
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

An Investigation of Phase-Change Effects During
Rapid Compression Machine Experiments
Colin Banyon
Marquette University

Recommended Citation
Banyon, Colin, "An Investigation of Phase-Change Effects During Rapid Compression Machine Experiments" (2013). Master's Theses
(2009 -). Paper 224.
http://epublications.marquette.edu/theses_open/224

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses


An Investigation of Phase-Change Effects
During Rapid Compression Machine

Experiments

by

Colin Banyon, B.S.M.E.

A Thesis submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Master of Science

Milwaukee, Wisconsin

December 2013



Abstract

An Investigation of Phase-Change Effects
During Rapid Compression Machine

Experiments

Colin Banyon, B.S.M.E

Marquette University, 2013

Rapid compression machines (RCMs) are well characterized laboratory scale
devices capable of achieving internal combustion (IC) engine relevant thermo-
dynamic environments. These machines are often used to collect ignition delay
times as targets for gas-phase chemical kinetic fuel autoigntion models. Modern
RCMs utilize creviced piston(s) to improve charge homogeneity and allow for an
adequate validation of detailed chemistry mechanisms against experiments using
computationally efficient, homogeneous reactor models (HRMs).

Conventionally, experiments are preformed by introducing a premixed gas of
fuel + oxidizer + diluent into the machine, which is compressed volumetrically
via a piston. Experiments investigating low-vapor pressure fuels (e.g. diesels,
biodiesels, jet fuels, etc.) and surrogates can be conducted by preheating both
the charge as well as the machine. This method of fuel loading can lead to pre-
test fuel pyrolysis as well as machine seal degradation. Under some conditions
loading a fuel aerosol of finely atomized liquid droplets in an oxidizer + dilu-
ent bath gas (i.e. wet compression) has been suggested to extend the capabilities
of RCM experiments to involatile fuels. This work investigates phase-change ef-
fects during RCM experiments, especially for aerosol-fueling conditions, while the
methodology can be applied to gas-phase fuel experiments where fuel condensation
can occur at the compressed conditions within the boundary layer region.

To facilitate this study a reduced-order, physics-based model is used. This
work highlights important machine-scale influences not investigated in previous
work, and provides additional detail concerning an aerosol RCM’s capabilities
and limitations. A transient formulation is developed for the multi-phase trans-
port within the RCM reaction chamber as well as the flow to the piston crevice
region during both the compression and delay periods. The goal of this work is
threefold. First, an a priori knowledge of the stratification present under various
conditions can help determine an optimum machine geometry so that discrepan-
cies between experimental data sets and 0D kinetics simulations are minimized for
involatile fuels. Second, the model is computationally tractable to prescribe heat
loss rates to an HRM during simulations of experiments so that physical effects
can be incorporated into simulations using detailed chemistry. Finally, heat loss
rates that are prescribed to the HRM are only a function of machine geometry,
and are independent of ad hoc and empirically derived fits that vary between fa-
cilities. Thus a more adequate comparison of data between RCM facilities and
with existing literature can be made.
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Chapter 1

Background

Introduction

This thesis investigates phase-change phenomena that occur during rapid

compression machine (RCM) experiments. Rapid compression machines are

laboratory devices that can create and maintain a high temperature and pressure

environment, for a relatively long period of time (e.g. 100 ms). This environment

is well-suited for investigations of a number of processes that affect the

combustion of liquid fuels in internal combustion (IC) engines, including fuel

spray dynamics [1–3], ignition assistance [4, 5], engine knock [6, 7], turbulent

combustion [8, 9] and autoignition [10–13]. While RCMs have been used to

investigate a wide variety of phenomena the study of autoignition of involatile

fuels is complicated by phase-change effects. This work utilizes a computational

approach to better understand these effects and thereby increase fidelity in fuel

autoigntion data acquired from experiments.

Autoignition data collected from RCM experiments are a prominent source of

validation targets for chemical kinetic models that describe fuel pyrolysis and

oxidation [14–17]. Chemical kinetic mechanisms are utilized toward the

improvement of current, as well as the design of future IC engines by enabling

the prediction of ignition timing, rate-of-heat-release (ROHR) and in-cylinder

pollutant formation processes. The development of accurate predictive models

has been earmarked as essential toward the development of clean, efficient,

sustainable combustion technologies [18].

Conventional RCM experiments undertaken to investigate gas-phase
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chemistry are typically limited to volatile fuels. For instance, studies have

utilized hydrogen [19–21], natural gas-relevant species [22–24], small

alkanes [25–28], gasoline surrogates [29–32] and small bio-derived species [33–35].

Typically only a model for heat loss to the reaction chamber walls and to the

piston crevice during the experiment (e.g. [36]) is needed to adequately compare

the chemical kinetic mechanism with RCM data. Experiments with involatile

fuels such as diesel, biodiesel, and jet fuel relevant species are much more

challenging, as these fuels must be vaporized before the test conditions are

realized. In some cases pre-heating the charge and machine has been a successful

method for pre-vaporization (e.g. [37]);, however significant pre-heating of the

fuel can lead to pyrolysis, while significant pre-heating of the machine can lead

to seal degradation.

Recently, the “wet compression” fuel loading approach, which has been

successful in shock tube experiments [38], has been suggested to extend the

capabilities of RCM experiments to involatile fuels [39]. In this approach a finely

atomized fuel aerosol in an oxidizer + diluent bath gas is loaded into the

machine. During piston compression the fuel is vaporized and diffusively mixed

on a time scale much faster than the decomposition/oxidation chemistry. Thus

by the time the charge reaches the compressed temperature and pressure a

well-mixed gas-phase experiment proceeds.

While “wet compression” has the potential to extend the capability of RCM

experiments, new modeling techniques are needed to adequately compare

collected data with chemical kinetic models. A predictive model is required in

order to determine the droplet size required to achieve vaporization and mixing

by maximum compression, for varying initial conditions so that experimental

matrices are realizable. An improved heat loss model is also required to account

for phase-change effects and gas-phase compositional stratification that may

ensue within the reaction chamber. Such a model can also be used to determine

the rates of heat loss to the reaction chamber surfaces and piston crevice while
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simulating the chemistry of the experiment. Finally, since this is a novel fuel

loading approach, a computational model can offer insight into the limitations

and optimum design of an aerosol RCM (aRCM). The reduced-order,

physics-based model developed in this work has the capability of satisfying all of

these criteria.

This chapter begins with a look into the sources of energy utilized by the

United States, and the particular role of petroleum based fuels in IC engines.

Next a brief summary of liquid fuels is presented, followed by a short description

of current and future IC engines used to convert the fuels’ chemical energy into

mechanical power. A short discussion of combustion chemistry models is then

given highlighting their importance in future engine design, followed by

techniques commonly utilized to develop and validate these models. The chapter

ends with an overview of this manuscript.

Energy Conversion

A wide variety of engineering technologies have enabled the conversion of useful

energy from a broad range of fuel sources or feedstocks [40]. A breakdown of

current U.S. energy use by source and sector is shown in Figure 1.1. The

combustion of fossil fuels (i.e. coal, natural gas and petroleum) presently

provides the majority of consumed energy in the United States. The two largest

sectors that make use of these fuels, electricity generation and transportation,

are also the most inefficient at converting fuel to useful energy. These

inefficiencies are attributed to first law thermal losses and second law restrictions

during energy conversion, as well as the energy expended to mine, transport and

refine raw fuel sources [41].

The large majority of past and present electricity generated in the United

States has been from the combustion of coal in coal-fire power plants and natural
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Figure 1.1: U.S. energy use by source and sector including efficiency losses. Figure
reproduced from [42], courtesy of Lawrence Livermore National Laboratory.

gas in turbine engines [43]. The limited availability of these fuels in addition to

the emission of toxic pollutants and greenhouse gasses such as NOx, CO2, SO2

and unburned hydrocarbons (i.e. PM, soot or black carbon) has motivated

alternative fuels and technologies [41]. Within the last few decades other options

have been explored for electricity generation, which include: nuclear fission of

uranium, as well as more sustainable options such as the harnessing of natural

wind, water and geothermal currents and solar radiation [40].

While stationary power plants have utilized a wide variety of energy

conversion technologies and energy sources, the transportation industry has

depended on the combustion of liquid fuels in IC engines [40]. Internal

combustion engines are well-suited for transportation applications due to small

size and low manufacturing cost, as well as the high power output achievable

when utilizing energy-dense liquid fuels [44]. This trend is expected to continue

in the future [18], even as competing technologies such as hydrogen fuel cells and

electrical storage in batteries are developed [45]. The continued usefulness of the



5

IC engine has motivated a vast amount of research into the improvement of

existing designs, with a focus on clean, efficient and sustainable technologies [18].

The fuels used in past and modern IC engines are generally petroleum derived

gasoline and diesel, however the use of sustainable bio-derived additives and

replacements are becoming more prevalent. The following section explores some

of the commonly used and suggested fuels for IC engines.

Transportation Fuels

Real transportation fuels derived from petroleum are chemically complex

consisting of thousands of species, which may vary from batch to batch [46].

During refining in the US about 45% of crude oil is converted to gasoline, 21% is

converted to diesel and about 9% is converted to jet fuel [46]. Gasoline typically

contains C4 to C10 species and is mainly composed of 40-80% alkanes (including

normal alkanes and branched iso-alkanes), 15-40% aromatics, 5-20% alkenes and

1-10% cycloalkanes [47]. Diesel contains heavier C10 to C24 species mainly

comprised of 25-50% alkanes, 20-40% cycloalkanes and 15-40% aromatics [48],

which is a substantially higher concentration of cyclic structures than gasoline.

Production jet fuels typically have a looser regulation and the spectrum of

carbon lengths and structures can be much broader [49]. However, a recent

study was conducted that surveyed the composition of jet fuels worldwide and

an average structural composition of 58% alkanes, 21% cycloalkanes and 13%

aromatics was found [50]. Other types of structures can exist in these fuels,

however in small amounts. These real fuels are intractable to accurately

characterize, and developing accurate combustion models for such real fuels is

even more challenging.

In order to understand fuel chemistry, fuel surrogates are often used, where

extensive work has been undertaken to develop these for petroleum derived
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fuels [47–49,51]. Surrogates are built using a few fuel-relevant species, for which

the chemistry is well understood, by matching bulk host properties (e.g. fuel

structure, octane/cetane rating, density, vapor pressure, etc.). The chemistry of

the surrogate can then be experimentally investigated to gain insight into real

fuel behavior (e.g. [29,33,52]).

