterion for

success were established. One of the most critical elements for control loops is the timing

of the control loop period. At a 25ms period (40hz frequency) a tolerance of ±2% would

keep the period between 24.5ms and 25.5ms. The control framework designed should

4

also be portable and easily configurable for other control theory applications (outside of

aviation). This is the design idea behind a framework. In order to test out the control

framework, an aircraft control algorithm will be used. The control algorithm used is

tested and proven on other applications and is therefore assumed to be correct. In order to

prove that the proper control frequency is established, the aircraft in the simulation must

stay aloft and respond to control changes as expected (for example, when directed to

change altitude, the aircraft changes altitude accordingly).

5

 2 Current State

Before discussing how an Android device could be used as a flight management

and control computer, let's look at the background behind such a computer.

 2.1 Background

Typically, a conventional autopilot system is broken up into subsystems. The three

main subsystems to control where an airplane is going are navigation (where is the

airplane and where is the airplane headed), guidance (using navigation as input, how does

the airplane get where it wants to go) and control (what does the airplane need to do in

order to accomplish guidance).

In order to better understand the difference between navigation, guidance, and

control, take the example of a ground vehicle navigation system (such as a Garmin,

TomTom or Google Navigation). If the navigation system were to be running without a

destination specified, it would be giving a navigation solution (the current location). After

entering in a destination, the navigation system displays the path to get from you current

location to the destination. This is considered the guidance aspect of the system. Then,

the human driving the vehicle is the control aspect of the system. The user does not

necessarily have to follow the guidance solution in order to remain in control, but

following the guidance solution will get the user to their destination. Also, the guidance

solution cannot perform without knowing the navigation solution.

All three of these systems are closely related and usually distributed around an

aircraft. Typically, one company may make a navigation and guidance computer, and

6

another will make the control computer. This adds another level of complexity to the

problem because the data that must be shared between these computers must be done

using a highly reliable data bus and is usually accompanied by multiple redundant

computers or channels.

 2.2 Moving into the UAV Market

As the name implies, an unmanned aerial vehicle (UAV) is an air vehicle that

operates without a human on board. The UAV is controlled either by a pilot/operator at a

remote ground control station via a communication link, or autonomously through on-

board computers. The trend of the UAV market is nothing but upwards. Both the military

and civil markets want to move more towards UAVs. The main benefit of a UAV is that

no lives need to be put at stake to perform functions that can be automated. This benefits

the military because pilots' and flight crews' lives do not need to be put at risk while

performing missions in hostile areas. This would also benefit the civil market by limiting

pilot's and flight crew's exposure to risk and hazardous situations. Also, using an

autonomous UAV would allow people to fly who do not have a license to perform tasks

they would normally need to hire a pilot to complete.

As an example, farmers that have large areas of land typically have fences around

that area (especially if they have something they want to keep in). King Ranch in South

Texas is approximately 825,000 acres, about the same size as the state of Rhode Island. In

order to keep their profits high, they should check the fences daily to ensure they are not

broken and nothing has gotten out. They could drive around their entire property to

ensure the fence is not broken, or they could hire someone who has a plane to fly around

7

the property and observe the fence. This task his highly repetitive and could easily be

automated. If the farmer were to have access to a UAV, they could automate this process

daily.

 2.3 Challenges Associated with the UAV Market

The biggest challenge associated with the UAV market is typically referred to as

size, weight and power (SWaP). UAVs can be much smaller than manned aircraft and

therefore size, weight and power become significant factors in UAV design. A typical

project management triangle has three points that must be in balance for a project to

succeed. These are usually listed as cost, scope and time (or schedule). See Figure 2.1. If

one edge of the triangle increases, so do the other two. You cannot increase the time or

scope of a project without also increasing the cost.

Figure 2.1: Project
Management Triangle

 The same rule applies for the SWaP problem in UAV design. See Figure 2.2. You

cannot increase the size of the aircraft without increasing the weight of the aircraft. If you

Cost

ScopeTime

8

increase the weight of the aircraft, you have to increase the amount of power needed to

propel the aircraft through the air. If you need to increase propulsion, you have to

increase the size of the engine.

Figure 2.2: SWaP Triangle

Balancing the SwaP triangle is one of the main barriers to more UAV usage.

Typically, a UAV doesn't have the size or power on board to take advantage of a

conventional autopilot system. Consequently companies are trying to scale down their

full size autopilot systems by splitting up the degree of autonomy.

 2.4 Degree of Autonomy

UAVs can have different levels of autonomy. Typically, they fall into two

categories; ground station control and autonomous control. A UAV that performs with

ground station control typically has a host of communication equipment on board and all

processing for flight navigation, guidance, and control is done on the ground. This allows

for the large processing computers to be kept on the ground and all the weight and power

restrictions are fulfilled by the communication equipment on board. Commands are sent

Size

WeightPower

9

over the communication link to turn and move the plane through the air. This requires a

ground based operator or ground based autopilot to be available all times. Currently, most

UAV systems employ this strategy.

The other level of autonomy is fully autonomous control. This includes having a

flight navigation, guidance, and control computer on board and pre-programming a flight

plan into the computer. This option is challenging to deploy because of the SWaP

problem coupled with the complexity involved with these systems. Common sensors

utilized on and aircraft include Global Positioning Systems (GPS) (for navigation),

Inertial Navigation System (typically an accelerometer and gyroscope, for increased

navigation performance), Pitot/Static System (for air pressure, altitude and airspeed

indicators), thermometer (for air temperature), gyroscope (for attitude indication),

compass (for navigation), and motor controllers (for control of flight surfaces). As

mentioned earlier, most, if not all, of these capabilities can now be found in a hand held

device such as a smartphone.

10

 3 Related Works

Currently, there are several projects focused at solving many of the sub-problems

of flight navigation, guidance, and control. Most of them are incomplete, or overly

complicated.

 3.1 Parrot AR.Drone 2.0

Parrot AR.Drone 2.0 is “a groundbreaking device combining the best of many

worlds, including modeling, video gaming and augmented reality.” [20] The idea behind

the Parrot AR.Drone 2.0 is a video camera attached to a self-stabilizing quad-copter,

controlled by a cell phone's orientation. It then transmits video back to the cell phone so

the user can see a drones-eye view. The operator then uses the phone as a joystick to

direct the Parrot AR.Drone 2.0. Tilting the phone to the right makes the drone fly to the

right. Tilting to the left makes the drone fly left.

