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Potential energy and dipole moment surfaces of HCO− for the search
of H− in the interstellar medium
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(Received 19 December 2011; accepted 16 May 2012; published online 14 June 2012)

Potential energy and permanent dipole moment surfaces of the electronic ground state of formyl
negative ion HCO− are determined for a large number of geometries using the coupled-cluster the-
ory with single and double and perturbative treatment of triple excitations ab initio method with a
large basis set. The obtained data are used to construct interpolated surfaces, which are extended
analytically to the region of large separations between CO and H− with the multipole expansion ap-
proach. We have calculated the energy of the lowest rovibrational levels of HCO− that should guide
the spectroscopic characterization of HCO− in laboratory experiments. The study can also help to
detect HCO− in the cold and dense regions of the interstellar medium where the anion could be
formed through the association of abundant CO with still unobserved H−. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4724096]

I. INTRODUCTION

More than one hundred neutral molecular species have
been observed in various regions of the interstellar medium
(ISM), while a comparatively low number (about 30) of
molecular ion species have been detected up till now. This
illustrates the extreme richness and complexity of the inter-
stellar chemistry. Considering the electronic affinity of sev-
eral neutral molecules present in the ISM, it was speculated
for about two decades that molecular negative ions could also
be formed in the ISM.1 This hypothesis has been confirmed in
2006 with the observation of the C6H− ion,2–6 rapidly com-
pleted by the discovery of C4H−,7 C8H−,8 C3N−,9 C5N−,3, 6

and CN−.10 Their formation process is not yet fully under-
stood, and it was suggested that the radiative electron attach-
ment to pre-existing carbon chains is the final step in the
formation.1, 4, 5

Besides, the simplest negative ion, H−, could possibly be
formed in a considerable amount by the dissociative attach-
ment of an electron to H2: H2 + e− →H− +H. However, H−

has never been detected in the ISM and, therefore, is generally
ignored in astrophysical models. Its direct detection is diffi-
cult: It has no stable excited bound state,11 so that its absorp-
tion spectrum is featureless in the infrared and visible spec-
tral regions. However, H− has resonances in the far-ultraviolet
region.11, 12 These resonances have been looked for in so-far
unsuccessful attempts to detect H− in the ISM.13, 14

In our previous study,15, 16 radiative association (RA) of
H2 and H− yielding the H−

3 ion and a photon was consid-
ered as a possibility to probe the presence of H− in the ISM
by detecting rovibrational bound levels of H−

3 via infrared ab-
sorption spectroscopy. The potential energy surface (PES) and

a)Electronic mail: viatcheslav.kokoouline@ucf.edu.

the permanent dipole moment surfaces (PDMS) of the H−
3

ground state computed in Ref. 15 were used to determine en-
ergies of H−

3 rovibrational levels, as well as cross sections and
rate constants for the RA process15 for T < 100 K. The rates
were found too small (1.6 × 10−23 cm3/s for para-H2 and 6
× 10−23 cm3/s for ortho-H2 at 20 K) to produce H−

3 in a sig-
nificant amount.

Here, we continue to explore the idea of an indirect detec-
tion of H− through its radiative association to a CO molecule
(the second most abundant molecule in the ISM) to form the
HCO− ion. The formyl anion has been observed in a flow-
ing afterglow source.17 Using low-resolution photoelectron
spectroscopy,17 the equilibrium geometry of HCO− (re(CO)
= 2.28 ± 0.04 a0, re(CH)=2.40±0.04 a0, � HCO = 109 ±2◦,
where a0 = 0.52917721092 Å is the Bohr radius) as well as
the HCO electron affinity 0.313 ± 0.005 eV have been de-
termined. Furthermore, the absence of hot bands in the pho-
toelectron spectrum lead the authors to assume a lower limit
of about 800 cm−1 on excited vibrational energies of HCO−.
It is worth quoting the warning statement of the authors of
Ref. 17: “(given) the rather restrictive assumptions used in
this analysis, this geometry should be taken as suggestive,
but not unique.” On the theoretical side, Tschumper et al.18

determined the equilibrium geometry of HCO− using var-
ious implementations of the density functional theory, and
obtained the range of values: 2.326a0 < re(CO) < 2.366a0,
2.288a0 < re(CH) < 2.398a0, 109.8◦ < � HCO < 110.3◦, as
well as harmonic vibrational frequencies. An electron affin-
ity ranging between 0.13 and 0.92 eV was also derived. Note
that the HCO− electron affinity is much smaller than the one
(3–4.5 eV) of the carbon-chain anions that have been detected
in the ISM.4, 19 It is, however, much higher than the average
collision energy in the ISM, which ensures thermal stability
for HCO−.

