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ABSTRACT 

MODELING AND TESTING OF R23/R134A MIXED REFRIGERANT SYSTEM WITH 

WATER COOLED SEPARATOR FOR LOW TEMPERATURE REFRIGERATION 

 

 

Nicholas Hugh 

 

Marquette University, 2013 

 

 

Low temperature (LT, -35 °C to -50 °C) and ultra low temperature (ULT, -50 °C to -100 

°C) refrigeration is required in the life sciences industry for the production and storage of 

biological systems.  The minimum practical storage temperature of a simple, single-stage 

refrigeration system is -30 °C, and this is incapable of meeting the requirements of biotechnology 

applications.  Current LT and ULT refrigeration systems utilize cascade systems, which are 

combinations of single-stage refrigeration systems operating at successively lower temperatures.  

Because they use multiple compressors, cascade systems have higher capital and operating costs 

than simple single-stage vapor compression refrigeration systems.  Equipment operating costs of 

LT and ULT refrigeration contribute significantly to the operating costs of biotechnology 

companies and therefore motivate the development of lower cost, higher performance 

refrigeration systems.   

 

One approach to achieving greater efficiency is the development of single compressor 

systems that utilize a refrigerant mixture and a condensing separator.  After compression, the 

refrigerants are separated and follow refrigeration cycles similar in working temperature and 

pressure to cascade systems to achieve the desired temperature and heat load capacity.  The 

refrigerant mixture streams are combined at the suction side of the compressor and compressed 

again to complete the cycle.  This concept has the benefit of using a single compressor to reach 

low temperatures rather than the multiple compressors used in cascade systems.   

 

This work addresses the modeling, analysis and testing of a single compressor mixed 

refrigerant system (MRS) for low temperature applications.  A model will be developed using 

first and second law principles of thermodynamics to calculate the refrigeration capacity, power 

consumption, coefficient of performance (COP), and second law efficiency.  The model results 

will be validated through comparison with experimental results for a prototype system under 

steady-state conditions.  Also, the model results will be explored to determine the impact of 

mixture composition on the system performance.  Performance and benefits of the MRS will be 

compared to a similar cascade refrigeration system operating under similar conditions.  The 

experimental performance of the prototype MRS will be used to make recommendations to 

advance the development of more efficient low temperature storage refrigeration systems.   
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Chapter 1 
 

 

Introduction 
 
 

 Low temperature refrigeration for the life sciences industry is concerned with the use of 

refrigeration cycles to provide cooling to freeze products for thermal storage.  Freezing biological 

products at low temperatures retards the degradation of microbiological tissue, therefore, 

enhancing the shelf life of the product.  Increasingly lower storage temperatures correlate with 

lengthening preservation effects.  The American Society for Heating, Refrigeration and Air 

Conditioning (ASHRAE) defines low temperature (LT) refrigeration in the range of -30 °C to -50 

°C (-22 °F to -58 °F), and ultra-low temperature (ULT) refrigeration from -50 °C to -100 °C (-58 

°F to -148 °F).  ULT refrigeration for long term storage is the focus of the research presented in 

this thesis.  Refrigeration systems used for long term sample storage consume large amounts of 

electricity because they operate continuously.  Power consumption is the leading contributor to 

operational costs of low temperature refrigeration systems.   

Development of novel refrigeration systems that reach low temperatures while improving 

performance will provide a more energy efficient product for the biotechnology industry.  This 

chapter reviews the present state of LT and ULT refrigeration and defines the design parameters 

that will be used for the modeling and testing of a mixed refrigerant low temperature system.   

 

1.1 Ultra Low Temperature Refrigeration Applications 
 

 
Functions for low temperature refrigeration involve applications to various industries 

such as low temperature storage, chemical processing, manufacturing and biological preservation.  

These categories can be divided into two processes, freezing and refrigeration.   

The process of freezing employs a refrigeration system to freeze a substance at a 

particular temperature where it can be stored in order to preserve its shelf life.  This is done using 
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oversized refrigeration systems to freeze the substance under specified time constraints.  It has 

been shown that freezing a substance more quickly will increase the shelf life of the substance by 

slowing the degradation affects of biological entities (Wallace, 1964).  Refrigeration systems that 

are used for freezing substances consume high amounts of electricity but do not operate 

continuously.  These systems are used only during the freezing process, and then the substances 

are relocated to a system that will hold them at constant temperature for long periods of time.   

Once substances are frozen they are transported to refrigeration systems built to maintain 

low temperatures for long term storage.  Since the samples that are placed in long term storage 

systems are already at the specified temperature, the system must remove significantly less 

energy to maintain the temperature.  This allows the refrigeration system to maintain low 

temperatures while removing a smaller heat load which leads to the use of compressors with 

lower refrigeration capacities.  The process of freezing and storing samples is more efficient with 

separate systems because compressors consume the majority of the power in refrigeration cycles.  

Dividing the freezing and refrigeration storage processes into two separate systems provides an 

efficient process for samples to reach low temperatures, but refrigeration storage systems are 

continuously operated leading to high operational costs.  Research of storage refrigeration 

systems to increase the performance and lower operational costs will provide more efficient 

products for biotechnology companies.   

 

1.2 Temperature and Heat Load Requirements 
 

 

Low temperature and ultra low temperature refrigeration storage systems operate at 

various temperatures depending on the substance being stored.  The current analysis focuses on 

applications with an evaporator temperature of -80 °C (-112 °F)  because it is a common set point 

for laboratory refrigeration systems used for long term sample storage (Panasonic, 2012 and 

Thermo Fisher Scientific, 2007).  To maintain a sample temperature of -80 °C (-112 °F), the 

typical systems supply refrigerant to the low stage evaporator at a maximum temperature of -85 
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°C (-121 °F).  This ensures that the refrigerant absorbs sufficient heat to keep a nearly constant 

compartment temperature of -80 °C (-112 °F).  Single-stage refrigeration systems are commonly 

used to reach temperatures near -30 °C (-22 °F), but more complex cascading refrigeration cycles 

are currently used for ULT applications near -80 °C (-112 °F).  Although cascade refrigeration is 

an effective way to reach low evaporating temperatures, the systems do not achieve high 

coefficients of performance (COP) while removing the required heat loads at -80 °C (-112 °F).   

Relatively small heat loads compared to air conditioning and food storage refrigeration, 

on the order of hundreds of Watts versus thousands of Watts, are required to maintain an 

evaporation temperature of -80 °C (-112 °F).  The engineers at Farrar Scientific and Selarity 

Refrigeration have worked with ULT refrigeration throughout the past 25 years and have 

developed a standard heat load for common cabinet sizes ranging from 0.37 to 0.76 m 
3 
(13 to 27 

ft 
3
).  Their experience has indicated that a head load of 161.2 W (550 Btu/hr) must be removed 

from the cabinet to maintain a temperature of -87 °C (-124.6 °F).  An additional 25% of 161.2 W 

(550 Btu/hr) , suggested by the engineers at Farrar Scientific and Selarity Refrigeration, is added 

to the heat load to determine the total heat load that must be removed from the cabinet, 256.4 W 

(875 Btu/hr).  For this work, a total heat load of 256.4 W (875 Btu/hr) is used with a 25% safety 

factor to provide a conservative evaporator heat load for the system analysis.   ULT storage 

devices are designed for constant heat loads because the cabinet is assumed to be full at all times, 

are not opened frequently to access samples, and must be maintained at the specified evaporator 

temperature.    

 

1.3 Current ULT Equipment 
 

 

  The majority of current ULT refrigeration designs are cascade systems that use two 

refrigeration cycles in series to reach low evaporating temperatures.  Current ULT refrigeration 

centers on cascade cycles due to their well known design characteristics and use of refrigerant 

blends that have low environmental impacts.  Although ULT cascade systems are an effective 
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way to reach low temperatures, their two compressors consume more power leading to sub-

optimal coefficients of performance.  Research to advance ULT refrigeration is focused on two 

main areas: cascade cycle improvement and alternative refrigeration cycle design.   

Cascade cycle improvement is closely linked to the enhancement of individual 

components and it focuses on the optimization of currently used system configurations.  

Compressors are the main component of a refrigeration cycle; as such, there are numerous studies  

working to continually enhance efficiency.  Refrigeration cycles also consist of a condenser, 

where heat is rejected to a medium, and an evaporator, where heat is absorbed by the refrigerant.  

Heat exchangers are a common cause of cycle inefficiency and are also an important focus of 

current research (Mehrabian & Samadi, 2010).  With the improvement of software algorithms, 

numerical techniques have been a focus of research to optimize current refrigeration cycle 

equipment (Parekh, Tailor & Jivanramajiwala, 2010).   

Advancement of new refrigerant blends has led to the development of alternative 

refrigeration cycles for ULT systems.  Current equipment is used in various configurations in 

order to research their impact on overall cycle performance; several configurations will be 

described in more detail in section 2.3.  Multiple compressors can be eliminated in new design 

configurations, which allow for significant reduction in the power required to operate a system.  

Research is designed to improve the coefficient of performance for refrigeration cycles, and to 

provide new alternatives to reach lower and lower temperatures in the ULT refrigeration range.   
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Chapter 2 
 

 

Background 
 
 

A refrigeration process is performed when a heat load is removed from a specified space 

in order to reduce the temperature below the atmospheric temperature.  The space could be the 

inside of a home where air conditioners are used or it could be a refrigerator where products are 

stored at a specified temperature.  The modern vapor-compression refrigeration cycle consists of 

a condenser and an evaporator where heat is rejected from the working fluid to a sink and  heat is 

absorbed by the working fluid from the storage space, respectively.  The cycle is driven by a 

compressor, where the working fluid is compressed in vapor form from a low pressure and low 

temperature to a high pressure and high temperature.  Numerous processes are used to complete 

the cycle from the condenser to the evaporator and vary from simple single-stage cycles to mixed 

refrigerant systems.  Common refrigeration system designs for low temperature refrigeration that 

lead to the design of mixed refrigerant cycles will be discussed in order of increasing complexity 

and decreasing evaporation temperature range.   

 

2.1 Single-Stage Refrigeration Systems 
 

 
A simple vapor-compression system is presented in Figure 2.1 and uses one compressor 

for its operation; single-stage refers to a single compressor.  A single-stage vapor-compression 

system consists of a compressor, condenser, expansion device and an evaporator.  The cycle 

begins as a working fluid is compressed in the vapor state (state 1) from low pressure to a high 

pressure and temperature, and flows into a condenser (state 2).  In the condenser, heat is removed 

from the fluid, by rejection to the environment, and it is condensed to a saturated liquid state.  

After the condenser (state 3) the fluid flows into an expansion device where it expands from high 

pressure and high temperature to low pressure and low temperature at nearly constant enthalpy.  
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At this point the fluid is in a mixed liquid-vapor phase and flows into the evaporator (state 4).  As 

the fluid flows through the evaporator it absorbs heat from the refrigerated space and evaporates, 

leaving the evaporator as a saturated vapor, or slightly superheated vapor entering the compressor 

to complete the cycle (state 1).   

The cooling effect happens in the evaporator as the working fluid is absorbing energy 

from the refrigerated space.  Exiting the expansion device, the working fluid is at a low 

temperature, and this is the lowest temperature the working fluid will reach, but the refrigerated 

space cannot be controlled at this temperature.  For heat transfer to occur the refrigerated space 

must be controlled at a temperature at least 2.8 °C (5 °F) above that of the working fluid entering 

the evaporator.  This practical minimum temperature difference will allow for enough heat to be 

transferred from the refrigerated space to the working fluid so that it will leave as a saturated 

vapor or slightly superheated vapor state.  Otherwise, if the working fluid leaves the evaporator as 

a liquid-vapor mixture, damage will be caused to the compressor because it is not totally in a 

compressible state.   

 

COMPRESSOR

EVAPORATOR

EXPANSION

DEVICE

CONDENSER

1

2
3

4

 

Figure 2.1:  Single-stage, vapor-compression refrigeration system. 
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Single-stage refrigeration systems are used for many applications, but generally are 

limited to evaporating temperatures above 0 °C (32 °F) with some temperature applications 

reaching near -30 °C (-22 °F) .  Several industries are concerned with refrigeration temperatures 

near -30 °C (-22 °F), but many life science and chemical production practices require 

temperatures much lower.  Properties of the working fluids as well as the physical components 

limit the performance of single-stage systems at low temperatures, but primarily the system 

performance and capability are dictated by the performance of the compressor.   

The most widely spread use of single-stage refrigeration systems, that reach temperatures 

near -50 °C (-58 °F), are blast freezers that use a compound or multi-stage compressor.  A 

compound compressor is one which has two separate compression processes in series to reach 

very high compression ratios between the suction and discharge lines in the system.  Although the 

compressor has multiple stages, the cycle is considered single-stage because the expansion 

process occurs in a single stage.  Blast freezers are single-stage refrigeration cycles that can 

remove a large heat load in a short period of time while freezing products down to temperature of 

-30 °C to -50 °C (-22 °F to -58 °F).  Systems that use compound compressors are expensive and 

consume large amounts of energy so they are generally only used for freezing and not 

refrigeration storage.  Limitations on the performance of the single-stage refrigeration cycles led 

to the development of cascade refrigeration to reach ultra-low temperatures.   

 

2.2 Cascade Refrigeration Systems 
 

 

For ULT refrigeration to reach temperatures from -50 °C to -100 °C (-58 °F to -148 °F), 

an extremely large pressure difference across the expansion device is required.  Present 

compressors cannot achieve sufficiently high compression ratios without malfunctioning.  

Therefore, a cascade refrigeration system was developed to achieve low temperatures using 

multiple compressors to cover such a great pressure difference.  Cascade refrigeration systems 

consist of multiple single-stage vapor-compression refrigeration cycles in series.   
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Each successive single-stage refrigeration cycle in a cascade system drops the 

evaporating temperature toward the desired operating temperature.  The single-stage cycles are 

linked through an inter-stage heat exchanger that acts as the evaporator for high-stage cycle and 

the condenser for the low-stage cycle; the refrigeration cycles are independent of one another and 

the refrigerants of one cycle do not mix with the one from another cycle.  The high-stage and 

low-stage cycles may use the same refrigerants, but frequently the low-stage cycle’s refrigerant is 

chosen for its optimal thermo-physical properties at the lower operating conditions.  Although 

cascade refrigeration systems may consist of numerous single-stage cycles, two single-stage 

cycles are sufficient to reach temperatures in the ULT range,-50 °C to -100 °C (-58 °F to -148 

°F).  Two-stage cascade systems use the same or similar compressors that operate at a 

significantly lower compression ratios than one compressor would need in order to reach low 

temperatures.  Cascade systems are more efficient, but consume more overall power than 

conventional single-stage refrigeration systems for such low evaporating temperatures.  Low 

temperature refrigeration reached by a cascade system is conventionally used for storage and 

operate continuously.  Improving the cycle efficiency of ULT cascade refrigeration systems will 

lower the operational cost for consumers and abate their overall impact on the environment.    

