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ABSTRACT 
EXPERIMENTAL DETERMINATION OF THE PULL OUT STRENGTH 

OF CAST-IN LIFTING INSERTS IN PRECAST  
HOLLOW-CORE PLANK 

 

 

Salvador Murra 

Marquette University, 2013 

 

 Hollow-Core precast plank is a commonly used building component. The 
common method to lift and erect these planks is through the use of slings. This method 
has several drawbacks and has spurred on the current effort to investigate and determine 
the capacity of lifting inserts post-installed into the top of precast hollow-core planks.  
The insert that was studied is the P-52 “Swift Lift” Insert supplied by Dayton-Superior. 

 Physical testing of 16 inserts was done to aid in determining the tensile capacity 
of the insert. The insert was a 3/4" diameter steel insert by 5 1/2" long and it was post 
installed using non-shrink grout into the top of a hollowcore plank shortly after it was 
extruded. A literature review was also performed to further analyze the insert and to 
formulate analytical expressions capable of reliably predicting this tensile (pull-out) 
capacity of the insert.  

 The testing resulted in an average measured tensile capacity of 13.8 kips with a 
standard deviation of 1.85 kips.  Our predictive model gave us a capacity of 12.33 kips 
which is within one standard deviation from the average measured capacity.  A factor of 
safety of 2.2 was also calculated and developed. When we apply our factor of safety to 
our measured tensile capacity we obtain a recommended capacity of 6.2 kips. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background Information 

Hollow-Core precast plank is a versatile and commonly used building component.  Its 

uses range from floor systems in office buildings, to speed-ramps in parking structures, to 

roof systems in stair towers.  They are either four-feet or eight-feet wide and can span in 

length to greater than thirty feet.  Photos of the precast planks product are shown in 

Figure 1.1.  

As the name implies, the plank cross-section contains cores or voids normally at 

four inches on center that run the entire length of the member.  These voids are a great 

weight-saver, but they also make it extremely difficult to cast any inserts into the 

member.  In some building applications, the voids are used for electrical and mechanical 

runs, or are insulated to reduce sound transmission or heat loss. 

                 

Figure 1.1 Yarded Precast Hollow-core Plank         Figure 1.2 Hollow-core Plank Sling-lifted in Yard 

 Traditionally, the precast planks are reinforced, extruded and left to cure 

overnight.  The next morning, the plank is saw-cut in the form desired, vacuum-lifted 



2 
 

onto a trailer, then sling-lifted into the storage yard. During the erection process, the 

erector will sling the plank off of the truck, lift it as close as possible to its final position, 

and remove the slings. The erector must then “muscle” the plank into place using 

crowbars. The slinging process is shown in Figure 1.2.  This process becomes extremely 

difficult for the last few planks in a floor system and becomes even more time consuming 

as the plank grows in length and width.  The erection of precast hollow core plank in this 

way can lead to danger on the job site with the resulting increased potential for injury. 

 There is significant opportunity and need to develop a more efficient and safer 

method to lift and set hollow-core concrete planks that do not require the use of slings or 

crowbars to install the precast hollow-core plank members.  At present, the most viable 

option and the focus of this thesis is the use of P-52 “Swift-Lift” Inserts by Dayton 

Superior installed into the plank using non-shrink grout after casting (i.e. post-installed).  

“Swift-Lift” inserts are currently an industry-wide method to lift, tilt and erect precast 

concrete wall panels, spandrels and solid concrete labs.  The inserts are small, extremely 

easy to install, and have excellent tension and shear capacities when installed in solid 

concrete components.  Their use in hollow-core precast planks remains uncertain, relative 

to their use in solid panels, due to the uncertainty with respect to the capacity of the 

inserts cast into the top of the cells of the hollow-core plank.  Examples of the Dayton 

Superior product and the lifting mechanism are given in Figures 1.3 through 1.5. 

The Dayton Superior inserts have several advantages.  All of the inserts use the 

same universal attachment clasp (Figure 1.5) which allows erectors to use four to eight 

picking clasps to connect their rigging lines to erect all of the precast panels in a project, 

making the use of this insert extremely economical.  After installation, the insert head can 
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be easily covered up or hidden if required.  Using this insert to lift hollow-core planks 

would have additional benefits, since the inserts would be installed on the top face of the 

member and there would be no straps to get in the way. The plank can then be dropped 

into its final position, released from the rigging and connected to the supporting structure. 

This reduces the effort and time required to install each plank. Since the inserts are 

installed on the top face of the plank, the picking head can often be covered up by the 

topping, flooring or roofing material installed on top of the plank taking minimal effort 

during construction. 

      

     Figure 1.3 Swift-Lift Anchor                 Figure 1.4 Picking head of installed Swift-Lift Anchor 

 

 

 

Figure 1.5 Insert with engaged picking clasp 
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1.2 Objectives of Thesis 

The first objective of this thesis is to experimentally evaluate the tensile (pull-out) 

capacity of a 3/4 inch diameter by 5 1/2 inch long “Swift-Lift” headed stud insert, post-

installed into precast hollow core planks using non-shrink grout.  The second objective is 

to formulate analytical expressions capable of reliably predicting this tensile (pull-out) 

capacity of the inserts.  

 The present research effort includes the design of experimental fixtures which 

were fabricated and installed in the Marquette University Engineering Materials and 

Structural Testing Laboratory (EMSTL) along with an MTS actuator mounted to a steel 

frame to pull the insert out of the plank. The recorded failure load and deflection test data 

collected is subjected to a statistical evaluation and compared to the predictive equations 

developed from a review of the existing literature.  A recommended capacity will then be 

derived along with an adequate safety factor for use in the field. 

1.3 Outline of Thesis 

To achieve the objectives set forth in the previous section, we begin with a literature 

review and synthesis in Chapter 2. A discussion of the capacities from the handbook and 

limitations of the Dayton-Superior Product handbook is presented, along with a summary 

of the design assumptions and procedures present in several versions of the Precast 

Concrete Institute Design Manual.  Finally, the development of predictive equations for 

pull-out strength is discussed in detail. 

 Chapter 3 focuses on experimental testing.  The insert installation procedure is 

presented followed by a description of all of the testing equipment and a design check of 
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all of the testing equipment components.  The chapter ends with an explanation of the 

experimental testing procedure used to perform this research. 

 Chapter 4 presents the experimental results and a description of the failure 

mechanisms that were observed during testing.  A summary of the measured tensile 

capacities of all of the inserts tested is provided along with the measured concrete and 

grout strengths. Finally, a discussion of a statistical analysis performed on the relevant 

data is presented. 

 The final chapter presents the findings and conclusions resulting from the 

research.   An outline of the recommendations for any potential future research finishes 

off the chapter to allow for the potential expansion of the current effort to extend or fine-

tune the findings described herein. 
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Chapter 2 

Literature Review and Synthesis 

 

2.0 Introduction 

This chapter discusses the research, data and design material that is available to precast 

concrete manufacturers to size, install and use P-52 inserts in precast members. It also 

includes a discussion of the assumptions made to analyze the insert and the development 

of existing equations to predict the tensile capacity of the insert in hollow-core planks. 

 The literature review will discuss the recommendations presented in the Dayton-

Superior Product Handbook and how they apply to the situation currently under 

consideration.  A review of the research efforts used as the basis for PCI design methods 

will follow along with a discussion of the design procedure presented in several editions 

of the PCI design manual.  A detailed discussion and development of the predictive 

equation for pull-out strength will follow and conclude the chapter. 

2.1 Literature Review 

We will begin the literature review by exploring the descriptions and design 

recommendations presented in the manufacturer’s product handbook regarding the design 

and sizing of inserts cast in concrete.  All of the capacities provided in the handbook for 

these inserts were developed from testing done by an independent company contracted by 

Dayton-Superior.  While no research has been done with inserts post-installed in hollow-

core concrete planks, some insight might be obtained from the capacities, illustrations, 

and data presented in the manual.   
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Dayton-Superior Product Handbook (Dayton 2011) 

Dayton-Superior, along with other insert manufacturers, provide precast suppliers with a 

handbook describing their available inserts as well as their applications, installation 

procedure and insert capacities.  As mentioned above, the capacities are determined 

through testing done by an independent testing laboratory and have a safety factor 

applied to them. The prescribed minimum concrete strength and minimum edge distance 

used during testing is presented as are any other reduction factors to be applied when 

sizing the necessary insert. 

 The P-52 insert is part of the “Swift-Lift” line of lifting inserts offered by Dayton-

Superior.  The shape of the insert and the fact that there are no coils and no welds 

necessary to use it, allows industry erectors to attach to and release from any precast 

piece quickly and efficiently. The attachment hardware can be re-used multiple times and 

the carbon steel insert complies with all of OSHA’s safety requirements to achieve a 

safety factor of four. 

 From the chart presented in the product handbook (see Appendix B), the exact 

dimensions of the insert are as follows. Figure 2.1 is a schematic of the insert. The overall 

length of the insert is 5 1/2 inches.  Once it is installed, the insert is set down from the top 

of the plank 1/2 inch, making the overall embedment of the insert approximately six 

inches.  This is achieved by installing the insert with its round plastic recess plug flush 

with the top of the plank. 

