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Abstract: Although human mouth benefits from remarkable mechanical 

properties, it is very susceptible to traumatic damages, exposure to microbial 

attacks, and congenital maladies. Since the human dentition plays a crucial 

role in mastication, phonation and esthetics, finding promising and more 
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efficient strategies to reestablish its functionality in the event of disruption 

has been important. Dating back to antiquity, conventional dentistry has been 

offering evacuation, restoration, and replacement of the diseased dental 

tissue. However, due to the limited ability and short lifespan of traditional 

restorative solutions, scientists have taken advantage of current 

advancements in medicine to create better solutions for the oral health field 

and have coined it “regenerative dentistry.” This new field takes advantage of 

the recent innovations in stem cell research, cellular and molecular biology, 

tissue engineering, and materials science etc. In this review, the recently 

known resources and approaches used for regeneration of dental and oral 

tissues were evaluated using the databases of Scopus and Web of Science. 

Scientists have used a wide range of biomaterials and scaffolds (artificial and 

natural), genes (with viral and non-viral vectors), stem cells (isolated from 

deciduous teeth, dental pulp, periodontal ligament, adipose tissue, salivary 

glands, and dental follicle) and growth factors (used for stimulating cell 

differentiation) in order to apply tissue engineering approaches to dentistry. 

Although they have been successful in preclinical and clinical partial 

regeneration of dental tissues, whole-tooth engineering still seems to be far-

fetched, unless certain shortcomings are addressed. 

 

Keywords: Regenerative dentistry, Dental tissue engineering, Stem cells, 

Gene therapy, 3D bio-printing 

1. Introduction 

After the first successful kidney transplant between two non-

genetically identical patients was performed by Murray, the Nobel prize 

winner and scientist in the early 1960s,1 transplantation has been the 

treatment for most of organ injuries and failures. However, 

transplantation has major drawbacks such as severe shortage in organ 

donors, gradual crescendo in the number of organ failure cases, 

indeterminate immune responses, and unreliable organ acceptability.1 

Therefore, scientists with backgrounds in cellular and molecular 

biology, materials science, and stem cell engineering came together 

and developed a new field called Tissue Engineering and Regenerative 

Medicine (TERM). As a rapidly growing field of research, TERM offers 

novel treatments for patients suffering from slight injuries to end-

stage organ failure for nearly every type of human body tissue and 

organ. The clinically available treatments include but are not limited to 

strategies for urethral tissue,2 bladder wall tissue,3 genital tissues and 

organs,4 female reproductive tissue,5 blood vessel,6 heart valves,7 

liver8 and tracheal tissue.9 In all of these cases, there are still 

substantial problems which need to be resolved; however, the recent 

advancements and their potential benefits seem to be revolutionary. In 
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dentistry, scientists have always placed significant emphasis on the 

study of novel strategies that apply TERM to the dental practice.10 

Human teeth and orofacial tissues are responsible for phonation, 

mastication, esthetics, respiration, and emotional and facial 

expressions. Although teeth have high abrasion resistance and lifelong 

architectural durability, oral tissue, as one of the excessively used 

parts of the body, is prone to several common diseases from 

congenital maladies to chemical, physical, and microbial attacks.11 

While the oral cavity plays an essential role in daily life, it is severely 

exposed to microbial infections—therefore, any defect, induced by 

infections, decay or trauma and all other oral diseases including 

autoimmune and malignancies in the dental tissue should be 

addressed quickly.12 More specifically, any large size defect that is 

close to pulp exposure, including moderate to advance decay, needs to 

be treated urgently. Often, trauma induced by mastication, accidents 

or even pathogens can disrupt the oral epithelium protective barrier. 