 

2.3 Evolution of Mixed Refrigerant Systems 
 
 

As the evolution of design improvements to single-stage and cascade systems produce 

cycles capable of achieving very low temperatures, testing was performed on common 

refrigerants and determined they are harmful to the environment.  A need for refrigerant 

compounds that are less detrimental to the environment and still have advantageous 

thermodynamic properties at low temperatures brought about refrigerant blends formed from 

existing refrigerant compounds.  As studied by Missimer (1997), new refrigerant blends brought 

improved cascade refrigeration cycle performance while replacing harmful chlorofluorocarbons 

with non-toxic and less environmentally detrimental chemicals.  Theoretical analyses of 



9 

 

alternative refrigerant mixtures for single stage vapor-compression refrigeration cycles by 

Dalkilic and Wongwises (2010) have found new mixtures with enhanced thermodynamic 

properties.   

Various refrigerant mixtures were experimentally studied by Gong et al. (2009) in a two-

stage cascade refrigeration cycle to analyze coefficient of performance (COP), cooling capacity, 

pressure ratio, and discharge temperatures.  Binary refrigerant mixtures of R170/R23, R170/R116 

and a ternary mixture of R170/R23/R116 were used as the low stage refrigerant to compare 

overall performance values to those of R508B (the standard low temperature refrigerant used to 

reach -80 °C (-112 °F)).  Results showed that the refrigerant mixtures operated at lower 

compression ratios with similar overall COP values and provided higher cooling capacities 

compared to R508B.   

The potential performance enhancements of refrigerant mixtures in cascade cycles 

influenced designs for single-stage refrigeration systems.  An experimental study of room 

temperature refrigeration by S.G. Kim and M.S. Kim (2002) achieved increased cooling capacity 

with binary mixtures of R744 (Carbon Dioxide)/R134a and R744/R290 for increasing mass 

fraction of R744.  This was accomplished with a single-stage vapor-compression system 

including a condenser and a phase separator represented in the schematic in Figure 2.2.  In S.G. 

Kim and M.S. Kim’s (2002) design, the refrigerant mixture leaves the condenser partially 

condensed and enters a phase separator where it diverges into vapor and liquid streams.  The 

liquid refrigerant mixture is expanded in an isenthalpic process to decrease the pressure and 

temperature, while the vapor mixture is condensed in an internal heat exchanger by the refrigerant 

leaving the evaporator.  Both refrigerant mixture lines enter an evaporative condenser and the 

vapor mixture is condensed further to a saturated liquid state.  The saturated liquid then is 

expanded through an isenthalpic expansion valve that lowers the pressure and temperature.  

Leaving the expansion valve, the refrigerant mixture enters the low temperature evaporator where 

it absorbs the heat load and exits as a superheated vapor.  This refrigeration cycle design provides 
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improved cooling capacity while effectively utilizing a hydrocarbon, but demands increased 

compressor power leading to a lower COP.   
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Figure 2.2:  Refrigeration diagram for research by S.G. Kim and M.S. Kim (2002).   

 

 

Another approach for a single-stage refrigeration system, shown in Figure 2.2, was 

developed by Wang, Cui, Sun and Chen (2011) based upon an auto-cascade refrigerator.  A 

numerical study was performed in their work to optimize the compression and the composition 

ratio of six binary refrigerant mixtures for maximum COP.  The refrigerant mixture exits the 

compressor, is partially condensed in an aftercooler, and then flows into a rectifying column 

where it is separated into a liquid and a vapor.  Vapor exits the top of the column and enters two 

successive recuperators, where it is cooled by the expanded liquid refrigerant leaving the bottom 

of the rectifying column.  The partially condensed liquid-vapor mixture leaving the second 

recuperator flows to a third recuperator (where it is fully condensed) then flows through an 

expansion valve to lower the pressure and temperature and finally enters the evaporator.  At the 

exit of the evaporator, the refrigerant vapor enters the third recuperator, where it is used to fully 
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condense the mixture line going into the evaporator, and then mixes with the liquid line from the 

rectifying column.  A vapor refrigerant line exits the first recuperator to send the vapor back to 

the compressor to continue the cycle.  The research found that all of the binary refrigerant 

mixtures predicted COPs less than 0.5, which indicates that the cycle requires significant 

refinement to be feasible.  However, the research illustrated that the optimum pressure ratio of the 

compressor must be determined first, before the composition ratio of the refrigerant.   
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  Figure 2.3:  Refrigeration schematic from research by Wang et al. (2011).   
 

 

The examination of binary refrigerant mixtures by S.G. Kim and M.S. Kim (2002) 

identified improvements that can be made to the overall refrigeration cycle.  The cycle studied by 

Wang et al. (2011) took a similar approach, but is more complicated due to the four different heat 

exchangers that must be balanced to operate the refrigeration cycle.   

Therefore, the proposed binary refrigerant mixture cycle prototype in this work is closer 

in design to Kim and Kim’s apparatus but includes several modifications.  It employs only one 

condensing separator and one brazed plate heat exchanger to be used as the inter-stage heat 

exchanger to condense the vapor stream from the separation column.  The cycle heat is rejected to 

the environment as part of the separation process.  Modeling of the binary refrigerant mixture 

cycle will provide operating points to be used for performance predictions.  Experimental testing 



12 

 

at various operating conditions, to reach ultra low evaporator temperatures, will provide feedback 

in order to develop a more accurate model.  The results will provide insights for improved 

refrigeration cycle efficiency at low temperatures as well as suggestions for future research.   

 

2.4 Refrigerant Selection 
 

 

Any fluid that exhibits advantageous thermodynamic properties while used for a direct 

cooling process can be considered a refrigerant.  Common refrigerants used in the heating, 

ventilation, air conditioning and refrigeration (HVAC&R)industries are composed of 

halocarbons, hydrocarbons, inorganic compounds as well as blends of various compounds 

(Dincer, 2003).  Halocarbons were increasingly used until it was determined they had harmful 

effects on the environment.  Then hydrocarbons became the most popular refrigerant used in 

HVAC&R applications because they had less detrimental effects on the environment.   

Before the development of refrigerant blends that provided enhanced thermodynamic 

properties for low temperature refrigerants, R134a and R23 were used for two-stage cascade ULT 

refrigeration.  The R134a was used in the high stage and the R23 was used in the low stage cycles 

for ULT applications that could reach evaporating temperatures near -90 °C (-130 °F).  Simple 

refrigerants, such as R134a and R23, which each consist of only one constituent, make up great 

binary refrigerant mixture combinations because there are only two chemical compounds that 

must be accounted for throughout the system.  Use of simple refrigerants with well known 

behaviors allows for the development of a more accurate refrigeration cycle model in order to 

predict the operating characteristics of the system.   

 

2.5 Mixed Refrigerant System Design Criteria 
 

 

A mixed refrigerant system is designed to operate with a mixture of R23 and R134a to 

reach an evaporator temperature of -87 °C (-124.6 °F).  At the specified evaporator temperature, a 
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heat load of 256.4 W (875 Btu/hr) is used to develop operating points from the mixed refrigerant 

cycle model.  A compression ratio of 15:1 is the highest compression ratio that the Copeland 

CF12 compressor can practically operate on a continuously basis, such as the system capabilities 

will be limited by this parameter.  To compare the mixed refrigerant system model to a current 

refrigeration cycle, a two-stage cascade refrigeration cycle will be analyzed using R23 for the 

low-stage and R134a for the high stage.  This will provide a theoretical comparison between the 

cascade system and the mixed refrigerant system.  Experimental results will be obtained for the 

mixed refrigerant system based on the operating parameters found from the system model to 

enhance the understanding of designing mixed refrigerant systems for ULT applications.   
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Chapter 3 
 

 

Two-Stage Cascade Refrigeration System 
 
 

A two-stage cascade refrigeration system will be used as the standard low temperature 

design in order to evaluate the experimental results of the mixed refrigerant system.  The two-

stage cascade refrigeration system will use R404A for the high stage and R508B for the low 

stage, which is different from the R134a and R23 mixture used in the mixed refrigerant prototype.  

A two-stage cascade system with an R404A/R508B combination rather than an R134a/R23 

combination is evaluated to compare the mixed refrigerant system to the modern performance of 

a ULT system.  Copeland CF series compressors (Emerson, 2010a; Emerson, 2010b) will be used 

for both stages in the two-stage cascade system.  Although the refrigerants used are different, 

using the same line of compressors from Copeland will provide reasonably accurate performance 

comparisons to the mixed refrigerant system that also uses a Copeland CF compressor (Emerson, 

2010a; Emerson, 2010b).  Various evaporator temperatures and heat loads will be analyzed for 

the cascade system with the same reciprocating compressor setup to provide a direct comparison 

to the mixed refrigerant system.   

A model of the two-stage cascade system is performed to determine the initial operating 

points and the theoretical system performance.  Three operating points are analyzed at evaporator 

temperatures of -97 °C (-142.6 °F), -87 °C (-124.6 °F) and -82 °C (-115.6 °F) to determine the 

behavior of the system at increasing heat loads.  Experimental results were obtained from Farrar 

Scientific at evaporator temperatures of -97 °C (-142.6 °F), -87 °C (-124.6 °F) and -82 °C (-115.6 

°F) and applied heat loads of 507.8 W (1733.3 Btu/hr), 1128.7 W (3852.1 Btu/hr), and 1528.5 

(5216.9 Btu/hr).  Performance of the system is evaluated by determining the coefficient of 

performance (COP), Carnot COP and second law efficiency.   

 



15 

 

3.1 Refrigeration Cycle Schematic 
 

 

To develop a standard model for current low temperature refrigeration, a two-stage 

cascade system will be analyzed.  The first stage will be considered the high stage because it uses 

a refrigerant that has a higher boiling temperature at atmospheric pressure and the second stage, 

the low stage, will use a refrigerant that has a low boiling temperature at atmospheric pressure.  

As shown in Figure 3.1, the two-stage cascade system consists of a high-stage compressor, and, 

expansion device, a low-stage compressor, and expansion device, condenser, evaporator, and an 

inter-stage heat exchanger.  The inter-stage heat exchanger functions as the evaporator of the high 

stage cycle and the condenser of the low stage cycle.   

 

 

Figure 3.1:  Two-stage cascade refrigeration schematic. 
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3.2 Refrigeration Cycle Analysis  
 

 
For the two-stage cascade refrigeration system, a Copeland CF12 will provide work to 

the high-stage cycle and a Copeland CF09 will provide the work input to the low-stage cycle 

(Emerson, 2010a; Emerson, 2010b).  It will be assumed that the inter-stage heat exchanger is a 

brazed plate heat exchanger sized appropriately from the system analysis.  The condenser will be 

a coil and fin design typical of commercial ULT refrigeration systems.  The evaporator will be a 

copper coil design that would be wrapped around the cabinet to efficiently absorb all of the heat 

from inside of the cabinet.  Both of the expansion devices will be capillary tubes for this analysis 

because the heat load at each operating point will be selected such that the refrigerant leaving the 

evaporator is a saturated vapor.    

 

3.2.1 Low-Stage Analysis 
 

 

The refrigeration cycle analysis begins by specifying the design heat load and 

temperature requirements.  A proposed storage temperature for the refrigeration system is used to 

determine the required evaporator temperature.  The temperature required at the inlet of the 

evaporator must be at least 2.8 °C (5 °F) lower than the desired storage temperature to drive heat 

transfer from the warmer storage cabinet to the cooler refrigerant.  At the outlet of the evaporator 

the R508B must be saturated vapor to ensure that the maximum heat load can be removed from 

the refrigerated space.  State 6’, at the evaporator exit, is defined by the suction pressure and a 

quality of one, shown in Figure 3.2.  The desired temperature in the evaporator is used to find the 

saturation pressure at state 6’,  the suction pressure for the low-stage cycle.   
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Figure 3.2:  Pressure versus enthalpy diagram for R508B. 

 
 

The enthalpy of the R508B leaving the evaporator can be found since the state is fixed 

and the enthalpy of the R508B entering the evaporator can be determined by assuming that 

saturated liquid leaves the inter-stage heat exchanger and expands isenthalpically.  Using the first 

law of thermodynamics to perform an energy balance on the evaporator from state 5 to state 6’ 

and inputting the desired heat load, the mass flow rate of the refrigerant will be determined from:   

                               . (3.1) 

The return gas temperature specified by Copeland for the CF09 (Emerson, 2010a) used in 

the low-stage is 4.4 °C (40 °F), and this will be used for the temperature at state 6 entering the 

compressor.  The suction pressure is assumed to be equal to the saturation pressure found at state 

6’.  Therefore, state 6 is defined by the suction pressure and the return gas temperature.  In order 

to find the enthalpy of state 5 the enthalpy of state 8 must be found.  State 8 is defined by the 

desired condensing temperature and a quality of zero, saturated liquid state.  Knowing the 

enthalpy at state 8 and assuming that the expansion process is isenthalpic, the enthalpy at state 5 

is equal to the enthalpy at state 8.  Assuming negligible pressure drop in the condenser, the 

saturation pressure at state 8 will be the discharge pressure for the cycle.   
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The isentropic efficiency of the compressor will be used to define the actual outlet state 

of the compressor.  It is assumed that the Copeland CF09 (Emerson, 2010a) compressor has an 

isentropic efficiency of 50%.  The isentropic efficiency is assumed to be the lowest value from 

the manufacturer’s data since the efficiency is shown to drop as the evaporator temperature 

decreases and data is not supplied for evaporator temperatures used in this research.  From state 6 

to state 7’, the compressor follows a line of constant entropy.  The discharge pressure and the 

compressor inlet entropy will define state 7’.  Isentropic efficiency is defined as the ideal specific 

work divided by the actual specific work in the compressor, which simplifies to (changes in 

kinetic energy, potential energy and heat loss are neglected):   

             
      

     
 . (3.2) 

The enthalpy at state 7 can be determined from Equation 3.2 to fix state 7, which is also 

at the discharge pressure.  The approximate actual work required by the compressor (Equation 

3.3) is defined as the mass flow rate of the refrigerant multiplied by the difference in the enthalpy 

from state 6 to state 7.   

