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Combinatorially interpreting generalized Stirling
numbers

John Engbers∗ David Galvin† Justin Hilyard‡

July 9, 2014

Abstract
The Stirling numbers of the second kind

{
n
k

}
(counting the number of partitions

of a set of size n into k non-empty classes) satisfy the relation

(xD)n f(x) =
∑
k≥0

{
n

k

}
xkDkf(x)

where f is an arbitrary function and D is differentiation with respect to x. More
generally, for every word w in alphabet {x,D} the identity

wf(x) = x(#(x’s in w)−#(D’s in w))
∑
k≥0

Sw(k)xkDkf(x)

defines a sequence (Sw(k))k of Stirling numbers (of the second kind) of w. Explicit
expressions for, and identities satisfied by, the Sw(k) have been obtained by
numerous authors, and combinatorial interpretations have been presented.

Here we provide a new combinatorial interpretation that, unlike previous ones,
retains the spirit of the familiar interpretation of

{
n
k

}
as a count of partitions.

Specifically, we associate to each w a quasi-threshold graph Gw, and we show that
Sw(k) enumerates partitions of the vertex set of Gw into classes that do not span
an edge of Gw. We use our interpretation to re-derive a known explicit expression
for Sw(k), and in the case w = (xsDs)n to find a new summation formula linking
Sw(k) to ordinary Stirling numbers. We also explore a natural q-analog of our
interpretation.

In the case w = (xrD)n it is known that Sw(k) counts increasing, n-vertex,
k-component r-ary forests. Motivated by our combinatorial interpretation we
exhibit bijections between increasing r-ary forests and certain classes of restricted
partitions.
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1 Introduction

The Stirling number of the second kind,
{
n
k

}
, counts the number of ways of partitioning

a set of n elements into k non-empty classes. It satisfies the recurrence{
n

k

}
=

{ {
n−1
k−1

}
+ k
{
n−1
k

}
if both n > 0 and k > 0, and

1{n=k} if nk = 0.
(1)

The numbers
{
n
k

}
satisfy numerous algebraic identities; indeed, it was through the

identity

xn =
∑
k≥0

{
n

k

}
xk

for n ≥ 0, where xk is the kth falling power x(x− 1) . . . (x− (k− 1)), that James Stirling
originally introduced the numbers, in his 1730 Methodus differentialis [25]. Central to
the present paper is the following identity, probably first observed by Scherk in his 1823
thesis [23] (see [6] for details), which arises when one repeatedly applies the operator
xD to an infinitely differentiable function f(x) (where D is differentiation with respect
to x). For all n ≥ 0 we have

(xD)nf(x) =
∑
k≥0

{
n

k

}
xkDkf(x) (2)

(where here and throughout we interpret D0 as the identity). One way to verify (2) is
to prove by induction on n that (xD)nf(x) takes the form

∑
k≥0 S(n, k)xkDkf(x) for

some numbers S(n, k), and then show that these numbers satisfy (1) (with
{ ·
··

}
replaced

everywhere by S(·, ··)).
More generally, for each word w in alphabet {x,D}, with m x’s and n D’s, we have

a unique expansion of the form

w = xm−n
∑
k≥0

Sw(k)xkDk, (3)

with both sides being viewed as operators on a space of infinitely differentiable functions.
One may easily verify (3) by induction on the length of the word w. Uniqueness comes
from considering two different expressions of the form of the right-hand side of (3), and
applying their difference to f(x) = xk0 , where k0 is the smallest index k for which the
coefficients of xkDk differ between the two expressions. The result is a power series in x
with at least one non-zero coefficient, and so cannot be identically zero.

The integer sequence (Sw(k))k≥0 that arises from (3) is what we call the Stirling
sequence (of the second kind) of w; Scherk’s identity (2) states that if w = (xD)n then
the Stirling sequence of w coincides with the ordinary Stirling sequence of the second
kind.

The set of words on alphabet {x,D} forms a representation of the Weyl algebra, as
the operators x and D satisfy the Weyl algebra’s defining relation Dx = xD+ 1. In this
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context the right-hand side of (3) is referred to as the normal order of the word w. The
normal order problem arises in quantum mechanics, where x is viewed as a “creation
operator” and D as an “annihilation operator” in a space of polynomials. Because
these operators do not commute, it is desirable from a computational point of view to
find expansions of words that are presented as a sum of words, all of which have the
annihilation part completely to the right and the creation part completely to the left.
See [7] for an introduction to this perspective.

The study of Sw(k) has a long history. Some instances (beyond w = (xD)n) were
studied by Scherk in his 1823 thesis [23]. Carlitz [10, 11] derived summation formulae
and identities for some instances in the 1930’s, and Comtet [13] considered the case
w = (xrD)n in the 1970’s, as did Lang [18] in 2000.

All of these references deal with the problem through generating functions and
recurrences. In 1973 Navon [22] provided a lovely combinatorial interpretation of Sw(k)
for all w, associating a Ferrers board to w and realizing Sw(k) as the number of ways
of placing non-attacking rooks on the board (see Section 4 for more details); Varvak
thoroughly explored this interpretation, and obtained q-analogs for it, in [28]. Very
recently Codara et al. [14] gave a combinatorial interpretation in terms of graph
coloring in the case w = (xsDs)n; our Theorem 2.3, which was developed independently,
generalizes this interpretation to arbitrary w.

The arrival of the quantum mechanics community to the problem in the early 2000’s
has led to a flurry of activity. Blasiak et al. [8, 9] thoroughly studied identities and
recurrences for Sw(k) for certain words w, and Schork [24] looked at q-analogs. Mendez
et al. [21] looked at Sw(k) for general w, and gave a combinatorial interpretation in
terms of certain generalized tree structures. This interpretation was explored more by
Lang [19] and recently quite thoroughly by Blasiak and Flajolet [6]. The connection to
rook polynomials was revisited by Blasiak et al. in [5], and in [27] the same authors
explored connections to Feynman diagrams. In [3], Asakly et al. showed how to read off
the normal order of a word from a certain labeled tree, and in [20] Ma et al. explored
connections between normal ordering and context-free grammars.

One contribution of the present paper is a simple new graph theoretic interpretation
of Sw(k) for any w and k, that very naturally generalizes the standard interpretation
of
{
n
k

}
as a count of partitions. Specifically, we show how to associate to any w a

ground-set and a set of forbidden pairs (which we encode as a graph on the ground-set),
in such a way that Sw(k) counts the number of partitions of the ground set that avoid
putting both members of a forbidden pair into the same block. The statements of all our
results can be found in Section 2, and the remaining sections are devoted to the proofs.

2 Statement of results

Here we outline the main results of the present paper.
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2.1 A new combinatorial interpretation of Sw(k)

We begin by giving a new combinatorial interpretation of Sw(k). We associate to each
w a graph Gw with the property that Sw(k) enumerates the partitions of the vertex set
of Gw into a specified number of non-empty classes, with the property that no class
includes both endvertices of an edge of Gw. In the case w = (xD)n, Gw turns out to be
the empty graph on n vertices and we recover the usual combinatorial interpretation
of
{
n
k

}
. In the case w = (xsDs)n, Gw is the disjoint union of n copies of the complete

graph on s vertices, and we recover a recent result of Codara et al. [14, Proposition 2.2].
To the best of our knowledge, ours is the first combinatorial interpretation of Sw(k) for
arbitrary w as a count of (restricted) partitions.

To define Gw, we first introduce the notion of a Dyck word.

Definition 2.1. A word w in alphabet {x,D} is a Dyck word if it satisfies the following:

1. it has the same number of x’s as D’s, and

2. reading the word from left to right, every initial segment has at least as many x’s
as D’s.

We say that a Dyck word is irreducible if either it is the word xD or it is of the form
xw′D with w′ a non-empty Dyck word, and we say that it is reducible otherwise.

Observe that a reducible word may be written (in unique way) as w1 . . . w`, where
each wi is irreducible.

A Dyck path in R2 is a staircase path (a path that proceeds by taking unit steps,
either in the positive x direction or the positive y direction) that starts at (0, 0), ends
on the line x = y, any never goes below this line. There is a natural correspondence
between Dyck paths and Dyck words, given by mapping steps in the positive y direction
to x, and steps in the positive x direction to D (see Figure 1 for an example). Irreducible
Dyck words correspond to Dyck paths that meet the line x = y only at their initial and
terminal points, and reducible Dyck words correspond to Dyck paths that meet the line
at some intermediate points as well.