The reports outline that 41% of the children aged 2–11 years 

(in their primary teeth), 42% of children and adolescents aged 6–

19 years, and approximately 90% of human adults (in their permanent 

teeth) suffer from at least one of the dental diseases, such as caries,13 

which makes it important to find approaches that can restore oral 

tissue to normal function and form. Although the techniques used in 

conventional dentistry—such as restoration with filling materials, whole 

tooth replacement with synthetic restorative materials, and teeth 

removal—date back to antiquity, they have major drawbacks that 

necessitate exploration of more effective approaches and novel 

technologies in modern dentistry.14 The current efforts are focused on 

the investigation of the possibility of engineering the whole tooth, as 

well as all of the individual dental structures separately. Both of these 

routes require utilization and development of stem cells, biomaterials, 

scaffolds, and growth factors. However, before outlining the details, 

grasping a better understanding of the human tooth structure and 

development is necessary. 

Despite the presence of different morphologies, all four types of 

human teeth—incisor, canine, premolar, and molar—go through the 

same stages of morphogenesis, depicted in Fig. 1A. Tooth 

development is initiated as a result of the reciprocal interactions 
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between the ectoderm and mesoderm cells.15 In the beginning stages, 

the tooth germ can be identified as the dental epithelium thickens and 

the tooth bud forms inside the dental mesenchyme. As proliferation 

continues, dental mesenchyme condenses and the odontogenic signals 

begin to fire. In the next step, known as the cap stage, the primary 

enamel knot forms and the tooth gets surrounded by the condensed 

mesenchyme. In this stage, epithelial cells can be categorized into 

three distinct regions: outer epithelium, inner epithelium, and central 

cell layers. Then, the continuous proliferation and cyto-differentiation 

in the bell stage results in odontoblast and ameloblast formations. The 

odontoblasts initiate dentin formation, while the ameloblasts elaborate 

enamel development. At last, after crown formation, root maturation 

and the development of cementum, alveolar bone, and periodontal 

ligament, the tooth eruption proceeds and is completed.16 Fig. 1B 

demonstrates the structure of a mature human tooth. The soft dental 

pulp is surrounded by dentin, which makes a complex that builds the 

bulk of the tooth. The odontoblasts lining of this functional complex 

slowly generates dentin all throughout life. This activity can increase 

remarkably in the case of injury. If the odontoblasts layer, which is the 

last layer of dentin before the pulp, is lost, the pulp is practically 

exposed and the entire pulp tissue can go into necrosis. Enamel, which 

is 95–98% hydroxyapatite, caps the dentin and forms the tooth crown. 

The distinct architecture of enamel—which is hydroxyapatite nano-rods 

inside a microstructural matrix—gives rise to its remarkably hard and 

brittle tissue. Although enamel benefits from excellent mechanical 

properties, it is vulnerable to different elements such as poor food 

habits, overzealous brushing, and demineralization in the acidic 

environment caused by bacterial attacks. The thin tissue that covers 

the dentin of roots is cementum. Periodontal ligament and alveolar 

bone are both supporting structures that start to form in the bell 

stage. Periodontal ligament has fibrous tissue made from mainly 

collagen that intertwines into cementum and alveolar bone. 

Periodontal ligament, which is highly susceptible to bacterial attacks, 

plays an important role in supporting the tooth root. Therefore, in case 

of any injury or disease, it may have severe consequences.11 The level 

of natural regeneration in each of the aforementioned dental tissues 

and structures varies from lifetime restoration to no restoration at 

all.11 
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Fig. 1. (A) Tooth development process and (B) human tooth structure. 

In this review, the recent advancements in regenerative 

dentistry (RD) are investigated and discussed extensively. First, the 

prospects of using stem cells derived from various sources to 

regenerate different oral tissues are being explored. Next, a wide 

range of biomaterials and scaffolds used in this field are introduced. 
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Then, gene therapy techniques, microscale technologies, and three-

dimensional (3D) bio-printing are presented as novel regenerative 

approaches in modern dentistry. Finally, after explaining the major 

obstacles and drawbacks that scientists face today in pushing 

boundaries of RD, the future directions that may lead us to more 

feasible clinical treatments will be stated. 

