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Abstract

In vitro and in vivo models are widely used in cancer research. Characterizing the similarities and differences between a
patient’s tumor and corresponding in vitro and in vivo models is important for understanding the potential clinical relevance
of experimental data generated with these models. Towards this aim, we analyzed the genomic aberrations, DNA
methylation and transcriptome profiles of five parental tumors and their matched in vitro isolated glioma stem cell (GSC)
lines and xenografts generated from these same GSCs using high-resolution platforms. We observed that the methylation
and transcriptome profiles of in vitro GSCs were significantly different from their corresponding xenografts, which were
actually more similar to their original parental tumors. This points to the potentially critical role of the brain
microenvironment in influencing methylation and transcriptional patterns of GSCs. Consistent with this possibility, ex vivo
cultured GSCs isolated from xenografts showed a tendency to return to their initial in vitro states even after a short time in
culture, supporting a rapid dynamic adaptation to the in vitro microenvironment. These results show that methylation and
transcriptome profiles are highly dependent on the microenvironment and growth in orthotopic sites partially reverse the
changes caused by in vitro culturing.
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Introduction

Glioblastoma Multiforme (GBM) is the most common and

deadly primary brain tumor of the central nervous system.

Developing experimental model systems that accurately recapit-

ulate human tumor biology is critical for understanding the

molecular pathogenesis of the disease as well as for developing and

screening new therapeutics [1–7].

Completion of the human genome project and recent develop-

ments in high throughput molecular technologies have enabled the

detailed genomic, epigenomic and transcriptome profiling of

thousands of tumors in unprecedented detail. Specifically, a

number of groups have used high resolution arrays to analyze the

genomic aberrations [8–11], methylation alterations [12–16] and

mRNA expression changes [17–20] found in human GBMs.

Through the characterization of these genomic and epigenomic

abnormalities comes not only an increased understanding of the

biology of these tumors but also the potential of identifying new

therapeutic targets. The validation that a given genetic aberration

and/or a physiological process is a viable therapeutic target rests

on the biological affects that result from perturbation of those

targets in relevant in vitro and in vivo preclinical models. The closer

those model systems are to the human disease, the greater the

chance that those models will be predictive of clinically useful

therapeutic agents. Others and we have previously shown that

GBM-derived glioma initiating or GSCs more closely recapitulate

the genotype and biology of primary human GBMs than do

standard glioma cell lines [21–25]. Nevertheless, there are clearly

some differences between parental tumors and derived cell lines at

the DNA methylation and mRNA expression level [3]. Exactly

how closely GSCs retain the genotype and epigenomic profile of

their parental tumors after serial passage in in vitro and in vivo,

however, is unknown.

In order to better understand the genomic and epigenomic

changes that occur following the passage of GSCs in vitro and in

vivo, we analyzed the genetic alterations, genomic methylation and

the transcriptome profiles of several primary human GBM-derived

GSCs in vitro and in vivo. We demonstrated that although the GSCs

maintain similar genomic and epigenomic characteristics with
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their parental tumors, the in vitro and in vivo microenvironments

exert profound, but partially reversible changes on the methylation

and gene expression profiles of each GSC line. These data reveal

that not only are the types of cells used important, but also how

those cells are grown is pivotal for accurate modeling of the human

disease.

Materials and Methods

Ethics Statement
Human brain tumor specimens are studied under the Protocol#

02C0140, ‘‘A Prospective National Study to Molecularly and

Genetically Characterize Human Gliomas: The Glioma Molecu-

lar Diagnostic Initiative’’ approved by the Institutional Review

Board of National Cancer Institute (FWA#00005897/

IRB#00000001). Written informed consent from the donor or

the next of kin was obtained for use of this sample in research and

samples were maintained according to the NCI Institutional

Review Board Regulations.

The animal research in this study was carried out in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The protocol (ASP NOB001) was approved by the

National Cancer Institute Animal Care and Use Committee on

the Ethics of Animal Experiments of NIH. All intracranial

injection and procedures were performed under Ketamine-

Xylazine combination anesthesia, and all efforts were made to

minimize suffering.