We now associate to each Dyck word w an unlabeled graph Gw inductively, as follows:

1. If w = xD, then Gw = K1 (the isolated vertex).

2. If w is irreducible with w = xw′D for some non-empty Dyck word w′, then
Gw = Gw′ +K1 (the graph obtained from Gw′ by adding a dominating vertex).

3. If w is reducible, say w = w1 . . . w` with each wi irreducible, then Gw = Gw1 ∪
· · · ∪Gw`

(the disjoint union of the Gwi
’s).

In particular clause 3 above tells us that if w = w′w′′ with w′ and w′′ both Dyck words
(not necessarily irreducible) then Gw = Gw′ ∪Gw′′ .
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We note in passing that Gw belongs to the well-known family of quasi-threshold,
or trivially perfect graphs (see e.g. [29] for a survey); recall that the family of quasi-
threshold graphs is the smallest family that contains K1 and is closed under adding
dominating vertices and taking disjoint unions (if unions that do not amount to the
addition of an isolated vertex are forbidden, we obtain the smaller class of threshold
graphs).

As an example, consider the word w = xxDxxDxDDD. Writing this as

x ([xD] [x {〈xD〉〈xD〉}D])D,

we quickly see that Gw is constructed by taking two isolated vertices (say a and b),
adding a dominating vertex (say c), taking the union of the resulting graph with an
isolated vertex (say d), and then adding a final dominating vertex (say e). (See Figure
1.)

y

x

a b c d e

Figure 1: The Dyck path corresponding to the Dyck word w = xxDxxDxDDD and
the associated graph Gw.

To state our first theorem, it is convenient to generalize the symbol
{
n
k

}
to graphs.

Definition 2.2. Let G be a graph and k ≥ 0 an integer. The kth graph Stirling number
of G, denoted

{
G
k

}
, is the number of ways of partitioning the vertex set of G into k

non-empty classes, none of which contains both endvertices of an edge of G.

Equivalently
{
G
k

}
counts partitions of G into k non-empty independent sets, that is,

sets of mutually non-adjacent vertices; it also counts the number of different proper
k-colorings of G using all k colors, with two colorings considered to be the same if they
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differ only on the names of the colors. These numbers were first studied in their own
right (to the best of our knowledge) by Tomescu [26], although they were probably first
introduced (in the setting of planar graphs) by Birkhoff [4]. Note that

{
G
k

}
does indeed

generalize the Stirling numbers
{
n
k

}
, since when G = En, the graph on n vertices with

no edges, we have
{
En

k

}
=
{
n
k

}
.

We can now state of first theorem, which gives a simple new combinatorial interpre-
tation of Sw(k) in terms of restricted partitions.

Theorem 2.3. Let w be a Dyck word in the alphabet {x,D}. For all k ≥ 0 we have

Sw(k) =

{
Gw

k

}
.

Our proof of Theorem 2.3 will be direct, in the sense that we do not rely on previously
known formulae or combinatorial interpretations for Sw(k).

As an illustration of Theorem 2.3, let us return to xxDxxDxDDD. A little compu-
tation with the relation Dx = xD + 1 yields

xxDxxDxDDD = 2x3D3 + 4x4D4 + x5D5.

On the other hand, we have
{
Gw

3

}
= 2 (the two partitions of V (Gw) into three non-

empty independent sets are ab|cd|e and abd|c|e),
{
Gw

4

}
= 4 (the partitions being ab|c|d|e,

ad|b|c|e, a|bd|c|e and a|b|cd|e),
{
Gw

5

}
= 1 (the unique partition being a|b|c|d|e), and{

Gw

k

}
= 0 for all other k, exactly as predicted by Theorem 2.3.

In the case w = (xtiDti)n we get a particularly appealing combinatorial interpretation.
Here Gw = Kt1 ∪ . . . ∪Ktn , the disjoint union of cliques of various sizes, and Theorem
2.3 gives that Sw(k) counts the number of partitions of this union of cliques into k
non-empty independent sets. The case when all ti = 2 was observed in [6], in slightly
different language, and the case of all ti = t for general t has appeared recently in [14].
Note that in this last case we may whimsically interpret

{
Gw

k

}
as the number of ways of

breaking up a gathering of n sets of t-tuplets into k non-empty blocks, in such a way
that no block contains more than one member from each set of t-tuplets. Variants of
this problem for twins, or t = 2, were considered by Griffiths in [17]; our work on these
notes began after reading that paper.

Theorem 2.3 can easily be extended to give a combinatorial interpretation of Sw(k)
for arbitrary w.

Definition 2.4. Let w be a word in the alphabet {x,D}. Let a = a(w) be the least
non-negative integer such that all initial segments of xaw have at least as many x’s as
D’s, and let b = b(w) be the unique non-negative integer such that xawDb is a Dyck
word. We refer to xawDb as the Dyck word associated with w.

The normal order of w is easily obtained from that of xawDb. Indeed, suppose that
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w has m x’s and n D’s. From (3) we have w = xm−n
∑

k≥0 Sw(k)xkDk. Then

xawDb = xa

(
xm−n

∑
k≥0

Sw(k)xkDk

)
Db

= xa+m−n
∑
k≥0

Sw(k)xkDk+b

=
∑
k≥0

Sw(k)xk+bDk+b,

the last equality using a+m = b+ n (valid since xawDb is a Dyck word). Since also
xawDb =

∑
k≥0 SxawDb(k)xkDk, we get the identity Sw(k) = SxawDb(k + b). Therefore,

the following is an immediate corollary of Theorem 2.3.

Corollary 2.5. Let w be an arbitrary word in the alphabet {x,D}, and let xawDb be
its associated Dyck word, as in Definition 2.4. For all k ≥ 0 we have

Sw(k) =

{
GxawDb

k + b

}
.

Theorem 2.3 and Corollary 2.5 yield an explicit expression for Sw(k). Let w be any
word with, say, m x’s, and let xawDb be its associated Dyck word.

Definition 2.6. The height ai of the ith x in xawDb is the excess of x’s over D’s in
the initial segment of xawDb that ends immediately prior to the ith x.

Equivalently, the height of each x can be calculated from the Dyck path associated
with xawDb: if the step in the positive y direction corresponding to a particular x of
the word goes from (a, b) to (a, b+ 1), then the height of that x is b− a.

Theorem 2.7. Let w be an arbitrary word in the alphabet {x,D}, and let xawDb be its
associated Dyck word. With the ai’s as in Definition 2.6, we have

Sw(k) =
1

(k + b)!

k+b∑
`=0

(−1)`
(
k + b

`

)m+a∏
i=1

(k + b− `− ai).

For example, if w = xxDxxDxDDD then m = 5, a = b = 0, a1 = 0, a2 = 1, a3 = 1,
a4 = 2, a5 = 2 and

Sw(k) =
1

k!

k∑
`=0

(−1)`
(
k

`

)
(k − `)(k − `− 1)2(k − `− 2)2.

Similar explicit expressions have appeared in [28] and [21]. Note that when w = (xD)n,
Theorem 2.7 immediately reduces to the familiar{

n

k

}
=

1

k!

k∑
`=0

(−1)`
(
k

`

)
(k − `)n.

The proofs of Theorems 2.3 and 2.7 appear in Section 3.
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2.2 A closely related combinatorial interpretation

By combining a result of Navon [22] with one of Goldman, Joichi and White [16], we
find another graph Hw that can naturally be associated to a Dyck word w, such that
Sw(k) =

{
Hw

k

}
for all k. To define this graph, label each unit square in Z2 with the

coordinates of its top-right corner (so, for example, the square with corners at (0, 0),
(1, 0), (0, 1) and (1, 1) gets label (1, 1)). Given a Dyck word w, let Ww be the set of
(labels of) unit squares that lie below the staircase path of w, and completely above
the line x = y. For example, if w = (xD)n then Ww = ∅, and if w = xxDxxDxDDD
then Ww = {(1, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}. Define a graph Hw on vertex set
{1, . . . , n} (where n is the number of x’s in w) by putting an edge from i to j (i < j) if
and only if (i, j) ∈ Ww. (See Figure 2.)

y

x

(1, 2)

(2, 3)

(2, 4) (3, 4)

(3, 5) (4, 5)

1 2 3 4 5

Figure 2: The staircase path of w and the graph Hw for w = xxDxxDxDDD.