2. Materials and methods 

An electronic literature study of scientific articles was conducted 

using the databases Scopus and Web of Science. The key search terms 

used in combinations were “regenerative dentistry”, “dental tissue 

engineering,” and “dental stem cells”. The search strategy was specific 

to each database. The related terms were combined using “OR” and 

“AND” operators. None of the search results were excluded based on 

the year of publication. In most cases the articles that did not explicitly 

made a link between “dental stem cells” and any of the two are key 

search terms were excluded. Next, the search results were merged 

and duplicates were removed both manually and electronically. After 

the initial screening of the titles and the abstracts, the articles were 

categorized according to the sections of the present review. At last, 

the full text of the articles were studied and reviewed, in order to 

provide the readers with the most recent and relevant information on 

“Regenerative Dentistry”. 

3. Current approaches in regenerative dentistry 

The recent scientific advancements in reprogramming and 

guided-differentiation of human embryonic and adult stem cells, 

producing biocompatible materials, and scaffolding systems that 

support cell growth have convinced scientists to apply these 

technologies to modern dentistry. Here, the major approaches recently 

used are discussed. 

3.1. Dental stem cells and growth factors 

In the past few decades, a lot of progress has been made in 

understanding, extracting and utilizing human embryonic and adult 

stem cells.17 Self-renewal, programmability, and the potential to 
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produce various cell types are the main factors which make these cell 

types attractive for any field of medicine.18 In RD, scientists have used 

both pluripotent and adult stem cells derived from embryo, bone 

marrow, dental tissues, oral tissues, and glands. They have also used 

induced pluripotent stem (iPS) cells.19 After discovery of the potential 

of extracting stem cells from dental pulp by Gronthos et al.,20 dental 

pulp stem cells (DPSCs) and stem cells from human exfoliated 

deciduous teeth (SHED) were the first cell lines derived from human 

dental pulp.20,21 They are both favored because of their non-invasive 

harvest and potential for multi-lineage differentiation.22 Shi et al.23 

compared human dental pulp stem cells and bone marrow 

mesenchymal stromal stem cells (BMSCs) and showed distinct gene 

expression patterns for DPSCs.23 In 2008 stem cells derived from 

apical papilla (SCAP), which were harvested from wisdom teeth, were 

shown to have potential in dentin regeneration.24,25 Although the 

abundant presence of progenitor cells in the periodontal ligament was 

proven a long time ago,26 Seo et al.27 investigated the stem cells 

harvested from the periodontal ligament (PDLSCs) of the third molar 

and found out that these stem cells are capable of developing a tissue 

similar to their extraction site.27 Morsczeck et al.28 isolated precursor 

cells from the dental follicle (DFSCs) of wisdom teeth and developed 

them into a mature periodontium.28 Honda et al.29 studied DFSCs and 

showed their osteogenic potential.29 The progenitor cells extracted 

from the tooth germ of the third molar during the bell stage (TGPCs), 

by Ikeda et al.30 demonstrated the ability to differentiate into 

osteoblasts, hepatocytes, and neural cells.30 Scientists have also 

reported the extraction of stem cells from human dental epithelium 

tissue. Oral epithelial stem cells,19 gingiva-derived mesenchymal 

stromal cells (GMSCs),31 and periosteum-derived stem cells (PSCs)32 

have shown the potential to differentiate into lineages of all three 

germ layers. On the other hand, stem cells derived from human 

salivary glands have not shown the potential to proliferate into all 

forms of epithelial cells.33 Fig. 219 depicts the various oral and dental 

sources of adult stem cells. 
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Fig. 2. Dental and oral sources for human adult stem cells [19]. 