This is similar to the proposed solution in the sense that there is a phone

communicating with an aircraft, but the practical applications of this are strictly limited to

line of sight and aimed predominately at recreational/entertainment purposes. The phone

and drone need to be within sight of each other in order to be able to communicate. There

is no notion of pre-programming a flight plan and having the drone fly a flight plan. Also,

all the entire flight is dynamically controlled by an operator, which is exactly what the

proposed solution removes.

11

 3.2 Ardupilot Mega

The Ardupilot Mega is probably the closest in similarity to the proposed solution.

It is a “pro-quality IMU autopilot based on the Arduino Mega platform, which can turn

any RC vehicle into a fully autonomous Unmanned Aerial (or Ground) Vehicle.” [8] This

product is new and completely based on open source hardware and software. It uses the

popular Arduino Mega platform as the brains of the flight navigation, guidance, and

control for the airplane. At a cost of $200, the package includes a processor board

interfaced with the following on-board sensors: 3-axis gyroscope and accelerometer, a

barometer, magnetometer, and GPS unit. The systems juggles these sensors between three

separate processors and can store up to 4MB of data on board. The only item the user

would have to purchase is a battery pack and any other additional sensors they would like

to integrate.

12

Figure 3.1: Ardupilot Mega 2.0

After the user receives this package, they download the predefined code for their

specific application (fixed wing aircraft, helicopter, or land rover) and load the board with

the executable application. Then, in order to do mission planning, the user downloads

another PC application. After planning the mission, the user then loads the mission onto

the APM and the vehicle is ready to be deployed. APM also only offers solutions to a few

specific vehicles. This is because different vehicles will perform differently based of the

dynamics of the aircraft and the motors involved. In many ways, this is a similar

approach to the proposed solution, but lacks the ease of use and fully integrated solution

the proposed solution offers. Also, the control aspects of flight are done with a dedicated

processor on board and sensors that are made for flight applications, not for commercial

use. The proposed solution would remove the necessity for separate processing for the

13

control of the aircraft and do it in conjunction with all other processing the phone is

currently doing. Table 3.1 shows a comparison between APM and the proposed solution.

Table 3.1: Capabilities of APM vs. Proposed Solution

Capability APM Proposed Solution

GPS On-board On-board

3-axis Accelerometer On-board On-board

3-axis Gyroscope On-board On-board

3-axis Magnetometer On-board On-board

Pressure Sensor (for
altitude)

On-board On-board

Battery Extra On-board

Camera Optional Extra On-board

Power Run off existing RC
Airplane power source

On-board

Ground Communication Through Radio (Line-of-
sight only)

Through Cellular Network
(world capable)

Flight Software Extra (download + install) Extra (install from App
Store)

Mission Planning Software Extra (download + install) Included with Flight
Software

14

 4 Solution Prototype

 4.1 High Level Design

In order to prove that real time control using an Android phone is feasible, the

aircraft simulation program X-Plane will be used to simulate actual flight. “X-Plane 10

Global is the world’s most comprehensive and powerful flight simulator for personal

computers, and it offers the most realistic flight model available.” [17] Using an actual

aircraft for testing purposes is cost prohibitive for this project. X-Plane is considered a

high accuracy flight model capable of providing flight characteristics suitable for this

project. It should be noted that using a flight simulator means that instead of using the

sensors provided by the smartphone, the simulated sensors X-Plane provides must be

used. In order to keep the simulation as realistic as possible, sensors that are not available

on a regular smartphone will not be used.

X-Plane can be manipulated by external programs through its UDP interface. A

UDP interface allows X-Plane to communicate with another application by sending

datagram packets back and forth over ethernet. This is slightly less reliable than TCP/IP

because there is no confirmation of message reception, but X-Plane is sending out data

periodically so dropping a single message does not create a significant impact to the data

integrity. UDP messages are specified to have a receiver and a port to send to. In order to

communicate, both X-Plane and the application must know the IP addresses of each

other. The UDP interface allows users to get sensor data and current aircraft variables,

(such as elevator position, current airspeed and GPS position), as well as set variables

15

(such as current throttle position and elevator position).

Figure 4.1 shows a high level drawing of how the autopilot program will interface

with the X-Plane simulation.

 4.2 Development Environment

The application will be developed on an Ubuntu 12.04 LTS machine with Linux

Kernal v3.2.0-29. This environment was chosen because of its compatibility with both the

flight simulation (X-Plane) and the Android Development Environment as well as

personal familiarity. The Android application will be developed using the Android

Developer Tools (ADT) plug-in (provided by Google at https://dl-

ssl.google.com/android/eclipse/) for Eclipse 3.7.2 Integrated Development Environment

Figure 4.1: High Level Architecture

16

(IDE). Eclipse comes with the Ubuntu 12.04 LTS installation. The project will use

version 20.0.3 of the Android Software Development Kit (SDK). The project will also

use the Android Native Development Kit (NDK) version R8b. X-Plane version 10.10r3

will be used as the flight simulator. The test platform for the application will be a

Samsung Galaxy Nexus, the specifications of which are show in Table 4.1. The project

will not use any input from the simulation that the Samsung Galaxy Nexus does not

support.

Table 4.1: Samsung Galaxy Nexus Specifications [16]

Sensor Manufacturer/Part Number

Geomagnetic Yamaha YAS530

Proximity GP2A

Barometric Pressure BOSCH BMP180

Accelerometer BOSCH BMA250

Gyroscope InvenSense MPU3050

GPS SiRF SiRFstarIV GSD4t

17

 5 Detailed Design

The following section details the process of designing the real-time control

framework for Android.

 5.1 Control Theory

The first step in designing a real-time control framework is to understand a

feedback control mechanism. Figure 5.1 shows a generic implementation of a feedback

controller.