Oxygenated biofuels do not consist of a broad range of species as is the case

with petroleum derived fuels. Small alcohols (e.g. ethanol, propanol and

butanol) can be derived from biological feedstock and used as a sustainable

supplement to petro-fuels [53]. For instance, in the United States ethanol is

manufactured from corn and is used as an additive to gasoline. There is much

speculation, however, that bio-butanol may be a more suitable additive due to

an increased energy density and mixing potential [53]. Fuels derived from

organic feedstocks have also shown potential to replace petroleum derived fuels

altogether. For instance, biodiesels generated from the transesterfication of

soybean, algae, rapeseed, camelina, cuphea and palm feedstock (among others)

have been demonstrated to serve as additive-blends or complete replacements for

petro-diesel [54]. Biodiesels typically consist of a few C16 to C18 methyl-esters,

and work is ongoing to understand the oxidation chemistry of these

species [55,56]. The involatility of these fuels however, currently makes

significant experimental progress towards a full understanding of their oxidation

chemistry challenging and in some cases impossible.

Experimental investigations of the gas-phase oxidation of transportation

relevant fuels and species can be difficult. Liquid fuels utilized by transportation

IC engines and their surrogates consist of a large amount of involatile species, as

is depicted by Figure 1.2. Conventional experiments used for acquiring

validation targets for combustion chemistry models, as will be explored later in

this chapter, typically require a gas-phase fuel + oxidizer + diluent to obtain

meaningful data, whereby the important chemical processes are sufficiently

developed from physical processes. This is usually achievable for gasoline
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Figure 1.2: Distillation curves for popular fuels used in IC engines including gaso-
line, JP-8, biodiesel from cuphea and soy feedstock and petro-diesel. Original
experimental data reproduced from [57–60], respectively.

surrogates and some gasolines as a high fuel partial pressure can be maintained

in the gas phase with minimal pre-test fuel heating [29–32]. For diesel and jet

fuels and their surrogates, which require pre-heating to higher temperatures, fuel

decomposition may occur before even dilute gas-phase conditions exist.

While a fundamental understanding of the oxidation processes for

transportation fuels can be challenging, modern IC engines use combustion

strategies that can take advantage of fuel involatility. Flexible combustion

strategies are also being developed that can make use of unconventional

sustainable fuels in tandem with those derived from petroleum (e.g. [61]). As an

understanding of the chemistry of liquid fuels is progressed, future designs will

surely be capable of making an even greater use of fuel resources.
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Internal Combustion Engines

Three modern combustion strategies for transportation IC engines are shown in

Figure 1.3; spark ignition (SI), compression ignition (CI) and homogeneous

charge compression ignition (HCCI). Over the past century SI and CI engines

have been widely utilized with gasoline and diesel, respectively. In addition,

within the last few decades advanced low-temperature combustion (LTC)

strategies have been developed such as HCCI [62,63], which may make use of

multiple [64] or modified fuels [65]. Each of the three combustion strategies

mentioned have strengths and unresolved challenges regarding engine efficiency,

emission output and robustness over a range of operating conditions, and

research is ongoing to resolve these.

Figure 1.3: A diagram depicting the mechanisms of combustion in transportation
internal combustion (IC) engines. (Left) A spark ignition (SI) engine, where a
flame kernel is generated via a spark and the flame propagates outward. (Center)
A compression ignition (CI) engine, where a heterogeneous reaction occurs at
the phase interface. (Right) A homogeneous charge compression ignition (HCCI)
engine, where reaction progress is completely controlled by autoignition chemistry.
Figure reproduced from [66].
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For a conventional SI engine, a premixed fuel + air charge is inducted into

the cylinder and compressed to a thermodynamic state below the fuel

autoignition conditions. After compression a flame kernel is generated via a

spark, where combustion timing can easily be controlled. A reaction front

propagates from the spark plug to the cylinder walls, within which the unburned

fuel + air is converted to combustion products, until the flame finally

extinguishes at the cylinder wall. Typically in an SI strategy the charge is nearly

stoichiometric in order to ensure the stability of the ignition and propagation of

the flame. Combustion efficiencies using this strategy can be as high as 95-98%,

with inefficiencies attributed to piston ring blowby as well as flame quenching at

the wall inhibiting the CO to CO2 conversion [44]. However, in addition to the

production of the toxic gas CO, locally high temperatures at the flame front and

in the burned mixture promotes the formation of NOx [67]. Emission of these

pollutants into the environment can be reduced by using three-way catalysts in

the exhaust after-treatment system [68]. Engine efficiencies for SI strategies

while operating at full load (i.e. wide open throttle (WOT)), can be as high as

34% [69]. Engine inefficiencies are mainly attributed to power metering; in SI

engines power is metered by choking air + fuel intake into the cylinder using a

throttling valve. This process has the effect of a reduced intake and compressed

pressure. The thermal efficiency decrease due to the brake mean effective

pressure (BMEP) drop is usually referred to as throttling loss [70]. Engine

efficiencies can drop to 10-20% as SI engines operate at 10-20% full load. This

typically corresponds to roughly 50-60 km/h road speed [69]. Currently

strategies to reduce throttling losses are being developed such as variable valve

timing (VVT) and lift [71], variable compression ratio [72], downsized high-boost

engines [44] and gasoline direct injection (GDI) for stratified charge lean

burn [73]. By utilizing a combination of these strategies, SI engines may be able

to be manufactured with CI type efficiencies.

Conventional CI engines operate by compressing a mixture of fresh air and
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exhaust gasses that have been recirculated into the cylinder (EGR) before fuel is

introduced into the cylinder. After the gasses are compressed to high

temperature, liquid fuel is directly sprayed into the cylinder using a fuel injector.

As the fuel vaporizes a diffusion flame develops near the surface of the spray, and

the reaction progress is controlled primarily by the rate of vaporization and

turbulent oxidizer mixing. Globally lean charges are almost always utilized in CI

engines as high fuel concentrations near the reacting spray surface ensures flame

stability. Typically, extremely high combustion efficiencies of up to 99% can be

achieved [44]. Unfortunately, high temperatures in the flame front can lead to

NOx formation as in SI engines. In CI engines high fuel concentrations also lead

to the production of PM (soot) [74]. While pollutant emissions have historically

been a concern for diesel engines, in the last 15 years advances in exhaust

aftertreatment systems that make use of catalysts and PM traps have lowered

PM emissions by 98% and NOx emissions by 97% [75]. Engine efficiencies for CI

strategies are typically higher than SI at approximately 30%, since they do not

suffer from the throttling losses characteristic of SI engines [76].

Figure 1.4 illustrates the fuel loading and combustion temperatures where

sooting tendencies and NOx production are prevalent. As discussed, SI schemes

tend to have high NOx production, while CI technologies can exhibit high NOx

production along with sooting tendency. In recent years a push to minimize toxic

and harmful emissions has led to a vast amount of scientific research into lean

charge LTC strategies which fall in the green region of the plot. The goal is to

improve engine efficiency while simultaneously lowering pollutant emissions.

Many other variant strategies of the three discussed here exist to produce high

efficiency, clean engines such as premixed charge compression ignition

(PCCI) [78] and dilute clean diesel combustion (DCDC) [79]. As one example,

HCCI is discussed in detail here.

In HCCI [80] a premixed lean fuel + air is inducted into the cylinder, the

charge is compressed to it’s autoigntion conditions. In the most
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Figure 1.4: Sooting and NOx production regimes of IC engines. Figure reproduced
from [77].

thermodynamically efficient process the fuel quickly autoignites uniformly

throughout the cylinder. Unlike SI and CI strategies, there is generally no flame

present in HCCI combustion, and typically much lower emissions of NOx and

soot can be achieved [81]. However, since in HCCI the start of combustion

(SOC) is controlled by charge temperature and composition, transient loadings

are much more challenging as chemical kinetics models are needed to accurately

predict combustion phasing and ROHR. Even with these challenges, there are

opportunities to develop hybrid engines that can switch between HCCI to SI or

CI schemes during cold start, idle or high loads [82]. Comparable engine

efficiencies to CI engines can be achieved in HCCI as throttling losses are

eliminated, and relatively high compression ratios and short combustion times

are realizable [80].

High engine efficiencies combined with low in-cylinder pollutant formation

make HCCI a potential choice for next-generation engine technologies. This can

only be achieved, however, through a better fundamental knowledge and

predictive models for fuel chemistry so that HCCI or similar strategies can be
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successfully utilized for a wide range of fuels and engine operating conditions.

Combustion Chemistry Models

Prototyping IC engines that make use of more sustainable fuels or new lean

burn, LTC combustion processes can an expensive and time consuming

effort [73]. Accurate a priori engineering models that can predict engine fuel

consumption as well as pollutant formation are invaluable during the R&D phase

of engine design, as these models can drastically reduce the need to build

multiple physical prototypes [18]. Engine modeling is an interdisciplinary field

combining aspects of CFD, computer science, multi-phase physics, turbulence

and chemical kinetics [83]. While this thesis is mainly concerned with the

development of chemical kinetic models for transportation fuels, chemical

kinetics processes are strongly coupled to in-cylinder fluid dynamics. Computer

software has been developed that has the capability to resolve detailed

in-cylinder fluid dynamics (e.g. KIVA, Fluent, Converge, OpenFoam) using

Reynolds-averaged Navier-Stokes (RANS), Large Eddy Simulation (LES)

approaches [84]. However, realistic simulations can be computationally

expensive, and when detailed chemistry is added, these simulations can quickly

become computationally intractable [85].

At a reduced-order level, simple combustion chemistry models can be ignition

delay correlations, where these can be used to characterize ignition timing ocer a

range of conditions for system simulations and engine control algorithms.

Ignition correlations are fit to experimental shock tube and RCM data or

detailed kinetic simulations using adjustable parameters for temperature,

pressure and oxygen concentration [86]. For the accurate prediction of ROHR

and in-cylinder pollutant formation additional correlations based on chemical

kinetics models for fuel decomposition and oxidation are required. Reduced,
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skeletal mechanisms can also be used to calculate ROHR [87], though much more

detailed mechanisms are required in order to track pollutant formation processes

that depend on numerous intermediate chemical species.

