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To appear inTopology Pro
eedings
THE ANTISYMMETRY BETWEENNESS AXIOM ANDHAUSDORFF CONTINUAPAUL BANKSTONAbstra
t. An interpretation of betweenness on a set satis�es theantisymmetry axiom at a point a if it is impossible for ea
h oftwo distin
t points to lie between the other and a. In this paper westudy the role of antisymmetry as it applies to the K-interpretationof betweenness in a Hausdor� 
ontinuum X, where a point c liesbetween points a and b exa
tly when every sub
ontinuum of X
ontaining both a and b 
ontains c as well.1. Introdu
tionAn interpretation of betweenness on a set satis�es the antisymmetryaxiom at a point a, or is antisymmetri
 at a, if it is impossible for ea
h oftwo distin
t points to lie between the other and a. Expressed as a �rst-order formula (see, e.g., [8℄) involving just one ternary relation symboland equality, this axiom isAntisymmetry at a: ∀xy (([a, y, x] ∧ [a, x, y]) → x = y).And from this it is 
lear that �antisymmetry at a� is the usual order-theoreti
 notion of antisymmetry for the (generally re�exive and transi-tive) binary relation ≤a, de�ned by saying x ≤a y exa
tly when x liesbetween a and y. Binary antisymmetry is the very 
ondition that turns a2010 Mathemati
s Subje
t Classi�
ation. Primary 54F15; Se
ondary 03C05,06A05, 06A06, 08A02, 08A40, 54F05, 54F20, 54F50, 54F55.Key words and phrases. betweenness, interval, R-relation, road system, antisym-metry, gap freeness, 
entroid, median algebra, tree ordering, Hausdor� 
ontinuum,
omposant, hereditary uni
oheren
e, de
omposability, aposyndesis, ar
, arboroid, den-dron, distal 
ontinuum. 1



2 PAUL BANKSTONpre-order into a partial order; we say that an interpretetion of betweennessis antisymmetri
 if it is antisymmetri
 at ea
h of its points. This notionhas been around a long time in studies of betweenness (
alled �PostulateC� in [9℄, �
losure� in [18℄), and is traditionally taken to be as fundamentalan assumption about betweenness relations as is symmetry, the 
onditionthat lying between a and b is the same as lying between b and a.Here we take a di�erent view of antisymmetry, and treat it as a featureof betweenness that is as �honoured in the brea
h as in the observan
e.�Indeed, we 
onsider interpretations of betweenness for whi
h this featurefails quite dramati
ally.In [2, 3℄ (and further in [4℄), we dis
uss three topologi
al interpretationsof betweenness, ea
h re�e
ting an aspe
t of 
onne
tedness. The mostrestri
tive of these was introdu
ed by L. E. Ward [22℄ to study 
ut pointsin an abstra
t setting, and is what we 
all the Q-interpretation: in atopologi
al spa
e X, [a, c, b]Q holds just in 
ase either c ∈ {a, b} or a and
b lie in di�erent quasi
omponents of X \ {c}. That is, there are disjointsets A and B, ea
h 
lopen in X \ {c}, su
h that a ∈ A and b ∈ B.When we repla
e �quasi
omponent� in the de�nition above with �
om-ponent,� we obtain the C-interpretation [·, ·, ·]C of betweenness. The C-interpretation is generally weaker than the Q-interpretation, as quasi
om-ponents are unions of 
omponents; a spa
e is 
alled QC-
omplete if thetwo interpretations agree. It is easy to show that a 
onne
ted T1 spa
e is
QC-
omplete if it is lo
ally 
onne
ted, i.e., in possession of an open base
onsisting of 
onne
ted sets, but lo
al 
onne
tedness is not ne
essary for
QC-
ompleteness to o

ur (see Example 3.4 (ii) below). A 
ut point of a
onne
ted spa
e is pre
isely one that lies between two points other thanitself, in either the Q- or the C-interpretation.Example 1.1. In the eu
lidean plane, we set X = {a, b} ∪

⋃∞

n=1
An,where a = 〈 1

2
, 0〉, b = 〈1, 0〉, and An = {〈x, x

n
〉 : 0 ≤ x ≤ 1}, n = 1, 2, . . .Then X is a 
onne
ted metrizable spa
e. If c = 〈0, 0〉, then [a, c, b]C holdsbe
ause the 
omponents of X \{c} 
onsist of {a}, {b}, and the half-
losedsegments An \{c}, n = 1, 2, . . . However, if U is a 
lopen neighborhood of

a in X \{c}, then An \{c} ⊆ U for all but �nitely many n. Hen
e we have
b ∈ U , and infer that [a, c, b]Q does not hold. Thus X is not QC-
omplete.The following is a dire
t 
onsequen
e of [2, Theorem 6.1.2℄; we in
ludea simple proof in order to highlight a 
lassi
 result from the elementarytheory of 
onne
ted spa
es.Proposition 1.2. The Q- and C-interpretations of betweenness in a 
on-ne
ted spa
e are antisymmetri
.Proof. Suppose we have X a 
onne
ted topologi
al spa
e, with [a, c, b]Cholding for some a, b, c ∈ X, b 6= c. It su�
es to �nd a 
onne
ted subset



ANTISYMMETRY 3of X that 
ontains a and c, but not b. Clearly we are done if c = a; sothe alternative is that the three points are distin
t, and there must bedistin
t 
omponents A and B of X \{c} su
h that a ∈ A and b ∈ B. Thistells us that X \B is a 
onne
ted subset of X \{b} 
ontaining both a and
c (see [17, Theorem IV.3.3℄, due to K. Kuratowski and B. Knaster), andhen
e that [a, b, c]C 
annot hold.Be
ause the Q-interpretation is more restri
tive than the C-interpretation,it too must be antisymmetri
. �In this paper, a 
ontinuum is a 
onne
ted 
ompa
t Hausdor� spa
e.Thus the terms �
ontinuum� and �Hausdor� 
ontinuum� are synonymous;i.e., we do not assume our 
ontinua to be metrizable. A 
ontinuum (orany set) is nondegenerate if it 
ontains at least two points; a subset of atopologi
al spa
e is a sub
ontinuum if it is a 
ontinuum in its subspa
etopology.Note that if c 6∈ {a, b}, then [a, c, b]C holds just in 
ase no 
onne
tedsubset of X \ {c} 
ontains both a and b. If we repla
e �
onne
ted subset�in this 
ondition with �sub
ontinuum,� we obtain the K-interpretation ofbetweenness: for c 6∈ {a, b}, [a, c, b]K holds just in 
ase a and b lie inseparate 
ontinuum 
omponents of X \ {c}. A point c ∈ X lies betweentwo points other than itself in the K-interpretation pre
isely when c is aweak 
ut point of X. (Aspe
ts of the relations ≤a asso
iated with the
K-interpretation are also studied in [12℄. There the pre-order≤a is termedthe �weak 
ut point order� based at a.)The Q- and the C-interpretations of betweenness are antisymmetri
;not so the K-interpretation. For if X is the sin( 1

x
)-
ontinuum in theeu
lidean plane (see, e.g., [16℄ and Example 2.3 below), a is a point onthe graph of y = sin( 1

x
), 0 < x ≤ 1, and b and c are any two pointson the verti
al segment {0} × [−1, 1], then we have both [a, b, c]K and

[a, c, b]K holding. Generally, it is easy to �nd 
ontinua that are not K-antisymmetri
, and hen
e not CK-
omplete.As an obvious shorthand, when we say that a 
ontinuum is antisym-metri
 (at a point), we have the K-interpretation of betweenness �rmly inmind. Thus the sin( 1

x
)-
ontinuum is not antisymmetri
, but it does havepoints of antisymmetry (see Example 2.3).Remark 1.3. Antisymmetry in metrizable 
ontinua has also been stud-ied, under the label �Property C,� by B. E. Wilder [24℄.2. Antisymmetri
 Road SystemsIn [2, 3℄ we view betweenness as arising from the primitive stru
turegiven by a road system. This is a family R of nonempty subsets of a set

X�the roads of the system�su
h that: (1) every singleton subset of X



4 PAUL BANKSTONis a road; and (2) every doubleton subset of X is 
ontained in a road.Roads �
onne
t� one point to another in a very minimal sense; the set ofroads 
onne
ting a, b ∈ X is denoted R(a, b) := {R ∈ R : a, b ∈ R}. Theternary relation [·, ·, ·]R indu
ed by R is de�ned by saying that [a, c, b]Rholds just in 
ase c ∈ R for every R ∈ R(a, b). A ternary relation [·, ·, ·]on a set X is an R-relation if it equals [·, ·, ·]R for some road system Ron X.Remark 2.1. If A is any 
olle
tion of nonempty subsets of X, we mayde�ne [·, ·, ·]A as above. If A also satis�es the 
ondition that for ea
htwo points a, b ∈ X, there are sets A,B ∈ A with a ∈ A ⊆ X \ {b} and
b ∈ B ⊆ X \ {a}, then R = A ∪ {X} ∪ {{a} : a ∈ X} is a road systemwith [·, ·, ·]R = [·, ·, ·]A.When a and b are points of a road system 〈X,R〉, the R-interval [a, b]Ris de�ned to be the 1-sli
e [a, ·, b]R (i.e., the interse
tion ⋂

