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ABSTRACT

BAYESIAN ESTIMATION FOR TRACKING OF
SPIRALING REENTRY VEHICLES

Juan E. Tapiero Bernal, B.S.
Marquette University

This thesis presents a development of a physics-based dynamics model of a spiraling
atmospheric reentry vehicle. An analysis of the trajectory characteristics, using elements
from differential geometry lead to a relationship of the state of the vehicle to the spiraling of
motion. The Bayesian estimation framework for nonlinear systems is introduced showing the
theoretical basis of the estimation techniques. Two estimation algorithms, extended Kalman
filter and particle filter are presented, their mathematical formulation and implementation
characteristics.

Different trajectories that can be represented by the model are introduced and
analyzed, showing the spiraling behavior that can be described by the model. The extended
Kalman filter and particle filter are compared in the ability to estimate the states and
spiraling characteristics, with successful results for both techniques inside one standard
deviation. In general, superior performance was shown by the particle filter which estimated
the torsion with an error 10 orders of magnitude smaller.
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CHAPTER 1

Problem Statement, Objective and Contributions

1.1 Problem statement

This thesis develops a mathematical model of an atmospheric reentry vehicle with

coarse dynamics based on physical principles that can be successfully used to estimate

position, velocity, acceleration, as well as the spiraling frequency of the vehicle. Key

parameters, such as the ballistic coefficient, maximum lift-to-drag coefficient, ratio of lift to

critical lift, and bank angle are also estimated. Achieving this through the use of Bayesian

estimation techniques is a challenge given the nature of the significant nonlinearities present

in the system.

This work has application in missile tracking and in the recovery of reentry

unmanned vehicles from space missions. It is also a contribution that can be extrapolated to

other application of tracking of moving objects, especially the use of Bayesian techniques in

the state estimation of systems derived through physical principles. The Bayesian estimation

techniques employed in this thesis are the extended Kalman filter and the particle filter.

1.2 Objectives

The main objective of this work is to show that the proposed mathematical model

can be used for estimation of the state of a reentry vehicle, even though it possesses high
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dimensionality and nonlinearity. The principles under which the model is established are

based on physical principle and an excellent approximation to the real system motion. The

second objective is to show the power of the Bayesian framework in creating practical

estimation algorithms. In particular, the application of Bayesian estimation using a

physics-based model to represent the dynamics is proved to be an outstanding approach

using realistic simulation-based analysis.

1.3 Previous Work

Trajectories of reentry vehicles have been studied since the early days of the space

program and the development of ballistic missiles (e.g. see [1];[2]). However estimation of the

spiraling component of the trajectory of an endoatmospheric reentry vehicle is not a widely

studied problem. The earliest known work on the estimation of the spiraling components of

a vehicle are related to missile defense, with their models presented from a classical control

point of view (see [3] [4]). A spiraling reentry vehicle analysis for Mars entry using an earlier

version of the model in this thesis was presented by Dubois-Matra [5]. The motion model of

the vehicle dynamics was based on a model presented by Bishop [6] for aircraft tracking.

More recently, results have been reported on the estimation of the state of spiraling targets

using the extended Kalman filters and unscented Kalman filters. In these cases, the model is

presented without a physical basis for the parameters of the vehicle and atmosphere [7] [8].

Estimation techniques from a Bayesian point of view are well-known (see the detailed

literature review in Chapter 3), and are useful for a wide variety of applications. Previous

work shows the validity of the Bayesian framework for the estimation of the state of both

linear and nonlinear systems. Aerospace applications have been the focus for much of the
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modern development of these techniques, but Bayesian estimation is finding applications in a

lot of scientific endeavours, for instance, economics [9], biological processes [10], stochastic

optimal control [11] and robotics [12].

1.4 Contributions

This thesis has three main contributions. First, the mathematical model presented by

[5] and Bishop and Antoulas [6] are advance by a parametrization that represents

axisymmetric vehicles. Second, for the first time the spiraling frequency is estimated

through the torsion using both the extended Kalman filter and the particle filter. Finally,

the particle filter was successfully implemented for the first time for spiraling targets.

1.5 Thesis Organization

Chapter 2 presents the mathematical model of motion taking in account the

atmospheric and gravity models. A parametrization is discussed upon which torsion is

presented as a measure of the spiraling of the vehicle. Chapter 3 presents the theoretical

basis of the Bayesian estimation framework, and a general form of the Bayes recursive filter.

A general description of the estimation techniques under this framework is presented.

Chapters 4 and 5 present the extended Kalman filter and the particle filter, respectively.

Chapter 6 presents the results of applying the Bayesian techniques employing the

mathematical model developed in Chapter 2 in realistic entry scenarios. Finally, Chapter 7

presents the conclusions and possible future work.
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CHAPTER 2

Model Development and Analysis

In this chapter a mathematical model describing the motion of an axisymmetric

reentry vehicle is presented. This model describes the translational dynamics and is physics

based. In contrast, most existing models are artificially parameterized. The derivation of the

mathematical model of motion is first presented, taking in account the atmosphere and

gravity. A parametrization is proposed to provide structure to the model. The concept of

torsion is discussed as a measure of the spiraling of the vehicle.

2.1 Model Development

2.1.1 Reference Frame Definitions

Consider the planet-centered, inertial frame shown in Fig 2.1 . The unit vector of the

z -axis lies along the planet spin axis. The remaining two unit vectors lie in the planet

equatorial plane and are oriented at a given epoch according to international agreements.

The planet-centered, inertial reference frame is represented by (ux, uy, uz). Consider the

unit vectors (e1, e2, e3) represent a rotating coordinate system attached to the reentry

vehicle. Then, starting with Poisson’s formula we have,

ėi = ω ∗ ei , for i = 1, 2, or 3 ,



5
where ω is the angular velocity of the frame. It follows that

ei ∗ ėi = ei ∗ (ω ∗ ei) = (ei � ei)ω − (ei � ω)ei.

Since

ei � ei = 1 ,

we have the relationship

ω = (ei � ω)ei + ei ∗ ėi for i = 1, 2, 3 . (2.1)

The relative velocity is ṙr = ṙ−Ω ∗ r, where the rotation of the planet Ω = [0 0 Ω]T ,

and r is the position in the planet-centered, inertial reference frame. The wind frame

reference vector ew1 is defined as

ew1 =
ṙr
ṙr
, (2.2)

where ṙr := ‖ṙr‖ is the relative velocity magnitude of the vehicle, and ṙ is the inertial

velocity in the planet-centered inertial reference frame, the superscript “w” denotes the wind

reference frame, and the subscript “r” denotes relative to the rotating planet-centered,

planet-fixed reference frame.

Since the vectors ew2 and ew3 only need to span the lift space, they can be the

arranged to form a proper right-handed coordinate frame (see definitions in [13]), thus

ew2 = −
ṙr
ṙr
∗ uz∥∥∥ ṙr

ṙr
∗ uz

∥∥∥ and ew3 = ew1 ∗ ew2 , (2.3)

where uz = ( 0 0 1 )T . Then, ew2 lies in a plane parallel to the inertial x − y plane (that

is, the equatorial plane of the planet). The transformation matrix from the wind frame to
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Figure 2.1: Entry vehicle model reference frames and lift/drag/bank angle definitions.

the inertial frame is given by

LIW = [ ew1
... ew2

... ew3 ] .

Finally to find an expression for ω, recall that Eq. (2.1) is valid for any i =1, 2, or 3.

For this development i = 1 is chosen. It can be said then that the term e1 �ω in Eq. (2.1) is

zero. This follows from the definition of the ewi vectors by constraining ew2 to be in the

equatorial plane. With ew1 given in Eq. (2.2) and e1 � ω = 0, Eq. (2.1) reduces to

ωw =
ṙr ∗ r̈r
ṙ2r

. (2.4)

where r̈r = r̈−Ω ∗ ṙ.
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2.1.2 Vehicle Motion

Two key assumptions are made about the environment regarding the gravity and

atmospheric density. First, we have a central Newtonian gravity field given by

g(r) = − µ
r3

r , (2.5)

where µ is the constant planet gravity parameter, r is the position of the center of mass of

the vehicle in the planet-centered, inertial reference frame, and r = ‖r‖ . Second, we assume

an exponential atmospheric density given by

ρ(r) = ρoe
−(r−Rp)/Ho . (2.6)

where Rp is the planet radius (assuming a spherical planet), Ho is the base reference altitude

associated with the density model assumed, and ρ0 is the base reference density. These

assumption are not critical to the mathematical model development and can be changed to

include higher-order gravity and better high altitude atmospheric models, but are used here

for the sake of simplicity.

The sum of the accelerations acting on the vehicle is given by

r̈ = a + g , (2.7)

where a are the aerodynamic accelerations (a = L + D assuming the vehicle is axisymmetric,

otherwise side accelerations S should be included) and g is the gravitational acceleration.

We assume that the vehicle is not thrusting. Taking the time derivative of Eq. (2.7) yields

...
r= ȧ + ġ . (2.8)
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Using Eq. (2.5) to compute ġ yields

ġ = − µ
r3

ṙ + 3
µ

r5
(r� ṙ)r . (2.9)

Computing ȧ requires more effort. Referring to Fig. 2.1, it can be seen that

a = −Dew1 + L [−ew2 sinϕ+ ew3 cosϕ] , (2.10)

where D = ‖D‖ and L = ‖L‖, and ϕ is the bank angle. Taking the time derivative of

Eq. (2.10) yields

ȧ = [ωw + ϕ̇ ew1 ] ∗ (r̈− g)− Ḋew1 + L̇ [−ew2 sinϕ+ ew3 cosϕ] . (2.11)

Substituting Eqs. (2.2), (2.3), (2.4), (2.9), and (2.11) into Eq. (2.8) yields

...
r =

[a]︷ ︸︸ ︷[
ωw ∗

(
r̈ +

µ

r3
r
)]

+

[b]︷ ︸︸ ︷[
ϕ̇ ew1 ∗

(
r̈ +

µ

r3
r
)]
−

[c]︷ ︸︸ ︷[
Ḋew1

]
(2.12)

+ L̇ [−ew2 sinϕ+ ew3 cosϕ]︸ ︷︷ ︸
[d]

− µ

r3

[
ṙre

w
1 + Ω ∗ r− 3(

r

r
� ṙrew1 )

r

r

]
︸ ︷︷ ︸

[e]

.

where

ωw =
ṙr ∗ r̈r
ṙ2r

, ew1 =
ṙr
ṙr
, ew2 = −

ṙr
ṙr
∗ uz∥∥∥ ṙr

ṙr
∗ uz

∥∥∥ , and ew3 = ew1 ∗ ew2

From the expression in Eq. (2.12) several important characteristics of the vehicle motion can

be recognized. The first term [a] represents curvature motion in-plane because ωw is by

definition perpendicular to the maneuver plane. The value of ωw is related to the concept

known as curvature which is a measure of the amount of turning in the maneuver plane [14].