 Following the recommendations contained in the charts and descriptions 

presented in the handbook, the expected tensile capacity of the insert is 7,400 lbs, which 

after removing the 4 to 1 safety factor gives you an ultimate capacity of 29,600 lbs.  The 
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minimum edge distance required to achieve this load is 17 inches. In the case considered 

in this effort, the maximum edge distance (de1) is around 8 inches and the minimum (de2) 

is 2 7/8 inches. Figure 2.2b is a schematic of the insert with relation to its edge distances. 

 

Figure 2.1 P-51 Insert sketch & dimensions 

 

 Comparing the edge distances discussed above, it is obvious that the ultimate 

capacity presented in the handbook likely would not apply.  If an insert has a smaller 

edge distance than what is required, the insert has much less concrete to help resist any 

load applied to it; therefore the ultimate capacity of the insert is much less.  If this insert 

were a coil insert, Dayton-Superior provides a chart with reduction factors to apply to the 

base capacity when sizing the insert to account for small edge distances.  Unfortunately, 

no factors are provided for the P-52 inserts considered in the present study. The 

handbook does provide a chart with the effective tensile capacity of inserts cast at the top 
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of thin solid concrete walls. This case could be applicable to the insert embedded in 

hollow-core plank, but again, no data is provided for an insert of similar size.  Due to the 

lack of sizing information in the Handbook (Dayton 2011), additional research and 

testing is necessary to safely use these inserts in precast hollow-core planks. 

 All of the schematics and technical information provided in the manual refer to an 

expected failure in the form of a shear cone normally seen in headed anchor studs cast in 

solid concrete.  Taking into account the shape of the insert, the insert material and the 

application, a very important assumption is be made in developing design/predictive 

equations: the inserts act as headed anchor studs (HAS) embedded in concrete; therefore, 

HAS design equations can be used to model the behavior and estimate the tensile 

capacity of these inserts.  A shear cone is going to be used to analytically estimate the 

pull-out strength of the insert.  Developing a shear-cone analysis procedure and then 

experimentally evaluating predictive equations for strength based upon these procedures 

is the goal of the present thesis effort. 

2.2.1 PCI Design Handbook 

To better understand how to develop an analytical procedure consistent with the common 

shear-cone model, the Precast/Prestressed Concrete Institute (PCI) Design Handbook was 

consulted.  The handbook is currently in its seventh edition, but focus will be placed on 

the fourth edition and on the sixth edition for reasons that will be explained in what 

follows.  At the time the fourth edition was published in 1992, very little research had 

been done in the area of headed anchor stud (HAS) tensile and shear strength.  The PCI 

presented at that time an article with a design procedure for welded-headed studs cast in 

unconfined concrete (Shaikh and Yi 1985). The authors of the article tested several 
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headed studs in tension and in shear. Forces directed toward the edge and parallel to the 

edge of the concrete it was cast in were considered.  They also noted the different effects 

that groups of studs had on both the tensile and shear capacities of the studs.  As 

mentioned before, the design equations presented in the fourth edition were taken exactly 

from this article without any changes made to them.  For purposes of this study, the only 

equation used is the one pertaining to the tensile capacity of a single headed anchor stud. 

 Between the fourth and fifth editions, additional research was done and the PCI 

decided to make some changes to the design equations presented in the fourth edition.  

While no problems, failures or any other issues had been reported, PCI decided to reduce 

the shear capacity equations from previous editions, and the equation for the tensile 

capacity of a group of HAS was reduced by about a third to better represent the findings 

in the research.  Further discussion of these changes can be found in (PCI 1999). The 

tensile capacity equations for a single headed anchor stud were left unchanged; therefore 

for the purposes of this effort, the fourth and fifth editions are the same. 

 By the time of the printing of the sixth edition in 2004, a great deal of research 

had been done on the subject, and a completely new and much more conservative set of 

equations were presented. While the PCI emphasizes that there have been no reported 

incidences of structural failures using any of the previous recommended design 

equations, they decided to make changes so that their designs would comply with the 

ACI code requirements (ACI 2005). Therefore, the tensile equations in the sixth edition 

are based on the equations and recommendations of ACI 318-05 Appendix D. As a result, 

the calculated design capacity now includes several parameters that were not included in 

previous design equations.  These will be discussed in detail later in the chapter. The 
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shear capacities for this edition of the PCI manual do not follow the equations of the ACI; 

instead they are developed using results from testing based on the 5% fractile of the 

individual anchor strength.  Our effort only focuses on the tensile strength, therefore, the 

shear capacity and the basis of this testing will not be discussed. The headed anchor stud 

design calculations for both shear and tensile capacity were left unchanged in the 7th 

edition.  

The design equations from the fourth edition and the sixth edition will be 

discussed and explained in detail in the following sections. 

Fourth and Fifth Edition (PCI 1992) 

In the fourth and fifth editions of the PCI Design Handbook the design equations are 

based on the assumption that tensile failure of the headed anchor stud will be based on 

the shape of a truncated failure cone with a forty-five degree shear plane starting at the 

outer edge of the foot of the stud. See figure 2.2a for a picture of this failure cone. The 

design methodology for all PCI equations is to have (whenever possible) a failure mode 

in which yielding precedes total failure.  The reason for this is to have a “warning” of 

impending failure to minimize any potential loss of life and allowing for the possibility of 

the removal of any excessive loads to maintain the stability of the structure.  In the design 

of headed anchor studs, the element that should be designed to yield is the steel stud.  

Unfortunately, due to the limitations of concrete, the limited embedment length, and the 

ever-increasing need for smaller edge distances, the design of headed anchor studs is 

more often than not governed by concrete shear failure.  
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Figure 2.2(a) Concrete surface area of failure cone. (PCI 1992) 

 

  

Figure 2.2(b) Plan View of Plank 

 

 Using the equations from the fourth edition, the design tensile strength of a 

headed anchor stud with the same dimensions as the insert we are testing would be 

determined as follows.  First, the surface area of the failure surface needs to be 

calculated.  Using the equation presented in Figure 2.2(a), the surface area of the 

truncated cone is given by: 
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௢ܣ      ൌ ൫√2൯ ∗ ݈௘ ∗ ߨ ∗ ሺ݈௘ ൅ ݀௛ሻ                                                                              (2.1) 

where le equals the effective embedment length and dh equals the foot diameter.  

 The next step is to calculate the edge reduction factors. In our case we will have 

to calculate two different factors, one for the 8 inch effective edge distance (de1) and one 

for an effective edge distance (de2) equaling 2 7/8 inches.  The reduction factor is a ratio 

of the effective edge distance over the effective embedment length of the insert and 

cannot be greater than one: 

௘ଵܥ      ൌ
ௗ೐భ
௟೐
൑ 1                                                                                                           (2.2) 

௘ଶܥ      ൌ
ௗ೐మ
௟೐
൑ 1                                                                                                         (2.2a) 

Finally, the third step is to calculate the tensile capacity.   

     ௖ܲ ൌ ௘ଵܥ ∗ ௘ଶܥ ∗ ௢ܣ ∗ ሺ2.8ሻ ∗ ߣ ∗ ඥ݂′௖                                                                      (2.3) 

where  is a light weight concrete factor, and f’c is the concrete unconfined compression 

strength in pounds per square inch (psi). 

Filling in all of the equations for the insert considered results in the following: 

௢ܣ      ൌ ൫√2൯ ∗ 6" ∗ ߨ ∗ ሺ6" ൅ 1.875"ሻ ൌ 209.93	݅݊ଶ       

௘ଵܥ      ൌ 8"/6" ൌ 1.3333 ൐ 1	 ∴ ௘ଵܥ ൌ 1 

௘ଶܥ      ൌ 2.875"/6" ൌ 0.48           

     ௖ܲ ൌ 1 ∗ 0.48 ∗ 209.93݅݊ଶ ∗ 2.8 ∗ 1 ∗ √3000 ൌ               	ݏܾ݈	15,454

 It is important to note that in normal designs, the tensile capacity is multiplied by 

an additional factor (Ø = 0.85) to give the design capacity.  The failure load (strength 

limit state) is being computed, so the phi factor does not need to be applied. 

 



14 
 

Sixth Edition (PCI 2004) 

The goal of the design methodology in the sixth and seventh edition is the same as the 

fourth edition, but the assumptions and equations used to achieve this are now completely 

different.  In this edition, the design of the tensile strength of headed anchor studs is 

divided into three failure modes; breakout [Ø Ncb ], pullout [Ø Npn] and side-face blowout 

[Ø Nsb].  The smallest of these three modes will control the capacity of the anchor.  

Additional discussion of the failure modes, beyond of what is discussed below, is 

available in (PCI 2004) and the resources therein. 

 The concrete breakout strength [Ncb] is usually the most critical and is very 

similar to the failure mode that is discussed in the fourth edition.  One critical difference 

though, is the fact that the assumed failure angle is 35 degrees from the horizontal.  The 

equation for the concrete breakout strength is as follows: 

     ௖ܰ௕ ൌ ௕௦	ܥ ∗ ௡ܣ ∗ ௖௥௕ܥ ∗ Ψୣୢ,୒                                                                                  (2.4) 

Where the breakout strength coefficient is equal to:    

௕௦ܥ      ൌ 3.33 ∗ ߣ ∗ ሺ௙ᇱ೎ݐݎݍݏ
௛೐೑
ሻ                                                                                        (2.5) 

λ is the light weight concrete factor, f’c is the concrete strength and hef is the effective 

embedment depth of the stud. If the maximum edge distance of the anchor is less than hef 

divided by 1.5, then the effective embedment depth will be limited to hef divided by 1.5.   