Patient Samples
Five different GBMs were used for this study and were obtained

from surgical samples based on a prospective NCI intramural

clinical tissue acquisition trial. These samples were provided as

snap frozen sections. Pathological diagnosis of these samples was

determined by the local institutional neuropathologist and

centrally reviewed by two NIH neuropathologists according to

WHO criteria [26].

Glioma Stem Cells and Xenografts
Tumor cells were washed and enzymatically dissociated into

single cells within three hours of surgical removal. NBE media,

which consists of Neurobasal media (Invitrogen), N2 and B27

supplements (0.56 each; Invitrogen), human recombinant bFGF

and EGF (50 ng/ml each; R&D Systems) was used to culture

glioma stem cells (GSCs) (for details [21]).

For xenografts, GSCs were resuspended in 2 ml of HBSS and

injected intracranially using stereotactic techniques into severe

combined immunodeficiency mice (SCID/NCr mice with BALB/

c background, female, aged 3 months, and weighing around 20–

22 g, obtained from Charles River, Frederick, MD), according to

animal study proposal approved by NCI Animal Use and Care

Committee. Intracranial tumors were resected and resected tissues

were used as in vivo samples. Portion of resected tissues were

cultured again in the same media to develop the ex vivo samples.

Xenograft samples and ex vivo cell cultures were controlled for

mouse contamination by real time genomic PCR of either mouse-

or human-specific GAPDH probe set (Applied Biosystems,

Cat#4308313 or Cat#402869) and only samples that showed

no detectable mouse tissue (or cell) contamination were used in

subsequent analyses.

We predicted the G-CIMP status of each sample using our

previously published prediction method [27]. We determined all

samples as G-CIMP negative. Moreover we checked the IDH1

status of these samples with targeted sequencing and could not

detect IDH1 R132 mutation.

SNP Arrays and Data Set
QIAamp DNA kit (Qiagen) was used to prepare the genomic

DNA from patient tumors, cultured GSCs and Xenografts.

QIAamp DNA Blood Mini Kit (Qiagen) was used to prepare

DNA from patient reference blood. Prepared DNA was hybridized

onto arrays according to the manufacturer’s recommendations

(Affymetrix Human SNP array 6.0 and CytoScan HD array).

After hybridization, the arrays were stained on the Affymetrix

GeneChip fluidics station 450 and scanned at high resolution using

the GeneChip Scanner 3000 7G.

Constructed CEL files were imported using Nexus (version 6.1).

SNP-FASST2 segmentation was used for segmentation with

1000 Kbp as the maximum contiguous probe spacing and three

as the minimum number of probes per segment. The significance

threshold for segmentation was set at 5.0E-7. SNP-FASST2

Segmentation Algorithm is an extension of the FASST2 Segmen-

tation Algorithm. FASST2 Segmentation Algorithm is a Hidden

Markov Model (HMM) based approach that uses many states to

cover more possibilities, such as mosaic events, and then make

calls based on a second-level threshold. With the SNP-FASST2

algorithm, B-allele frequency probes are assigned to a range of

possible states, which are used to make the final copy number and

allelic event calls. The log ratio thresholds for single copy gain and

single copy loss were set at 0.3 and 20.35, respectively. The log

ratio thresholds for two or more copy gain and homozygous loss

were set at 0.7 and 21.1, respectively.

DNA Methylation Arrays and Data Set
DNA from cell pellets and fresh frozen tumor tissue was

extracted with QIAmp DNA Micro Kit (Qiagen). One microgram

of the DNA was bisulfite converted and processed on Human

Methylation450 BeadChips (Illumina) using the Infinium HD

Methylation Assay. Image data were extracted and analyzed using

the GenomeStudio v2011.1 methylation module (Illumina).

