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DOES AI RESEARCH AID PREDICTION? 
A REVIEW AND EVALUATION 

MonicaAdya 
Fred Collopy 

Management Information and Decision Systems 
The Weatherhead School of Management 

Case Western Reserve University 

Abstract 

Despite the increasing application of Artificial Intelligence (AI) techniques to business over the past decade, there 
are mixed views regarding their contribution. Assessing the contribution of AI to business has been difficult, in 
part, due to lack of evaluation criteria. In this study, we identified general criteria for evaluating this body of 
literature. Within this framework, we examined applications of AI to business forecasting and prediction. For each 
of the seventy studies located through our search, we evaluated how effectively the proposed technique was compared 
with alternatives (effectiveness of validation) as well as how well the technique was implemented (effectiveness 
of implementation). We concluded that by using acceptable practice and providing validated comparisons, 31% 
(22) of the studies contributed to our knowledge about the applicability of the AI techniques to business. Of these 
twenty-two studies, twenty supported the potential of AI in forecasting. This small number of studies indicates a 
need for improved research in this area. 

1. INTRODUCTION 

Over the past decade, increasing research efforts have been 

directed at applying Artificial Intelligence (AI) techniques to 

business situations. More than 250 applications of AI to business 

problems were indexed in the Social Science Citation Index over 

the period January 1992 to September 1994. Despite this, 

opinions about the value of these techniques have been mixed. 

Some consider such approaches effective for unstructured 

decision making tasks (e.g., Dutta, Shekar and Wong 1994); other 

researchers have expressed reservations about the potential of AI, 

suggesting that stronger empirical evidence is necessary (e.g., 
Chatfield 1993). 

The task of consolidating this body of literature is challenging 

since the area is dynamic and techniques are constantly emerging 

and improving. Moreover, the diversity of these techniques 

makes the assessment of their performance difficult unless a 

general framework is applied. Nonetheless, there is now a 

substantial body of research examining tl1ese techniques, and it 

would seem useful to develop such a framework and evaluate 

these studies with the hope of gaining some direction for future 

research. 
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The structure of the paper is as follows. First, we explain how 

studies were selected. 1l1en we describe the criteria that we used 

to evaluate them. Next, we discuss our findings. Finally, we 

make some recommendations for improving research. 

2. HOW THE STUDIES WERE SELECTED 

We were interested in tlle extent to which studies in AI have 
contributed to improvements in tlle accuracy of forecasts and 
predictions in business. We searched three computer databases 
(tlle Social Science Citation Index, tlle Science Citation Index, 
and ABI Inform) and tlle proceedings of tlle IEEE/INNS Joint 
Intemational Conferences. Our search yielded a wide range of 
forecasting and prediction-oriented applications, from weatller 
forecasting to predicting stock prices. For tllis evaluation we 
eliminated studies related to weatller, biological processes, purely 
mathematical series, and other non-business applications. 

We located tllirteen studies tllat used rule-based (expert) systems, 
six that used decision trees, and fifty-one tllat used neural 
networks for business forecasts and predictions. Altllough we 
searched for studies using any AI or machine learning techniques, 
we encountered none that used evolutionary strategies such as 
genetic algoritllms or approaches like case-based reasoning. 
Figure l illustrates tlle growtll in research efforts in tllis area over 
tlle past decade. 
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Figure 1. Growth in AI Research Related to Business Forecasting 

3. CRITERIA USED TO EVALUATE 
THE STUDIES 

In evaluating studies of AI implementations in forecasting, we 
were interested in answering two questions. First, did the study 
appropriately evaluate the predictive capabilities of the proposed 
technique? There is now a well-established tradition in forecasting 
research of comparing techniques on the basis of empirical 
results. If a new approach is to be taken seriously, it must be 
evaluated in terms of alternatives that are or could be used. If 
such a comparison was not conducted it is difficult to argue that 
the study has taught us much about the value of AI for forecasting. 
In fairness to the AI researchers conducting the studies, it should 
be noted that this is not always their objective. Sometimes they 
are using the forecasting or prediction case as a vehicle to explore 
the dynamics of a particular technique. (An example is Nute, 
Mann and Brewer [ 1990) in which a stylized version of the 
forecast method selection problem is used to explore defeasible 
logic.) To evaluate the effectiveness of the validation, we used 
three guidelines described in Collopy, Adya and Armstrong 
(1994). 