The second term [b] represents out-of-plane motion due to rotation of the lift vector. When

ϕ̇ 6= 0, the out-of-plane motion is nonzero. A similar situation with the fourth term [d], since

it represents variations in the lift magnitude, which is a function of ϕ and ϕ̇. The third term
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[c] has no effect on the out-of-plane motion, but represents the variation of the drag force

due to variations in velocity, atmospheric density and induced drag due to lift. The fifth

term [e] represents the change in gravity and would only affect the out-of-plane motion when

the maneuver plane is not vertical. When ϕ̇ = 0 (no rolling motion), g is a constant (i.e., a

flat planet), Ḋ = L̇ = 0, then the motion is confined to a plane—this is the so-called

“coordinated turn model” (see [6]).

2.1.3 Model Parametrization

The lift and drag acceleration magnitudes are given by

L =
ρ(r)ṙ2rCLS

2m
and D =

ρ(r)ṙ2rCDS

2m
. (2.13)

where CL is the lift coefficient, CD is the drag coefficient, ρ(r) is the atmospheric density, S

is the effective area of the vehicle, and m is the mass. The parameters CL and CD are

usually not known at every moment during a vehicle reentry since they depend on Mach

number, angle of attack and shape.

For the purpose of estimation, it is desired that the number of model parameters be

small to reduce the computational complexity by minimizing the number of state variables.

For a vehicle of general shape, the lift and drag coefficient are related in a near parabolic

fashion. Figure 2.2 illustrates the parabolic relationship, known as the drag polar, that

starts from CDo , the “zero-lift drag coefficient,” that is, the drag coefficient when the vehicle

is not generating lift, this for any given Mach number [15]. For the case of an axisymmetric

vehicle (which is the case in this work), the drag polar is shown in Fig. 2.3. Let C∗L denote

the “critical lift coefficient,” that is, the lift coefficient at maximum lift-to-drag ratio. The
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drag coefficient is commonly modeled by the function

CD = CDo

[
1 +

(
CL
C∗L

)2
]
, (2.14)

where the term (CL/C
∗
L)2 is the induced drag. In general, CD can be represented by the

function

CD = CDo +KCn
L ,

where K is a proportionality constant and n is to be determined for the particular vehicle.

Figure 2.2: Drag polar for general shaped vehicle [15]

Figure 2.3: Drag polar for axisymmetric vehicle [15]
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When using the more general form, it follows that

CL
CD

=
CL

CDo +KCn
L

.

Taking the partial derivative with respect to CL and setting the result to zero yields

K =
CDo

(n− 1)(C∗L)n
.

Thus,

(
CL
CD

)
max

=
(n− 1)C∗L
nCDo

. (2.15)

According to Regan and Anandakrishnan [13] it is usual to choose n = 2.0 for axisymmetric

vehicles (for altitude between 0 and 100 km) leading to the relationship

CDo =
C∗L

2
(
CL

CD

)
max

. (2.16)

Using Eq. (2.15) with n = 2 and Eq. (2.16), we find that

CL = 2CDo

(
CL
CD

)
max

(
CL
C∗L

)
, (2.17)

and for convenience, the ratio between the lift coefficient and the critical lift coefficient is

defined to be

λ :=
CL
C∗L

. (2.18)

With λ defined as in Eq. (2.18), the lift and drag magnitudes in Eq.(2.13), respectively, can

be re-written as

L =

[
2βm

(
CL
CD

)
max

]
λq(r, ṙ) (2.19)

D =
[
βm(1 + λ2)

]
q(r, ṙ) ,
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where q(r, ṙ) is the dynamic pressure given by

q(r, ṙ) =
1

2
ρ(r)ṙ2r , (2.20)

and the ballistic coefficient is defined to be

βm :=
CDoS

m
.

It is assumed that CDo remains essentially constant over the region of interest [13]. Taking

the time derivative of CD in Eq. (2.14) yields

ĊD = 2CDoλλ̇ . (2.21)

It is observed that when the vehicle is generating lift (λ 6= 0) and the lift magnitude

(intentionally or unintentionally) varies (λ̇ 6= 0), the CD will change due to the induced drag

effects. Similarly, taking the derivative of CL in Eq. (2.17) yields

ĊL = 2CDo

(
CL
CD

)
max

λ̇ . (2.22)

Other important derivatives include the density gradient (see Eq. (2.6))

ρ̇(r) = −ρ(r)
ṙ� r

Hor
, (2.23)

and the relative velocity gradient

d(ṙ2r)

dt
= 2 [r̈� ṙ− (Ω ∗ r)� r̈r] . (2.24)

Using Eq. (2.21)-(2.24) and taking the time-derivative of L and D in Eq.( 2.19) yields

L̇ = 2βm

(
CL
CD

)
max

q(r, ṙ)

[
λ̇+ λ

(
2r̈� ṙ

ṙ2r
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)]
(2.25)

Ḋ = βmq(r, ṙ)

[
2λλ̇+ (1 + λ2)

(
2r̈� ṙ

ṙ2
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)]
.
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When λ 6= 0, this implies that the vehicle is generating lift, and λ̇ 6= 0 implies that the

vehicle is changing lift. The vehicle motion is described by specifying the control inputs ϕ(t)

and λ(t) and the vehicle parameters βm and (CL/CD)max. This parametrization give us the

expressions that are needed in Eq. (2.12) to build the simulation of the vehicle motion and

to create the state space used.

2.2 Spiraling Motion Analysis

Since the concern is the “spiraling” motion, it is desirable to quantify the spiraling

motion in terms of the state of the vehicle. A measure of out-of-plane motion is the torsion.

The torsion measures the rate at which the osculating plane turns as the vehicle moves along

the trajectory [14]. When the torsion is zero, the motion is planar. The torsion is calculated

via

τ =
r̈ ∗ ṙ

‖r̈ ∗ ṙ‖2
� ...

r ,

and has units of 1/length. Now we assume that Ω = 01×3 for an easier analysis. Then, the

contribution of terms [a] and [c] in Eq. (2.12) to the torsion is zero. Computing the

contribution to the torsion from terms [b], [d] and [e] yields

τ =

τb︷ ︸︸ ︷
−ϕ̇

[
1

ṙ
+

ṙ

||̈r ∗ ṙ||2
(r̈− (ew1 � r̈)ew1 )� µ

r3
r

]
−

τd︷ ︸︸ ︷
L̇

[
ṙ

||̈r ∗ ṙ||2
(ew3 sinϕ+ ew2 cosϕ)� uz

]
(2.26)

− 3µ

r3
ṙ2

||̈r ∗ ṙ||2
(
r

r
� ew1 )

[
(
r

r
∗ r̈)� ew1

]
︸ ︷︷ ︸

τe

.

Here the contributors to the torsion are denoted by τb, τd, and τe, because of their

relationship with the terms of the model in Eq. (2.12). The term τb is associated with the

rotation rate ϕ̇ of the lift vector, τd is related to the change in magnitude of the lift vector,
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and τe is related to changes in the gravitational field.

With the objective of defining a “spiral frequency” that can be used to quantify the

spiral motion, the torsion can be scaled by the velocity giving a measure of the rate (in

standard units of frequency, such as rad/sec or 1/sec) of the motion of the osculating plane.

Hence, the use of the term spiral frequency, which will be denoted by τs. Multiplying the

torsion formula above by ṙ and re-arranging terms leads to the following expression for the

spiral frequency:

τs = ϕ̇− 1

κ2
1

ṙ2

[
ϕ̇ [r̈− (ew1 � r̈) ew1 ]� µ

r3
r− L̇ (sinϕew3 + cosϕew2 )� uz

−3µ

r3
ṙ
(r

r
� ew1

) [(r

r
∗ r̈
)
� ew1

]]
, (2.27)

where κ = ‖ωw‖ is the curvature. As might be expected, the spiral frequency is directly

proportional to ϕ̇, which makes this value the most important factor that affects the change

in torsion. However, the spiral frequency is also affected by other factors, including the

curvature, lift variations, and gravity gradients (for maneuvers not in a vertical plane).

When Ω 6= 0 there will be more terms in Eq. (2.26) that can even present influence

from the drag magnitude in relationship with the rotation of the planet. Since the time of a

reentry maneuver is in most applications much smaller than the rotation of a planet the

effects added by these terms are negligible.

2.3 Model State Space Representation

The representation of the model presented in Eq. (2.12) is more useful when

implementing estimation algorithms in a state space representation. A state space with

n = 11 states was selected, where the states are the position, r, velocity, ṙ, acceleration, r̈,
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on the planet-centered, inertial reference frame, and the bank angle, ϕ, and the ratio of the

lift coefficient to the critical lift coefficient, λ. Then the following vectors and variables can

be defined x1 = r ∈ R3×1, x2 = ṙ ∈ R3×1, x3 = r̈ ∈ R3×1, x4 = λ, and x5 = ϕ. Where the

state vector is x(t) =
[
xT1 xT2 xT3 x4 x5

]T
. Then establishing a system of differential

equation we have

ẋ(t) =



x2

x3[
ωw ∗

(
x3 + µ

‖x1‖3 x1

)]
+
[
aew1 ∗

(
x3 + µ

‖x1‖3 x1

)]
−
[
Ḋew1

]
+ L̇ [−ew2 sin(x5) + ew3 cos(x5)]

− µ
‖x1‖3

[
‖x2r‖ew1 + Ω ∗ x1 − 3( x1

‖x1‖ � ‖x2r‖ew1 ) x1

‖x1‖

]
0

a



, (2.28)

where

L̇ = 2βm

(
CL
CD

)
max

q(‖x1‖, ‖x2‖)x4
(

2x3 � x2

‖x2r‖2
− 2(Ω ∗ x1)� x3r

‖x2r‖2
− x2 � x1

Ho‖x1‖

)
,

Ḋ = βmq(‖x1‖, ‖x2‖)(1 + x24)

(
2x3 � x2

‖x2r‖2
− 2(Ω ∗ x1)� x3r

‖x2r‖2
− x2 � x1

Ho‖x1‖

)
,

x2r = x2 −Ω ∗ x1,

x3r = x3 −Ω ∗ x2,

ωw =
x2r ∗ x3r

‖x2r‖2
, ew1 =

x2r

‖x2r‖
, ew2 = − ew1 ∗ uz

‖ew1 ∗ uz‖
, and ew3 = ew1 ∗ ew2 .

