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A novel, simple and totally recyclable method has been developed 

for the synthesis of nontoxic, biocompatible and biodegradable 

composite materials from cellulose and chitosan. In this method, 

[BMIm
+
Cl

-
], an ionic liquid (IL), was used as a solvent to dissolve 

and synthesize the [CEL+CS] composite materials. Since the IL 

can be removed from the materials by washing them with water, 

and recovered from the washed solution, the method is totally 

recyclable.  XRD, FTIR, NIR and SEM were used to characterize 

the materials and to confirm that CEL and CS were successfully 

regenerated by the method without any chemical transformation.  

More importantly, we have successfully demonstrated that 

[CEL+CS] material can serve as an effective adsorbent for removal 

of various endocrine disruptors including polychlorophenols and 

bisphenol A.  This is because the composites have combined 

advantages of their components, namely superior chemical stability 

and mechanical stability (from CEL) and excellent adsorption 

capability for pollutants (from CS). 

 

 

Introduction 

 

Sustainability, industrial ecology, eco-efficiency, and green chemistry are directing the 

development of the next generation of materials, products, and processes. Biodegradable 

and biocompatible composite materials generated from renewable biomass feedstock are 

regarded as promising materials that could replace synthetic polymers and reduce global 

dependence on fossil fuel sources.  As a consequence, chitosan has been a subject of 

intense studies for many years.  The popularity stems from the fact that in addition to 

being derived from chitin, the second most abundant naturally occurring polysaccharide 

found in the exoskeletons of crustaceans such as crabs and shrimp and cell walls of fungi, 

chitosan (CS) is biodegradable, biocompatible, and possesses unique structure and 

properties which has been successfully exploited in many applications including 

hemostasis, wound healing, bactericide and fungicide, drug delivery and very good 

adsorbent for various organic and inorganic pollutants (1 – 7).   For examples, CS has 

been found to effectively remove organic pollutants and/or endocrine disruptors such as 

bisphenol A, PCB, chlorophenols as well as a variety of heavy metal ions including 

mercury, arsenic, copper, hexavalent chromium, lead.   

 

Unfortunately, in spite of its potentials, there are drawbacks which severely limit 

applications of CS. For example  similar to cellulose (CEL), the most abundant substance 

on earth, in CS, an extensive network of intra- and inter-hydrogen bonds enables it to 

10.1149/05011.0573ecst ©The Electrochemical Society
ECS Transactions, 50 (11) 573-594 (2012)

573



adopt a highly ordered structure.  While such structure is responsible for CS to have 

desirable properties it also makes it insoluble in most solvents (1).  As a consequence, an 

acid such as acetic acid is required to break hydrogen bonds to facilitate dissolution. 

Subsequent neutralization with a base solution is then needed. Such a procedure is not 

only costly and time consuming, but also may lead to acid induced changes in the 

structure of CS.  Another drawback is that CS is known to swell in water which leads to 

structural weakening in wet environments. To increase the structural strength of CS-

based products, attempts have been made to cross-link CS chains with a crosslinking 

agent or convert its functional group via a chemical reaction. Such chemical modification 

is not desirable because it may inadvertently alter CS properties, making it not 

biocompatible and toxic, as well as lessening or removing its unique properties.  In fact, 

all reported CS-based products are based on the use of rather costly, complicated and 

multistep process used to dissolve CS which involves strong acid, base and other 

environmentally harmful chemicals, and covalently bind or grafting onto man-made 

polymers to strengthen structure of chitosan based materials (8 – 13). It is, therefore, 

desirable to improve the structural strength of CS products not by chemical modification 

with synthetic chemicals and/or polymers but rather by use of naturally occurring and 

most abundant biopolymers such as CEL which is structurally similar to CS. 

 

Considerable efforts have been made in the last few years to find suitable solvents for 

polysaccharides, and several solvent systems have been reported (2 – 7).  However, all of 

solvents used in the preparation of commercial products listed above, suffer from high 

environmental toxicity, insufficient solvation power and/or chemical complications (side 

reactions) and practically difficulties (high temperature requirement (1 – 13).  New, 

inexpensive and “green” solvents which can readily and effectively dissolve CS and CEL 

are, therefore, particularly needed.  One such solvent is the simple ionic liquid, 1-butyl-3-

methylimidazolium chloride, which can effectively dissolve not only CS but also CEL 

(14 – 16). 