Comparisons with weU-accepted models: Forecasts from a 
proposed model should perform at least as well as some well­
accepted reference models. For example, if a proposed model 
does not produce forecasts that are at least as accurate as those 
from a naive extrapolation, it can not really be argued that the 
modeling process contributes knowledge which is predictive of 
trend. 

Use of ex ante validations: Comparison of forecasts should be 
based on ex ante (out-of-sample) performance. In other words, 
the sample used to test the predictive capabilities of a model must 
be different from the samples used to develop and train the model. 
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Use of a reasonable sample of forecasts: The size of the 
validation samples should be adequate to allow inferences to be 
drawn. We considered a forecast sample of over forty to be 
adequate for comparison. 

For studies that have effectively validated the AI technique of 
interest, we asked a second question: How well was the proposed 
technique implemented? While a study that suffers from poor 
validation is not of much use in determining the applicability of 
the technique to forecasting situations, one that suffers from poor 
implementation might still be of value. If a method performs 
comparatively well, even when it has not benefitted from the best 
possible implementation, there is reason to be encouraged that 
it will be a contender when it has. 

The criteria for assessing effectiveness of implementation varied 
for the different AI techniques. For each of the techniques, the 
criteria presented represent our distillation of that literature's best 
practice. Since best practices change, the fact that a study failed 
to meet the criteria is not necessarily an indictment of that study. 
If we wish to use a study to make a case for or against the 
applicability of a particular AI technique to forecasting or 
prediction, though, we must be able to determine whether the 
study represents a good implementation of the technique being 
used. 

In summary then, studies were classified as being of three types. 
Those that are well implemented and well validated are of interest 
whatever their outcome. They can be used either to argue that 
the AI technique in question is useful in forecasting or that it is 
not, depending upon outcome. These would seem to be the most 
valuable studies. The second type are studies which have been 
well validated, even though their implementation might have 
suffered in some respects. These are important when the 
technique they propose does well despite the limitations in the 



Table 1. Relationship of Validity in Study Outcomes for Rule-Based Studies 
Number of Studies 

Mixed! 
Successful Unsuccessful 

Not 
Compared 

Problems with Validation 
Problems Only with Implementation 
No Problems Either Criteria 

0 
1 

implementation. They can be used to argue that the technique 
is applicable and to establish a lower bound on its performance. 
Finally, there are studies that are of little interest, from the point 
of view of telling us about the applicability of AI to forecasting 
and prediction. Some of these have little value because their 
validation suffers. Others are effectively validated, but they suffer 
from poor implementation. Since they produce null or negative 
results it is not possible to determine whether it is because the 
technique is not applicable or because it has not been well 
implemented. 

4. RULE-BASED STUDIES 

Rule-based systems represent the knowledge of experts in the 
formofrules, t)pically using an IF <condition> TiffiN <action> 
format. The rules for these systems are usually developed through 
knowledge elicitation techniques such as interviews and protocol 
analyses or through reviews of empirical literature. 

4.1 Effectiveness of Implementation 

The effectiveness of rule-based systems is dependent upon the 
source of the knowledge contained in them and the extent of their 
calibration. Knowledge acquisition is widely considered a 
"bottleneck" in the development of expert systems (Barr and 
Figenbaum 1981; Ha}eS-Roth, Watennan and Lemat 1982; Duda 
and Shortliffe 1983). While literature yields rules that are too 
general to achieve expert performance, reliance only on experts 
for knowledge may produce rules that are biased and inconsistent. 
Furthermore, subsequent to knowledge acquisition, calibration 
of the rule base is important in determining its stability and 
consistency. 