The letter a represents a constant. It is important to note that the ballistic coefficient

βm (important since the vehicle could be unknown) can easily be transformed in one of the

state variables and estimated.
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CHAPTER 3

Bayesian Estimation

3.1 Introduction

We are often faced with decision making in the presence uncertainty. This

uncertainty stems from situations where direct knowledge is not available, or to future

predictions. Decisions are often based on inferences made from models of what is expected

to be observed. Bayesian inference is the process of adjusting a probabilistic model to a set

of data and summarizing the results through a probability density function (pdf) with the

model parameters and the quantities that have not been observed. Bayesian estimation is

the particularization of this concept to the filtering problem that consists of estimating the

state of a system (physical, economic, etc) based on measurements that have a relationship

with the states. Probability distributions are used for modeling both the uncertainties in the

system model and parameters, and for modeling the characteristics of the random elements

of the system.

Bayesian inference is a theoretical, yet practical framework for reasoning, decision

making and estimation under uncertainty. The historical roots of the theory lie in the late

18th and early 19th century with Thomas Bayes and Pierre-Simon de Laplace [16]. Bayesian

inference was not a popular approach for decision making until the last half of the 20th

century. Bayesian inference did not develop as a single, homogeneous scientific activity. It
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has, however, been employed in many different domains. The Bayesian approach to filtering

is not new (see, e.g., [16]; [17] ; [18]). The theory appeared in the seminal article of Kalman

[19]. The Kalman filter can be derived from the mean least-squares point of view

(optimization) or from a Bayesian perspective. Non-linear filtering theory, such as the

extended Kalman filter (EKF), are generally Bayesian from the beginning (see, e.g., [17]).

As computations became faster and more accessible, state estimators with a higher

computational cost were developed. From these estimators we consider three categories.

First, we consider the class of different variants of the EKF that provide estimates of the

state variables, and a measure of the mean least-square state estimation error. In this

category we can include the estimators that approximate the pdf of the variable with a

mixture of probability density functions. This was first proposed by Sorenson and

Alspach [20], using a mixture of Gaussians. We can also consider grid based filters that

evaluate the pdf using a series of nodes chosen to cover the entire state space. This set of

nodes, each with an associated weight, are used as a discrete approximation of the posterior

pdf or as base for continuous approximations for this pdf, for example using splines [21].

The last category of filters are those that use Monte Carlo methods. Their origins can be

traced to Handschin [22] and Mayne and Handschin [23]. Gordon et al [24] employ

sequential Monte Carlo methods as set of points that approximate the posterior pdf.

In this chapter a derivation of the general recursive Bayesian filter is presented. First,

important concepts related with Bayesian filtering are discussed. Next, the concepts are

used to show the development of Bayesian estimation and the general recursive algorithm.

Finally, a general description of the different Bayesian filters is presented.
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3.2 Bayesian Inference

A scientific hypothesis is typically represented as a pdf of the observed data. This pdf

depends on certain unknown quantities or parameters, denoted by θ. In the Bayesian

paradigm, the knowledge of the model parameters are expressed through a pdf, known as

the prior density function, p(θ). When new data y is obtained, the information contained in

the prior pdf and its relation with the model parameters is known as the “likelihood”

function, and is represented by p(y|θ). The information contained in the prior pdf and the

likelihood function can be combined to obtain a new pdf, known as the posterior pdf and

denoted by p(θ|y). The posterior pdf is the objective of the Bayesian inference process.

Bayes theorem is an elemental identity in probability theory (more information on this and

basic probability theory can be found in [25]). According to Bayes, the posterior probability

is proportional to the product of the priori by the likelihood,

p(θ|y) =
p(θ)p(y|θ)∫
p(θ)p(y|θ)dθ

.

In theory, one can always obtain the posterior distribution, but with the complex systems

and models the necessary analytical calculation are typically intractable. In recent years, the

research community realized that obtaining samples of the posterior could be an applicable

and adequate option.

There are several reasons to use Bayesian methods, and their applications are present

in several different fields. Many investigations into the use of Bayesian methods have been

reported. It is evident that if one wants to make a consistent decision in the presence of

uncertainty, an excellent approach is to use Bayesian methods.
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3.3 Continuous-Discrete Probabilistic Dynamical Systems

A probabilistic dynamical systems is a sequence of continuous probability density

functions p(x(tk)|y1:k), where x(tk) is the state vector, yk is the observations vector, the

index t = tk represents an instant of time when a observation is obtained and the subscript

1 : k represents the set of observation at all instants up to and including tk. The state

variable x(t) evolves over time. In most of the applications, the difference between p(•|y1:k)

and p(•|y0:k−1) is due to the incorporation of a new observation. The following processes are

of special interest:

Prediction: p(x(t+ dt)|y1:k), dt 6= 0, where p(•|y1:k) can be computed for all time t > tk. The best

prediction of x(t) before new information arrives is through p(•|y1:k−1).

Smoothing: p(x(t)|y1:T ), 0 < t < tT . In this case, the distribution can be calculated for all times

t ∈ [0, tT ] if the observations up to the instance yT have been observed.

Estimation: p(x(tk)|y1:k) (Sequential estimation). Here we estimate the variable x(tk) at the time

instance tk when the observation yk has been obtained.

For this work, we consider dynamical systems that are represented in a state space

form. A state space model is defined by the state equation,

dx(t)

dt
= f(x(t),u(t), t) + σ(x(t), t)w(t), (3.1)

and the measurement equation,

yk = h(x(tk), tk,v(tk)) (3.2)

where yk is the observations vector of tk, x(t) is the state vector, h is the measurement

function (vector of functions), f is the state function (also known as the drift function), u(t)
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is the vector of inputs or control actions, w(t) is a stochastic noise process, v(tk) is a

random noise sequence, t is the time dependance and tk represents the instant an

observation is obtained. The usual assumptions are that the analytical representation of the

functions and distributions of both noises are known. The objective of Bayesian estimation

in this case is to estimate x(tk) in a recursive form based on the observations yk, obtaining

the posterior distribution p(x(tk)|y1:k).

State variables and measurements are directly related to the different probability

density functions that represent the system when it is treated as a set of stochastic processes,

and that are ultimately used for Bayesian estimation. In general, it can be said that

x ∼ p(x(tk)|x(tk−1))

y ∼ p(yk|x(tk)),

where p(x(tk)|x(tk−1)) is known as the transition density. There are two final definitions and

assumptions that are key to Bayesian estimation and inference. First, the Markov

assumption which states that the values in any state x(t) are only influenced by the values

of the state x(t− dt) that directly preceded it. This implies that the past is independent of

the future. In a continuous-discrete setting, we have

p(x(t0:k)) =
k∏
i=1

p(x(ti)|x(ti−1))p(x(t0)). (3.3)

We also have the conditional independence of observations that states that the observation,

yk, given the state, x(tk), is conditionally independent from the observation and state
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history, or

p(y1:k) =
k∏
i=1

p(yi)

p(y1:k|x(t0:k)) =
k∏
i=1

p(yi|x(ti)). (3.4)

3.4 Recursive Estimation

The Bayesian filters considered here, namely the extended Kalman filter and the

particle filter are based on a general structure. Each filter differs under different

assumptions. The main objective in each case is to estimate the state of a system using

observations, where the state evolves in the presence of noise and observations are made

sequentially also in the presence of noise. The notation is as follows: x(t) is the state being

estimated, and yk indicates the observed data. The problem consists of estimating the state

x(t0:k), k = 1, 2, ... based on the sequence of observations y1:k, k = 2, 3, .... In this derivation,

the Markov assumption and conditional independence of observations assumption apply.

The set of posterior distributions can be represented using the Bayes theorem as

p(x(t0:k)|y1:k) =
p(y1:k|x(t0:k))p(x(t0:k))

p(y1:k)
. (3.5)

In a practical setting all the information needed to compute p(x(tk)|y1:k) is not known or

cannot be obtained in real-time, so using the assumptions from Eqns. (3.3) and (3.4), we

begin by rewriting Eq. (3.5) as

p(x(t0:k)|y1:k) =
k∏
i=1

p(yi|x(ti))p(x(ti)|x(ti−1))p(x(t0))

p(yi)
. (3.6)
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Eq. (3.6) can be expanded sequentially to obtain an expression for p(x(tk)|y1:k) by

induction. So, expanding for i = 1 we have

p(x(t0:k)|y1:k) =
k∏
i=2

p(yi|x(ti))p(x(ti)|x(ti−1))

p(yi)

p(y1|x(t1))p(x(t1)|x(t0))p(x(t0))

p(y1)
(3.7)

Integrating both sides of Eq. (3.7) with respect to x(t0) gives

p(x(t1:k)|y1:k) =
k∏
i=2

p(yi|x(ti))p(x(ti)|x(ti−1))

p(yi)

p(y1|x(t1))p(x(t1))

p(y1)︸ ︷︷ ︸
=p(x(t1)|y1) by Bayes

, (3.8)

since

∫
p(x0:k)dx(t0) =

k∏
i=2

p(x(ti)|x(ti−1))

∫
p(x(t1)|x(t0))p(x(t0))dx(t0)︸ ︷︷ ︸

p(x(t1))

= p(x(t1:k)).

Continuing for i = 2 we have

p(x(t1:k)|y1:k) =
k∏
i=3

p(yi|x(ti))p(x(ti)|x(ti−1))

p(yi)

p(y2|x(t2))p(x(t2)|x(t1))p(x(t1)|y1)

p(y2)︸ ︷︷ ︸
p(x(t1:2)|y1:2)

. (3.9)

Integrating with respect to x(t1) in Eq. (3.9) yields

p(x(t2:k)|y1:k) =
k∏
i=3

p(yi|x(ti))p(x(ti)|x(ti−1))

p(yi)

p(y2|x(t2))p(x(t2)|y1)

p(y2)︸ ︷︷ ︸
p(x(t2)|y1:2)

, (3.10)

since
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p(x(t2)|y1) =

∫
p(x(t2)|x(t1))p(x(t1)|y1)dx(t1). (3.11)

After expanding for the kth instant and integrating sequentially for x(tk−1), we obtain

p(x(tk)|y1:k) =
p(yk|x(tk))p(x(tk)|y1:k−1)

p(y1:k)
, (3.12)

where

p(x(tk)|y1:k−1) =

∫
p(x(tk)|x(tk−1))p(x(tk−1)|y1:k−1)dx(tk−1) (3.13)

Eq. (3.12) is the general form of the recursive Bayesian filter. The likelihood function

p(yk|x(tk)), that represents the pdf of the observations depends on the noise of the sensor.

The posterior pdf before a new observation is made is given by p(x(tk)|y1:k−1). Eq. (3.13) is

known as the Chapman-Kolmogorov equation.