0021-9606/2012/136(22)/224310/9/$30.00 © 2012 American Institute of Physics136, 224310-1
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In the perspective of studying the radiative association
of CO with H−, we performed in this article an accurate
ab initio calculation of the PES and PDMS of the HCO−

electronic ground state in the chemical range of internuclear
distances for several thousands of geometries, and we de-
termined the long-range behavior of the CO–H− potential
energy and dipole moment. We interpolated the obtained PES
and PDMS, and prepared a FORTRAN subroutine that eval-
uates PES and PDMS for any HCO− geometry. Finally, we
calculated the corresponding bound rovibrational levels of the
HCO− molecule. The rest of the article is organized in the
following way. In Sec. II, we describe the performed ab initio
calculations (AIC). In Sec. III, we present the procedure for
the interpolation of the obtained PES. Section IV is devoted
to the calculation and interpolation of PDMS. Finally, atomic
units (a0) for distances will be used throughout the article.

II. AB INITIO CALCULATION OF THE HCO− GROUND
STATE POTENTIAL ENERGY SURFACE

We employed the coupled-cluster theory with single and
double and perturbative treatment of triple excitations method
(CCSD(T)), which is part of the GAUSSIAN 09 Revision
A.02 package of ab initio programs.20 In the calculation, we
used the polarized valence quadrupole-zeta correlation con-
sistent basis set d-aug-cc-pVQZ augmented with two dif-
fuse functions of each symmetry: spdf-orbitals for hydrogen
and spdfg-orbitals for oxygen and carbon. Thus, our con-
tracted basis set is [7s6p5d4f3g/6s5p4d3f]. Scuseria
et al.,21 who used CCSD(T)/[10s9p4d2f1g] demonstrated
that triple excitations as well as g-type functions in the ba-
sis set are crucial in the calculation of CO dipole moment to
obtain satisfactory agreement with experiment. The choice of
the ab initio method and of the basis set was made after pre-
liminary benchmark calculations of the H− energy. The use of
a large basis set augmented with diffuse orbitals is important
to properly describe the diffuse electronic cloud of the nega-
tive ion. The hydrogen affinity is smaller by only 2 cm−1 com-
pared to the experimental value.22 The equilibrium distance,
dipole moment as well as the well depth of the CO ground
electronic state (see Table I) are in good agreement with the
previous accurate ab initio results of Refs. 21 and 23. The ac-
curacy of the present HCO− calculations can also be assessed
comparing the numerical and analytical behavior of the CO
+ H− energies and PDMS for large separations between CO
and H− as discussed in Secs. III and IV. We have decided not
to increase further the basis set because the calculation would
become too long to perform for several thousands geometries.
Evaluating the interaction energy, we have ignored the basis
set superposition error using the counterpoise correction pro-
cedure of Boys and Bernardi24 because without a systematic
analysis of basis set convergence the correction may cause
even large error in the interaction energy.25

As in the study of H−
3 ,15 we used the Jacobi coordinates,

r, R, γ : r is the distance between C and O, R is the dis-
tance from the center of mass of CO to H, and γ is the an-
gle between vectors �R and �r . The grid in r is uniform from r
= 1.7a0 to r = 2.9a0 with step �r = 0.1 a0; in addition, points
with r = 1.5a0 have also been included in the grid in order to

TABLE I. Summary of HCO− PES properties: a–asymptotic energy at in-
finite separation between CO and H−; b–the value obtained using the 3D
B-spline interpolation procedure (based on CCSD(T) energies) discussed
in the text; cc–the value from the CCSD(T) optimization; ca–the value
from the CASSCF optimization; ci–the value from the MRCI/CASSCF op-
timization; d–energy of the global PES minimum, GM in Fig. 8; e–previous
calculation18; f–experiment;17 g–energy of the maximum of the reef in Fig. 8;
h–energy of the second PES minimum, LM in Fig. 8; i–the CO equilibrium
distance; k–obtained by scan along r with step 2 × 10−4; l–experiment29;
m–CCSD(T)/[10s9p4d2f1g] calculation;21 n–CO dipole moment at re;
o–CO dipole moment at experimental value of re = 2.132221; p–energy of
H− obtained by adding 0.5 hartree to the experimental affinity22 of H−. The
distances are in a0, angles are in degrees.