Sources of knowledge: Reviews of knowledge acquisition 
techniques indicate that researchers have relied primarily upon 
written materials and verbal interviews with experts for gathering 
expert judgement (Gatmnack and Young 1985, Raulefs 1985). 
Hoffman (1987) and Prereau (1987) have recormnended the use 
of multiple knowledge-elicitation techniques. In evaluating rule­
based studies, we considered whether they used multiple sources. 
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0 
0 
0 

11 
0 
0 

Consideration of alternative rules: In addition to being validated 

relative to other techniques, it is desirable that a particular set of 

rules be compared with alternative ones. Experimenting with 

various rules, perfonning sensitivity analyses on their parameters, 

and testing their generalizability by applying them to additional 

data are examples of the activities that help to insure the develop­

ment of a robust rule-base. 

4.2 Results 

Of the thirteen studies that used a rule-based approach, only one 
met all of the criteria for both effective validation and effective 

implementation. One other study met all of the criteria for 

effective validation and produced a positive result. Table 1 
summarizes the evaluations of the rule-based studies. 

Collopy and Armstrong ( 1992) used multiple sources for their 

rules, conducted calibrations using multiple subsets of a data set, 

and met all three validation criteria. This study used features 

related both to the structure and the context of the series to 

detennine weights assigned to forecasts from four simple 

extrapolation methods. Rules for assigning the weights came 

from protocol sessions with expert~ in forecasting as well as from 

the empirical literature on forecasting. Forecasts from the rule­

based system were compared with forecasts from the random 

walk and from an equal-weights combination that had been used 
in earlier studies. l11e study identified conditions under which 

the rules might be expected to perform better than these 
alternatives and compared their respective performance under the 

various conditions. 

A second of the tl1irteen studies met the criteria for effective 
validation, but did not meet both of the implementation criteria. 
Ho et a!. (1990) used multiple sources for rules, but did not 
evidence calibration effort. It did compare rule-based systems 
to alternative approaches with favorable results. A summary of 
the rule-based studies is given in Appendix A. 



5. DECISION TREE STUDIES 

Six of the studies we located used algorithms that generate 
decision trees. Among the more widely-used of these algorithms 
is ID3 (Quinlan 1983). ID3 is a mechanism for discovering a set 
of classification rules and organizing them in the form of a 
decision tree. The algorithm takes objects of known classes (e.g., 
time series that can be best forecast using random walk and those 
that would benefit from the use of Holt's exponential smoothing) 
which are described by sets of attribute values, x1, ••• , \. and 
generates a rule-based system which correctly classifies the 
objects (Cronan, Glorfeld and Perry 1991). ID3 originated from 
the Concept Learning System (CLS) developed by Hunt, Marin 
and Stone (1966). A more recent variation of CLS and ID3 is 
Analog Concept Learning System (Paterson and Niblett 1982). 
Studies using CLS and ACLS were encountered in addition to 
ID3. 

5.1 Effectiveness of Implementation 

One problem with decision trees is the weak generalizability often 
associated with them. For instance, ID3 capitalizes on the fact 
that variables at the lower branches produce a high percentage 
of correct classifications in the training sample. As a 
consequence, it produces idiosyncratic decision trees, very closely 
related to the structure of the sample used in training. The 
resulting classifications can be poor. Since this is a well­
documented problem with decision trees, we expected studies in 
this domain to attend to it using a three-pronged approach. 

Effective use of pruning: Several algorithms and techniques are 
available that allow decision trees to be terminated before the 
branches become too sample specific (Quinlan 1987). This is 
typically done using a stopping rule that restricts the size of the 
trees and makes them more amenable to interpretation. This also 
helps to ensure that only significantly discriminating variables are 
included. 

Consideration of allernative rules: As with rule-based systems, 
examining alternative rules helps to identify problems with 
sample specific learning. 