3.4.1 Algorithm

After having all the elements that form the Bayesian recursive filter, we have that the

algorithm is a recursive process that starts with p(x(t0)), the pdf associated with x(t) prior

to any observations. The recursive algorithm is divided in two main steps, prediction and

update, that are applied when each observation yk is obtained.

The prediction step is where the pdf prior to an observation, p(x(tk)|y1:k−1) is

calculated. The continuous nature of the system is significant since a stochastic differential

equation has to be solved. Theoretically, there are several ways to proceed. There is not an
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unique approach to solve the stochastic differential equations, but also due to the complexity

of the models of the system, most of the methods are in general intractable and not suitable

for practical applications.

First Method : Propagate the transition density function p(x(tk)|x(tk−1)) from time

tk−1 < t < tk by integrating the stochastic differential equation that represent the state x(t)

from time tk−1 < t < tk. Using this result, calculate p(x(tk)|y1:k−1) using Eq. (3.13). This

method is typically computationally intractable, but can be approximated under some

assumptions [26].

Second Method : Solve the boundary problem of finding p(x(tk)|y1:k−1) starting from the

distribution p(x(tk−1)|y1:k−1) and solving the partial differential equation from time

tk−1 < t < tk. It is necessary to use numerical approximations in most cases.

For the update step, we compute the posterior pdf using Bayes theorem to

incorporate the observation pdf where,

p(x(tk)|yk) ∝ p(yk|x(tk))p(x(tk)|y1:k−1)

As mentioned before, this is a general form of the Bayesian estimation. This exact structure

will not be readily apparent in most filters, even though, in general, the prediction and

update form is followed.

3.4.2 Bayesian Point Estimates and Optimal Filtering

In applied estimation situations, the use of complete pdf’s is not necessary (and

generally intractable), since depending on the assumptions made for a given filter, only a few

parameters of a pdf need to be estimated. The most common point estimators used in
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Bayesian estimation are the expected value and possibly some higher moments of the pdf.

A point estimate of a variable x is usually represented by x̂ typically represents the

expected values or mean. It is also important to consider that the state estimates have to be

considered stochastic processes as well. For example this common point estimator could be

represented as the mean,

E(x(tk|k)) = x̂(tk|k) =

∫
x(tk)p(x(tk)|y(tk))dx(t).

or mode

x̂(tk|k) = maxx(tk)p(x(tk)|y(tk)).

There is also the important element added to the point estimators (explicit or implicitly)

that is the loss function that defines a penalty for erroneous estimates. This is where the

relationship between Bayesian estimation and optimization theory is found. An example is

the Kalman filter that was first derived from a stochastic optimal control point of view. A

common loss function L(x, x̂) used in the continuous-discrete scenario could be,

L(x, x̂) =

∫ tT

0

(x(t)− x̂(t))T (x(t)− x̂(t))dt

The use of a loss function is not usually explicit for Bayesian point estimators, but they

introduce the concept of optimality, with the objective of obtaining unbiased estimates.

3.5 Algorithms for Optimal Filtering

Starting from the general Bayesian recursive filter, and using different assumptions

and systems, a wide variety of filters can be obtained. There are two different established
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families of filters: point estimators (with Gaussian noise assumptions) and Monte Carlo

methods for density estimation. All these techniques have versions in the different time

representations (continuous-discrete in our case), but this does not affect their general

characteristics except in how some steps are performed and some values are calculated. It is

important to note that many filters strategies are not optimal, since usually approximations

are employed.

3.5.1 Kalman Filter

The Kalman filter is an optimal point estimator where the two first moments of the

posterior distribution are calculated in a recursive fashion [19]. It requires the system and

observation models to be linear but not necessarily time-invariant. It is generally assumed

that the process and measurement noises are Gaussian, which translates into the assumption

that the prior and likelihood functions are Gaussian.

Due to the fact that a linear system is assumed and thanks to the special properties

of Gaussian distribution functions, a posterior of the same kind is obtained with a linear

transformation. This assures the preservation of optimality. More details about the

mathematical process to obtain this filter within Bayesian framework will be shown in the

next chapter.

3.5.2 Extended Kalman Filter

The extended Kalman filter is one the most widely used point estimator. The EKF

does not make assumptions of linearity in the system and observation models and has the

same structure as the Kalman filter. However the system and observation models must be
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sufficiently differentiable, since the EKF uses Taylor series approximations requiring

Jacobian matrices.

In the EKF derivation, higher order terms of the Taylor series are neglected making

the EKF a linear approximation. The posterior represents an approximation to the true pdf.

This makes the EKF a suboptimal filter. This filter is the defacto standard and serves as

comparison for other non-linear estimation techniques.

3.5.3 Sigma Point Kalman Filter

The Sigma Point Kalman Filter (SPKF) handles nonlinear systems, but not through

a analytic approximation as with the EKF, but instead using a minimal set of

deterministically chosen weighted sample point (sigma points) that capture the true nature

of the first and second moment of a Gaussian distribution. These sigma points are obtained

through a deterministic transformation. Like the Kalman filters, all pdf’s are assumed to be

Gaussian, and like the extended Kalman filter the posterior is an approximation and is

suboptimal.

There are many varieties of SPKF algorithms. The most established SPKF are the

unscented Kalman filter [27], central-difference Kalman filter [28] and the Gauss-Hermite

Kalman Filter [29], but there are more in the literature (see e.g., [30];[31]). An excellent

paper that shows the derivation of the unscented Kalman filter for continuous-discrete

systems from a Bayesian point of view can be found in [32].
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3.5.4 Particle Filter

The particle filter is not related to the family of Kalman filters. The particle filter

employs a different approach based on simulation (Monte Carlo methods) and sampling

theory (importance sampling). It is not a point estimator but rather a pdf estimator, where

an approximation of the “true” posterior pdf is obtained based on weighted samples. Then

given this obtained posterior, the different moments can be calculated.

The particle filer has a similar structure to the general recursive Bayesian estimator

described before, but non-parametric pdf’s are obtained. There exist several variants

depending on the assumptions, optimality needs and sampling or resampling techniques

used. The most widely used particle filter is known as the sequential importance sampling

particle filter. More details on this filter will be discussed in Chapter 5. The particle filter is

chosen for this work because it does not require approximations of the nonlinear model. This

is important when quantifying the influence of approximations in the accuracy of the state

estimation for this problem.
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CHAPTER 4

Extended Kalman Filter

A derivation of the extended Kalman filter (EKF) is presented along with the

implementation details for this project. First, important concepts and definitions pertinent

to the derivation are presented. Then using this information, a derivation of the

continuous-discrete EKF from the Bayesian point of view is developed. Finally, all the

elements related with the implementation are discussed.

4.1 Preliminary Concepts

4.1.1 Solution of Linear Stochastic Differential Equations with Gaussian Noise

Consider the system (in Chapter 3) given by Eq. (3.1) in the case where

f(x(t),u(t), t) = A(t)x(t) is a linear function, and dw(t) is white noise process. Then, it

follows that

dx(t)

dt
= A(t)x(t) + w(t) (4.1)

is obtained, where x(t) is an n-vector, w(t) has a covariance E[w(t)wT (τ)] = Q1δ(t− τ).

The elements of A(t) and Q1(t) are continuous functions of time. It is also assumed that

x(t0) is also a normally distributed random variable with an expected value x̂0 = E[x(t0)]
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and covariance E[x̂0x̂

T
0 ] = Q0. A solution of Eq. (4.1) can be written as

x(t) = Φ(t; t0)x(t0) +

∫ t

t0

Φ(t; τ)w(τ)dτ (4.2)

where Φ(t; t0) is the state transition matrix and satisfies the differential equation

dΦ(t; t0)

dt
= A(t)Φ(t; t0) (4.3)

with the initial condition Φ(t0; t0) = I. Since x(t) is a linear function of a Gaussian process,

it is also Gaussian and can be characterized completely by the expected value (first moment

of the pdf) and the covariance. Computing E[x(t)] yields

E[x(t)] = Φ(t; t0)E[x(t0)] + E

[∫ t

t0

Φ(t; τ)wd(τ)

]
. (4.4)

Since w(t) is zero-mean white noise, we have E[w(t)] = 0, so the second term on the right

side of Eq. (4.4) will vanish. Then, it follows that

x̂(t) = E[x(t)] = Φ(t; t0)E[x(t0)] = Φ(t; t0)x̂0. (4.5)

Taking the derivative with respect to time in Eq. (4.5) yields

dx̂(t)

dt
=

d

dt
Φ(t; t0)x̂0 = A(t)Φ(t; t0)x̂(t0) = A(t)x̂(t). (4.6)

The initial value for Eq. (4.6) can be seen in Eq. (4.5) and is given by

x̂(t0) = x̂0. (4.7)

To compute the state estimation error covariance we subtract x̂(t) from x(t)) to obtain
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e(t) = x(t)− x̂(t) = Φ(t; t0)x(t0) +

∫ t

t0

Φ(t; τ)w(τ)dτ −Φ(t; t0)x̂0. (4.8)

Then, compute P(t) = E[e(t)eT (t)] yields

P(t) = E[x(t)xT (t)] = Φ(t; t0)Q0Φ(t; t0) +

∫ t

t0

Φ(t; τ)Q1(τ)ΦT (t; τ)dτ. (4.9)

To compute the evolution in time of P(t), take derivative of P(t) in Eq. (4.9), yielding

Ṗ(t) = A(t)P(t) + P(t)AT (t) + Q1(t) (4.10)

with

P(t0) = P0. (4.11)

It is also important to note that the solution of Eq. (4.10) represents the prediction (also

known as propagation) step of a continuous-discrete Kalman filter.

To summarize, we have

ḋx̂(t) = A(t)x̂(t)

x̂(t0) = x̂0

˙dP(t) = A(t)P(t) + P(t)AT (t) + Q1(t)
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P(t0) = P0

4.1.2 Special Properties of Gaussian Distributions

The set of special properties and general characteristics of Gaussian distributions are

directly related with the update step in a Kalman type Bayesian filter and can be obtained

using regular calculus and probability definitions [25] [33] [34]. A random variable x ∈ Rn

has a Gaussian distribution with mean µ ∈ Rn and covariance P ∈ Rn×n with the pdf of the

form

N(x|µ,P) =
1

(2π)n/2|P|1/2
exp

(
− 1

2
(x− µ)TP−1(x− µ)

)
, (4.12)

where |P| is the determinant of the matrix P.