It is worth noting that Hw is determined by the locations of the peaks of the Dyck path
of w, that is, by the places where the path takes a step up followed by a step to the right.
To make this precise, say that the Dyck path of w has a peak at (x, y) if it takes a step
from (x− 1, y− 1) to (x− 1, y) and then steps to (x, y). Let Tw = {(x1, y1), . . . , (xk, yk)}
be the set of peaks of the path of w. Then it is easy to see that the edge set of Hw

can be covered by putting a clique on each of the consecutive segments {xi, . . . , yi},
1 ≤ i ≤ k. For example, if w = (xD)n then Tw = {(1, 1), . . . , (n, n)} and the edge
set of Hw is empty; while if w = xxDxxDxDDD then Tw = {(1, 2), (2, 4), (3, 5)}, and
the edge set of Hw is {{1, 2}} ∪ {{2, 3}, {2, 4}, {3, 4}} ∪ {{3, 4}, {3, 5}, {4, 5}}, i.e., it
is composed of cliques on the vertex sets {1, 2}, {2, 3, 4}, and {3, 4, 5} (see Figure 2,
where the coordinates of the peaks of the path are underlined).

We note in passing that Hw belongs to the family of indifference graphs. Indeed, a

8



characterization of indifference graphs mentioned in [15] is that they are exactly those
graphs H on vertex set {v1, . . . , vd} for which there is some collection C of intervals
from {1, . . . , d} such that the edge set of H is {vivj : i, j are in some element of C}.
Notice that the graphs Hw and Gw are sometimes isomorphic (for example, when w =∏n

i=1 x
tiDti for arbitrary ti’s), but not always (for example, when w = xxDxxDxDDD).

Theorem 2.8. Let w be Dyck word in the alphabet {x,D}. For all k ≥ 0 we have

Sw(k) =

{
Hw

k

}
.

As in Section 2.1, the following is an immediate corollary of Theorem 2.8.

Corollary 2.9. Let w be an arbitrary word in the alphabet {x,D}, and let xawDb be
its associated Dyck word. For all k ≥ 0 we have

Sw(k) =

{
HxawDb

k + b

}
.

We give the proof of Theorem 2.8 in Section 4, where we also give a direct proof
(not using the results of [22] and [16]) of the identity

{
Hw

k

}
=
{
Gw

k

}
for all Dyck words

w and k ≥ 0.

2.3 A new summation formula for Sw(k) when w = (xsDs)n

All explicit expressions for Sw(k) that have appeared in the literature have taken the
form of alternating sums. Using Theorem 2.3, we can obtain a new expression for Sw(k),
in the special case w = (xsDs)n, as a positive linear combination of ordinary Stirling
numbers. In what follows we use [x`]p(x) for the coefficient of x` in the polynomial p(x).
The proof of the following theorem is given in Section 5.

Theorem 2.10. Let w = (xsDs)n. For each k ≥ 0 we have

Sw(k) =

(s−1)(n−1)∑
`=0

f(n, s, `)

{
s(n− 1) + 1− `
k − (s− 1)

}
where

f(n, s, `) =
∑

i1+...+is−1=`

(
n− 1

i1

)(
2(n− 1)− i1

i2

)
. . .

(
(s− 1)(n− 1)− i1 − . . .− is−2

is−1

)
.

(4)

In Section 5 we also establish the following alternate expression for f(n, s, `):

f(n, s, `) = [x`] ((1 + x)(1 + 2x) . . . (1 + (s− 1)x))n−1 . (5)
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The (unsigned) Stirling number of the first kind
[
a
b

]
counts the number of permutations of

a symbols that decompose into exactly b cycles. Using a well known identity satisfied by
the Stirling numbers of the first kind, (5) immediately gives the following nice connection
between generalized Stirling numbers of the second kind, and ordinary Stirling numbers
of the first kind:

f(n, s, `) = [x`]

(
s−1∑
j=0

[
s

s− j

]
xj

)n−1

.

The Bell number B(w) of a word w is defined by B(w) =
∑

k Sw(k) (so the Bell
number of the word (xD)n is Bn, the nth ordinary Bell number, counting the number
of partitions of a set of size n into non-empty classes). From Theorem 2.10 we easily
obtain

B((xsDs)n) =

(s−1)(n−1)∑
`=0

f(n, s, `)Bs(n−1)+1−`. (6)

In [9] the comment is made that the Bell number B((xsDs)n) can always be expressed in
terms of conventional Bell numbers and r-nomial (binomial, trinomial, . . .) coefficients,
and the illustrative example B((x2D2)n) =

∑n−1
`=0

(
n−1
`

)
B2n−1−` is given; (6) illustrates

this comment explicitly for arbitrary s.

2.4 Increasing forests

An r-ary tree is a tree in which every vertex, including a designated root, has some
number i (0 ≤ i ≤ r) of children, with the set of children equipped with a bijection to
some subset of a fixed set of size r (when r = 2 this set is often taken to be {left, right},
for example, and for r = 3 it might be {left,middle, right}; for general r we take it to
be {1, . . . r}). An r-ary forest is a forest in which each component is an r-ary tree. An
increasing r-ary forest is an r-ary forest on, say, n vertices, together with a bijection
from the vertices to {1, . . . , n}, with the property that the labels go in increasing order
when read along any path starting from a root vertex of a component.

Let F (r, n, k) denote the set of increasing r-ary forests with n vertices and k com-
ponents. It is easy to see that |F (1, n, k)| =

{
n
k

}
; in other words, writing w(r, n) for

the word (xrD)n, we have |F (1, n, k)| = Sw(1,n)(k). More generally, Mendez et al [21,
Section 5] have shown that the Stirling sequence of (xrD)n enumerates increasing r-ary
forests with n vertices by number of components; specifically, for all n, r and k,

|F (r, n, k)| = Sw(r,n)(k). (7)

Corollaries 2.5 and 2.9 provide alternate combinatorial interpretations of Sw(k),
in the case w = w(r, n), that are quite appealing. Indeed, in this case Gw is simply
the threshold graph obtained from the graph on no vertices by iterating n times the
operation of adding an isolated vertex and then adding r − 1 dominating vertices, and
Hw is the graph on vertex set {1, . . . , rn}, with edges covered by cliques on vertices i
through ir, for 1 ≤ i ≤ n (see Figures 3, 4 and 5 in Section 6). We refer to these graphs
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as G(n, r) and H(n, r) respectively. The following identities follow immediately from
Theorems 2.3 and 2.8, via (7):{

G(n, r)

k + (r − 1)n

}
= |F (r, n, k)|{

H(n, r)

k + (r − 1)n

}
= |F (r, n, k)|.

In Section 6 we give combinatorial proofs of both of these identities, by exhibiting
bijections from the set of increasing r-ary forests with n vertices and k components to
the set of partitions of both G(n, r) and H(n, r) into k+(r−1)n non-empty independent
sets.

2.5 q-analogs

The ordinary Weyl algebra on alphabet {x,D} is generated by the relation Dx = xD+1.
The q-deformed Weyl algebra is instead generated by the relation Dx = qxD+ 1 (where
q is an indeterminate). This relation has been studied, for example, in the context of
quantum harmonic oscillators [2]. If w is a word in the q-deformed Weyl algebra, with
m x’s and n D’s, then we have the following analogue of the normal order equation (3)
(again easily verified by induction, and again unique)

w = xm−n
∑
k≥0

Sqw(k)xkDk, (8)

where now Sqw(k) is a polynomial in q with non-negative integer coefficients, that
evaluates to Sw(k) when q = 1.

In the case w = (xD)n, (8) leads to a q-analogue of the Stirling numbers of the second
kind. From a combinatorial perspective, a more natural way to define a q-analogue of
the Stirling numbers is through the recurrence{

n

k

}
q

=

{
qk−1

{
n−1
k−1

}
q

+ [k]q
{
n−1
k

}
q

if both n > 0 and k > 0, and

1{n=k} if nk = 0

where [k]q is, as usual, the polynomial 1 + q + . . . qk−1. This formulation goes back to
Carlitz [12]. Happily, these two refinements of the Stirling numbers coincide: for all n, k
and q we have Sq(xD)n(k) =

{
n
k

}
q

(with the proof of this following the lines of the proof

of (2)).
Varvak [28] extended Navon’s combinatorial interpretation of Sw(k) for arbitrary

w to a combinatorial interpretation of (the coefficients of) Sqw(k). We are also able
to extend our interpretation (from Section 2.1) to the realm of the q-deformed Weyl
algebra. Specifically, given a Dyck word w, by Theorem 2.3 there is a quasi-threshold
graph Gw with the property that

{
Gw

k

}
= Sw(k). Let P(w, k) be the set of partitions of
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Gw into k non-empty independent sets. We show now how to associate a weight wt(P )
to each P ∈ P(w, k) so that

∑
P∈P(w,k) q

wt(P ) = Sqw(k).