Assessment of face validity of rules: Since decision tree 
algorithms are data driven, it is particularly desirable that the 
meaningfulness of rules be validated by experts. 

5.2 Results 

Of the six studies, none of the decision tree studies met the criteria 
for both implementation and validation effectiveness. Four had 
problems with effectiveness of validation. This was because they 
relied upon small samples for their validations. Two studies, 
Carter and Catlett (1987) and Arinze (1994), effectively validated 
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their decision trees and produced positive results despite some 
problems with effectiveness of implementation. 

Carter and Catlett used resampling to produce more than two 
hundred comparisons. They compared the performance of ID3 
and the pruning algorithm C4 and reported that the two were 
better than existing methods of credit scoring. Performance of 
the pruning algorithm, C4, was not significantly different from 
ID3. However, C4 reduced the size and complexity of the 
decision tree by nearly 70% as compared to ID3. Resampling 
was also used by Arinze to provide a sample size larger than the 
85 time series available for the study. ID3 was trained using 
thirty randomly selected time series. Its performance was 
compared with Holt's, time series decomposition, adaptive 
filtering, exponential smoothing, moving averages, Winter's, and 
two experts. The classification of ID3 (54.4%) was significantly 
better than the five forecasting methods other than Holt's (48%). 
There was also no significant difference between the variance of 
Holt's and ID3. ID3 also performed better than experts who 
scored 22.8% and 34.9% in selecting the most accurate method. 

The results of the decision tree studies are summarized in Table 2. 

Four studies (not included in the six discussed above) compared 
the performance of decision trees with other AI approaches, 
specifically with neural networks (Piramuthu, Shaw and Gentry 
1994; Hansen, McDonald and Stice 1992; Tam 1991; Tam and 
Kiang 1992). These are covered in the next section. 

6. NEURAL NETWORK STUDIES 

An artificial Neural Network (NN) is a computational structure 
modeled loosely on biological processes. NNs explore many 
competing hypotheses simultaneously using a massively parallel 
network composed of non-linear computational elements 
interconnected by links with variable weights. It is this 
interconnected set of weights that contains the knowledge 
generated by the NN. NNs have been successfully used for low­
level cognitive tasks such as speech recognition and character 
recognition. They are being increasingly used for decision 
support and knowledge induction (Shocken and Ariav 1994; 
Dutta, Shekar and Wong 1994; Yoon, Guimaraes and Swales 
1994). 

In general, neural network models are specified by network 
topology, node characteristics, and training or learning rules. 
NNs are comprised of a large number of simple processing units, 
each interacting with others via excitatory or inhibitory 
connections. Distributed representation over a large number of 
units, together witl1 local interconnectedness among processing 
units, provides for fault tolerance. Learning is achieved through 
a rule that adapts connection weights in response to input 
patterns. Alterations in the degree of interconnectedness (i.e. , 
the weights associated with the connections) permits adaptability 
to new situations (Ralston and Reilly 1993). For a discussion of 
neural networks, see Lippmann (1987). 



Table 2. Relationship of Effectiveness to Study Outcomes for Decision Tree Studies 
Number of Studies 

Mixed/ Not 
Successful Unsuccessful Compared 

Problems with Validation 3 
Problems Only with Implementation 2 
No Problems Either Criteria 0 

6.1 Effectiveness of Implementation 

Of the fifty-one neural network papers, forty-four (86%) used 
error backpropagation as their learning algorithm. It is well 
established in the literature that this approach suffers from three 
constraints. First, there is no single configuration that is adequate 
for all domains or even within a single domain. Their topology 
must be determined through a process of trial and error. Second, 
they are vulnerable to problems with local minima (Grossberg 
1988). Finally, they are prone to overfitting. These problems can 
be addressed using well-accepted guidelines. 