Quantity This study Other Refs.

Das(r = 2.138)a −113.718 283b,
(hartree) −113.718 242cc

GMd (hartree) −113.728 934b

Position of GM:
R 3.08b, 3.02cc, 3.04ca

γ 134.1b, 134.5cc, 135.3ca

rCO 2.33b, 2.34cc, 2.34ca 2.33–2.37e, 2.29f

rCH 2.36b, 2.29cc, 2.29ca 2.29–2.39e, 2.40f

� HCO 110.2b, 109.9cc, 111.2ca 109.8–110.3e, 109f

Reef position: r, R, γ 2.20b, 4.27b, 123.8b

Position of LM
R 6.02b, 6.92ca

γ 110.0b, 100.5ca

r 2.15b, 2.14ca

Das − GM (cm−1) 2338b, 2484ci

Das −reef (cm−1) 287.2b

Das − LM (cm−1) 685b, 643ci

Properties obtained separately for CO and H−

re(CO)i 2.1388k 2.132221l, 2.1316m

d(re)n (ea0) 0.0417, 0.0462o 0.0484l, 0.0492m

ECO(re) (hartree) −113.190 780
EH− (hartree) −0.527 463 0.527 716p

ECO(re) + EH− (hartree) 113.718 243

represent the strongly repulsive character of the potential for
small distances r. The grid in γ changes from 0◦ to 180◦ by
a constant step of �γ =18◦. The grid in R is dense at small
R and sparse at large R according to the formula Ri = 1.4
+ 0.4exp (i/10) (in a0) with i = 0, 1, . . . , 49, which makes R
changing from 1.80 to 55.116 a0. Therefore, the calculations
were performed for 13 × 11 × 50 = 7150 geometries.

For some geometries of the grid defined above, the
ground electronic state of HCO− does not converge.
This occurs when the HCO− PES is close to and crosses the
HCO PES so that the energy of the electronic state of HCO−

goes from the discrete spectrum to the continuum. It happens
near the HCO equilibrium geometry. We found the HCO equi-
librium geometry at r = 2.2a0, R = 3.0a0, γ = 144◦, in rea-
sonable agreement with the accurate values of Ref. 26. The
autodetachment region occurs at energies about 7000 cm−1

above the H− + CO dissociation limit, such that the autode-
tachment will have a negligible effect in the calculation of
HCO− bound levels and CO + H− continuum states at small
kinetic energies. Nevertheless, we decided to define the PES
over the entire grid to use the PES in other types of coordi-
nates like the hyper-spherical ones, as it is done, for example,
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FIG. 1. The HCO− potential energy surface for a fixed value r = 2.15a0 as a function of R and γ . The numbers on the contour plot lines label the PES energy in
cm−1. The value r = 2.15a0 is close to the equilibrium position of CO molecule and corresponds to the local minimum of the long-range potential of interaction
between CO and H−, see local minimum (LM) in Table I.

in Ref. 15. We extended the PES in the autodetachment re-
gion, with a 3D interpolation procedure that uses converged
geometries as interpolation knots and interpolate the PES at
missing geometries. For this purpose, we used the fitting ap-
proach of Braams and Bowman.27

Figures 1–3 illustrate the HCO− PES in Jacobi coordi-
nates for three values of r = 2.15, 2.2, and 2.33a0, respec-
tively. The origin of potential energy in the figures is shifted
to the energy of the CO molecule at the equilibrium position
re(CO) with the H− ion at the infinite separation from CO.

When the distance between CO and H− is very large
(>200a0), the minimum of PES corresponds to γ = 0 with
r equal to the equilibrium distance of the free CO molecule
as a result of the H−–CO charge-dipole interaction. At values
of R between 8 and 150a0, the charge-quadrupole interaction
is dominant over the charge-dipole interaction (because the
dipole moment of CO at equilibrium is small, 0.05 ea0 com-
pared to the quadrupole moment of −1.5 ea2

0), shifting the
PES minimum gradually from γ = 0 towards 90◦ as R de-
creases (see Fig. 1). At distances near R ∼ 10a0, the PES
is lower for larger values of r because the CO dipole mo-
ment grows with r (with the sign opposite to one at the CO
equilibrium value). Additional interaction energy due to the
charge-dipole interaction shifts the position of the PES min-
imum along γ to even larger angles γ , as seen in Fig. 2. At
the same time, at such large distances r, the second poten-
tial well occurs in the chemical interaction region. Finally, the
global minimum is formed at R = 3.08, r = 2.33, γ = 134.1◦

(Fig. 3).