Chemical kinetic models for fuel decomposition and oxidation can be

extremely complex, consisting of hundreds of species and hundreds to thousands

of elementary reactions [17]. Typically, mechanisms are built in a hierarchical

fashion, where reaction pathways and associated rate constants for smaller

species are validated based on various experimental targets [88] and expanded to

construct mechanisms for larger species. Through advances in quantum

chemistry, determination of fundamental reaction mechanisms has the potential

to be partially automated [89].

Reaction rates are typically prescribed for the generic reaction, Eq. (1.1), by

applying the law of mass action, Eq. (1.2) [67].

N∑
i=1

ν ′iMi →
N∑
i=1

ν ′′iMi (1.1)

RR =
d[prod.]

dt
=

d[reac.]

dt
= k

N∏
i=1

[Mi]
ν′i (1.2)

Here M indicates the species, ν is the stoichiometric coefficient, the index i runs

over all N species, RR stands for reaction rate, k represents the reaction rate

constant and the bracket notation indicates the molar concentration of the

species inside. This equation stems from molecular collision theory, and

fundamental reactions takes on the usual meaning (e.g. isomerization, atomic

addition, β-scission, uni-molecular decomposition, radical recombination, etc.).

Reaction rate constants are usually borrowed from analogous reactions, and

tuned to experimental data or high-level electronic structure + transition state

calculations. These are generally expressed in modified Arrhenius format, given
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by Eq. (1.3).

k = AT bexp

(
− Ea
RT

)
(1.3)

Rate constants can vary greatly over a range of temperatures, pressures and

dilution levels, and it is important that rate coefficients are validated over a wide

range of conditions to maintain accuracy [67].

Reaction thermochemistry can be prescribed by several methods. High-level

computational chemistry simulations (e.g. [90]) or experimental determinations

of specific heat are typically the most accurate. Group theory (i.e. Benson’s

method [91]) can be used to estimate specific heats for most species, and this

process has been automated by the THERM software. Polynomial fits for

specific heat can also be obtained from the JANAF or NASA tables.

After validated formulations for chemical kinetics and thermochemistry are

obtained, successful predictions for ignition timing, ROHR, and depending on

the detail of the mechanism in-cylinder pollutant formations are possible.

Several experimental devices are well-suited to validate these mechanisms, a few

of these will be discussed in the following section.

Chemical Kinetic Mechanism Validation

While combustion chemistry has been investigated in motored engines, which

provide the most realistic environment for operating engines isolation of

fundamental chemical phenomena from the complex transport processes is

challenging [95]. Because of this, chemical kinetics mechanisms are generally

validated against a wide array of idealized experiments that have very

well-defined or eliminated fluid dynamics and heat transfer processes. A

discussion of a few popular techniques are available in ref. [96]. A limited sub-set
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Figure 1.5: Experimental devices used for developing combustion chemistry tar-
gets. (Top-left) The low-pressure, flat flame burner at Sandia National Laboratory.
(Top-right) The chemical kinetic shock tube at Stanford University. (Bottom-
left) A jet stirred reactor at Le Centre National de la Recherche Scientifique-
Orleans. (Bottom-right) The rapid compression machine at the National Univer-
sity of Ireland-Galway. Original photos from [83,92–94], respectively.

of these experiments are able to achieve engine-like temperatures, pressures,

oxidizer concentrations and equivalence ratios. Combustion chemistry models for

use in IC engine simulations are most frequently compared to data collected

from flow reactors, shock tubes, RCMs and more recently laminar flames

(e.g. [14–17]). Characteristic experimental setups for these devices are shown in

Figure 1.5. Each apparatus can access a different regime of temperature,

pressure and chemical reaction times, and data sets from some or all of these

experiments are required to fully validate a combustion mechanism.

Diverse data sets can be obtained from experimental chemistry apparatuses

where, for instance global metrics for reaction progress such as autoignition delay

time are sufficient validation targets (e.g. [52]). Autoignition time has been

defined in many ways, including the maximum rate of pressure rise and the peak
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concentration of *OH radicals [97], and can be measured experimentally by use

of high-speed pressure transducers or optical emission rigs, respectively.

Temporal profiles of intermediate species concentrations can be obtained by

laser-based diagnostics or physical gas sampling techniques for a more vigorous

validation of mechanisms. Provided that the experiment is optically accessible

molecular absorption, Rayleigh scattering, laser induced fluorescence (LIF) and

anti-Stokes Raman spectroscopy (CARS) have been used to measure

intermediate species concentrations [98]. For laser-based techniques to provide

adequate data, the photo-chemistry of the species to be measured must be

available. Typically data sets for just a few intermediates (e.g. NO*, OH*, CH*,

etc.) can be found in the literature [98]. Characterization of additional

important species is one area of active research. Gas sampling techniques

provide access to concentrations of stable intermediate species and some radicals,

where small gas samples are taken during the chemically reactive period for

off-line analysis. Off-line analysis can be achieved through the use of gas

chromatograph (GC) and mass spectrometry (MS) techniques, however sample

degradation due to further reaction or condensation while transportation to the

GC/MS can be challenging to suppress. The remainder of this section reviews

the typical experimental conditions and commonly obtained data sets for each of

the apparatuses designed to collect combustion chemistry validation targets.

Laminar Flames

Laboratory scale flames can acquire highly detailed species concentration

data [53]. Typically, for mechanism development and validation, flat pre-mixed

laminar flames are used to isolate the fuel chemistry from oxidizer mixing rates.

The experiment is conducted by supplying fuel + oxidizer + diluent to the

burner plate, where a chemical reaction is initiated. Species concentration data
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is collected at varying distances from the burner (corresponding to varying

reaction residence times), using laser-based or gas sampling diagnostics.

Low-pressure flames are used (40 Torr) to allow spatial resolution of the reacting

zone, where the flame thickness is inversely proportional to pressure [99].

Unfortunately, these pressures are much lower than typical IC engine pressures.

While the experimental pressures for laminar flames are lower than

encountered in IC engines, mechanistic insight into fuel combustion chemistry

can be obtained as detailed data can be collected from these experiments [100].

Modern flame experiments make use of the high fidelity molecular-beam gas

sampling method, where chemistry is effectively quenched during sampling.

After molecular-beam sampling at a desired burner distance, the gas is analyzed

by a high selectivity time of flight (TOF) MS [99]. Utilizing this method,

concentration data can be obtained for short lived radicals as well as resolved

selectivity between intermediate isomers. For successful TOF-MS analysis the

gas sample is photo-ionized by synchrotron radiation [53,99], though access to

necessary facilities such as the Advanced Light Source is currently limited along

with combustion relevant data sets.

Flow Reactors

Flow reactors (FRs) and jet stirred reactors (JSRs) are used to investigate low to

high temperature (500 – 1500K) gas-phase chemical reactions at pressures up to

15 bar [101,102]. Flow reactor experiments are conducted by first mixing fuel,

oxidizer and diluent streams upstream of the reaction vessel, although many flow

reactors mix the fuel and oxidizer within the reactor (e.g. the Princeton and

Drexel FRs). Diffusive mixing is achieved in FRs, while JSRs make use of

turbulent jets to mix the charge. The well-defined gas travels downstream into

an electrically heated reaction chamber, with a precisely controlled wall
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temperature. Typical mixture residence times in the heated reaction chamber

are between 0.1 to 10 seconds, making the device ill-suited for studying rapid

chemical phenomena such as an ignition process. Very dilute fuel mixtures are

utilized to minimize gas thermal and compositional stratification within the

reaction chamber, limiting the range in which validations targets may be

obtained. The well-defined gas is sampled as chemical reactions progress, and

analyzed by GC/MS systems to obtain species concentration data of stable

intermediates.

Shock Tubes

Shock tubes are laboratory devices which can be used to investigate high

temperature (1000K – 3000K) and rapidly occurring chemical reactions (0.03 –

5.0 ms) at pressures from sub-atmospheric to 50 bar [103–105]. The device

consists of a long metal cylinder with two gas volumes, the driver and driven

sections, that are partitioned by a thin diaphragm or rapidly actuating valve.

The apparatus is operated by storing high pressure driver gas behind the

diaphragm or valve, and loading a fuel charge in the partition downstream. To

initiate the experiment the diaphragm is burst or the valve is actuated, and the

driver gas rapidly expands into the driven section. As the driver gas expands a

traveling shock wave develops. The fuel charge is initially shock heated as the

wave travels through the driven section and further heated when a reflected

shock from the reaction chamber endwall arrives. The charge is rapidly heated

(∼ 10 µs) and the elevated gas temperature and pressure can be maintained for

up to ∼5 ms.

Most shock tubes are fitted with high speed pressure transducers to obtain

shock velocity and time history of the reacting gas. Autoignition data can be

inferred from the exothermic ignition. Some shock tubes also have optical access
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for the collection of laser-based intermediate speciation data [106]. In addition,

sampling techniques can also be used to collect off-line species concentration

data by use of GC/MS systems [107].

Recently an aerosol shock tube was developed to extend experiments to

involatile fuels [38]. In this setup a fuel aerosol in a oxidizer + diluent bath gas

is loaded into the machine instead of a conventional gas-phase mixture. The fuel

aerosol is fragmented and heated at the arrival of the initial shock, and the liquid

is fully vaporized and diffusively mixed before the arrival of the reflected shock.

A gas-phase test then proceeds after the arrival of the reflected shock.

Rapid Compression Machines

Rapid compression machines are laboratory devices used to investigate

intermediate temperature (650 - 1100 K), high pressure (up to 90 bar) chemistry,

at time scales of up to 150 ms. Rapid compression machines are well-suited to

investigate fuel decomposition and oxidation chemistry at engine relevant

conditions. Within this device, a traveling piston is used to volumetrically

compress a gas mixture to a high temperature and pressure where decomposition

and oxidation chemistry can be investigated. Most machines make use of a single

piston [39,108–110], while some use two opposed pistons such as the NUIG RCM

shown in Figure 1.5. Most machines utilize a high pressure pneumatic system to

drive the piston and a hydraulic system to actuate piston motion and control the

piston trajectory. By this method, rapid compression times (∼20 - 80 ms) are

realizable. The hydraulic system can be used to “lock” the piston when

maximum compression is reached, achieving a constant volume during the

chemically active period (some machines use a more novel approach for piston

actuation and attenuation [111,112]).

Modern RCMs utilize creviced piston geometries to suppress in-cylinder fluid
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dynamics during the experiment. While the use of these pistons has improved

charge homogeneity, characterizing heat loss from enthalpic flows to the crevice

and conductive transport to the reaction chamber walls remains challenging.