Not unexpectedly, given the inductive construction of Gw, the definition of wt(P )
will be inductive. It will also depend on a predetermined total order on the set of
independent sets of Gw (which may be chosen arbitrarily); note that such a total order
naturally induces a total order on the set of independent sets of any subgraph of Gw.
Before giving the definition, we make some preliminary observations.

For w = xD, the only value of k for which P(w, k) 6= ∅ is k = 1, and there is
a unique partition in P(w, 1). If w = xw′D is irreducible, then Gw can be written
as Gw′ + K1. Let v be the dominating vertex in this decomposition. For each k for
which P(w, k) 6= ∅, each P ∈ P(w, k) must include v as a singleton part, and the map
ϕ : P(w, k)→ P(w′, k − 1) that removes that singleton part is a bijection.

If w = w1w2 . . . w` is reducible (with each wi irreducible), then Gw can be written
as the disjoint union of Gw1 and Gw2...w`

. Fix a k for which P(w, k) 6= ∅, and consider
P ∈ P(w, k). There are numbers r, s such that exactly r of the parts of P have
non-empty intersection with Gw1 , exactly s of them have non-empty intersection with
Gw2...w`

, and exactly (r + s) − k of them have non-empty intersection with both Gw1

and Gw2...w`
. By projection P induces partitions P1 ∈ P(w1, r) with parts x1, . . . , xr

(written in increasing order with respect to the total order on independent sets) and
P2 ∈ P(w2 . . . w`, s) with parts y1, . . . , ys (also in increasing order). We may encode how
P is constructed from P1 and P2 using an r by s matrix whose ij entry is 1 if xi ∪ yj
is one of the parts of P , and 0 otherwise. Call this matrix M ; note that it contains a
dimension (r+ s)− k permutation matrix as a minor, and all other entries are 0. When
we come to define wt(P ) in the reducible case, we will need to associate a weight to this
matrix M .

Definition 2.11. Let M be an r by s matrix that contains a dimension (r + s) − k
permutation matrix as a minor, and has all other entries 0. Mark all of the 0’s in M
that are either below a 1 (in the same column) or to the right of a 1 (in the same row).
The weight of M , denoted f(M), is the number of unmarked 0’s in M .

See Figure 6 in Section 7 for an example M .
We are now in a position to define the weight of a partition. For w a Dyck word,

and P a partition of Gw into non-empty independent sets, associate a weight wt(P ) to
P inductively as follows.

1. If w = xD, then wt(P ) = 0.

2. If w is irreducible with w = xw′D for some non-empty Dyck word w′, then
wt(P ) = wt(ϕ(P )).

3. If w is reducible, say w = w1 . . . w` with each wi irreducible, then

wt(P ) = wt(P1) + wt(P2) + f(M).

12



We prove the following result in Section 7.

Theorem 2.12. For each Dyck word w and each k ≥ 0, we have∑
P∈P(w,k)

qwt(P ) = Sqw(k).

While the construction above may seem involved, the following example illustrates a
subtlety of q-analogs that must be captured by any interpretation. For w = xDxDxD,
we have Sqw(2) = 2q + q2, despite the fact that all three partitions of the vertices of
Gw = E3 into two nonempty independent sets are isomorphic.

3 Interpreting Sw(k) in terms of partitions of Gw

We begin with the proof of Theorem 2.3, which depends on the following two claims.

Claim 3.1. Let w′ be a word in the alphabet {x,D}, and let G′ be a graph with the
property that for all k ≥ 0,

Sw′(k) =

{
G′

k

}
.

Let w = xw′D and let G be obtained from G′ by adding a dominating vertex. For all
k ≥ 0,

Sw(k) =

{
G

k

}
.

Proof. Using

w′f(x) =
∑
k≥0

{
G′

k

}
xkDkf(x)

we easily get (applying the above with f(x) replaced by f ′(x), and setting
{
G′

−1

}
= 0)

xw′Df(x) =
∑
k≥0

{
G′

k − 1

}
xkDkf(x).

The proof is completed by noting that
{
G
k

}
=
{
G′

k−1

}
for all k ≥ 0, since in any partition

of G into non-empty independent sets, the dominating vertex added in going from G′ to
G must form a singleton block.

Claim 3.2. Let w1, w2 be words in the alphabet {x,D}, and let G1, G2 be graphs with
the property that for each i ∈ {1, 2} and all k ≥ 0,

Swi
(k) =

{
Gi

k

}
. (9)
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For all k ≥ 0,

Sw1w2(k) =

{
G1 ∪G2

k

}
where w1w2 is the concatenation of w1 and w2, and G1 ∪G2 is the disjoint union of G1

and G2.

Proof. Using (9) we have, for arbitrary f ,

w1w2f(x) = w1

∑
k2≥0

{
G2

k2

}
xk2Dk2f(x)

=
∑
k1≥0

{
G1

k1

}
xk1Dk1

∑
k2≥0

{
G2

k2

}
xk2Dk2f(x)

=
∑

k1,k2≥0

{
G1

k1

}{
G2

k2

}
xk1Dk1xk2Dk2f(x). (10)

Now by Leibnitz’ rule ((fg)(n)(x) =
∑

k≥0

(
n
k

)
f (k)(x)g(n−k)(x)) for the iterated derivative

of a product we have

xk1Dk1xk2Dk2f(x) =
∑
j≥0

k
j

1k
j

2

j!
xk1+k2−jDk1+k2−jf(x). (11)

(Recall that xj is the jth falling power of x, that is, x(x− 1) . . . (x− j + 1).) Inserting
this into (10) and extracting the coefficient of xkDk from each side we get

Sw1w2(k) =
∑

k1,k2≥0

{
G1

k1

}{
G2

k2

}
k
k1+k2−k
1 k

k1+k2−k
2

(k1 + k2 − k)!

=
∑

k1,k2≥0

{
G1

k1

}{
G2

k2

}(
k1

k1 + k2 − k

)(
k2

k1 + k2 − k

)
(k1 + k2 − k)!. (12)

We claim that the right-hand side of (12) is exactly
{
G1∪G2

k

}
. Indeed, one way to generate

all partitions of G1 ∪ G2 into k nonempty independent sets is as follows. First, fix a
pair (k1, k2). Then, for each i, partition Gi into ki non empty independent sets (there
are

{
G1

k1

}{
G2

k2

}
ways to do this). Next, choose k1 + k2 − k of the classes from G1 and

k1 + k2− k of the classes from G2 (there are
(

k1
k1+k2−k

)(
k2

k1+k2−k

)
ways to do this). Finally,

merge the chosen classes in pairs, one from G1 and one from G2 (there are (k1 + k2− k)!
ways to do this), thereby creating k1 + k2 − (k1 + k2 − k) = k non-empty independent
sets.

We are now ready to prove Theorem 2.3.
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Proof. (Theorem 2.3) We proceed by induction on the length of w. If w has length 2
then w = xD and Gw = K1 and the result is trivial.

If w is irreducible, and of length greater than 2, then w = xw′D for some Dyck word
w which (by induction) has an associated graph Gw′ , constructed as described in Section
2.1, with Sw′(k) =

{
Gw′
k

}
for all k ≥ 0. That Sw(k) =

{
Gw

k

}
for all k ≥ 0, where Gw is

obtained from Gw′ by adding a dominating vertex follows from Claim 3.1.
If w is reducible, and of length greater than 2, then w = w1w2 . . . wk for some

(irreducible) Dyck words wi which (by induction) have associated graphs Gwi
, constructed

as described in Section 2.1, with Swi
(k) =

{
Gwi
k

}
for all k ≥ 0. That Sw(k) =

{
Gw

k

}
for

all k ≥ 0 where Gw is the disjoint union of the Gwi
’s follows from repeated applications

of Claim 3.2.