                      . (3.3) 

 The heat load that must be rejected in the condenser (inter-stage heat exchanger) is found 

by using the first law of thermodynamics on the condenser (inter-stage heat exchanger).  From the 

outlet of the compressor to the inlet of the condenser (inter-stage heat exchanger) the refrigerant 

is assumed to move to the state defined in state 7’ so the heat load is found by multiplying the 

mass flow rate of the R508B by the difference in the enthalpies at state 7’ and state 8:   

                            . (3.4) 

 

3.2.2 High-Stage Analysis 

 
 

To determine the operating points for the high-stage cycle used in the cascade system, the 

condenser load from the low-stage analysis is used as the evaporator load that must be removed 
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from the high-stage.  An evaporator temperature is chosen so that it is as least 2.8 °C (5 °F) below 

the condensing temperature of the low-stage refrigeration cycle to drive heat transfer.  The 

saturated vapor state (quality of one) at the evaporator temperature will be used to find the 

saturation pressure.  This saturation pressure will be the suction pressure for the high-stage cycle.  

A condensing temperature is chosen so that an air-cooled condenser can be used; the discharge 

pressure is found from the saturated liquid state at this temperature.  This saturation pressure is 

the discharge pressure and it must be kept within the Copeland CF12 (Emerson, 2010b) operating 

limits.  The remaining state points for the high-stage cycle presented in Figure 3.3 can be found 

using the same procedure described for the low-stage cycle analysis.   

 

 

Figure 3.3:  Pressure versus enthalpy diagram for R404A. 

 

 

3.2.3 Cascade Model Operating Points 

 

 
The two-stage cascade system model is analyzed at three specific operating points to 

explore how the system behaves with various heat loads and compression ratios.  The heat 

capacity is set to 507.8 W (1733 Btu/hr), 1128.3 W (3851 Btu/hr) and 1528.6 W (5217 Btu/hr).  

The first analysis is performed with an evaporator capacity of 507.8 W (1733 Btu/hr) and a 
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suction pressure of 55.1 kPa (8.0 psia).  Next, the analysis is performed with an evaporator 

capacity of 1128.3 W (3851 Btu/hr) and a suction pressure of 96.5 kPa (14 psia).  Finally, an 

evaporator capacity of 1528.5 W (5217 Btu/hr) and a suction pressure of 117.2 kPa (17 psia) is 

analyzed..  State point results following Figure 3.1 are presented for Tests 1-3 in Appendix A.  

Property data presented in Tables A.1-A.3 are found using REFPROP (NIST, 2007).   

 

3.2.4 Cascade Model Performance Analysis 
 

 

The operating state points determined from the analysis of the two-stage cascade 

refrigeration model provide the design points for the experimental analysis.  Overall performance 

of the cascade refrigeration model will be determined by the refrigeration capacity and the work 

required for the compressor.  The coefficient of performance (Equation 3.5) is determined by 

dividing the refrigeration capacity by the overall power required by the compressor (Cengel & 

Boles, 2010).  In the case of the two-stage cascade refrigeration system, the work required is the 

sum of the work for the low-stage Copeland CF09 (Emerson, 2010a) compressor and the high-

stage Copeland CF12 (Emerson, 2010b) compressor.   

     
            

             
  (3.5) 

 The maximum possible COP for a refrigeration cycle is the Carnot COP, which is defined 

in terms of the heat source and the sink temperatures as shown in Equation 3.6.  The evaporator 

inlet temperature is used for the source temperature and the sink temperature in this case is the 

atmospheric air temperature.  All temperatures used for the Carnot COP are in absolute units.  

           
       

             
  (3.6) 

 The second law efficiency of the refrigeration cycle, in Equation 3.7, is found by dividing 

the calculated COP of the system (Equation 3.5) by the reversible, Carnot COP (Equation 3.6).  

The COP, Carnot COP, and the second law efficiency are recorded in Table 3.1 for the three 

operating conditions analyzed for the two-stage cascade system.   
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  (3.7)  

 

Table 3.1:  Performance characteristics of two-stage cascade system model.    

Test 1 2 3 

Evaporator 

Inlet 

Temperature  

(°F) 

-143.5 -127.1 -121.0 

High-Stage 

C.R. 
13.0 11.7 10.4 

Low-Stage 

C.R. 
13.4 9.7 9.1 

Heat Load 

(Btu/hr) 
1733.3 3852.1 5217.0 

Power (Btu/hr) 4760.4 10171.2 19720 

COP 0.36 0.38 0.26 

Carnot COP 1.46 1.66 1.78 

Second Law 

Efficiency 

(     
0.25 0.23 0.15 

 
 

3.3 Experimental Two-Stage Cascade System 
 

 

Experimental results were provided by the engineers at Farrar Scientific for a two-stage 

cascade system using a Copeland CF12 (Emerson, 2010b) for the high-stage and a Copeland 

CF09 (Emerson, 2010a) for the low-stage.  The low-stage cycle used refrigerant 508B and the 

high-stage cycle used refrigerant 404A, common refrigerant combinations for ULT cascade 

refrigeration systems.  Overall performance results for the COP, reversible Carnot COP, and 

second law efficiency were provided along with the evaporating temperatures for the low-stage 

cycle.  The heat loads that were examined are identical to those used for the two-stage cascade 
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system model analysis in sections 3.2.3 and 3.2.4.  The tests were conducted in 2006 at Farrar 

Scientific and the system results are provided in Table 3.2.   

 

Table 3.2:  Experimental performance characteristics of two-stage cascade system.    

Test 1 2 3 

Evaporator Inlet 

Temperature  

(°F) 

-142.6 -124.6 -115.6 

High-Stage C.R. 13.0 11.8 10.5 

Low-Stage C.R. 13.3 9.8 9.0 

Heat Load 

(Btu/hr) 
1733.3 3852.1 5216.9 

Power (Btu/hr) 9598.6 10643.9 11594.2 

COP 0.18 0.36 0.45 

Carnot COP 1.47 1.62 1.74 

Second Law 

Efficiency (     
0.12 0.22 0.26 
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Chapter 4 
 

 

Mixed Refrigerant System 
 
 

The mixed refrigerant system will operate with a binary refrigerant mixture with work 

provided by a single reciprocating compressor.  A water-cooled condenser will be used to 

separate the refrigerant mixture into two streams, a condensed liquid stream and a saturated vapor 

stream.  The liquid stream will be expanded to a low pressure and temperature to absorb energy 

from the superheated vapor stream leaving the separator in order to condense it to a saturated 

liquid state.  Once the superheated vapor stream condenses, it is expanded to a low pressure and 

temperature to absorb energy from the refrigerated space in the evaporator.  The refrigeration 

schematic, refrigerant mixture properties and refrigeration cycle analysis are presented to develop 

a prototype apparatus.   

 

4.1 Refrigeration Cycle Schematic 
 
 

The cycle begins as the binary refrigerant mixture enters the suction side of the 

compressor as a superheated vapor mixture, represented by state 1 in the refrigeration schematic 

in Figure 4.1.  Following compression, the vapor mixture enters a water-cooled condenser at state 

2 and is partially condensed at constant pressure.  A water-cooled condenser is employed for the 

separator to allow for maximum variability of the condensing properties by controlling the inlet 

chilled water temperature and flow rate.  The separator is oriented in a vertical arrangement with 

the refrigerant mixture inlet above the bottom of the cylinder to allow for collection of the liquid 

condensate at the bottom of the separator.  In the separator, heat is absorbed by the chilled water 

so that a portion of the refrigerant mixture can be condensed.  The separator also serves as the 

high temperatures heat sink for the system.  A mixture of R23 and R134a is condensed and exits 

as an R134a-heavy saturated liquid at state 3.  The remaining R23 and R134a mixture that is not 
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condensed to a saturated liquid leaves the separator as a vapor at state 6, and this will be referred 

to as the R23-heavy stream.  Both streams leaving the separator are a mixture of R23 and R134a; 

the vapor stream contains a higher percentage of R23 by mass and the liquid stream contains a 

higher percentage of R134a by mass.   
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Figure 4.1:  Mixed refrigerant system schematic. 

 

The R134a-heavy stream leaves the separator as a saturated liquid and it enters an 

expansion device that decreases the pressure and subsequently the temperature of the mixture.  It 

then enters a brazed plate heat exchanger (BPHE) as a two phase liquid-vapor mixture at state 4, 

as shown in Figure 4.1.  The R23-heavy stream leaves the separator at state 6 and enters the 

BPHE as a slightly superheated vapor.  Energy rejected by the R23-heavy stream is absorbed by 

the R134a-heavy stream that has been expanded to a low pressure.  The R134a-heavy stream 

exiting the BPHE at state 5 is assumed to have completely evaporated to a saturated vapor with a 

quality of one.  Advancing towards the compressor, the R134a-heavy vapor will slightly 
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superheat due to the temperature difference with the surrounding air, thus making sure there is no 

liquid entering the suction side of the compressor.  The R134a-heavy stream will be re-mixed 

with the R23-heavy stream prior to entering the suction side of the compressor.   

The BPHE acts similar to an inter-stage heat exchanger for a typical cascade refrigeration 

system.  Exiting the heat exchanger at state 7, the R23-heavy stream is assumed to be completely 

condensed to a saturated liquid.  Then the R23-heavy stream flows through an expansion device 

in an isenthalpic process to drop the pressure and therefore the temperature to state 8.  Five 

hollow, rectangular plates with a combined length of 80 feet of embedded horizontal copper 

tubing are connected in series and stacked upon one another to serve as the evaporator.  Silicone 

heating sheets in between each evaporator plate supply a nearly constant heat load representing 

the energy that must be removed by the refrigerant mixture.  The R23-heavy stream evaporates as 

it moves along the copper tubing of the evaporator, absorbing the energy provided by the silicone 

heating sheets.  Exiting the evaporator at state 9, in Figure 4.1, the R23-heavy stream is re-

combined with the R134a-heavy stream headed toward the suction side of the compressor.  The 

two R23 and R134a mixture streams thoroughly mix and absorb some energy from the 

surrounding higher temperature ambient air to provide a superheated vapor mixture into the 

suction side of the compressor at state 1, thus completing the cycle.   

 

4.2 Refrigerant Mixture Properties 
 

 
Modeling and testing of the mixed refrigerant system is undertaken to develop a thorough 

understanding of the differences between theoretical and actual operation.  Simple, well 

understood refrigerants each with one constituent only are chosen for the mixture to develop an 

underlying theoretical model of the cycle operation that can later be applied to more complex 

refrigerants.  Thermo-physical properties for the mixed refrigerants are found using REFPROP 

Version 8.0 and Engineering Equation Solver Version 8.889 (NIST 2007; F-Chart Software 

2011).  Analysis of the system assuming complete separation of the two refrigerants in the 
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separator will be used to select an initial mixture ratio for the refrigerants to be used in 

experimental operation.   

 

4.2.1 Chosen Refrigerants 
 

 

The mixed refrigerant system will operate with a binary mixture of refrigerant 134a 

(R134a) and refrigerant 23 (R23).  R134a is a hydrofluorocarbon refrigerant made of the 

compound 1,1,1,2-Tetrafluoroethane, produced by Dupont (Dupont,2004), and is commonly used 

in refrigerant cooling applications above 0 °C (32 °F).  A pressure versus enthalpy diagram of 

R134a is presented in Figure 4.2 to show the shape of the saturation dome.   

 

 

Figure 4.2:  Pressure versus enthalpy diagram for R134a. 
 

R23 is a hydrofluorocarbon refrigerant made of the compound Trifluoromethane, 

produced by Dupont (Dupont, 1994) and is used for low temperature refrigeration well below 0 

°C (32 °F) due to its low critical point.  A pressure versus enthalpy diagram of R23 is presented 
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in Figure 4.3 to show the shape of the saturation dome and the location of the critical point 

properties.   

 

 

Figure 4.3:  Pressure versus enthalpy diagram for R23. 
 

The refrigerant mixture of R23 and R134a will be separated into two separate streams in 

a condenser.  Perfect separation of the R23 from the R134a will not occur in the condensing 

separator at the operating conditions the mixed refrigerant system, therefore, the vapor stream and 

the liquid stream leaving the separator will be a mixture of both R23 and R134a.  A binary phase 

diagram for a refrigerant mixture of 33.4% R23 and 66.6% R134a is shown in Figure 4.4 at the 

discharge pressure of 1137.6 kPa (165 psia) to illustrate the resulting composition ratios of the 

liquid and vapor mixtures leaving the separator.  REFPROP Version 8.889 (NIST, 2007) is used 

to determine the refrigerant mixture properties at each specified state point for the mixed 

refrigerant system.   
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Figure 4.4:  Phase diagram, 33.4% R23 and 66.6% R134a by mass at 1137.6 kPa (165 psia) 

(NIST, 2007). 

 

4.2.2 REFPROP Refrigerant Properties 
 

 

All refrigerant properties are found using the ASHRAE reference state, entropy and 

enthalpy of zero for saturated liquid at -40 °C (-40 °F).  Refrigerant mixtures will be defined by 

percentage mass since the system will be charged with refrigerants measured by weight.  The 

screen capture from REFRPROP provided in Figure 4.5 shows how the refrigerant mixture is 

defined under Substance -> Define New Mixture.   
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Figure 4.5:  Defining new mixture in REFPROP by mass percentage (NIST, 2007). 
 

Once the mixture is defined, two independent properties are required to specify a state 

point and all other properties can be found.  REFPROP (NIST, 2007) can also be used to produce 

binary phase diagrams for refrigerant mixtures.  Therefore, REFPROP (NIST, 2007) will be used 

to look up properties for the analysis of the mixed refrigerant system and diagrams will be 

produced to illustrate the operating range of the mixtures.   

In order to begin the analysis of the mixed refrigerant system, an initial mixture ratio 

must be determined from the initial system design parameters.  To determine the overall mixture 

ratio of R23 to R134a, the mixed refrigerant cycle will be analyzed assuming perfect separation, 

with two separate streams of R23 and R134aexiting the condensing separator.   

 

4.2.3 Binary Refrigerant Mixture Ratio 

 
 

Once the two refrigerants are separated into independent streams, the mixed refrigerant 

system behaves like a cascade cycle; the low-stage R23 is condensed by the high-stage R134a in 

an inter-stage heat exchanger and absorbs the heat load in the evaporator to provide cooling.  An 
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evaporator temperature of -87 °C (-124.6 °F) is specified for the low-stage R23 and an evaporator 

load of 256.4 W (875 Btu/hr) is the desired heat load to be absorbed.  The suction pressure is the 

saturation pressure at -87 °C (-124.6 °F) and a compression ratio of 15:1 will be used to 

determine the discharge pressure once the saturation pressure at -87 ° C (-124.6 °F) identifies the 

suction pressure in the evaporator because the ratio is reasonable for the compressor line used in 

this application.   

 

 

Figure 4.6:  Pressure versus enthalpy diagram for R23. 