Figure 5.1: Feedback Controller

A feedback controller typically consists of the control output, the system being

controlled, and the sensor input which feeds back into the controller. One complete pass

through the feedback controller is considered a control loop. A control loop can easily be

described through an example. Most common thermostats employ a feedback controller.

The temperature of the house is sensed (commonly called the “process value”) and fed

into the controller. The controller then calculates the error between the current

temperature and the desired temperature of the house (commonly called the “set point”).

This difference is referred to as the error of the system. The thermostat then controls the

18

system (the house) by turning on and off the heater (or air conditioner) for the house

inorder to increase or decrease the temperature.

Typical problems seen in control loops include over-damping, under-damping and

oscillation. Over-damping happens when the process value returns to the set point too

slowly or never reaches the set point. Under-damping happens when the process value

surpasses the set point before returning to the set point. Oscillation happens when the

process value oscillates above and below the set point. These problems can be remedied

by changing tunable gain values built into the controller.

In the thermostat example, the control loop can have a fairly long delay (seconds

or even minutes) because the process value changes slowly. The faster the process value

changes, the faster the control loop must run in order to keep the variable in control.

 5.2 Flight Controller

In order to control flight, three separate process values must be controlled;

airspeed, heading, and altitude. Airspeed is controlled by controlling the use of throttle.

Increasing the throttle causes the propeller to turn faster, thus increasing the thrust on the

aircraft (in propeller based planes). The user sets a speed at which they would like to fly

and the computer automatically controls the throttle to keep a constant speed. This is

similar to the cruise control in a car. As the vehicle goes up and down hills, the throttle

must adjust to maintain a constant speed. Similarly, in an airplane, if a gust of wind

blows, the throttle must adjust to maintain a constant airspeed. Also, just like a car, when

the plane increases or decreases altitude, the airspeed is impacted and the throttle must be

adjusted to maintain airspeed.

19

Heading can be controlled many ways. In an airplane, the heading of the airplane

can be manipulated by both rudder and ailerons. Figure 5.2 shows an aircraft and the

resulting motion when the rudder is deflected. Deflection of the rudder causes the

airplane to rotate about its center of gravity (called yaw) and change heading.

Figure 5.2: Aircraft Rudder Control [6]

Turing using ailerons causes a different motion of the aircraft but a similar

resulting location displacement. Figure 5.3 shows the an aircraft with aileron deflection

and the resulting motion. Deflection of the ailerons in opposite directions causes the

plane to bank (called roll). Using ailerons to turn is typically referred to as a “banking

turn”.

20

Figure 5.3: Aircraft Aileron Control [3]

As the airplane is banking, the lift force of the aircraft remains perpendicular to

the aircraft. This creates a small side force moving the plane in that direction. This is

displayed in Figure 5.4.Typically, a banked turn is preferred to a turn using rudder.

21

Figure 5.4: Banked Turn Dynamics [4]

The last of the process value that must be controlled is altitude. This is controlled

by controlling the elevators on an aircraft. An upward deflection of the elevators creates a

downward force on the tail of the aircraft, therefore increasing the pitch of the aircraft. An

increase of the pitch of the aircraft, while maintaining a constant airspeed will increase

the altitude. A decrease in pitch will result in a decrease in altitude.

22

Figure 5.5: Aircraft Elevator Control [5]

Maintaining altitude can be difficult because changing any of these three process

values may adversely effect the others. All values are coupled to one another. For

example, increasing airspeed without compensating with elevator will also increase

altitude. An increase in airspeed causes a greater lifting force on the wings and therefore

increases in altitude. Conversely, rolling the aircraft without compensating with elevator

will decrease the altitude of the aircraft. Banking the aircraft causes the lifting force on

the aircraft to decrease, therefore causing the airplane to pitch down and lose altitude.

There are many other relationships between all three of these control surfaces.

In order to keep all three of these flight variables in control, the loops must be run

at an extremely fast frequency (compared to the thermostat example given earlier). The

23

process values can change quickly and the control loops must account for that by running

at faster frequencies. The frequency selected for this application is 40Hz. The faster the

frequency, the tighter the control.

 5.3 High Level Software Architecture

From a high level, the software architecture closely mimics that of the generic

feedback controller show in Figure 5.1. Inputs are read in from the sensors (in this case,

simulated sensors distributed from X-Plane over UDP), the control loops are stepped, and

the flight control surfaces are set to correspond to the commanded process values. This

process is repeated at a 40Hz rate.

Figure 5.6: High Level Software Architecture

24

Each of the respective control loops are stepped based off the corresponding

sensor input. For airspeed, the throttle output is set based off the current airspeed input.

For altitude, the elevator deflection as well as throttle are set based off the current

indicated altitude. For heading, the aileron deflection as well as throttle and elevator

deflection are set based off current heading. As shown in Figure 5.1, every control step

compares the current process value against the set point and performs control surface

deflection based off the error.

 5.4 Android Architecture

In order to fit these control loops into Android, the architecture of the Android OS

must first be understood. Figure 5.7 shows the architecture as presented by Google [9]. It

displays the Android Runtime Environment that typical Android applications run in. This

includes the Dalvik Virtual Machine. This is similar to how Java applications run in the

Java Virtual Machine (JVM).

25

Underneath the Android runtime is the Linux Kernel. The Android Native

Development Kit (NDK) allows the Linux Kernel applications to run and interact with

applications running on top of the Dalvik Virtual Machine. It uses the Java Native

Interface (JNI) to communicate between Java and lower level code. It does so by creating

a shared static library that the Java application can make calls to. Also, the lower level

code can make calls to Java functions [19]. Oracle (the makers of Java) list a few

purposes for JNI including “You want to implement a small portion of time-critical code

in a lower-level language such as assembly.” [18] The Android documentation claims:

 Typical good candidates for the NDK are self-contained, CPU-intensive

operations that don't allocate much memory, such as signal processing, physics

simulation, and so on....Before downloading the NDK, you should understand that

Figure 5.7: Android Architecture [9]

26

the NDK will not benefit most apps. As a developer, you need to balance its

benefits against its drawbacks. Notably, using native code on Android generally

does not result in a noticeable performance improvement, but it always increases

your app complexity.[10]

 5.5 Low Level Software Architecture

In order to implement this control loop properly, a 40Hz periodic process must be

scheduled. Android provides an API for scheduling a process to run at a later time. This is

done though the Handler class. A Handler is described as have two main uses “(1) to

schedule messages and runnables to be executed as some point in the future; and (2) to

enqueue an action to be performed on a different thread than your own” [11]. In order to

register a function to be run at a point in the future, the function postDelayed() must

be called. The amount of wait time in milliseconds is passed in as a parameter to the

postDelayed() function. Using the postDelayed() function “Causes the

Runnable to be added to the message queue, to be run after the specified amount of time

elapses. The runnable will be run on the thread to which this handler is attached” [11].

