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Figure 6.6: Trajectory for ϕ̇ = 2π sec/turn and λ = 1 on Earth

Figure 6.7: Trajectory for ϕ̇ = 20 sec/turn and λ = 2 on Mars
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Figure 6.8: Trajectory for ϕ̇ = 20 sec/turn and λ = 2 on Earth
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Figure 6.9: Detailed end of trajectory for ϕ̇ = 20 sec/turn and λ = 2 on Earth

The torsion and spiraling frequency for this trajectory were calculated and are displayed in

Figures 6.12 and 6.13.

6.2.2 Filter Parameters

One of the most important and complicated steps in applied filtering is the tuning

process of finding the parameters that make the filter function as desired. To compare (in an
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Figure 6.10: Trajectory for ϕ̇ = 0 sec/turn and λ = 0 on Mars

Table 6.2: Trajectory and vehicle parameters (speed and position in local frame)
Parameter Value units
azimuth0 30 degrees
elev0 -10 degrees
speed0 5000 m/s
East 0 km

North 50 km
Altitude 100 km

λ0 2 –
ϕ0 0 rad
βm 4000 kg/m2

S 2 m
ϕ̇ 2π sec/turn

objective way) the results given by the estimation techniques,it is essential to use the same

values for the measurement noise, since the same sensor is used for both implementations.

Dissimilar values for the process noise can be used, since, even though the same model is

used, different kind of approximations are made in both filtering techniques.

Other important parameters are the time step used in the solution of the differential
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Figure 6.11: Chosen trajectory with radar (*), in local frame
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Figure 6.12: Torsion of the trajectory

equations. This affects the performance of the filters, since it determines the length of the

prediction step. In this case, δt = 0.03s for the EKF and δt = 0.04s for the particle filter.

The particle filter was made with N = 1000.
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Figure 6.13: Change in spiraling frequency through the trajectory
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Table 6.3: Parameter for the EKF
Parameter Value

Q diag([0 0 0 0 0 0 0.12 0.12 0.12 0.012 0.012])
R diag([102 0.0012 0.0012 102])
P0 diag([4002 4002 4002 202 202 202 0.52 0.52 0.52 0.52 2π2])

Table 6.4: Parameter for the particle filter
Parameter Value

Q diag([0 0 0 0 0 0 0.012 0.012 0.012 0.012 0.012])
R diag([102 0.0012 0.0012 102])
P0 diag([4002 4002 4002 202 202 202 0.52 0.52 0.52 0.52 π2])

6.2.3 State Estimation Error

We have results showing the behavior of the difference between the truth (simulated

trajectory) and the states estimated. Figures 6.14 to 6.21 show the error estimation for the

states and the square root of their respective state estimation error covariance, after 30

Monte Carlo simulation runs.

0 20 40 60 80 100 120 140 160 180
−1000

−500

0

500

1000

X
 [m

]

0 20 40 60 80 100 120 140 160 180

−500

0

500

1000

Y
 [m

]

0 20 40 60 80 100 120 140 160 180
−500

0

500

Z
 [m

]

Time [s]

Figure 6.14: Position estimation error for the EKF

It is observed in some of the figures (see for example Fig. 6.20) that the covariance

seems to grow again at the end of the trajectory. This is not due to divergence of the filter;

it is due to the nature of the measurements, since the measured range has a similar behavior
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Figure 6.15: Velocity estimation error for the EKF
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Figure 6.16: Acceleration estimation error for the EKF

(see Fig. 6.22).

6.2.4 Spiraling Estimation Error

The calculation of the spiraling is done through the calculation of the estimated

torsion. Its error is a combination of the state estimation errors. The torsion is a small

number, so in percentage the error is larger than other larger variables. The spiraling

frequency error is obtained by scaling the torsion estimation errors with the velocity
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Figure 6.17: Parameters estimation error for the EKF
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Figure 6.18: Position estimation error for the PF

estimation errors.