 

In order to determine the amount of R23 required to remove the desired heat load from 

the evaporator, state 1 to state 2 prime in Figure 4.6, an energy balance is performed.  The energy 

balance on the evaporator (Equation 4.1) illustrates that the heat load to be removed from the 

evaporator is equal to the mass flow rate of the R23 multiplied by the difference between the 

enthalpy of the R23 leaving the evaporator at state 2’ and the enthalpy of the R23 leaving the 

expansion valve at state 1.  By specifying the heat load absorbed in the evaporator, the mass flow 

rate of the R23 can be found.   
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              (4.1) 

The expansion device is assumed to be isenthalpic, so the enthalpy of the R23 leaving the 

expansion device at state 1 is equal to the enthalpy entering the expansion device at state 4.  The 

R23 leaving the condenser is assumed to be a saturated liquid so the enthalpy of the R23 entering 

the expansion valve, state 1, is found by specifying state 4 with a quality of zero and the 

discharge pressure.  At the outlet of the evaporator, the enthalpy is found by assuming the last 

amount of R23 evaporates just as it leaves the evaporator and it is a saturated vapor.  Leaving the 

evaporator, the R23 at state 2’ in Figure 4.6 is specified by a quality of one and the suction 

pressure.   

As the R23 vapor leaves the evaporator, it absorbs some energy from state 2’ until it 

reaches state 2 where it enters the compressor.  In this work, the compressor inlet temperature is 

assumed to be 4.4 °C (40 °F) to be consistent with the compressor performance data, so that the 

deviation in the compressor efficiency is similar.  The R23 will be mixed with the R134a 

superheated vapor and enters the compressor, which operates between states 2 and 3, leaving the 

mixture as a superheated vapor form at the discharge.  After the refrigerant mixture leaves the 

compressor it will enter the condensing separator.  The separator is assumed to condense the 

R134a into a saturated liquid at 37.8 °C (100 °F) and it will be assumed that the R23 is a saturated 

vapor at this temperature.  A condensing temperature of 37.8 °C (100 °F) is chosen because it is a 

common condensing temperature used for two-stage cascade systems that are currently designed 

with air-cooled condensers.  The R23 remains in vapor form and enters the brazed plate heat 

exchanger at 100 °F.   

The R23 vapor will be condensed in the brazed plate heat exchanger.  At the exit of the 

separator the R23 is assumed to be at the discharge pressure and the condensing temperature of 

100 °F which leaves the R23 in a superheated vapor state.  An energy balance (Equation 4.2) is 

performed on the R23 in the condenser to determine the heat load that must be dissipated in the 

brazed plate heat exchanger.   
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                            (4.2) 

The heat load removed from the R23 to condense it to a saturated liquid must equal the 

amount of heat the inter-stage heat exchanger can remove by the R134a.  A diagram of the 

refrigeration cycle for the R134a is presented in Figure 4.7.   

 

 

Figure 4.7:  Pressure versus enthalpy diagram for R134a. 

 

Because the heat removed by the R134a in the inter-stage heat exchanger is known, the 

first law of thermodynamics is used to perform a heat balance on the R134a as it evaporates from 

state 1 to state 2’ in Figure 4.7: 

                              . (4.3) 

 State 1 is defined by the suction pressure and the enthalpy of the R134a entering the 

expansion device, assuming isenthalpic expansion.  The enthalpy of R134a entering the 

expansion device at the discharge pressure is found assuming the refrigerant is a saturated liquid 

at the outlet of the condenser with a quality of zero.  Through the expansion device, the 
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refrigerant is expanded to a low pressure and temperature in an isenthalpic process, leaving the 

enthalpy at the entrance of the evaporator equal to that entering the expansion device.   

The mass flow required for the R134a can be found from Equation 4.3.  Summing the 

mass flow rate of R23 and R134a required will determine the overall mass flow rate in the 

compressor.  Dividing the mass flow rate of the R23 and that of the R134a by the total flow rate 

gives the refrigerant ratio by mass, represented in the following Equations 4.4 and 4.5.   

      
     

    
        

       

    
 (4.4, 4.5) 

 

4.3 Prototype Apparatus  
 

 
The mixed refrigerant system (MRS) prototype apparatus was constructed by engineers 

and technicians at Farrar Scientific following the refrigeration diagram in Figure 4.1.  A cooling 

system is used to provide a chilled water/glycol mixture for heat removal in the condenser-

separator.  The cooling system consists of a refrigeration cycle to chill the water/glycol mixture, a 

pump to supply the desired flow rate, and a control to set the mixture.  The refrigeration cycle 

components are attached to a wood pallet for both stability and ease of mobility.  The evaporator 

is built into an insulated container on the wood pallet to minimize the energy that will leave the 

heating pads to the environment rather than enter the evaporator.  Figure 4.8 is a picture of the 

entire mixed refrigeration system.   
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Figure 4.8:  Mixed refrigerant system apparatus. 

 

4.4 Mixed Refrigerant Cycle Analysis 
 

 
The initial model, assuming perfect separation, was used to select a refrigerant 

composition.  The model was then modified to consider imperfect separation and better predict 

the behavior of the MRS under operation.  The model is used for two main purposes:  to 

determine the operating points and predicted performance of the system, and to analyze the 

performance of the system under specified operating conditions.  Initially the model of the MRS 

is used to find the operating parameters that will fulfill the desired design characteristics.  Then, 

testing is performed to determine the experimental behavior of the MRS.  Once the experimental 

results are obtained, the MRS model is used to analyze the components to develop an 

understanding of the operation behavior of the system.   

Predicted performance and operational behavior of the MRS will be defined by state 

points throughout the system.  State points in the MRS are determined by the position of the 

components that can be found in the refrigeration diagram in Figure 4.1.  All state points for the 
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model analysis are assumed to be operating at a steady state condition.  Model analysis begins at 

the compressor where the refrigerant mixture ratio is assumed to be the initial refrigerant mixture 

charge by mass.  Next, a mass balance is performed on the separator to determine the mass flow 

rate and the refrigerant mixture ratio of the two streams leaving the separator.  Each refrigerant 

mixture stream is used to analyze the operating points and performance of the brazed plate heat 

exchanger.  After the brazed plate heat exchanger, the R23-heavy stream is analyzed in the 

evaporator.  The various state points used in the MRS model will follow the numbering 

convention in Figure 4.1.   

 

4.4.1 Condensing Separator 

 
 

To begin the analysis of the condensing separator, the refrigerant mixture ratio leaving 

the compressor is assumed to be the input refrigerant mixture ratio.  The suction pressure is set 

from the needle valves for the R134a-heavy line entering the brazed plate heat exchanger.  The 

discharge pressure is set by the temperature and flow rate of the chilled water/glycol used to 

remove energy in the separator.  Modeling the mass flow rate through the separator on a per 

pound basis allows the determination of the mass of the total mass flow rate of the R23 and 

R134a refrigerants through the separator.  The total mixed refrigerant mass flow rate is assumed 

to be  one pound per hour and is multiplied by the ratio of R134a (X R134a) and R23 (X R23 ) in the 

MRS to find the total mass flow rate of R134a and R23 in the compressor.   

                              (4.6) 

                            (4.7) 

A temperature at the condenser exit is found based on the, initial refrigerant mixture ratio 

and the desired discharge pressure.  The initial refrigerant mixture ratio of R23 and R134a is 

entered into REFPROP and a pressure versus enthalpy diagram is produced in Figure 4.9 (NIST, 

2007).  The red line in Figure 4.9 signifies the constant pressure condensing process that is 
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modeled in the condensing separator.  The constant temperature lines indicate that the saturated 

vapor temperature at constant pressure is not equal to the saturated liquid temperature.  To 

determine the condensing temperature in the separator the saturated vapor temperature and the 

saturated liquid temperature at the discharge pressure conditions are found.  The condensing 

temperature for the discharge conditions is assumed to be the average temperature between the 

saturated vapor temperature and the saturated liquid temperature.   

 

 

Figure 4.9:  Pressure versus enthalpy diagram for 33.4% R23 and 66.6% R134a (NIST, 2007). 

 

 The saturated liquid properties are found from REFPROP (NIST, 2007) using the 

discharge pressure and the assumed condensing temperature in the separator.  The condensing 

process is assumed to be a constant pressure process; therefore, the binary phase diagram from 

Figure 4.4 is used to represent the saturation properties at a particular condensing temperature.  

The phase diagram is developed assuming a constant pressure and presents the ratio of R134a 

increasing from 0 to 1 along the x-axis as the temperature increases along the y-axis.   
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Figure 4.4: Phase diagram, 33.4% R23 and 66.6% R134a by mass at 1137.6 kPa (165 psia) 

(NIST, 2007). 
 

The assumed condensing temperature at the exit of the separator is represented by the 

constant line at 10 °C (50 °F).  At a particular condensing temperature and pressure there is a 

corresponding saturated liquid mass fraction of R134a (        ) and R23 (      ) that is found in 

REFPROP (NIST, 2007).  The resulting mass fraction will be the refrigerant mixture ratio of the 

saturated liquid leaving the bottom of the separator.  It will consist of a higher fraction of R134a; 

therefore, it will be referred to as the R134a-heavy mixture.   

The total mass flow rates of each of the R134a and R23 in the separator found from 

Equations 4.6 and 4.7 are used to determine the mass flow rate of the saturated liquid mixture 

ratio.  Along with the mass fraction of the saturated liquid at the discharge pressure and the 

condensing temperature the saturated vapor mass fraction of R134a (        ) and R23 (      ) 

can be found from REFPROP (NIST, 2007).  The mass flow rate of the saturated liquid R134a 

and R23 can be determined from Equations 4.8 and 4.9.   

                     
             

      
   

               

                 
  (4.8) 

                 
           

    
   

           

             
  (4.9) 
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The total mass flow rate of the liquid R134a-heavy stream is found by summing the mass 

flow rates from Equations 4.8 and 4.9.   

                                            (4.10) 

The mass flow rates of the R134a and R23 in a vaporous state are found by subtracting 

the mass flow rates in equation 4.8 and 4.9 from the total mass flow rates in equation 4.6 and 4.7.   

                                     (4.11) 

                                 (4.12) 

The total mass flow rate for the vapor refrigerant mixture is found by summing Equations 

4.11 and 4.12   

                                 . (4.13) 

At the exit of the separator, the vaporous refrigerant mixture ratio can be found by 

dividing the mass flow rates for the R134a and R23 in equations 4.11 and 4.12, respectively, by 

the total mass flow rate from Equation 4.13.  The total mass flow rate for the R23-heavy vapor 

stream and the R134a-heavy liquid stream is used for the mass flow rates throughout the rest of 

the mixed refrigerant system analysis.   

 

4.4.2 Brazed Plate Heat Exchanger 

 

 
Once the two mass flow rates and their mixture ratios are found for the lines leaving the 

separator, an energy balance is performed on the brazed plate heat exchanger.  This is done to 

determine if the R134a-heavy mixture can remove enough energy to condense the R23-heavy 

mixture to a saturated vapor.  An analysis on the brazed plate heat exchanger will provide 

evaporating and condensing temperatures to develop an understanding of the performance level 

of the heat exchanger at particular operating conditions.  A piping diagram for the R23-heavy and 

R134a-heavy refrigerant mixture streams is presented in Figure 4.10 to illustrate the direction of 

heat transfer.   
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Figure 4.10:  Brazed plate heat exchanger piping diagram.   

 

An energy balance is performed on the R23-heavy refrigerant mixture using the first law 

of thermodynamics.  The amount of heat that must be dissipated to condense the R23-heavy 

refrigerant mixture to a saturated liquid is found by multiplying the mass flow rate in Equation 

4.13 by the difference in the enthalpies from state 6 to state 7.   

                                  (4.14) 

The enthalpy at state 6 is found using the condensing temperature that is assumed for the 

separator exit and the discharge pressure that is set  the compressor outlet conditions.  Since state 

6 is a binary mixture, these three independent properties are required to specify the state.  It is 

assumed that the R23-heavy vapor mixture is fully condensed at the outlet of the brazed plate heat 

exchanger.  Thus, state 7 is s saturated liquid with a quality of zero at the discharge pressure.   

The R134a-heavy refrigerant mixture leaves the separator as a saturated liquid and travels 

to an expansion valve.  The expansion valve is a needle valve set to maintain the desired suction 

pressure.  Through the expansion valve, the refrigerant mixture is expanded to a low pressure, and 

therefore, low temperature.  Entering the evaporator (brazed plate heat exchanger), the R134a-

heavy mixture is at the suction pressure.  An energy balance is performed on the R134a-heavy 

mixture from states 4 to 5.  The amount of energy that can be removed by the R134a-heavy 
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mixture is found by multiplying the mass flow rate by the difference in the enthalpies from state 4 

to state 5 in Equation 4.15.   

                                      (4.15) 

The expansion process is assumed to be an isenthalpic one and therefore the enthalpy at 

the outlet of the expansion valve, state 4, is equal to the enthalpy at the inlet, state 3.  At the 

condensing separator outlet, the R134a-heavy mixture leaves as a saturated liquid, therefore state 

3 is defined by the discharge pressure and a quality of zero.  The enthalpy found at state 3 is equal 

to the enthalpy at state 4.  At the exit of the evaporation process the R134a-heavy refrigerant 

mixture is assumed to be a saturated vapor with a quality of one.  Through the evaporator the 

R134a-heavy mixture is at the suction pressure and the known quality defines state 5 so the 

enthalpy can be determined.   

The energy absorbed by the R134a-heavy stream is calculated and compared to the 

energy that must be removed to condense the R23-heavy stream.  The R134a-heavy stream must 

provide enough energy absorption capacity to condense the R23-heavy.  The refrigeration 

capacity in the evaporator is thereby reduced because the R23-heavy refrigerant mixture is not 

completely condensed to a saturated liquid.   

 

4.4.3 Evaporator 

 

 
The evaporator is analyzed in the mixed refrigerant system model to determine the 

refrigeration capacity and the specific state point properties.  An energy balance is performed 

using the first law of thermodynamics for the R23-heavy refrigerant mixture in the evaporator 

from state 8 to state 9.  The energy that can be removed from the refrigerated space is found by 

multiplying the mass flow rate found from Equation 4.13 by the difference between the enthalpies 

from state 8 to state 9 (see Figure 4.1).   

                                   (4.16) 
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Exiting the brazed plate heat exchanger, the R23-heavy mixture flows through a capillary 

tube to expand the mixture to the suction pressure and decrease the temperature.  The expansion 

process is assumed to be isenthalpic so the enthalpy entering the capillary tube is equal to the 

enthalpy at the exit.  At the exit of the brazed plate heat exchanger the refrigerant mixture is a 

saturated liquid, so state 7 is defined by a quality of zero and the discharge pressure.  The 

enthalpy can be found at state 7 because the state is fixed by the two independent properties.  At 

the outlet of the evaporator, the R23-heavy mixture is assumed to be a saturated vapor with a 

quality of one.  The discharge pressure and the quality define state 9; therefore, the enthalpy can 

be determined and the evaporator capacity can be calculated.   