The description provided by the Google API shows that the Handler simply places the

task on a queue and will run the task sometime “after the specified amount of time

elapses” [11]. After experimenting with the tolerance provided by the postDelayed()

function, it was found to be unacceptable for something that needs precise timing.

Another option for scheduling tasks to happen in Android is through the Timer

API. Timer is a class from the core Java elements that are embedded in the Dalvik VM.

27

The documentation for the Timer API claims “Timers schedule one-shot or recurring

tasks for execution” [14]. This is what is needed except shortly after that description, the

API reads, “This class does not offer guarantees about the real-time nature of task

scheduling” [14]. This is also not acceptable for the real-time scheduling that is needed

for a control loop.

On a multi-threaded device that the programmer has no control over task priority,

there will always be timing issues when precise timing is needed. Other tasks take over at

inopportune times and processes are blocked that are time critical. The way Android

provides timer-related classes in Java is unreliable. This is mainly because the Android

OS runs on top of the Dalvik VM and the Dalvik VM is where Android gets its timing

from. The NDK provides a way to create a precise and reliable timer since it has access to

the timing mechanism provided by the Linux Kernel.

The Android NDK has access to the Linux Kernel. The Linux Kernel contains the

standard C real time library which contains the POSIX Timers API [15]. The

timer_create() function “creates a new per-process interval timer” [15] and is

contained in the POSIX Timers API. This allows the process running (the Android

Activity) to have an interval timer which will generate a signal at an interval the user can

specify. When the timer expires, the signal SIGEV_SIGNAL is generated for the process.

The user can register a listener for that signal as a parameter to the timer_create()

function.

After creating the timer, the user can then start the timer with the function

timer_settime(). This function is also included in the POSIX Timer API. Passed

28

into the timer_settime() function is the timer (as a timer_t type) and the interval

at which to produce the signal (in nanoseconds).

Incorporating this functionality into an Android project is simple. Starting a new

Android Activity will create a process in the Linux Kernel for the timer to run. After

starting the process, the Android Activity will make a call using the JNI to a function that

creates and starts the interval timer. This function also registers the signal handler

function with the timer_create() function. After the process is complete, the

function timer_settime() is called with a value of zero for the interval time and the

timer is stopped.

Making this general framework application specific is just a matter of filling out

the signal handler. In the scenario of a real-time controller for a UAV, the first step is to

read the sensor inputs and store their values for use later. The controller implemented

needs the following values: pitch and roll of the aircraft (from an accelerometer), heading

of the aircraft (from a magnetometer), angular velocities of the aircraft (from a

gyroscope), acceleration of the aircraft (from an accelerometer), indicated airspeed of the

aircraft (from an airspeed sensor), altitude of the aircraft (from a barometric pressure

sensor), and the attack angle of the aircraft (from an accelerometer). One thing to note is

that GPS is not required to control an aircraft. This is only necessary for navigation and

guidance. In this scenario, all the sensor inputs are received from the simulator and then

acted upon by the control loop.

After receiving the sensor input, the control loop must be stepped in order to get

the new output values for the control surfaces of the aircraft. For the sake of this project,

29

a software switch is implemented so that the control loops only run when the switch is

turned on. This switch was activated through a switch in the simulator. When you set a

switch in the simulator, it triggers the switch in the control software. As soon as that

switch is activated, the control loop is stepped. Once that software switch is triggered

back to the “off” state, the timer is stopped and the application exits. This architecture can

be seen in Figure 5.8.

Figure 5.8: Low Level Software Architecture

The software switch allows the plane to take off under user control, fly under

autopilot control, then land under user control. This is necessary for testing purposes

because takeoff and landing cannot be automated without proper navigation and

30

guidance.

 5.6 Moving to Real-world Flight

Taking this solution for simulated flight and moving it to a solution for a real-

world application is relatively straight forward. The framework remains intact, but

instead of reading the sensor values via UDP from the simulator, these values need to be

read from the sensors on-board the cell phone. The control loops can still be stepped in

the same manner, the inputs to the control loops are now just changed from simulated

sensor inputs to actual sensor inputs.

The challenge lies with transforming sensor outputs into something useful. For

example, the altitude of the phone (and therefore, aircraft) can be calculated from the

barometric pressure the phone is currently at. The equation for this can be found in Figure

5.9 [22]. In this equation, y is the altitude; T is standard temperature; P is standard

pressure; x is the current barometric pressure; K is a constant calculated from gravity, the

Universal Gas Constant, the Molar mass of air, and the standard temperature lapse rate;

and L is the standard temperature lapse rate. Once the altitude has been calculated, it can

be used in the control loops.

Figure 5.9: Barometric Equation

31

Some transformations that must take place are more complex. The pitch, roll, and

magnetic heading of the aircraft must be calculated from the accelerometer outputs and

the magnetic field sensor. The first item that must be attended to is the fact that the

accelerometer outputs the acceleration along all three axis of the phone. These axes are

labeled x, y and z and are oriented according to Figure 5.10.

Figure 5.10: Device Axes
Orientation

These acceleration readings include the force due to gravity as well as the force

due to the true acceleration of the phone. Both the force due to gravity and the true

acceleration of the phone are useful. The Android APIs state “It should be apparent that in

order to measure the real acceleration of the device, the contribution of the force of

gravity must be eliminated. This can be achieved by applying a high-pass filter.