An is the projected surface area for the stud. Ccrb is the concrete cracking factor, usually 

1.0 and Ψed,N is the edge distance factor. The equation for Ψed,N is;  

     Ψୣୢ,୒ ൌ 0.7 ൅ 0.3 ൬
ௗ೐,೘೔೙

ଵ.ହ	௛೐೑
൰ ൑ 1.0                                                                          (2.6) 
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The concrete pullout strength [Npn] is a measure of the behavior of the bearing of 

the stud head against the concrete.  The equation used to predict this strength is, 

     ௣ܰ௡ ൌ 11.2 ∗ ௕௥௚	ܣ ∗ ݂′௖ ∗  ௖௥௣                                                                            (2.7)ܥ

Abrg is the bearing area of the stud head that is in contact with the concrete while tension 

is applied, and Ccrp is the concrete cracking factor, usually 1.0.   

 There are two considerations for the side-face blowout strength [Nsb].  If the 

smallest edge distance is less than forty-percent of the effective embedment depth 

(de1<0.4hef), then 

     ௦ܰ௕ ൌ 160 ∗ ݀௘ଵ ∗ ௕௥௚ܣ√ ∗ √݂′௖                                                                          (2.8) 

If the stud is located at a perpendicular distance (de2) that is less than three times the 

smallest edge distance (de1), then the above equation is multiplied by: ሺ1 ൅ ௗ೐మ
ௗ೐భ
ሻ/4, where 

the ratio of de2 to de1 is between 1 and 3.   

 Evaluating the three limit states for the inserts and configuration considered in 

this research effort results in the following: 

-Concrete Breakout Strength: 

݄௘௙ ൌ 6" ൐
8"
1.5

ൌ 5.33"	 ∴ 	 ݄௘௙ ൌ 5.33" 

௕௦ܥ ൌ 3.33 ∗ 1.0 ∗ ඨ
݅ݏ݌3,000
5.33"

ൌ 79.0 

௡ܣ ൌ ሺ2.875"൅2.875"ሻ ∗ ሺ8"൅8"ሻ ൌ 92	݅݊ଶ 

Ψୣୢ,୒ ൌ 0.7 ൅ 0.3 ൬
2.875"

1.5 ∗ 5.33"
൰ ൌ 0.808 

௖ܰ௕ ൌ 79.0 ∗ 92 ∗ 1 ∗ 0.808 ൌ 5,873	lbs 
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-Concrete Pullout Strength: 

௣ܰ௡ ൌ 11.2 ∗ ൫ߨ ∗ ሺ1.875" െ 0.75"ሻ൯ ∗ ݅ݏ݌3,000 ∗ 1.0 ൌ  ݏܾ݈	118,752

-Side-Face Blowout Strength: 

In the case we are studying, de1 equals 2.875” and de2 equals 8”.  

௦ܰ௕ ൌ 160 ∗ 2.875 ∗ ට൫ߨ ∗ ሺ1.875" െ 0.75"ሻ൯ ∗ √3000 ∗
1 ൅ ቀ 8

2.875ቁ

4
ൌ 44,765	݈ܾ 

As previously discussed, the controlling tensile capacity of the headed anchor stud 

is the minimum value of the three calculated failure modes that are discussed in the sixth 

and seventh edition of the PCI manual.  The minimum of these gives us a tensile capacity 

of the stud of 5.9 kips governed by the breakout strength of the stud.  As in the 4th edition 

of the PCI, this value would be multiplied by a phi factor, in this case equaling 0.75, but 

since we require the failure capacity of the HAS, the safety factor will be omitted. 

2.2 Predictive Equation for Pull-Out Strength 

Comparing the results from the fourth edition (PCI 1992) and sixth edition (PCI 2004), 

several observations can be made.  First and more importantly, there is a 260% difference 

in the capacities obtained from these two design methodologies.  The 5,900 lb capacity 

obtained from the sixth edition seems very low compared to the 15,000 lb capacity from 

the fourth edition.  Comparing these two numbers to the unreduced capacity of over 

29,000 lbs obtained from the Dayton Superior manual, it will be assumed that the results 

obtained following the design methodology of the 4th edition are more accurate than the 

6th edition for obtaining the true capacity of the inserts. 

One can compare results to some values provided by the Dayton Superior manual. 

Figure 2.4 (Dayton 2011) illustrates the capacity of a 4-ton by 9 1/2” long insert cast into 
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the top edge of thin precast walls at various distances from the corner. The actual 

minimum edge distance of the insert tested in this study is 2 7/8”. For the purposes of this 

discussion, we will use de equal to 3”.  Using the smallest corner distance of 10”, a 

concrete strength of 4500 psi and a 6” effective wall thickness, the safe tensile capacity 

equals 4,000 pounds. Taking away the four-to-one safety factor and ignoring the 

difference in concrete strengths, the insert capacity equals: 

4,000 ∗ 4 ൌ  ݏܾ݈	16,000

Repeating the same procedure for the  15” corner distance, we get a capacity of 

nineteen thousand pounds [4 * 4,800 lbs = 19,200 lbs]. Comparing these capacities to the 

capacity calculated using the fourth edition (Eq. 2.3), it can be seen that the previous 

assumptions of treating the insert as a headed anchor stud are correct. The insert in the 

plank, is cast into a 16” long section of grout, 16” away from the edge of the plank; 

therefore, the actual corner edge distance could be argued to be between 8” and 16”. 

  Figure 2.3 Illustration, P-52 Insert Cast into top of thin walls.  [Dayton 2011, p.31] 
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   Figure 2.4 Tensile Safe Working Load for Anchors Cast in Thin Walls (f’c= 4.5 ksi) [Dayton 2011, p.32] 

To create a predictive equation, the equations from the fourth edition of the PCI 

HAS design (PCI 1992) will be adopted.  The same design methodology is being used 

here with an exception. Instead of using 45 degrees as the assumed angle of the pullout 

cone, we will run the calculations using 30, 35, 40, 45, 50, 55 and 60 degrees.  The fourth 

edition uses a ratio of the edge distance to the effective length (Eq. 2-2) to reduce the area 

of the assumed failure surface in each edge direction.  Three-dimensional modeling 

software (in our case Google Sketchup) is used to model the area of the failure surface at 

each of the above mentioned angles.  The area consists of three different sections.  The 

first section is full height section of the cone between the cores. The second section is the 

smaller section of cone cut by the cores on either side of the insert. The third section is 

the area between the top of the core and the top of the plank. Figure 2.5a and Figure 2.5b 

show two section views of the plank and insert to better visualize the three areas 

described above. 
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Figure 2.5a Failure cone area section 1

 

Figure 2.5b Failure cone area sections 2 & 3 

Once these areas are calculated, they will then be plugged into Eq. 2.3, and Ce1 

and Ce2 are set equal to 1. The concrete strength will be taken as 3,000 psi and adjusted 

if necessary to account for the concrete and grout strengths determined during testing.  

Summarizing these calculations: 
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Table 2.1 Predictive equation calculation summary. 

Angle (θ) 

(Deg.) 

Ao  

[in^2] 

Pc 1 (PCI 1992)  

[lb.] 

30 80.09 12,283 

35 80.43 12,334 

40 73.95 11,341 

45 69.30 10,628 

50 66.89 10,258 

55 68.45 10,498 

60 72.046 11,049 
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Chapter 3 

Experimental Testing 

3.0 Introduction 

Sixteen P-52 “Swift-Lift” Inserts by Dayton-Superior installed in four precast hollow-

core concrete planks were tested to failure in this research.  Four inserts were installed in 

each eleven foot long plank, and a total of four planks were used to conduct and complete 

this research.  This chapter discusses in detail the procedure and materials that were used 

to create all four specimens, along with the experimental testing method used throughout 

this research. 

3.1 Precast Hollow-Core Plank and Insert Installation 

This section describes the production procedure of the Hollow-Core Plank performed at 

the Spancrete Inc. precast plant in Valders Wisconsin, and the method used to cast the 

inserts into the precast hollow-core plank.   

 The precast planks used in this research effort used twenty-four (24) 7/16” dia. 

270 ksi low-relaxation prestressing strands stressed at 75% of the fpu, and placed 0.75” 

from the bottom of the plank.  They were fabricated using concrete with a target 28-day 

unconfined compression strength of 6,000 psi and an unconfined compression strength at 

release targeted to be 3,500 psi.   

During the production process, the strands are first laid out across the casting bed 

and stressed. The extruding machine then runs along the casting bed and places the 

concrete.  As part of the placing process, the dry-pack concrete is automatically 

compacted and formed in the shape of the plank with hollow voids.  As soon as the 

extruding machine goes past a location where an insert was to be installed, the extruder 
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operator cuts out a 4” by 16” opening centered over a core as shown in Figure 3.1.  Since 

the concrete is still “wet”, this process takes minimal effort and the tool required to do the 

job is analogous to a large putty knife. This is one of the main reasons this is done as 

soon as the extruder goes by.  If this process is delayed, cutting the opening could not 

only cause extensive damage to the plank, but would require concrete sawing equipment.  