 

4.5 Cycle Operating Points 
 
 

The mixed refrigerant system (MRS) operating points are determined from the analysis of 

the cycle model to provide investigation parameters for the experimental analysis.  The model is 

run with two separate compression ratios and at two different suction pressures to predict the 

experimental performance of the refrigeration system.  An initial suction pressure is chosen by 

determining the saturation pressure for R23 at an evaporating temperature of -87 °C (-124.6 °F).  

This suction pressure would provide the desired evaporator operating temperature for the mixed 

refrigeration system.  For this system it is known that perfect separation will not occur , but 

setting  the suction pressure equal to the R23 saturation pressure at -87 ° C (-124.6 °F) provides 

an initial starting point for analysis of the mixed refrigerant system.   

The saturation pressure for R23 at -87 ° C (-124.6 °F) is found from thermofluid property 

data from Dupont and REFPROP (Dupont, 1994; F-Chart Software 2011) to be 75.8 kPa (11 

psia).  The analysis of the mixed refrigeration system is used to define all of the state points 

represented in the refrigeration diagram in Figure 4.1.  The cycle begins as the initial refrigerant 

mixture ratio of R23 and R134a enters the suction side of the compressor.  It will be assumed for 

the system model that the refrigerant mixture enters the suction side of the compressor at 4.4 °C 
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(40 °F).  From the mixture ratio, suction pressure and temperature entering the suction side of the 

compressor, state 1 is defined.  The outlet of the compressor, state 2, is defined by the discharge 

pressure and the enthalpy that can be determined from the isentropic efficiency of the Copeland 

CF12 compressor (Emerson, 2010).  The isentropic efficiency for the compressor is assumed to 

be 50%.  The enthalpy at the outlet of the compressor is determined from the isentropic 

efficiency, which is the ideal power required in the compressor divided by the actual power 

required:            

             
      

     
 . (4.17) 

The remainder of the state points are determined using the analysis in section 4.4 and the 

results are presented in the following tables.  The specific entropy at each state point is also 

found.  A summary of the experimental testing parameters are presented in the Table 4.1.  The 

model state point results corresponding to Figure 4.1 can be found in Appendix B for Tests 1-6. 

 

Table 4.1:  Summary of testing parameters for MRS. 

Test Overall Mixture Ratio C.R.  Suction Pressure 

1 66.6% R134a|33.4% R23 15:1 11 psia 

2 66.6% R134a|33.4% R23 12:1 11 psia 

3 66.6% R134a|33.4% R23 15:1 14 psia 

4 66.6% R134a|33.4% R23 12:1 14 psia 

5 60% R134a|40% R23 15:1 11 psia 

6 60% R134a|40% R23 12:1 11 psia 

 

4.6 Cycle Performance Analysis  
 

 
The operating parameters are determined from the mixed refrigerant model described in 

sections 4.4-4.5 for various design points.  The power consumption and the evaporating 

refrigeration capacity is based on determine the overall coefficient performance of the mixed 

refrigerant system model.  Refrigeration capacity is found from Equation 4.16 and power 
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consumption of the compressor is determined by multiplying the mass flow rate of the initial 

refrigerant mixture by the difference in the enthalpies from state 2 to state 3.  The overall system 

performance is defined using the coefficient of performance (COP); that is the refrigeration 

capacity divided by the compressor power consumption (Cengel & Boles, 2010).   

     
            

            
  (4.18) 

The maximum possible COP for a refrigeration cycle is the Carnot COP, which is defined 

in terms of the heat source and the sink temperatures as shown in Equation 4.19.  For the Carnot 

COP the sink temperature is the condenser determined for the separator.  The source temperature 

for the Carnot COP is the temperature of the R23-heavy refrigerant mixture entering the 

evaporator at state 8.   

           
       

             
  (4.19) 

The second law efficiency of the refrigeration cycle, in Equation 4.20, is found by 

dividing the calculated COP of the system (Equation 4.18) by the reversible, Carnot COP 

(Equation 4.19).   

     
   

         
  (4.20) 

The evaporating temperature will be the coldest at the entrance of the evaporator so the 

temperature at state 8 is recorded along with the COP, Carnot COP and second law efficiency for 

the operating points in section 4.5.  Tables 4.2 and 4.3 show the above performance parameters 

for the operating state points in section 4.5.   
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Table 4.2:  Performance characteristics of model at suction pressure and compression 

ratio (66.6% R134a and 33.4% R23).    

Suction 

Pressure  

(psia) 

Compression 

Ratio 

Evaporator 

Temperature  

(°F) 

COP Carnot COP 

Second Law 

Efficiency 

(     

11.0 
15:1 -101.9 0.401 2.28 0.176 

12:1 -104.6 0.482 2.43 0.198 

14.0 
15:1 -89.6 0.399 2.31 0.173 

12:1 -93.6 0.464 2.44 0.190 

Table 4.3:  Performance characteristics of model at suction pressure and compression 

ratio (60% R134a and 40% R23).    

Suction 

Pressure  

(psia) 

Compression 

Ratio 

Evaporator 

Temperature  

(°F) 

COP Carnot COP 

Second Law 

Efficiency 

(     

11.0 
15:1 -106.6 0.453 2.28 0.199 

12:1 -109.0 0.527 2.44 0.216 
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Chapter 5 
 

 

Experimental Procedures and Results 
 
 

The analysis of the mixed refrigerant system model provides initial operation points in 

order to test the experimental system performance.  The operating points are used to develop a 

procedure to examine compression ratio, separator performance, evaporating temperatures, 

refrigeration capacity and power consumption.  In order to refine the design parameter under 

specific operating parameters, the mechanical components in the system will need to be adjusted 

as well as the chilled water/glycol used in the condensing separator.   

 

5.1 Experimental Evaluation Devices 
 

 

A data acquisition system is used to record the various system values for temperature, 

pressure, current and voltage measured at state points throughout the system.  An instrumentation 

diagram for the mixed refrigerant system is presented in Figure 5.1.  Type T thermocouples from 

Omega (Omega, 2012) are used to measure temperatures at the locations in Figure 5.1, labeled 

with a capital T followed by the location number.  The thermocouples are fixed to the outer wall 

of the tubing throughout the system.  Pressure transducers from Omega are used to measure the 

internal refrigerant pressures at the locations designated in Figure 5.1 with a capital P followed by 

the location number (Omega, 2012).   

A Variac voltage regulator is used to change the voltage input and thus the power to the 

heater pads on the evaporator.  Both voltage and current to the heater pads are measured and used 

to adjust the energy input to the evaporator.  A Yokogawa power meter is used to measure the 

compressor power consumption (Yokogawa, 1998).  Power consumption, current and voltage 

measurements are recorded through the data acquisition system and labeled on the 

instrumentation diagram in Figure 5.1.   
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Figure 5.1:  Instrumentation diagram for mixed refrigeration system schematic. 

 

5.2 Prototype Apparatus 
 

 

The mixed refrigerant system prototype apparatus described in section 4.2 is presented in 

further detail in this section.  Component descriptions follow to provide physical illustrations of 

the refrigeration schematic in Figure 5.1.  Figure 5.2 is an image of the entire mixed refrigeration 

system.   
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Figure 5.2:  Mixed refrigerant system test apparatus. 

 

A Copeland CF12 compressor (Emerson, 2010b) is a reciprocating compressor sized for 

this application and chosen because of its simple operation and well known performance.  Due to 

the use of two refrigerants operating through the same compressor, a Temprite 903 (Temprite, 

2009) oil separator is selected, which is oversized for the range of operating conditions of the 

mixed refrigerant apparatus.   
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Figure 5.3:  Copeland CF12 (Emerson, 2010b) compressor and Temprite (Temprite, 2009) oil 

separator. 
 

A Micro Motion Coriolis (Emerson, 2011) flow meter is used at the outlet of the 

compressor, after the oil separator, to obtain an accurate measure of the mass flow rate of the 

mixed refrigerant flowing through the compressor, as shown in Figures 5.3 and 5.4.  The 

refrigerant mixture then enters the condensing separator.  A filter-dryer is placed at the outlet of 

the R134a-heavy liquid line leaving the bottom of the separator.   
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Figure 5.4:  Coriolis flow meter (Emerson, 2011), condensing separator and R134a filter-dryer. 
 

The heat exchanger used for the separator is an Aqua Systems coil in tube heat exchanger 

(Aqua Systems Inc., 2012), shown in detail in Figure 5.5.  The refrigerant flows into the large 

cylinder and the water/glycol cooling fluid flows in a pipe that is coiled throughout the inside of 

the cylinder.  The water/glycol pipe has fins to increase the heat transfer surface area on the 

condensing side of the heat exchanger.  The R134a-heavy liquid mixture will leave through the 

bottom, and the R23-heavy vapor mixture will leave through the top of the cylinder.  Refrigerant 

entering the separator flows into the side at the bottom third of the cylinder to allow for collection 

of the R134a-heavy liquid refrigerant mixture at the bottom of the cylinder.  A sight glass is 

installed at the refrigerant mixture inlet and two outlets to monitor whether the flow is in a vapor 

mixture state.   
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Figure 5.5:  Condensing separator refrigerant and chiller connections. 

 

An expansion tank is installed to allow for accumulation of the refrigerant if failure 

occurs or if the pressure in the system reaches an unsuitable level for the components.  The 

expansion tank is shown in Figure 5.6 and consists of an open on rise of inlet (ORI) pressure 

valve and a refrigerant bleed valve line.  The ORI valve is connected at the inlet of the expansion 

tank and is set to a desired pressure.  If the refrigerant pressure in the system at the outlet of the 

compressor reaches the level at which the ORI valve is set then the valve opens and allows 

refrigerant to flow into the expansion tank.  In the event that refrigerant enters the expansion tank, 

there is a small capillary tube connected to the expansion tank to allow for the refrigerant to bleed 

back into the suction side of the compressor.   
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Figure 5.6:  Mixed refrigerant system expansion tank. 
 

The R134a-heavy refrigerant mixture leaves the separator in a liquid state and flows 

through a filter-dryer before entering the expansion valves.  Two needle valves are used for the 

expansion valves to allow for the maximum adjustment while setting the suction pressure.  The 

R134a-heavy refrigerant line that leaves the separator can be seen in Figure 5.5, while the 

expansion valves are shown in Figure 5.7.   

A suction accumulator is installed before the inlet to the suction side of the compressor in 

the event that the refrigerant mixture leaving the evaporator and the brazed plate heat exchanger 

is in a liquid/vapor mixture state.  The suction accumulator and the suction line of the compressor 

are shown in Figure 5.7.  The R134a-heavy refrigerant mixture leaving the brazed plate heat 

exchanger and the R23-heavy refrigerant mixture leaving the evaporator both mix before exiting 

the insulated evaporator space.  After both lines mix, the total refrigerant mixture flows through 

the suction accumulator where any remaining liquid refrigerant is trapped so that the refrigerant 

entering the suction side of the compressor is in a vapor state.    
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Figure 5.7:  R134a expansion valves, suction accumulator and compressor suction line. 
 

A counter-flow brazed plate heat exchanger is used for the inter-stage heat exchanger in 

which the R134a-heavy refrigerant mixture is used to condense the R23-heavy mixture.  It is 

located behind the R134a expansion valves in Figure 5.7, covered by many layers of foam 

insulation.  The counter-flow piping diagram for the two refrigerant mixtures is shown in Figure 

5.8.   
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Figure 5.8:  Brazed plate heat exchanger piping diagram.   
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The R23-heavy refrigerant mixture is condensed in the brazed plate heat exchanger and 

exits through a capillary tube.  The capillary tube is 32 feet by 0.050 inches (JB 2004);  was sized 

directly from the load and refrigerant requirements of a ULT freezer operating an evaporator at -

87 °C (-124.6 °F).  The entire length of the capillary tube is inside the insulated box and once the 

R23-heavy refrigerant mixture leaves the capillary tube it directly enters the evaporator.  The 

evaporator consists of five plates with a combined length of 80 feet of copper tubing coiled inside 

the plates for the refrigerant.  Air fills the volume of the plates that is not consumed by the 

refrigerant piping.  This allows the system to cool a relatively small mass and reach steady state 

quicker than if a higher density liquid or solid was used in the evaporator plates.  McMaster-Carr 

silicone heating pads (McMaster-Carr, 2012) are distributed evenly on the evaporator plates so 

that an even distribution of heat can be applied to the evaporator.  The layout for the evaporator 

plates and the heating pads is shown in a diagram in Figure 5.9.  The evaporator and heating pads 

are installed in an insulated box to maximize the energy entering the evaporator.   

EVAPORATOR PLATES (5)

SILICONE HEATING PADS (6)

 

Figure 5.9:  Side view of evaporator plates with heating pads.  
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5.3 Experimental Procedure 
 

 

An experimental procedure is developed for each of the tests that is performed on the 

mixed refrigerant system.  This is done to ensure that each test is carried out in the same manner 

as the one before to minimize the error that can come from varying the testing procedure.  The 

chilled water/glycol system is adjusted to its desired set-point temperature, and then the 

refrigeration system is turned on.  Once the refrigeration system is turned on, the suction pressure 

is set using the needle valve.  Then, the discharge pressure is set using the temperature and flow 

rate of the chilled water/glycol system.   After the operating parameters reach their desired 

operating point, the evaporator heat load is turned on.  As long as the operating points are 

unchanged after the heat load is applied, then the mixed refrigeration system is allowed to run 

until it reaches a steady-state operating point.   

The chilled water/glycol system is designed to be operated in a manner to ensure that the 

system components are not damaged; he pump is turned on, then the compressor for the chiller.  

Once the system power is on, the set-point temperature can be chosen.  If the chiller system is 

being turned on for the first time, the chiller is allowed to run for approximately 20 minutes to 

give the system enough time to chill the water/glycol to the set-point temperature before a heat 

load is applied.   

When the chiller system has cooled down the water/glycol mixture, the NetDaq data 

acquisition system is set up and a new file is started for the test.  The mixed refrigeration system 

is turned on and the data acquisition system is checked to confirm the measurements are being 

recorded.  A few minutes after the mixed refrigerant system is turned on, the needle valve is 

adjusted to set the suction pressure.  This is done by reading the suction pressure from the data 

acquisition system until the desired suction pressure is obtained.  After the suction pressure is set, 

the discharge pressure is set by adjusting the chilled water/glycol flow rate and the water/glycol 

temperature in the event that the chiller set-point temperature is too high or too low.  This will 
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adjust the condensing pressure, and consequently the discharge pressure, as well as the 

condensing temperature inside the separator.   