A similar behavior was observed for the HCO
molecule,26 for which PES changes its character near the ge-
ometry rCO = 2.2a0 and rCH = 2.4a0, where two electronic
configurations of the A′ symmetry are mixed together. At the
linear geometry of the HCO molecule, the two configurations
become 2�+ and 2� states, and at a large separation between
CO and H, they correlate with the 1�+ and 3� states of the
CO molecule. In the present case of the HCO− molecule, the
two configurations mixed near r = 2.1a0 and R = 3a0 corre-
late at large R with the CO(1�+)+H− channel and the three-
body fragmentation channel CO(1�+) + H + e− located be-
low the CO(3�) + H− dissociation energy.

To benchmark our CCSD(T) results, we have made lim-
ited calculations using the multi-reference configuration inter-
action (MRCI) and complete active space self-consistent field
(CASSCF) methods with the same basis set d-aug-cc-
pVQZ reduced to spdf-orbitals for all atoms. These com-
putations were done with the MOLPRO28 suite of programs.
We have included 12 electrons and 16 Hartree-Fock orbitals
(14 a′ and 2 a′′) in the active space. Including higher orbitals,
we have verified that this level of theory provides energy con-
verging to a few cm−1. Using the CASSCF method we have
found positions of the two minima of the HCO− PES. The po-
sitions agree well with those obtained by CCSD(T) as shown
in Table I. Single-point MRCI calculations have been per-
formed using 12 a′ and 2 a′′ CAS orbitals and correlating
12 electrons. The Davidson correction has been included in
final energy values. We have estimated convergence of this
MRCI/CASSCF method about 50 cm−1.

Downloaded 28 Jan 2013 to 134.48.158.246. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 2. Same as Fig. 1 except r = 2.2a0. For this value of r, the HCO− potential has two separated potential wells, one is at large distances, the second one is
at small distances between CO and H−.

Using the MRCI/CASSCF method we have obtained
the dissociation energy for the two minima optimized with
CASSCF: 2484 cm−1 (inner potential well) and 643 cm−1

(outer potential well). They agree well with the CCSD(T) re-
sults, 2338 cm−1 and 685 cm−1, respectively (see Table I).
Using the MRCI/CASSCF method, we have also determined
the geometry minimum of the HCO PES (R = 3.09a0, r

= 2.15a0, γ = 143.4◦), the HCO equilibrium dissociation
energy of 6633 cm−1, and the HCO zero-point energy of
2789 cm−1 in the normal mode approximation. Our re-
sults agree well with the previous calculation by Werner
et al.,26 who obtained geometry of the minimum R = 3.02a0,
r = 2.23a0, γ = 144.9◦; the dissociation energy of 6340 cm−1;
and the zero-point energy of 2895 cm−1 (obtained by

FIG. 3. Same as Fig. 1 except r = 2.33a0. This value of r corresponds to the global minimum (GM) of the potential (see Table I).

Downloaded 28 Jan 2013 to 134.48.158.246. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 4. The five regions of configuration space in Jacobi coordinates R, r
defined for the PES calculations, for all values of γ . Notice that R is given in
a logarithmic scale. The region of AIC is extended to regions I–IV where the
PES is extrapolated.

diagonalization of the vibrational Hamiltonian, not in the
normal mode approximation).

III. INTERPOLATION AND LONG-RANGE BEHAVIOR
OF THE HCO− GROUND STATE POTENTIAL SURFACE

For the bound state calculations, and in view of future
scattering calculations for H−−CO radiative association, the
PES is interpolated in the region of calculated ab initio ener-
gies similarly to our previous study of H−

3 .15, 16 Outside this
region the PES is calculated using analytical formulas. We
divided the r × R configuration space in five different parts:
the region of AIC and four regions (I–IV) surrounding AIC
(see Fig. 4). Regions AIC and II are the only ones relevant
to bound and scattering states of the H− + CO system with
energies below the autodetachment threshold.