Heat loss models are used to account for these losses while comparing

simulations of chemical kinetics. These models are typically 0D variable volume

homogeneous reactor models (HRMs), where the volume of the reaction chamber

can be expanded to emulate machine heat loss (or compressed to emulate

chemical heat release effects [113]). The rate of volume change to the HRM can

be prescribed using experimentally derived corrections [109] or by use of a

physics-based model for heat loss [36].

Rapid compression machines are fitted with pressure transducers, and a single

pressure trace is the common data set obtained from the experiment. From this

data fuel autoignition delay times can be inferred. Some machines are fitted with

optical access to make laser-based diagnostics available [114]. A few facilities

also make use of gas sampling modules for off-line analysis by GC/MS [114].

As with shock tubes, recent efforts to extend RCM experiments to involatile

fuels by the use of an aerosol fuel charge have been made [39,115]. In this wet

compression approach, a fuel aerosol is loaded into the machine and

volumetrically compression heated. In a well-designed experiment complete fuel

vaporization and mixing could be achieved by maximum compression. This

process is more challenging than in shock tube experiments though, as the

physics of the vaporization process is different. In shock tube experiments the

traveling shock wave fragments fuel droplets and accelerates vaporization and

mixing times [38]. Droplet fragmentation does not occur in RCM experiments,

and much smaller droplet sizes are therefore required to achieve sufficiently short

vaporization time [116,117]. In-cylinder compositional stratification may be

problematic for these experiments as varying rates of evaporation and

condensation occur in the thermal boundary layer near the cool reaction

chamber surfaces. The gas-phase stratification may also be intensified as these
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compositional gradients can drive gas-phase fuel diffusion to the unvaporized

regions near the reaction chamber walls. Increased thermal stratification within

the reaction chamber may result as varying rates of vaporization and fuel

condensation near the reaction chamber walls exist. To this point there has been

no effort to investigate the effects of device-scale multi-phase physics during

RCM experiments.

Heated, pre-vaporized experiments using heavy fuels can also suffer from

phase-change phenomena during the test period as the high pressure can cause

some of the heaviest components to condense near or on the internal RCM

surfaces. This can lead to difficulties interpolating the experimental result, as

the thermodynamic state is altered. These phenomena are investigated in this

work where a physics-based, reduced order model is developed. The modeling

framework has already been demonstrated for gas phase experiments [36,113], so

that effects of crevice flows, heat loss and thermal stratification within the

reaction chamber can be adequately simulated. Here, compositional stratification

due to phase change is studied. The framework is computationally efficient so

that it can be coupled with an HRM where the chemical kinetics of the fuel +

oxidizer + diluent mixture can be simulated. Where insight can be derived

regarding the design of aRCMs.

Thesis Outline

The investigation of multi-phase effects during RCM experiments is undertaken

here using a computational approach. A multi-phase multi-zone model

(MP-MZM) is developed and applied to typical conditions utilized in RCM

experiments with a focus on heavy fuel components. The outline of this

manuscript is as follows. First, review of current and future RCMs is presented

in the next chapter. Chapter 3 then provides the details of the formulation used
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in the new MP-MZM model. Chapter 4 covers the validation of the model and

various sub-models utilized by comparison against detailed simulation results,

after which results investigating phase-change effects that might occurduring

aerosol-fueled experiments are presented. While the new model has the capability

of prescribing departures from ideal, adiabatic conditions for simulations of the

chemical kinetics that occur during the experiment, this is not demonstrated in

the current work. The manuscript concludes with a summary of the work, and

findings from the study. A discussion of future work is also provided.
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Chapter 2

Rapid Compression Machines

Introduction

The design of historical, modern and future RCMs are the focus of this chapter.

More specifically this work is concerned with the ∼24 machines, worldwide,

tailored for setting chemical kinetic validation targets. A complete “lock and

key” RCM can be purchased from Marine Technology [118], however most of the

RCMs in operation have been customly developed and built by universities as

well as government and corporate research labs. Figure 2.1 shows the affiliations

of machines currently in operation. The material presented in this manuscript is

meant to be sufficiently generalized to be applicable accross all of the

experimental platforms in existance. Thus, this chapter acts as an overeview to

discuss the caveats between facilities in order to highlight the generality of the

new MP-MZM.

Within the last two decades RCMs have become more prevalent for the

acquisition of transportation-relevant, fuel chemical kinetic validation targets.

This is depicted by Figure 2.2, which illustrates the amount of literature recently

published on RCM-related data, modeling and experimental methods. Since

1995 several new machines have been constructed along with new experimental

methods which extend the capabilities of current devices (e.g. optical access, gas

sampling modules, improved piston crevice designs and aerosol fuel loading).

Within the last 10 years there has been a large increase in the amount of

experimental data collected from RCMs in addition to the amount of chemical

kinetics mechanisms that are validated based on RCM data for validation. A

signigicant amount of research has also been conducted to fundamentally
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Figure 2.1: The affiliations of the world’s RCMs tailored for chemical kinetics
studies. Image reproduced from [119].

understand the physics of RCM experiments, so that a more adequate

comparison of collected data and combustion chemistry models can be made.

This chapter begins with a historical review of RCMs. Where some of the

early challenges associated with RCM experiments, while the importance of some

key RCM design features common in modern machine designs are identified.

Although some of these challenges have been addressed over the years,

opportunities to improve data fidelity and expand machine capabilities are still

present. The following section reviews the design of a few modern RCMs, where

the unique solutions to experimental challenges of each facility are presented.

Approaches utilized to account for non-ideal conditions in RCM experiments are

then discussed. The chapter ends with a discussion of some design features that

future RCMs may include.
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Figure 2.2: RCM related publications since 1995 surveyed from Combustion and
Flame, SAE, Energy and Fuels, Fuel, Proceedings of the Combustion Institute,
The International Journal of Chemical Kinetics and The Journal of Chemical
Kinetics A, which include [8–17,19–37,39,51,52,86,97,112–117,120–256].

Historical Machine Designes

The idea of investigating fuel chemistry in an RCM has existed for about 100

years. Early devices which were crude by todays standards, were used to

investigate temperature and pressure dependence on fuel autoignition.

Experimental setups utilized of piston-cylinder geometries that were driven by

falling weights and pulleys.

Figure 2.3: A photograph of the fourth RCM built by Falk. Image reproduced
from [257].
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The first RCM was constructed by Falk at Columbia University in 1906 [258],

a photo of which is shown in Figure 2.3. This device was driven by a falling

weight so that it achieved a reported “instantaneous compression.” No additional

mechanisms were used to keep the piston seated at maximum compression. The

reaction chamber therefore did not maintain constant volume at the end of the

compression stroke. A flat piston was used with hemp seals and Lanoline

lubricant. Falk was able to characterize the autoignition temperature of the

H2/O2 [258] system as well as other gas mixtures [257] with his RCM.

In 1914 Dixon et al. built the first optically accessible RCM [259]. This RCM

consisted of a steel piston and a glass cylinder. The piston was driven by a

swinging pendulum, allowing the machine to have an adjustable stroke. With

this machine Dixon was able to capture flame images, and even estimate flame

speeds. Dixon suggested that the ignition process was not as instantaneous as

Falk had first proposed. Dixon subsequently built a machine similar to Falk’s,

but with an improved design, and with this updated Falk’s H2/O2 results [260].

A few years later an RCM was built by Tizard and Pye that was capable of

measuring the ignition delay time for IC engine relevant fuels [261]. The machine

used a novel setup for driving the piston and locking it at maximum

compression. The piston was driven by a fly wheel with a crank arm and

connecting rod, similar to that of a motored engine. The connecting rod and

crank arm could be engaged by use of a clutch. A two-piece connecting rod was

used, and the connection would become rigid at top center, locking the piston in

place. In-cylinder pressure was recorded using a pressure indicator, and from this

time history plots of cylinder pressure could be obtained. Tizard noticed from his

pressure traces that heat loss from the test gas had a significant impact on the

thermodynamic state before ignition, and that RCM experiments are generally

not adiabatic. He attributed this to fluid motion and heat loss to the cylinder

walls, and even developed a crude model to account for the in-cylinder heat loss.

Even from these early experiments non-ideal conditions that effect RCM
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experiments could be observed where these can be challenging in order to

overcome to collect autoignition data. Since these early experiments, advances in

electronic control systems have helped to control piston trajectories, achieve

faster compression times and ensure a constant reaction chamber volume after

maximum compression. Advances in laser-based diagnostics (e.g. PLIF and

Rayleigh scattering) and CFD have been used to characterize and understand

the in-cylinder dynamics, including stratification and fluid motion. From these

results updated piston geometries can be used to suppress convective motion

inside the reaction chamber, and drastically reduce the amount of thermal

stratification previously observed. A review of the novel approaches modern

machines utilize to overcome these experimental challenges is presented below.

Modern Rapid Compression Machines

A review of modern RCM design is presented here, where descriptions are

provided for the machines located at the University of Connecticut (UConn) [10],

the National University of Ireland-Galway (NUIG) [262], the University of

Lille-Science and Technology (Lille) [111], the University of Michigan

(UM) [112], Argonne National Laboratory (ANL) [184] and the Massachusetts

Institute of Technology (MIT) including the one built by Park and Keck [110]

and the other built by Tanaka et al. [148]. This review is limited to these RCMs

as they have used as the basis for many most of the others that exist worldwide.

For instance, the opposed-piston RCM originally built by Shell in the

1960’s [262] and modernized [254] by NUIG served as a model for the machine at

the University of Leeds [108], and more recently at Colorado State University

and King Abdullah University of Science and Technology [118]. The RCM

originally built at Case Western Reserve University (CWR) [109] motivated the



28

designs for the machines at UConn, the University of Akron [263] and Michigan

State University (MSU) [39]. The machine developed at ANL was originally

designed as a opposed-piston clone of the Park and Keck MIT RCM, however

major modifications to the machine have recently implemented [264].

Figure 2.4: Schematic of a generic pnuematically RCM, which closely resembles
the machine at the University of Connecticut.

Table 2 lists the primary design features and operational regimes typically

utilized for these select machines. In this Table Pmax corresponds to the highest

reported compressed gas pressures, CR are the machine compression ratios, τcomp

are compression times, the crevice ratio is defined as the ratio of the piston

crevice volume to the total RCM volume, and the surface area to volume ratio of

the reaction chamber is evaluated at compressed conditions.