When both the suction pressure and discharge pressures are set to the appropriate values 

for the current test, the mixed refrigerant system is allowed to run and cool the evaporator plates. 

The system cools the plates until all of the evaporator thermocouples reach temperatures near the 

predicted low temperature from the refrigerant model analysis for the current test conditions.   

Once the evaporator plates are cooled near the predicted temperature, the Variac is turned 

on to apply the desired heat load.  This is done by measuring the voltage and current to determine 

the power input to the heater, in Watts.  The heat load is adjusted to be slightly greater than the 

predicted heat load for the current test to ensure that the refrigerant mixture leaving the 

evaporator is a saturated vapor or slightly superheated.  Adding more heat than the evaporator can 

remove will provide a slightly higher refrigeration capacity for the overall cycle, but ensure that 

the state point at the outlet of the evaporator can be defined.   

The heat load will impact the suction and discharge pressures as the heat load settles 

throughout the system so adjustments are made to return the pressures to their original values.  A 

test is complete once the mixed refrigerant system reaches a steady-state condition.  The mixed 

refrigerant system has reached a steady-state condition when the thermocouples throughout the 

evaporator do not change more than ±1.5 °C for 20 minutes.  After the completion of a desired 

test, new operational parameters are dialed in and the testing procedure commences again.   

 

5.4 Experimental Results 
 
 

 Experimental results are monitored and recorded once the test reaches a steady-state 

condition according to the instrumentation diagram shown in Figure 5.1.  Temperature and 

pressures are recorded following state points 1 through 9 as well as the additional points labeled 

in the instrumentation diagram.  The mass flow rate is recorded for each test from the Micro 

Motion Coriolis (Emerson, 2011) flow meter (in lbm/hr).  The heat load applied to the evaporator 
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is measured from the current and voltage to find the power in Watts and is calculated by the data 

acquisition system software.  Results from the tests described in Chapter 4 are summarized in 

Table 5.1 for the suction and discharge pressure, mass flow rate, heat load and compressor power.  

Entire system results for tests 1 through 6 can be found in Appendix C.   

 

Table 5.1:  Results summary for experimental tests 1-6.   

Test 

Suction  

Pressure 

(psia) 

Discharge 

Pressure 

(psia) 

Mass Flow 

(lbm/hr) 

Power 

(W) 

Heat Load 

(W) 

1 11.0 163.8 37.7 1152.9 302.7 

2 11.5 131.7 48.4 1248.9 485.0 

3 14.0 218.7 47.4 1306.7 400.5 

4 14.2 172.2 82.4 1424.3 516.8 

5 10.4 158.5 30.8 1046.0 334.4 

6 11.2 134.6 45.5 1214.1 516.2 

 

 

5.5 Experimental Performance Analysis  
 

 
State point properties for the six tests in are presented in Tables C.7-C.12 in Appendix C.  

The overall system performance can be calculated using the coefficient of performance (COP) 

from Equation 4.18.  The reversible Carnot COP is found from Equation 4.19 and the second law 

efficiency is found from Equation 4.20.  The experimental performance results for tests one 

through four are presented in Table 5.2. 
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Table 5.2:  Performance characteristics of model at suction pressure and compression 

ratio (66.6% R134a and 33.4% R23).    

Suction 

Pressure  

(psia) 

Compression 

Ratio 

Evaporator 

Temperature  

(°F) 

COP Carnot COP 

Second Law 

Efficiency 

(     

11.0 14.9:1 -103.0 0.263 2.36 0.111 

11.5 11.4:1 -99.4 0.393 2.54 0.155 

14.0 15.6:1 -81.4 0.310 2.47 0.125 

14.2 12.1:1 -85.0 0.317 2.54 0.124 

 

At a suction pressure of 11 psia, the COP, Carnot COP and Second Law Efficiency 

increase as the compression ratio decreases.  This result is expected and is common to vapor 

compression refrigeration cycles.  The evaporator temperatures recorded at each suction pressure 

are slightly different and this can be attributed to the slight difference in the recorded suction 

pressure and the difference in the mixture ratio of R134a to R23 in the evaporator for each case.  

For a suction pressure of 14 psia the COP and Carnot COP increase slightly as the compression 

ratio decreases.  The Second Law Efficiency decreases slightly as the compression ratio decreases 

and does not follow the normal convention for a vapor compression refrigeration cycle.  Figure 

5.10 shows the second law efficiency as a function of the compression ratio for Tests 1-4.   

 

 
Figure 5.10:  Second law efficiency at suction pressure for varying compression ratios. 
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The mass balance is analyzed at the condensing separator to determine the operating 

points that would provide better separation.  Better separation is achieved when more of the 

R134a (and less of the R23) is condensed in the separator.  It was found that the condensing 

temperature must be increased for the particular discharge pressure to improve the ratio of R134a 

to R23 in the saturated liquid line leaving the separator.  This is a difficult phenomenon to 

achieve since the condensing temperature normally follows the saturation temperature at the 

discharge pressure for an azeotropic refrigerant.  Since there is significant temperature glide 

(change in temperature from saturated vapor to saturated liquid states) in the condenser for the 

R134a-heavy mixture stream, it is hard to predict what the condensing temperature will be for a 

particular chilled water/glycol temperature and mass flow rate.   

An alternative way to lower the evaporator temperature and increase the refrigeration 

capacity is to increase the amount of R23 in the vapor stream.  It is found that the initial binary 

refrigerant ratio does not affect the saturated liquid mass fraction at a particular temperature and 

pressure.  Therefore, increasing the amount of R23 in the initial binary refrigerant mixture ratio 

will increase the mass fraction of R23 in the vapor stream, but the R134a-heavy saturated liquid 

mass ratio will remain unchanged.  The refrigerant mixture ratio is changed from 66.6% R134a 

and 33.4% R23 to a mixture of 60% R134a and 40% R23 by mass.  Experimental tests are 

performed for the mixture at a suction pressure of 11 psia and compression ratios of 15:1 and 

12:1.  System results are presented in Table 5.1, while performance characteristics are in Table 

5.3.   

 Table 5.3 lists the performance characteristics from tests five and six when the mixture 

ratio is changed to 60% R134a and 40% R23.  The COP, Carnot COP and Second Law Efficiency 

with the adjusted initial refrigerant mixture show improved results from those with a mixture ratio 

of 66.6% R134a and 33.4% R23.  Slightly lower evaporator temperatures are reached suggesting 

that the evaporator refrigerant mixture line contains more R23 than R134a.  An increase in the 
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Second Law Efficiency from the first mixture ratio to the ratio with 60% R134a and 40% R23 

shows an overall increase in the system performance at a suction pressure of 11 psia.   

 

 

 

  

Table 5.3:  Performance characteristics of model at suction pressure and compression 

ratio (60% R134a and 40% R23).    

Suction 

Pressure  

(psia) 

Compression 

Ratio 

Evaporator 

Temperature  

(°F) 

COP Carnot COP 

Second Law 

Efficiency 

(     

10.4 15.2:1 -109.8 0.32 1.96 0.16 

11.2 12.0:1 -104.8 0.42 2.05 0.21 
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Chapter 6  
 

 

Comparison of Mixed Refrigerant System Model and Experimental 

 

 
The mixed refrigerant system model was developed to determine theoretical operating 

points and system performance at various initial conditions.  Operating state points throughout the 

system at steady state are found to determine the lowest possible system temperature.  

Experimental procedures are developed to analyze the behavior of the mixed refrigerant system at 

at the same suction and discharge pressures.  The overall system is evaluated on the basis of 

evaporating temperature, power consumption and the refrigeration capacity.  Overall system 

performance is determined by the coefficient of performance (COP), reversible Carnot COP and 

the second law efficiency (   ).  Experimental results from tests one through four in are found in 

Table 5.2 in chapter 5 for the mixed refrigerant system with an overall mixture ratio of 66.6% 

R134a and 33.4% R23 by mass.   

The evaporator temperatures predicted by the mixed refrigerant system model and the 

experimental results for tests one through four are presented in Table 6.1.  Examination of the 

evaporator temperatures entering the evaporator shows that the experimental results are warmer 

than the theoretical model prediction at those conditions, except for the temperature recorded in 

Test 1.  Outlet evaporator temperatures recorded in the experimental results were much warmer 

than calculated in the model.  The evaporator temperatures measured are reasonably close to the 

predicted model temperatures because they are near the uncertainly range for the thermocouples 

of 1.8 °F.  The modeled refrigerant evaporating temperatures are assumed to be the lowest 

temperature that the system could reach at those operating conditions.  In Table 6.1 the error is 

calculated as the model temperature at the inlet or outlet minus the experimental temperature 

measured.  For test 1 the error is positive, which suggests that there was not enough heat load 

applied to the evaporator to ensure that the R23-heavy stream was at least a saturated vapor.  
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Tests 2-4 have a negative error, therefore, the temperature leaving the evaporator is warmer than 

expected.  This suggests that plenty of heat load was applied to tests 2-4 and the refrigerant 

mixture was in a saturated vapor or a superheated vapor state.  Assuming that there is some 

inefficiency in the energy load entering the evaporator (that is not accounted for) and the mixture 

ratios calculated for the refrigerant streams are correct, the mixed refrigerant system is operating 

in reasonable agreement with the model prediction.   

 

Table 6.1:  Evaporator temperatures (°F) for model and experimental results (Tests 1-4).    

Test 1 2 3 4 

Inlet 

Model -101.9 -104.6 -89.0 -93.6 

Experiment -103.0 -99.4 -81.4 -85.0 

Error +1.1 -5.2 -7.6 -8.6 

Outlet 

Model -58.7 -59.4 -48.8 -50.3 

Experiment -71.6 -60.2 -12.1 -9.5 

Error +12.9 +0.8 -36.7 -40.8 
 

The model developed for the mixed refrigerant system uses an evaporator load that 

differs slightly from the actual applied load in the evaporator.  The heat load applied for the 

experiments is greater than the predicted model load, to make sure the refrigerant mixture leaves 

the evaporator in a vaporous state.  Heat load, along with compressor power, is presented for the 

model and experimental tests one through four in Table 6.2.   

 

Table 6.2:  Power consumption for model and experimental results (Tests 1-4).    

Test 1 2 3 4 

Heat Load 

(Btu/hr) 

Model  875.0 1500.0 1400.0 1700.0 

Experiment 1032.7 1655.0 1355.4 1760.6 

Error -157.7 -155.0 +44.6 -60.6 

Power 

(Btu/hr) 

Model  2181.9 3133.0 3505.5 3662.9 

Experiment 3933.0 4261.4 4458.6 4849.7 

Error -1751.1 -1128.4 -953.1 -1186.8 
 

The power calculated in the model is found assuming a suction pressure a temperature of 

4.4 °C (40 °F) which is the temperature specified by Copeland for the suction inlet condition 
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(Emerson, 2010).  The power is found in the model by assuming an isentropic efficiency of 50% 

because the compressor manufacturer does not provide performance data at such low suction 

pressures and evaporating temperatures for the binary refrigerant mixture.  For the operating 

parameters in the mixed refrigerant system model, Table 6.2 shows that the power consumption 

predicted by the model using these assumptions is not an accurate representation of the actual 

power that will be measured, but provides an acceptable estimation for the initial calculations.   

Performance of the overall mixed refrigerant system is determined by calculating COP, 

reversible Carnot COP and the second law efficiency.  Performance results for the mixed 

refrigerant model and experimental tests one through four are presented in Table 6.3.  The COP 

for the system is the actual performance that the mixed refrigerant system can achieve, while the 

Carnot COP is the theoretical maximum COP that could be reached if the system had no 

irreversibility.  The second law efficiency is calculated to determine how well the system is 

performing relative to the theoretical maximum performance, measured by the Carnot COP.   

 

Table 6.3:  Performance characteristics of model and experimental system (Tests 1-4) 

Test  COP Carnot COP 
Second Law 

Efficiency (     

1 

Model 0.401 2.28 0.176 

Experiment 0.263 2.36 0.111 

Error +0.138 -0.08 +0.065 

2 

Model 0.482 2.43 0.198 

Experiment 0.393 2.54 0.155 

Error +0.089 -0.11 +0.043 

3 

Model 0.399 2.31 0.173 

Experiment 0.310 2.47 0.125 

Error +0.089 -0.16 +0.048 

4 

Model 0.464 2.44 0.190 

Experiment 0.317 2.54 0.124 

Error +0.147 -0.10 +0.066 
 

Table 6.3 shows that the COP for the experimental tests are all slightly lower than the 

COP calculated from the mixed refrigerant model.  The error is calculated by subtracting the 
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experimental value from the calculated model value.  The error shows that the model predicts a 

higher COP and second law efficiency and a lower Carnot COP than is found in the experimental 

results.  This illustrates that the mixed refrigerant system model does not predict the exact 

operation of the experimental system.  For the most part, the model severely under predicts the 

power consumed by the compressor and could be improved by using a more accurate isentropic 

efficiency.  The condensing temperature is assumed based on the temperature glide from 

saturated vapor to saturated liquid at the discharge pressure and the system model would improve 

greatly if the condensing temperature could be more accurately predicted.   

It is expected that COP will increase as the compression ratio decreases; this is observed 

in both the model and the experimental data.  For the conditions of test 4 (suction pressure of 14 

psia and compression ratio of 12:1) the COP slightly increases from the values in Test 3 at a 

higher compression ratio.  Under these operating conditions the COP and second law efficiency 

are lower than the same compression ratio in Test 2, but it was anticipated that Test 4 would 

produce more efficient results.   

 

Table 6.4:  Evaporator temperatures, power and heat load (Tests 5-6).    

Test 5 6 

Inlet Evap. (°F) 

Model -106.6 -109.0 

Experiment -109.8 -104.8 

Error +3.2 -4.2 

Outlet Evap. (°F) 

Model -62.9 -64.2 

Experiment -50.9 -32.2 

Error -12.0 -32.0 

Heat Load (Btu/hr) 

Model 875.0 1500.0 

Experiment 1141.1 1761.3 

Error -266.1 -261.3 

Power (Btu/hr) 

Model 1931.4 2847.0 

Experiment 3569.0 4142.6 

Error -1637.6 -1295.6 
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Table 6.5:  Performance characteristics of model and experimental system (Tests 5-6) 

 Test COP Carnot COP 
Second Law 

Efficiency (     

5 

Model 0.453 2.28 0.199 

Experiment 0.319 1.96 0.163 

Error +0.134 +0.32 +0.036 

6 

Model 0.527 2.44 0.216 

Experiment 0.425 2.56 0.166 

Error +0.102 -0.12 +0.050 

 

Experimental and model results for Tests 5-6 are presented in Table 6.4.  The 

performance characteristics for the model show the expected performance that could be obtained 

by the experimental system.  Measured performance for the experimental system in Table 6.5 

shows that the system does not achieve the predicted model performance for the operating 

conditions.  As the compression ratio decreases, the COP and second law efficiency increases.  