For Theorem 2.7 we utilize the chromatic polynomial. Recall that associated to
a graph G there is a polynomial χG(q), the chromatic polynomial, whose value at
each positive integer q is the number of proper q-colorings of G, that is, the number
of functions f : V → {1, . . . , q} satisfying f(u) 6= f(v) whenever uv ∈ E. A key
observation is that for all G, χG(q) determines (

{
G
k

}
)k≥0, and vice-versa. Indeed, on the

one hand inclusion-exclusion gives{
G

k

}
=

1

k!

k∑
i=0

(−1)i
(
k

i

)
χG(k − i), (13)

while on the other hand

χG(q) =
∑
k≥0

{
G

k

}
qk.

To see this second relation, note that given a palette of q colors, for each k there are{
G
k

}
ways to partition the vertex set into k non-empty color classes, and qk ways to

assign colors the classes. A particular consequence of (13) that we will use later is that

if χG(q) = χG′(q) for all q then
{
G
k

}
=
{
G′

k

}
for all k ≥ 0. (14)

Theorem 2.7 follows immediately from (13) and the following claim that expresses
the chromatic polynomial of Gw in terms of the heights of the x’s in w (recall Definition
2.6 for the definition of height).

Claim 3.3. For any Dyck word w, with m x’s having heights a1, . . . , am,

χGw(q) =
m∏
i=1

(q − ai).

Proof. We proceed by induction on the length of w, with length 2 trivial. Consider
now a word w of length at least 4. If w is reducible, say w = w1 . . . wk with each wi
an (irreducible) Dyck word, then by Claim 3.2 we have Gw = Gw1 ∪ . . . ∪ Gwk

and

so χGw(q) =
∏k

i=1 χGwi
(q). The height of an x in wi is the same as the height of the
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corresponding x in w, and so the claim follows by induction. If instead w = xw′D is
irreducible then by Claim 3.1, Gw is obtained from Gw′ by adding a dominating vertex,
so χGw(q) = qχGw′

(q − 1). The height of an x in w′ is now one less than the height of
the corresponding x in w, and so again the claim follows by induction.

4 Interpreting Sw(k) in terms of partitions of Hw

To prove Theorem 2.8, we need only combine two old results. The first is due to Goldman
et al., and forms part of their series of results on rook polynomials. An n-board is a
subset of {1, . . . , n} × {1, . . . , n}, and it is said to be proper if 1) it includes only pairs
(i, j) with i > j, and 2) it satisfies the transitivity property that if (i, j) and (j, k) are
both elements of the board, then so too is (i, k). To a proper n-board B associate a
graph Γn(B) on vertex set {1, . . . , n} by putting an edge from i to j (for i > j) if and
only if (i, j) 6∈ B. Denote by rk(B) the number of ways of placing k non-attacking
rooks on B; that is, the number of ways of selecting a subset of B of size k, with no
two elements of the subset sharing a first coordinate, and no two sharing a second
coordinate. The relevant result of Goldman et al. [16, Theorem 2] is that for all k ≥ 0,
rk(B) =

{
Γn(B)
n−k

}
. (Goldman et al. use the notation qn−k for

{
Γn(B)
n−k

}
.)

To interpret this result in the language of the present paper, let w be a Dyck word
with n x’s, and let Fw be the set of (labels of) unit squares that lie above the staircase
path of w, and inside the [0, n]× [0, n] square (note that Fw forms what is often called
a Ferrers board). While Fw does not form a proper n-board, it is easy to check that
if we let F̃w be the reflection of Fw across the line x = y, then F̃w does, and that the
graph Γn(F̃w) is isomorphic to Hw (via the identity map on the labels). It is also clear
that rk(F̃w) = rk(Fw). Thus Goldman et al.’s result is that for all k ≥ 0,

rk(Fw) =

{
Hw

n− k

}
. (15)

The second result we need is Navon’s combinatorial interpretation of Sw(k) from [22].
Just as we associated a Dyck path with a Dyck word in Section 2.1, we may associate a
staircase path with an arbitrary word w by starting at (0, 0) and, reading w from left
to right, taking a step in the positive y direction each time an x is encountered in w,
and a step in the positive x direction each time a D is encountered. Let Bw be the
set of labels of the unit squares that lie above this staircase path and inside the box
[0, n]× [0,m], where w has m x’s and n D’s. As before, let rk(Bw) be the number of
ways of placing k non-attacking rooks on Bw. Navon’s combinatorial interpretation of
the numbers Sw(k), as stated (and reproved) by Varvak in [28, Theorem 3.1], is that
Sw(n− k) = rk(Bw). (Note that Varvak uses “U” in place of x).

It is clear that if w is a Dyck word with n x’s then Bw from Navon’s interpretation
is exactly our Fw, and so Navon’s interpretation becomes in this case

Sw(n− k) = rk(Fw) (16)
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for all k ≥ 0. Combining (15) and (16) we get Theorem 2.8.

It is also possible to give a direct proof (not using Navon’s interpretation) of the
identity

{
Hw

k

}
=
{
Gw

k

}
for all Dyck words w and integers k ≥ 0 (and so also an alternate

proof of Theorem 2.8 via Theorem 2.3). We have already calculated (in Section 3) the
chromatic polynomial of Gw to be

χGw(q) =
m∏
i=1

(q − ai)

where w has m x’s (and so also m D’s, since we are assuming it to be a Dyck word), and
ai is the height of the ith x. If we can show that Hw has the same chromatic polynomial,
then we get

{
Hw

k

}
=
{
Gw

k

}
using (14).

To compute χHw(q), consider the set Tw = {(x1, y1), . . . , (xk, yk)} (defined in Section
2.2) of peaks of the Dyck path of w. As discussed in Section 2.2, the edge set of Hw

is obtained by putting cliques on each of the consecutive integer segments {xi, . . . , yi},
1 ≤ i ≤ k (see Figure 2 in Section 2.2). We properly q-color Hw sequentially, starting
with the clique on segment {x1, . . . , y1}, which can be colored in q(q−1) . . . (q−(y1−x1))
ways. Notice, by our alternate characterization from Section 3 of the heights of the xi’s
in a word (if the step in the positive y direction corresponding to an x goes from (a, b)
to (a, b+ 1), then the height of that x is b− a), that this is the same as

∏y1
i=1(q − ai)

(where ai is the height of the ith x).
Next we move on to the clique on segment {x2, . . . , y2}. The first y1−x2 + 1 vertices

of this clique have already been colored (since they are part of the clique on segment
{x1, . . . , y1}), so it remains to color the last y2 − y1 vertices. The palette of colors
available has size q − (y1 − x2 + 1), so the number of ways in which these last y2 − y1

vertices of the second clique can be colored is (q − (y1 − x2 + 1))(q − (y1 − x2 + 1)−
1) . . . (q− (y1 − x2 + 1)− (y2 − y1 − 1)); this is the same as

∏y2
i=y1+1(q− ai). Continuing

along the integer segment cliques in this manner, and noting that all proper q-colorings
of Hw can be achieved by this sequential scheme, we get that indeed the number of
proper q-colorings of Hw is

∏m
i=1(q − ai).

5 A new summation formula when w = (xsDs)n

We now turn to Theorem 2.10, which deals with the case w = (xsDs)n. From Theorem
2.3 we know that

Sw(k) =

{
nKs

k

}
in this case, where nKs is the disjoint union of n copies of Ks.

The key observation that allows us to say something sensible about
{
nKs

k

}
is (14),

which we use in the following way. If G consists of a disjoint copies of Kb together with
r isolated vertices, then its chromatic polynomial is

χG(q) = qr+a(q − 1)a(q − 2)a . . . (q − (b− 1))a.
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On the other hand, if G consists of a fan of a copies of Kb (a copies of Kb with a single
vertex that is in common to all the copies) together with r + a − 1 isolated vertices,
then the chromatic polynomial is also

χG(q) = qr+a(q − 1)a(q − 2)a . . . (q − (b− 1))a.

So whenever we see a graph of the first kind described above, we may replace it with a
graph of the second kind, without changing the values of the graph Stirling numbers.

As a warm-up we use this observation first to obtain an expression for
{
nK2

k

}
. The

chromatic polynomial of nK2 is qn(q−1)n, which is the same as the chromatic polynomial
of the graph G consisting of a star on n+ 1 vertices together with n− 1 isolated vertices.
So
{
nK2

k

}
=
{
G
k

}
, and we can find

{
G
k

}
easily: first, decide on a subset of size ` of the

isolated vertices (perhaps empty) to be in the same block as the center of the star (which
can’t be in the same block as any of the leaves of the star). The remaining vertices now
form an independent set of size 2n− 1− `, so we use an ordinary Stirling number of the
second kind to count the number of partitions of these vertices into k − 1 classes. This
leads to {

nK2

k

}
=

n−1∑
`=0

(
n− 1

`

){
2n− 1− `
k − 1

}
.