Adipose is loose, connective tissue which controls body energy 

resources in order to keep the body warm against cold environments.34 

Adipose-derived stromal cells (ADSCs), which can be harvested 

through relatively less-invasive procedures, have shown the capacity 

for multi-lineage differentiation.35 One-hundredth of white adipose 

cells are ADSCs with mesenchymal properties.36 Tobita et al.37 has 

shown the possibility of periodontal tissue regeneration using ADSCs.37 

Before the discovery of iPS by Takahashi et al.,38 embryonic stem cells 

were the only available pluripotent cells used in dentistry. Research on 

human and mouse embryonic stem cells led to great accomplishments 

in differentiation of stem cells into oral tissues and organs.39,40 Dental 

iPS cells have shown to be readily accessible from various dental stem 

cells41,42 and fibroblasts.43,44 

The aim in using stem cells is to explore the possibility of 

craniofacial, tooth, pulp, periodontal ligament, enamel, and dentin 

regeneration.45 So far extensive studies on cementum matrix by 

Handa et al.,46 periodontal ligament by Lin et al.,47 soft dental pulp 

regeneration by Cordeiro et al.48 and Huang et al.,48,49 and enamel 

regeneration by Honda et al.50 have shown great promise in the future 

of stem cells in RD. Recently, Iglesias-Linares et al.51 have 

investigated the revascularization and apexogenesis induced by stem 

cells and demonstrated the latest advancements in apical 

regeneration.51 Although the scientists have established the preclinical 

safety, efficacy and feasibility of pulp regeneration derived from dental 

http://dx.doi.org/10.1016/j.msec.2016.08.045
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0095
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0170
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0175
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0180
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0185
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0185
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0190
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0195
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0200
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0205
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0210
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0215
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0220
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0225
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0230
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0235
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0240
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0240
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0245
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0250
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0255
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0255
http://www.sciencedirect.com/science/article/pii/S0928493116308827#gr2


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Materials Science and Engineering: C, Vol 69 (December 1, 2016): pg. 1383-1390. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

9 

 

stem cells,52 clinical trials cannot be launched, until certain challenges, 

such as the difficulty to handle critically-sized defects, are addressed.53 

Growth factors can help tissue regrowth by regulating the 

signaling between the cells, their environment, and their neighbors.54 

Through making an information-conducive and extra-cellular matrix, 

growth factors play a crucial role in the regeneration of dental 

tissues.55 Tayalia et al. demonstrated how scientists can take 

advantage of growth factors to improve specifically guided 

differentiation of cells.56 It is extremely important to know which 

growth factors are suitable for specific types of cells and have the 

ability to orchestrate the cell type's proliferation and differentiation 

into the anticipated cell lineage.57 A wide spectrum of growth factors is 

required in order to control each step of tissue regeneration and the 

fate of the stem cell.58 The growth factors entrapped in the dentin 

matrix, which are actively protected in the dentin matrix, are 

responsible for the stimulation of processes—such as odontoblast 

differentiation—that lead to dentin formation.59 Dental growth factors 

are also in charge of differentiation of adult pulp stem cells60 and 

dentin bridging.61 Although important prerequisite steps for utilizing 

growth factors—delivery, immobilization, and release—are currently 

undergoing active investigations, preclinical and stage I/II clinical trials 

have demonstrated how growth factors can accelerate and improve 

periodontal and bone regeneration.62,63 

3.2. Biomaterials and scaffolds 

Scientists have used three major categories of materials in 

TERM: namely, naturally derived materials (such as chitosan, elastin, 

and collagen), acellular tissue matrices, and synthetic materials.1 Since 

application of natural materials is limited, FDA-approved synthetic 

polymers, such as polylactic acid (PLA), polyglycolic acid (PGA), and 

poly(lactic-co-glycolic acid) (PLGA) have wide applications in many 

TERM fields including RD.64,65 Pre-clinical studies on animal models 

using all of the aforementioned categories have shown promising 

results in dental tissue regeneration.66 Besides the conventional 

mechanical and chemical routes for synthesizing materials with 

biomedical applications,67,68,69,70,71,72 scientists have always tried to 

explore innovative biomaterial synthesis techniques, such as green in 
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situ synthesis of silver particle encapsulated gelatin-based scaffolds, in 