Testing of alternative configurations: Hornik (1991) provides 
mathematical proof for the effectiveness of a single hidden layer 
in almost any classification problem. There is, though, 
contradictory empirical evidence. Until this inconsistency is 
resolved, testing of alternative numbers of hidden layers seems 
desirable. As regards the number of nodes in these hidden layers, 
several rules-of-thumb, such as average of input and output units, 
exist. However, use of these rules does not guarantee the 
effectiveness of the configuration. This makes it important to test 
a range of layers and nodes. 

Manipulation of learning rates and momentum: A proposed 
solution to the problems of local minima is to allow the network 
to learn slowly and to reduce this learning rate as training 
progresses (Pao 1989). This will increase the learning time but 
will ensure that the network has learned well. Moreover, several 
initial momentum rates, which conserve the momentum in the rate 
of change in the network, should be tested. 

Adequate sample of Examples: Neural networks are prone to 
overfitting. That is, the network may learn so specitically from 
the data used to train it that it does not generalize suitably to 
unseen data. One solution to the problem is the use of a sample 
that is adequate in size and representative of the domain. 
Resampling is an alternative where a large sample is not 
available. 

The conditions identified within this criteria are oriented 
specifically to backpropagation. This was motivated by the large 

127 

0 1 
0 0 
0 0 

number of studies we . encountered that used this learning 
algorithm. However, we did find seven studies that used 
alternative approaches to learning. Of these, two were effective 
in establishing the predictive validity of their efforts. 

6.2 Results 

Five of the fifty-one NN studies met the criteria for both 
implementation and validation effectiveness. Three of these used 
backpropagation as the learning algorithm. Tang, de Almeida and 
Fishcwick ( 1991) reported that a NN performed better than Box 
Jenkins for long-term (12 and 24 month) forecasts, and as well 
as Box Jenkins for short-term (1 and 6 month) forecasts. 
DeSilets, et al. ( 1992) compared the performance of regression 
models with NNs in the prediction of salinity in Chesapeake bay. 
Results indicated that neural nets performed effectively as 
compared to regression models. Gorr, Nagin and Szczypula 
(1994) compared linear regression, stepwise polynomial 
regression, and a three layer NN with a linear decision rule used 
by an admissions committee for predicting student GPAs in a 
professional school. This was one of the two studies we 
encountered that satisfied all of the criteria but did not report a 
positive result for the proposed AI method. 

Two of the five successful studies used learning algorithms other 
than backpropagation. Coats and Fant ( 1993) used the Cascade 
Correlation algorithm for predicting financial distress. 
Comparative assessments were made with discriminant analysis 
which the neural net outperformed. Hsu, Hsu and Tenorio ( 1993) 
used the ClusNet NN for time series forecasting. Results of this 
learning algorithm were compared with alternative learning 
algorithms. ClusNet performed only as well as the comparative 
models. No comparisons were made with traditional approaches. 

Of the remaining forty-six studies, twenty-two were effectively 
validated but had some problems with implementation. Of these, 
thirteen studies reported that neural networks performed better 
than comparative models. Wilson and Sharda (1994), Fletcher 
and Goss (1993), and Tam and Kiang (1992, 1990) developed 
neural nets for bankruptcy classitication. Aetcher and Goss 
compared their NN with a logit model. The other bankruptcy 



studies made comparisons with discriminant analysis. Tam and 
Kiang (1992, 1990) were the only two studies in this domain that 
compared performances with multiple alternatives: regression, 
discriminant analysis, logistic, k Nearest Neighbor, and ID3. 
Wilson and Sharda reported that, although neural nets performed 
better than the comparative model, the differences were not 
always significant. Coats andFant (1992) successfully compared 
backpropagation neural network with regression in the prediction 
of financial distress. 

Dutta, Shekar and Wong (1994) tested NNs in multiple domains. 
They used simulated data, corporate bond rating, and product 
purchase frequency as the test beds for their implementation. 
Comparisons with multiple regression indicated that, on the 
simulated data, they did not perform better than neural nets 
despite a training advantage. In the prediction of bond rating, 
neural nets consistently outperformed regression, while only one 
configuration outperformed regression in the purchase frequency 
domain. 