Conversely, a low-pass filter can be used to isolate the force of gravity.” [12]. In order to

32

get the pitch and roll of the aircraft, the force of gravity is all that is needed. By knowing

the direction of gravity, you can tell the pitch and roll of the phone (and therefore,

aircraft). The gravity vector was isolated using the following low pass filter function [24]:

float lowPassFilter(float input, float output) {
 const float ALPHA = 0.15f;
 output += ALPHA * (input - output);
 return output;

}

The true acceleration of the phone is also necessary and therefore needs to be calculated

with a high-pass filter to filter out the acceleration due to gravity. This high pass filter

function was used [23]:

float highPassFilter(float input, float output) {
 const float ALPHA = 0.8f;
 float out;
 output = ALPHA * output + ((1 - ALPHA) * input);
 out = input - output;
 return out;

}

After isolating both the gravity vector and the acceleration vector, the pitch, roll,

and magnetic heading of the aircraft can be calculated. In order to do so, the Android API

has provided a few functions to do all the calculations for us. The function

getRotationMatrix() and getOrientation() are used in conjunction to get

the pitch, roll, and magnetic heading of the aircraft. The getRotationMatrix()

function takes the gravity vector and magnetic field vector as inputs and returns the

rotation matrix necessary to be passed into the getOrientation() function. After the

rotation matrix is passed into the getOrientation() function, the pitch, roll, and

33

magnetic heading are returned in a three-value float array.

The last item to take into account while calculating the necessary inputs for the

control loops is the coordinates of the aircraft. Typically, aircraft refer to the y-axis as the

axis whose positive portion points out of the nose of the aircraft, they x-axis's positive

portion points over the right wing of the aircraft and the z-axis's positive portion points

directly towards the center of the earth. All three of these axis originate at the center of

gravity of the aircraft. How the phone is mounted to the aircraft will determine if the

coordinates need to be transformed. For this application, the phone will be mounted

underneath the aircraft so that the screen is facing the bottom of the aircraft and the top of

the phone will be pointed towards the nose of the aircraft. This means the only axis that

will need to be transformed is the z-axis. Luckily, the Android API provides a way to

transform these axis simply. There is a function called remapCoordinateSystem()

which allows the user to take the matrices used to calculate the pitch and roll of the

aircraft and remap them to a different coordinate system [13].

As stated previously, the sensors are read during the signal handler. Because this

is done in the native C library, it is easiest (and quickest) to read the sensors from within

that library instead of calling a Java function to read the sensors. The documentation to

do this is not well known but can be done. First, it is necessary to include the files

android/sensor.h and android/looper.h when accessing the sensors. The

following code shows how to setup a set up a callback for the accelerometer. The same

can be done for all the other sensors that need to be monitored.

34

void* accelData;
// Grab the looper. Only needs to be done once.
ALooper* looper = ALooper_forThread();

 if(looper == NULL)
 looper = ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS);

 // Prepare to monitor sensors
 sensorManager = ASensorManager_getInstance();

 /** Accelerometer **/
 accelerometerSensor = ASensorManager_getDefaultSensor(sensorManager,
 ASENSOR_TYPE_ACCELEROMETER);
 if(accelerometerSensor == NULL){
 LOGI("Accel sensor doesn't exist");
 }

// Create an event queue for the accelerometer
 accelSensorEventQueue = ASensorManager_createEventQueue(sensorManager,
 looper, LOOPER_ID_USER, &accelerometer_callback,

accelData);
// Set the rate at which you would like to receive updates (in microsec)

 ASensorEventQueue_setEventRate(accelSensorEventQueue,accelerometerSensor,
 (1000L/40)*1000);

// enable the sensor (start it)
AsensorEventQueue_enableSensor(accelSensorEventQueue, accelerometerSensor);

After using the sensors to try and map all the data necessary to run the control

loops, it was found that there were two pieces of data that were missing that could not be

sensed using the available sensors on the phone. The first is the angle of attack of the

aircraft and the second is the indicated airspeed (IAS) of the aircraft. Both of these pieces

of data are important to autonomous control of the aircraft. Both play a part in knowing

how much lift the plane is producing. The angle of attack is best described by Figure

5.11. This figure shows that the angle of attack is the pitch of the aircraft minus the flight

path angle of the aircraft. These two angles will be different when the wind is blowing the

aircraft so the flight path angle is less than the pitch of the aircraft.

35

Figure 5.11: Angle Of Attack [7]

There are two ways to calculate the angle of attack without knowing the flight

path angle of the aircraft. The first is to calculate the flight path angle of the aircraft using

a previous location and altitude of the aircraft and the current location and altitude of the

aircraft and calculating the angle change between the two. This is subject to many

parameters. The location of the aircraft must be known and precise as well as the altitude

of the aircraft. Typical GPS altitude will not be precise enough, as it is only accurate to

about 20m. Barometric altitude, on the other hand, is precise enough as it is accurate to

about 1m. The other approach to getting the angle of attack is to assume the wind is

negligible and therefore, the pitch of the aircraft is equal to the angle of attack. The latter

solution was selected for this application because of its simplicity in a proof of concept

application. Also, it was selected because the maximum update rate of the GPS module in

the cell phone is 1Hz. Although this may be good enough for navigation, it is not good

enough to calculate the distance traveled at a 40hz rate. This distance could be calculated

using an extrapolation but the error in this type of calculation would be too great to use

36

reliably.

The other data point missing is the indicated airspeed. Measuring speed of an

aircraft is done using two main airspeed readings; ground speed and indicated airspeed.

There are also other variants that are used such as true airspeed and calibrated airspeed,

but ground speed and indicated airspeed are the most commonly used values. The ground

speed of the aircraft is the speed of the aircraft along the ground. This is different than the

indicated airspeed of the aircraft because the indicated airspeed measures the speed of the

aircraft in relation to the body of air the aircraft is flying in. For example, if the aircraft is

flying at 50kts ground speed, but has a 20kts tail wind, it has an airspeed of 70kts.

Conversely, if the aircraft is flying at 50kts ground speed but has a 20kts head wind, it has

an airspeed of 30kts. The indicated airspeed is more important than ground speed for

control because the indicated airspeed plays a factor in calculating the lift of the aircraft.