Inside the three-dimensional box r ∈ [1.5a0; 2.9a0],
R ∈ [1.80a0; 55.116a0], γ ∈ [0; 180◦] (AIC in Fig. 4), a three-
dimensional B-spline interpolation procedure is employed.
Wave functions of bound and continuum states at low ener-
gies vanish in regions I, III, and IV, so some convenient an-
alytical formulas can be used in these regions. The formulas
should only ensure (1) a smooth transition across the bound-
aries between the regions (especially boundaries with regions
AIC and II), and (2) large values of PES to prevent a non-
negligible probability density in these regions.

In region II, we describe the long-range (as a function
of R, at fixed r and γ ) potential VLR for the interaction be-
tween CO and H− by the two dominant terms of the multipole
expansion: the dipole-charge and quadrupole-charge interac-
tions,

VLR(R; r, γ ) = Das(r) + C2

R2
+ C3

R3
with

C2 = −d(r)P1(cos γ ) and

C3 = −qzz(r)P2(cos γ )/2. (1)

218.4

218.6

218.8

D
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-
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CO ab initio calculation 
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(e

a 0)
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0

FIG. 5. Parameters Das and d of Eq. (1) obtained from the asymptotic be-
havior of the present CO−H− PES and compared to the ab initio values ob-
tained for the CO molecule alone. The results are shown only for r = 2.1a0.
The γ -dependence of the fitted values of Das and d is attributed to the higher
order terms in the asymptotic expansion of Eq. (1). Because Das and d in
Eq. (1) should not depend on γ when the global PES is extended beyond the
grid of ab initio geometries, we use γ -independent values for Das and d (red
curves in the figure), which are obtained by averaging the fitted values over
γ . To make a smooth transition between the ab initio energies and asymp-
totic energies beyond the ab initio geometries, we allow the parameter qzz to
be γ -dependent (see Fig. 6).

The first term Das(r) is the sum of H− and CO(r) energies
at a given internuclear distance r of the CO molecule. The
second and third terms are the charge-dipole and charge-
quadrupole interactions between H− and CO. P1 and P2 are
the first and second order Legendre polynomials. To avoid
any confusion about the definition of qzz(r) used here, we
give the explicit formula for the corresponding operator q̂zz

= ∑
q q(3ẑ2

q − r̂2
q ), where the sum is evaluated over all

charges q in the CO molecule, r̂q and ẑq refer to coordinates
of the charges with the z axis along the CO axis.

The coefficients d(r) and qzz(r) are obtained from the
present ab initio calculations in the following way. First, for
each r and γ , values of Das, d, and qzz are obtained nu-
merically using Eq. (1) and the last three ab initio points
(R = 45.379a0, 50.004a0, and 55.116a0) along R for given
r and γ . The obtained quantities Das, d, and qzz are consis-
tent with accurate ab initio calculations made separately for
CO29, 30 (see Figs. 5 and 6). In the asymptotic region they
should not depend on γ ; their observed weak dependence on
γ is due to higher order multipole terms neglected in Eq. (1)
and to the employed fitting procedure. In order to avoid using
γ -dependent values of Das and d, we average Das and d over γ

and use the averaged values Das(r) and d(r) in Eq. (1) beyond
R = 55.116a0.

The procedure above determines only Das(r) and d(r), but
not qzz(r). In order to ensure continuity of the PES across the
R = 55.116a0 boundary, we use γ -dependent functions for
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FIG. 6. Two examples of the γ - and r-dependence of the quadrupole mo-
ment qzz obtained by fitting the ab initio energies to Eq. (1), where Das and d
are taken to be γ -independent as discussed in the text. Red curves in the two
panels show values obtained in accurate ab initio CO calculation.30 The dif-
ference of qzz values obtained by fitting the HCO− energies from the values
obtained in the CO calculation should be attributed to higher order terms that
are not accounted in the multipole expansion. The largest contribution that is
not explicitly accounted by Eq. (1) is due to the interaction of induced dipole
of CO with the charge of H−. It varies with R as C4/R4 and contributes about
0.5 cm−1 at R = 50a0.

qzz. Therefore, the function qzz(r, γ ) is obtained from ab ini-
tio energies using Eq. (1) one more time; but now, the val-
ues Das and d are fixed, such that only one point along R (R
= 55.116a0) is needed to find qzz(r, γ ). In this way we ob-
tain function V (R, r, γ ) that changes continuously across the
boundary between regions II and AIC and behaves asymptoti-
cally according to Eq. (1) with an “effective” quadrupole mo-
ment qzz(r, γ ). The “effective” quadrupole moment includes
the actual γ -independent quadrupole moment and accounts
for higher order terms in the asymptotic multipole expansion,
such as the interaction between the charge of H− and induced
dipole or octopole of CO (∼1/R4) and others.