Now we deal with the general case (with Ks replacing K2). Here it will be convenient
to define Ga,b,c as the graph consisting of a fan of a copies of Kb together with c isolated
vertices (for example, Gn,2,n−1 is the graph G that replaced nK2 in the last paragraph).

The chromatic polynomial of nKs is (q(q − 1)(q − 2) . . . (q − (s− 1)))n, and this
is the same as the chromatic polynomial of Gn,s,n−1. To partition this graph into k
non-empty independent sets, we first decide on a subset of size i1, 0 ≤ i1 ≤ n− 1, of the
isolated vertices to be in the same block as the center of the fan (which can’t be in a
block with any of the other vertices of the fan). The remaining vertices now form the
following structure: n copies of Ks−1, together with n− 1− i1 isolated vertices. We may
replace this with Gn,s−1,2(n−1)−i1 without changing independent set partition counts, and
so {

nKs

k

}
=

n−1∑
i1=0

(
n− 1

i1

){
Gn,s−1,2(n−1)−i1

k − 1

}
.

What is
{Gn,s−1,2(n−1)−i1

k−1

}
? By first partnering the center vertex of the fan with some

subset of size i2 (0 ≤ i2 ≤ 2(n − 1) − i1) of the isolated vertices, then replacing the
remaining structure (n disjoint copies of Ks−2, together with 2(n− 1)− i1 − i2 isolated
vertices) with Gn,s−2,3(n−1)−i1−i2 , we get{

Gn,s−1,2(n−1)−i1
k − 1

}
=

2(n−1)−i1∑
i2=0

(
2(n− 1)− i1

i2

){
Gn,s−2,3(n−1)−i1−i2

k − 2

}
and so {

nKs

k

}
=

n−1∑
i1=0

(
n− 1

i1

) 2(n−1)−i1∑
i2=0

(
2(n− 1)− i1

i2

){
Gn,s−2,3(n−1)−i1−i2

k − 2

}
.
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Continuing this process we eventually reach{Gn,2,(s−1)(n−1)−i1−i2−...−it−2

k−(s−2)

}
=∑(s−1)(n−1)−i1−i2−...−is−2

is−1=0

(
(s−1)(n−1)−i1−i2−...−is−2

is−1

){
s(n−1)+1−i1−i2−...−is−1

k−(s−1)

}
.

(the final graph we consider on the right-hand side above is Gn,1,s(n−1)−i1−i2−...−is−1 ,
which is a collection of s(n − 1) + 1 − i1 − i2 − . . . − is−1 isolated vertices, so we are
able to use an ordinary Stirling number to count partitions of it into k− (s− 1) blocks).
We conclude that

{
nKs

k

}
equals∑n−1

i1=0

(
n−1
i1

)∑2(n−1)−i1
i2=0

(
2(n−1)−i1

i2

)
. . .∑(s−2)(n−1)−i1−i2−...−is−3

is−2=0

(
(s−2)(n−1)−i1−i2−...−is−3

is−2

)
(17)∑(s−1)(n−1)−i1−i2−...−is−2

is−1=0

(
(s−1)(n−1)−i1−i2−...−is−2

is−1

){
s(n−1)+1−i1−i2−...−is−1

k−(s−1)

}
.

Set ` = i1 + i2 + . . . + is−1 (so ` ranges from 0 to (s − 1)(n − 1)). For each ` in this
range the coefficient of

{
s(n−1)+1−`
k−(s−1)

}
in (17) is

∑
i1+i2+...+is−1=`

(
n− 1

i1

)(
2(n− 1)− i1

i2

)
. . .

(
(s− 1)(n− 1)− i1 − i2 − . . .− is−2

is−1

)

(note that if ever we consider a (s− 1)-tuple in the sum above that fails to satisfy one of
the conditions 0 ≤ ij ≤ j(n− 1)− i1 − i2 − . . .− ij−1, then the corresponding binomial
coefficient will be 0). This establishes (4), and completes the proof of Theorem 2.10.

To establish (5), we must show that the right-hand side of (4) equals the right-
hand side of (5), for which we employ a combinatorial argument. Let A1, . . . , As−1

be s − 1 disjoint sets, each of size n − 1. An `-selection from A1 through As−1 is a
specification of sets A11, A21, A22, A31, A32, A33, . . . A(s−1)1, . . ., A(s−1)(s−1), pairwise
disjoint, with A11 ⊆ A1, A21 ∪ A22 ⊆ A2, . . ., A(s−1)1 ∪ . . . ∪ A(s−1)(s−1) ⊆ As−1, and
|A11|+ |A21|+ . . .+ |A(s−1)(s−1)| = `.

To count the number of `-selections, we first specify a composition ` = i1+i2+. . .+is−1,
then from each Ak select a subset of size ik, and then for each element of the chosen
subset, decide which of Ak1, . . . Akk the element belongs to. This gives that the number
of `-selections is

∑
i1+...+is−1=`

s−1∏
k=1

kik
(
n− 1

ik

)
= [x`] ((1 + x)(1 + 2x) . . . (1 + (s− 1)x))n−1 .

Another way to count `-selections is to first specify a composition ` = i1+i2+. . .+is−1.
Then, select from As−1 a subset of size i1 to be A(s−1)(s−1). Next, select a subset of
(As−2 ∪As−1) \A(s−1)(s−1) of size i2; let its intersection with As−1 be A(s−1)(s−2), and its
intersection with As−2 be A(s−2)(s−2). Next, select a subset of (As−3 ∪ As−2 ∪ As−1) \
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(A(s−1)(s−1)∪A(s−1)(s−2)∪A(s−2)(s−2)) of size i3; let its intersection with As−1 be A(s−1)(s−3),
its intersection with As−2 be A(s−2)(s−3) and its intersection with As−3 be A(s−3)(s−3).
Continue in this manner, until finally we are selecting a subset of size i1 of the as-yet-
unselected elements of A1 ∪ . . . ∪ As−1; for each k, 1 ≤ k ≤ s − 1, let its intersection
with Ak be Ak1. This gives that the number of `-selections is∑

i1+i2+...+is−1=`

(
n− 1

i1

)(
2(n− 1)− i1

i2

)
. . .

(
(s− 1)(n− 1)− i1 − i2 − . . .− is−2

is−1

)
.

This completes the verification of (5).

6 Bijections involving increasing forests

Recall that for the word w = (xrD)n, we set Gw = G(n, r) and Hw = H(n, r); in this
case G(n, r) is the threshold graph obtained from the empty graph by iterating n times
the operation of adding an isolated vertex followed by r − 1 dominating vertices, and
H(n, r) is the indifference graph on vertex set {1, . . . , rn} with edges covered by cliques
on vertices i through ir, for 1 ≤ i ≤ n. In this section we will exhibit bijections between
the set of partitions G(n, r) (and H(n, r)) into k + (r − 1)n independent sets and the
set of decreasing r-ary forests with n vertices and k components (where decreasing
means that the labels go in decreasing order when read along any path starting from
the root vertex of a tree). Decreasing forests turn out to be notationally a little easier
to deal with than increasing forests, but of course via the order-reversing permutation
x 7→ n+ 1− x there is a perfect correspondence between the two.

6.1 Bijection for G(n, r)

Here we provide a bijective proof that{
G(n, r)

k + (r − 1)n

}
= |F ′(r, n, k)|,

where F ′(r, n, k) is the set of decreasing r-ary forests with n vertices and k components.
It will be useful to exhibit the threshold graph G(n, r) concisely. To that end, we will
use ‘+’ to indicate the addition of a dominating vertex and ‘•’ to indicate the addition of
an isolated vertex, presenting the vertices from right to left (see Figure 3). In particular,
+’s are adjacent to every vertex to their right and also every + to their left, while •’s are
only adjacent to the +’s to their left. In the concise representation of G(n, r), label the
vertices in increasing order from left to right; we will often abuse notation and identify
a vertex with its label.

We also note in passing that G(n, r) may be constructed from the half-graph (on 2n
vertices x1, . . . , xn, y1, . . . , yn with xi joined to yj when j ≤ i), by adding edges of the
form yiyj for i 6= j and blowing up each yi to a copy of Kr−1 (see Figure 4).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
+ + + • + + + • + + + • + + + • + + + •

Figure 3: The concise notation for the graph G(5, 4), with labels.