Joint density of Gaussian variables. If random variables x ∈ Rn and y ∈ Rm have the

Gaussian densities

x ∼ N(x|µ,P)

y|x ∼ N(y|Hx + u,R), (4.13)

where u ∈ Rm and H ∈ Rm×n, both independent of x. Then the joint density of x,y and the

marginal distribution of y are given asx

y

 ∼ N

( µ

Hµ+ u

 ,
 P PHT

HP HPHT + R


)

(4.14)

y ∼ N(y|Hµ+ u,HPHT + R)

Conditional density of Gaussian variables. If the random variables x and y have the
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joint Gaussian probability density

x,y ∼ N

(a

b

 ,
 A C

CT B

) (4.15)

then the marginal and conditional densities of x and y are given as follows:

x ∼ N(a,A)

y ∼ N(b,B)

x|y ∼ N(a + CB−1(y − b),A−CB−1CT ) (4.16)

y|x ∼ N(b + CTA−1(x− a),B−CTA−1C).

4.2 Continuous-Discrete Extended Kalman Filter

Like other Bayesian filters, the continuous-discrete EKF has a prediction/update

structure. First, we consider p(x(tk)|y1:k−1) starting from the system shown in Eq. (3.1) and

using the procedure from Section 4.1.1. Then the update step is derived using the properties

from Section 4.1.2, obtaining a Gaussian distribution equivalent to p(x(tk)|y1:k).

We assume a model of the form

ẋ(t) = f(x(t), t) + ξ(t) (4.17)

yk = h(x(tk), tk) + vk

where ξ(t) is a stochastic noise process with E[ξ(t)ξT (τ)] = Q(t)δ(t− τ) and vk is a random

noise sequence with E[vkv
T
j ] = Rkδkj
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4.2.1 Prediction

Assume that the f(x(t), t) in Eq. (4.17) is a nonlinear differentiable vector-valued

function. This function can be expanded around a point using a Taylor series expansion. In

the case of the EKF, the reference is the expected value of the state variable x̂(t). Here, we

have

f(x(t), t) = f(x̂(t), t) + F(x̂(t), t)(x(t)− x̂(t)) + .... (4.18)

Neglecting the higher order terms of the expansion yields

ẋ(t) =
[
f(x̂(t), t) + F(x̂(t), t)(x(t)− x̂(t))

]
+ ξ(t) (4.19)

where F(x̂(t), t) is the Jacobian matrix,

F(x̂(t), t) =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f1
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


∣∣∣∣∣
x(t)=x̂(t)

.

Another important expression can be observed in Eq. (4.19) is that x(t)− x̂(t) represents

the estimation error e(t). In general the expected value of the estimation error is desired to

be zero, E[e(t)] = 0, so that the estimator is unbiased. Taking the expectation of Eq. (4.19)

yields

˙̂x(t) = f(x̂(t), t) tk−1 ≤ t ≤ tk, (4.20)

where x̂(tk−1) = x+
k−1 is the state estimate at tk−1 after the measurement update in the

previous iteration. The state estimation error covariance is found by solving
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Ṗ = F(x̂(t), t)P(t) + P(t)F(x̂(t), t)T + Q(t) tk−1 ≤ t ≤ tk, (4.21)

with the initial condition

P0 = P+
k−1.

where P+
k−1 is the state estimate error covariance at tk−1 after the measurement update in

the previous iteration. The main objective in the prediction step is to solve the differential

Eqns. (4.20) and (4.21) from time tk−1 to time tk (between observations). The result

obtained represents a Gaussian distribution, or

p(x(tk)|y1:k−1) = N(x(tk)|x̂(t−k ),P(t−k )), (4.22)

where the superscript − indicates that those are values before incorporating an observation.

4.2.2 Update

Suppose we have an observation available at tk. Starting from the observation model

in Eq. (4.17), we have

yk = h(x(tk), tk) + vk, (4.23)

and

p(yk|x(tk)) = N(yk|h(x(tk), tk),Rk). (4.24)
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Since the EKF is a linear approximation, the expansion of the nonlinear function h(x(tk), tk)

using Taylor series is employed, thus

h(x(tk), tk) = h(x̂(t−k ), tk) + H(x̂(tk)
−, tk)(x(tk)− x̂(t−k )) + .... (4.25)

where H(x̂(t−k ), tk) is the Jacobian matrix of h(x(tk), tk), given by

H(x̂(t−k ), tk) =



∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

· · · ∂h1
∂xn

...
...

. . .
...

∂hm
∂x1

∂hm
∂x2

· · · ∂hm
∂xn


∣∣∣∣∣
x(t)=x̂(t−k )

As before, the higher order terms are neglected. Thus Eq. (4.23) can be written as

yk = H(x̂(t−k ), tk)x(tk) + h(x̂(t−k ), tk)−H(x̂(t−k ), tk)x̂(t−k ) + vk (4.26)

Define u := h(x̂(t−k ), tk)−H(x̂(t−k ), tk)x̂(t−k ). Then we have

p(yk|x(tk)) = N(yk|Hx(tk) + u,Rk). (4.27)

With the Gaussian distributions in Eq. (4.22) and Eq. (4.27) we can calculate the joint

distribution using the property of a Gaussian distribution shown in Eq. (4.14), obtaining

p(x(tk),yk|y1:k−1) = p(yk|x(tk))p(x(tk)|y1:k−1)

= N(yk|Hx(tk) + u,Rk)N(x(tk)|x̂(t−k ),P(t−k )) (4.28)

= N

(x(tk)

yk


∣∣∣∣∣
 x̂(t−k )

Hx̂(t−k ) + u

 ,
 P(t−k ) P(t−k )HT

HP(t−k ) HP(t−k )HT + Rk


)
.

From this result (similar structure to the in Eq. (4.15) and considering that
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h(x̂(t−k ), tk) = Hx̂(t−k ) + u), and using the results from Eqns. (4.16), p(x(tk)|yk) is obtained

as

p(x(tk)|yk) = N(x̂(tk),P(tk)) (4.29)

where

x̂(tk) = x̂(t−k ) + P(t−k )HT [HP(t−k )HT + Rk]
−1[yk − h(x̂(t−k ), tk)] (4.30)

P(tk) = P(t−k )−
[
P(t−k )HT [HP(t−k )HT + Rk]

−1]
[HP(t−k )HT + Rk]

[
P(t−k )HT [HP(t−k )HT + Rk]

−1]T (4.31)

The EKF can be recognized in Eq. (4.30) and Eq. (4.31). The variance of yk|yk−1, Sk and

the Kalman Gain Kk are given by

Sk = HP(t−k )HT + Rk (4.32)

and

Kk = P(t−k )HTS−1k . (4.33)

4.3 Implementation

The implementation for the continuous-discrete EKF (CDEKF) has a general

structure that follows from considering the Bayesian framework. Some elements in the

implementation are used in other filter strategies, in this case the particle filter described in

Chapter 5.

Since the CDEKF has a continuous time element, the prediction step requires
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solution of two ordinary differential equations between observations, Eq. (4.20) and

Eq. (4.21). These differential equations usually require numerical methods for integration

even though, Eq. (4.21) is linear and could be solved by analytical methods but it has high

dimensionality in this case. In this thesis, Runge Kutta of order 4/5 (RK4) is used since it

uses a constant step size and has short computation time compared with other methods, and

we can vary the step size between iterations.

A vital step in the implementation of Bayesian filters and state estimators is to

obtain a state space representation of the system. There are infinite state space

representations of a system [35]. In our case the state space form used was presented in

Chapter 2. Adding noise w(t) to this state space form will render the model a stochastic

differential equation [11]. For the CDEKF is also important to obtain an analytic

representation of the Jacobian matrices which can also be checked using numerical methods.

Finally the observation model is needed. In the case of tracking objects in the

atmosphere of a planet, radars have been the most widely used sensor when internal control

and knowledge of the object is not at hand. Radars are complicated systems. Since the aim

of this work is not focused on the measurement system but in the modeling of the spiraling

target, a simplistic approach to a radar model is used [36], where the measurements obtained

are range ρ, rate ρ̇, elevation and azimuth, or

s = r− rr,n

ρ = ‖s‖

ρ̇ =
ṙ� s

‖s‖

azi = arcsin
(s ∗ k) · i
‖s ∗ k‖

elev = π/2− arcsin
s · k
‖s ∗ k‖

(4.34)
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where rr,n is the position were the radar is located in the planet-centered, inertial reference

frame and i, j and k are the orientation vectors in the local East-North-Up frame in which

the measurements are defined. The quantities from Eq. (4.34) form the observations vector

at tk given by

h(x(tk), tk) =
[
ρk, azik, elevk, ρ̇k

]
(4.35)

The algorithm to implement the CDEKF is

1 set P(t) = P0, x̂(t) = x̂(t0), t0 ≤ t ≤ tT , 1 ≤ k ≤ T

2 from/for t = t0 to tT do

3 evaluate F with x̂(tk−1)

4 for tk−1 to tk

5 make state prediction solving d
dt

x̂(t) = f(x̂(t), t)

6 get solution x̂(t−k )

7 solve dP
dt

= FP + PFT + Q(t)

8 get solution P(t−k )

9 endfor

10 make measurement prediction ŷk = h(x̂(t−k ), tk)

11 evaluate H with x̂(t−k )

12 calculate Sk = HP(t−k )HT + Rk

13 calculate Kk = P(t−k )HTS−1k

14 calculate estimate (mean) x̂(tk) = x̂(t−k ) + Kk[yk − ŷk]

15 calculate covariance P(tk) = P(t−k )−KkSkK
T
k

16 store results x̂(tk) and P(tk)
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17 endfor

The values of P0, x̂0, Q(t) and Rk are important design parameters that determine

how the filter is going to behave. The initial covariance P0 give us an area where the first

estimate could be around the real values of the states. The initial estimate x(t0) is an initial

guess of the values of the states to be estimated. Its choice can be based on raw

measurements or knowledge about the system. When performing Monte Carlo simulations

the initial estimate is chosen randomly inside the set of values of the initial covariance for

each run. The process noise Q(t) is determined taking in account how accurate we consider

our model to be, and how much information is lost after the linear approximation. The

sensor noise Rk in theory is defined by the tolerances presented by the sensor on its different

measurements, established by the manufacturer of the sensor. It can be changed depending

on the application and the behavior observed in the filter.
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CHAPTER 5

Particle Filter

The concepts associated with the particle filter are presented. The techniques that

form the basis of the filter include Monte Carlo methods, perfect sampling and importance

sampling. The continuous-discrete particle filter is developed and key details of the

implementation are presented.

5.1 Monte Carlo Methods

Monte Carlo methods are in reference to the Principality of Monaco since it was

known as the capital of the “games of chance”. The systematic development of Monte Carlo

methods is dated to the 1940’s, being born thanks to the work of the pioneers of

computation, particle physics and hydrodynamics (probabilistic diffusion) working towards

development of the atomic bomb [9]. Monte Carlo methods are numerical techniques to

calculate probabilities and other related quantities using sequences of random numbers. For

the case of one variable a general procedure would proceed as follows:

• Generate a sequence of random numbers, r1, r2, r3, . . . , rN uniformly distributed in the

interval [0, 1].