The analytical extrapolation of PES into the three other
regions (I, III, and IV) was made as in Ref. 15. In regions I
and IV, we use the following extrapolation formula in r for
fixed R and γ :

VSR(r; R, γ ) = a(R, γ )e−b(R,γ )r , (2)

where a(R, γ ) and b(R, γ ) are functions of R and γ that
are obtained considering the two ab initio energies near the
corresponding boundary. For regions I or IV, the functions
a(R, γ ) and b(R, γ ) are obviously different. In a similar way,
in region III, we extrapolate the PES along r and at fixed R
and γ using a dispersion-like expression,

VLR(r; R, γ ) = D0(R, γ ) − C6(R, γ )

r6
, (3)
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FIG. 7. PES cuts as a function of R at the ab initio grid points (r =2.0, 2.1,
2.2, 2.3, and 2.4a0) and at intermediate points (r =1.95, 2.05, 2.15, 2.25, 2.35,
and 2.45a0), for which energy is obtained by the interpolation procedure. Cir-
cles represent the ab initio energies used to obtain interpolation coefficients.
Crosses on the r = 2.15a0 curve are ab initio energies not included in the grid
used for interpolation. They are used to verify the quality of the interpolation
procedure.

where the D0(R, γ ) and C6(R, γ ) (always positive) coeffi-
cients are obtained in the same way as the coefficients a and
b, considering the two ab initio grid points near the boundary
between regions III and AIC.

Figure 7 demonstrates the result of the interpolation pro-
cedure. It shows the potential energy as a function of R for
several values of r included in the initial grid of ab initio en-
ergies as well as for intermediate values of r, which are not
included in the grid of ab initio geometries. For an additional
check of the quality of the interpolation procedure, we cal-
culated ab initio energies of several geometries not included
in the grid used to build the interpolation coefficients. This
additional ab initio energies are shown in Fig. 7 by crosses
(r = 2.15a0). Interpolated values agree well with the addi-
tional energies obtained ab initio.

Figure 8 shows the interpolated PES in a different way,
as the minimum energy path (MEP) along R: For each given
R, a PES minimum is obtained and shown in the figure. The
probability density is expected to be maximum near geome-
tries along MEP. The minimum of the curve corresponds to
the PES GM. The energy of GM is 2337 cm−1 below the H−

+ CO(re) dissociation limit Das. The curve has a second min-
imum (LM), which appears near R = 6 a0 with energy of
685 cm−1 below Das and a reef with its maximum located
287 cm−1 below Das. The double-well structure of MEP can
be considered as a signature of a modification in the electronic
configuration of the HCO− ion when H− approaches to CO
from infinity as discussed at the end of Sec. II. The upper
curves of Fig. 8 show the r- and γ -behavior along MEP. The
geometries and energies of the reef, GM, and LM are reported
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PES minimum at a given value R. The absolute energy minimum is indicated
by GM, the top of potential energy bump is labeled with reef and the second
minimum around R = 6a0 is called LM (local minimum).

in Table I, together with other characteristic parameters of the
obtained PES.

The position of GM has been previously determined
experimentally17 and theoretically18 using the density func-
tional theory (Table I). The coordinates from the previous the-
oretical study are specified by a range of values because dif-
ferent types of functionals have been used in Ref. 18 that gave
slightly different values for GM.

The obtained ab initio data were used to prepare a
FORTRAN subroutine that calculates potential energy for an
arbitrary geometry, which is available as a supplementary
material.