Another good reason to cut and install the insert while the concrete is still “wet” is to 

avoid forming a cold joint between the concrete and the grout around the insert.  This 

allows for better adhesion between the two materials and potentially a higher insert 

capacity.  An appreciation of scale can be seen in Figures 3.1 and 3.2 where the headed 

insert is shown adjacent to the slot made in the plank. 

   

Figure 3.1 Opening in Precast Hollow-Core Plank        Figure 3.2 Opening & Insert prior to Installation 

  Non-shrink grout with 28-day target unconfined compression strength of 3,000 

psi is then poured in the opening and leveled off at the top of the plank with the insert. 

The process is schematically shown in Figures 3.3 and 3.4.  The insert and its plastic 

spherical cap are then pushed into the center of the opening.  This process is then 

repeated until all inserts were installed. It is important to note that once the plastic cap is 

removed, the five and a half inch long insert ends up set down one half inch (1/2”) from 
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the top of the plank and gives the insert a total embedment of six inches, thus placing the 

bottom of the insert directly at the bottom of the core in the plank.  

       

                 Figure 3.3 Grout Installation                                        Figure 3.4 Insert Installation 

  The next morning, the planks are cut with a concrete saw to the correct length. 

The planks were then placed on a trailer using a vacuum picker and taken to the yard for 

storage. No more than 5 days later the planks were shipped to Marquette University for 

testing. 

3.2 Experimental Fixturing and Testing Protocol 

This section describes the experimental fixturing (inscluding design of the testing 

fixtures) and testing protocols used for this research. 

Experimental Fixture 

The testing fixture used at Marquette University in the Engineering Materials and 

Structural Testing Laboratory (EMSTL) consists of an eleven and a half foot long 

W12x72 beam supported by two ten foot long W12x72 columns. The configuration of 

this structural steel fixture is shown in Figure 3.5.  The ends of the beam are welded to a 

half inch thick end plate using quarter inch weld.  The end plates are bolted to the flange 

of the W12x72 column, using six (6) five-eighths inch diameter bolts.  The base of the 
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column is also welded to a half inch thick base plate using quarter inch weld, which is 

then attached to the concrete strong-floor using one inch diameter threaded rods (through 

the strong-floor).  An MTS single ended hydraulic actuator with a tensile capacity of 

thirty-six kips is bolted to the beam along with the angles and swift-lift attachment that 

were used to pull on the insert during testing.   The actuator is connected to a computer 

which controls the actuator & records the tensile force and deflection of the insert at 

failure using software written in MTS Testworks Software.  

 

Figure 3.5 Plank and Testing Equipment 

                

    Figure 3.6 Plank and Testing Equipment                    Figure 3.7 Plank and Testing Equipment (Side view) 
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The precast plank specimens were stored in the Marquette University EMSTL 

until testing and are moved using slings attached to the laboratory’s overhead crane.  

During testing, the plank is placed on two pairs of four foot long two-by-fours and is 

centered within the testing frame with the P-52 insert directly underneath the actuator. 

Shims are located at fifty-two inches from the testing end and thirteen-foot three inches 

from the testing end in order to minimize the upward force on the tie-down beam closest 

to the testing end. Two “hold-down” beams are placed on the plank. One is placed three 

feet away from the insert and is the only beam that will hold down the plank during 

testing.  The second tie-down beam is not needed for testing, but was added to keep the 

plank from shifting or sliding during testing. The “hold-down” beams consisted of a ten-

foot long HSS 5x5x1/2. The beams are held down by a single one inch diameter threaded 

rod at each end, thru-bolted to the floor. 

Testing Protocol 

The testing procedure for this effort was very straight forward, but in an effort to limit 

having to move the actuator only once, the inserts were not tested in order. Two inserts in 

each plank were tested, at opposite corners, then the actuator was moved. After the move, 

the other half of the inserts were tested. 

   As mentioned above, each plank was moved into place using two slings and the 

over-head crane. In an effort to reduce any eccentric or angled load on the insert, a 

plumb-bob was used to place the plank so that the insert was directly below the actuator.   

Once the plank was in place, the “hold-down” beams were installed and attached to the 

strong floor. The lifting clasp was engaged on the insert and attached to the actuator. The 

actuator is then engaged and the insert was then loaded to four-hundred pounds to take 
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the “slack” out of the system.  A new data file in the actuator program was created and 

labeled to match the insert being tested.    

Several important parameters were set for each trial; the rate of loading 

application; how to apply and record the load on the system, the data sampling rate and 

the test termination criterion.  The load was applied to the insert by enforcing a set 

displacement for the actuator head and recording the load measured in the actuator to 

achieve the displacement.  The rate used to run the first half of the tests was 0.05 inches 

per minute.  This means that the actuator head moved vertically 0.05 inches every 

minute, and the load was recorded five times every second.  After half the inserts were 

tested, the rate was tripled to 0.15” in order to shorten the testing time, but the load was 

still recorded five times every second.  The loading rate was still very slow, and none of 

the results seemed to be affected by the rate change. In order to avoid a catastrophic or 

very destructive failure in the lab, the test was set to stop once the recorded load dropped 

below ninety percent of the maximum recorded load.  Since the plank was over-designed 

to resist any flexural loads and the steel tensile capacity of the insert is much higher than 

the expected insert capacity, the system failure was expected to be brittle. Therefore a ten 

percent drop in recorded load would be enough of a buffer to record the maximum load, 

the small decrease in load that normally happens just prior to failure and the sudden drop 

in load at failure. 

Once the parameters were set, the actuator was activated and the tensile force was 

slowly increased on the system until the insert or the plank failed. After failure, the 

failure mode seen in the specimen was determined and recorded along with the ultimate 
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deflection and maximum experienced tensile force.  The equipment was then un-hooked 

and the plank was removed.  This procedure was repeated until all inserts were tested. 

 The test results were then summarized and analyzed in Excel.  Following a 

statistical analysis, the results were then compared to the predictive equations derived in 

Chapter two and a recommended insert capacity was determined.  A detailed discussion 

of the analysis of the test results and recommendations can be found in Chapters Four and 

Five respectively. 

 3.2 Experimental Fixture Design 

This section outlines the procedure that was used to verify the adequacy of the testing 

equipment and the design of the precast plank specimen that was used during the 

experimental testing. The insert capacity stated in the Dayton Superior Product Handbook 

(Dayton 2011) is 7,400 pounds (Appendix C). After removing the safety factor of four, 

the capacity is 30 kips.  As it was previously stated in chapter two, the edge distances 

around the insert are smaller than the edge distances presented in the handbook; therefore 

this number does not apply directly. Knowing that the load will not reach its maximum 

load, we can conservatively take the handbook capacity as the ultimate load and not 

apply any amplification factor (load factor) to this load giving, 

ܶ ൌ  ݏ݌݅ܭ	30

This will be the maximum applied load [T] used for all of the following 

calculations.  It should be noted the experimental fixtures were previously sized to be 

used at the testing laboratory in several different applications beyond the requirements of 

this particular effort.  The calculations done in this chapter are done to verify the 

adequacy of such equipment for use in this testing program. 



28 
 

Concrete Precast Hollow-Core Plank Design 

The present section will outline the design of the precast plank test specimen to be used 

as the basis for the present research effort. 

Using Figure 3.8, one can analyze the loads on the plank and find the maximum 

moment as:  

௨ܯ ൌ ݏ݌݅ܭ	30 ∗ 3.0ᇱ ൌ ݌݅ܭ	90	 െ  ݐ݂

 Spancrete Inc. has plank design charts (see Appendix A) to aid engineers in 

designing planks with simple loadings.  All of their plank charts are for four-foot wide 

planks, but when an eight foot wide plank is required the strand pattern is doubled in the 

design. Plank design 0.75F-8712  has a moment capacity of 42.64 Kip-ft per foot.  The 

maximum moment occurs at the tie-down spot (four foot-four inches from the end).  

Since the strand requires about seven feet to fully develop, the moment capacity can be 

reduced by the ratio of the distance to the spot of maximum load to the distance the 

strand requires to develop.  Assuming half the plank width (four feet of plank) takes the 

load and reducing the moment capacity by the above mentioned ratio, the capacity of the 

plank is: 

௡ܯ∅ ൌ 42.64 ௄௜௣ି௙௧

௙௧
∗ 4ᇱ െ 0" ൌ ݌݅ܭ	170.6 െ ݐ݂ ∗ ሺ4.5′/7′ሻ ൌ ݌݅ܭ	109.6 െ  ሿܭሾܱ		ݐ݂

 

  

 

        Figure 3.8 Plank Layout Sketch 

R 
1’‐4”

4’‐4” 8’‐11”

13’‐3” 3” 

 

T 
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To summarize, the selected plank is an eight-foot wide [H series], eight inch thick 

plank with twenty-four, seven-sixteenth inch diameter, two-hundred seventy kip-per-

square inch Low-Lax (relaxation) steel strands with three quarters of inch concrete cover. 

[0.75H-8724]. It is expected that the insert will pull out prior to flexural failure of the 

plank. 