• Use this sequence to produce a new sequence, x1, x2, x3, . . . , xN distributed according

to a given pdf of interest.
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of x can be treated as simulated measurements and the probability of x taking values

in an identified region can be estimated.

Formally a Monte Carlo calculation in our context is an integration. It is different

from regular numerical methods since probability theory elements are used and the overall

estimation error decreases with the square root of the number of samples N . There are

many techniques inside the family of Monte Carlo methods (see [37] for example). but the

set of techniques known as sequential Monte Carlo methods and sampling methods are the

techniques that led to the development of the particle filter.

5.2 Exact Sampling

Assume we have N independent and identically distributed random samples (also

named as particles),
{
x(t0:k)

(i), i = 1, 2, . . . , N
}

according to p(x(t0:k)|y1:k). An empirical

estimate of the distribution can be given by

pN(x(t0:k)|y1:k) =
1

N

N∑
i=1

δx(t0:k)(i) (5.1)

where δx(t0:k)(i) denotes the Dirac function located in x(t0:k)
(i). Using standard probability

theory, the expected value of a function EpN [f ] can be calculated.

EpN [f ] =

∫
f(x(t0:k))p

N(x(t0:k)|y1:k)dx(t0:k) =
1

N

N∑
i=1

f(x(t0:k)
(i)). (5.2)

Since pN(x(t0:k)|y1:k) is and estimate of p(x(t0:k)|y1:k), then Eq. (5.2) is a discrete estimate

of the expected value of a function Ep[f ]
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ÊN [f ] = EpN [f ] ' Ep[f ]∫
f(x(t0:k))p

N(x(t0:k)|y1:k)dx(t0:k) '
∫
f(x(t0:k))p(x(t0:k)|y1:k)dx(t0:k).

This estimate is unbiased and if the posterior variance σ2
f <∞, then the variance of ÊN(f)

is equal to
σ2
f

N
. From the strong law of numbers [9], we have

EpN [f ]
a.s−−−→

N→∞
Ep[f ], (5.3)

where
a.s−→ denotes almost convergence. Also if σ2

f <∞, then the central limit theorem holds

and

√
N
[
EpN [f ]− Ep[f ]

]
⇒ N (0, σ2

f ) (5.4)

where ⇒ denotes convergence in distribution. One significant advantage over deterministic

numerical integration methods is that the accuracy is independent of the dimension of the

integrand [37]. It is extremely challenging to sample the posterior directly, especially in the

case of a large dimensional state space. Due to this technical problem, different techniques

are used in practice. There are several key sampling techniques [37]. The particle filter was

developed using importance sampling.

5.3 Importance Sampling

The basic idea of importance sampling is to use a new density function called

importance distribution (also referred as proposal distribution or instrumental distribution),
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denoted as π(x(t0:k)|y1:k), and then to use weights to correct the fact that the sampling is

made from the importance distribution instead of the target distribution p(x(t0:k)|y1:k).

Consider the identity [38]

P (x ∈ X ) =

∫
X

p(x(t0:k)|y1:k)dx(t0:k) =

∫
X

π(x(t0:k)|y1:k)
p(x(t0:k)|y1:k)

π(x(t0:k)|y1:k)
dx(t0:k)

=

∫
X

π(x(t0:k)|y1:k)w(x(t0:k))dx(t0:k) (5.5)

Then with N independent
{
x(t0:k)

(i), i = 1, 2, . . . , N
}

samples from π(x(t0:k)|y1:k) and

computing the expected value of f(x(t0:k)), it follows that

E[f(x(t0:k)] =

∫
X

f(x(t0:k)π(x(t0:k)|y1:k)w(x(t0:k))dx(t0:k)

' 1

N

N∑
i=1

w(x(t0:k)
(i))f(x(t0:k)

(i))

ÊN [f ] =
1

N

N∑
i=1

w
(i)
k f(x(t0:k)

(i)) (5.6)

For some practical applications the quotient of the probability functions will usually not be

normalized when forming the weight w
(i)
k . For this reason a normalization has to de

employed. Hence we have

ÊN [f ] =
N∑
i=1

w
(i)
k f(x(t0:k)

(i)), (5.7)

where,

w
(i)
k =

w
(i)
k /N

N∑
j=1

w
(j)
k /N

. (5.8)

The estimate in Eq. (5.7) presents the same characteristics shown at the end of exact
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sampling section. In other words,

√
N
[
EN [f ]− E[f ]

]
⇒ N (0, σ2

f ). (5.4)

5.4 Particle Filter

The particle filter takes advantage of sampling, but not in a batch fashion. For state

estimation, a sequential (recursive) representation is important. This is achieved by finding

a relation with the general Bayes filter. The result is known as sequential importance

sampling and constitutes a basic version of the particle filter.

5.4.1 Sequential Importance Sampling

The importance sampling method can be modified so that the values obtained at an

instant tk−1 are used to obtain an estimate. This implies using the past simulated

trajectories (samples)
{
x(t0:k−1)

(i), i = 1, 2, . . . , N
}

and importance weights w
(i)
0:k−1, which in

turn implies the use of the Markov assumption and the conditionally independence of

observations assumption. This means that the importance distribution π(x(t0:k)|y1:k) follows

the Markov assumption and can be represented as

π(x(t0:k)|y1:k) = π(x(tk)|x(t0:k−1),y1:k)π(x(t0:k−1)|y1:k−1),

or iterating, we obtain

π(x(t0:k)|y1:k) =
k∏
i=1

π(x(ti)|x(ti−1),y1:i)π(x(t0)). (5.9)

This importance distribution can easily be used to evaluate sequentially in time the
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importance weights. Then starting from the general expression for the importance weights

and under the assumptions mentioned above, a sequential representation of wk is obtained

wk ≡ w(x(t0:k)) =

Eq. (3.5)︷ ︸︸ ︷
p(x(t0:k)|y1:k)

π(x(t0:k)|y1:k)

∝ p(y1:k|x(t0:k))p(x(t0:k))

π(x(t0:k)|y1:k)

∝
k∏
i=1

p(y1:i|x(t0:i))p(x(ti)|x(ti−1))p(x(t0))

π(x(ti)|x(ti−1),y1:i)π(x(t0))
. (5.10)

Expanding for the kth term we get a recursive representation for wk as

wk ∝
k−1∏
i=1

p(y1:i|x(t0:i))p(x(ti)|x(ti−1)p(x(t0))

π(x(ti)|x(ti−1),y1:i)π(x(t0))

p(yk|x(tk))p(x(tk)|x(tk−1))

π(x(tk)|x(tk−1),y1:k)

∝ wk−1
p(yk|x(tk))p(x(tk)|x(tk−1))

π(x(tk)|x(tk−1),y1:k)
. (5.11)

This expression is presented proportional because the denominator in Eq. (3.5) was not

taken in account. In general the problem of implementing a filter with the sequential

importance sampling paradigm consists of choosing an appropriate importance distribution

π(x(t0:k)|y1:k) and likelihood function p(yk|x(tk)), then sampling from an initial distribution

π(x(t0)) and using the transition distribution p(x(tk)|x(tk−1) to evolve the samples, and

finally finding the weights for this samples. The weights are calculated with the sampled

form of Eq. (5.11) as

w
(i)
k ∝ w

(i)
k−1

p(yk|x(tk)
(i))p(x(tk)

(i)|x(tk−1)
(i))

π(x(tk)(i)|x(tk−1)(i),y1:k)
. (5.12)
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If necessary the weights can be normalized as seen in equation Eq. (5.8). This depends on

the choice of distributions.

5.4.2 Continuous-Discrete Particle Filter

The particle filter is an algorithmic implementation of sequential importance

sampling. First, we must choose the importance distribution π(x(tk)|x(tk−1),yk). For the

case of the first particle filter, the choice was

π(x(t0:k)|y1:k) = p(x(t0:k)) =
k∏
i=1

p(x(ti)|x(ti−1))p(x(t0))

which minimizes the variance of the importance weights [31]. This particle filter is known as

the bootstrap filter or condensation algorithm and was first introduced by Gordon et al [24].

Then the recursive weight equation (Eq. (5.12)) becomes

w
(i)
k = w

(i)
k−1p(yk|x(tk)

(i)).

The evolution of the set of samples is made by the transition distribution

p(x(tk)|x(tk−1)) that represents the evolution of x(t). After drawing an initial set of particles

from p(x(t0)) the continuous-discrete particle filter can be shown in the prediction/update

fashion [34]. To propagate trajectories
{
x(t)(i) : tk−1 ≤ t ≤ tk, i = 1, 2, . . . , N

}
, we have

dx(i)(t)

dt
= f(x(t)(i),u(t), t) + σ(x(t)(i), t)β(t)(i)

with x(tk−1)
(i) being the initial condition. Then the samples x(tk)

(i) obtained as the solution

have the distribution p(x(tk)|x(tk−1)) and are directly related with the probability density

function of the noise β(t).
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The updates are incorporated when measurements are available using the likelihood

function and the set of samples obtained, to calculate the new importance weights, given by

w
(i)
k = w

(i)
k−1p(yk|x(tk)

(i)).

These weights can be used in the computation of the point estimates or to carry out a

resampling process (discussed in next section). The output can be represented as the set{
x(tk)

(i), w
(i)
k

}
i = 1, 2, . . . , N .

5.5 Resampling

Particle filters can display degeneracy, which manifests itself after many iterations

where one of the samples will have a relevant weight, while the remaining will be

insignificant [12]. Degeneracy is a problem that cannot be completely avoided due to the

characteristics of the algorithm that the variance of the weights increase with time [38]. This

degeneracy can be decreased in two ways. First, by choosing adequate importance

distribution (this changes the usual form of the bootstrap filter) and second, through

resampling techniques. Resampling consists in removing the samples with insignificant

weight, while maintaining and reproducing the samples that are important for the process

(have a high importance weight), and then assigning the same weight to all the surviving

samples. Formally it consists on retracting from a weighted representation of the posterior

Eq. (5.7) to a standard sampled representation Eq. (5.1).

There are many resampling techniques and more could be developed using

mathematical techniques or heuristics, but there is a set of well established techniques that

can be readily used [12], [37], [39], [38]. In this case several techniques were tested, and the

residual resampling was chosen based on the results from [39] which shows its superiority
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over other techniques for a sample size N = 1000.

Residual resampling consists on allocating n,i = bNwic copies of particle x(tk)
(i) to

the new distribution. Additionally, resample m = N
∑
n,i particles from{

x(t0:k)
(i), i = 1, 2, . . . , N

}
by making n,,i copies of particle x(tk)

(i) where the probability for

selecting x(tk)
(i) is proportional to w,i = Nwin

,
i [39].