Using the HCO− PES, we have calculated energies of
several rovibrational levels for two values of the total angular
momentum J = 0, 1 (Table II) using the same close-coupling
method as in the previous study of H−

3 .16 The details can be
found in Refs. 16, 31, and 32. Wave functions of certain lev-
els are primarily localized in the inner potential well. These
levels are marked with a star in Table II. The rotational con-
stants, estimated from the energy difference between the J
= 0 and 1 levels, are considerably larger than those of the
other levels localized in the outer well of PES. For each level
in the table, we specify only the total angular momentum J
and the overall symmetry of the state. In principle, for lev-
els localized in the outer potential well it is possible to as-
sign approximate quantum numbers corresponding to the vi-
brational excitation of the CO dimer and the projection of

TABLE II. Binding energies of rovibrational levels of the HCO− ground
electronic state. Energies are given in cm−1 with respect to the energy D0

0
of the lowest dissociation limit CO(v = 0, j = 0)+H−. States with J = 0
can only be of the A′ irreducible representation. The J = 1 states could be
of the A′ or A′′ irreducible representation, but the J = 1, A′ states have not
been calculated. The obtained energies are combined in rotational triads cor-
responding to the same vibrational excitation. The levels marked with a star
are localized primarily in the inner potential well.

J = 0, A′ J = 1, A′′ J = 0, A′ J = 1, A′

* −1338.4 * − 1335.7 * − 1324.4 − 97.5 − 95.8 − 94.5
−542.1 − 539.9 − 538.5 − 90.8 − 89.1 − 87.7
−423.9 − 421.7 − 420.6 − 65.7 − 64.2 − 62.6
−366.9 − 364.9 − 363.5 − 63.2 − 61.7 − 60.0
−323.9 − 321.5 − 320.0 − 52.6 − 51.1 − 49.2
* −295.3 * − 290.7 * − 280.4 − 41.5 − 40.1 − 38.3
−272.3 − 270.1 − 268.1 − 39.2 − 37.6 − 35.8
−231.8 − 229.0 − 226.6 − 29.4 − 28.4 − 26.4
−227.9 − 226.0 − 224.6 − 20.4 − 19.2 − 17.0
* − 220.7 * − 214.7 * − 190.6 − 16.6 − 15.4 − 12.7
−190.2 − 188.1 − 186.9 − 13.4 − 12.0 − 10.0
−156.2 − 154.2 153.1 − 6.7 − 6.1 − 3.3
−154.4 − 152.5 151.3 − 3.7 − 3.0 − 1.0
−121.1 − 119.5 − 118.1 − 1.3 − 0.15
−119.8 − 117.9 − 116.7

the angular momentum on the molecular Z axis, similarly to
the H−

3 study.16 However, this analysis has not been made for
HCO−.

Inspecting the energy spacing between the levels, we de-
duce that two potential wells are highly an-harmonic. It means
that the normal mode analysis cannot produce realistic en-
ergy spectrum even for the lowest levels. Indeed, the previous
theoretical study of HCO− of Ref. 18 gave the intervals for
the three normal mode frequencies: 1649–1938, 1199–1344,
and 1344–1525 cm−1, which are considerably larger than the
splitting of 780–800 cm−1 between the lowest vibrational lev-
els obtained in our study. It is worth mentioning that the ex-
perimental lower-bound estimate for the splitting between the
lowest vibrational levels of HCO− is 800 cm−1,17 which is
consistent with our results.

The affinity A(HCO−) of the lowest HCO− vibrational
level was obtained from the dissociation energy D0

0(CO+H)
= 4600 cm−1 of HCO (Ref. 26) and the affinity A(H−)
= 6050 cm−1 of H−: A(HCO−) = A(H−)−D0

0(CO + H)
+ D0

0(CO + H−) ∼ 2790 cm−1. Because we have deter-
mined the interaction energy of the HCO molecule at its
equilibrium position, the zero-point energy of HCO, as well
as the interaction energy of HCO− at equilibrium using the
MRCI/CASSCF method, we can also calculate the affin-
ity independently of Ref. 26. Using our MRCI/CASSCF
data, the zero-point energy of HCO− from Table II and
the experimental affinity of H−, we obtained the affinity of
2651 cm−1. The difference between the two values (2790 and
2651 cm−1) of the HCO− affinity provides an order of mag-
nitude of the theoretical precision, which is about 150 cm−1.
The obtained affinity is in good agreement with the experi-
mental value 2520± 40 cm−1 of Ref. 17.
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IV. DIPOLE MOMENT SURFACES

For determination of the cross section for the radiative
association between CO and H−, components of permanent
dipole moment are also needed. The two non-zero PDMS-
components along X and Z axes have been calculated at the
same grid of geometries using the same basis set.