R(a, b)). Theroad system is antisymmetri
 (at a point) if the same 
an be said for itsindu
ed R-relation. Phrased in interval terms, antisymmetry at a saysthat [a, b]R 6= [a, c]R whenever b 6= c.If X is a 
onne
ted topologi
al spa
e, it is easy to see that [·, ·, ·]C =
[·, ·, ·]C , where C is the antisymmetri
 road system 
omprising the 
on-ne
ted subsets of X. (In light of Remark 2.1, it is not really ne
essaryto assume X is 
onne
ted: we 
ould otherwise turn C into a road sys-tem simply by de
laring X to be a road.) It is equally easy to see that
[·, ·, ·]K = [·, ·, ·]K, where K is the (not ne
essarily antisymmetri
) roadsystem 
omprising the sub
ontinua of X (again, with the possibility of
X being thrown in). Both of these road systems satisfy the importantproperty of additivity, whi
h says that the union of two overlapping roadsis a road.An obvious question at this point is whether there is an additive an-tisymmetri
 road system Q indu
ing the Q-interpretation of betweennesson a 
onne
ted spa
e. While there is an a�rmative answer to this, noindu
ing road system so far obtained seems to arise �naturally.�Theorem 2.2. [2, Corollary 6.2.2℄ If X is a 
onne
ted topologi
al spa
e,then the Q-interpretation of betweenness is indu
ed by an additive anti-symmetri
 road system Q, whi
h may be taken to 
ontain C.As mentioned above, antisymmetry in the betweenness 
ontext is 
loselyrelated to the binary notion of antisymmetry that turns pre-orderings intopartial orderings. That is, if 〈X,R〉 is a road system whi
h is antisym-metri
 at a ∈ X, and we de�ne the binary relation ≤a to be the 2-sli
e
[a, ·, ·]R (i.e., c ≤a b just in 
ase [a, c, b]R holds), then ≤a is a partialordering with bottom element a.



ANTISYMMETRY 5Example 2.3. Let X be the sin( 1

x
)-
ontinuum in the eu
lidean plane;i.e., X = A∪S, where A = {0}×[−1, 1] and S = {〈x, sin( 1

x
)〉 : 0 < x ≤ 1}.Then a ∈ X is a point of antisymmetry for X if and only if a ∈ A. If ais one of the non-
ut points of the line segment A, say a = 〈0,−1〉, then

≤a is des
ribed as follows: (1) for b ∈ A and c ∈ S we have b ≤a c; (2)for b, c ∈ A, say b = 〈0, s〉 and c = 〈0, t〉, we have b ≤a c just when s ≤ t;and (3) for b, c ∈ S, say b = 〈s, sin(1

s
)〉 and c = 〈t, sin(1

t
)〉, we have b ≤a cjust when s ≤ t. Thus ≤a is a total ordering. If it happens that a is a
ut point of A, say a = 〈0, 0〉, then the new des
ription of ≤a di�ers fromthat above only in 
lause 2: for b = 〈0, s〉 and c = 〈0, t〉, b ≤a c just wheneither 0 ≤ s ≤ t or t ≤ s ≤ 0. This ordering is not total be
ause the twonon-
ut points of A are ≤a-in
omparable.A partial ordering is a tree ordering if: (1) ea
h two elements havea 
ommon lower bound; and (2) no two in
omparable elements have a
ommon upper bound. In Example 2.3, with a a 
ut point of A, ≤a isnot a tree ordering be
ause any point of S is a 
ommon upper bound forthe two ≤a-in
omparable non-
ut points of A. However, if enough else isgoing on for a road system, the orderings ≤a do turn out to be trees (seeLemma 2.4 below) .If 〈X,R〉 is a road system, it is always the 
ase that [a, c]R ∪ [c, b]R ⊆

[a, b]R whenever c ∈ [a, b]R. If the reverse in
lusion also holds, we saythe road system�or the indu
ed R-relation�is weakly disjun
tive. If Ris additive, as is the 
ase with all three of our topologi
al betweennessinterpretations, then the indu
ed R-relation is a
tually disjun
tive; i.e.,it satis�es the stronger 
ondition that [a, b]R ⊆ [a, c]R ∪ [c, b]R for all
a, b, c ∈ X (not just for c ∈ [a, b]R).For any R-relation 〈X, [·, ·, ·]〉 and a, b ∈ X, de�ne the binary relation
≤ab on X to be the restri
tion of ≤a to the interval [a, b]. The followingtwo results will be used extensively in the sequel.Lemma 2.4. [2, Propositions 5.0.4 and 5.0.5℄ If 〈X, [·, ·, ·]〉 is an R-relation that is antisymmetri
 and weakly disjun
tive, then ea
h partialordering ≤a is a tree ordering, and ea
h partial ordering ≤ab is a totalordering. Moreover, ≤ba is the relation-inverse of ≤ab.Lemma 2.5. [2, Theorem 5.0.6℄ For a weakly disjun
tive R-relation, thefollowing 
onditions are equivalent:(i) Antisymmetry.(ii) Slenderness: the property that if c ∈ [a, b], then [a, c]∩ [c, b] = {c}.(iii) Re
ipro
ity: the property that if c, d ∈ [a, b] and c ∈ [a, d], then

d ∈ [c, b].(iv) Uniqueness of Centroids: the property that [a, b]∩ [a, c]∩ [b, c] hasat most one element, for ea
h a, b, c ∈ X.



6 PAUL BANKSTON3. Antisymmetry, Aposyndesis, and De
omposabilityFrom here on, all topologi
al spa
es are assumed to be Hausdor�; asmentioned earlier, this separation axiom�but not metrizability�is built into our de�nition of �
ontinuum.� A 
ontinuum is aposyndeti
 (see, e.g.,[11℄) if for ea
h two of its points, there is a sub
ontinuum ex
luding oneof the points and 
ontaining the other in its interior. Aposyndesis has thesynta
ti
 shape of a souped-up T1 axiom, but is a
tually a weak form oflo
al 
onne
tedness.One 
onsequen
e of aposyndesis 
on
erns the betweenness relation [·, ·, ·]Kitself, as a subset of the 
artesian 
ube of a 
ontinuum. De�ne a 
ontin-uum X to be K-
losed if [·, ·, ·]K is 
losed in X3.Theorem 3.1. All aposyndeti
 
ontinua are K-
losed.Proof. Suppose X is aposyndeti
 and that [a, c, b]K does not hold. Thenthere is a sub
ontinuum M ∈ K(a, b) with c 6∈ M . Using aposyndesis, forea
h x ∈ {a, b}, we have an open set Ux and sub
ontinuum Mx su
h that
x ∈ Ux ⊆ Mx ⊆ X \{c}. Let Uc be an open neighborhood of c missing thesub
ontinuum Ma∪M ∪Mb. Then Ua×Uc×Ub is an open neighborhoodof 〈a, c, b〉 in X3 that does not interse
t [·, ·, ·]K. Hen
e X is K-
losed. �In an aposyndeti
 
ontinuum, not only is [·, ·, ·]K a 
ompa
t relation,but so are all of its sli
es (in
luding ≤a= [a, ·, ·]K). Of 
ourse the 1-sli
e
[a, ·, b]K is always 
ompa
t, but that is the only nontrivial sli
e of [·, ·, ·]Kguaranteed to be so (see Example 3.4 (ii) below).A se
ond 
onsequen
e of aposyndesis is that there is a 
ollapsing ofbetweenness interpretations.Theorem 3.2. Aposyndeti
 
ontinua are CK-
omplete, and therefore an-tisymmetri
. Lo
ally 
onne
ted 
ontinua are QK-
omplete.Proof. Assume X is aposyndeti
, with a, b ∈ X. If c 6∈ [a, b]C, then thereis a witness A ∈ C(a, b) with c 6∈ A. For ea
h x ∈ A, use aposyndesis to�nd open set Ux and sub
ontinuum Mx, with x ∈ Ux ⊆ Mx ⊆ X \ {c}.Then U = {Ux : x ∈ A} is a 
over of the 
onne
ted set A by open sets;hen
e, for some n = 1, 2, . . . , there is an n-tuple 〈Ux1

, . . . , Uxn
〉 from U ,with a ∈ Ux1

, b ∈ Uxn
, and Uxi

∩ Uxi+1
6= ∅ for ea
h 1 ≤ i ≤ n − 1. Thus

M = Mx1
∪ · · · ∪Mxn

∈ K(a, b), and c 6∈ M . This says c 6∈ [a, b]K, and we
on
lude that X is CK-
omplete.That X is antisymmetri
 now follows from Proposition 1.2. If X islo
ally 
onne
ted, then, as mentioned earlier, X is QC-
omplete as wellas CK-
omplete. Hen
e X is QK-
omplete. �Remark 3.3. That antisymmetry in metrizable 
ontinua is a 
onsequen
eof aposyndesis was previously shown in [24℄.