Methylation sites, which have detection p-value greater than

0.05 for any sample or have a missing value for any sample, were

filtered out. We also filtered out methylation sites that reside on sex

chromosomes to eliminate gender effect. 459,913 methylation sites

remained after filtering. We ran batch controls for the batches that

include five parental tumors-GSC pairs and did not detect a batch

effect based on principle component analysis (PCA). We did not

use batch controls for in vitro-in vivo-ex vivo triplicates based on this

result and previous experience in our lab [27].

mRNA Expression Arrays and Data Set
RNA was isolated and purified from cell pellets and fresh frozen

tumor tissue using TRIZOL (Invitrogen) and PureLink RNA Mini

Kit (Invitrogen). Affymetrix GeneChip Command Console

(AGCC) was used to create the raw mRNA expression data

(CEL files). We imported data to Partek Genomics Sofware

(version 6.6, Partek Inc., St. Charles, MI) and normalized samples

using RMA defaults (RMA background correction, quantile

normalization, and median polish).

Hierarchical Clustering (HC) and Principle Component
Analysis (PCA)

We used Partek Genomics Software (version 6.6, Partek Inc., St.

Charles, MI) to perform HC and PCA. Agglomerative (bottom-up)

approach, complete linkage and Euclidean distance were used for

all HCs. Expression data were standardized for each column

Micro-Environment Causes Reversible Changes
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(probe set) prior to performing the HC, although this was not done

for the methylation data. PCAs were performed using correlation

dispersion matrix and normalized eigenvector scaling.

Results

Comparison of genomic aberrations
We used Affymetrix SNP6.0 and Cytoscan HD arrays to

measure the genomic aberrations in our parental tumors (PTs),

matched cultured GSC lines (in vitro) and GSC-generated

xenografts (in vivo). To determine somatic changes, for each

sample we subtracted background using blood DNA arrays from

the same patient. First, we compared the genomic profiles for five

matched patient tumor and in vitro GSCs (passage 10). We

observed that there were some significant differences between

genomic profiles of patient tumors and their corresponding GSCs

(Figure 1A). These differences might be due to selective growth

and/or loss of certain tumor sub-clones or acquisition of new

aberrations in culture.

We next compared early and late passage (5 and 18,

respectively) in vitro GSCs, the in vivo xenografts they formed and

the GSCs cultured from those dissected xenografts (‘‘ex vivo’’). We

observed that the genomic profiles in all matched samples were

nearly identical (Figure 1B), consistent with our prior character-

ization of GSCs [21]. Based on these results, it appears that the

initial selection of clonal subtypes in culture plays a major role in

Figure 1. Copy number alterations for patient tumors and in vitro, in vivo, ex vivo GSC samples. (A) Comparison of five matched patient
tumors and their corresponding in vitro GSCs. Each line represents a sample. Three or four digit code represents GSC id, PT represents patient tumor
and invitro represents in vitro GSC. Blue is amplification, red is deletion, purple is loss of heterozygosity and orange is allelic imbalance. Examples of
the many differences between PTs and matched in vitro GSCs are loss on chromosome 13 at GSC-827 and gain on chromosomes 4, 8, 9 and 14 at
GSC-1228. (B) Comparison of in vitro-in vivo-ex vivo triplicates for early and late passages of two GSCs.
doi:10.1371/journal.pone.0094045.g001

Micro-Environment Causes Reversible Changes
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the copy number differences between patient tumors and GSCs,

after which copy number alterations remain remarkably stable

whether serially passaged in vitro or in vivo.

Comparison of genomic DNA methylation
We used the Illumina Infinium 450K platform to assess

methylation profiles of our samples [28,29]. This platform

measures methylation level for a methylation site as a continuous

value between 0 and 1. It compares the methylated and

unmethylated probe intensities on bisulfite treated DNA. For

our analysis, we included five PT-in vitro pairs, four in vitro-in vivo-ex

vivo triplicates and three non-tumor brain (epilepsy) samples. In

first part of the analyses, we focused on potential changes between

non-tumor brain tissues, patient tumors and in vitro GSCs.