Accuracy of dipole moments needed to compute transi-
tion probabilities is less critical than the one required for en-
ergies to determine transition frequencies. Therefore, in order
to save computing time, we restricted the calculation of the
PDMS at the Hartree-Fock (HF) level. The level of theory
is benchmarked by comparison of the HF values computed
at γ = 90◦ of the PDMS in the asymptotic region (namely,
for large R) with the CCSD(T) value29 of the CO dipole mo-
ment: For CO internuclear distances changing between 1.5
a0 and 2.7 a0, the HF values of the Dx component of HCO−

(for γ = 90◦) are varying between 0.43 ea0 and −0.72 ea0;
the CCSD(T) dipole moment of CO is varying between 0.43
ea0 and −0.31 ea0. The asymptotic value of the DZ compo-
nent of HCO− can be compared with the expected theoretical
value DZ = − mCO

mCO+mH− eR = −0.965517eR. As illustrated in
the upper panel of Fig. 9, the HF value of DZ obeys the linear
variation, with a slope −0.96553 derived from a numerical fit.
At short R distances the value of DZ is certainly less accurate.
To give an idea about accuracy of the HF dipole moments
at small values of R, we have calculated both components of
dipole moment using the CCSD(T) method and the same basis
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d-aug-cc-pVQZ. The components of dipole moment have
been obtained by numerical differentiation of total CCSD(T)
energy with respect to a finite external electric field. For each
geometry point a total of three calculations in each of the two
directions with field strengths 0 and ±10−3 a.u. were em-
ployed. The results are shown in Fig. 10. In the future cal-
culation of the radiative association cross section, accuracy
in determination of the cross section will be of the order of
one percent or better, because the major contribution to the
Franck-Condon factor will be given by geometries 5a0 < R
< 15a0. This level of accuracy is satisfactory for cross section
calculations.

Similarly to Ref. 15, the obtained ab initio PDMS com-
ponents have been used to prepare a FORTRAN subroutine,
which determines the two PDMS components for an arbitrary
geometry given by R, r, and γ . In this subroutine, for the cen-
tral region of Fig. 4, the surfaces are interpolated using the 3D
B-splines. At large R (region II in Fig. 4), the DZ PDMS com-
ponent behaves linearly with R: DZ = −0.965517 eR for all γ

and r. The DX component behaves as DX = d(r)sin (γ ), when
R → ∞. In regions I, III, and IV, same empirical formulas as
in Ref. 15 are used.

V. CONCLUSION AND PROSPECTS

In this work, we have determined, for the first time, the
global potential energy surface of the ground state of the
formyl anion HCO− using a large basis set in the frame-
work of the CCSD(T) method implemented in the GAUSSIAN
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package. Using the obtained ab initio energies and the mul-
tipole expansion at large distances between H− and CO, we
elaborated a FORTRAN interpolation routine (provided as sup-
plementary material)34 that can be used to obtain potential en-
ergy of HCO− for any geometry. The minimum energy path
along the distance between H− and the CO center-of-mass re-
veals that the vibrational motion takes place within a double-
well structure of the potential energy surface. Two kinds of
bound levels are clearly identified, with radial wave functions
being localized mostly inside the internal well, or spread over
the two wells. The electron affinity of HCO− obtained in this
study, 2650 ± 150 cm−1 (the MRCI value) is in good agree-
ment with the experimental value 2520 ± 40 cm−1.17

The calculated surfaces of the two components of the
dipole moment of HCO− can be used to obtain the cross sec-
tion for radiative association between CO and H− and oscilla-
tor strengths for rovibrational transitions in HCO−. The pro-
cess of radiative association could be important for the probe
of presence of H− in the ISM: It has been shown in the previ-
ous study16 that the cross section for RA between H− and H2

is too small to expect significant amounts of stable H−
3 ions

that could be detected through absorption spectroscopy. The
CO molecule is the second (after H2) most abundant molecule
in the ISM, and at large distances it has a stronger interaction
with H− compared to H2. Therefore, we expect the RA cross-
section for CO + H− to be significantly larger than that in
the case of H2 + H−. For detection in the ISM, one could use
pure-rotational transitions for the ground vibrational level and
rovibrational transitions between excited vibrational levels of
HCO−. Wavelengths for such transitions fall into the sensi-
tivity bands of the Herschel space observatory. These calcu-
lations are currently in progress in our group. The computed
energy levels of HCO− as well as RA rates could also be of
great help for experiments aiming at studying collisions be-
tween neutral molecular species and negative ions in multi-
pole traps.33
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