Kr−1 Kr−1 Kr−1 Kr−1 Kr−1

}
complete

Figure 4: The graph G(5, r). An edge from a vertex on top to a Kr−1 below indicates
that the vertex on top is joined to all vertices of Kr−1.

Let P be the set of partitions of G(n, r) into k + (r − 1)n independent sets. We
begin by describing a map from P to F ′(r, n, k). Fix P ∈ P, which corresponds to a
partition of {1, . . . , rn} via the labels on the vertices. Note that the vertices in any
subset of V (G(n, r)), and so in particular the independent sets that make up P , are
totally ordered by the labeling of the vertices. We will iteratively build a decreasing
r-ary forest from P .

Let M denote the set of vertices of the form ar for 1 ≤ a ≤ n (these are the •’s from
the concise representation of G(n, r)). The vertices not in M , together with vertex rn,
form a clique in G(n, r) and so must be in distinct independent sets in P . This means
that there are k independent sets in P that contain only elements from M . For each
of these k independent sets we place a root in the forest with label j, where jr is the
largest label in the corresponding independent set.

We use the location of the remaining vertices in M to iteratively construct the rest of
the forest, and we do so by considering these n− k vertices in decreasing order. Suppose
that xr is the largest vertex in M that has not been considered, meaning in particular
that xr is not the largest vertex in an independent set consisting of elements of M .
Among the elements of xr’s independent set with label larger than xr, let z be the
element with the smallest label. (Notice that such a z must exist: xr must be in an
independent set with either a vertex from M with a larger label, or some vertex outside
of M , which would necessarily have a larger label than xr since xr is adjacent to all
vertices outside of M with smaller labels.)

There are unique positive integers 1 ≤ a ≤ n and 1 ≤ p ≤ r such that z = (a−1)r+p.
We place a vertex labeled x in the forest in the slot reserved for the pth child of the
vertex labeled a. (Notice that a has indeed been placed in the forest already, since
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xr < z = (a− 1)r + p ≤ ar and we consider the elements of M in decreasing order.)
Since distinct z’s are associated to distinct xr’s, and the pair (a, p) is uniquely

determined by z, we will never be forced to place distinct vertices in the same location
as this iterative process goes on, and so the final result will indeed be an n-vertex,
k-component, r-ary forest; and the fact that x < a and x is placed below a in the forest
means that the labeling is decreasing.

The whole process is reversible. We can see this by considering the vertices of the
forest in order of increasing labels (from 1 to n). For each label x we can use p and a
(which are known from the location of x in the forest) to obtain z, which is the next
largest vertex in the independent set containing xr. In this way, we recover the partition
of G(n, r) into k + (r− 1)n independent sets that led to the forest. This shows that our
map is indeed a bijection.

6.2 Bijection for H(n, r)

We now provide a bijective proof that{
H(n, r)

k + (r − 1)n

}
= |F ′(r, n, k)|,

where H(n, r) is the graph on vertex set {1, . . . , rn} with edges covered by cliques on
vertices i through ir, for i = 1, . . . , n (see Figure 5).

1 2 3 4 5

Figure 5: The graph H(5, 3).

Let P ′ be the set of partitions of H(n, r) into k+(r−1)n independent sets. As before,
we start by describing a map from P ′ to F ′(r, n, k). Fix P ′ ∈ P ′. This corresponds to a
partition of {1, . . . , rn} via the labels on the vertices (we will again abuse notation and
refer to the vertices by their labels). Place the vertices of each independent set into an
increasing ordered list. We will iteratively build a decreasing r-ary forest from P ′.

If i ≤ n is the largest label in an independent set, put a root in the forest with
label i. This gives k roots for the k + (r − 1)n independent sets. We will consider the
remaining vertices in {1, . . . , n} in decreasing order.

Suppose that x is the largest vertex that has not been placed in the forest, and
suppose that x immediately precedes y in the list for some independent set (so x < n,
and y > xr). Then find the unique positive integers 2 ≤ a ≤ n and 1 ≤ p ≤ r satisfying
y = (a− 1)r + p. Place a vertex labeled x in the pth possible position (again scanning
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from left to right, say) below the vertex labeled a in the forest. Using the increasing
order on the independent set assures that we don’t try to place two labels in the same
slot beneath a vertex in the forest, since each y will only be considered once and each y
is in bijective correspondence with a pair (a, p).

Now x and y are in the same independent set (and no vertex with a label between
that of x and y is in the independent set), so rx < y = (a− 1)r + p ≤ ra. This implies
that x < a. Therefore this iterative procedure produces a decreasing r-ary forest with
k-components. As with the map described in Section 6.1, this process is reversible. We
see this by considering the vertices of a forest in order of increasing labels. For each x
we can use p and a (which are known from the location of x in the forest) to obtain y,
which is the next label in the independent set containing x. In this way, we recover the
partition of H(n, r) into k + (r − 1)n independent sets that led to the forest, showing
that our map is a bijection.

7 q-analogs

The proof of Theorem 2.12, like that of Theorem 2.3, is based on two claims.

Claim 7.1. Let w = xw′D be an irreducible Dyck word in the q-deformed Weyl algebra,
with w′ non-empty. For all k ≥ 0 we have

Sqw(k) = Sqw′(k − 1),

where Sqw′(−1) is interpreted as 0.

Proof. We have w =
∑

k≥0 S
q
w(k)xkDk, but also

w = xw′D

= x

(∑
k≥0

Sqw′(k − 1)xk−1Dk−1

)
D

=
∑
k≥0

Sqw′(k − 1)xkDk.

The claim now follows by the uniqueness of the representation in (8).

For the second claim, we define the q-factorial (for integer a) via

[a]q! =


[a]q[a− 1]q[a− 2]q . . . [2]q[1]q if a ≥ 1,
1 if a = 0, and
0 if a < 0,

where recall that for positive integer m, [m]q = 1 + q + . . . + qm−1, and define the
q-binomial coefficient (for integers a and b) via(

a

b

)
q

=
[a]q!

[b]q![a− b]q!
.
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Claim 7.2. Let w1, w2 be Dyck words in the q-deformed Weyl algebra. For all k ≥ 0
we have

Sqw1w2
(k) =

∑
r,s≥0

Sqw1
(r)Sqw2

(s)q(r−k)(s−k)

(
r

r + s− k

)
q

(
s

r + s− k

)
q

[r + s− k]q!

where w1w2 is the concatenation of w1 and w2.

Proof. We begin by deriving the following analog of (11) in the q-deformed Weyl algebra:

xrDrxsDs =
∑
j≥0

q(r−j)(s−j) ([r]q)
j ([s]q)

j

[j]q!
xr+s−jDr+s−j. (18)

We prove this by induction on r + s. If rs = 0 then the result is trivial. So, consider
a pair (r, s) with r + s ≥ 2 and rs > 0. Replace the right-most Dx in xrDrxsDs with
qxD + 1 to obtain a sum of two terms, one of which still has r + s x’s and r + s D’s.
In this term, again replace the right-most Dx with qxD + 1. Iterating this operation r
times we obtain

xrDrxsDs = x
(
qrxrDrxs−1Ds−1 + [r]qx

r−1Dr−1xs−1Ds−1
)
D.

By induction, the right-hand side above is the sum of∑
j≥0

q(r−j)(s−1−j)+r ([r]q)
j([s− 1]q)

j

[j]q!
xr+s−jDr+s−j

and ∑
j≥0

[r]qq
(r−1−j)(s−1−j) ([r − 1]q)

j([s− 1]q)
j

[j]q!
xr+s−j−1Dr+s−j−1.

The coefficient of xr+sDr+s in the normal order of xrDrxsDs comes from the j = 0 term
of the first sum above, and is qrs, as required. For j > 0 the coefficient of xr+s−jDr+s−j

is

q(r−j)(s−1−j)+r ([r]q)
j([s− 1]q)

j

[j]q!
+ [r]qq

(r−j)(s−j) ([r − 1]q)
j−1([s− 1]q)

j−1

[j − 1]q!

which, after a little algebra, simplifies to

q(r−j)(s−j) ([r]q)
j ([s]q)

j

[j]q!
,

completing the induction. Armed with (18), we complete the proof of the claim exactly
as in the derivation of (12).