situ encapsulation of iron nanoparticles in hydroxyapatite/chitosan 

matrix, and particulate sol–gel and cellulose templating of 

nanostructured zirconium titanate fibers.73,74,75,76,77 Recently, novel 

biomaterials with more sophisticated designs that can be reinforced by 

bioactive elements have appealed to scientists.78,79,80,81 Some 

examples include coating of bone scaffolds with fluoridated 

hydroxyapatite,80 adding various ion substitutes to bioactive glasses,79 

and incorporation of bone morphogenetic protein into various bio-

matrices to enhance osteogenesis.82 Moreover, biodegradable 

hydrogels that profit from their tissue-like properties and cross-linking 

potential can also be used for efficient incorporation of biological 

agents.83,84 In general, biomaterials that are used in RD are artificial 

and must be able to promote the epithelial and mesenchymal 

interactions.85 Trombelli and Farina86 demonstrated how using calcium 

phosphate bone substitutes and collagen derivatives can encourage 

alveolar bone tissue rebuilding.86 Marine biomaterials have also started 

to attract a lot of attention in TERM and RD. A broad spectrum of 

biomaterials with high bio-availability can be extracted from marine 

products. In 2011, Addad et al. isolated collagen from jellyfish.87 Two 

years later, Wysokowski et al. extracted chitin from marine sponges.88 

Marine biomimetics can be put into action in RD through either 

deployment without cellular content or in vitro culturing of mature 

tissues inside their matrices.89 Another approach in delivering bioactive 

factors is called small molecule technique, which involves utilizing 

carbon-based compounds comprising only a small sequence of natural 

protein ligands.90 In the past fifteen years, several small molecules 

have been designed and investigated for their osteoblast-promoting 

and osteoclast-inhibiting properties.91,92,93 Due to their relatively 

smaller molecular size (< 1000 Da), these molecules neither induce 

unwanted immune responses, nor necessitate structural integrity for 

bioactivity.94 Researchers have performed a number of preclinical 

animal studies on bone defects in order to reduce the nonspecific 

adverse effect of small molecules.95,96,97,98 

Scaffolds provide 3-D support for cells, biological agents, and 

biomaterials in order to accomplish different missions—such as cell 

adhesion, stem cell differentiation, guided tissue regeneration, and 

permanent mechanical support.99,100,101 For decades, metallic implants 

have been widely used for medical and dental applications and have 
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been tailored for specific reconstruction of small or large hard-tissue 

defects.102,103 However, scaffolds are suggested to be made of 

biodegradable materials with a degradation rate close to the tissue 

generation rate.11,104,105,106 Therefore, the utilization of metallic 

scaffolds can be limited as they are mostly non-degradable, and thus 

may require second surgery to be removed from the body. Scaffolds 

can be used in RD as structural templates for stem cell differentiation 

and proliferation. Recently, Song et al. demonstrated the successful 

production of hard dental tissues on the periphery of macro-porous 

biphasic calcium phosphate scaffolds. Synthetic polymeric scaffolds 

have shown great potential in promoting dental pulp tissue 

regeneration.107 Recent experiments on platelet-rich plasma scaffolds 

have demonstrated that they can effectively improve the healing 

induction and tissue regeneration in regenerative endodontic 

treatments.108,109 Useful implications of these scaffolds have been 

shown on a group of pediatric patients clinically or radiographically, 

although not significantly better than conventional blood clot 

scaffolds.110 These studies can justify the investigations that are 

currently being carried out for the design and improvement of dental 

scaffolds. Marine sponge skeletons,111 diatom skeletons,112 and 

Foraminifera micro-skeletons113 have been used as scaffolds, bioactive 

molecule delivery devices, and bone substitutes. These biomimetic 

structures can be interesting options for dental bone regeneration. 

Several pre-clinically successful collagen-base periodontal tissue 

regeneration strategies and also clinically available scaffold materials 

have shown promising results to be used in RD.114,115,116 

3.3. Other approaches 

There are over 700 genetic syndromes that cause approximately 

75% of the congenital defects occurring in the United States. Beside 

the significant impact of these genetic disorders on the quality of life, 

the estimated yearly treatment cost for these patients is more than 

$750 million.117 For a long time, transferring manipulated genes for 

clinical applications has been a dream, but nowadays with the recent 

advances in biotechnology, gene therapy has shown promising pre-

clinical results in curing non-hereditary and hereditary diseases.118 In 

gene therapy, by either using a viral or non-viral vector as a carrier 

molecule, functional genes replace the abnormal and malfunctioning 
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mutant alleles after the insertion into the patient's cells.119 Unlike 