Figure 2A represents the summation of the methylation analyses

through a PCA of 3847 methylation sites with standard deviation

greater than 0.35. This figure demonstrates that all GSCs have

significantly lower values in the first principal component (x-axis),

which represents more than 60% of the variation. This suggests

that there is a systematic change between PTs and in vitro GSCs.

We also observe that all three non-tumor samples cluster together

at the upper-right end of the plot completely away from the PTs

and the GSCs. We checked the median methylation values to see

whether methylation changes observed in in vitro GSCs is

associated with an overall hypo- or hyper-methylation. We

detected significant hyper-methylation in cultured cells, which

was consistent for all five PT-in vitro pairs (Figure 2B). We also used

HC to assess the similarity of samples and to validate our PCA

results (Figure S1). In HC, 5 PTs with epilepsy samples and 5 in

vitro GSCs clustered as two separate groups, which confirmed PCA

results.

In the next part of our analyses, we focused on the differences

between in vitro and in vivo models. For better assessment of the

data, we removed the differentially methylated sites between two

GSC models that we used in our analyses. Along this aim, we ran a

Mann-Whitney test and retained 163,959 out of 459,913

methylation sites, which were not differentially methylated

between GSCs 827 and 923 (p-value.0.5). Out of these sites,

we present 6825 sites with standard deviation greater than 0.15 as

HC and PCA (Figure 3A, 3B, S2).

We observed that ex vivo samples were clustered between in vitro

and in vivo samples, which points to the partial recovery of micro-

environmental associated changes in just a few passages

(Figure 3A). Ideally, ex vivo samples were expected to cluster more

closely to the in vitro samples, but perhaps since ex vivo samples

spent less time in culture, they were not clustered tightly with in

vitro samples (Figure 3A). GSCs derived from ex vivo samples,

however, were much closer to in vivo samples, which might be due

to less time in culture. We also observed that the changes seen with

serial passage in vitro or through growth in vivo were highly similar

between GSC lines derived from different patients (Figure 3B).

Finally, we found that xenografts from early passage GSCs

arewere much clustered together with PTs and xenografts from

late passage GSCs were clustered with late passage ex vivo samples

suggesting that the time in culture has an important effect on

overall methylation profile. (Figure 3A, Figure 3C). The differ-

ences that were seen between xenografts and PTs (Figure 3B)

could be the result of influence of mouse versus human brain

microenvironments, the time that GSCs spent in culture before

xenotransplantation, or the selection of specific xenograft-gener-

ating GSCs.

When we compared the median methylation values for all 827

and 923 samples, we observed that PTs and in vivo samples have

lower median methylation levels than their corresponding in vitro

and ex vivo samples (Figure 3C). We also observed that later

passage in vitro (ex vivo) samples have much higher median

methylation levels than earlier passage in vitro (ex vivo) samples. The

differences between early and late passage in vivo samples,

however, were much smaller than their corresponding in vitro

GSCs, suggesting that the hyper-methylation seen with extended

passaging is highly reversible.

Figure 2. DNA methylation profiles for patient tumors and in vitro GSCs. (A) Principle Component Analyses (PCA) of 3847 methylation sites
with standard deviation more than 0.35. PT represents patient tumor and in vitro represents the corresponding in vitro GSCs. Matched PT-in vitro
pairs are connected with lines. (B) Median methylation values for each sample based on selected 3847 sites.
doi:10.1371/journal.pone.0094045.g002
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Comparison of Transcriptomes
We compared seven matched PT-GSC pairs and four in vitro-in