There are a few ways to get the indicated airspeed of the aircraft. The first is to use an

airspeed sensor. Although this is not incorporated into the phone, it could be included on

the aircraft and its information could be relayed to the phone through the same

communication network as the control surface deflection values. Another way to get the

indicated airspeed would be to somehow get instantaneous wind values and use vector

math to calculate it based off ground speed. This is not feasible for this project so an

airspeed sensor was purchased and used.

The airspeed sensor interfaces with the external servo controller board and the

airspeed value is passed to the smartphone through the same interface used send servo

control commands. All other required data can be calculated from the sensors available

37

on the phone.

38

 6 Evaluation

In order to properly evaluate the performance of the framework, the following

criterion were established to indicate success.

1. Loop timing should be very close to desired frequency (±2%).

2. Framework must be portable and easily useful in other control scenarios.

3. Testing using the simulated aircraft keeps the plane stable under nominal

conditions. (Note: The control algorithms used are assumed to be tested and

proven stable and therefore, any anomalies in aircraft control are assumed to be

problems with the control framework.)

 6.1 Performance

All performance calculations were completed using simulated sensor inputs and

output to the simulator. In order to record the performance, the time was recorded at the

beginning of the signal handler function. That time was then recorded onto a log file,

saved to the SD card of the phone. After the test was over, the results were tabulated and

graphed.

 6.1.1 40Hz

The first test was completed using a 40Hz timer (25ms period). This is the

frequency at which the project was designed to run. Table 6.1 Summarizes the data

recorded every time the signal handler function was called.

39

Table 6.1: Statistical Results for 40Hz Frequency

Runtime 67.90s

Average 25.0001ms

Median 24.994ms

Min Time 16.785ms

Max Time 32.593ms

Range 15.808ms

Number of Missed Interrupts 0

This table shows that the total runtime of the application was 67.9 seconds. The

signal handler function was called, on average, every 25.0001ms and it never missed an

interrupt. One fact to note is that the minimum time between signal handler calls was

16.785ms and the maximum time between calls was 32.593ms. This range of 15.808ms

may or may not be acceptable depending on the implementation of the control

algorithms. This range may be explained by either a blocking process that does not allow

the signal handler to run until it is complete and/or by inaccuracies in the timing

mechanism.

Shown in Figure 6.1 is the statistical representation of the time between the signal

handlers being called. This shows that 50% of the time between signal handlers being

called is within about 24.75ms and 25.25ms. It also shows the average being right at

25.0ms. This makes sense because the timer created is considered an interval timer,

calling a signal handler at specific intervals. This is opposed to a regular timer which

times a specific amount of time after something occurs (like the signal handler exiting).

40

Figure 6.1: Box Plot of Control Loop Period (40Hz)

 6.1.2 50Hz

In order to show the preciseness of this timer, faster frequencies were tested. At

50Hz (20ms period), Table 6.2 shows the results.

Table 6.2: Statistical Results for 50Hz Frequency

Runtime 68.84s

Average 20.0000ms

Median 19.989ms

Min Time 10.559ms

Max Time 28.565ms

Range 18.006ms

Number of Missed Interrupts 0

41

The total runtime of the test is shown as 68.64 seconds. Just as before, the average

time between interrupts is almost exactly 20.00ms. Also, just as before, that time between

interrupts ranges over 18ms. Also shown in those statistics is the fact that an interrupt was

never missed.

Figure 6.2 Shows that statistically, there were a few major outliers and the rest of

the times were closer together than when run at 40Hz. This plot shows that over 50% of

the times between interrupts were between 19.75ms and 20.25ms. Almost all of the times

between interrupts are between 17ms and 23ms.

Figure 6.2: Box Plot of Control Loop Period (50Hz)

 6.1.3 100Hz

42

Again, in order to see how far this timer could go, the frequency was increased to

100Hz (10ms period). The results can be seen in Table 6.3. They show that, just like the

other two tests, the average runtime is almost exactly the desired period.

Table 6.3: Statistical Results for 100Hz Frequency

Runtime 55.60s

Average 10.0002ms

Median 10.009ms

Min Time 3.662ms

Max Time 17.121ms

Range 13.459ms

Number of Missed Interrrupts 0

This table also shows a range of over 13ms. This is the point where the increasing

frequency must stop. Having a range greater than the average means an interrupt could

potentially be missed. In this scenario, this was not the case, but the potential is there.

Figure 6.3 shows a similar statistical representation to the other. A wide spread

array of outliers, but a tight grouping of values close to the desired period. Again, over

50% of all the time between interrupts is between 9.5ms and 10.5ms.

43

Figure 6.3: Box Plot of Control Loop Period (100Hz)

 6.1.4 Dependencies

It is important to keep in mind that these results are dependent on the smartphone

running the application. The smartphone used in this situation (Samsung Galaxy Nexus)

is a high end phone (1.2GHz Dual Core Processor, 1GB RAM). Running the same

application on an older smartphone will not reproduce the same results. Also important to

note is that smartphones are only going to get faster and include more memory, therefore,

the framework should run with higher accuracy in the future.

 6.2 Portability

The package created is easily portable to other applications. As stated previously,

it uses the POSIX Timers API (included in the Linux Kernel as well as other systems) so

any system that has access to that API will be able to use this package. That means this

44

package does not necessarily need to be implemented on an Android device. It could be

used on an embedded device that contains the Linux Kernel, like a Raspberry Pi [21] or

BeagleBoard-xM [2].

 6.3 Simulated Aircraft Testing

In order to properly test out the control loop, a timed flight pattern was created.

Using a timed flight pattern instead of a location-based flight pattern removes the need

for any navigation and guidance to be implemented. After manually taking off from the

runway and getting into a stable flight condition, the control code was engaged. After

engaging, it sets the desired airspeed to the current airspeed, the desired heading to the

current heading, and the desired altitude to the current altitude. It holds this stable flight

condition for 20 seconds, then turns 90 degrees to the right. It also increases altitude by

150 ft. After 20 seconds, it then turns another 90 degrees and returns to the initial altitude.

It continues this cycle until the autopilot command is removed.

During flight, the aircraft seemed to have no trouble holding a heading, but

struggled to hold a stable altitude. Figure 6.4 shows that when commanded, the aircraft

turns to the desired heading and holds that heading well.