somatic gene therapy, in which functional genes are inserted into the 

patient's somatic cells, germ line gene therapy targets genetic 

modification of sperm and egg and would be heritable to the 

offspring.120,121 When using viral vectors, namely retroviruses, 

adenoviruses, adeno-associated viruses, or herpes simplex virus—even 

though the forms of the genetic materials are different—the 

transportation takes place after the virus infects the host cell. For non-

viral gene transfection, scientists have tried direct transfer of naked 

DNA.122 inactivation of diseased genes using oligonucleotides,123 

liposomal delivery of plasmid DNA,124 application of cationic 

dendrimers and endocytosis,125 and the combination of two or more 

techniques.126 Over the past two decades, scientists have passionately 

worked on applying gene therapy to dentistry and as a result they 

have made tremendous progress in periodontal bone regeneration.127 

The salivary gland is another target of gene therapy and this area has 

shown promising results in both curing salivary gland diseases and 

even serious systemic pathologies.128 Recently, genetically modified 

cell therapy, by combining the benefits of direct gene delivery and cell 

therapy,129 has been explored for periodontal ligament in rabbits.130,131 

Showing good patient specific adaptability, this novel therapy has 

potential for a bright future in this field. 

Dental tissues have complex architecture, anisotropic 

mechanical properties, and heterogeneous cell distribution; hence, it is 

hard to mimic their complex 3-D structure using the conventional 

techniques. To overcome this challenge, recently 3-D bio-printing of 

dental and craniofacial tissues has been proposed.132,133 3-D bio-

printed scaffolds can be designed for each individual patient and have 

shown remarkable controllability over cell and biomaterial positioning, 

while maintaining great accuracy in internal and external details.134 In 

general, printers use computed designs and follow the basic concept of 

layer-by-layer deposition of materials to produce 3-D volumetric 

structures. Based on the type of their ink dispenser, bio-printers can 

be grouped into three categories: Inkjet 3-D printers (capable of 

applying low-viscosity bio-inks using thermal or piezoelectrical 

controlling system), laser-assisted printers (capable of using cell and 

biomaterial sources with various viscosities for pulse laser deposition 

of 3-D structures), and extrusion printers (capable of extruding high-

viscosity and stiff polymeric sources at relatively high 

http://dx.doi.org/10.1016/j.msec.2016.08.045
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0595
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0600
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0605
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0610
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0615
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0620
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0625
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0630
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0635
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0640
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0645
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0650
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0655
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0660
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0665
http://www.sciencedirect.com/science/article/pii/S0928493116308827#bb0670


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Materials Science and Engineering: C, Vol 69 (December 1, 2016): pg. 1383-1390. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

13 

 

temperatures).133 Due to their excellent biocompatibility and 

outstanding tenability, polymeric hydrogels have been the best 

nominees to be used as materials for 3-D bio-printing.135 As the bio-

printing process usually involves high-temperature steps, cells and 

growth factors (temperature susceptible materials) are not initially 

amalgamated in the polymeric mixture.136 Both ceramic (such as 

hydroxyapatite)137 and composite materials (such as polymer 

composite hydrogels)138 are considered as alternative bio-ink 

materials. Applying this novel technique to TERM, Reichert et al.139 

used 3-D bio-printed scaffolds to study the bone formation in a sheep 

model in which the sheep was suffering from a critically-sized bone 

defect and eventually showed significant bone formation 

improvement.139 In RD, scientists have made several attempts to 

mimic the intricate architecture of the periodontium in order to 

improve the regeneration of the periodontal complex.140,141 In an 

investigation on scaffolds for cartilage regeneration, Schek et al.142 

used composite bio-printed scaffolds seeded with fibroblasts and 

reported a remarkable growth of cartilaginous tissue in the craniofacial 

region.142 Kim et al.143 made a 3-D printed tooth replica to perform in 

vitro and in vivo experiments on the whole-tooth regeneration 

process.143 Other groups have also tried the same route of research 

and have narrowed down the fundamentals of whole-tooth 

regeneration via 3-D bio-printing.144,145 All of these technological 

advances show promise for a hopeful future in 3-D bio-printing of the 

whole tooth and other oral tissues for future generations. 