vivo-ex vivo matched samples at the transcriptome level using

Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. We

used U87 cells as replicates in different batches to control for

changes due to technical artifacts. All U87 replicates clustered

together in HC and PCA, which confirmed the quality of the

results (Figure S3, S4). Next, we removed U87 replicates and

imported remaining samples with into Partek with RMA

normalization and filtered in high variation (st. dev. .1.3) 1901

probe sets (out of 54,678). The HC of these probe sets is

represented in Figure 4A for five PT-in vitro GSC pairs (GSCs are

passage 10 and three replicates were used), which demonstrates a

clear separation between these two groups. Figure 4B and 4D

represent HCs for PT, in vitro, in vivo, ex vivo samples for 827 and

923 samples, respectively. These HCs demonstrate a clear

separation between PTs and in vitro GSCs, but a relative similarity

between PTs and their corresponding xenografts. Thus, it appears

that xenografts partially recover the gene expression profiles seen

in the original PT. Finally, when we compared the median

expression values, we observed that PTs and in vivo samples have

higher expression levels compared to matched in vitro and ex vivo

samples (Figure 4C).

When we looked at the methylation and expression data in total,

we observed that PT and in vitro GSCs are very different in both

data sets. By contrast, the PT samples were much more similar to

in vivo xenografts than in vitro samples in both data sets.

Detailed Analyses for Differentially Methylated and
Expressed Genes

We next explored which genes demonstrated significant

differences between five paired PT and in vitro GSCs both in

DNA methylation and mRNA expression. We selected

22,264 (5408 genes) out of 459,913 methylation sites based on a

Figure 3. DNA methylation profiles of patient tumors and in vitro, in vivo, ex vivo GSCs for two cell lines. (A,B) HC and PCA for PT, in vitro,
in vivo and ex vivo samples for early and late passages (ep, lp). 6825 sites with standard deviation greater than 0.15 are presented. These sites are not
differentially methylated between 827 and 923 (Mann-Whitney p-value more than 0.5). (C) Median methylation values for each sample based on
selected 6825 sites.
doi:10.1371/journal.pone.0094045.g003

Micro-Environment Causes Reversible Changes

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e94045



non-parametric paired Quade test with Benjamini-Hochberg

FDR,0.05 and mean methylation difference greater than 0.3.

Similarly we ran a paired t-test and picked 645 differentially

expressed genes with Benjamini-Hochberg FDR,0.05 and

absolute fold change greater than three. The intersection between

these gene sets demonstrated 238 differentially methylated and

differentially expressed genes (Table S1). Figure 5 demonstrates

these genes with mean methylation differences (y-axis) and fold

changes (x-axis). Data points are colored red if it is a part of a CpG

island and blue if it is not (all genes in Figure S5). We observed that

the majority of differentially methylated and differentially

expressed genes were hyper-methylated and down-regulated in

in vitro GSCs. Furthermore, a significant proportion (p-val-

ue,0.0001 Chi-Squate test with Yates correction) of the hyper-

methylated sites occured within CpG islands (365/802) while

hypo-methylated sites rarely occur within CpG islands (2/78).

Next, we categorized methylation sites with respect to their

locations on genes as TSS1500 (site location is between 1500 and

200 bases upstream of transcription start site (TSS)), TSS200 (site

location is within 200 bases upstream of TSS), 59 UTR, 1st Exon,

Body (except 1st exon) and 39 UTR. Out of the 64,671 sites in

TSS1500, 3536 (5.47%) are differentially methylated. Similarly;

4.74%, 4.72%, 4.15%, 4.02% and 3.82% of the sites in the 1st

Exon, 59 UTR, Body, TSS200 and 39 UTR are differentially

methylated. This shows that sites in the promoter, but not in the

immediate vicinity of TSS, were preferentially targeted for

methylation changes in vitro. Next, for methylation sites associated

with genes, we measured which portion of differentially methyl-

ated genes is also differentially expressed. Out of the differentially

methylated sites within each region, 7.18%, 7.00%, 6.69%,

5.32%, 4.73% and 3.63% are also differentially expressed in 59

UTR, 1st Exon, TSS200, TSS1500, Body, and 39 UTR,

respectively, which shows stronger methylation-expression inter-

action near TSS.