ANTISYMMETRY 7The following examples show that aposyndesis is a strong assumptionin Theorems 3.1 and 3.2.Examples 3.4.(i) Let X be the topologist's os
illos
ope in the eu
lidean plane; i.e.,
X = V0 ∪ V1 ∪ H0 ∪ H1 ∪ S,where, for i = 0, 1, Vi = {i}×[−1, 1] and Hi = [0, 1]×{(−1)i}, and

S = {〈x, 1

2
sin(π

x
)〉 : 0 < x ≤ 1}. Then X is both QK-
ompleteand K-
losed, but not aposyndeti
.Failure of aposyndesis is 
lear. As for the other assertions, notethat [a, c, b]K holds in X if and only if either c = a or c = b. Thus

K-intervals are trivial, and we have QK-
ompleteness immediately.Also we see that [·, ·, ·]K = (∆X × X) ∪ (X × ∆X), where ∆X =
{〈x, x〉 : x ∈ X}; and so K-
losedness is also immediate.(ii) Let X be the 
omb spa
e in the eu
lidean plane; i.e.,

X = ([0, 1] × {0}) ∪ ({0} × [0, 1]) ∪
∞⋃

n=1

({ 1

n
} × [0, 1]).Then X is antisymmetri
 without being either CK-
omplete or

K-
losed. In parti
ular (Theorem 3.2), X is not aposyndeti
. (Xis, however, QC-
omplete.)Antisymmetry is easy to see. As for failure of CK-
ompleteness,let a = 〈0, 0〉 and b = 〈0, 1〉. Then [a, b]K = {0} × [0, 1], while
[a, b]C = {a, b}. QC-
ompleteness is easy to 
he
k; as for failure of
K-
losedness, note that if we take c to be 〈0, 1

2
〉, then the 1-sli
e

[b, c, ·]K is X \ ({0} × ( 1

2
, 1]), whi
h is 
learly not 
losed in X.Remarks 3.5.(i) Theorem 3.2 shows that CK-
ompleteness interpolates betweenaposyndesis and antisymmetry; Examples 3.4 (i,ii) show that thethree notions are distin
t.(ii) The topologist's os
illos
ope (Example 3.4 (i)) shows that aposyn-desis does not follow from K-
losedness alone. It does follow, how-ever, if we also assume hereditary uni
oheren
e (see Theorem 4.2below).By a de
omposition of a 
ontinuum X we mean a pair 〈M,N〉, where Mand N are proper sub
ontinua of X and X = M ∪N . X is de
omposableif it has a de
omposition, and inde
omposable otherwise.For any 
ontinuum X and A ⊆ X, re
all that X is irredi
ible about A ifthe only sub
ontinuum of X 
ontaining A is X itself. X is irredu
ible if Xis irredu
ible about a two-point set; i.e., if [a, b]K = X for some a, b ∈ X,



8 PAUL BANKSTON
a 6= b. The point a is a point of irredu
ibility for X if [a, b]K = X for some
b ∈ X \ {a}.The 
omposant κa of a in X is the union of all proper sub
ontinua of
X that 
ontain a. Hen
e a is a point of irredu
ibility for X if and only if
κa 6= X. A 
omposant of 
ontinuum X is 
learly 
onne
ted; less obviousis the fa
t that it is also dense in X. (This follows easily from one of theso-
alled �boundary bumping� theorems, namely [16, Theorem 5.4℄: if Uis a nonempty proper open subset of 
ontinuum X and K is a 
omponentof the 
losure U of U , then K interse
ts X \ U .)If X is de
omposable, then [16, Theorem 11.13℄ either: (1) X is irre-du
ible and has pre
isely three 
omposants (in
luding itself); or (2) X isnot irredu
ible and has just itself as 
omposant. In any event, de
om-posable 
ontinua have either one or three 
omposants, with no two ofthem disjoint. On the other hand, if X is inde
omposable, then no twoof its 
omposants 
an overlap. Moreover, the number of 
omposants ofa nondegenerate inde
omposable 
ontinuum that is metrizable is c, the
ardinality of the real line [14, Theorem 1℄. Metrizability is 
ru
ial forthis result, as it is possible for a nondegenerate inde
omposable 
ontin-uum to have either one or two 
omposants [7, Theorem 1 (& Corollary)℄.Nevertheless, it is still the 
ase that every nondegenerate inde
omposable
ontinuum 
ontains an inde
omposable sub
ontinuum with c 
omposants[6, Corollary 5℄.In the sequel, the default notion of betweenness in a 
ontinuum is the
K-interpretation, and we thus drop the letter �K� from most pre�xes andsubs
ripts. If M is a sub
ontinuum of X and a, b ∈ M , then the interval
[a, b]M = [a, b]MK relative to M is de�ned to be ⋂

{K ∈ K(a, b) : K ⊆ M}.Clearly [a, b]M ⊆ [a, b]N whenever a, b ∈ N ⊆ M .A 
ontinuum X is hereditarily antisymmetri
 (resp., hereditarily de-
omposable) if ea
h of its nondegenerate sub
ontinua is antisymmetri
(resp., de
omposable).Theorem 3.6. Every hereditarily antisymmetri
 
ontinuum is hereditar-ily de
omposable.Proof. Let X be a 
ontinuum that is not hereditarily de
omposable.Then, by de�nition, X must 
ontain a nondegenerate inde
omposabe sub-
ontinuum M , whi
h Bellamy's theorem [6℄ tells us may be assumed to
ontain two disjoint 
omposants A and B. Sin
e 
omposants are dense,they're nondegenerate; hen
e we may pi
k a ∈ A and b, c ∈ B, with b 6= c.Then [a, b]M = [a, c]M = M , so M is not antisymmetri
. This shows that
X is not hereditarily antisymmetri
. �Remarks 3.7.



ANTISYMMETRY 9(i) The 
onverse of Theorem 3.6 is false be
ause the sin( 1

x
)-
ontinuumof Example 2.3 is hereditarily de
omposable without being (hered-itarily) antisymmetri
.(ii) In [24℄, Wilder views the property of antisymmetry for metrizable
ontinua as interpolating between aposyndesis and de
omposabil-ity, mu
h as Jones [11℄ views aposyndesis as interpolating be-tween lo
al 
onne
tedness and de
omposability. While aposynde-sis implies de
omposability for general 
ontinua, we do not knowwhether antisymmetry does as well. Any inde
omposable anti-symmetri
 
ontinuum, however, would ne
essarily have just one
omposant. 4. The Gap Free AxiomsConsider the following two �rst-order 
onditions that may be imposedon a ternary stru
ture.Gap Freeness: ∀ ab∃x (a 6= b → ([a, x, b] ∧ x 6= a ∧ x 6= b)); andStrong Gap Freeness: ∀ ab∃x (a 6= b → ([a, x, b] ∧ ¬[x, a, b] ∧

¬[a, b, x])).Gap freeness says that no interval has exa
tly two points, and is a straight-forward generalization of density as understood in the order-theoreti
 
on-text. Strong gap freeness 
learly implies gap freeness for any R-relation;and if antisymmetry holds, the 
onverse is also true. In the setting of
ontinua, Q-gap freeness, i.e., gap freeness for [·, ·, ·]Q, is the de�ning 
on-dition for a 
ontinuum to be a dendron, and is equivalent [23℄ to the
onne
ted interse
tion property : the interse
tion if any two 
onne
tedsubsets is 
onne
ted.In [3℄ we 
onsider the problem of obtaining a similar result for the K-interpretation, and so far there is a 
omplete answer only in the 
ase ofstrong gap freeness.First note that when the 
onne
ted interse
tion property is formallyweakened to allow only interse
tions of sub
ontinua, we arrive at thewell-studied notion of hereditary uni
oheren
e, a property equivalent [3,Proposition 2.1℄ to the 
ondition that all intervals are 
onne
ted. Heredi-tary uni
oheren
e 
learly then implies gap freeness; however the 
onversedoes not hold: by simply taking two pseudo-ar
s and sewing them to-gether along two disjoint nondegenerate sub
ontinua [3, Theorem 2.6℄,we obtain a 
rooked annulus, a 
ontinuum whi
h is gap free, with plentyof dis
onne
ted intervals. We still do not have a nontrivial topologi
al
hara
terization of gap freeness; nor do we know of a �rst-order between-ness statement that 
aptures hereditary uni
oheren
e. For strong gapfreeness, however, there is a satisfying 
hara
terization.



10 PAUL BANKSTONTheorem 4.1. [3, Theorem 4.4 and Corollary 4.5℄ Let X be a 
ontinuum;the following statements are equivalent:(i) X is strongly gap free.(ii) Every nondegenerate interval in X is a de
omposable 
ontinuum.(iii) X is both hereditarily uni
oherent and hereditarily de
omposable.While K-
losedness alone is not enough to ensure aposyndesis in a
ontinuum (see Example 3.4 (i)), the addition of hereditary uni
oheren
edoes the tri
k.Theorem 4.2. Every hereditarily uni
oherent K-
losed 
ontinuum is aposyn-deti
.Proof. Assume X is hereditarily uni
oherent, as well as K-
losed, with
a and b distin
t points of X. Then [a, b, a] does not hold; and by K-
losedness, there are open sets Ua and Ub, with a ∈ Ua and b ∈ Ub,su
h that if 〈x, z, y〉 ∈ Ua × Ub × Ua, then [x, z, y] does not hold either.In parti
ular, for ea
h 〈x, z〉 ∈ Ua × Ub, there is a sub
ontinuum of Xthat 
ontains both a and x, but not z. Thus, for ea
h x ∈ Ua we have
[a, x] ∩ Ub = ∅, and so the 
losed subset

M =
⋃

x∈Ua

[a, x]of X 
ontains Ua and misses Ub. By hereditary uni
oheren
e, ea
h [a, x]is a sub
ontinuum of X [3, Proposition 2.1℄. Hen
e M is a sub
ontinuumof X that 
ontains a in its interior and ex
ludes b; thereby establishingaposyndesis for X. �Next in this se
tion, we prove an analogue of Theorem 4.1 in whi
hstrong gap freeness in 
lause (i) is repla
ed by the 
onjun
tion of gapfreeness and antisymmetry.Re
all (see, e.g., [16, Theorem 6.6℄) that every nondegenerate 
ontin-uum has at least two non-
ut points; a 
ontinuum with exa
tly two is
alled an ar
. (Sometimes 
alled a Hausdor� ar
 or a generalized ar
. Itis a famous result of 
ontinuum theory that any two metrizable ar
s arehomeomorphi
.) The next result is well known [16, Theorem 6.16℄, and
ru
ial to our immediate endeavor.Lemma 4.3. Let X be a topologi
al spa
e, with a, b ∈ X distin
t. Thefollowing statements are equivalent:(i) X is an ar
, with a and b its two non-
ut points.(ii) The topology on X is indu
ed by a bounded 
omplete dense totalordering that has a and b for its two end points.