Tie-Down Beam and Anchor Design 

The maximum hold-down force [R] as a result of the insert loading can be computed 

using the free body diagram in Figure 3.8.  Summing moments gives the hold down 

force: 

ܴ ൌ
ݏ݌݅ܭ	30 ∗ ሺ8.917ᇱ	൅	3.0'ሻ

8.917′
ൌ  ݏ݌݅ܭ	40.1

 The free body diagram shown in Figure 3.9 can be used to determine the 

necessary dimensions and size for the fixture tie-down beam. In order to model the fact 

that the insert is located closer to the side of the plank and as such, when the tensile force 

is applied, the load on the tie-down beam will not be symmetrical; it was assumed that 

2/3 of the tensile force was applied to one side of the plank, and 1/3 was applied to the 

other side. 

 

 

 

Figure 3.9 Tie-Down Beam Layout 

The maximum uplift force [Tu1] and the maximum moment on the beam [Mu] can 

be determined with reference to Figure 3.9 as follows: 

8’‐0”1’‐6” 6”

(2/3)R 

Tu1 

(1/3)R 

Tu2 
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௨ܶଵ ൌ
ቀ23ቁ ∗ ݏ݌݅ܭ	40.1 ∗ ሺ8.5′ሻ ൅ ቀ13ቁ ∗ ݏ݌݅ܭ	40.1 ∗ 0.5

ᇱ

10′
ൌ  ݏ݌݅ܭ	23.4

௨ܯ ൌ ݏ݌݅ܭ	23.4 ∗ 1.5′ ൌ ݌݅ܭ	35.1 െ ݐ݂ ൌ ݌݅ܭ	421.1 െ ݅݊ 

 The tie-down beam can be selected using the target bending moment and it was 

determined that a steel HSS 5x5x1/2 and 10-ft long with an expected yield strength of 46 

ksi would likely be adequate. The preliminary member can now be checked to evaluate 

its adequacy in shear and bending moment. 

 Moment Check:  

ܼ௥௘௤ ൌ
݌݅ܭ	421.1 െ ݅݊
0.9 ∗ ݅ݏܭ	46

ൌ 10.2	݅݊ଷ 	൏ ܼ௣௥௢௩ ൌ 13.1	݅݊ଷ	ሾܱܭሿ 

 Shear Check:  [kv = 5] 

1.1 ∗ ඨ
5 ∗ ݅ݏܭ	29000

݅ݏܭ	46
ൌ 61.76 ൐

݄
௪ݐ

ൌ ௩ܥ	݁ݎ݋݂݁ݎ݄݁ܶ		7.75 ൌ 1 

∅ ௡ܸ ൌ 0.9 ∗ 0.6 ∗ ݅ݏܭ	46 ∗ 2.75" ∗ 2 ∗ 0.465" ൌ ݏ݌݅ܭ	63.53 ൐ ௨ܶ ൌ  ሿܭሾܱ	ݏ݌݅ܭ	23.4

Finally, we can check the anchor rods attaching the tie-down beam to the floor.  

Using the AISC Steel Construction manual (AISC 2010), the tensile capacity of a one 

inch diameter rod made out of an assumed grade of A325 steel is 53 kips which is also 

greater than the 23 kips calculated above. 

Actuator Anchorage Design 

The steel frame used to support the actuator consisted of two columns and one beam, all 

made up of W12x72 steel shapes. Using Figure 3.10 we can compute the maximum 

moment, expected deflection and shear on the W12x72 shape found in the experimental 

fixture. The worst case scenario for deflection is considered by placing the load at 
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midspan.  However, the fixture was checked with the actuator positioned 4’-0” from the 

column centerline. 

 

 

 

      

    Figure 3.10 Steel Frame, Beam Layout 

 	

௨ܯ ൌ ሺ30	ݏ݌݅ܭሻ ∗
ሺ7.5	݂ݐ ∗ ሻݐ4݂

ݐ݂	11.5
ൌ ܭ	78.3 െ  ݐ݂

ܼ௥௘௤ ൌ
൤ሺ78.3	ܭ െ ሻݐ݂ ∗ ൬12

݅݊
൰൨ݐ݂

ሺ0.9ሻ ∗ ሺ50	݅ݏܭሻ
ൌ 20.9	݅݊ଷ 			൏ ܼ௣௥௢௩ ൌ 108	݅݊ଷ		ሾܱܭሿ 

∆	ൌ
ሾሺ30	ݏ݌݅ܭሻ ∗ ሺ11.5	݂ݐ ∗ 12ሻଷሿ

ሾሺ48ሻ ∗ ሺ29000	݅ݏܭሻ ∗ ሺ597	݅݊ସሻሿ
ൌ 0.095	݅݊	 

௨ܸ ൌ ݏ݌݅ܭ	30 ൏ 	∅ ௡ܸ ൌ ሺ0.75ሻ ∗ ሺ0.6ሻ ∗ ሺ50	݅ݏܭሻ ∗ ሺ0.43	݅݊ሻ ∗ ሺ9.125	݅݊ሻ

ൌ  ሿܭሾܱ		ݏ݌݅ܭ	88.3	

ܴ1 ൌ ሺ30	ݏ݌݅ܭሻ ∗
ሺ7.5	݂ݐሻ
ݐ݂	11.5

ൌ  ݏ݌݅ܭ	19.57

 The maximum reaction at the end of the beam (R1) can now be used to check the 

beam to column connection and the column itsef.  

Beam to Column Connection 

The W12x72 steel beams are attached to the columns using welds from the beam to the 

end plate and bolts from the end plate to the column.  The shear check for the two 

connection components are as follows: 

-Weld from beam to end-plate:  [1/4” weld @ beam] 

7’‐6” 4’‐0”

11’ – 6”
30k 

R1                         W12 x 72
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∅ܴ௡ ൌ ሺ9.125	݅݊ሻ ∗ ሺ2	ݏ݈݀݁ݓሻ ∗ ൬5.54
ݏ݌݅ܭ
݅݊

൰ ൌ ݏ݌݅ܭ	101 ൐ ௨ܸ

ൌ  ሿܭሾܱ	ݏ݌݅ܭ	19.57

-Bolts from end-plate to column: 

ݐ݈݋ܾ	ݎ݁݌	ܸ ൌ
ݏ݌݅ܭ	19.57
ݏݐ݈݋ܾ	6

ൌ  ݏ݌݅ܭ	3.3

∅ ௡ܸ	ܾݐ݈݋ ൌ ݏ݌݅ܭ	11.0 െ ሾܷ݃݊݅ݏ	ሺ6ሻ325ܣ	"5/8	ܽ݅ܦ. ሿݏݐ݈݋ܾ ൐ ௨ܸ

ൌ  ሿܭሾܱ	ݏ݌݅ܭ	3.3

Column Check 

The last major component to check is the column.  The base of the column is welded to 

the end bearing plate and bolted to the floor. 

-Axial Compressive Strength: [W12x72] 

ܮܭ ൌ  ݐ12݂

∅ ௡ܲ ൌ ݏ݌݅ܭ	807 ൐ ௨ܲ ൌ  ሿܭሾܱ	ݏ݌݅ܭ	19.57

K = 1.0 was used and is conservative due to mid-height bracing on vertical columns. 

-Axial Tensile Capacity: 

∅ ௡ܶ ൌ ݏ݌݅ܭ	949 ൐ ௨ܶ ൌ  ሿܭሾܱ	ݏ݌݅ܭ	19.57

-End-Plate Check:  

 -Column to End-Plate: Weld Capacity [1/4” weld] 

∅ܴ௡ ൌ ሺ9.125" ∗ ሻݏ݁݀݅ݏ	2 ∗ ሺ5.54	ݏ݌݅ܭ/݅݊. ሻ ൌ ݏ݌݅ܭ	101.1 ൐ ௨ܶ

ൌ  ሿܭሾܱ	ݏ݌݅ܭ	19.57

 -Bolt check: [(4)5/8”Dia. Bolts] 

௨ܶ	ݎ݁݌	ݐ݈݋ܾ ൌ
ݏ݌݅ܭ	19.57
ݏݐ݈݋ܾ	4

ൌ ݏ݌݅ܭ	3.3	 ൏ ∅ ௡ܶ	ܾݐ݈݋ ൌ  ሿܭሾܱ	ݏ݌݅ܭ	20.7
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 -End-Plate Bending:  [PL. ¾” x 15” x 15”] 

ܼ௣௥௢௩ ൌ
൫15"/2ሻ*ሺ√2ሻ*ሺ0.75൯

ଶ

4
ൌ 1.49	݅݊ଷ 

∅ ௡ܲ ൌ
ሺ0.9ሻ ∗ ሺ36	݅ݏܭሻ ∗ ሺ1.49	݅݊ଷሻ

3.25	݅݊.
ൌ ݏ݌݅ܭ	14.85 ∗ ሺ4	ܾݏݐ݈݋ሻ ൌ ݏ݌݅ܭ	59.42	 ൐ ௨ܲ

ൌ  ሿܭሾܱ	ݏ݌݅ܭ	19.57

Finally, the connection to the actuator is checked, 

- Bolt Check:    [(4)1” Dia. Bolts] 