 

1-Butyl-3-methylimidazolium chloride, ([BMIm
+
Cl

-
]), belongs to a group of 

compounds known as ionic liquids (ILs) (17 – 20).  ILs are organic salts that are liquid at 

room temperature.  They have unique chemical and physical properties, including being 

air and moisture stable, a high solubility power, and virtually no vapor pressure.  Because 

of these properties, they can serve as a “GREEN.” recyclable alternative to the volatile 

organic compounds that are traditionally used as industrial solvents.  Due to their 

advantages, ILs have been used for applications which are not possible with other 

chemicals.  For example, the high solubilization power, and the fact that the solvation 

ability of ILs can readily be tuned and adjusted by appropriately modifying structure of 

either cation and/or anion (17 – 24). This feature makes it possible to use ILs to dissolve 

many different classes of inorganic and organic compounds and polymers such as CS and 

CEL. The fact that the same simple IL can effectively dissolve CEL and CS is of extreme 

importance as it offers possibility to synthesize novel, high performance and completely 

biocompatible CS-based composite materials.  The composite materials may have 

combined advantages of their components, namely physical and mechanical strength of 

CEL, and pollutant absorbency, bactericide and fungicide and drug delivery ability of CS.   

 

The information presented is indeed provocative and clearly indicate that a major 

breakthrough in the polysaccharide-based smart ecocomposite materials may be possible.  

Such considerations prompted us to initiate this study which aims to hasten the 
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breakthrough by systematically and revolutionarily addressing drawbacks which 

currently limit synthesis and applications of CS-based composite materials.  The 

limitations are:  (1) the rather costly and multistep process currently used to dissolve CEL 

and CS which involves strong acid, base and other environmentally harmful chemicals, 

and (2) the use of man-made polymers to strengthen structure of CS-based materials 

which are not desirable as they may inadvertently alter CS, making it less biocompatible 

and toxic, and lessening its unique properties, i.e., antimicrobial and pollutants removal.  

To accomplish this goal, we will (1) exploit advantages of IL, a green solvent, to develop 

a novel, simple, pollution-free and totally recyclable method to dissolve CS and CEL 

without using any harmful, volatile organic solvents and/or strong acid and base, (2) use 

only naturally occurring CEL as support materials to strengthen structure to expand 

utilities and to introduce selectivity while keeping the biodegradable, biocompatible, 

antimicrobial and pollutants and toxins adsorption properties of CS-based materials 

intact; and (3) to demonstrate that these CS based ecocomposite materials are not only 

fully biocompatible but also superior to currently available materials currently used in 

removal of endocrine disruptors (bisphenol A, PCB, chlorophenols) and bactericide.  

 

 

Materials and Methods 

 

Cellulose (microcrystalline powder) and chitosan (MW≈310-375kDa, 75% degree of 

deacetylation, Sigma-Aldrich), microcystin-LR (Enzo Life Sciences) were used as 

received. 1-methylimidazole and 1-chlorobutane, obtained from Alfa Aesar, were further 

purified by vacuum and normal distillation, respectively.  [BMIm
+
 Cl

-
] was synthesized 

from 1-chlorobutane and 1-methylimidazole using method previously reported (21, 22).   

 

Preparation of CEL, CS and [CEL+CS] composite films 

 

     Homogeneous viscous solutions of CEL, CS or their composite mixtures were 

obtained by dissolving the polysaccharides in [BMIm
+
 Cl

-
] ionic liquid under magnetic 

stirring at 100 – 110
 o

C.  Dissolution was performed in a 50mL 3-neck round bottomed 

flask under Ar or N2 atmosphere. All polysaccharides were added in portions of 

approximately 1 wt% of the ionic liquid. Succeeding portions were only added after the 

previous addition had completely dissolved until the desired concentration has been 

reached. For composite films, the components were dissolved one after the other, with 

CEL being dissolved first. Using this procedure, solutions of CEL (containing up to 10% 

w/w (of IL)), CS (up to 4% w/w) and composite solutions containing CEL and CS in 

various proportions were prepared in about 6-8 hours.  