ANTISYMMETRY 11If X is an antisymmetri
 
ontinuum and a ∈ X, re
all from Lemma 2.4that ea
h binary relation ≤ab is a total ordering on [a, b], and is inverseto the ordering ≤ba.Lemma 4.4. Let X be an antisymmetri
 
ontinuum, with a, b ∈ X. Thenthe order topology on [a, b] indu
ed by ≤ab 
oin
ides with the subspa
etopology on [a, b].Proof. Fix a, b ∈ X. For x ≤ab y in [a, b], let [x, y]ab be the order interval
{z ∈ [a, b] : x ≤ab z ≤ab y}. Then the order intervals [a, y]ab and [x, b]ab,
x, y ∈ [a, b], subbasi
ally generate the 
losed sets in the order topologyon [a, b]. So �x x ≤ab y in [a, b]. Then for any z ∈ [a, b], we have:
z ∈ [a, y]ab if and only if a ≤ab z ≤ab y, if and only if z ≤a y, if and onlyif z ∈ [a, y]. Also, z ∈ [x, b]ab if and only if x ≤ab z ≤ab b, if and onlyif b ≤ba z ≤ba x, if and only if z ≤b x, if and only if z ∈ [b, x] = [x, b].Intervals, being interse
tions of sub
ontinua, are 
losed in the subspa
etopology. Therefore the order-
losed subsets of [a, b] are subspa
e-
losed,implying that the order topology on [a, b] is 
ompa
t. The order topologyon [a, b] is also Hausdor�. Sin
e there 
annot be two distin
t 
ompa
tHausdor� topologies with one �ner than the other, we 
on
lude that theorder topology and the subspa
e topology on [a, b] 
oin
ide. �Theorem 4.5. Let X be a 
ontinuum; the following statements are equiv-alent:(i) X is antisymmetri
 and gap free.(ii) Every nondegenerate interval [a, b] in X is an ar
, with non-
utpoints a and b.(iii) Every interval in X is a lo
ally 
onne
ted 
ontinuum.(iv) Every interval in X is an aposyndeti
 
ontinuum.(v) Every interval in X is an antisymmetri
 
ontinuum.Proof. The impli
ations (ii) =⇒ (iii) =⇒ (iv) are immediate, and theimpli
ation (iv) =⇒ (v) follows from Theorem 3.2; so �rst assume (v)holds, and try to prove (i). If a and b are distin
t in X, then [a, b] isa nondegenerate 
ontinuum and hen
e must 
ontain a third point. Thisgives us gap freeness. Suppose a, b, c ∈ X, c ∈ [a, b], and c 6= b. Then
[a, b] is an antisymmetri
 
ontinuum; hen
e b 6∈ [a, c], and we infer that
X is antisymmetri
. This proves (i).Now assume (i) holds, and try to prove (ii). If a, b ∈ X are distin
t,then, by Lemma 4.4, the total order ≤ab indu
es the subspa
e topologyon [a, b]. Sin
e intervals are 
ompa
t, the ordering is 
omplete; and, bygap freeness, the ordering is dense as well. Applying Lemma 4.3, [a, b] isan ar
 with non-
ut points a and b, and we have (ii) holding. �



12 PAUL BANKSTONAs another 
orollary of the two pre
eding lemmas, we have the follow-ing.Theorem 4.6. A 
ontinuum is an ar
 if and only if it is antisymmetri
and irredu
ible.Proof. Ar
s are antisymmetri
 and irredu
ible. For the 
onverse, suppose
X is antisymmetri
 and irredu
ible about distin
t points a and b. Then,sin
e [a, b] = X, the orderings≤a and ≤ab are identi
al. By Lemma 4.4, Xas a topologi
al spa
e is totally ordered by ≤ab. Sin
e X is a 
ontinuum,we may apply Lemma 4.3 to infer that X is an ar
 (with non-
ut points
a and b). �Remark 4.7. The version of Theorem 4.6 for the metrizable 
ase hasalready been proved in [24℄.A topologi
al spa
e is ar
wise 
onne
ted if ea
h two of its points are thenon-
ut points of an ar
 in the spa
e. Following the 
oinage in [15℄, 
all a
ontinuum an arboroid if it is both hereditarily uni
oherent and ar
wise
onne
ted; 
all it a λ-arboroid if it is both hereditarily uni
oherent andhereditarily de
omposable. (Then a metrizable arboroid (resp., metriz-able λ-arboroid) is just a dendroid (resp., λ-dendroid) in the usual sense;and if we add lo
al 
onne
tedness in either 
ase, we obtain a dendrite(see, e.g., [16℄).) An immediate 
onsequen
e of Theorems 4.1 and 4.5 isthe following new 
hara
terization of arboroids and λ-arboroids.Corollary 4.8.(i) A 
ontinuum is an arboroid if and only if it is antisymmetri
 andgap free.(ii) A 
ontinuum is a λ-arboroid if and only if it is strongly gap free.Remarks 4.9.(i) From Corollary 4.8, it is immediate that arboroids are hereditarilyde
omposable. This was �rst posed as a question by L. E. Ward[21℄ and answered by D. Bellamy [6, Corollary 11℄.(ii) Dendrons, the 
ontinua that areQ-gap free, are known [20, Lemma4℄ to be lo
ally 
onne
ted. Hen
e we may use Theorem 3.2 andCorollary 4.8 to see that dendrons are indeed arboroids.More importantly, Corollary 4.8 allows us to view the 
ontinuum-theoreti
 notions of dendron, arboroid, and λ-arboroid as di�erentversions of gap freeness. This suggests a notion of �arboriality�for R-relations in general, and is the subje
t of ongoing work (see[4℄).Re
all that if X is an aposyndeti
 
ontinuum, then X is K-
losed (The-orem 3.1), and hen
e ea
h 1-sli
e [a, c, ·] is 
losed in X. Relative to the



ANTISYMMETRY 13tree ordering ≤a (see Lemma 2.4 and Theorem 3.2), this set is the prin-
ipal ≤a-�lter generated by c, and is itself a tree ordering with bottomelement c. As with any partial ordering, a bran
h is a maximal totallyordered subset.Theorem 4.10. Let X be an aposyndeti
 
ontinuum, with a, c ∈ X. If
B is a bran
h of [a, c, ·], then B = [c, d] for some (unique) d ∈ X.Proof. We know (Theorem 3.2) that X is antisymmetri
, and hen
e that
[a, c, ·] is a tree with respe
t to ≤a. Let B be any bran
h of [a, c, ·], with
b ∈ B. Then the subset [c, b] ∪ [a, b, ·] of [a, c, ·] is the result of �pruning
[a, c, ·] below b.� We �rst 
laim that

B =
⋂

b∈B

([c, b] ∪ [a, b, ·]).Indeed, �x b ∈ B, and let x ∈ [a, c, ·] be arbitrary. If x ∈ B, then,sin
e B is totally ≤a-ordered, either x ≤a b or b ≤a x. In the �rst 
ase
x ∈ [a, b]. But also we have c ≤a x, so c ∈ [a, x]. Thus, by re
ipro
ity(Lemma 2.5) we know x ∈ [c, b]. If b ≤a x, then x ∈ [a, b, ·], by de�nition.Thus B ⊆

⋂
b∈B

([c, b]∪[a, b, ·]). On the other hand, assume x ∈ [a, c, ·]\B.Sin
e any bran
h in a tree is an order ideal, there is no b ∈ B su
h that
x ≤a b. Also, if b ≤a x for every b ∈ B, then B ∪ {x} is a totallyordered subset of [a, c, ·], properly 
ontaining B; so again we 
ontradi
tthe maximality of B. Hen
e there is some b ∈ B to whi
h x is ≤a-in
omparable; and for this 
hoi
e of b, we have x 6∈ [c, b] ∪ [a, b, ·]. Thisproves the 
laimed equality.Now, be
ause X is aposyndeti
, Theorem 3.1 shows that all 1-sli
es are
losed in X. Thus any bran
h B in [a, c, ·] is 
losed in X, by the equalityabove. This tells us that all bran
hes of subtrees of the form [a, c, ·] are
ompa
t subsets of X, and we may now mimi
 the proof of Lemma 4.4to infer that the subbasi
 order-
losed sets, being of the form [c, b] and
B ∩ [a, b, ·], b ∈ B, are subspa
e 
losed as well.Thus B, with its subspa
e topology, is a 
ompa
t totally ordered spa
e;hen
e it has a greatest element d. This greatest element is unique, byantisymmetry; hen
e we 
on
lude that B is the interval [c, d]. �5. Antisymmetry and TotalityAn obvious restatement of the �rst-order 
ondition given above to de-�ne antisymmetry for a ternary relation isAntisymmetry at a: ∀xy (x 6= y → (¬[a, y, x] ∨ ¬[a, x, y])).In formal 
ontrast to this, we de�ne totality at a point as follows.Totality at a: ∀xy (x 6= y → ([a, y, x] ∨ [a, x, y])).