 ௨ܶ	ݎ݁݌	ݐ݈݋ܾ ൌ
ଷ଴	௄௜௣௦

ସ
ൌ ݏ݌݅ܭ	7.5 ൏ 	∅ ௡ܶ	ܾݐ݈݋ ൌ  ሿܭሾܱ	ݏ݌݅ܭ	53

-Weld from PL. ¾”x10 ¼”x10 ¼” to PL. ¾”x3 ½”x4” w/ hole: 

∅ܴ௡ ൌ 8" ∗ ݊݅/݌݅ܭ	5.54 ൌ ݏ݌݅ܭ	44.32 ൐ ௨ܶ ൌ  ሿܭሾܱ	ݏ݌݅ܭ	30

  -Bearing on 3/4” Dia. Hole on PL. ¾”x3 ½”x4”: [Tbl. 7-6] 

∅ ௡ܸ	݂݋	∅"3/4	݈݁݋݄ ൌ  ݏ݌݅ܭ	44

[le (actual)= 1 ½” ; le (design)= 1 ¼” ] [OK] 

-Shear capacity of 3/4” Dia. Bolt: [Tbl. 7-1] 

∅ ௡ܸ	݂݋	∅"3/4	ݐ݈݋ܾ ൌ  ݏ݌݅ܭ	24.5

 The capacity of the bolt is not larger than the factored maximum load [Tu =30 

Kips], but if you remove the twenty-five percent reduction, the shear capacity of the bolt 

is 32.7 Kips. Knowing that the tensile capacity  of the insert is well below the thirty kips 

used in the calculations, the minimal numerical safety factor for this element of the 

system should suffice for the purposes of this effort. 
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Chapter 4 

Experimental Results and Discussion 

4.0 Introduction 

This chapter presents the results and failure descriptions of each insert tested.  A 

summary of all of the measured capacities along with a mean is presented at the end of 

the chapter.  Each insert that was tested was labeled with two numbers.  The first number 

represents one of the four planks we tested which were numbered one through four.  The 

second number represents each insert within each of those planks which was also 

numbered one through four. [e.g. Insert 2 in plank 1 is Insert 1-2.] 

 It should be noted that to prevent a complete insert pullout, the tensile test was set 

to stop once the load reached a ten percent reduction of the maximum recorded load. This 

parameter was set to prevent damage to the system if load was continued to be applied 

once the initial failure occurred.  Once the maximum load was reached, the load in the 

system would never be higher than the peak load already recorded. 

It should also be noted, in setting up planks one and two, a longitudinal crack 

running the length of the plank along the top developed once the two hold-down beams 

were placed and tightened. The crack occurred one core over from the center core and ran 

vertically from the top of the plank to a spot near the top of the core.  See Figure 4.1 for a 

picture of this crack.  To avoid this from reoccurring, two-by-fours were placed between 

the hold-down beam and the top of the plank to distribute the tie-down force more evenly 

across the width of the plank instead of near the edge. See Figures 4.2 and 4.3 for the two 

setups used for testing. 

4.1 Experimental Failure Modes 
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As expected from all of the predictive equations, none of the tested inserts failed due to 

steel yielding or fracturing. All of the failures were concrete failures.  Three main types 

of concrete failures were observed and are labeled as Type A, Type B & Type C.  Each of 

these are discussed below. 

   

Figure 4.1 Longitudinal crack in Hollow-Core Plank      Figure 4.2 Initial setup: Hold-down beam on plank 

 

 

Figure 4.3 Adjusted setup: Hold-down beam on two by four 

Type A- Pullout Cone Extending to Plank End 

The four tests observed with Type A failure showed a pullout cone typically crossing at 

least two cores, one on either side of the core where the insert was cast.  The bottom of 

the cone started at the bottom of the core with the insert. It crossed the web on each side 

of the core and crossed one more pair of webs also at about the same angle. Beyond that 
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web, the cone usually came out near the top of the core.  See Figures 4.4 to 4.6 for 

pictures of this cone [Note: the arrow depicts the edge of the failure cone]. Along the 

length, the pullout cone was approximately 3’-0” to 3’-6” long centered on the insert.  

Failure Type A appears to deviate from the shear cone assumed in the derivation of the 

predictive equations in the fact that is an elongated enough to extend to the plank end. 

    

Figure 4.4 Insert S3-3, Plan View [Failure Mode A]      Figure 4.5 Insert S3-3, Side View [Failure Mode A] 

 

 Figure 4.6 Insert S2-2, Plan View [Failure Mode A]     Figure 4.7 Insert S2-2, Side View [Failure Mode A] 

Type C- Pull-out Cone 

Type C failure was observed in six tests, and the failure began at the insert location.  For 

this failure, a pullout cone was observed, and soon after the plank seems to have split or 
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separated right at the insert location.  In most cases, the crack that was formed ran along 

the length of the plank, typically splitting around the top of the core where the insert was 

cast. In a few instances, transverse crack also formed starting at the insert location. See 

Figures 4.8 and 4.9 for pictures of this failure. Failure mode C appeared to have the 

closest resemblance to a shear cone failure in the immediate vicinity of the insert 

assumed in the derivation of the predictive equation for pull-out capacity. 

   

 

            Figure 4.8 Insert S1-3 [Failure Mode C]                            Figure 4.9 Insert S2-4 [Failure Mode C] 

 

Type B- Flat Pullout Cone Splitting at Insert 

Type B failure is a combination of Types A and C and is shown in Figures 4.10 and 4.11.  

Failure Type B is close to Type C with regard to shear cone formation, but in these three 

observed cases, a very flat pullout cone developed at the bottom of the core where the 

insert was cast, and it extended across three webs. As the cone was failing, it then seems 

to have split near the insert causing more damage than in the other two failure types.   
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Figure 4.10 Insert S1-1, Plan View [Failure Mode B] Figure 4.11 Insert S1-1, Side View [Failure Mode B] 

Other Failures 

Types A, B and C encompass thirteen of the sixteen tests completed.  The remaining 

three tests have additional circumstances which require explanation.  Failure Types D and 

E apply to inserts S3-4 and S4-4, respectively.  The concrete around both of these inserts 

had been damaged by a continuous longitudinal crack that had developed when testing 

the insert at the opposite end of the plank (S3-1 and S4-1).  Insert S3-4 was tested to 

failure despite the damage and the failure seen is shown in Figures 4.12 and 4.13.  The 

capacity for these was much lower than all of the other inserts, and the damage to the 

plank was very severe. The test culminated with a section of the plank breaking in half. 

To avoid another severely damaged plank and knowing that the insert was already 

compromised, insert S4-4 was not tested. 

The final insert failure to be discussed is failure Type F, applying to insert S4-2.  

Failure for this insert began as a shear failure of the plank one core over from the insert. 

A vertical crack developed above and below the center of the core and spread along the 

length of the plank to the hold-down beam.  At that point the plank then began to bend 

failed in flexure at the beam, which triggered the end of the test. No other damage was 
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observed around the insert.  Pictures of the vertical shear cracks and the flexure cracks 

are shown in Figures 4.14 and 4.15 respectively. 

Figure 4.12 Insert S3-4, Plan View [Failure Mode D] Figure 4.13 Insert S3-4, Side View [Failure Mode D] 

 

Figure 4.14 Insert S4-2, Shear failure [Mode F]        Figure 4.15 Insert S4-2, Flexural failure [Mode F]  

4.2 Discussion of Experimental Results 

Table 4.1 shows a summary of the testing results presenting the maximum load carried by 

each insert along with the failure mode observed.  The failure mode is represented by a 

letter in the table.   

Table 4.2 provides the concrete and grout unconfined compression strengths at the 

time of testing (two days after production), at seven days after production, and at thirty-

one days after production.  In total, nine cylinder specimens were cast for the concrete 
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and non-shrink grout.  It is important to note that the concrete and grout cylinders were 

not very well consolidated. The evidence of this can be seen in the large variability in the 

cylinder data in Table 4.2. 

Table 4.1 Test Results, Max. Applied Load & Failure Mode 

Insert Maximum 
Load (lb.) 

Failure Mode 

S 1-1 16,148 B 
S 1-2 11,710 C 
S 1-3 12,747 C 
S 1-4 13,515 A 
S 2-1 11,486 B 
S 2-2 17,673 A 
S 2-3 13,225 A 
S 2-4 13,404 C 
S 3-1 12,406 C 
S 3-2 12,346 C 
S 3-3 13,451 A 
S 3-4 9,560 D 
S 4-1 15,075 C 
S 4-2 16,787 F 
S 4-3 15,694 B 
S 4-4 NOT TESTED E 

                                

Table 4.2 Concrete and Grout Strengths  

 Cyl. 1 Cyl. 2 Cyl. 3 Avg. (psi)  
Concrete 2,527 3,836 4,282 3,548 

2 Day 
Grout 2,992 2,917 2,898 2,936 

Concrete 5,738 3,900 3,960 4,533 
7 Day 

Grout 3,429 3,047 3,015 3,164 
Concrete 5,207 5,119 6,506 5,611 

31 Day 
Grout 3,308 3,314 3,463 3,362 
 

Prior to discussing the results of the testing, the removal of two inserts (S3-4 and 

S4-4) with failures modes D & E should be noted. These inserts were damaged prior to 

testing as a result of testing of adjacent inserts, and therefore, the capacity obtained when 

testing insert S3-4 is not applicable. In addition, failure type F (Insert S4-2) unfortunately 
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was a plank shear failure which eventually led to plank flexural failure.  This insert and 

the concrete around it was still in good condition when the test was stopped, therefore 

this was not an insert failure and is something that will have to be taken into  

consideration within the plank design.  For the purposes of this research, this result will 

also be ignored as insert failures were the objective of the study.  The thirteen other 

inserts that were tested are significant.  Failure modes A, B and C are significant due to 

the fact that all of the inserts were intact at the beginning of the test and failure involved a 

shear cone similar the assumptions made both by the Dayton-Superior Product Handbook 

and by the PCI when treating the insert as a headed anchor stud. 