Lee and Jhee (1994) used a neural network for ARMA model 
identification with ESACF. Using simulated data, it demonstrated 
superior classification accuracy. The NN was then tested on data 
from three prior studies where the models were identified using 
traditional approaches. The authors report that the NN correctly 
classified US GNP, Consumer Price Index, and caffeine data. 

Seven studies compared the performance of alternative models 
in the prediction of time series. Foster, Collopy and Ungar ( 1992) 
compared the performance of linear regression and combining 
with that of neural networks in the prediction of 181 annual and 
203 quarterly time series from theM-Competition (Makridakis, 
et al. 1982). They used one network to make direct predictions 
(direct network) and another to combine methods according to 
features of series (network combining). The authors report that 
while the direct network performed significant! y worse than the 
comparative methods, network combining significantly 
outperformed both regression and combining. Interestingly, the 
networks became more conservative as the forecast horizon 
increased or as the data became more noisy. This reflects the 
approach that an expert might take with such data. Connor, 
Martin and Atlas (1994) and Connor and Atlas (1991) compared 
the performances of various NN configurations in the prediction 
of time series. They reported positive performance of the 
backpropagation net over other alternatives. 

Chen, Yu and Moghaddamjo (1992) used neural nets in the 
domain of electric load forecasting. The network provided better 
forecasts than ARIMA models. The network also adapted better 
to changes, indicating robustness. In the same domain, Park et 
al. (1991) compared the performance of NNs with the approach 
used by the electric plant. NN outperformed the traditional 
approach significantly. 
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Kimoto, et al. (1990) predicted the buying and selling time for 
stocks in the Tokyo Stock Exchange. Their system, consisting 
of multiple NNs, was compared to multiple regression. 
Correlation coefficients with the actual stock movements showed 
a higher coefficient for neural networks than for regression. 

Eighteen (35%) of the fifty-one NN studies, therefore, produced 
results that are relevant to an evaluation of the applicability of this 
technique to forecasting and prediction problems. Table 3 
summarizes these results. 

Four of the studies which met the criteria for effective validation 
and did not meet those for effective implementation produced 
negative or mixed results. All of them assumed a fixed learning 
rate so that there is a possibility that the network had been trapped 
in a local solution. This could explain their negative results. If 
the learning rates were permitted to change, it is possible that 
these NNs would perform well. In addition, three of the studies 
did not test alternative configurations of the NN. The details of 
the NN studies are summarized in Appendices C and D. 

The neural network studies can be categorized into those that 
were aimed at classification and prediction and those that 
attempted to generate future values for time series. Classification 
studies typically included predicting stock performance, bond 
rating, bankruptcy classification, and bank failures among others. 
In all, about twenty-nine of the fifty-one neural network studies 
were classification studies. Twenty-two studies forecasted time 
series, eight in the domain of electric load forecasting. Four of 
these time series studies predicted stock prices and nine 
performed competitions among various forecasting methods. In 
the classification literature, three studies met both of our criteria 
for implementation and validation. The corresponding figure for 
time series forecasting was two. There was no particular domain 
that was found to be more successful than the other. Consequent­
ly, no significant conclusions could be reached about the 
performance of NNs by domains. 

7. DISCUSSION 

Of the seventy studies we evaluated, only six (Gorr, Nagin and 
Szczypula 1994; Coats and Fant 1993; Hsu, Hsu and Tenorio 
1993; Collopy and Armstrong 1992; DeSilets, et al. 1992, Tang, 
de Almeida and Fishcwick 1991) met all of our criteria for 
effectiveness of implementation and effectiveness of validation. 
Of the remaining sixty-four, twenty-seven had no problems with 
validation but suffered with respect to implementation. However, 
sixteen of these twenty-seven reported positive results despite 
implementation problems. These successful studies were of 
interest to us. Altogether then, oft.;e seventy studies, twenty-two 
(31%) contributed to our knowledge regarding the applicability 
of AI to prediction. Twenty of these produced results that were 
favorable, two produced results that were not. 