 

Upon complete dissolution, the homogeneous solutions of the polysaccharides in 

[BMIm
+
 Cl

-
] were cast on glass slides or Mylar sheets using a RDS stainless steel coating 

rod with appropriate size (RDS  Specialties, Webster, NY) to produce thin films with 

different compositions and concentrations of CEL and CS.  They were then kept at room 

temperature for 24 hours to allow the solutions to undergo gelation. The [BMIm
+
 Cl

-
] 

remaining in the film was then removed by washing the films in deionized water for 3 

days. During this period, the washing water was constantly replaced with deionized water 

to maximize the removal of the ionic liquid.  The [BMIm
+
 Cl

-
] used was recovered from 

the washed aqueous solution by distillation of the washed water.  The regenerated 

[CEL+CS] composite materials were then dried at room temperature in a chamber with 
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humidity controlled at 60%.  Drying time was found to be dependent on thickness of the 

films but generally was in range of 2-3 days.  It was found that humidity control is 

important to ensure that the films do not become brittle and cracked during drying. 

 

Near-infrared (NIR) spectra were taken on a home-built NIR spectrometer (23, 24).  

FT-IR spectra were measured on a PerkinElmer 100 spectrometer.  X-ray diffraction 

(XRD) measurements were taken on a Rigaku MiniFlex ΙΙ Diffractometer (25).  Tensile 

strength measurements were performed on an Instron 5500R Tensile Tester. 

 

Adsorption Kinetics 

  

Experimental Procedure.  For all adsorption measurements, duplicate samples (about 

0.02g) of dry film were used. One piece was used for the adsorption of the pollutant and 

the other piece was used as the blank in water. The samples were washed thoroughly in 

water prior to the adsorption experiments to further insure that [BMIm
+
 Cl

-
] was 

completely removed because absorption of any residual IL may interfere with that of 

chlorophenol or BPA.  To wash the samples, the weighed composite materials were 

placed in a thin cell fabricated from PTFE whose windows were covered by two PTFE 

meshes. The meshes ensured free circulation of water through the material during the 

washing process. The PTFE mould containing the samples was placed in a 2L beaker 

which was filled with de-ionized water and was stirred at room temperature for 24 hours. 

During this time, absorbance of washed water was monitored at 214 and 293nm to 

determine if there was any [BMIm
+
 Cl

-
].  The water in the beaker was replaced with fresh 

de-ionized water every 4 hours.   

 

After 24 hours, the composite material was taken out of the water and placed into a 

1cmX1cm square spectrophotometric cell. The materials were stirred using a small 

magnetic spin bar during the measurement.  In order to prevent damage to the sample by 

the magnetic spin bar and to maximize the circulation of the solution during 

measurement, the samples were sandwiched between two PTFE meshes. Specifically, a 

piece of PTFE mesh was placed at the bottom of the spectrophotometric cell. The washed 

film sample was laid flat on top of the PTFE mesh. Another piece of PTFE mesh was 

placed on top of the sample and finally the small magnetic spin bar was placed on top of 

the second mesh.  Exactly 2.70mL of 1.55 x 10
-4

M aqueous solution of chlorophenol or 

BPA was pipetted in to the cell. Measurements were carried out on a Perkin Elmer 

Lambda 35 UV/VIS spectrometer set to the appropriate wavelength for each pollutant. 

Care was taken to ensure that the cell contents are low enough to avoid blocking the 

analytical beam. For continuous stirring, the cells were returned to a magnetic stirrer after 

each measurement. Measurements were taken at 10 minute intervals during the first 2 

hours and 20 minute intervals after 2 hours.  

 

Analysis of Kinetic Data.  The pseudo-first-order and pseudo-second-order kinetic 

models were used to evaluate the adsorption kinetics of different chlorophenols and BPA 

and to quantify the extent of uptake in the adsorption process. 