A simple approach was considered to analyze the experimental data. A simple 

average of all thirteen capacities gives us a mean insert failure capacity of 13.76 kips, and 

a standard deviation of 1.85 kips. To obtain a safe maximum design capacity with 95% 

confidence we can take the average insert failure capacity and subtract two standard 

deviations to give us a capacity of 10.1 kips.  If we separate the results per significant 

failure modes and analyze each mode individually we get the results given in Table 4.3. 

If we look at the results more closely by failure mode, several observations can be 

made.  For failure mode A, three out of the four results are in the neighborhood of 

thirteen kips, but the average is being influenced heavily by the 17.7 kip test data point. 

In a similar fashion, the average for mode B is being heavily influenced by the one low 

entry of 11.5 kips. Mode C has a greater number of data points (relatively speaking) and, 

as a result, a much smaller standard deviation.  All of the data points seem to be fairly 

close together so an average of thirteen kips seems appropriate and no big adjustment 

seems necessary. 
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Table 4.3 Test Results, Max. Applied Load & Failure Mode 

 

If we look at the results more closely by failure mode, several observations can be 

made.    For failure mode A, three out of the four results are in the neighborhood of 

thirteen kips, but the average is being influenced heavily by the 17.7 kip test data point. 

In a similar fashion, the average for mode B is being heavily influenced by the one low 

entry of 11.5 kips. Mode C has a greater number of data points (relatively speaking) and, 

as a result, a much smaller standard deviation.  All of the data points seem to be fairly 

close together so an average of thirteen kips seems appropriate and no big adjustment 

seems necessary. 

 4.3 Reliability-Based Evaluation of Predictive Equation 

In this section, a reliability-based evaluation of the predictive equation will be performed 

to begin to obtain a better understanding of the relationship between the predictive 

Insert Maximum 
Load (lb.) 

Failure 
Mode 

Avg. 
Load 
(lb.) 

Std. Dev. 
(lb.) 

Avg. – 
Std. Dev. 

(lb.) 

Avg. – 
2*(Std. 

Dev.) (lb.) 
S 1-4 13,515 

A 14,466 2,142 12,324 10,182 
S 2-2 17,673 
S 2-3 13,225 
S 3-3 13,451 

       
S 1-1 16,148 

B 14,442 2,571 11,871 9,300 S 2-1 11,486 
S 4-3 15,694 

       
S 1-2 11,710 

C 13,068 1,278 11,790 10,512 

S 1-3 12,747 
S 2-4 13,404 
S 3-1 12,406 
S 3-2 12,346 
S 4-1 15,075 
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equation and the results obtained during testing.  This evaluation will form the basis of a 

future LRFD procedure to be developed once additional testing is done, and a clearer 

picture is created between the predictive equation and all of the failure modes seen during 

testing. 

It is important to note, the average grout compressive strength on the day of 

testing found in Table 4.2 is 2,936 psi, and the concrete compressive strength on testing 

day is approximately 3,500 psi.  The controlling component is the grout and its capacity 

along with the capacity of the system will be taken as 3,000 psi.  Interestingly, the grout 

compressive strength does not increase significantly from the time of testing to the 31st 

day strength test; therefore the capacity of the system should remain fairly close to the 

capacities presented in this effort.  In Chapter 2, calculations were run for failure cone 

angles ranging from sixty degrees to thirty degrees in five degree increments. All of these 

calculations were run using a concrete strength of 3,000 psi, therefore none of these 

calculations need to be altered. 

The average measured capacity from the tests was 13.76 kips.  Comparing this 

value to the predicted values with failure cones at thirty degrees and at thirty-five 

degrees, the calculated capacities of 12.28 kips and 12.33 kips respectively are very close 

to this average capacity, in fact, both of these calculated values are within one standard 

deviation of the average measured value.  

It is very useful to evaluate the capability and reliability of the equations used to 

predict the insert capacity.  We can define a bias factor as the insert capacity predicted 

divided by the experimental capacity measured.  This is given by, 

ܤ      ൌ  (4.1)                                                                                                          ݌ݔ݁ܲ/1ܿܲ



44 
 

where: Pc1 is the capacity predicted using equation (2.3); and Pexp is the experimental 

insert capacity measured during testing.  Table 4.4 illustrates the bias factors, their mean, 

and their coefficients of variation for various angles and failure modes. 

 If we look at the mean and coefficient of variation (COV) in this ratio, the mean 

closest to one with the lowest coefficient of variation would suggest the most accurate 

prediction of strength. The bias factors (Pc1/Pexp) range from 0.861 to 0.996 when 

angles from 30-35 degrees are used.  Angles greater than 35 degrees need not be used as 

the accuracy decreases as the angle increases.  The coefficients of variation with 30-35 

degrees are also relatively low with failure mode C predictions having the least 

variability. The 35 degree angle does the best overall job at predicting insert strengths for 

all three failure modes and does the best job at predicting the strength of failure mode C 

having a mean ratio of 0.959 and a COV of 0.085. 

The predictive equations assume a failure shear cone with regular conic 

dimensions.  Failure mode C follows this model quite well, but failure modes A & B seen 

in the experiments do not follow this assumption as closely.  Evidence of this can be seen 

in the bias factor and COV calculations.  Failure mode C at an angle of 35 degrees 

contains a bias factor of nearly 1.0 and the COV near zero.  The other two failure modes 

have fairly good bias factors and a low COV but they are not as accurate as the results 

when failure mode C is seen in the test. 

The data in Table 4.4 suggests that a 35 degree angle be used for all calculations 

and a bias factor of 0.865 and the COV of 0.129 can conservatively be used for modeling 

variability in the prediction. However, the results also suggest that predictive equations 
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may need to be created to model failure modes A & B.  Simple adjustments to the 

equation for mode C may also be appropriate. 

Table 4.4 Predictive Equation Results & Comparison with Experimental Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data in Table 4.4 forms the basis of a load and resistance factor (LRFD) approach for 

designing the headed anchors used in this study.  However, the limited numbers of tests 

conducted and the resulting inability to confidently define the statistical model describing 

the variability/uncertainty in the predictive equation’s accuracy suggests that more testing 

is needed before pursuing LRFD-type design methods.  As a result, traditional (historic) 

factor of safety methods are explored. 

30 Degrees  35 Degrees  40 Degrees  45 Degrees 

Ao 
(in2)  80.09 

Ao 
(in2)  80.43 

Ao 
(in2)  73.95 

Ao 
(in2)  69.3 

Pc1 
(lbs)  12,283 

Pc1 
(lbs)  12,334 

Pc1 
(lbs)  11,341 

Pc1 
(lbs)  10,628 

Failure 
Mode  Specimen 

Pexp 
(lbs)  Pc1/Pexp  Pc1/Pexp  Pc1/Pexp  Pc1/Pexp 

A 

S1‐4  13,515  0.909  0.913  0.839  0.786 

S2‐2  17,673  0.695  0.698  0.642  0.601 

S2‐3  13,225  0.929  0.933  0.858  0.804 

S3‐3  13,451  0.913  0.917  0.843  0.790 

Mean  14,466  0.861  0.865  0.795  0.745 

COV  0.148  0.129 

B 

S1‐1  16,148  0.761  0.764  0.702  0.658 

S2‐1  11,486  1.069  1.074  0.987  0.925 

S4‐3  15,694  0.783  0.786  0.723  0.677 

Mean  14,442  0.871  0.875  0.804  0.754 

COV  0.178  0.198 

C 

S1‐2  11,710  1.049  1.053  0.968  0.908 

S1‐3  12,747  0.964  0.968  0.890  0.834 

S2‐4  13,404  0.916  0.920  0.846  0.793 

S3‐1  12,406  0.990  0.994  0.914  0.857 

S3‐2  12,346  0.995  0.999  0.919  0.861 

S4‐1  15,075  0.815  0.818  0.752  0.705 

Mean  13,068  0.955  0.959  0.882  0.826 

COV  0.091  0.085 
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4.4 Factor of Safety Formulation 

A second approach for making a reasonable recommendation for the insert 

capacity is to formulate a factor of safety. A classical rule of thumb safety factor 

approach will be used to develop a recommended safety factor that may be used for 

design.  The technique presented in this chapter is developed from the process presented 

in The Mechanical Design Process (Ullman 1997). 

 This approach presented uses contributions from five different measures when 

developing the factor of safety.  Each measure has several parameters or rules spelled out 

and a factor of safety has been attached to each.  To develop the safety factor, a 

parameter is selected from each measure and then all of the factors are multiplied 

together to obtain the safety factor for the system in question. 