Since CpG islands are very important in terms of DNA

methylation, we categorized methylated sites according to their

location with respect to CpG islands. We defined four categories as

Island, Shore (0–2000 base pairs to Island), Shelf (2000–4000 base

pairs to Island) and Rest and assigned each site to one of these

categories. We observed that 7.03%, 5.60%, 3.27% and 2.22% of

the sites are differentially methylated in Island, Shore, Rest and

Shelf categories, respectively. This shows that sites located in or

close to CpG Islands are more sensitive to in vitro changes. Then,

we measured which percent of the differentially methylated genes

are differentially expressed within each region. We observed that

5.78%, 3.33%, 1.34% and 0.40% of the differentially methylated

sites within Island, Shore, Rest and Shelf categories are also

differentially expressed, respectively. This suggests that methyla-

tion-expression regulation is stronger in CpG islands.

Figure 4. Trancriptome data for high variation (std. dev. .1.3) 1901 probe sets. (A) HC for matched PT-in vitro pairs for five GSC lines. (B)
HC for PT and in vitro-in vivo-ex vivo triplicates for early and late passage 827 samples (C) Median expression values for all samples. (D) HC for PT and
in vitro-in vivo-ex vivo triplicates for early and late passage 923 samples.
doi:10.1371/journal.pone.0094045.g004
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A subset of GBM samples are categorized as G-CIMP due to

the hyper-methylation profile they display [12]. This hyper-

methylation profile is tightly associated with a mutation in IDH1

[14]. We, therefore, checked whether the methylation sites, which

show differences between G-CIMP positive, and G-CIMP

negative GBMs, were also differentially methylated between

parental tumors and in vitro samples. To this point, we analyzed

368 TCGA samples from our previous study [27]. There were

21,587 methylation sites shared between that data set and the data

set we used for this study. Among these, 936 and 854 sites were

differentially methylated between G-CIMP positive and negative

samples (Mann-Whitney, Benjamini-Hochberg FDR,0.05 and

mean methylation difference .0.3) and between parental tumors

and in vitro samples (Quade, Benjamini-Hochberg FDR,0.05 and

mean methylation difference .0.3), respectively. 271 sites were

shared between two comparisons. When we ran a Chi-Square test

with Yates correction on these numbers, we observed that

differentially methylated sites in the two comparisons were

associated (p-value,0.001). This suggests that certain sites have

a tendency for methylation changes regardless of the specific

genetic or environmental context.

Finally, we analyzed the in vitro differentially methylated and

differentially expressed 238 genes with fold changes using

Ingenuity Pathway Analyses software for functional enrichment.

We observed development and cancer related categories such as

‘‘Hematological System Development’’, ‘‘Cancer’’, ‘‘Cellular

Development’’ and ‘‘Cell Death and Survival’’ as the most

enriched categories (Figure S6).

Genes potentially involved in GSC DNA hyper-
methylation in vitro

Serial cell passage in vitro is known to change the methylation

profiles of cultured cells [30–32]. We confirmed this finding in this

study as we observed hyper-methylation in in vitro samples

compared to PTs and progressive hyper-methylation with serial

passage in vitro. To identify the potential genes that might be

related to this in vitro hyper-methylation phenotype, we compared

the expression levels of genes encoding proteins with ‘‘methyla-

tion’’ functions based on Gene Ontology (GO) categories [33]. We

identified 220 genes (out of 21,121 genes in our data set) within

this category. In a paired t-test comparing five different matched

PTs and in vitro GSCs, we identified 12 differentially expressed

genes with FDR less than 0.03. These genes are ATF7IP,

BCDIN3D, DNMT1, ELP2, GATAD2A, GSPT1, MTA2,

N6AMT1, NTMT1, PRMT5, TPMT and WDR5. In a similar

fashion, we ran paired t-tests between four matched in vitro-in vivo

and in vivo-ex vivo pairs. We obtained 89 and 77 differentially

expressed methylation-related genes, respectively with p-value less

than 0.03 (FDR,0.23). ATF7IP, ELP2, NTMT1, PRMT5 and

TPMT are the five genes that were present in all three

comparisons. Among these genes, PRMT5 has been recently

reported to cause DNA methylation changes [34]. PRMT5

mediates methylation of histone H4R3, which recruits DNMT3A

resulting in DNA methylation and repression of gene expression.