 

Pseudo-first-order kinetic model 

The linear form of Lagergren's pseudo-first-order equation is given as (26, 27): 

 lnሺ݁ݍ െ ሻݐݍ ൌ ln ݁ݍ െ ݇ଵ[1]  ݐ 
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where qt and qe are the amount of pollutant adsorbed at time t and at equilibrium (mg g
−1

) 

respectively and k1 (min
−1

) is the pseudo first order rate constant calculated from the 

slope of the linear plot of ln (qe − qt) versus t. 

  

Pseudo-second-order kinetic model 

According to the Ho model (28), the rate of pseudo second order reaction may be 

dependent on the amount of species on the surface of the sorbent and the amount of 

species sorbed at equilibrium. The equilibrium sorption capacity, qe, is dependent on 

factors such as temperature, initial concentration and the nature of solute-sorbent 

interactions. The linear expression for the Ho model can be represented as follows: 

௧ݍݐ  ൌ ͳ݇ଶݍ௘ଶ ൅ ͳݍ௘  ሾʹሿ                      ݐ
 

where qt is the amount of species sorbed at any time, t, qe is the amount of species sorbed 

at equilibrium and k2 is the pseudo second order rate constant. The constants can then be 

determined from the experimental data by plotting t/qt  against t. 

 

 

Results and Discussion 

 

Scheme 1 summarizes procedure used to dissolve and to regenerate films of CEL 

and/or CS by using [BMIm
+
Cl

-
] ionic liquid as solvent.  Specifically, [BMIm

+
Cl

-
] 

solutions containing one (CEL or CS) and two component (CEL+CS) with varying 

amounts of each component were successfully prepared using procedure described in the 

experimental section. Thin films of CEL, CS or [CEL+ CS] with different concentrations 

having different thicknesses were then casted onto Mylar films.  Upon cooling down to 

room temperature, the films underwent gelation (henceforth referred to as Gel Films). 

  

In addition to the polysaccharides, the Gel Films also contained [BMIm
+
Cl

-
].  The IL 

was removed from the films by soaking them in water at room temperature for 3 days to 

yield “[BMIm
+
Cl

-
]-free” films (henceforth referred to as Wet Films).  Finally, Dried 

Films were obtained when the Wet Films are allowed to dry.  Care was taken to dry the 

Wet Films slowly (at least one week) at room temperature in a chamber with humidity 

controlled at 60% to avoid any cracking during the drying period. 

 

Images of some of samples taken during various stages of preparation are also 

presented in the Scheme 1.  Specifically, images of films of one-component  (CEL or CS) 

and two component  [CEL+CS] casted right after the polysaccharides were dissolved in 

[BMIm
+
Cl

-
], i.e., Gel Film are shown in top right corner of the Scheme.  After soaking in 

water for 3 days, [BMIm
+
Cl

-
] was removed from the gel film to yield corresponding Wet 

Films.  Finally, Dried Films were obtained when the wet film was allowed to dry at room 

temperature.  

  

XRD, FT-IR and NIR were used to follow and confirm the dissolution process and to 

characterize the films.  Specifically, dissolution of CEL and CS in [BMIm
+
Cl

-
] was 

confirmed by XRD technique.  Shown in Figure 1 are XRD spectra of microcrystalline 

CEL, the CEL one-component Gel Film, the corresponding Dried Film as well as that of 
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[BMIm
+
Cl

-
] for reference.   As illustrated, microscrystalline CEL exhibits diffraction 

peaks at 2θ= 14.7
o
 and 16.3

o
, 22.5

o
 and 34.6

o
 for (101), (002) and (040) plane, 

respectively.  These bands disappeared completely when the powder polysaccharide was 

dissolved in [BMIm
+
Cl

-
].  The disappearance of these bands together with the similarity 

between the spectrum of liquid [BMIm
+
Cl

-
] and that of the Gel Film clearly indicate that 

[BMIm
+
Cl

-
] disrupted inter- and intra-hydrogen bonds in the polysaccharide, and 

completely dissolves it.  Similar results were also found for CS, that is [BMIm
+
Cl

-
] also 

completely dissolved this polysaccharide.   