The experimental COP in Tests 5-6 (Table 6.5) show an increase from Tests 1-2 (Table 6.3) at the 

same suction and compression ratio conditions.  An initial mass fraction of 60% R134a and 40% 

R23 provided the expected increase in overall system performance; this is due to the fact that the 

R23-heavy stream in the evaporator has an increased percentage of R23 compared with the initial 

mixture ratio of 66.6% R134a and 33.4% R23 by mass.   
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Chapter 7 
 

 

Comparison of the Mixed Refrigerant and Cascade Systems 
 
 

A model of the two-stage cascade refrigeration system was developed to determine the 

operating points of the refrigeration system.  The cascade system is examined at three designed 

heat load and evaporator temperatures.  The cascade unit that is tested was developed at Farrar 

Scientific in 2006 to reach typical ULT storage evaporator temperatures of -97 °C (-142.6 °F), -

87 °C (-124.6 °F), and -82 °C (-115.6 °F).  Experimental results are used to determine the overall 

performance of the system, measured by the evaporator temperature, heat load, power 

consumption, COP and second law efficiency.  Table 7.1 shows that  the evaporator temperature 

increased, the applied heat loads increased and the overall COP and second law efficiency for the 

cascade system increases.  

 

Table 7.1:  Performance characteristics of experimental cascade system (Tests 1c-3c) 

Test 

Evaporator 

Temperature 

(° F) 

Heat 

Load 

(Btu/hr) 

Power 

(Btu/hr) 
COP 

Carnot 

COP 

Second Law 

Efficiency (     

1c -142.6 1733.3 9598.6 0.18 1.47 0.163 

2c -124.6 3852.1 10643.9 0.36 1.62 0.22 

3c -115.6 5216.9 11594.2 0.45 1.74 0.26 

 

The cascade refrigeration model predicted the operating conditions based on the suction 

pressure, discharge pressure and the heat load.  The COP and second law efficiency follow the 

same trend predicted by the model and therefore, support the experimental results for the COP 

calculated based on measurements.  Test number 3c, with an evaporator inlet temperature of -82 

°C (-115.6 °F) and a refrigeration capacity of 1528.9 W (5216.9 Btu/hr), provides the closest 

operating point comparison to the performance of the mixed refrigerant system.  Although the 

two-stage cascade refrigeration system uses R508B for the low-stage and R404A for the high-
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stage, the system operates with the same Copeland CF series compressors and evaporator 

temperatures near those achieved in the mixed refrigerant system.   

Comparing the mixed refrigerant system to the two-stage cascade system developed at 

Farrar Scientific provides the evaporator temperature, refrigeration capacity and performance that 

must be achieved for a mixed refrigerant system to become a viable option for replacing cascade 

systems in ULT refrigeration applications.  For the two-stage cascade system, experimental 

results in Test 3c found an evaporator temperature of -82 °C (-115.6 ° F), refrigeration capacity of 

1528.9 W (5216.9 Btu/hr), and overall COP of 0.45.  The experimental results for the mixed 

refrigerant system closest to the cascade system were found in Test 5, when the mixed refrigerant 

system achieved an evaporator temperature of -78.8 °C (-109.8 °F), refrigeration capacity of 

345.6 W (1179.1 Btu/hr) and a COP of 0.319.  Although the refrigeration capacity of the mixed 

refrigerant system is lower than the two-stage cascade system, the power is significantly lower for 

the mixed refrigerant system at 3569.0 Btu/hr compared to 11,594.2 Btu/hr for the cascade 

system.  However, the COP of the mixed refrigerant system is lower than the COP of the cascade 

cycle, indicating that the mixed refrigerant system would consume more power if both were sized 

to provide the same refrigeration capacity.   

There are design features of the mixed refrigeration system that would need to be 

addressed to make the system viable for all applications.  The high-stage condenser on the two-

stage cascade system is an air-cooled heat exchanger, and the mixed refrigerant system has a 

water/glycol chilled condenser.  It is common to use air-cooled condensers and the use of chilled 

water/glycol is expensive and requires another cooling system, which is not accounted for in the 

overall performance of the mixed refrigerant system.   

The increased temperature glide throughout the evaporator in the mixed refrigerant 

system makes the system a less likely candidate for certain ULT applications since the 

temperature increase is significant.  It would be difficult to predict what the actual temperature of 

the frozen samples would be held at due to the temperature glide.  A design improvement could 
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be made at the evaporator to achieve a smaller temperature increase from the outlet of the 

expansion valve to the outlet of the evaporator.  The refrigerant mixture at the end of the 

evaporator could be routed to an additional heat exchanger at the outlet of the brazed plate heat 

exchanger to subcool the R23-heavy stream.   

Additional tests could be performed to determine the optimum R23 to R134a mixture 

ratio to achieve the best results for the current system configuration.  As more R23 is added to the 

mixture, the brazed plate heat exchanger must be analyzed each time to ensure that the R134a-

heavy stream can completely condense the R23-heavy stream.  New refrigerant mixtures could be 

used in the current system configuration to produce improved results.  Refrigerants such as 

R508B would be a good substitute for R23 since it is a mixture of R23 and R116.   
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Chapter 8 
 

 

Conclusions & Recommendations 
 
 

A model was developed for a mixed refrigerant system model designed to reach ultra-low 

temperatures (ULT) and provide refrigeration capacities typical for refrigeration storage.  Using 

the model, operating conditions were predicted for a prototype experimental mixed refrigerant 

system.  The model was used to predict the heat load to be applied during experimental testing 

and to analyze the experiments results to determine overall system coefficient of performance 

(COP), Carnot COP, and second law efficiency.  The mixed refrigerant system performance was 

compared to a two-stage cascade refrigeration system designed for similar ULT refrigeration 

storage applications.  The model and experimental results of the mixed refrigerant system were 

used to provide design recommendations for system improvements and operating condition 

specifications.   

The overall system COPs calculated for the mixed refrigerant system were lower than 

those of the cascade system and the evaporator temperatures were slightly higher.  The highest 

overall COP achieved in the mixed refrigerant system was 0.425, found in Test 6 with a mixture 

ratio of 60% R134a and 40% R23, suction pressure of 11 psia and compression ratio of 12:1.  

This was close to the COP of 0.45 found in Test 3c for the cascade system.  However, the single 

compressor in the mixed refrigerant system did not produce as high of a refrigeration capacity as 

the cascade system, but shows promise to achieve similar COPs.   

The evaporating temperature in the system was sensitive to the expansion valve set point, 

so the temperature in the mixed refrigerant system could reach that of Test 3c for the cascade 

system.  While the overall system performance of the mixed refrigerant system was in the range 

for a normal two-stage cascade refrigeration system, the significant temperature glide in the 

evaporator made the sample storage temperature much warmer than the cascade system.  Physical 
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system design improvements could alleviate this problem by subcooling the R23-heavy stream 

with the outlet line of the evaporator.  This would increase the refrigeration capacity at those 

conditions and provide a lower temperature R23-heavy stream leaving the evaporator.   

Overall system performance of the mixed refrigerant system as measured by the COP and 

second law efficiency showed that the mixed refrigerant system could be implemented for ULT 

applications.  The model for the mixed refrigerant system predicted trends that were confirmed by 

the experimental testing, although the error in the model results shows room for improvement in 

the model design.  Although the mixture ratios calculated for the mixed refrigerant system were 

assumed to be the same throughout the system; experimental results were similar to predicted.  

Measuring the actual refrigerant mixture ratios at different points in the system would provide a 

more accurate measure of system performance.  Increasing the amount of R23 in the overall 

mixture ratio showed improved system performance and suggests a path to further enhancement.  

Further experimental testing with mixture ratios leaving more R23 in the vapor stream at the 

separator exit will provide an alternative design for ULT refrigeration.   
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Appendix A:  Two-Stage Cascade System Results 
 

 

Table A.1:  Evaporator capacity of 1733 Btu/hr and suction pressure of 8.0 psia.   

Low-Stage (R508B) 

States 
P 

(psia) 

T 

(° F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

5 8.0 -143.5 -2.1 0.00602 

6’ 8.0 -142.3 45.9 0.1578 

6 8.0 40 74.4 0.2281 

7’ 107 210.7 105.4 0.2281 

7 107 351.8 136.4 0.2700 

8 107 -47.2 -2.1 -0.00505 

High-Stage (R404A) 

States 
P 

(psia) 

T 

(° F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 15.0 -50.4 0.4038 0.001126 

2’ 15.0 -49.1 83.2 0.231 

2 15.0 40.0 100.5 0.2412 

3’ 195.0 193.0 128.6 0.2412 

3 195.0 299.5 156.5 0.2807 

4 195.0 -39.2 0.4038 0.08264 

 

  



73 

 

Table A.2:  Evaporator capacity of 3852 Btu/hr and suction pressure of 14.0 psia.   

Low-Stage (R508B) 

States 
P 

(psia) 

T 

(° F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

5 14.0 -127.1 1.5 0.01327 

6’ 14.0 -126.4 47.6 0.1519 

6 14.0 40.0 74.2 0.2162 

7’ 136.0 190.5 100.7 0.2162 

7 136.0 312.6 127.2 0.2535 

8 136.0 -35.0 1.5 0.00347 

High-Stage (R404A) 

States 
P 

(psia) 

T 

(° F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 19.0 -40.6 43.6 0.1044 

2’ 19.0 -40.0 84.5 0.2017 

2 19.0 40.0 100.3 0.2361 

3’ 223.0 189.7 126.8 0.2361 

3 223.0 289.8 153.3 0.2740 

4 223.0 91.2 43.6 0.0890 
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Table A.3:  Evaporator capacity of 5217 Btu/hr and suction pressure of 17.0 psia.   

Low-Stage (R508B) 

States 
P 

(psia) 

T 

(° F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

5 17.0 -121.0 3.6 0.01822 

6’ 17.0 -120.3 48.3 0.1500 

6 17.0 40.0 74.1 0.2121 

7’ 155.0 187.1 99.7 0.2121 

7 155.0 305.0 125.3 0.2483 

8 155.0 -28.0 3.6 0.00835 

High-Stage (R404A) 

States 
P 

(psia) 

T 

(° F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 22.0 -34.7 44.5 0.1049 

2’ 22.0 -34.1 85.3 0.2008 

2 22.0 40.0 100.1 0.2328 

3’ 230.0 183.0 125.1 0.2328 

3 230.0 278.4 150.1 0.2691 

4 230.0 93.5 44.5 0.0905 
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Appendix B:  Mixed Refrigerant System Model Results 
 

 

For a suction pressure of 75.8 kPa (11 psia) and a compression ratio of 15:1, the state 

points for the mixed refrigerant system are shown in Table B.1.  The mixed refrigeration system 

is also analyzed with a compression ratio is of 12:1 to determine the performance benefits of 

lowering the condensing pressure at the same suction pressure.  The results for these operating 

conditions are presented in Table B.2.   

 

Table B.1:  Suction pressure of 11 psia and compression ratio of 15:1 (66.6% 

R134a|33.4% R23). 

States 
P 

(psia) 

T 

(°F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 11.0 40.0 109.0 0.2728 

2’ 165 226.5 143.6 0.2728 

2 165 366.8 178.2 0.3186 

3 165 55.5 31.0 0.0657 

4 11.0 -52.1 31.0 0.0798 

5 11.0 -36.7 96.0 0.2357 

6 165.0 55.5 103.1 0.2133 

7 165.0 9.6 15.9 0.0353 

8 11.0 -101.9 15.9 0.0506 

9 11.0 -58.7 90.5 0.2466 
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Table B.2:  Suction pressure of 11 psia and compression ratio of 12:1 (66.6% 

R134a|33.4% R23). 

States 
P 

(psia) 

T 

(°F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 11.0 40.0 109.0 0.2728 

2’ 132.0 209.4 140.5 0.2728 

2 132.0 340.4 172.0 0.2728 

3 132.0 41.9 25.9 0.0557 

4 11.0 -53.3 25.9 0.0667 

5 11.0 -36.0 96.2 0.2352 

6 132.0 41.9 101.8 0.2157 

7 132.0 -4.6 11.2 0.0254 

8 11.0 -104.6 11.2 0.0375 

9 11.0 -59.4 90.4 0.2469 

 

The mixed refrigerant system is also modeled at a suction pressure of 96.5 kPa (14 psia) 

for both compression ratios of 15:1 and 12:1 to develop a system trend for performance at various 

suction pressures.  Tables B.3 and B.4 show the operating points of the mixed refrigerant system 

model at a suction pressure of 14 psia for compression ratios of 15:1 and 12:1, respectively.   

 

Table B.3:  Suction pressure of 14 psia and compression ratio of 15:1 (66.6% 

R134a|33.4% R23). 

States 
P 

(psia) 

T 

(°F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 14.0 40.0 108.9 0.2672 

2’ 210.0 229.3 143.2 0.2672 

2 210.0 366.7 177.5 0.3125 

3 210.0 71.9 36.2 0.7546 

4 14.0 -42.9 36.2 0.0906 

5 14.0 -28.4 97.2 0.2338 

6 210.0 71.9 104.5 0.2102 

7 210.0 27.9 22.0 0.0479 

8 14.0 -89.0 22.0 0.0645 

9 14.0 -48.8 92.0 0.2427 
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Table B.4:  Suction pressure of 14 psia and compression ratio of 12:1 (66.6% 

R134a|33.4% R23). 

States 
P 

(psia) 

T 

(°F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 14.0 40.0 108.9 0.2672 

2’ 168.0 211.7 140.1 0.2672 

2 168.0 339.9 171.3 0.3097 

3 168.0 57.0 31.1 0.0658 

4 14.0 -44.4 31.1 0.0780 

5 14.0 -27.8 97.4 0.2335 

6 168.0 57.0 103.3 0.2129 

7 168.0 11.5 16.5 0.0366 

8 14.0 -93.6 16.5 0.03277 

9 14.0 -50.3 91.7 0.2432 

 

Tests 5 and 6 are presented in Table B.5 and B.6 with an initial mixture ratio of 60% 

R134a and 40% R23.  Tables B.5 and B.6 show the operating points of the mixed refrigerant 

system model at a suction pressure of 75.8 kPa (11 psia) for compression ratios of 15:1 and 12:1, 

respectively.   