6.3 General analysis of estimation error

The successful implementation and errors obtained show that the coarse and highly

nonlinear model can actually be used for estimation of the state and spiraling of a reentry

vehicle, both techniques showing satisfactory results using just one radar. In general, even

though in theory the covariance in the particle filter is suppose to increase with time (see

Chapter 5), with a careful implementation a proper behavior of the covariance can be
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Figure 6.19: Velocity estimation error for the PF
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Figure 6.20: Acceleration estimation error for the PF
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Figure 6.21: Parameters estimation error for the PF
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Figure 6.22: The range measurements increase with time (local frame)
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Figure 6.23: Torsion estimation error for the EKF
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Figure 6.24: Torsion estimation error for the particle filter
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obtained. The particle filter has analytical advantages, due to the sampled representation of

the states at each instant of time. An empirical probability density function of the different

variables can be obtained, for instance see Fig. 6.25, and it can be seen that it actually

shows a non-Gaussian distribution, even though there was Gaussian assumption for the

measurement and process noises.
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Figure 6.25: Probability density function for position in X at time = 167.6 s

In particular, it can be said that the particle filter outperformed the extended

Kalman filter in the estimation of the parameters λ and ϕ. This can be seen comparing

Figures 6.17 and 6.21, and is important when identifying a target. A better performance is

obtained when estimating acceleration, Fig. 6.20, reflected too in a better estimation of the

torsion from which it follows that we obtain a better estimation of the spiraling, in general.



67

CHAPTER 7

Conclusions

7.1 Conclusions

The main purpose of this work was to develop a physics-based model to be used for

estimation of the state and spiraling of a reentry vehicle in the atmosphere. The types of

reentry vehicles investigated are limited to axisymmetric vehicles. The estimation process

was based on Bayesian estimation techniques, in particular, the popular extended Kalman

filter and the newer technique known as the particle filter.

Concepts from differential geometry were used to analyze the trajectory behavior,

using torsion as a measure of the spiraling of the trajectory. The torsion can also be scaled

by velocity to obtain the spiraling frequency.

The use of the Bayesian framework is useful as a common foundation where the main

technique is born naturally out of simple concepts of dynamical systems and probability

theory, and then particular techniques are obtain by the application of key assumptions.

This actually shows the relationship between the existing techniques and the possibilities of

expansion and creation of new techniques.

The implementation of the EKF and the particle filter showed satisfactory results

and can actually be used for the estimation of the states and torsion of the trajectory. It was

shown that the particle filter can outperform the EKF, but for real time applications
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parallelization will be needed for the particle filter to reduce the execution time.

7.2 Future Work

There are three particular lines of action where to extend and/or improve the results

from this work. First, performing tests of an actual vehicle to validate the characteristics of

a reentry trajectory model with high degree of confidence. A simplified version of the model

was already implemented in a real system for aircraft tracking by Bishop [6]. Secondly, the

model can be extended even more using other physical principles, adding more degrees of

freedom to the vehicle movement, changing the treatment as a point to that of a rigid body.

Lastly, a relationship between the particle filter and the technique of bank of expert EKFs

[5] could be established.
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APPENDIX A

Derivation of Jacobian Matrices

A.1 State Propagation Partials

The derivation of the state propagation partials for this model can be found in the

Appendix of [5], but it doesn’t include the parameters λ and ϕ. The partials here are just an

extension of the ones shown in that work, expanding the size of the Jacobian matrix to

include the parameters. Partials of the gravity and atmospheric models are not included

because they are application dependant under the assumptions made about the planet. The

derivation mentioned before is reproduced here to account for the different notation and

additions to the Jacobian Matrix.

First, let recall that the planetary rotation vector is

Ω = [0 0 Ω]T .

Then defining the relative state vector Xr we have

ṙr = ṙ−Ω ∗ r

r̈r = a + g −Ω ∗ ṙ (A.1)

Xr = [ṙr r̈r]
T
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with

ew1 =
ṙr
rr
, ew2 = −

ṙr
ṙr
∗ uz∥∥∥ ṙr

ṙr
∗ uz

∥∥∥ , and ew3 = ew1 ∗ ew2

We have the equation of motion

r̈ = a + g

...
r = [ω ∗ a] + [ϕ̇ew1 ∗ a]−

[
Ḋew1

]
+ L̇ [−e2

w sinϕ+ e3
w cosϕ] + ġ (A.2)

X = [ṙ r̈]T

with

ωw =
ṙr ∗ r̈r
ṙ2r

,

The first step is the derivation of the partials for the relative states Xr:

∂Xr

∂X
=

S(Ω) I3×3 03×3

03×3 S(Ω) I3×3


dXr

dg
= [03×3 I3×3] (A.3)

dXr

dX
=

∂Xr

∂X
+

dXr

dg

dg

dX
,

where S() designates the skew symmetric representing the vector cross product in the sense

that

a ∗ b = S(a)b ∀ a,b ∈ R3.