 

Recently, there have been some reports on toxicity of ILs.  However, the IL used in 

this work, [BMIm
+
Cl

-
], is relatively nontoxic compared to other ILs (its EC-50 value is 

897.47 (29)). Nevertheless, it is desirable to completely remove the IL from regenerated 

polysaccharide films to insure the films are biocompatible.  Since [BMIm
+
 Cl

-
] is totally 

miscible with water (the logP, its octanol-water partition coefficient, is -2.4 (30)), it can 

be removed from Gel Films by washing the film with water.  Washed water will be 

repeatedly replaced with fresh water until it is confirmed that there is no ILs in the 

washed water (by monitoring UV absorption of ILs at 214 and 293nm).  FT-IR and NIR 

techniques were used to: (1) confirm that [BMIm
+
Cl

-
] is completely removed from 

composite films when the films are washed with water; and (2) determine chemical 

composition of composite materials.  Shown in Figure 2A is spectrum of [BMIm
+
Cl

-
].  

As illustrated, overtone and combination bands of aliphatic C-H groups of the [BMIm
+
Cl

-

] can be clearly observed at 1388nm and 1720 nm (31).  These bands are specific for 

[BMIm
+
Cl

-
] and can be used as indicators to determine the presence of the IL.  Also 

shown in Figure 2A are NIR spectra of Gel Films of one-component CEL and CS 

samples as well as [CEL+CS] two-component sample.  Spectra of these Gel Films are 

very similar to that of [BMIm
+
Cl

-
] because the ionic liquid was the main component of 

these films.  After washing with water to remove the IL, and drying, Dried Films of one-

component CEL and CS samples were found to exhibit NIR spectra drastically different 

from those of their Gel Films shown in Fig 2A (together with the spectrum of [BMIm
+
Cl

-

] for reference).  As shown in Fig 2B, NIR spectra of the Dried Films exhibit none of the 

indicator bands specific for [BMIm
+
Cl

-
].  Thus, it is clear that washing with water 

effectively and completely removed the IL from the films.   

 

It is noteworthy to add that the IL used was recovered by distilling the washed 

aqueous solution (the IL remained because it is not volatile).    The recovered [BMIm
+
Cl

-

] was dried under vacuum at 70
o
C overnight before reuse.  If needed, recovered 

[BMIm
+
Cl

-
] was decolored by heating with activated charcoal at 100

 o
C for ca 24hrs.  As 

such, the synthetic method is not only green but recyclable because all chemicals used 

are fully recycled. 

 

Properties, activities and responses of a sample are known to be dependent on its 

concentration (or rather on its active ingredient).  It is, therefore, important to verify that 

in [CEL+CS] composite materials, each component is homogeneously distributed 

throughout the material in order to obtain desired and reproducible properties/activities/ 

responses. Since electrical properties of CEL and CS are known to be somewhat 

different, homogeneity of composite materials containing two or more of these 

compounds can be determined by scanning electron microscope (SEM) because this 

technique is known to be dependent on electrical properties of a sample.   
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Analysis of the film materials by SEM reveals some interesting features about the 

texture and morphology of the materials.  As expected, one-component CEL and CS 

(Figure 3A and B, respectively) are homogeneous.  Chemically, the only difference 

between CS and CEL is the few –NH2 groups in the former (see Scheme 1).  However, 

their structures, as recorded by the SEM, are substantially different.  Specifically, while 

CS seems to exhibit smooth structure, CEL seems to arrange itself into fibrous structure.  

Interestingly, a 10:3 CEL:CS composite material (Fig 3C) is not only homogeneous but it 

is more similar to structure of CS than that of CEL, namely, it has a rather smooth 

structure without any fibrous forms.  