14 PAUL BANKSTONNote that, in any �reasonable� interpretation of betweenness, su
h as an R-relation, the ante
edent formula in the de�nition of totality is super�uous.Also 
lear is the fa
t that an R-relation is both antisymmetri
 and totalat point a pre
isely when the pre-ordering ≤a is a total ordering.Example 5.1. If X is an ar
 and we de�ne betweenness using either the
Q-, the C-, or the K-interpretation, then there are exa
tly two points atwhi
h X is both antisymmetri
 and total, namely the non-
ut points of
X.Proposition 5.2. An R-relation 
an have at most two points at whi
h itis both antisymmetri
 and total.Proof. Suppose 〈X, [·, ·, ·]〉 is an R-relation with three points a, b, c ∈ Xat whi
h it is both antisymmetri
 and total. By totality at a, we haveeither [a, c, b] or [a, b, c] holding; say it is [a, c, b]. Then, by antisymmetryat a, we have ¬[a, b, c].By antisymmetry at b, and be
ause [b, c, a] holds, we also have ¬[b, a, c].So ¬[c, b, a] and ¬[c, a, b] both hold, 
ontradi
ting the assumption of to-tality at c. �Example 5.3. Re
alling the sin( 1

x
)-
ontinuum in Example 2.3 and the

K-interpretation of betweenness: the points of totality are the two non-
utpoints of A (also points of antisymmetry), as well as the unique non-
utpoint of S (not a point of antisymmetry). The sin( 1

x
)-
ontinuum has nopoints of totality in either the Q- or the C-interpretation (see Theorem5.4 below).Theorem 5.4. Let X be a nondegenerate 
ontinuum; the following state-ments are equivalent for the Q- or the C-interpretation of betweenness:(i) X has at least one point of totality.(ii) X has exa
tly two points of totality.(iii) X is an ar
.Proof. The impli
ations (iii) =⇒ (ii) =⇒ (i) are 
lear; so we assume(i) and prove (iii). Assume X is nondegenerate, and suppose a ∈ X is apoint of totality in either the Q- or the C-interpretation of betweenness.Then, if a point c lies properly between two other points, it must be the
ase that c is a 
ut point of X. So let x, y ∈ X \{a}. Then either [a, x, y]Cor [a, y, x]C holds; in either 
ase, antisymmetry prevents [x, a, y]C fromholding. Thus a is a non-
ut point of X.

X has at least one other non-
ut point; say it is b. If x is any thirdpoint, we then have either [a, b, x]C or [a, x, b]C. The �rst alternative for
es
b to be a 
ut point, so the se
ond alternative must hold. Thus x is a 
utpoint of X, telling us that a and b are the only non-
ut points of X. Hen
e
X is an ar
. �



ANTISYMMETRY 15Note that Theorem 5.4 no longer holds for the K-interpretation of be-tweenness be
ause of the sin( 1

x
)-
ontinuum (see Example 5.3). If we ta
kon the assumption of aposyndesis (or even of CK-
ompleteness, see The-orem 3.2), then Theorem 5.4 applies. We do not know whether antisym-metry is enough to ensure that a nondegenerate 
ontinuum with a pointof totality is an ar
, but we 
an get a positive answer if we also assumegap freeness.Theorem 5.5. If X is a nondegenerate antisymmetri
 
ontinuum that isgap free and has a point of totality, then X is an ar
.Proof. Assume X is a nondegenerate 
ontinuum that is both antisymmet-ri
 and gap free. Then, by Corollary 4.8, X is an arboroid, and is hen
e[15, Theorem 2℄ nested. This means that if A is a 
olle
tion of ar
s of Xwhi
h is totally ordered by in
lusion, then ⋃

A is 
ontained in an ar
 of
X. If a ∈ X is a point of totality, then A = {[a, b] : b ∈ X} is totallyordered by in
lusion, and ea
h member of A is an ar
. Sin
e ⋃

A is all of
X, we infer that X is an ar
. �An R-relation is 
alled total if it satis�es totality at ea
h of its points; a
ontinuum is total if its K-interpretation of betweenness is total. A 
ontin-uum is hereditarily inde
omposable if no sub
ontinuum is inde
omposable;i.e., if any two of its sub
ontinua are either disjoint or ⊆-
omparable. Ahereditarily inde
omposable 
ontinuum is 
learly hereditarily uni
oher-ent, and hen
e all of its intervals are 
onne
ted. The 
rooked annulusmentioned in Se
tion 4 is the union of two hereditarily inde
omposableproper sub
ontinua, and also has some dis
onne
ted intervals.Proposition 5.6. A 
ontinuum is total if and only if it is hereditarilyinde
omposable.Proof. Let X be a total 
ontinuum, with M and N distin
t sub
ontinuathat overlap; say a ∈ M ∩ N and b ∈ M \ N . For any x ∈ N , totalitygives us either b ∈ [a, x] or x ∈ [a, b]. The �rst alternative is impossible,as it for
es b ∈ N . Hen
e it must be the 
ase that x ∈ [a, b] ⊆ M . Thisshows N ⊆ M ; hen
e that X is hereditarily inde
omposable.Suppose X is hereditarily inde
omposable, with a, b, c ∈ X arbitrary.Sin
e X is hereditarily uni
oherent, all intervals are sub
ontinua; hen
eeither [a, b] ⊆ [a, c] or vi
e versa. This implies that X is total. �



16 PAUL BANKSTONRemarks 5.7.(i) Be
ause hereditary inde
omposability implies hereditary uni
o-heren
e, Proposition 5.6 tells us that the �rst-order 
ondition oftotality implies the �rst-order 
ondition of gap freeness for the
K-interpretation of betweenness. This impli
ation at the levelof betweenness interpretations is not valid for all road systems,however: let the set X in
lude the two points a and b, and let R
onsist of the singletons of X, the doubleton {a, b}, and X itself.Then 〈X,R〉 is easily seen to satisfy totality, but not gap freeness.(ii) Note that, sin
e the C-interpretation is always antisymmetri
(Proposition 1.2), Proposition 5.2 implies that totality for thatinterpretation is impossible in any 
onne
ted topologi
al spa
ewith more than two points. Thus, in the 
ontinuum 
ontext, wehave the analogy: �K-total is to C-total, as hereditarily inde
om-posable is to degenerate.�(iii) Theorems 5.5 and 4.6 say that a nondegenerate antisymmetri

ontinuum with a point of totality in the K-interpretation is anar
 if it is either gap free or irredu
ible. A tempting 
onje
ture isthat points of totality are also points of irredu
ibility in general;but if that is the 
ase, then Proposition 5.6 tells us that all nonde-generate hereditarily inde
omposable 
ontinua have at least two
omposants, and thus answers a long-standing open problem (see[19℄ and [13, Problem 36℄).For R-relations, global antisymmetry allows at most two points of to-tality; and a natural question is to what extent global totality limitspoints of antisymmetry. For the Q- and C-interpretations of betweenness,global totality implies degenera
y (see Remark 5.7 (ii)), so this leaves the

K-interpretation.Theorem 5.8. Let X be a nondegenerate total 
ontinuum. Then X hasno points of antisymmetry.Proof. Suppose X is nondegenerate and total (in the K-interpretation),and let a ∈ X be arbitrary. By another boundary bumping theorem [16,Corollary 5.5℄, there is a nondegenerate sub
ontinuum M ⊆ X \ {a}.Let b, c ∈ M be distin
t. Then, sin
e X is hereditarily inde
omposable(Proposition 5.6), and a 6∈ M , we know that the sub
ontinuum [b, c] is
ontained in the sub
ontinuum [a, b]. In parti
ular, we have c ∈ [a, b].Similarly, b ∈ [a, c], implying that a is not a point of antisymmetry. �6. The Equivalen
e Relations ≡aFor any point a in a 
ontinuum X, we de�ne the equivalen
e rela-tion ≡a by the 
ondition b ≡a c if [a, b] = [a, c]. Denote by [b]a the
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≡a-blo
k (equivalen
e 
lass) 
ontaining b. Then 
learly we always have
[b]a ⊆ [b]a ⊆ [a, b], [a]a = {a}, and [b]a is degenerate for all b ∈ X just in
ase a is a point of antisymmetry for X. In this se
tion we are interestedin topologi
al properties of the ≡a-blo
ks, both absolute (e.g., nondegen-erate, 
ompa
t, 
onne
ted) and relative to X (e.g., dense, nowhere dense,having nonempty interior).The following fa
t about 
omposants is well known. While it is statedin [16℄ for metrizable 
ontinua, its proof still works in the more general(Hausdor�) setting.Lemma 6.1. [16, Theorem 11.4℄ The 
omplement of any 
omposant of a
ontinuum is 
onne
ted (possibly empty).Proposition 6.2. For any point a in 
ontinuum X, the 
omposant κais a union of ≡a-blo
ks. Moreover, if κa 6= X, then X \ κa is a single
≡a-blo
k, whi
h is also 
onne
ted.Proof. If b ≡a c and b ∈ κa, then [a, b] 6= X and [a, b] = [a, c]. Hen
e
c ∈ κa too. If b, c ∈ X \ κa, then [a, b] = [a, c] = X; so b ≡a c. If b 6∈ κa,then [b]a = X \ κa is 
onne
ted, by Lemma 6.1. �Re
all that a subset of a topologi
al spa
e is nowhere dense if its 
losurehas empty interior.Example 6.3. In the sin( 1

x
)-
ontinuum X (see Example 2.3), the ≡a-blo
ks are degenerate when a ∈ A. When a ∈ S, A itself is the onlynondegenerate ≡a-blo
k. No matter where a is 
hosen, however, the ≡a-blo
ks are nowhere dense sub
ontinua of X.Theorem 6.4. Let X be a nondegenerate 
ontinuum, with a ∈ X.(i) Ea
h ≡a-blo
k has empty interior in X.(ii) The only way for a ≡a-blo
k to be dense in X is for it to equal