 

Table B.5:  Suction pressure of 11 psia and compression ratio of 15:1 (60% R134a|40% 

R23). 

States 
P 

(psia) 

T 

(°F) 

h 

(Btu/lbm) 

S 

(Btu/lbm-R) 

1 11.0 40.0 108.5 0.2762 

2’ 165.0 232.5 144.4 0.2762 

2 165.0 375.0 180.3 0.3211 

3 165.0 48.4 28.1 0.0601 

4 11.0 -57.8 28.1 0.0741 

5 11.0 -38.5 95.5 0.2368 

6 165.0 48.4 101.4 0.2121 

7 165.0 5.4 14.6 0.0326 

8 11.0 -106.6 14.6 0.0478 

9 11.0 -62.9 89.6 0.2481 
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Table B.6:  Suction pressure of 11 psia and compression ratio of 12:1 (60% R134a|40% 

R23). 

States 
P 

(psia) 

T 

(°F) 

h 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 11.0 40.0 108.5 0.2762 

2’ 132.0 214.9 141.0 0.2762 

2 132.0 346.3 173.5 0.3177 

3 132.0 34.8 23.6 0.0513 

4 11.0 -59.5 23.6 0.0625 

5 11.0 -38.0 95.6 0.2364 

6 132.0 34.8 100.2 0.2149 

7 132.0 -9.0 9.9 0.0224 

8 11.0 -109.0 9.9 0.0346 

9 11.0 -64.2 89.3 0.2485 
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Appendix C:  Mixed Refrigerant System Experimental Results 
 

 
The first test that the mixed refrigeration system is analyzed at is a suction pressure of 11 

psia and a compression ratio of 15:1.  The system pressures for test 1 are presented in Figure C.1 

and temperatures recorded in the evaporator are presented in Figure C.2.   

 

 

Figure C.1:  Test 1 system pressures for suction pressure of 11 psia and CR of 15:1. 
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Figure C.2:  Test 1 temperatures recorded at evaporator plates. 

 

The measurements recorded for the temperature, pressure, mass flow rate, heat load and 

compressor power consumption for a suction pressure of 11 psia and a compression ratio of 15:1 

is presented in Table C.1.   
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Table C.1:  Experimental results for Test 1 at 11 psia suction pressure and 15:1 

compression ratio. 

Mass flow rate (lbm/hr) 37.7  

Power (Watts) 1152.9  

Heat Load (Watts) 302.7  

State Point Temperature (°C) Pressure (psia) 

1 -21.0 11.0 

2 100.2 163.8 

3 22.0 163.8 

4 10.9 163.8 

5 9.8 163.8 

6 12.8 163.8 

7 -19.9 163.8 

8 -45.8 11.0 

9 12.0 11.0 

10 -74.3 11.0 

11 -71.4 11.0 

12 -67.6 11.0 

13 -64.6 11.0 

14 -60.4 11.0 

15 -57.5 11.0 

16 -44.7 11.0 

17 8.8 N/A 

18 8.9 N/A 

 

 

The second test for the mixed refrigerant system is analyzed at a suction pressure of 11 

psia and the compression ratio is changed from 15:1 to 12:1.  Therefore, the discharge pressure is 

set to 132 psia.  The system pressures and the temperatures recorded throughout the evaporator 

are presented in Figures C.3 and C.4.  Table C.2 shows the measurements recorded for test 

number two.   
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Figure C.3:  Test 2 system pressures for suction pressure of 11 psia and CR of 12:1. 

 
 

 

Figure C.4:  Test 2 temperatures recorded throughout evaporator.   
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Table C.2:  Experimental results for Test 2 at 11 psia suction pressure and 12:1 

compression ratio.   

Mass flow rate (lbm/hr) 48.4  

Power (Watts) 1248.9  

Heat Load (Watts) 485.0  

State Point Temperature (°C) Pressure (psia) 

1 -7.2 11.5 

2 103.5 131.7 

3 21.4 131.7 

4 7.2 131.7 

5 6.6 131.7 

6 10.1 131.7 

7 -30.6 131.7 

8 -43.4 11.5 

9 8.3 11.5 

10 -72.7 11.5 

11 -69.1 11.5 

12 -63.6 11.5 

13 -58.6 11.5 

14 -54.0 11.5 

15 -51.2 11.5 

16 -14.8 11.5 

17 5.7 N/A 

18 5.7 N/A 

 

 

The third test that the mixed refrigerant system is examined at is one where the suction 

pressure is set to 14 psia and a compression ratio of 15:1.  A test similar to test number two is 

examined for test four when the suction pressure is set to 14 psia and the compression ratio is 

changed from 15:1 to 12:1.  The recorded system pressures are presented in Figure C.5 and C.7, 

respectively.  Also, temperatures recorded in the evaporator are presented in Figures C.6 and C.7 
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for tests three and four, respectively.  Also the system measurements for test three and four are 

presented in Tables C.3 and C.4.   

 

 

Figure C.5:  Test 3 system pressures for suction pressure of 14 psia and CR of 15:1. 

 

 

 

Figure C.6:  Test 3 temperatures recorded in the evaporator. 
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Table C.3:  Experimental results for Test 3 at 14 psia suction pressure and 15:1 

compression ratio.   

Mass flow rate (lbm/hr) 47.4  

Power (Watts) 1306.7  

Heat Load (Watts) 400.4  

State Point Temperature (°C) Pressure (psia) 

1 8.7 14.0 

2 111.4 218.7 

3 22. 218.7 

4 22.7 218.7 

5 23.1 218.7 

6 22.7 218.7 

7 -4.9 218.7 

8 -38.5 14.0 

9 22.7 14.0 

10 -62.6 14.0 

11 -57.1 14.0 

12 -52.0 14.0 

13 -49.0 14.0 

14 -45.7 14.0 

15 -24.5 14.0 

16 2.7 14.0 

17 23.2 N/A 

18 24.1 N/A 
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Figure C.7:  Test 4 system pressures at suction pressure of 14 psia and CR of 12:1. 
 

 

 

Figure C.8:  Test 4 temperatures measured in the evaporator. 
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Table C.4:  Experimental results for Test 4 at 14 psia suction pressure and 12:1 

compression ratio.   

Mass flow rate (lbm/hr) 82.4  

Power (Watts) 1424.3  

Heat Load (Watts) 516.8  

State Point Temperature (°C) Pressure (psia) 

1 6.3 14.2 

2 110.1 172.2 

3 24.1 172.2 

4 22.7 172.2 

5 16.2 172.2 

6 17.4 172.2 

7 -16.4 172.2 

8 -36.2 14.2 

9 16.2 14.2 

10 -64.9 14.2 

11 -59.8 14.2 

12 -53.8 14.2 

13 -49.5 14.2 

14 -45.5 14.2 

15 -23.0 14.2 

16 2.5 14.2 

17 15.7 N/A 

18 17.1 N/A 

 

From the analysis of the mixed refrigerant system at the operating points discussed 

above, the model of the refrigerant cycle showed that the performance of the system could be 

improved by altering the initial refrigerant mixture.  For the fifth test the mixed refrigerant system 

is analyzed with an initial refrigerant mixture of 40% R23 and 60% R134a by mass.  To 

determine how the system operates with the new mixture ratio. test number five examines the 

system at a suction pressure of 11 psia and a compression ratio of 15:1.  Figure C.9 shows the 
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system pressures and temperatures measured in the evaporator are presented in Figure C.10.  

Recorded measurements for test five are found in Table C.5.   

 

 

Figure C.9:  Test 5 system pressures for mixture ratio of 40% R23 and 60% R134a. 

 

 

 

Figure C.10:  Test 5 temperatures recorded in the evaporator. 
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Table C.5:  Test 5 results with mixture ratio of 40% R23 and 60% R134a.   

Mass flow rate (lbm/hr) 30.8  

Power (Watts) 1046.0  

Heat Load (Watts) 334.4  

State Point Temperature (° C) Pressure (psia|kPa) 

1 -3.6 10.4 

2 98.6 158.5 

3 23.5 158.5 

4 4.3 158.5 

5 4.1 158.5 

6 10.0 158.5 

7 -23.4 158.5 

8 -51.3 10.4 

9 9.3 10.4 

10 -78.7 10.4 

11 -75.2 10.4 

12 -69.5 10.4 

13 -64.7 10.4 

14 -59.3 10.4 

15 -46.0 10.4 

16 -15.5 10.4 

17 2.8 N/A 

18 1.9 N/A 

 

 

Test five is extended to analyze the mixed refrigerant system with the new mixture ratio 

at a compression ratio of 12:1, similar to test 2.  Test six is performed with a suction pressure of 

11 psia and a compression ratio of 12:1.  System pressures for test six are presented in Figure 

C.11 and the temperatures recorded in the evaporator are presented in Figure C.12.  Recorded 

measurements for test five are found in Table C.6. 
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Figure C.11:  Test 6 system pressures for 40% R23 and 60% R134a mixture ratio. 

 
 

 

Figure C.12:  Test 6 temperatures recorded in the evaporator. 
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Table C.6:  Test 6 results with mixture ratio of 40% R23 and 60% R134a.   

Mass flow rate (lbm/hr) 45.4  

Power (Watts) 1214.1  

Heat Load (Watts) 516.2  

State Point Temperature (°C) Pressure (psia) 

1 -5.0 11.2 

2 105.2 134.6 

3 22.3 134.6 

4 2.6 134.6 

5 1.6 134.6 

6 6.4 134.6 

7 -32.2 134.6 

8 -47.6 11.26 

9 5.0 11.2 

10 -75.9 11.2 

11 -73.2 11.2 

12 -68.6 11.2 

13 -63.3 11.2 

14 -57.2 11.2 

15 -35.6 11.2 

16 -12.7 11.2 

17 1.0 N/A 

18 0.5 N/A 
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Table C.7:  Experimental state points for Test 1 at suction pressure of 11 psia and 

compression ratio of 15:1 (66.6% R134a|33.4% R23) 

States 
P 

(psia) 

T 

(°F) 

H 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 11.0 -5.8 100.7 0.2553 

2 163.8 212.4 140.3 0.2681 

3 163.8 71.1 90.1 0.1808 

4 163.8 51.6 29.7 0.0631 

5 163.8 49.6 98.8 0.2061 

6 163.8 55.1 103.1 0.2144 

7 163.8 -3.92 11.5 0.0258 

8 11.0 -50.5 29.7 0.0773 

9 11.0 53.7 112.5 0.2720 

10 11.0 -101.8 11.5 0.0386 

15 11.0 -71.6 66.5 0.1874 

16 11.0 -44.2 73.6 0.1907 

 

 

Table C.8:  Experimental state points for Test 2 at suction pressure of 11 psia and 

compression ratio of 12:1 (66.6% R134a|33.4% R23).   

States 
P 

(psia) 

T 

(°F) 

H 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 11.5 18.9 105.1 0.2638 

2 131.6 218.4 142.5 0.2760 

3 131.6 70.7 108.9 0.2199 

4 131.6 45.1 27.1 0.0582 

5 131.6 43.9 100.4 0.2217 

6 131.6 50.3 103.8 0.2185 

7 131.6 -23.1 5.3 0.0120 

8 11.5 -46.2 27.1 0.0690 

9 11.5 46.9 111.5 0.2663 

10 11.5 -98.9 5.3 0.02017 

15 11.5 -60.2 78.9 0.2153 

16 11.5 5.30 102.7 0.2586 
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Table C.9:  Experimental results for Test 3 at suction pressure of 14 psia and 

compression ratio of 15:1 (66.6% R134a|33.4% R23).   

States 
P 

(psia) 

T 

(°F) 

H 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 14.0 47.8 110.3 0.2701 

2 218.7 232.5 143.8 0.2672 

3 218.7 72.4 60.0 0.1209 

4 218.7 73.0 36.3 0.0756 

5 218.7 73.6 104.5 0.2098 

6 218.7 73.0 104.5 0.2095 

7 218.7 23.1 20.4 0.0445 

8 14.0 -37.3 36.3 0.0916 

9 14.0 73.0 116.1 0.2738 

10 14.0 -80.7 20.4 0.0604 

15 14.0 -12.1 98.2 0.2580 

16 14.0 36.9 108.3 0.2660 

 

 

Table C.10:  Experimental results for Test 4 at suction pressure of 14 psia and 

compression ratio of 12:1 (66.6% R134a|33.4% R23).   

States 
P 

(psia) 

T 

(°F) 

H 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 14.2 43.4 109.5 0.2681 

2 172.2 231.1 144.5 0.2732 

3 172.2 75.4 92.2 0.7831 

4 172.2 72.9 36.2 0.0755 

5 172.2 61.2 80.6 0.1644 

6 172.2 63.3 84.7 0.1722 

7 172.2 2.30 13.3 0.0296 

8 14.2 -33.3 36.2 0.0875 

9 14.2 61.3 114.5 0.2652 

10 14.2 -84.9 13.3 0.1049 

15 14.2 -9.54 99.4 0.2520 

16 14.2 36.5 108.2 0.2655 
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Table C.11:  Experimental results for Test 5 at suction pressure of 11 psia and 

compression ratio of 15:1 (60% R134a|40% R23).   

States 
P 

(psia) 

T 

(° F) 

H 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 10.4 25.5 105.9 0.2722 

2 158.5 209.5 139.2 0.2694 

3 158.5 74.5 108.1 0.2176 

4 158.5 39.7 25.3 0.0545 

5 158.5 39.4 99.0 0.2011 

6 158.5 50.1 102.1 0.2155 

7 158.5 -10.1 9.6 0.0216 

8 10.4 -60.4 25.3 0.0686 

9 10.4 48.9 111.2 0.2741 

10 10.4 -109.8 9.6 0.0346 

15 10.4 -50.9 91.4 0.2574 

16 10.4 3.95 102.1 0.2640 

 

 

Table C.12:  Experimental results for Test 6 at suction pressure of 11 psia and 

compression ratio of 12:1 (60% R134a|40% R23).   

States 
P 

(psia) 

T 

(° F) 

H 

(Btu/lbm) 

s 

(Btu/lbm-R) 

1 11.2 22.9 105.4 0.2693 

2 134.6 221.5 142.5 0.2779 

3 134.6 72.2 108.9 0.2223 

4 134.6 36.8 24.4 0.0528 

5 134.6 35.0 97.5 0.2087 

6 134.6 43.6 102.0 0.2178 

7 134.6 -26.1 4.4 0.0099 

8 11.2 -53.8 24.4 0.06356 

9 11.2 41.1 110.0 0.2669 

10 11.2 -104.8 4.4 0.0187 

15 11.2 -32.2 94.6 0.2602 

16 11.2 8.9 102.9 0.2640 
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