Consistent with this, we observed clear differences between PT-in

vitro and in vitro-in vivo pairs for PRMT5 expression (Figure S7).

These results suggest that up-regulation of PRMT5 expression in

Figure 5. Fold changes (x-axis) and mean methylation differences (y-axis) between paired in vitro-PT pairs for both differentially
expressed and differentially methylated genes. Differentially expressed genes determined with paired t-test. Genes with false discovery rate
less than 0.05 (Benjamini-Hochberg) and absolute fold change greater than three are used. Differentially methylated sites determined with paired
non-parametric Quade test and sites with false discovery rate less than 0.05 (Benjamini-Hochberg) and absolute methylation difference greater than
0.3 are used.
doi:10.1371/journal.pone.0094045.g005
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vitro may partially contribute to the genomic hyper-methylation

seen in GSCs with serial passage in vitro.

Discussion

In this study, we characterized the genomic aberration, DNA

methylation and mRNA expression profiles of parental GBMs

with their matched in vitro and in vivo GSCs that they generate.

Although earlier studies have addressed some aspects of the

differences between parental tumor and their matched tumor cell

lines, our study is one of the first to use high-resolution arrays to

profile multiple dimensions of the genomic, methylation and

transcription machinery in detail. Our results show that DNA

methylation and mRNA transcription undergo significant and

reproducible transformation from in vitro to in vivo growth

conditions and then back again. These changes were seen when

comparing PTs to their corresponding GSCs in vitro, and were

partially reversed when those same GSCs formed xenograft

tumors in the brains of immunodeficient mice. When we cultured

GSCs from those same xenograft tumors, we observed a quick

reversion back to the original in vitro GSC-related expression

profiles within a few passages, with a much slower and less

complete recovery of their methylation profiles. In summary, our

observations demonstrate that GSCs quickly adapt to their

microenvironment by changing their transcriptome and epigen-

ome.

We observed a reduction in the overall mRNA expression levels

in in vitro GSCs compared to PTs and in vivo GSCs. The reasons for

this are unclear but are likely multifactorial. One possibility might

be due to down-regulation in vitro of a number of pathways, which

normally responsive to the diverse extra-cellular-signaling envi-

ronment found in vivo. Another possibility rests on the observation

made by others and us that GSC mediated xenograft formation

requires high levels of c-myc in vivo in contrast to in vitro GSC

proliferation that requires much lower levels [35]. Given the

recent demonstration of c-myc as an enhancer of overall

transcriptional levels throughout the genome [27], lower levels

of c-myc activity in in vitro GSCs may contribute to the overall

lower mRNA transcriptional levels in in vitro. Finally, the

progressive increase in genomic methylation that others and we

observed with serial passage of our GSCs may be representative of

and/or contribute to an overall increase in the heterochromatin

content of the genome of in vitro passaged GSCs thereby resulting

in a reduction in mRNA expression.

Our data demonstrate the adaptation of glioma cells to their

microenvironment but it does not explain the mechanism of

adaptation. One possibility is that the selective pressures of the

given microenvironment (in vitro or in vivo) can select for an

adaptive phenotype and genotype most advantageous for those

pressures. Another, non-mutually exclusive possibility, is based on

the fact that GBMs and GSC lines are made up of highly

heterogeneous clones of tumor cells and genomic profiles obtained

from tumors represent only an averaged result for potentially

innumerable clones. Individual clones may be selected for by in

vitro and in vivo selective pressure causing a dominant clone(s), with

its corresponding genotype and phenotype, to dominate. The

existing data do not allow us to definitively discriminate between

these two possibilities although it is likely that both mechanisms

play a role in explaining the changing profiles seen between the

different growth conditions. Further studies to examine the clonal

distribution will be required to explain the mechanistic basis for

how GSCs adapt to their microenvironment.