 The first factor to be estimated is the contribution by the materials in the system. 

If the material properties of the system are well known through experiments and are 

known to be identical to those of the component being designed, then the factor of safety 

(FSmaterial) is equal to 1.  If the material properties are not well known, then the FSmaterial 

ranges from 1.2 to 1.4. 

 The second factor to be estimated is the contribution for the loading demand. If 

the loads applied to the system are well defined as static loads, or fluctuating loads with 

no anticipated overloads, then the factor of safety (FSdemand) ranges from 1 to 1.1.  If the 

load is expected to have potential overloads of 20 to 50 percent, then the FSdemand ranges 

from 1.2 to 1.3. And finally if the load range is not well known, then the FSdemand ranges 

from 1.4 to 1.7. 
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The third factor is the contribution for geometry (FSgeometry). If the manufacturing 

tolerances are closely held, then the factor of safety equals 1, but if manufacturing 

tolerances tend to be more relaxed, a range from 1.1 to 1.2 has been suggested. 

 The fourth factor is the contribution for failure limit state (FSlimit).  If the failure 

limit state is derived from a uniaxial or multiaxial static stress or load, then the safety 

factor ranges from 1 to 1.2.  If the failure limit state is not well developed and caused by 

cumulative damage or fatigue stresses, then a range from 1.3 to 1.5 has been suggested. 

 The final factor is the contribution for reliability of prediction. If the prediction 

reliability needs to be greater than 90 percent, then the factor of safety (FSreliability) equals 

1.1. If the prediction reliability needs to exceed 92 percent then it has been suggested that 

this factor range be takes as 1.2 to 1.3. Finally, if the reliability needs to exceed 99 

percent, then a factor of safety range from 1.4 to 1.6 is recommended. 

 Applying this technique to the scenario considered in the present study, the 

material properties for the insert and plank are well known, therefore, FSmaterial =1.0.  

Since the insert is being used to erect the precast plank, a possible overload due to lifting 

the plank, wind, suction or any other possible factors is to be expected, therefore FSdemand 

= 1.2.  The tolerances during the manufacturing and installation process for this insert are 

relatively tight since the work will be done at a PCI rated plant therefore FSgeometry = 1.0.  

The load applied to this insert is a multi-axial temporary static load so the factor of safety 

for the failure theory could be argued to be 1.1, but since the expected failure is concrete 

controlled therefore a brittle failure, a higher factor of safety should be selected.  We will 

take FSlimit = 1.3.  Finally, the reliability in capacity prediction of the insert is high since 
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it will be required to lift precast plank during the erection process, therefore FSreliability = 

1.4.  Combining all of these factors together a suggested factor of safety is: 

ܵܨ ൌ 1.0 ∗ 1.2 ∗ 1.0 ∗ 1.3 ∗ 1.4 ൌ 2.2 

 The data in Table 4.3 suggests the following capacity of the insert using the factor 

of safety derived.  Using all three failure modes, the average experimental load 

magnitude seen is 13.76 kips with a standard deviation of 1.85.  Using the factor of safety 

derived gives:  

ݓ݋݈݈ܽܲ ൌ 2.2/	ݏܾ݈	13,760 ൌ  ݏܾ݈	6,250

4.5 Recommendation 

 The experimental testing conducted supports two approaches for insert design.  

The first is a reliability-based method using predictive equations based on PCI (1992).  

The second is a traditional (historical) factor of safety approach. 

 Using the limited amount of test data generated in the present study, the mean 

predicted value to experimental value ratio and coefficient of variation in this ratio 

depends upon the failure mode.  A conservative mean bias factor and coefficient of 

variation for 35 degree failure angle is 0.865 and 0.129, respectively.  These values can 

serve as the basis for a proposed LRFD procedure.  More testing is needed however to 

complete this process. 

 A factor of safety approach suggests that the capacity of an insert can be taken as 

6.2 kips for the configuration tested with a factor of safety of 2.2.  The experimental 

results indicate that predictive equations in PCI (1992) are appropriate for evaluating 

headed studs in hollow-core plank inserted using the present procedure. 
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Chapter 5 

Conclusions & Recommendations for Future Work 

5.0 Introduction 

This chapter summarizes the procedure and significant results previously presented in 

this report.  The insert capacity recommendations and safety factors are restated, and 

several suggestions for future work are presented to further the research and findings 

presented in this effort. 

5.1 Summary and Conclusions 

Fifteen P-52 inserts were post-installed into the cells of four precast hollowcore planks 

and tested to failure in an effort to evaluate their tensile capacity and compare these 

results to those obtained with predictive equations.  The inserts were 0.75” in diameter by 

five-and-a half inches long, made by Dayton-Superior.  The precast hollowcore planks 

were made by Spancrete Inc at their Valders Wisconsin precast plant and tested in the 

Marquette University Engineering Material and Structural Testing Laboratory  

In chapter two, a summary of previous research was presented including the 

manufacturer’s recommendations for capacity and the Precast Concrete Institute manual 

design procedures when treating the insert as a headed anchor stud in solid CIP concrete. 

The manufacturer’s recommendations produce a recommended capacity of 29,600 

pounds, but this does not include any reductions due to small edge distances. The 

manufacturer’s handbook does not include recommendations for the case considered in 

this research, which leads to the need to research additional methods for design. 

Following common recommendations (PCI 1992), a capacity of 15,400 pounds is 
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computed and if more recent recommendations (PCI 2007) are used, the predicted 

capacity is 5,900 pounds.  A procedure to develop a predictive equation for the tensile 

capacity of the insert was presented to address these discrepancies, and the expected 

insert capacity was calculated failure cone models with failure angles ranging from 30 

degrees to 60 degrees. 

Chapter three presented the insert installation procedure along with the testing 

protocol used during this effort. Pictures and descriptions of the testing equipment are 

presented along with a step by step procedure validating its use in the testing.  It should 

be noted that all of the testing equipment was previously sized to accommodate several 

tests above and beyond the requirements of this effort; therefore the design presented in 

chapter three was more of an adequacy check for the equipment.    

Chapter four presents the results from all of the tests performed and provides a 

thorough description and discussion of the six failure modes observed. It should be noted 

that most of the inserts failed in one of three failure modes; either by forming a pullout 

concrete cone or by having the plank split adjacent to the insert location. A statistical 

analysis of all of the relevant test data is presented in the chapter. From the statistical 

analysis, the recommended ultimate insert capacity is 13.75 kips. The predictive capacity 

at thirty-five degrees is 12.3 kips, this capacity is within one standard deviation from the 

mean experimental capacity.    The process to develop a safety factor is presented in 

detail in chapter four, and the recommended safety factor is 2.2.  Therefore, the 

recommended service insert capacity is obtained by dividing the ultimate capacity for the 

insert of 13.75 kips and dividing it by the safety factor resulting in a capacity of 6.2 kips. 
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5.2 Recommendations of Future Work 

There are several sections of this effort that could be further expanded to increase the 

accuracy and reliability of the results and proposed capacity of the P-52 insert cast into 

the voids of precast hollowcore planks.  First and foremost, any additional research 

should include additional experimental testing. This will not only provide additional data 

points but hopefully provide a clearer picture of the major failure modes that were 

observed during this testing.  Another potential benefit of the additional testing would be 

to average the results in a less conservative manner and possibly developing predictive 

equations and LRFD methodologies for each limit state seen in the tests.  In chapter four, 

the data analysis showed that after separating the results by failure mode, most of the data 

points were clustered.  Since there are a limited number of data points and the future use 

of this insert is for erection purposes, a more conservative approach needed to be taken. If 

additional data is collected in the future, the gap between the few high points and the 

cluster of points may be filled in or potentially the results could show that the high points 

are more common than what our data shows. Either way additional data points will allow 

us to get a better picture of each failure mode and potentially raise the insert capacity.  In 

addition, LRFD procedures could be developed using mean, coefficient of variation 

(COV) and bias factors to safely size the insert in the future. 

Additionally, a procedure following more closely to the ACI recommended 5% 

fractile capacity of the insert could be performed which would allow 5% of the inserts to 

fail when recommending an ultimate capacity.  This would potentially raise the insert 

capacity but needs to be performed when the number of data points is fairly high, and a 

clearer picture can be derived from all of the data.  The future purpose of the insert 
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should be kept in mind when determining the higher capacity and an appropriate safety 

factor should be recalculated at the time to allow for any unforeseen loads that may be 

applied to the insert during its service life. 

 Finally, another section that would benefit from additional research would be to 

focus on the failure modes seen in the testing.  The main assumption in all of the design 

equations presented in this effort is that the insert failure will come by the formation of a 

concrete pullout cone centered at the insert.  Some failure modes seen suggest modified 

forms of the shear cone procedure. Additional research would be beneficial to determine 

if any alterations to the current predictive equation is needed or a second predictive 

equation needs to be developed to effectively predict the behavior under this failure 

mode. 
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APPENDIX A 

Appendix A Spancrete Plank Design Table 
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APPENDIX B 

 

Appendix B  Dayton Superior Product Handbook, page 26 (Dayton 2011) 
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APPENDIX C 

Appendix C  Dayton Superior Product Handbook, page 28 (Dayton 2011) 
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