X \ κa, in whi
h 
ase it is also 
onne
ted. In parti
ular, no morethan one ≡a-blo
k 
an be dense in X.(iii) If X is de
omposable, then no ≡a-blo
k is dense in X.(iv) If X is inde
omposable, then all ≡a-blo
ks 
ontained in κa arenowhere dense in X. If X is also irredu
ible, then X \ κa is theunique ≡a-blo
k that is dense in X.(v) If X is hereditarily uni
oherent, then ea
h ≡a-blo
k is 
onne
ted.(vi) If X is hereditarily uni
oherent and hereditarily de
omposable,then ea
h ≡a-blo
k is a nowhere dense sub
ontinuum of X.Proof. Ad (i): Singletons are nowhere dense, so we may assume b 6= a.Then (by standard 
ontinuum theory) we may �nd a sub
ontinuum M ∈
K(a, b) whi
h is irredu
ible about {a, b}. Let A be the 
omposant of a



18 PAUL BANKSTONin M . Then, be
ause [a, b]M = M , we know, by Proposition 6.2, that
[b]Ma := {x ∈ M : [a, x]M = [a, b]M} = M \ A. Sin
e A is dense in M ,
[b]Ma 
an have no interior relative to M , let alone relative to X. Now,
[b]a ⊆ [a, b] ⊆ [a, b]M . If x ∈ [b]a then x ∈ [a, b] ⊆ [a, b]M . But also
b ∈ [a, x] ⊆ [a, x]M ; so [a, x]M = [a, b]M , and we infer that [b]a ⊆ [b]Ma .Hen
e we know [b]a has empty interior in X.Ad (ii): If b ∈ κa, then [b]a ⊆ [a, b] 6= X, and X \ [a, b] is a nonemptyopen set missing [b]a. So for [b]a to be dense in X, it must be the 
asethat [b]a = X \ κa, a 
onne
ted set, by Proposition 6.2.Ad (iii): Let 〈M,N〉 be a de
omposition of X. If a ∈ M ∩ N , then
κa = X; hen
e, by (ii), no ≡a-blo
k is dense in X. If a is, say, in M \ N ,then M ⊆ κa, and X \ N is a nonempty open set disjoint from X \ κa.Again, by (ii), no ≡a-blo
k 
an be dense in X.Ad (iv): Let X be inde
omposable, with b ∈ κa. Then there is a propersub
ontinuum M ∈ K(a, b). Proper sub
ontinua of inde
omposable 
on-tinua have empty interior, and [b]a ⊆ [a, b] ⊆ M ; hen
e [b]a is nowheredense in X.If X is also irredu
ible, then there is at least one 
omposant of Xdisjoint from κa, and it must be 
ontained in [b]a for b ∈ X \ κa. Sin
e
omposants are dense, we know [b]a = X \κa is the unique ≡a-blo
k thatis dense in X.Ad (v): From the argument in (i) above, we have [b]a ⊆ [b]Ma = M \A.By Lemma 6.1, we know [b]Ma is 
onne
ted as well as having empty interior.Sin
e X is hereditarily uni
oherent, we may take M to be [a, b] itself, inwhi
h 
ase [a, b]M = [a, b] and [b]Ma = [b]a. Thus [b]a is 
onne
ted.Ad (vi): Assume X is both hereditarily uni
oherent and hereditarilyde
omposable. By (i) and (v) we know that ≡a-blo
ks have empty interiorin X and are 
onne
ted, so what is left is to show they are also 
losed.Suppose, for the sake of obtaining a 
ontradi
tion, that [b]a is not 
losed,and so �x a point x ∈ [b]a \ [b]a. [b]a is 
onne
ted and nondegenerate;so [b]a is a nondegenerate sub
ontinuum of [a, b], and it therefore has ade
omposition 〈H,K〉. And sin
e [b]a is dense in its 
losure, we may �ndpoints y ∈ [b]a \ K and z ∈ [b]a \ H. Assume x ∈ H. Sin
e H ⊆ [a, b]and x 6∈ [b]a, we know [a, x] is a sub
ontinuum of [a, b] that misses [b]a.Sin
e x ∈ H, we know M = [a, x] ∪ H is a sub
ontinuum of [a, b]. Sin
e
z ∈ [b]a \ H and [a, x] 6= [a, b], we know that M does not 
ontain z, andis hen
e a proper sub
ontinuum of [a, b]. But a ∈ M , and so M ∩ [b]amust be empty. However, we have y ∈ H ∩ [b]a ⊆ M ∩ [b]a, and our
ontradi
tion. �
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ontains a nondegenerate sub
ontinuum M thatis both hereditarily uni
oherent and hereditarily de
omposable (i.e., a λ-arboroid), then the number of ≡a-blo
ks is un
ountable for any a ∈ M .Proof. With ≡M
a denoting ≡a relative to M , we see that the 
olle
tionof ≡M

a -blo
ks 
overs M ; and Theorem 6.4 (vi) shows that ea
h of themis nowhere dense in M . Now apply the Baire 
ategory theorem to inferthat the number of ≡M
a -blo
ks is un
ountable. If b ∈ M , then [b]Ma ⊇ [b]a.Hen
e there are un
ountably many ≡a-blo
ks 
ontained in M . �Question 6.6. Can there ever be just 
ountably many ≡a-blo
ks? Thiswould be another strong way of asserting the failure of antisymmetry at

a. De�ne a point a in 
ontinuum X to be fuzzy if antisymmetry fails at ato the modest extent that [b]a is nondegenerate for all b 6= a. X is fuzzy ifea
h of its points is fuzzy. Fuzziness soundly implies the la
k of points ofantisymmetry; the following implies Theorem 5.8, but has a 
ompletelydi�erent proof.Theorem 6.7. Hereditarily inde
omposable 
ontinua are fuzzy; in fa
t,nondegenerate equivalen
e 
lasses are 
onne
ted, and hen
e of 
ardinality
≥ c.Proof. Let X be hereditarily inde
omposable, with a and b distin
t pointsof X. Then M = [a, b] is a nondegenerate hereditarily inde
omposable
ontinuum that is irredu
ible about {a, b}. Thus the 
omposants of Mpartition it into at least two dense sets. Let a be the 
omposant of M
ontaining a. Then [b]a = [b]Ma = M \ A (see the proof of Theorem6.4 (v)), and so [b]a 
ontains a 
omposant of M . This makes [b]a densein [a, b], so it is nondegenerate. Being the 
omplement of a 
omposantalso makes it 
onne
ted, by Proposition 6.2. Any subspa
e of a 
ompa
tHausdor� spa
e is Ty
hono�; hen
e any nondegenerate 
onne
ted one has
ardinality ≥ c. �Fuzziness, like totality, is a �rst-order betweenness 
ondition that isne
essary for hereditary inde
omposability to hold; and it is a naturalquestion whether fuzziness, like totality, is also su�
ient. An immediate
onsequen
e of Theorem 6.7 and the following is that the answer is no.A 
ontinuum Z is a wedge sum of 
ontinua X and Y if there is ade
omposition 〈M,N〉 of Z su
h that M is homeomorphi
 to X, N ishomeomorphi
 to Y , and M ∩ N is a singleton.Theorem 6.8. A wedge sum of two fuzzy 
ontinua is fuzzy.



20 PAUL BANKSTONProof. Suppose Z = M ∪ N , where M and N are proper fuzzy sub
on-tinua, and M ∩N = {c}. If a and b are points in M , then [a, b] ⊆ [a, b]M .We show [a, b] = [a, b]M ; and for this it su�
es to prove that if H is anysub
ontinuum of Z 
ontaining a and b, then there is a sub
ontinuum K of
M su
h that a, b ∈ K ⊆ H. Indeed, suppose H is su
h a sub
ontinuum,whi
h we may assume interse
ts N \M . Then c must lie in H and be oneof its 
ut points. Thus H \ N is 
lopen in H \ {c}; and, by [17, Theorem3.4℄, it follows that K = (H \ N) ∪ {c} is a sub
ontinuum of M . Clearlywe have a, b ∈ K ⊆ H, as desired.So if a ∈ Z is �xed, say a ∈ M , and if b ∈ M \ {a}, then [a, b]M =
[a, b′]M for some b′ ∈ M distin
t from b, sin
e M is fuzzy. Sin
e [a, b] =
[a, b]M , we infer that [b]a is nondegenerate. If b ∈ N \ M , then c ∈
[a, b] be
ause c is a 
ut point of Z. Hen
e [a, b] = [a, c] ∪ [c, b], by weakdisjun
tivity. Sin
e c 6= b and N is fuzzy, there is some b′ ∈ N \ {b}with [c, b]N = [c, b′]N . Thus [a, b′] = [a, c] ∪ [c, b′] = [a, c] ∪ [c, b′]N =
[a, c] ∪ [c, b]N = [a, c] ∪ [c, b] = [a, b]; hen
e [b]a is nondegenerate in this
ase too. �7. Distal ContinuaLet X be a 
ontinuum, with a ∈ X. The pre-order ≤a suggests thatwe may 
onsider a as a �vantage point� by de�ning d ∈ X to be a-distalif, for any b ∈ X, d ≤a b implies b ≤a d. If d is a-distal, then d is �asfar away from a as you 
an go.� If a is a point of antisymmetry, then,the a-distal points are the maximal elements of the partial order ≤a. Theset of a-distal points is denoted δa, and the 
ontinuum is 
alled a-distalif ea
h x ∈ X is between a and some d ∈ δa. Finally, X is distal if X is
a-distal for ea
h a ∈ X.The following fa
ts are immediate from the de�nitions.Proposition 7.1. Let X be a nondegenerate 
ontinuum, with a ∈ X.(i) δa is a union of ≡a-blo
ks.(ii) a 6∈ δa.(iii) If κa 6= X, then δa = X \ κa.Any ≡a-blo
k 
ontained in δa is 
alled an a-dire
tion. If α is a 
ardinalnumber, we say a ∈ X is α-dire
tional if α is the number of ≡a-blo
ks
ontained in δa. Sin
e X \κa is a single ≡a-blo
k when κa 6= X, we know
a is one-dire
tional in this 
ase.Question 7.2. Is δa ever empty?