5.6 Implementation

A general implementation of the algorithm for the continuous-discrete particle filter is

relatively simple, but has several practical issues that have to be addressed to avoid filter

divergence. In the case of this work, since the values of position, velocity and acceleration

are measured in the planet-centered inertial reference frame, the values of the state are large

and numerical problems can arise, so appropriate scaling is necessary.

5.6.1 Likelihood Function

An important step in the implementation is the choice of the likelihood function. It

can be chosen as any probability density function. Since the comparison is being made with

a Gaussian approximation (EKF), the noise (process and measurement) is then chosen to

have this same nature. From this follows that the likelihood function should have itself a

Gaussian distribution.

When choosing the likelihood function for a radar sensor that gives different

measurement types (e.g., range and rate, or azimuth and elevation) we could assume the

independence of the measurements. Choosing a Gaussian representation for each we can

obtain the final likelihood function (e.g., [40]). This assumption does not use the
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information contained between the particles that come from the prediction step and can

easily cause divergence of the particle filter. To account for the state prediction,we have a

multivariate Gaussian distribution with a covariance that gives a relationship between the

measurement and sample covariance given by

p(yk|x(tk)) = N(yk|h(x(tk), tk),HP(t−k )HT + Rk), (5.13)

where H is the Jacobian of the measurements, P(t−k ) is the covariance of the samples

(calculated empirically) and Rk is the measurement covariance.

5.6.2 Algorithm

The particle filter approximates the posterior pdf using sets of state samples

(particles):

Xk = {x(tk)
(i)}i=1,...,N (5.14)

The set Xk consists of N particles x(tk)
(i), for some large number of N (e.g, N = 1000).

Together, these particles approximate the posterior p(x(tk)|yk). The set Xk is calculated

recursively.

Initially, at the instant t0, the particles x(t0)
(i) are generated from the initial state

distribution p(x(t0)). The k-th particle set Xk is then calculated recursively from Xk−1 as

follows:

1 set Xk = Xaux
k = ∅

2 for j = 1 to N do
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3 pick the j-th sample x(tk−1)
(j) ∈ Xk−1

4 draw x(tk)
(j) ∼ p(x(tk)|x(tk−1)

(j))

5 set w
(j)
k = p(yk|x(tk)

(j))

5.1 normalize w
(j)
k

6 add 〈x(tk)
(j), w

(j)
k 〉 to Xaux

k

7 endfor

8 for i = 1 to N do

9 draw x(tk)
(i) from Xaux

k with probability proportional to w
(i)
k

10 add x(tk)
(i) to Xk

11 endfor

Lines 2 through 7 generates a new set of particles, with line 4 being the prediction

step (solving an SDE). Lines 8 through 10 apply residual resampling (or a chosen resampling

technique). Finally, after obtaining the set of particles from resampling, line 10, the

important statistics can be calculated.
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CHAPTER 6

Results and Analysis

6.1 Model Simulation Results

The class of trajectories that can be generated with the vehicle mathematical model

are illustrated in this section. This model can be applied to any planet as long as a gravity

and atmospheric models are available. Here we simulated trajectories on Mars and Earth.

Trajectories are created for a typical reentry vehicle whose tracking begins 50 km east

of the origin of the local frame at an altitude of 100 km. The vehicle moves westward with

an initial velocity of 1500 m/sec, oriented downward 10◦ relative to the local horizontal. The

azimuth is chosen to be 180◦ so the trajectory follows a path parallel to the north direction

and the different changes on the trajectory can be readily observed. The vehicle itself has

the following properties:

βm = 4000 Kg/m2 CD0 = 0.033 (CL/CD)max = 1.5 S = 1 m

Several trajectories were generated using a periodic function of varying frequencies for ϕ̇ and

different values of λ. The values used represent plausible values for ϕ̇ and λ. For each

scenario, the trajectory torsion, the magnitude of the velocity and the lift are shown.

The two sets of numerical experiments (Earth and Mars) shown in Figures 6.1–6.8,

are summarized in Table 6.1. In Figure 6.9, the final moments of the spiral depicted in
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Figure 6.8 are magnified to more clearly illustrate the trajectory.

Table 6.1: Numerical Investigations of Spiraling Motion (for Mars and Earth)
ϕ̇ λ

(sec/turn)
2π 0
20 0.6
2π 1
20 2
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Figure 6.1: Trajectory for ϕ̇ = 2π sec/turn and λ = 0 on Mars

6.1.1 Spiraling Change

It was observed distinct behavior for certain vehicle parameters as it manifested itself

in the torsion computations. In particular, the torsion exhibited a “boundary” where the

spiraling motion before and after had very different personalities. The torsion is a measure

of the motion out of the osculating plane. A zero torsion means that the target trajectory
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Figure 6.2: Trajectory for ϕ̇ = 2π sec/turn and λ = 0 on Earth

−200

−150

−100

−50

0

50

−0.4
−0.3

−0.2
−0.1

0
0.1

0.2
0.3

0.4
−20

0

20

40

60

80

100

East Direction (Km)
North Direction (Km)

V
e

rt
ic

a
l 
D

ir
e

c
ti
o

n
 (

K
m

)

0 50 100 150 200 250 300
−3

−2

−1

0

1
x 10

−3

to
rs

io
n 

[1
/m

]

0 50 100 150 200 250 300
0

500

1000

1500

2000

sp
ee

d 
[m

/s
]

0 50 100 150 200 250 300
0

10

20

30

40

lif
t

Time [s]

Figure 6.3: Trajectory for ϕ̇ = 20 sec/turn and λ = 0.6 on Mars
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Figure 6.4: Trajectory for ϕ̇ = 20 sec/turn and λ = 0.6 on Earth

remains in a plane, known as the maneuver plane. The larger the magnitude of the torsion,

the larger the displacement of the osculating plane. Note that the torsion can be a negative

number, which is an indication of the direction of the spiraling relative to the osculating

plane.

But what is then the relationship between the torsion and the actual spiraling as seen

on the trajectory? It was observed that an out-of-plane motion (torsion different that zero)

does not mean spiraling motion (see Fig. 6.10), but torsion has to be different than zero for

this phenomenon to occur. The spiraling motion is actually related with the abrupt change

of sign, “boundary”, in the torsion. It was observed that this boundary is produced when

several input parameters are different than zero: ϕ̇ (rotation of the vehicle) and λ (related

whit the generation of lift, and thus with the atmosphere and gravity). Significant spiraling

rotation requires ϕ̇ 6= 0 and a significant value of lift generation.
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Figure 6.5: Trajectory for ϕ̇ = 2π sec/turn and λ = 1 on Mars

6.2 Estimation Results

6.2.1 Simulated Trajectory For Estimation

To compare the two EKF and particle filter, it is important to choose a trajectory

possessing characteristics important for the model (out of plane motion and spiraling) and

characteristics that can be found in typical reentry trajectories. The general characteristics

and parameters of the chosen trajectory are found in Table 6.2. These parameters produce a

realistic trajectory where, without any control action, a change in torsion can be observed.

Measurements are taken every 0.1s by a radar placed on the surface of the planet, and

denoted by an asterisk in Figure 6.11. The origin of the local frame is placed at the radar

location.
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Figure 6.6: Trajectory for ϕ̇ = 2π sec/turn and λ = 1 on Earth

−200

−150

−100

−50

0

50

−0.4
−0.3

−0.2
−0.1

0
0.1

0.2
0.3

0.4
−20

0

20

40

60

80

100

East Direction (Km)
North Direction (Km)

V
e

rt
ic

a
l 
D

ir
e

c
ti
o

n
 (

K
m

)

0 50 100 150 200 250 300 350 400 450
−6

−4

−2

0

2
x 10

−3

to
rs

io
n

 [
1

/m
  
]

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

s
p

e
e

d
 [
m

/s 
 ]

0 50 100 150 200 250 300 350 400 450
0

10

20

30

lif
t

Time [s ]

Figure 6.7: Trajectory for ϕ̇ = 20 sec/turn and λ = 2 on Mars
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Figure 6.8: Trajectory for ϕ̇ = 20 sec/turn and λ = 2 on Earth
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Figure 6.9: Detailed end of trajectory for ϕ̇ = 20 sec/turn and λ = 2 on Earth

The torsion and spiraling frequency for this trajectory were calculated and are displayed in

Figures 6.12 and 6.13.

6.2.2 Filter Parameters

One of the most important and complicated steps in applied filtering is the tuning

process of finding the parameters that make the filter function as desired. To compare (in an
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Figure 6.10: Trajectory for ϕ̇ = 0 sec/turn and λ = 0 on Mars

Table 6.2: Trajectory and vehicle parameters (speed and position in local frame)
Parameter Value units
azimuth0 30 degrees
elev0 -10 degrees
speed0 5000 m/s
East 0 km

North 50 km
Altitude 100 km

λ0 2 –
ϕ0 0 rad
βm 4000 kg/m2

S 2 m
ϕ̇ 2π sec/turn

objective way) the results given by the estimation techniques,it is essential to use the same

values for the measurement noise, since the same sensor is used for both implementations.

Dissimilar values for the process noise can be used, since, even though the same model is

used, different kind of approximations are made in both filtering techniques.

Other important parameters are the time step used in the solution of the differential
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Figure 6.11: Chosen trajectory with radar (*), in local frame
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Figure 6.12: Torsion of the trajectory

equations. This affects the performance of the filters, since it determines the length of the

prediction step. In this case, δt = 0.03s for the EKF and δt = 0.04s for the particle filter.

The particle filter was made with N = 1000.
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Figure 6.13: Change in spiraling frequency through the trajectory
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Table 6.3: Parameter for the EKF
Parameter Value

Q diag([0 0 0 0 0 0 0.12 0.12 0.12 0.012 0.012])
R diag([102 0.0012 0.0012 102])
P0 diag([4002 4002 4002 202 202 202 0.52 0.52 0.52 0.52 2π2])

Table 6.4: Parameter for the particle filter
Parameter Value

Q diag([0 0 0 0 0 0 0.012 0.012 0.012 0.012 0.012])
R diag([102 0.0012 0.0012 102])
P0 diag([4002 4002 4002 202 202 202 0.52 0.52 0.52 0.52 π2])

6.2.3 State Estimation Error

We have results showing the behavior of the difference between the truth (simulated

trajectory) and the states estimated. Figures 6.14 to 6.21 show the error estimation for the

states and the square root of their respective state estimation error covariance, after 30

Monte Carlo simulation runs.
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Figure 6.14: Position estimation error for the EKF

It is observed in some of the figures (see for example Fig. 6.20) that the covariance

seems to grow again at the end of the trajectory. This is not due to divergence of the filter;

it is due to the nature of the measurements, since the measured range has a similar behavior
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Figure 6.15: Velocity estimation error for the EKF

0 20 40 60 80 100 120 140 160 180
−100

−50

0

50

100

X
 A

c
c

. 
[m

/s
2
]

0 20 40 60 80 100 120 140 160 180

−50

0

50

100

Y
 A

c
c

. 
[m

/s
2
]

0 20 40 60 80 100 120 140 160 180

−50

0

50

100

Z
 A

c
c

. 
[m

/s
2
]

Time [s]

Figure 6.16: Acceleration estimation error for the EKF

(see Fig. 6.22).