 

Chemically, the regeneration of both CEL and CS was confirmed by FT-IR 

spectroscopy. As illustrated in figure 4, the FT-IR spectrum of microcrystalline CEL 

(Figure 4C) exhibits three pronounced bands at around 3400cm
-1

, 2850 – 2900cm
-1

 and 

890 – 1150cm
-1

.  These bands can be tentatively assigned to stretching vibrations of O-H, 

C-H and -O- group, respectively (32 – 34). The fact that the Dried Film also exhibits 

these three bands and is very similar to that of the microcrystalline CEL clearly indicates 

that CEL was completely regenerated by this synthetic method.  Similarly, the FT-IR 

spectrum of a CS Dried Film (Figure 4D) is similar to the FT-IR spectrum of the CS 

powder from which it was made. These spectra display characteristic CS bands around 

3400cm
-1

 (O-H stretching vibrations),  3250 – 3350cm
-1

 (symmetric and asymmetric N-H 

stretching), 2850 – 2900cm
-1

 (C-H stretching), 1657cm
-1

 (C=O, amide 1), 1595 cm
-1

 (N-

H deformation), 1380cm
-1

 (CH3 symmetrical deformation), 1319cm
-1

 (C-N stretching, 

amide III) and 890 – 1150cm
-1

 (ether bonding) (32 – 34). These results indicate that both 

CEL and CS were successfully regenerated by the synthetic method developed here 

without any chemical transformation. 

 

Results from NIR measurements further confirm regeneration of polysaccharide 

composite materials.  Shown in Figure 4A are NIR spectra of microcrystalline CEL and 

regenerated CEL Dried Film (4A) and CS powder together with regenerated CS Dried 

Film (4B).  As illustrated in 4A, both CEL microcrystalline and regenerated CEL film 

exhibit bands around 1492nm, 1938nm and around 2104nm. These can be attributed to 

the overtone and combination transition of the –OH groups.   Since CS also possesses the 

same O-H groups in addition to N-H2 group, NIR spectra of CS powder and film (4B) 

also have additional bands at around 1548nm and 2028nm which expectedly can be 

attributed to the –NH modes (34, 35). The similarity between the NIR spectra of starting 

polysaccharides and regenerated polysaccharide further confirms that CEL and CS were 

successfully regenerated by this preparation method. 

 

As described above, mechanical strength of wet CS is so poor that practically it 

cannot be used by itself for applications based on its unique properties.  Measurements 

were made to determine tensile strength of pure CS film and (CS+CEL) composite films 

with different CEL concentrations in order to determine if by adding CEL into CS, 

[CEL+CS] composite material would have adequate mechanical strength for practical 

applications.  Results obtained, shown in Fig 5, clearly indicate that adding CEL into CS 

substantially increase its tensile strength.  For example, up to 5X increase in tensile 

strength can be achieved by adding 80% of CEL into CS, and that the tensile strength of 

the composite material can be adjusted by adding judicious amount of CEL.  More 

importantly, the tensile strengths of [CS+CEL] composite materials are comparable with 

those of existing CS materials including those prepared by either grafting or 
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copolymerization with other chemicals (36 – 41).  Thus it is evidently clear that the 

[CEL+CS] composite materials have overcome the major hurdle currently imposed on 

utilizations of the materials, namely they have superior mechanical strength and still are 

able to retain their biocompatible and unique properties. 

 

Taken together, results presented clearly indicate that we have successfully developed 

a novel, green and recyclable method to dissolve CEL and CS and to synthesize novel, 

biocompartible all polysaccharide composite materials containing CEL and CS.  As 

anticipated, adding CEL to CS material increases mechanical strength of the CS-based 

composite material. It is expected that the [CEL+CS] composite materials will have 

properties of CEL and CS, namely, superior mechanical properties (from CEL) and 

bactericide and fungicide, drug delivery as well as good adsorbent for pollutants and 

toxins (from CS).  Initial evaluation of their ability to adsorb organic pollutants is 

described in following section. 