ANTISYMMETRY 21Here are some examples of distal 
ontinua.Examples 7.3.(i) If X is an ar
 with non-
ut points a and b, then δa = {b} and
δb = {a}; so non-
ut points are one-dire
tional. If c is a 
ut point,then δc = {a, b}; so 
ut points are two-dire
tional.(ii) Let X be the sin( 1

x
)-
ontinuum of Example 2.3. If a ∈ A and bis the non-
ut point of S, then δa = {b}, and δb = A, a single

≡b-blo
k. Thus both b and points of A are one-dire
tional. If cis a 
ut point of S, then δc = A ∪ {b}, a union of two ≡c-blo
ks,and hen
e two-dire
tional.(iii) Let X be the 
omb spa
e of Example 3.4, with b = 〈0, 1〉 and
bn = 〈 1

n
, 1〉, n ≥ 1. If a ∈ X, then δa = ({b}∪{b1, b2, b3, . . . }\{a},and every point is ℵ0-dire
tional. We note that δa is 
losed in Xif and only if a 6= b: indeed b ∈ δb \ δb.(iv) Let X be the unit 
ir
le in the eu
lidean plane. Then, for any

a ∈ X, we have δa = X \ {a}, whi
h is not 
losed, even in thepresen
e of lo
al 
onne
tedness. Every point of the unit 
ir
le is
c-dire
tional.Theorem 7.4. Let X be a 
ontinuum, a ∈ X.(i) If X is aposyndeti
, then ea
h member of δa is a non-
ut pointof X, and X is a-distal. In parti
ular, aposyndeti
 
ontinua aredistal.(ii) If X is a-distal, then X is irredu
ible about {a} ∪ δa.(iii) If κa 6= X, then δa = X\κa, a single (
onne
ted) ≡a-blo
k. Hen
e
X is a-distal, and a is one-dire
tional.(iv) If X is inde
omposable and irredu
ible, then X is distal and ea
hof its points is one-dire
tional.Proof. Ad (i): Suppose d ∈ δa is a 
ut point of X. Then, by Theorem3.2, there exist points x, y ∈ X, with d ∈ [x, y] \ {x, y}. By disjun
tivity,we have either d ∈ [a, x] or d ∈ [a, y]. Sin
e d ∈ δa, we know either

x ∈ [a, d] or y ∈ [a, d]; hen
e either x = d or y = d, by antisymmetry.This 
ontradi
tion tells us d must be a non-
ut point.To show that X is a-distal, let b ∈ X be arbitrary. We need to show
b ≤a d for some d ∈ δa. Sin
e [a, b] is a totally ≤a-ordered set, a simplenod to Zorn's lemma shows that [a, b] ⊆ B for some ≤a-bran
h B. Hen
e,by Theorem 4.10, B = [a, d] for some d ∈ X. Clearly d ∈ δa sin
e B is an
≤a-bran
h, and b ≤a d sin
e b ∈ B.Ad (ii): Assume X is a-distal, with K a sub
ontinuum of X 
ontaining
{a} ∪ δa. With b ∈ X arbitrary, �nd d ∈ δa su
h that b ∈ [a, d]. Sin
eboth a and d are in K, so is b. Hen
e K = X.



22 PAUL BANKSTONAd (iii): This is immediate, from Proposition 6.2.Ad (iv): This follows immediately from (iii) above, and the fa
t thatevery 
omposant of X is a proper subset. �8. CentroidsIf [·, ·, ·] is an interpretation of betweenness on a set X, and a, b, c ∈ X,de�ne [abc] to be the interse
tion [a, b]∩ [a, c]∩ [b, c]. Elements of [abc] arethe 
entroids of the triple 〈a, b, c〉; the betweenness stru
ture 〈X, [·, ·, ·]〉is (uniquely) 
entroidal if ea
h triple has a (unique) 
entroid.If 〈X,R〉 is uniquely 
entroidal, we denote by γ : X3 → X the asso
i-ated 
entroid operation, and often abbreviate γ(a, b, c) simply as abc. ByLemma 2.5, we know that antisymmetri
 weakly disjun
tive R-relationsare uniquely 
entroidal if they are 
entroidal at all, and the question ariseswhether, under su
h 
ir
umstan
es, the 
entroid operation is a �median,�in the sense of [5, 10℄ and elsewhere.From the standpoint of universal algebra, a median on a set X isa ternary operation µ : X3 → X that is symmetri
 (i.e., 
ompletely
ommutative) and satis�es the following universal equalities:Absorption: ∀xyz (µ(x, y, y) = y); andWeak Asso
iativity: ∀wxyz (µ(µ(w, x, y), x, z) = µ(w, x, µ(y, x, z))).A median algebra is a set together with a distinguished median. Su
hstru
tures most naturally arise in the study of distributive latti
es, where
µ(x, y, z) is de�ned to be (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z). (Indeed, abstra
tmedian algebras may be represented [5℄ as median-subalgebras of powersof the two-element latti
e.) In the setting of R-relations, we also �ndmedians in the form of 
entroids.Lemma 8.1. Let 〈X, [·, ·, ·]〉 be an antisymmetri
 weakly disjun
tive 
en-troidal R-relation, with a, b, c ∈ X. Then abc = a if and only if a ∈ [b, c].Proof. By de�nition, abc ∈ [b, c], so the �only if� dire
tion is trivial. As-sume a ∈ [b, c]. Then, by Lemma 2.5 (slenderness), [b, a] ∩ [a, c] = {a}.Hen
e {abc} = [abc] = [b, a] ∩ [a, c] ∩ [b, c] = {a} ∩ [b, c] = {a}, and wehave abc = a. �Theorem 8.2. In an antisymmetri
 weakly disjun
tive 
entroidal R-relation, the 
entroid operation is a median.Proof. Let 〈X, [·, ·, ·]〉 be an antisymmetri
 weakly disjun
tive 
entroidalR-relation. The de�nition of �
entroid set� immediately gives us (setwise)symmetry (i.e., [abc] = [acb] = [bac] = [bca] = [cab] = [cba]) and absorp-tion (i.e., [abb] = {b}), so we 
on
entrate on weak asso
iativity: given
a, b, c, d ∈ X, we wish to show that (abc)bd and ab(cbd) are the samepoint.



ANTISYMMETRY 23Both abc and cbd lie in [b, c]; by weak disjun
tivity, either abc ∈ [b, cbd]or abc ∈ [cbd, c]. Suppose the �rst 
ase holds. Then we have [b, cbd] ⊆
[b, d]; hen
e abc ∈ [b, d], and thus (abc)bd = abc, by Lemma 8.1. On theother hand, [ab(cbd)] = [a, b]∩[a, cbd]∩[b, cbd] ⊆ [a, b]∩[a, cbd]∩[b, c], sin
e
cbd ∈ [b, c]. By Lemma 2.5 (re
ipro
ity), we have cbd ∈ [abc, c] be
ause
abc ∈ [b, cbd]. Hen
e cbd ∈ [a, c], and we have [a, cbd] ⊆ [a, c]. Thus weinfer [ab(cbd)] ⊆ [abc]. Sin
e both sets are singletons, we 
on
lude that
(abc)bd and ab(cbd) both equal abc.Next, suppose the se
ond 
ase holds, that abc ∈ [cbd, c]. Then, byre
ipro
ity, cbd ∈ [b, abc] ⊆ [a, b]; so ab(cbd) = cbd (again by Lemma 2.5).Also we have [(abc)bd] = [abc, b] ∩ [abc, d] ∩ [b, d] ⊆ [c, b] ∩ [abc, d] ∩ [b, d].But abc ∈ [cbd, c], by assumption; so abc ∈ [c, d], and thus [abc, d] ⊆ [c, d].Hen
e [(abc)bd] ⊆ [cbd], and we 
on
lude that (abc)bd and ab(cbd) bothequal cbd. �Remark 8.3. Full asso
iativity, the statement that (vwx)yz = v(wxy)z =
vw(xyz) universally holds, is generally false for 
entroids. For assume wehave a linear ordering, where a < b < c < d < e are �ve distin
t points.Then (abc)de = bde = d, a(bcd)e = ace = c, and ab(cde) = abd = b.In the setting of 
ontinua, we have a satisfying 
ondition that su�
esfor 
entroid existen
e.Lemma 8.4. [3, Proposition 3.1℄ Let X be a 
ontinuum, with a, b ∈ X.If [a, b] is 
onne
ted, then [abc] 6= ∅ for any c ∈ X. In parti
ular, if X ishereditarily uni
oherent, then X is 
entroidal (and all of its 
entroid setsare sub
ontinua).Remark 8.5. Paraphrasing a well-known result (see [16, Corollary 11.20℄),a metrizable 
ontinuum is inde
omposable if and only if it equals one ofits own 
entroid sets.When we 
ombine Lemmas 8.4 and 2.5 with Theorem 8.2, we immedi-ately obtainCorollary 8.6. Let X be an antisymmetri
 hereditarily uni
oherent 
on-tinuum. Then X is uniquely 
entroidal, and the 
entroid operation γ is amedian.Sin
e a 
ontinuum's being 
entroidal is so manifestly a 
onsequen
e ofhereditary uni
oheren
e, it is natural to ask whether the 
onverse is true.The answer is generally no, as any 
rooked annulus will attest (see [3,Theorem 3.2℄). So a weaker assertion, one for whi
h a 
rooked annulusno longer o�ers a 
ounterexample, is that 
entroidality implies gap free-ness. We do not know the answer to this, even under the assumption ofantisymmetry. But we do get a yes answer if we invoke aposyndesis.