Figure 2.4 presents a schematic illustrating the main components of a generic

RCM that utilizes a hydraulic system for piston activation and piston control.

Most machines employ a pneumatic driver section which is used to accelerate the

piston and compress the reacting gas mixture. A secondary mechanism, such as

a hydraulic reservoir and piston, are used to actuate the experiment and control

the piston trajectory. Aloso depicted in this Figure is the reaction chamber

where chemical reactions can be investigated.
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Piston Trajectory Control and Seating

Many RCMs utilize a hydraulic system for experiment actuation, and piston

trajectory control, though the machines UM and Lille, which will be discussed at

the end of this subsection do not. For a graphical description of this

methodology and configuration the reader is referred to Figure 2.4. In this

design a high-pressure gas (∼20 bar) is stored behind a large diameter (i.e. 15 -

20 cm) driver piston, connected to hydraulic and creviced pistons via a

connecting rod. A large diameter for the pnuematic piston is utilized to

maximize the driving force exerted on the creviced, reaction chamber piston.

The hydraulic piston, which is located midway along the shaft, resides in a

reservoir filled with high-pressure hydraulic oil. When fully retracted, the

pressurized hydraulic system keeps the piston seated at maximum volume ro the

reaction chamber, sometimes refered to as Bottom Dead Center (BDC), during

pressurization of the pneumatic driver and before an experiment is started. To

actuate piston motion, high-pressure hydraulic oil is vented from the reservoir,

while the initial piston trajectory is partially controlled by the geometry of the

venting ports (sue to the rate at which fluid leaves the reservoir). Another factor

controlling the piston trajectory is the geometry of the hydraulic piston and

chamber, where fluid dynamic drag and thus the rate at which the piston travels

through reservoir can be changed by varying the geometry. For instance, some

RCMs utilize a hydraulic piston that is chamfered on the back-end to reduce the

amount of fluid drag (e.g. [39]). Others use a larger gap betwtween the piston

and the bore of the hydraulic chamber. In particular, the NUIG hydraulic

chamber is designed with a converging throat to control piston speed.

An efficient mechanism for piston arrest is also key in RCM designs. The

majority of charge temperature and pressure rise occurs with in the last 10% of

compression, and a very rapid rise in temperature is desired in later stages of the

stroke since the mixture will be very reactive under these conditions. Rapid
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compression during the end of the stroke is achieved by a sharp deceleration of

the piston; if this is not achieved the gas experiences a high residence time at

elevated, but sub-compressed temperatures. If this occurs, fuel decomposition

and oxidation chemistry can begin at pre-compressed conditions, making

experimenta conditions challenging to characterize succinctly.

Rapid piston deceleration is achieved in many designs by a ring on the

hydraulic piston which fits into a groove in the hydraulic chamber wall where the

clearance is very small (e.g. 0.4 mm). Near the end of compression the hydraulic

ring enters this groove, pressurizing the hydraulic oil in the groove. The clearance

between the ring and groove is small so that the pressure-driven flow exiting the

groove is small, thereby slowing the piston until it eventually comes to rest as

the hydraulic piston fully seats. If the piston is not sufficiently decelerated as the

ring fully seats into the groove, piston “bounce” or recoil can occur resulting in a

reaction chamber volume expansion at maximum compression. Additionally,

piston creep can also be problematic if the configuration is not optimized.

Currently, little work has been undertaken to fully understand the hydraulic

mechanisms for piston speed control and deceleration and therby optimize the

hydraulic design. Typically, an iterative approach is used to adjust the clearance

between the hydraulic piston ring and groove after the RCM has been built.

The UM and Lille RCMs do not use hydraulic systems for piston control.

The Lille RCM utilizes a pneumatically driven sliding cam mechanism to

actuate, control and arrest the reaction chamber piston. In this design a

mechanical cam and connecting rod guide the piston stroke, and mechanically

lock the piston position at maximum compression. The UM machine uses a

pneumatically driven sabot which is much more compact, and relies on an

interference fit between the sabot and reaction chamber walls to rapidly arrest

the sabot and seal the reacion chamber. Very rapid deceleration rates are

achieved, though substantial mechanical vibration can result. With this

approach the sabot is plastically deformed during it’s arrestment, and a new



32

sabot must be frequently used due to degradation. The use of the novel sabot

geometry, which different from other reaction chamber piston designs, also

ensures charge homogeneity by reducing in-cylinder fluid motion.

Suppression of Fluid Dynamics

A torroidal “roll-up” or “corner” vortex is generally generated during the

compression process in piston-cylinder devices [39]. The physics of the vorticular

structure and it’s formation have been well-characterized by experimental [109]

and computational investigations [251,252,254,255]. This formation is undesired

in RCM experiments, since the advective motion transports cooler gasses near

the reaction chamber walls into the hotter, i.e. charge core gasses. The

entrainment of cool into the reaction chamber core gasses causes thermal

stratification within the charge, and the desired well-defined experimental

reaction temperature is degraded.

In RCM a crevice piston is typically utilized to suppress the formation of a

roll-up vortex during compression. Creviced pistons are typically constructed

with a machined tapered gap and opened volume around the circumference of

the piston. During compression the tapered gap “swallows” the boundary layer

gasses near the reaction chamber walls where vorticular structes are fomred.

During these experiments the boundary layer gasses are trapped inside the

piston crevice region and do not emerge after compression. Detailed CFD

simulations have confirmed that the mass flow process from the reaction

chamber, through the tapered gap and to the crevice is driven by a small, but

finite, pressure differential between the reaction chamber and crevice [36]. The

use of these pistons can drastically suppress the roll-up vortex formation, and

charge homogeneity is greatly improved. Enthalpic losses, however, from the
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reaction chamber to the piston walls can be large and must be taken into

account in order to properly define the reaction temperature when evaluating the

experiments, as well as chemical kinetics simulations.

Figure 2.5: A few creviced piston designs used in RCMs. In these schematics the
pistons have been normalized to a 50.8 mm bore to highlight differences in the
crevice geometry.

Significant work has been undertaken in order to optimize crevice geometries

for various RCM facilities [251,252,254,255]. This has resulted in the use

different gap and crevice geometries. Representitive geometries are shown in

Figure 2.5; most RCMs make use of one of these. The sabot utilized by the UM

RCM is not discussed here, however this arrangement could be considered (and

modeled) within the computational framework described for this thesis. The

UConn geometry utilizes a long and narrow crevice volume. The NUIG piston

has a much shorter and radially larger crevice geometry. The MIT crevice

geometry is much smaller than the other configurations.
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Boundary Layer Growth

If a creviced piston is properly utilized in an RCM convective heat losses are

suppressed in the reaction chamber, and charge homogeneity is drastically

improved. Heat loss from the reaction chamber gasses to the cooler walls is still

problematic. Since in modern RCMs fluid dynamics are suppressed, the main

mechanism of heat transfer is conduction. Typically, compression times are

sufficiently short so that thermal stratification in the reaction chamber gases can

be minimal. However, the thermal boundary layer grows as the experiment

proceeds, and can have a detrimental affect on the homogeneity of the test

charge. The propagation of the boundary layer into the reaction chamber gasses

is even more problematic for experiments using fuels that exhibit negative

temperature coefficient (NTC) behavior. In this situation the gas in the thermal

boundary layer can be more reactive than the core gasses, where the accelerated

chemical pressure rise observed in the thermal boundary layer compresses the

core gases and can lead to pressure stratified convective motion and even knock

in some conditions. The bootstrapping effect characteristic of NTC experiments

drives an increased amount of reaction chamber mass to the crevice, and this can

be difficult to take into account.

The rate and extent of heat conduction from the reaction chamber gas to the

RCM surfaces is controlled by thermophysical properties of the test charge as

well as the machine geometry. The thermal diffusivity of the gas (α = k/ρcp) is

the primary parameter. Since the properties of the charge varies from shot to

shot, compressed reaction chamber geometries are used here to compare a

machines propensity to be affected by thermal stratification due to heat

conduction to the machine surfaces. The geometric parameter of interest is the

compressed surface area to volume ratio (SAV) of the reaction chamber.

Machines with a higher SAV will tend to transfer heat to the walls faster than a

machine with low SAV. Values for SAV are provided in Table 2.
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Heat Loss Modeling

Although modern RCM experiments can provide an engine relevant environment

suitable for chemical kinetic experiments, prescribing a well-defined reaction

chamber test condition can still be challenging. Determining the temperature of

the reacting gas is critical to the proper interpretation of these experiments, as

chemical kinetic rates display an exponential dependence on temperature.

Unfortunately, RCMs are not typically equipped with temperature measurement

systems that have response times rapid enough to provide resolved

measurements during the transient experiment. Rayleigh scattering techniques

have been used for some investigations [109], though these suffer from

quantitative inaccuracies. A new method has been demonstrated, which employs

quantum cascade lasers to perform absorption measurements, where gas

temperatures are inferred from line broadening data [139,265]. However, these

experiments can be complex to implement and characterize. Because of this,

in-cylinder temperatures are typically inferred from experimental pressure traces.

The most rigorous comparisons of chemical kinetic models can be achieved

through detailed CFD simulations [249]. These simulations are computationally

expensive and especially intractable when reacting flows are considered with

kinetic mechanisms that realistically represent real fuels. As such, RCM

experiments are generally modeled using a single, 0D volume where detailed

chemical kinetics are simulated (i.e. a homogeneous reactor model (HRM)).

Since fluid motion during the experiment can be suppressed using properly

designed piston crevices, an HRM can provide reasonably adequate detail to

compare developed ignition mechanisms to experimental data [266]. Chemical

reactions in the cooler crevice gasses are typically inhibited due to high

convective velocities which cause low temperatures in this region. Conductive

and enthalpic losses from the reaction chamber to the walls and the crevice

region, respectively, are emulated in the HRM by an isentropic expansion.
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However, thermal stratification due to heat diffusion from the hot reaction

chamber gasses to the cooler RCM surfaces is not adequately captured by an

HRM framework. Fortunately, in most cases the volume of gases in the thermal

boundary layer is small compared to the total reaction chamber, and non-NTC

chemistry is inhibited in the cooler gas. The effects of thermal boundary layer

growth, and pressure reduction due to convection within the crevice still need to

be taken into account however.