45

Figure 6.4: Heading Tracking (Desired vs. Actual)

Figure 6.5 shows the altitude tracking during the same flight. It seems to have a

hard time holding a constant altitude. It also shows remarkable recovery after over-

shooting the target altitude. Aircraft pitch was also included on this graph to show how

often the pitch of the aircraft was changing in order to produce the altitude differences.

46

Figure 6.5: Altitude Tracking (Desired vs. Actual) and Aircraft Pitch

47

 7 Future Work

As stated previously, this is one of the more challenging aspects of the on-board

autonomy problem. In order to have a complete solution, a flight planning phase would

need to be added to the application, as well as flight navigation and guidance. Post

processing could also be added which would allow the user to view flight data after the

flight is complete. Also, the current parameters implemented in the altitude and speed

control loops present some oscillation. Tuning of these parameters would provide better

performance of the aircraft.

 7.1 Pre-flight: Flight Planning

The pre-flight phase is where the application will get the initial inputs from X-

Plane via UDP. This is to establish an initial position using GPS, determine initial

heading/orientation and verify that all sensors are working properly. As soon as those

items are validated, the user will have the ability to enter a flight plan using an on-screen

map. After completing the flight plan, the user can transition to the flight phase by

selecting an on-screen button.

User interface mock-ups for the pre-flight phase can be seen in Figure 7.1 through

Figure 7.3. The user should initially see a screen that only has a blue dot on it,

representing the user's current location (in this case, the simulator's current location). The

user could then single tap on the screen to place a waypoint. The waypoints added should

automatically be connected in the order they are added. Also, the user's current location

should be listed as the starting waypoint and the ending waypoint (depending on how

48

takeoff/landing is handled).

Figure 7.1: Main Screen

After adding waypoints to the flight plan, the user should be able to modify its

properties (latitude, longitude and altitude).

49

Figure 7.2: Modify Screen

The user should also be able to delete waypoints in the flight plan. A confirmation

dialog box should show, asking if the waypoint designated would like to be deleted.

50

Figure 7.3: Delete Screen

After completing a flight plan, the user should be able to select an on-screen

button (labeled “Go!” in the diagrams) which transitions the application into the flight

state.

There are many other design decisions that would need to be made for the pre-

flight phase. A takeoff and landing strategy would need to be decided on. This would

most likely be hardware dependent. The device would need a sensor capable of reporting

an extremely accurate altitude reading. In order to land, geographic terrain data would

51

need to be as precise as typical airport runway information. One potential alternative

would be to land in the same location and direction as takeoff. This would create a

scenario in which the application could record the flight characteristics of the takeoff

phase and use that information for landing.

A design decision would also need to be made for obstacle avoidance. Since the

plane would be fully autonomous, the plane would need the ability to avoid obstacles

either through human intervention or through an extra on-board sensor. There also may

be a terrain database on the internet that data could be pulled from in order to avoid

obstacles.

 7.2 Flight Navigation and Guidance

After detailing a flight plan, the flight navigation and guidance portion of the

application would need to guide the plane in the direction of the waypoints. This includes

accounting for generic guidance capabilities such as cross track error correction (when

the plane gets blown off course) and dead reckoning (when the primary navigation

solution fails). The navigation and guidance solutions could be thesis projects in

themselves.

During flight, the current user location on the flight path could be shown, as well

as showing a preview of a video recording. This may not be useful to display during

flight because the phone will be carried on the aircraft, however, having a video could tell

the user an abundance of information. A preview of the video record is required by

Android OS in order to prevent people from writing applications that record video

without user knowledge. Figure 7.4 shows a potential mock-up of the phone during flight.

52

Figure 7.4: During Flight Screen

When originally testing this design, it was found that displaying the flight plan

with a map overlay is somewhat infeasible. The map that is displayed is a large bitmap

image which is saved in the phones heap space (in memory). The heap space available is

limited and the image tends to take up much of that heap space. When other programs

and processes need heap space, the garbage collector runs and cleans up the unused items

53

in the heap. Garbage collection runs frequently and takes too much time for a real-time

control application, therefore it is infeasible.

 7.3 Control Loop Tuning

As discussed in the results section, the altitude control loop is not tuned properly.

Pinpoint control was not a goal of this project and therefore it could use some tuning.

There is some oscillation that is currently occurring in the altitude control loop that can

be removed through refinement of the control parameters. Currently, the altitude control

loop has two stages, altitude capture and altitude hold. Altitude capture performs when

the altitude error is less than 50ft. After the airplane is within 50ft of the desired altitude,

it goes into an altitude hold mode. From Figure 6.5, the plane looks to have the most

trouble during altitude hold. This is a good place to start tweaking the control parameters

in order to fine tune the altitude hold.

 7.4 Post Processing

Once the flight plan has been fulfilled, the user would want to access the flight

data. In order to do this, a post processing screen should be shown. A mock-up has been

created and is shown in Figure 7.5. It shows the two files that could be saved during flight

(a Flight Data Recorder file and a video of the flight) and allows the user to share those

files via whatever methods they see fit.

54

Figure 7.5: Post Processing Screen

 7.5 Real-world Flight

A few things could be done in order to improve real-world flight. Currently, the

only sensor needed that is not contained within the cell phone is the airspeed sensor. It

would be beneficial to this project if there was a way to calculate the airspeed based off

some of the other sensors. The airspeed sensor could even be placed on board to

condition the plane and then removed after the plane “learned” how to calculate the

55

airspeed.

Another way of doing this would be to use real-time weather data. Calculating in

the weather would change the given ground speed into an airspeed. This weather data

would need to be almost instantaneous, possibly from a ground station nearby. This will

get closer, but the best way would be to integrate an airspeed sensor directly into the cell

phone.

 7.6 Conclusion

The control framework developed is a viable solution for the Samsung Galaxy

Nexus. The control frequencies necessary to control an aircraft are attainable using the

hardware in the Samsung Galaxy Nexus. It seems the control frequency breaking point

for this is around 100Hz. The POSIX Timers API allows the framework to be portable

between different platforms. As smartphones increase in speed and capability, the

framework will get more defined and more accurate.