In the last fifteen years, scientists have started to apply their 

knowledge of micro-electronics and achievements in semiconducting 

materials to cellular differentiation and its microenvironment.146 These 

technologies can potentially solve some of the challenges that other 

TERM approaches face—for example, they can shed light on the 

reconstruction of ectodermal and mesodermal interactions. They can 

provide nano-resolution for building patterns to develop various cell 

types; hence, making these technologies useful for producing scaffolds 

carrying several stem cells. Moreover, microscale technologies provide 

the possibility of isolating, seeding, and combining various cell types, 

which makes them suitable for in vitro assessments of cell behaviors in 

well-controlled environments.147 This can enable rapid evaluation of 

the effects of biomaterials, drugs, and biological agents as a result of 

performing patterned single or multi-culturing in vitro experiments. 
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Flaim et al.148 investigated the potential synergistic effects of the 

simultaneous utilization of growth factors and extracellular matrix 

proteins on stem cell activity.148 These novel technologies have 

improved growth factor delivery by offering precise cell control and 

regulation. For example, Ennett et al.149 performed long-lasting growth 

factor release using PLGA micro-spheres in vitro and in vivo.149 The so 

called “microscale technology approach” can be carried out through 

either soft lithography or photolithography.15 Kane et al.150 and 

Rozkiewicz et al.151 used soft lithography to mold templates and 

pattern selective cells.150,151 Zhang et al.152 and Kim et al.153 used 

photolithography to fabricate 3-D micro-vascularized scaffolds and 

structures.152,153 These techniques' ability to form 3-D micro-channels 

can help in supporting the cell metabolism.154 This advantage can play 

a crucial role in achieving a reliable technique for tooth regeneration. 

Hydrogels, with approximately 99% water content, are the best 

materials to use in the microscale approach.155 These materials can 

provide controllability in the structural formation with great detail. 

Microscale technologies can fabricate micro-structures, provide open 

channels, support vascularization, enhance diffusion, help regulate the 

cell activity, and facilitate high-throughput approaches; hence, they 

have a huge potential for both the in vitro and in vivo constructions of 

tooth-like structures.156 

Even after reaching the advanced technology of building patient-

specific tooth substructures, the major challenges of the application of 

TE in dentistry range from the cost-efficiency of these approaches to 

their availability to public (in terms of well-equipped health centers 

and institutes). Moreover, RD inherits the controversial ethical 

challenge of choosing which cell source (patient's own or donors') and 

cell type (adult or fetal) for TE. However, the ongoing research on TE 

and RD opens the venue to future investigations toward the 

development of whole-tooth structure during the next decades; which 

furtherly can shed light on the regeneration of other organs. 

4. Conclusion 

Although a lot of advancements in RD have revolutionized 

modern dentistry, there are still several steps left to take before 

declaring RD as a reliable alternative to conventional dentistry. RD 
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owes plenty to stem cell science and growth factor engineering. 

However, a good source of totipotent stem cells is not yet readily 

accessible and extracting human embryonic stem cells is a problematic 

and controversial issue. Moreover, it is not easy to control the stem 

cell differentiation. Delivery of active growth factor to the desired site 

is challenging and might provoke side effects. Biomaterials and 

scaffolds have played fundamental roles in facilitating partial dental 

tissue regeneration, but until today, none of the materials have met all 

the mechanical and biological standards required for RD. Gene therapy 

has opened up new directions to curing dental congenital diseases in 

individuals and their offspring; however, viral vectors used in this 

technique might trigger immune responses and side effects with 

irreversible damage. These genes live for a short period of time, which 

makes them ineffective in some cases. Furthermore, 3-D bio-printing 

and microscale technologies are pushing the boundaries of RD, but 

both are costly and are still in their early developmental stages. 

Though there is much work left, these are areas with great promise for 

the future of RD. The future of dentistry is in the hands of cellular 

biologists, geneticists, biomedical engineers, and materials scientists 

that strive to find and perfect novel approaches and techniques to 

address the aforementioned issues. Although the partial regeneration 

of human dental tissues and structures seems to be attainable near, 

considering the obstacles ahead, whole-tooth regeneration may be 

achievable in the farther future. 
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