While HRMs provide a computationally efficient means to model the

chemistry of RCM experiments, however adequately accounting for the effects of

heat loss is a non-trivial process. A detailed discussion of some methods that

have been previously used is presented next.

Experimental Approaches

The “adiabatic core” model has been widely used to model the RCM reaction

chamber. In this formulation the core gases are modeled as a homogeneous

reacting mixture, and heat loss to the thermal boundary layer and crevice region

may be accounted for.

For RCM experiments ignition delay times are customarily reported in

Arrhenius type format as a function of compressed gas temperature. The

compressed charge temperature can be prescribed by an isentropic compression

relation (i.e. Eq. (2.1)) assuming the adiabatic core hypothesis is valid, and also

that the time scale of compression is faster than that of the chemical kinetics.

ln

(
Pc
P0

)
=

∫ Tc

T0

1

T

γ

γ − 1
dT (2.1)

In Eq. (2.1) γ is the ratio of charge specific heats, P0 & Pc are the initial and

compressed pressure, respectively, and T0 & Tc are the initial and compressed
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temperature. Compressed temperature can be numerically determined from

Eq. (2.1), where the initial conditions are experimentally measured along with

compressed pressure. The measured compressed pressure takes into account

adiabatic core heat losses to the creviced pistons as well as to the reaction

chamber surface, and a close approximation to the core gas temperature is

obtained.

A similar approach is implemented to prescribe an effective reaction chamber

volume history to the HRM. To obtain an HRM volume profile a non-reactive

charge with matched thermophysical and transport properties is experimentally

compressed at the same conditions as a reactive charge. The non-reactive

pressure trace is used to find the effective volume history of the HRM that

accounts for piston compression, enthalpic and conductive reaction chamber

losses via Eq. (2.2).

VHRM(t) = VHRM,c

(
Pc
P (t)

) 1
γ

(2.2)

Discrete HRM volume history data are then tabulated and used as input to the

HRM solver. Less precise methods have been used to prescribe the HRM volume

history, where the chemically active period is discritized into two or three

sections where constant expansion rates are utilized [266].

Some inconsistencies occur in the adaibatic core formualtions when compared

to experimental or simulated fluid dynamics models, this is mainly attributed to

the assumption that the boundary layer and crevice gases instantaneously reach

thermal equilibrium with the reaction chamber surfaces. Regardless the above

formulation has been extremely useful for determining heat loss for experiments

with volatile fuels, while improvements are needed to sufficiently characterize a

broad range of experiments. For instance, reaction chamber heat losses for fuels

that exhibit multi-stage ignition phenomena (i.e. cool flame behavior) cannot be

adequately accounted for by this method. The chemical heat release and
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pressure rise of the first-stage ignition accelerates the rate of enthalpic and

conductive heat losses, also bootstrapping effects in the thermal boundary layer

are neglected. For these fuels the heat loss during the delay between the

low-temperature heat release and main ignition event cannot be characterized by

a non-reactive pressure trace. This method is also degraded for low-volatility

fuels, where fuel condensation may occur in the thermal boundary layer during

the chemical delay period. While condensive heating effects will be included in

the measured pressure trace, gas-phase compositional stratification in the

reaction chamber will occur. The lean gas-phase conditions at the wall will drive

species diffusion from the core gasses to the thermal boundary layer where

condensation will occur. Improved experimentally based modeling and data sets

would need to be obtained to adequately prescribe a varying composition to the

HRM.

Physics-based Models

In the past Newtonian cooling formulations (i.e. Eq. (2.3)) have been formulated

to prescribe heat transfer rates to the HRM as opposed to volumetric expansion

rates. This is easily implemented in most chemical kinetics codes (e.g. Chemkin,

Cantera, etc.) by specifying only a heat transfer coefficient.

d

dt
[UHRM ] = hconvAs(Twall − THRM) (2.3)

Scaling arguments have been used to obtain an effective convection coefficient,

and have been shown to provide very poor agreement with high-order

simulations or the reaction chamber. Newtonian cooling formulations have

shown to consistently predict accelerated rates of temperature decay in the

reaction chamber, and have widely been abandoned in favor of the experimental
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technique described above.

Figure 2.6: Schematic of the multi-zone modeling approach.

More recently a computationally-efficient multi-zone model (MZM) has been

adopted to RCMs [36,113]. In this approach a physics-based subroutine is

integrated into an HRM code to prescribe the effective volumetric

expansion/compression rates which emulate adiabatic core heat transfer. This

reduced-order approach discritizes the RCM into several zones, or control

volumes, where conservation of mass, momentum and energy are applied to

calculate rates of heat loss from the adiabatic core. The effective HRM

expansion is then prescribed via Eq. (2.4), where the terms on the right-hand

side (RHS) of the equation are calculated in the MZM reaction chamber.

(
dV

dt

)
HRM

= −V
γ

[
1

P

dP

dt
− 1

N

dN

dt
+

1

cpT

1

N

Nsp∑
j=1

uj
dnj
dt

]
(2.4)

This equation is derived from the MZM adiabatic core energy equation and ideal

gas equation of state (EOS). Although this expression adds complexity over the

widely used isentropic expansion equation, thermochemistry effects can be more
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accurately captured by this expression.

One advantage to this approach is that the effects of chemical exothermicity

on charge heat transfer can be accounted for, by sending rates of chemical heat

release to the MZM. This is especially important for fuels that experience cool

flame type behavior (e.g. n-alkanes). A graphical description of this modeling

approach is shown in Figure 2.6. Also inputs to the MZM are only a function of

machine geometry and do not vary from shot to shot, eliminating the need to

conduct non-reactive experiments.

The Goldsborough et al. model [36,113] is currently able to account for

boundary layer growth in the reaction chamber, mass transfer to the piston

crevice, piston seal blowby and chemical heat release effects. The work presented

in this manuscript extends the capabilities of this model, and will be discussed

further in the following chapter.

Involatile Fuel Experiments

As was discussed in chapter 1, many transportation fuels typically used in IC

engines exhibit a low-vapor pressure. Investigating the gas-phase ignition

chemistry of these types of fuels in an RCM can be challenging. Conventional

RCM experiments with liquid fuels have been conducted by pre-heating the

charge and rapid compression machine, however pre-heating can primarily access

dilute and low-pressure experimental condition, e.g. X%O2 and X bar,

respectively. A fuel loaded as a dense, finely atomized aerosol has been suggested

to extend the limits of these experiments [115]. This novel wet compression

technique, however, requires more advanced models for RCM experiments to

compare combustion chemistry mechanisms, so that the two-phase processes can

be properly taken into account. This section describes in more detail how these
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experiments are conducted, and the requirements of a model that can be used to

adequately compare data to chemical kinetics mechanisms.

Charge Pre-heating

Pre-heating the fuel charge and RCM reaction chamber have effectively been

used to investigate liquid fuels with relatively low boiling points such as gasolines

and gasoline surrogates. Pre-heating can be achieved in an external mixing

chamber, where a diluent is first loaded into the mixing chamber and liquid fuel

is metered in with a syringe. The fuel + diluent mixture is allowed to reach

phase equilibrium and is either magnetically or diffusively mixed. Before the

test, the oxidizer is added and then the mixture is sent through heated plumbing

into the heated RCM reaction chamber, where the experiment is conducted.

Methods where the charge is directly vaporized and mixed in the RCM reaction

chamber have also been employed, but there is generally higher uncertainty for

these experiments.

Typically, the charge and RCM reaction chamber are only heated to ∼100 C

due to issues associated with pretest fuel decomposition and mechanical seal

degradation of the machine at higher temperatures. For gasoline relevant fuels a

broad range of experimental pressures and equivalence ratios can be reached, e.g.

x,y, respectively. For jet fuel, diesel and biodiesels only very dilute, low-pressure

cases can be achieved, which are far from the conditions characteristic of

operating IC engines. To extend the limitations of these experiments wet

compression experiments have been suggested.
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Wet Compression

In the wet compression method, fuel is directly loaded into the machine as

suspended liquid droplets, so that pre-vaporized conditions are no longer needed.

This approach can extend RCM experiments to liquid as well as gelled or solid

fuels, granted that a sufficient amount of pre-test atomization can ensure rapid

rates of vaporization. A schematic for wet compression experiments is shown in

Figure 2.7, and is described below. It should be noted that the physics during

the delay period are similar for both pre-heated and wet compression

experiments, where phase change (i.e. condensation) can occur near the walls of

the reaction chamber.

Figure 2.7: A mechanistic schematic of the wet compression process in RCM
experiments.
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Experiments are conducted by first loading the machine with a finely

atomized (i.e. D=4 - 8 µm) fuel aerosol suspended in an oxidizer + diluent bath

gas. Several methods are available to achieve such a fine fuel atomization and

load the aerosol into the RCM. After the homogeneous, dense aerosol is loaded

into the machine piston, the motion is actuated.

As the gas-phase is volumetrically compressed by the piston heat is

transferred to the liquid droplets and vaporization ensues. Small droplets, with a

high SAV, are ideal for rapid heat transfer, vaporization and diffusive oxidizer

mixing rates. Previous computational studies have been conducted to investigate

the physics of this process [116,117], though little to no experimental data is

currently available.

In a well-designed experiment the fuel is completely vaporized and well-mixed

via rapid fuel diffusion by the end of compression, so that gas-phase chemical

kinetics can be investigated. During the chemically active delay period

phase-change effects are hypothesized to affect the thermal, phase and

compositional stratification within the reaction chamber. As the thermal

boundary layer propagates into the adiabatic core gases fuel condensation may

occur near the wall. Preferential boiling/condensation in multi-component fuel

surrogates could cause compositional stratification in both the gas and liquid

phases across the reaction chamber as well as locally. The gas phase

compositional gradient may enhance the stratification by driving a diffusive fuel

flux to the cool walls of the reaction chamber.

The main goal of the current study is to assess the non-ideal, two-phase

effects in the reaction chamber described above for a typical fuel surrogates over

a range of conditions. This is achieved by extending the RCM MZM developed

by Goldsborough et al. to include the effects of multi-phase physics. This will

aide with machine and experimental design, as well as give insight into the
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physical limitations of these experiments. This reduced-order modeling approach

is adopted to be computationally efficient so that the new model could also be

used to pass volumetric expansion rates to an adiabatic core HRM for the

comparison of chemical kinetics mechanisms to RCM wet compression

experimental data. The details of the model formulation are the subject of the

next chapter.
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Chapter 3

Phase-Change Modeling

Modeling Approach

The formulation for the new multi-phase, multi-zone model (MP-MZM) has been

developed by extending the reduced-order RCM model of Goldsborough et

al. [36] to include phase-change and compositional stratification effects.