56

BIBLIOGRAPHY

1. Associated Press. Worldwide market share for smartphones. 5 September 2012. Web.
http://www.businessweek.com/ap/2012-09-05/worldwide-market-share-for-
smartphones

2. BeagleBoard. BeagleBoard-xM Product Details. Web.
http://beagleboard.org/hardware-xm

3. Benson, Tom. NASA Beginners Guide to Aeronautics. Ailerons. Web.
http://www.grc.nasa.gov/WWW/k-12/airplane/alr.html

4. Benson, Tom. NASA Beginners Guide to Aeronautics. Banking Turn. Web.
http://www.grc.nasa.gov/WWW/k-12/airplane/turns.html

5. Benson, Tom. NASA Beginners Guide to Aeronautics. Elevator. Web.
http://www.grc.nasa.gov/WWW/k-12/airplane/elv.html

6. Benson, Tom. NASA Beginners Guide to Aeronautics. Rudder. Web.
http://www.grc.nasa.gov/WWW/k-12/airplane/rud.html

7. Cashman, John E., Brian D. Kelly, Brian N. Nield. What is Angle of Attack? Boeing
Aero. Web.
http://www.boeing.com/commercial/aeromagazine/aero_12/attack_whatisaoa.html

8. DIY Drones, Ardupilot Mega, Web. http://www.diydrones.com/notes/ArduPilot

9. Google Inc. Android System Architecture. Web.
http://developer.android.com/images/system-architecture.jpg

10. Google Inc. Android Developers Guide. Android NDK. Web.
http://developer.android.com/tools/sdk/ndk/index.html

11. Google Inc. Android Developers Guide. Handler. Web.
http://developer.android.com/reference/android/os/Handler.html

12. Google Inc. Android Developers Guide. SensorEvent. Web.
http://developer.android.com/reference/android/hardware/SensorEvent.html

13. Google Inc. Android Developers Guide. SensorManager. Web.
http://developer.android.com/reference/android/hardware/SensorManager.html

14. Google Inc. Android Developers Guide. Timer. Web.

http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/os/Handler.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/images/system-architecture.jpg
http://www.diydrones.com/notes/ArduPilot
http://www.boeing.com/commercial/aeromagazine/aero_12/attack_whatisaoa.html
http://www.grc.nasa.gov/WWW/k-12/airplane/rud.html
http://www.grc.nasa.gov/WWW/k-12/airplane/elv.html
http://www.grc.nasa.gov/WWW/k-12/airplane/turns.html
http://www.grc.nasa.gov/WWW/k-12/airplane/alr.html
http://beagleboard.org/hardware-xm
http://www.businessweek.com/ap/2012-09-05/worldwide-market-share-for-smartphones
http://www.businessweek.com/ap/2012-09-05/worldwide-market-share-for-smartphones

57

http://developer.android.com/reference/java/util/Timer.html

15. Linux Man Pages. timer_create. Web. http://www.kernel.org/doc/man-
pages/online/pages/man2/timer_create.2.html

16. Molen, Brad. Behind the glass: A detailed tour inside the Samsung Galaxy Nexus.
Engadget. http://www.engadget.com/2011/10/20/behind-the-glass-a-detailed-tour-
inside-the-samsung-galaxy-nexu/

17. Morris, Austin, X-Plane Introduction, Web. http://www.x-plane.com/desktop/meet_x-
plane/

18. Oracle. Java Native Interface Overview. Web.
http://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/intro.html#wp725

19. Oracle. Java Native Interface Specification. Web.
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html

20. Parrot, Parrot AR.Drone FAQ, Web. http://ardrone.parrot.com

21. Raspberry Pi. FAQs. Web. http://www.raspberrypi.org/faq

22. Amar, François G. "Barometric formula." University of Maine. Web.
http://chemistry.umeche.maine.edu/~amar/spring2012/barometric.html

23. Wikipedia contributors. "High-pass filter." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 2 Oct. 2012. Web. 31 Oct. 2012.

24. Wikipedia contributors. "Low-pass filter." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 13 Oct. 2012. Web. 31 Oct. 2012.

http://chemistry.umeche.maine.edu/~amar/spring2012/barometric.html
http://www.raspberrypi.org/faq
http://ardrone.parrot.com/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/intro.html#wp725
http://www.x-plane.com/desktop/meet_x-plane/
http://www.x-plane.com/desktop/meet_x-plane/
http://www.engadget.com/2011/10/20/behind-the-glass-a-detailed-tour-inside-the-samsung-galaxy-nexu/
http://www.engadget.com/2011/10/20/behind-the-glass-a-detailed-tour-inside-the-samsung-galaxy-nexu/
http://www.kernel.org/doc/man-pages/online/pages/man2/timer_create.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/timer_create.2.html
http://developer.android.com/reference/java/util/Timer.html

	Marquette University
	e-Publications@Marquette
	Real Time Control Framework Using Android
	Aaron Pittenger
	Recommended Citation

	ACKNOWLEDGEMENTS
	1 Introduction
	1.1 The Problem
	1.2 Project Structure
	1.3 Criterion for Success

	2 Current State
	2.1 Background
	2.2 Moving into the UAV Market
	2.3 Challenges Associated with the UAV Market
	2.4 Degree of Autonomy

	3 Related Works
	3.1 Parrot AR.Drone 2.0
	3.2 Ardupilot Mega

	4 Solution Prototype
	4.1 High Level Design
	4.2 Development Environment

	5 Detailed Design
	5.1 Control Theory
	5.2 Flight Controller
	5.3 High Level Software Architecture
	5.4 Android Architecture
	5.5 Low Level Software Architecture
	5.6 Moving to Real-world Flight

	6 Evaluation
	6.1 Performance
	6.1.1 40Hz
	6.1.2 50Hz
	6.1.3 100Hz
	6.1.4 Dependencies

	6.2 Portability
	6.3 Simulated Aircraft Testing

	7 Future Work
	7.1 Pre-flight: Flight Planning
	7.2 Flight Navigation and Guidance
	7.3 Control Loop Tuning
	7.4 Post Processing
	7.5 Real-world Flight
	7.6 Conclusion