 

Adsorption of endocrine disruptors including polychlorophenols and bisphenol A 

 

The pseudo first order and pseudo second order kinetic models were used to obtain 

the rate constants and equilibrium adsorption capacity of different composite materials 

for different chlorophenol analytes and bisphenol A. The pseudo first order kinetic model 

parameters were calculated from the plots of ln (qe-qt) versus t while those of the pseudo 

second order kinetic model were obtained from the plots of t/qt versus t (Figure 6). The 

results are shown in Table 1 for a 100% CS film and Table 2 for a 100% CEL film. It is 

evident from the tables that in all cases, the correlation coefficients (R
2
) and the Model 

Selection Criteria, (MSC), are higher for the pseudo second order kinetic model than 

those corresponding for the pseudo first order kinetic model.  In addition, the theoretical 

and experimental equilibrium adsorption capacities, qe, obtained for the pseudo first order 

kinetic model varied widely for the different analytes. The results seem to suggest that 

the adsorption of various Chlorophenols and BPA onto CS and CEL composite materials 

is best described by the pseudo second order kinetic model. This good correlation of the 

system provided by the pseudo second order kinetic model suggest that chemical sorption 

involving valence forces through sharing or exchange of electrons between adsorbent and 

analyte might be significant (42). 

 

The pseudo second order kinetic parameters were used to compare the sorption 

performance of different composite materials. Table 3 shows a comparison of the kinetic 

parameters of a 100% CEL film and a 100% CS film. Clearer observation can be seen in 

Figure 7 which plots variation of the equilibrium sorption capacity qe, of the various 

analytes for these two film materials. As illustrated, for all analytes, equilibrium 

adsorption capacities for 100% CS material are much higher than those corresponding for 

100%CEL material.  This is as expected, because CS is known to be an effective 

adsorbent for various pollutants.  Of particular interest is the fact that both the 100% CEL 

and 100% CS films have relatively much higher adsorption capacity for 2,4,5 tri Cl-Ph 

than all the other analytes that were studied.   These results clearly indicate that novel 

composite materials with high chemical and mechanical stability and good adsorption 

capacity can be synthesized by judiciously adjusting the ratio of CS and CEL in the 

composite material. 
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Conclusions 

 

In summary, we have successfully developed a novel, simple and recyclable method 

to synthesize novel, high performance, biocompatible and biodegradable composite 

materials from CEL and CS.  In this method, [BMIm
+
Cl

-
], an ionic liquid (IL), was used 

as a solvent to dissolve and synthesize the [CEL+CS] composite materials. Since the IL 

can be removed from the materials by washing them with water, and recovered by 

distilling the washed solution, the method is totally recyclable.  XRD, FT-IR, NIR and 

SEM were used to monitor the dissolution process, to characterize the composite material 

and to confirm that CEL and CS were successfully regenerated by the method without 

any chemical transformation.  While not presented here, we have successfully 

demonstrated that [CEL+CS] composite material can serve as an effective adsorbent for 

removal various endocrine disruptors including polychlorophenols and bisphenol A.  This 

is because the [CEL+CS] composite material have combined advantages of their 

components, namely superior chemical stability and mechanical stability (from CEL) and 

excellent adsorption capability for pollutants (from CS).  Specifically, results of tensile 

strength measurements clearly indicate that adding CEL into CS substantially increase its 

tensile strength.  Up to 5X increase in tensile strength can be achieved by adding 80% of 

CEL into CS, and that the tensile strength of the composite material can be adjusted by 

adding judicious amount of CEL.  More importantly, the tensile strengths of [CS+CEL] 

composite materials are comparable with those of existing chitosan based materials 

including those prepared by either grafting or covalently attaching CS to man-made 

polymers.  Results of kinetics of adsorption of polochlorophenols and BPA by the 

composite material clearly confirm that unique properties of CS remain intact in the 

material, namely, the composite material is very good adsorbent for these polutants, e.g., 

up to 1.95 mM of 2,4,5-trichlorophenol can be readily adsorbed per gram of the material.  

Preliminary results presented in this study are very encouraging and clearly indicate that 

higher adsorption efficiency can be obtained by judiciously modifying experimental 

conditions (e.g., replacing films of composite material with microparticles to increase 

surface area, and pH of solution).    These possibilities are subject of our current intense 

study. 
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Table 1.  Kinetic parameters for adsorption of Chlorophenols and BPA onto 100% CS 

film 

 

  Pseudo  first-order kinetic model Pseudo second-order kinetic model 

Analyte 

qe, expt 

(M/g) qe(M/g) 

K1

( min
-1

) R
2
 MSC qe(M/g) 