As can be seenin Figure 3.1 the model splits the RCM into three

computational zones; the reaction chamber, a crevice volume and a tapered gap.

The reaction chamber is further discretized into a one-dimensional mesh, where

the species continuity and energy equation are solved at each volume element for

both the gas and liquid phases. The 1D mesh ensures that the surface area to

volume ratio of the reaction chamber is maintained throughout the piston

compression and ensuing delay period. The effects of piston motion are modeled

as a mesh compression process, where an arbitrary piston trajectory may be

prescribed. Since convective velocities are assumed to be minimized in the

reaction chamber by the use of creviced pistons, energy and species transport are

modeled across the mesh via a diffusion limited process.

Flow to the piston crevice is determined by assuming pressure equilibrium

accross the three zones and solving the transient species and energy equation in

the tapered gap. In this region fluid velocities are high, so that convective heat

and species transfer along the piston circumference and cylinder wall are

modeled using scaling arguments for developing, turbulent flow. The transient

species, momentum and energy equations are then solved in the piston crevice.

Here Nusseslt correlations along with Reynolds and Sherwood analogies are used

to model convective heat transfer, fluid shear and species tranpsort to the walls.
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Figure 3.1: A graphical representation of the MP-MZM communication with an
HRM used to simulate detailed chemical kinetics.

Dispersed liquid-gas interactions are not taken into acount in the gap and crevice

regions, where work is ongoing to take these effects into account. An additional

computational zone is included in the single-phase MZM behind the piston seals

(i.e. downstream of the crevice) to account for gas blowby, which has been found

to be important for accurate comparisons between MZM simulation results and

experimental pressure traces. However for this study blowby modeling has been

neglected, as the MP-MZM is not compared to experimental data sets.

The MZM modeling approach was recently validated against spatially

resolved CFD simulations as well as experimental pressure traces for gas-phase

experiments, where good agreement was observed for both reacting and

non-reacting conditions under single-stage as well as multi-stage conditions. Here

the focus is on incorporating phase-change and associated effects, e.g. species

diffusion transport, in order to inestigate phenomena that may occur with

experiments utilizing heavy, involatile fuels.

For this work, attention is focused on utilizing a formulation that has the
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capability to simulate large chemical kinetic mechanisms, as opposed to resolving

the complex multi-phase physics, e.g. droplet migration and induced fluid

dynamics. For instance, computationally-efficient scaling arguments for

convective heat transfer and fluid shear have been applied in the piston gap and

crevice regions to retain tractability over Navier-Stokes approaches utilizing

turbulence models (e.g. RANS and LES). Also, closed form solutions for droplet

vaporization and condensation have been used to retain numerical stability

within the code as well as reduce simulation times. Errors associated with

resolving the fluid dynamics and phase-change physics by the use of these

reduced-order approximations is expected to be modest; this assement will be

explored further in the following chapter. The utility of this model however, is

assesed by the ability to predict a well-defined experimental gas temperature and

compoisition that may be passed to a chemical kinetics solver in addition to

providing confidence in the adiabatic core modeling approach by modeling the

extent of RC stratification. The tuning of the rate expressions used by the

reduced-order sub-models presents an opportunity for future work as more

experimental data sets and high-level simulation results become available for

involatile fuel/aerosol RCM experiments.

The remainder of this chapter explores the mathematical formalism of the

new MP-MZM, where a section is devoted to each computational zone. First the

multi-phase RC model is discussed, which is then followed by a description of the

piston gap and crevice sub-models.
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Reaction Chamber

Governing Equations

In the new MZM the reaction chamber is modeled as a fully transient, two-phase

mixture of liquids and gases. The species continuity , momentum and energy

equations Eqs. (3.1-3.3) are written below for the gas mixture in the RC. The

gas mixture continuity can also be trivially obtained by summing Eq. (3.1) over

all species in the mixture. The governing equations for the RC liquid phase are

introduced later in this chaper.

∂

∂t
[ρj] = −(∇ · ρj~v)− (∇ · ~Jj) + ṅPC,jN

′′
d (3.1)

∂

∂t
[ρv] = −XXXXX(∇ · ρ~v~v)−H

HHH(∇P )−XXXX(∇ : τ ) ≈ 0 (3.2)

Nsp∑
j=1

∂

∂t
[ρu]j = −

Nsp∑
j=1

(∇ · ρjhj~v)− (∇ · ~q)−
Nsp∑
j=1

(∇ · hj ~Jj) + Q̇′′rxn

+ Ẇ ′′
pist − Q̇PCN

′′
d

(3.3)

Thermal, compositional and phase stratification are modeled symmetrically

across the reaction chamber (from the adiabatic core gases to the reaction

chamber surfaces) in a single dimension,i.e., effective radial direction. Heat

diffusion through the RC gas is allowed as thermal gradients develop from the

hot adiabatic core gases to the cooler reaction chamber walls, while convective

velocities across the RC are assumed to be minimal due to the use of creviced

pistons. Condensation of low-vapor pressure fuels, in the thermal boundary layer

also generates gas-phase composition gradients within the reaction chamber

which drives species diffusion. The species and energy transport due to this

effect are taken into account in Eqs. (3.1) and (3.3).

Pressure equilibrium is spatially assumed throughout the RC volume, as well
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as between the RC and gap and crevice volumes due to high sonic velocities.

Detailed simulations have shown that a small, but finite pressure gradient exists

across the piston gap from the RC to crevice region during piston compression,

especially for geometries that have a small gap clearance (e.g. lg < 0.2

mm) [36,251,252]. Capturing the effect of this small differential is important to

accurately characterize the rate of mass transfer and thus enthalpic losses from

the reaction chamber to the piston crevice, and this was successfully achieved in

the previous formulations of the MZM [36,113]. Unfortuantely it was not

possible to implement a similar approach in the current model due to issues

associated with numerical instability under multi-phase conditions. The errors

associated with modeling the multiple zones in the RCM as pressure equilibrated

are assessed in the next chapter.

The MP-MZM formulation assumes that the creviced piston design is

completely effective at suppressing gas motion inside the reaction chamber i.e.,

the roll-up vortex, and the bulk gas velocity in the RC is set to a constant, null

value. Combined with the assumption and pressure equilibrium in the RC this

leads to a trivial solution of the momentum equation, Eq. (3.2). The bulk fluid

velocity term in Eqs. (3.1) and (3.3) accounts for the flow from the reaction

chamber to the gap region. This velocity is discontinuously non-zero at the

RC-gap boundary; further details of how the velocity is calculated are provided

in the following section.

The effects of piston compression, chemical reaction and phase change are

included in the governing equations as source/sink terms. The rate of boundary

work done on the gas is distributed evenly over the entire RC and is prescribed

using a piston trajectory as input, as will become apparent shortly. Chemical

heat release can also be modeled in the adiabatic core by communication with an

HRM where chemical kinetics are simulated; however, changes in species

concentration are not fed back to the MZM. A more detailed formulation may

also be developed, where varying rates of chemical reactions are calculated
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accross the RC. In this thesis, however, chemical reactions are computationally

suppressed, and models to account for the exothermicity effects of fuel

decomposition and oxidation during the experiment are planned to be explored

in forthcoming studies. The source terms for species and energy fluxes into/out

of the gas phase due to vaporization/condensation are prescribed from an

analysis of the local transport to/from the liquid mass. Here analytic expressions

for energy and species transport are utilized where the locally average gas and

liquid thermodynamic states are employed as boundary conditions.

To determine proper, time-dependent boundary conditions for droplet

vaporization/condensation, “bulk” liquid governing equations are applied across

the reaction chamber volume. The liquid species continuity, momentum and

energy equation are given by Eqs. (3.4-3.6), respectively. An equation for droplet

number density (i.e. RC spatial aerosol density distribution) is given by

Eq. (3.7), where droplets are allowed to be transferred to the gap region from the

RC.

∂

∂t
[ρ]j,l = −

(
∇ ·
(
χl
χv

)
ρj,v~v

)
− ṅPC,jN ′′d (3.4)

∂

∂t
[ρv]l ≈ 0 (3.5)

Nsp∑
j=1

∂

∂t
[ρu]j,l = −

Nsp∑
j=1

(
∇ ·
(
χl
χv

)
ρj,vhj,l~v

)
+ Q̇PCN

′′
d (3.6)

∂

∂t
[N ′′d ] = −

(
∇ · 1

ρlVd

(
χl
χv

)
ρv~v

)
(3.7)

The liquid phase flux equations are formulated under the assumption that

suspended droplets are sufficiently small to closely follow the gas-phase

streamlines (i.e. Stk� 1). The effect of this assumption is that liquid velocities

are equivalent to gas-phase velocities, and aerosol concentrations remain

constant along a gas-phase streamlines from the RC to the gap. Another effect of

the low Stokes number assumption is that local droplet advective velocities are
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negligable near the phase interface, the effects of this will are discussed later in

this chapter. Future work could be conducted to investigate the effects of large

Stokes number, aerosol dynamics inside the RCM as validation data for aerosol

experiments becomes available.

Eqs. (3.4-3.7) are applied to the “bulk”, RC liquid phase in the same sense

that Eqs. (3.1-3.3) are applied to the “bulk”, gas phase in the RC. Combined,

both sets of conservation equations are sufficient to model the phase, thermal

and compositional stratification throughout the RCM RC, as well as the

time-dependant condition of the adiabatic core region. The gas and liquid phase

conservation equations are coupled due to the phase-change source/sink terms.

Closure of the conservation equations is achieved by resolving the sub-RC-scale

local droplet physics, which is discussed later in this chapter.

Solution Scheme

Solutions to the gas-phase governing equations are obtained by discretizing Eqs.

(3.1) and (3.3) over a one-dimensional mesh of finite volume elements. The

volume elements are configured as concentric cylinders, where mesh element

geometries that exhibit the same SAV as the reaction chamber have been shown

to most adequately match the stratification profiles in detailed CFD

simulations [36]. A single computational mesh is used, where each volume

elements contains all of the physical information of both phases. Conceptually it

is easier to construct a separate but identical mesh for each of the phases, where

communication between the gas and liquid mesh is achieved through the phase

change source/sink terms. This is shown in Figure 3.2, where the fluxes and cell

volume, averaged properties are graphically depicted.