We can also compute the partials of each of the wind frame vectors (omitting the
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superscript w for easier reading)

de1

dXr

=
1

‖ṙr‖3


‖ṙr‖2 − ṙ2rx , −ṙrx ṙry , −ṙrx ṙrz

−ṙrx ṙry , ‖ṙr‖2 − ṙ2ry , −ṙry ṙrz 03×3

−ṙrx ṙrz , −ṙry ṙrz , ‖ṙr‖2 − ṙ2rz


∂e2

∂e1

= −
(
− S(r)

‖e1 ∗ r‖
+ 2

(e1 ∗ r)(S(r)(e1 ∗ r))T

‖e1 ∗ r‖3

)
∂e3

∂e1

= S(e2)

∂e2

∂X
= −

[
− S(e1)

‖e1 ∗ r‖
+ 2

(e1 ∗ r)(S(e1)(e1 ∗ r))T

‖e1 ∗ r‖3
03×6

]
de1

dX
=

∂e1

∂Xr

∂Xr

∂X

de2

dX
=

∂e2

∂X
+
∂e2

∂e1

de1

dX
(A.4)

de3

dX
=

∂e3

∂e1

de1

dX
.

Partials are then taken for each of the terms in the equation of motion A.2

Ta = ω ∗ a

∂Ta

∂X
= [03×6 S(ω)]

dω

dXr

=
1

‖ṙr‖2
[−S(r̈r) S(ṙr)]− 2

ṙr ∗ r̈r
‖ṙr‖4

[
ṙTr 01×3

]
(A.5)

∂Ta

∂ω
= −S(a)

dTa

dX
=

∂Ta

∂X
+
∂Ta

∂ω

dω

dXr

dXr

dX
,

(A.6)
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Tb = ϕ̇e1 ∗ a

∂Tb

∂X
= ϕ̇ [03×6 S(e1)] (A.7)

∂Tb

∂e1

= −S(e1)

dTb

dX
=

∂Tb

∂X
+
∂Tb

∂e1

de1

dXr

dXr

dX
,

Tc = −Ḋe1 (A.8)

dTc

dX
= −e1

dḊ

dX
− Ḋde1

dX
, (A.9)

Td = L̇(−e2 sin(ϕ) + e3 cos(ϕ)) (A.10)

dTd

dX
= (−e2 sin(ϕ) + e3 cos(ϕ))

dL̇

dX
+

L̇(−e2 sin(ϕ) + e3 cos(ϕ))

,

where appropriate expressions of L̇ and Ḋ are given by

L̇ =
S

m

(
ĊLq + CLq̇

)
(A.11)

Ḋ =
S

m

(
ĊDq + CDq̇

)
(A.12)

with
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q =
1

2
ρ‖ṙr‖2 (A.13)

q̇ =
1

2
ρ̇‖ṙr‖2 + ρr̈r ∗ ṙr, (A.14)

Hence, we have the following partials:

∂q

∂X
=

1

2

dρ

dX
‖ṙr‖2

dq

dXr

= ρ
[
ṙTr 01×3

]
(A.15)

dq

dX
=

∂q

∂X
+

dq

dXr

dXr

dX

∂q̇

∂X
=

1

2

dρ̇

dX
‖ṙr‖2 +

dρ

dX
r̈r � ṙr

dq̇

dXr

= ρ̇ [ṙr 01×3] + ρ
[
r̈Tr ṙTr

]
(A.16)

dq̇

dX
=

∂q̇

∂X
+

dq̇

dXr

dXr

dX

dL̇

dX
=

S

m

(
CL

dq̇

dX
+ ĊL

dq

dX

)
(A.17)

dḊ

dX
=

S

m

(
CD

dq̇

dX
+ ĊD

dq

dX

)
.

To find the partial with respect to the parameters λ and ϕ we need a different representation

for L̇ and Ḋ
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Ḋ = βmq(1 + λ2)

(
2r̈� ṙ

ṙ2
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)
,

and

L̇ = 2βm

(
CL
CD

)
max

qλ

(
2r̈� ṙ

ṙ2r
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)
.

Then we have

∂Tc

∂λ
= 2βmq

(
2r̈� ṙ

ṙ2
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)
e1 (A.18)

∂Td

∂λ
= 4βmq

(
2r̈� ṙ

ṙ2
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)
(−e2 sin(ϕ) + e3 cos(ϕ)) (A.19)

∂Td

∂ϕ
= −L̇(e2 cos(ϕ) + e3 sin(ϕ)) (A.20)

Finally, the state propagation partial matrix F is given by

F =



03×3 I3×3 03×3 03×1 03×1

03×3 03×3 I3×3 03×1 03×1

dTa

dX
+ dTb

dX
+ dTc

dX
+ dTd

dX
∂Tc

∂λ
+ ∂Td

∂λ
∂Td

∂ϕ

02×3 02×3 02×3 02×1 02×1


. (A.21)
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