24 PAUL BANKSTONTheorem 8.7. In aposyndeti
 
ontinua, being hereditarily uni
oherent(or gap free) is equivalent to being 
entroidal.Proof. Assume X is an aposyndeti
 
ontinuum. Then X is antisymmet-ri
, by Theorem 3.2. We have already seen that hereditary uni
oheren
egenerally implies being 
entroidal (Lemma 8.4), and that gap freeness issu�
ient for hereditary uni
oheren
e in antisymmetri
 
ontinua (Theo-rem 4.5), so it remains to show that being 
entroidal implies being gapfree.Assume X is 
entroidal but not gap free. Then there are two points
a 6= b in X su
h that [a, b] = {a, b}. For ea
h c ∈ X, we have abc uniquelyde�ned (Lemma 2.5), and hen
e either abc = a or abc = b. Thus the sets
Ca = {x ∈ X : abx = a} and Cb = {x ∈ X : abx = b} are disjoint, they
over X, and are both nonempty (sin
e a ∈ Ca and b ∈ Cb). Sin
e X is
onne
ted, then, it 
annot be the 
ase that both Ca and Cb are 
losed in
X. But Ca and Cb are the 1-sli
es [b, a, ·] and [a, b, ·], respe
tively (Lemma8.1), and are indeed 
losed by Theorem 3.1. �Question 8.8. In light of Corollary 8.6, is the 
entroid operation γ foran antisymmetri
 hereditarily uni
oherent 
ontinuum 
ontinuous in all(any) of its variables? In general, what do the inverse images of a pointor 
losed set look like?For ea
h a, b in an antisymmetri
 hereditarily uni
oherent 
ontinuum
X, de�ne γab : X → X to be the fun
tion x 7→ abx. Clearly γab maps
X onto [a, b], and γab(c) = c if and only if c ∈ [a, b]. This is the de�ning
ondition for a 
ontinuous mapping from a spa
e to a subspa
e to be aretra
tion, but 
ontinuity in this instan
e is not assured.Example 8.9. Referring to the 
omb spa
e of Example 3.4, we have anantisymmetri
 hereditarily uni
oherent 
ontinuum. Let a = 〈0, 0〉 and
b = 〈0, 1〉, with bn = 〈 1

n
, 1〉, n ≥ 1. Then b = limn→∞ bn. However,

γab(b) = abb = b, while, for ea
h n, we have γab(bn) = abbn = a. Thus
γab is not 
ontinuous at b.Theorem 8.10. Let X be an aposyndeti
 
entroidal 
ontinuum. For ea
h
a, b, c ∈ X, with c ∈ [a, b], the inverse image γ−1

ab
(c) is a sub
ontinuum of

X.Proof. Suppose X is a 
ontinuum that is both aposyndeti
 and 
entroidal,with a, b, c ∈ X su
h that c ∈ [a, b]. For any x ∈ X, we have abx = cjust in 
ase c ∈ [a, x] ∩ [b, x]; in the notation of 1-sli
es, this gives us
γ−1

ab
(c) = [a, c, ·] ∩ [b, c, ·]. (In the proof of Theorem 8.7, the sets Ca and

Cb are γ−1

ab
(a) and γ−1

ab
(b), respe
tively.) This set is 
losed for aposyndeti


X, by Theorem 3.1, and so is 
ompa
t.
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ab
(c) is 
onne
ted. First observe that if x ∈ [a, c, ·],then [c, x] ⊆ [a, c, ·]. For if y ∈ [a, x], then, sin
e c ∈ [a, x], we have

c ∈ [a, y], by Lemma 2.5 (re
ipro
ity). This says y ∈ [a, c, ·].To �nish the argument, suppose x and y are in γ−1

ab
(c) = [a, c, ·]∩[b, c, ·].Then, by the argument above, both [c, x] and [c, y] are 
ontained in γ−1

ab
(c).By hereditary uni
oheren
e (Theorem 8.7), we infer that [c, x]∪ [c, y] is a
onne
ted subset of γ−1

ab
(c) that 
ontains both x and y. This ensures that

γ−1

ab
(c) itself is 
onne
ted. �We do not know whether the 
entroid operation is 
ontinuous foraposyndeti
 
entroidal 
ontinua. However, if we repla
e aposyndesis withlo
al 
onne
tedness, we get an a�rmative answer. Re
all that a 
ontinu-ous mapping between 
ontinua is monotone if inverse images of sub
on-tinua are sub
ontinua.Theorem 8.11. Let X be a lo
ally 
onne
ted 
entroidal 
ontinuum. Thenthe 
entroid operation γ : X3 → X is 
ontinuous; and, for ea
h a, b ∈ X,the mapping γab : X → [a, b] is a monotone retra
tion.Proof. Assume X is a lo
ally 
onne
ted 
entroidal 
ontinuum. We aim toshow that whenever D is 
losed in X, its inverse image γ−1(D) is 
losedin X3.We �rst observe that if D ⊆ X is 
losed and d ∈ X \ D, we mayuse lo
al 
onne
tedness to 
over D with �nitely many sub
ontinua, none
ontaining d. Hen
e the 
olle
tion F , 
onsisting of the 
losed subsets of

X with �nitely many 
omponents, forms a 
losed-set base. We lose nogenerality, then, in showing γ−1(D) is 
losed in X3 for D ∈ F ; and indeedwe may assume D itself is 
onne
ted.So assume D ⊆ X is a sub
ontinuum and that 〈a, b, c〉 ∈ X3 is su
hthat abc 6∈ D. Then we need open sets Ua, Ub, Uc, 
ontaining a, b, and crespe
tively, su
h that a′b′c′ 6∈ D for any 〈a′, b′, c′〉 ∈ Ua × Ub × Uc.Suppose D interse
ts both [a, abc] and [abc, b], say u ∈ D ∩ [a, abc] and
v ∈ D∩[abc, b]. By weak disjun
tivity, we have [a, b] = [a, u]∪[u, v]∪[v, b];hen
e abc must lie in one of these subintervals. If abc ∈ [a, u], then
abc = u be
ause u ∈ [a, abc] and antisymmetry holds. Similarly, abc = vif abc ∈ [v, b]. In any event, we have abc ∈ [u, v]. But sin
e D is asub
ontinuum, we have [u, v] ⊆ D, 
ontradi
ting the assumption that
abc 6∈ D.Hen
e we infer that D must miss at least two out of the three intervals
[a, abc], [b, abc], and [c, abc], and therefore that D misses at least one of theintervals [a, b], [a, c], and [b, c]. Say it is the 
ase that D∩ [a, b] = ∅. Then,using lo
al 
onne
tedness, we may �nd 
onne
ted open sets Ua and Ub,neighborhoods of a and b, respe
tively, su
h that D∩(Ua∪Ub) = ∅. Letting
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Uc be any open neighborhood of c, we have that if 〈a′, b′, c′〉 ∈ Ua×Ub×Uc,then a′b′c′ ∈ [a′, b′]. Sin
e Ua ∪ [a, b] ∪ Ub is a sub
ontinuum 
ontaining
a′ and b′, it must 
ontain [a′, b′]; hen
e a′b′c′ 
annot lie in D. This shows
γ−1(D) is 
losed in X3.

γab : X → [a, b] is a retra
tion be
ause it is 
ontinuous (and abc = c ifand only if c ∈ [a, b]). It is monotone, by Theorem 8.10, be
ause lo
al 
on-ne
tness implies aposyndesis and 
ontinuous surje
tions between 
ontinuaare monotone whenever inverse images of singletons are 
onne
ted. �Remark 8.12. The fa
t that dendrons �admit a natural 
ontinuous me-dian� has long been known, but in a rather disguised 
ontext (see, e.g.,[1℄). The dendrons, being the Q-gap free 
ontinua, are pre
isely the lo
ally
onne
ted 
entroidal 
ontinua (see Theorem 3.2 and [20, Lemma 4℄).Referen
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