In our analyses, we observed that in vivo xenografts were

clustered between PTs and in vitro/ex vivo samples in HCs on DNA

methylation (Figure 3A) and mRNA expression (Figure 4B, 4D)

datasets. We also detected significant and consistent differences

between PTs and in vivo xenografts. One potential reason for this

could be contamination of normal human or mouse brain tissue.

To exclude this potential problem, we applied strict contamination

controls as measured by qRT-PCR for human and mouse specific

probes, and only used samples with no detectable (or negligible)

contamination. Thus, it is again likely that the differences seen

between the expression and methylation profiles of the PTs and

their corresponding xenografts are either due to initial elimination

of certain PT cells in culture, selection of specific clones most

adapted to growth in the murine central nervous system

microenvironment and/or the biological adaptation of the tumor

to the selective pressures of that unique microenvironment.

In our previous study, we have demonstrated that NBE grown

GSCs are better representative of human GBMs than matched

cells gown in serum or standard glioma cell lines [21]. In this

study, we further define the limits of the GSC model for

reproducing the biology of the human disease. The mechanisms

driving these differences are beyond the scope of this report and

additional studies examining the potential role of individual clones

or cellular subpopulations in vitro cultures and in vivo will be

necessary. Nevertheless, through the continued refinement of

models such as these and through our increased understanding of

the strengths and limitations of such models, will come a better

tool for understanding GBM biology and more accurate predictive

screening of novel therapeutic strategies.

Supporting Information

Figure S1 Hierarchical Clustering of methylation sites
for non-tumor, patient tumor and in vitro, in vivo and ex
vivo samples. 3847 sites with standard deviation greater than

0.35 are presented. First column represents the type of sample and

second column represents the GSC code. Each cell in the heat

map is colored by the methylation rate; bright blue is 0% and

bright red is 100% methylation.

(DOCX)

Figure S2 Hierarchical Clustering for non-tumor, pa-
tient tumor, in vitro, in vivo and ex vivo samples. 6825

sites with standard deviation greater than 0.15 are presented.

These sites are not differentially methylated between 827 and 923

(Mann-Whitney p-value more than 0.5). First column represents

the type of sample and second column represents the GSC code.

Each cell in the heat map is colored by the methylation rate; bright

blue is 0% and bright red is 100% methylation.

(DOCX)

Figure S3 PCA for PT, in vitro, in vivo, ex vivo and U87
mRNA profiles. Samples are imported with RMA and 3002/

54678 probe sets with standard deviation greater than 1.3 are

presented.

(DOCX)

Figure S4 Hierarchical clustering for PT, in vitro, in
vivo, ex vivo and U87 mRNA profiles. Samples are imported

with RMA and 3002/54678 probe sets with standard deviation

greater than 1.3 are presented.

(DOCX)

Figure S5 Fold changes (x-axis) and mean methylation
differences (y-axis) between paired in vitro-PT pairs for
both differentially expressed and differentially methyl-
ated genes. Differentially expressed genes determined with

paired t-test. Genes with false discovery rate less than 0.05

(Benjamini-Hochberg) and absolute fold change greater than three
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are used. Differentially methylated sites determined with paired

non-parametric Quade test and sites with false discovery rate less

than 0.05 (Benjamini-Hochberg) and absolute methylation

difference greater than 0.3 are colored red and blue others are

colored gray.

(DOCX)

Figure S6 In vitro differentially methylated and differ-
entially expressed 238 genes with fold changes are
uploaded Ingenuity Pathway Analyses software for
functional enrichment. These are the enriched most catego-

ries; blue sub-categories are inhibited and orange ones are

activated in vitro.

(DOCX)

Figure S7 PRMT5 expression for matched PT, in vitro,
in vivo and ex vivo samples. Each column represents a

matched samples and y-axis is the PRMT5 expression value.

(DOCX)

Table S1 List of differentially methylated and differen-
tially expressed genes.
(TXT)
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