Table 3. Relationship of Validity to Study Outcomes for Neural Network Studies 
Number of Studies 

Mixed/ Not 
Successful Unsuccessful Compared 

Problems with Validation 13 4 7 
Problems Only with Implementation 13 9 0 
No Problems Either Criteria 3 2 0 

Table 4. Relationship of Effectiveness to Study Outcomes 
Number of Studies 

Mixed/ Not 
Successful Unsuccessful Compared 

Problems with Validation 16 
Problems Only with Implementation 16 
No Problems Either Criteria 4 

Two contributions emerged from our evaluation of AI studies in 
forecasting and prediction. First, we identified criteria for 
assessing the applications of AI to forecasting and prediction. 
The criteria are general enough to satisfy many techniques and 
domains and could serve as an effective framework in evaluating 
future research in this area. Our second contribution was the 
conclusion that AI techniques show potential for forecasting and 
prediction, provided that the techniques are implemented and 
validated effectively. This is a small step toward a consensus 
regarding the potential of AI research for the domain. However, 
this framework also led us to identify a major problem in the AI 
literature: a large part of the AI research in forecasting and 
prediction lacks validity. Almost 69% of the research suffered 
from implementation and/or validation issues. We recommend, 
therefore, that future research efforts in this direction attend to the 
validity factors discussed in this study. 

Until the impact of AI in forecasting is well established, 
comparisons must be made between the AI techniques and 
alternative methods. The methods used for comparison should 
be simple and well-accepted. The forecasting literature expresses 
a preference for simpler models unless a strong case has been 
made for complexity (Collopy, Adya and Annstrong 1994). 
Moreover, research findings indicate that relatively simple 
extrapolation models are robust (Armstrong, 1984 ). 

Finally, a large enough sample of forecasts must be generated for 
fair representation of short and long term forecasts. Successive 
updating provides a larger sample size for comparing the 
performance of alternative models. For more details on this 
approach see Collopy, Adya and Armstrong. 
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4 19 
9 0 
2 0 

Hybrid approaches might offer promise to realizing the hopes of 
artificial intelligence in forecasting. With increasing research 
efforts directed to using machine learning approaches, the focus 
appears to have shifted away from rule-based systems. However, 
we feel that in addition to improving research in these two 
doiTU'l.ins, the possibilities of combining rule-based and machine 
learning approaches is worth exploring. 

On a similar note, rather than regarding machine learning 
approaches as replacements for traditional statistical techniques, 
they should be considered for use in conjunction with them. An 
example would be the selection of inputs that contribute most 
significantly to the prediction or generalization of the problem 
domain. The more variables that aNN has to search through, the 
more complex it will be. Moreover, the learning time increases 
exponentially with the number of input variables. To reduce the 
complexity of the net, some statistical technique might be used 
to determine the more signiticant input variables (see Tam 1991). 
1l1is smaller set of variables can then be used in the NN for 
further learning and optimization. 

8. CONCLUSIONS 

Researchers have been hopeful about the potential for AI 
techniques in business applications. Empirical evidence though 
appears to be inconclusive. To get further insights into this 
inconclusiveness, we evaluated seventy studies that applied AI 
approaches to business forecasting problems. Our review 
indicated that problems exist with implementation and validation 
of research in this domain. Only 31% of the studies that we 
reviewed could be considered successful both in developing and 



testing the techniques. First, many of the studies (about 57%) 
failed to effectively test the newer approaches against established 
alternatives. Next. some of the studies (about 12%) inadequately 
addressed problems known to exist in applying the technique of 
interest and therefore got mixed or negative results. This leaves 
only a minority of the studies that can be used to draw conclusions 
about the effectiveness of the approach. Of these studies, most 
presented successful implementations, in the sense that the 
method being proposed performed better than the alternatives. 
This suggests that the application of these approaches to business 
is promising. There is room, though, to improve the efficiency 
with which we conduct research toward that end. 
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