We also need the following lemma. Let Kr,s be the complete bipartite graph with
partition classes X = {x1, . . . , xr} and Y = {y1, . . . , ys}. Let Mk(Kr,s) be the set of
matchings of size k in Kr,s (selections of k edges from Kr,s, no two sharing an endvertex).
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Encode a matching M ∈Mk(Kr,s) by an r by s matrix (which we also call M) whose ij
entry is 1 if {xi, yj} is in the matching, and 0 otherwise, and let f(M) be as in Definition
2.11; that is, f(M) is the number of unmarked 0’s in M after marking all 0’s that occur
below or to the right of a 1.

Lemma 7.3. With the notation as above, for all k ≥ 0 we have∑
M∈Mk(Kr,s)

qf(M) = q(r−k)(s−k)

(
r

k

)
q

(
s

k

)
q

[k]q!. (19)

Notice that when q = 1, (19) reduces to |Mk(Kr,s)| =
(
r
k

)(
s
k

)
(k)!, which is evident:

to specify a matching of size k one first chooses subsets of X and Y , each of size k (there
are

(
r
k

)(
s
k

)
ways to do this) and then chooses how to match them up (there are k! ways

to do this).

Proof. (Lemma 7.3) We use the following well-known interpretations of
(
r
k

)
q

and [k]q!

(see for example [1, Theorem 3.6] for a statement that encompasses both). First, if Q(k)
r

is the set of 0-1 strings of length r that have exactly k 1’s, and for each such string σ,
zeroes(σ) is the sum, over all the 1’s in σ, of the number of 0’s to the left of that 1, then(

r

k

)
q

=
∑
σ∈Q(k)

r

qzeroes(σ).

Second, if Pk is the set of permutations of {1, . . . , k} (written in one-line notation),
and for each such permutation π, inv(π) counts the number of inversions in π (the
number of pairs (i, j) with i < j such that j appears before i in π), then

[k]q! =
∑
π∈Pk

qinv(π).

From these interpretations we see that q(r−k)(s−k)
(
r
k

)
q

(
s
k

)
q
[k]q! expands out to a sum

of monomials of the form q(r−k)(s−k)+zeroes(σ)+zeroes(τ)+inv(π) where σ ∈ Q(k)
r , τ ∈ Q(k)

s and
π ∈ Pk, with exactly one such monomial for each triple (σ, τ, π). We will prove (19) by

exhibiting a bijection ϕ from Mk(Kr,s) to Q(k)
r × Q(k)

s × Pk with the property that if
ϕ(M) = (σ, τ, π) then f(M) = (r − k)(s− k) + zeroes(σ) + zeroes(τ) + inv(π).

The map ϕ is defined as follows. For each M ∈Mk(Kr,s), we let σ be the 0-1 string
of length r that has a 1 in the ith position exactly when row i of M has a 1 (note that
there are exactly k 1’s in σ) and we let τ be the 0-1 string of length s that has a 1
in the jth position exactly when column j of M has a 1 (again, this is a vector with
exactly k 1’s). Finally, to define π, we let M ′ be the (unique) k by k submatrix of M
that includes all k of the 1’s. Relabeling the rows and columns of M ′ by 1 through k
in the natural way, let the locations of the 1’s in M ′ be (i1, 1), (i2, 2), . . . , (ik, k). The
permutation π is then i1 . . . ik.
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For example, suppose that r = 7, s = 6, k = 4 and the matching M consists of the
edges {x2, y3}, {x4, y4}, {x5, y1} and {x6, y6} (see Figure 6; the marked entries in M are
identified with a “?”). We have f(M) = 19, σ = 0101110, τ = 101101, π = (3, 1, 2, 4),
(r − k)(s− k) = 6, zeroes(σ) = 7, zeroes(τ) = 4 and inv(π) = 2.

0 0 0 0 0 0
0 0 1 ? ? ?
0 0 ? 0 0 0
0 0 ? 1 ? ?
1 ? ? ? ? ?
? 0 ? ? 0 1
? 0 ? ? 0 ?


Figure 6: An example matrix M , with the marked 0’s in M identified with a “?.”

We first note that ϕ is a bijection from Mk(Kr,s) to Q(k)
r × Q(k)

s × Pk, since the
location of M ′ can be reconstructed from σ and τ , and the exact location of the 1’s in
M is then determined by π.

To see f(M) = (r − k)(s− k) + zeroes(σ) + zeroes(τ) + inv(π), first note that there
are exactly (r− k)(s− k) entries ij in M , all unmarked 0’s, with no 1 in row i and no 1
in column j (these entries are labeled “a” in the matrix in Figure 7). Call this set of
entries M0. 

b a b b a b
d c • • • •
b a • b a b
d c • • • •
• • • • • •
• c • • c •
• a • • a •


Figure 7: The unmarked 0’s of M , partitioned into M0 (a’s), Mσ (b’s), Mτ (c’s), and
M ′ (d’s).

Next, consider all of the entries in M that lie above (and in the same column as) a
1, but are not in M ′ (these entries are labeled “b” in Figure 7). They are all unmarked
0’s (being above a 1, each such entry is not below a 1, and being outside of M ′, it is not
to the right of a 1), and there are exactly zeroes(σ) of them. Call this set of entries Mσ;
note that M0 and Mσ are disjoint.

Next, consider all of the entries in M that lie to the left (and in the same row as) a
1, but are not in M ′ (these entries are labeled “c” in Figure 7). They are all unmarked
0’s (being to the left of a 1, each such entry is not to the right of a 1, and being outside
of M ′, it is not below a 1), and there are exactly zeroes(τ) of them. Call this set of
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entries Mτ ; note that M0 and Mτ are evidently disjoint, and that also Mσ and Mτ are
disjoint — an entry in the intersection of Mσ and Mτ would have to be both above a 1
and to the left of a 1, and so be in M ′.

Note that M0 ∪Mσ ∪Mτ is exactly the set of unmarked 0’s outside of M ′, so we
are done if we can show that the number of unmarked 0’s in M ′ (entries labeled “d” in
Figure 7) is inv(π). Consider such an unmarked 0, at position (i, j). It must be located
above some 1, at position (i′, j), say, and to the left of some other 1, at position (i, j′),
say. This gives rise to a pair of 1’s at positions (i′, j) and (i, j′), with j < j′ and i < i′,
which is an instance of an inversion in π; and conversely, any inversion in π is easily
seen to correspond to an unmarked 0 in M ′.

To prove Theorem 2.12, we proceed by induction on the length of w. If w has length
2 then w = xD, Gw = K1, and the result is trivial.

If w is irreducible and of length greater than 2, then w = xw′D for some Dyck word
w. By induction, we have that for each k,∑

P ′∈P(w′,k−1)

qwt(P ′) = Sqw′(k − 1).

There is a one-to-one correspondence between P(w′, k − 1) and P(w, k) (as discussed in
Section 2.5), and for each P ′ ∈ P(w′, k − 1) with corresponding partition P ∈ P(w, k)
we have, by definition, wt(P ) = wt(P ′). So, using Claim 7.1,∑

P∈P(w′,k−1)

qwt(P ) =
∑

P ′∈P ′(w′,k−1)

qwt(P ′)

= Sqw′(k − 1)

= Sqw(k)

as required.
There remains the case where w = w1w2 . . . w` is reducible (with each wi irreducible).

We assume ` = 2; this will not lose us any generality, but will allow us to simplify
notation by writing “w2” for “w2 . . . w`” everywhere. Combining Claim 7.2, the induction
hypothesis, and Lemma 7.3, what we need to show is that, for each k,∑

P∈P(w1w2,k)

qwt(P ) =
∑

r,s≥0, P1∈P(w1,r), P2∈P(w2,s), M∈Mr+s−k(Kr,s)

qwt(P1)+wt(P2)+f(M)

(note that (r− (r+ s− k))(s− (r+ s− k)) = (r− k)(s− k)). But this is immediate: we
obtain all partitions of Gw1w2 into k non-empty independent sets (and nothing more) by
selecting integers r and s, selecting a partition P1 of Gw1 into r non-empty independent
sets and a partition P2 of Gw2 into s non-empty independent sets, and selecting a
matching M of size r+s−k from Kr,s which determines how P1 and P2 are merged; and
by definition the weight wt(P ) of such a matching produced by selecting a particular
r, s, P1, P2 and M is equal to wt(P1) + wt(P2) + f(M).
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