K2  

(M
-1

 min
-1

) R
2
 MSC 

2-ClPh 1.30E-03 1.48E-03 0.089 0.9865 3.305 1.32E-03 385.9 0.9998 8.02 

3-ClPh 1.62E-03 3.25E-03 0.050 0.9745 2.669 1.68E-03 133.5 0.9960 5.21 

4-ClPh 1.64E-03 6.49E-04 0.051 0.9849 2.861 1.66E-03 214.6 0.9996 7.52 

3,4 Di-ClPh 2.23E-03 7.23E-04 0.048 0.8769 0.761 2.27E-03 169.8 0.9999 8.72 

2,4,5 Tri-ClPh 1.05E-02 9.90E-03 0.016 0.9843 3.917 1.20E-02 2.1 0.9991 6.60 

BPA 1.74E-03 5.88E-04 0.040 0.8947 1.680 1.80E-03 168.3 0.9995 7.24 
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Table 2.  Kinetic parameters for adsorption of Chlorophenols and BPA onto 100% CEL 

film 

 

  Pseudo  first-order kinetic model Pseudo second-order kinetic model 

Analyte 

qe, expt 

(M/g) qe(M/g) 

K1

( min
-1

) R
2
 MSC qe(M/g) 

K2  

(M
-1

 min
-1

) R
2
 MSC 

2-ClPh 4.11E-04 1.45E-04 0.029 0.6469 0.041 3.93E-04 702.3 0.9871 3.95 

3-ClPh 3.19E-04 4.95E-04 0.044 0.9747 2.678 3.20E-04 293.8 0.9822 3.72 

4-ClPh 5.79E-04 1.69E-04 0.055 0.9559 1.788 5.81E-04 2054.2 0.9999 9.13 

3,4 Di-ClPh 7.98E-04 9.44E-04 0.142 0.9665 2.397 8.19E-04 315.6 0.9996 7.47 

2,4,5 Tri-ClPh 1.87E-03 1.01E-03 0.011 0.9714 3.287 1.95E-03 25.4 0.9967 5.32 

BPA 7.27E-04 4.62E-04 0.014 0.9715 3.156 8.05E-04 78.9 0.9911 4.39 
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Table 3.  Comparison of pseudo-second order kinetic parameters for 100% CEL and 

100%CS composite material 

 

  100%CEL 100%CS 

Analyte qe(M/g) 

K2  

(M
-1

 min
-1

) R
2
 MSC qe(M/g) 

K2

(M
-1

 min
-1

) R
2
 MSC 

2-ClPh 3.93E-04 702.3 0.9871 3.95 1.32E-03 385.9 0.9998 8.02 

3-ClPh 3.20E-04 293.8 0.9822 3.72 1.68E-03 133.5 0.9960 5.21 

4-ClPh 5.81E-04 2054.2 0.9999 9.13 1.66E-03 214.6 0.9996 7.52 

3,4 Di-ClPh 8.19E-04 315.6 0.9996 7.47 2.27E-03 169.8 0.9999 8.72 

2,4,5 Tri-ClPh 1.95E-03 25.4 0.9967 5.32 1.20E-02 2.1 0.9991 6.60 

BPA 8.05E-04 78.9 0.9911 4.39 1.80E-03 168.3 0.9995 7.24 
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Scheme 1.  Procedure used to synthesize [CEL+CS] composite materials 
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Figure 1. X-ray diffraction spectra of microcrystalline CEL, CEL gel film, regenerated 

CEL film and [BMIm
+
Cl

-
] 
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Figure 2. Near-IR of  [BMIm
+
Cl

-
] and different stages of CEL and CS films. 
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Figure 3: SEM micrographs of the various films 
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Figure 4. NIR and FT-IR spectra of microcrystalline CEL, regenerated CEL film (A and 

C), CS powder and regenerated CS film (B and D). 
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Figure 5  Plot of tensile strength as a function of CEL concentration in [CS+CEL] 

composite films. 
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Figure 6.  Pseudo second order linear plots for a 100%CS composite material 
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Figure 7.  Pseudo second order equilibrium sorption capacities for 100%CEL and 

100%CS composite materials. 
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