6.2.4 Spiraling Estimation Error

The calculation of the spiraling is done through the calculation of the estimated

torsion. Its error is a combination of the state estimation errors. The torsion is a small

number, so in percentage the error is larger than other larger variables. The spiraling

frequency error is obtained by scaling the torsion estimation errors with the velocity
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Figure 6.17: Parameters estimation error for the EKF
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Figure 6.18: Position estimation error for the PF

estimation errors.

6.3 General analysis of estimation error

The successful implementation and errors obtained show that the coarse and highly

nonlinear model can actually be used for estimation of the state and spiraling of a reentry

vehicle, both techniques showing satisfactory results using just one radar. In general, even

though in theory the covariance in the particle filter is suppose to increase with time (see

Chapter 5), with a careful implementation a proper behavior of the covariance can be
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Figure 6.19: Velocity estimation error for the PF
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Figure 6.20: Acceleration estimation error for the PF
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Figure 6.21: Parameters estimation error for the PF
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Figure 6.22: The range measurements increase with time (local frame)
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Figure 6.23: Torsion estimation error for the EKF
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Figure 6.24: Torsion estimation error for the particle filter
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obtained. The particle filter has analytical advantages, due to the sampled representation of

the states at each instant of time. An empirical probability density function of the different

variables can be obtained, for instance see Fig. 6.25, and it can be seen that it actually

shows a non-Gaussian distribution, even though there was Gaussian assumption for the

measurement and process noises.
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Figure 6.25: Probability density function for position in X at time = 167.6 s

In particular, it can be said that the particle filter outperformed the extended

Kalman filter in the estimation of the parameters λ and ϕ. This can be seen comparing

Figures 6.17 and 6.21, and is important when identifying a target. A better performance is

obtained when estimating acceleration, Fig. 6.20, reflected too in a better estimation of the

torsion from which it follows that we obtain a better estimation of the spiraling, in general.
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CHAPTER 7

Conclusions

7.1 Conclusions

The main purpose of this work was to develop a physics-based model to be used for

estimation of the state and spiraling of a reentry vehicle in the atmosphere. The types of

reentry vehicles investigated are limited to axisymmetric vehicles. The estimation process

was based on Bayesian estimation techniques, in particular, the popular extended Kalman

filter and the newer technique known as the particle filter.

Concepts from differential geometry were used to analyze the trajectory behavior,

using torsion as a measure of the spiraling of the trajectory. The torsion can also be scaled

by velocity to obtain the spiraling frequency.

The use of the Bayesian framework is useful as a common foundation where the main

technique is born naturally out of simple concepts of dynamical systems and probability

theory, and then particular techniques are obtain by the application of key assumptions.

This actually shows the relationship between the existing techniques and the possibilities of

expansion and creation of new techniques.

The implementation of the EKF and the particle filter showed satisfactory results

and can actually be used for the estimation of the states and torsion of the trajectory. It was

shown that the particle filter can outperform the EKF, but for real time applications
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parallelization will be needed for the particle filter to reduce the execution time.

7.2 Future Work

There are three particular lines of action where to extend and/or improve the results

from this work. First, performing tests of an actual vehicle to validate the characteristics of

a reentry trajectory model with high degree of confidence. A simplified version of the model

was already implemented in a real system for aircraft tracking by Bishop [6]. Secondly, the

model can be extended even more using other physical principles, adding more degrees of

freedom to the vehicle movement, changing the treatment as a point to that of a rigid body.

Lastly, a relationship between the particle filter and the technique of bank of expert EKFs

[5] could be established.
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APPENDIX A

Derivation of Jacobian Matrices

A.1 State Propagation Partials

The derivation of the state propagation partials for this model can be found in the

Appendix of [5], but it doesn’t include the parameters λ and ϕ. The partials here are just an

extension of the ones shown in that work, expanding the size of the Jacobian matrix to

include the parameters. Partials of the gravity and atmospheric models are not included

because they are application dependant under the assumptions made about the planet. The

derivation mentioned before is reproduced here to account for the different notation and

additions to the Jacobian Matrix.

First, let recall that the planetary rotation vector is

Ω = [0 0 Ω]T .

Then defining the relative state vector Xr we have

ṙr = ṙ−Ω ∗ r

r̈r = a + g −Ω ∗ ṙ (A.1)

Xr = [ṙr r̈r]
T
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with

ew1 =
ṙr
rr
, ew2 = −

ṙr
ṙr
∗ uz∥∥∥ ṙr

ṙr
∗ uz

∥∥∥ , and ew3 = ew1 ∗ ew2

We have the equation of motion

r̈ = a + g

...
r = [ω ∗ a] + [ϕ̇ew1 ∗ a]−

[
Ḋew1

]
+ L̇ [−e2

w sinϕ+ e3
w cosϕ] + ġ (A.2)

X = [ṙ r̈]T

with

ωw =
ṙr ∗ r̈r
ṙ2r

,

The first step is the derivation of the partials for the relative states Xr:

∂Xr

∂X
=

S(Ω) I3×3 03×3

03×3 S(Ω) I3×3


dXr

dg
= [03×3 I3×3] (A.3)

dXr

dX
=

∂Xr

∂X
+

dXr

dg

dg

dX
,

where S() designates the skew symmetric representing the vector cross product in the sense

that

a ∗ b = S(a)b ∀ a,b ∈ R3.

We can also compute the partials of each of the wind frame vectors (omitting the
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superscript w for easier reading)

de1

dXr

=
1

‖ṙr‖3


‖ṙr‖2 − ṙ2rx , −ṙrx ṙry , −ṙrx ṙrz

−ṙrx ṙry , ‖ṙr‖2 − ṙ2ry , −ṙry ṙrz 03×3

−ṙrx ṙrz , −ṙry ṙrz , ‖ṙr‖2 − ṙ2rz


∂e2

∂e1

= −
(
− S(r)

‖e1 ∗ r‖
+ 2

(e1 ∗ r)(S(r)(e1 ∗ r))T

‖e1 ∗ r‖3

)
∂e3

∂e1

= S(e2)

∂e2

∂X
= −

[
− S(e1)

‖e1 ∗ r‖
+ 2

(e1 ∗ r)(S(e1)(e1 ∗ r))T

‖e1 ∗ r‖3
03×6

]
de1

dX
=

∂e1

∂Xr

∂Xr

∂X

de2

dX
=

∂e2

∂X
+
∂e2

∂e1

de1

dX
(A.4)

de3

dX
=

∂e3

∂e1

de1

dX
.

Partials are then taken for each of the terms in the equation of motion A.2

Ta = ω ∗ a

∂Ta

∂X
= [03×6 S(ω)]

dω

dXr

=
1

‖ṙr‖2
[−S(r̈r) S(ṙr)]− 2

ṙr ∗ r̈r
‖ṙr‖4

[
ṙTr 01×3

]
(A.5)

∂Ta

∂ω
= −S(a)

dTa

dX
=

∂Ta

∂X
+
∂Ta

∂ω

dω

dXr

dXr

dX
,

(A.6)
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Tb = ϕ̇e1 ∗ a

∂Tb

∂X
= ϕ̇ [03×6 S(e1)] (A.7)

∂Tb

∂e1

= −S(e1)

dTb

dX
=

∂Tb

∂X
+
∂Tb

∂e1

de1

dXr

dXr

dX
,

Tc = −Ḋe1 (A.8)

dTc

dX
= −e1

dḊ

dX
− Ḋde1

dX
, (A.9)

Td = L̇(−e2 sin(ϕ) + e3 cos(ϕ)) (A.10)

dTd

dX
= (−e2 sin(ϕ) + e3 cos(ϕ))

dL̇

dX
+

L̇(−e2 sin(ϕ) + e3 cos(ϕ))

,

where appropriate expressions of L̇ and Ḋ are given by

L̇ =
S

m

(
ĊLq + CLq̇

)
(A.11)

Ḋ =
S

m

(
ĊDq + CDq̇

)
(A.12)

with
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q =
1

2
ρ‖ṙr‖2 (A.13)

q̇ =
1

2
ρ̇‖ṙr‖2 + ρr̈r ∗ ṙr, (A.14)

Hence, we have the following partials:

∂q

∂X
=

1

2

dρ

dX
‖ṙr‖2

dq

dXr

= ρ
[
ṙTr 01×3

]
(A.15)

dq

dX
=

∂q

∂X
+

dq

dXr

dXr

dX

∂q̇

∂X
=

1

2

dρ̇

dX
‖ṙr‖2 +

dρ

dX
r̈r � ṙr

dq̇

dXr

= ρ̇ [ṙr 01×3] + ρ
[
r̈Tr ṙTr

]
(A.16)

dq̇

dX
=

∂q̇

∂X
+

dq̇

dXr

dXr

dX

dL̇

dX
=

S

m

(
CL

dq̇

dX
+ ĊL

dq

dX

)
(A.17)

dḊ

dX
=

S

m

(
CD

dq̇

dX
+ ĊD

dq

dX

)
.

To find the partial with respect to the parameters λ and ϕ we need a different representation

for L̇ and Ḋ
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Ḋ = βmq(1 + λ2)

(
2r̈� ṙ

ṙ2
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)
,

and

L̇ = 2βm

(
CL
CD

)
max

qλ

(
2r̈� ṙ

ṙ2r
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)
.

Then we have

∂Tc

∂λ
= 2βmq

(
2r̈� ṙ

ṙ2
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)
e1 (A.18)

∂Td

∂λ
= 4βmq

(
2r̈� ṙ

ṙ2
− 2(Ω ∗ r)� r̈r

ṙ2r
− ṙ� r

Hor

)
(−e2 sin(ϕ) + e3 cos(ϕ)) (A.19)

∂Td

∂ϕ
= −L̇(e2 cos(ϕ) + e3 sin(ϕ)) (A.20)

Finally, the state propagation partial matrix F is given by

F =



03×3 I3×3 03×3 03×1 03×1

03×3 03×3 I3×3 03×1 03×1

dTa

dX
+ dTb

dX
+ dTc

dX
+ dTd

dX
∂Tc

∂λ
+ ∂Td

∂λ
∂Td

∂ϕ

02×3 02×3 02×3 02×1 02×1


. (A.21)
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