To obtain a spatially discretized set of governing equations for the gas and
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Figure 3.2: A schematic of the reaction chamber computational mesh.

liquid phases, the flux equations discussed in the previous section are integrated

over an arbitrary volume element. This results in the gas-phase integrated

species continuity and energy equation given by Eqs. (3.8) and (3.9), respectively.

∂

∂t

[∫
ρj dVn

]
+

Nsurf∑
k=1

∮ [
(ρj~v · n̂k,n) + ( ~Jj · n̂k,n)

]
d~Sk,n = ṅPC,j,nNd,n (3.8)

∂

∂t

[
Nsp∑
j=1

∫
ρjuj dVn

]
+

Nsurf∑
k=1

∮ [ Nsp∑
j=1

(ρjhj~v · n̂k,n) + (~q · n̂k,n) +

Nsp∑
j=1

(hj ~Jj · n̂k,n)
]
d~Sk,n

= Q̇rxn,n + Ẇpist,n − Q̇PC,nNd,n

(3.9)

In addition, the volume integrated liquid-phase species continuity, energy and

droplet population equation are given by Eqs. (3.10-3.12), respectively.

∂

∂t

[∫
ρj,l dVn

]
+

Nsurf∑
k=1

∮ [(χl
χv

)
ρj,v~v · n̂k,n

]
d~Sk,n = −ṅPC,j,nNd,n (3.10)
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∂

∂t

[
Nsp∑
j=1

∫
[ρu]j,l dVn

]
+

Nsurf∑
k=1

∮ [ Nsp∑
j=1

(
χl
χv

)
ρj,vhj,l~v · n̂k,n

]
d~Sk,n = Q̇PC,nNd,n

(3.11)

∂

∂t

[∫
N ′′d dVn

]
+

Nsurf∑
k=1

∮ [
1

ρlVd

(
χl
χv

)
ρv~v · n̂k,n

]
d~Sk,n = 0 (3.12)

Here the time rate change of the conserved quantities are evaluated by

applying the Reynolds transport theorem. The fluxes at the boundaries of each

volume element are evaluated using the divergance theorem. The path integrals

shown in the flux terms of the volume integrated, governing equations are

summed over each of the k flux boundaries of the volume element, where ~Sk,n is

the flux boundary surface area vector and n̂k,n is an outward pointing directional

vector for the kth flux boundary of the nth volume element. Special attention to

this detail is provided here because these discrete flux boundaries do not

necessarily correspond to geometric surfaces of the volume element. For the

one-dimensional heat and species diffusion from the core gases to the wall,

however, this is indeed the case. Heat and species diffusive fluxes are calculated

between each volume element and it’s two nearest neighbors, where the flux

boundary is taken as the geometric interface between the two elements.

The flux boundary for the bulk gas and liquid flows to the gap is more

empirically implemented. Detailed simulations suggest that gas is transported

from the entire RC volume to the gap region as opposed to only gases in the

thermal boundary layer, where high temperature gap and crevice regions have

been reported [36,251,252]. For the formulation used in this thesis, bulk

gas-phase velocities are disallowed between intra-RC volume elements, so that

only fluid with a geometric boundary in common with the gap-RC interface

would be allowed to be transfered to the gap region. To retain proper

correspondence with detailed CFD results for the gap and crevice regions, each

volume element in the mesh is given a virtual flux boundary to the gap region,

where bulk, pressure-driven flows are resolved. Geometrically, the gap flux
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boundary is orthogonal to the direction of radial RC transport, and heat and

species are not conducted to the from the RC to the gap.

The discretized conservation equations for an arbitrary volume element that

account for all allowed rates of transport are given for the gas phase by Eqs.

(3.13) and (3.14).

∂

∂t
[n]j,n = −ṅj,in,n ĝ −

Nsurf∑
k=1

[JjA]n,k r̂ + ṅPC,j,nNd,n (3.13)

Nsp∑
j=1

∂

∂t
[nu]j,n = −

Nsp∑
j=1

[ṅinh]j,n ĝ −
Nsurf∑
k=1

[
q +

Nsp∑
j=1

[hJ ]j

]
n,k

An,k r̂

+ Q̇rxn,n + Ẇpist,n − Q̇PC,nNd,n

(3.14)

Similarly, the cell average liquid phase governing equations are given by Eqs.

(3.15-3.17).

∂

∂t
[n]j,n,l = −

(
χl,n
χv,n

)
ṅj,in,n ĝ − ṅPC,j,nNd,n (3.15)

Nsp∑
j=1

∂

∂t
[nu]j,n,l = −

(
χl,n
χv,n

) Nsp∑
j=1

[ṅinhl]j,n ĝ + Q̇PC,nNd,n (3.16)

∂

∂t
[Nd]n = − 1

ρl,nVd,n

(
χl,n
χv,n

)
ṅj,in,n ĝ (3.17)

Energy and species flows through the RC mesh and to the gap region are

denoted by the directional vectors r̂ and ĝ, respectively. The methodology to

account for the terms representing pressure-driven energy and species flows to

the gap volume is presented in the following section. The source terms in the

species continuity and energy equation for both phases due to phase change are

discussed later in this chapter, where the sub-grid, droplet

vaporization/condensation physics are resolved, and conservation equation

closure is achieved. The remainder of this section is devoted to the methodology

used to prescribe heat and species diffusion rates across the mesh, as well as the
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boundary term for piston work.

Species and Energy Flux

As noted earlier, heat conduction is resolved between the nearest neighbor mesh

nodes, where this statement is mathematically described by Eq. (3.18).

Nsurf∑
k=1

[qA]n,k = q(n−1)→nA(n−1) + q(n+1)→nAn (3.18)

Heat conduction rates are calculated by applying Fourier’s law of conduction

(i.e. Eq. (3.19)) to the mesh in the effective radial direction.

q = −k∂T
∂r

(3.19)

The combination of Eqs. 3.18 and (3.19) after evaluating the temperature

gradient in Eq. (3.19) numerically over each neighboring element produces

Eq. (3.20).

Nsurf∑
k=1

[qA]n,k = − k(n−1/2)A(n−1)

(
T(n−1) − Tn
ξn − ξ(n−1)

)
− k(n+1/2)An

(
T(n+1) − Tn
ξ(n+1) − ξn

) (3.20)

The thermal conductivities in Eq. (3.20) are evaluated at the heat flux boundary.

The cell average gas temperatures are used to compute the mesh temperature

gradient. The characteristic length scale ξ is used to numerically calculate the

inter-cell temperature gradient, where this dimension is an effective distance

between volume element centers.

A zero-gradient boundary condition is applied to the interior-most reaction

chamber cell, which is given by Eq. (3.21). A constant wall temperature Dirchlet
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boundary condition is applied at the opposite end of the computational mesh,

i.e. at the exterior boundary of the outer-most cell, given by Eq. (3.22).

q(0→1) = 0 (3.21)

Tm = Twall (3.22)

Experimental times are assumed to be sufficiently short and the thermal mass of

the RCM RC is assumed to be sufficiently large so that the assumption of a

constant wall temperature throughout is thought reasonable. However, this

assumption may degrade under certain condition. For example a poorly designed

RCM pre-heating system may cause internal temperature gradients within the

reaction chamber walls, making a well-defined wall temperature difficult to

prescribe. These effects are neglected for this study.

A formulation for Fickian species diffusion, given by Eq. (3.23), is prescribed

analogously to the heat conduction formulation. Discretization of Eq. (3.23) over

the RC mesh yields an equation for species diffusion rates into an arbitrary

volume element given by Eq. (3.24).

Jj = −D∂ρj
∂r

(3.23)

Nsurf∑
k=1

[JjA]n,k = −D(n−1/2)A(n−1)

(
ρj,(n−1) − ρj,n
ξn − ξ(n−1)

)
−D(n+1/2)An

(
ρj,(n+1) − ρj,n
ξ(n+1) − ξn

) (3.24)

As with heat conduction a zero-gradient boundary condition is applied at the

core node, where this is given by Eq. (3.25). A similar boundary condition is

applied at the opposite end of the mesh, as shown by Eq. (3.26), so that species

diffusion into the solid RC walls is prohibited.

Jj,(0→1) = 0 (3.25)
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Jj,(m→m+1) = 0 (3.26)

Boundary Term

The effects of boundary work on the RC gas due to piston motion are emulated

by a mesh compression process, which is taken into account by the Ẇpist term.

In this formulation the work done on the total reaction chamber gases is evenly

distrubuted over the reaction chamber mesh volume elements. The compression

work on the nth mesh node is determined from the definition of boundary work

given by Eq. (3.27).

Ẇpist,n = −P d

dt
[V ]n (3.27)

Here the rate of change of each mesh element is prescribed as a volume weighted

fraction of the total RC volume change rate, which is shown by 3.28.

d

dt
[V ]n =

(
Vn
VRC

)
d

dt
[V ]RC (3.28)

The rate of change of reaction chamber volume is computed using Eq. (3.29) and

a prescribed piston trajectory. Piston trajectories are not typically measured in

RCM experiments, however, they can be inferred from reaction chamber pressure

traces; these usually vary significantly from facility to facility. The trajectory

utilized in this study is a time dependent polynomial fit of the CWR trajectory

obtained from [109], however the software is flexible to take any functional form

for piston velocity as an input.

d

dt
[V ]RC = −π

4
B2vpist (3.29)
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The combination of Eqs. (3.27-3.30) yields an expression suitable to calculate

volume element work rates from an input piston trajectory, Eq. (3.30).

Ẇpist,n =
π

4
B2

(
Vn
VRC

)
Pvpist (3.30)

In a addition a source term is included in the gas-phase energy equation to

account for the effects of chemical heat release. The rates of chemical heat

release can be obtained from communication with a OD HRM, where the bulk

heat release is applied throughout the entire reaction chamber, evenly

distributed over the entire MZM RC mesh. The purpose of this is to account for

the effects of multi-stage heat release, or exothermicity on the wall heat loss and

crevice flows that are enhanced by “pre-ignition heat release”.

Pressure Equilibration

As stated previously the pressure across the gas phase RC mesh is assumed to be

uniform, so that solution of the momentum equation is trivial. However as rates

of energy and species transport from each mesh element are allowed to vary

during the simulation, artificial pressure gradients can evolve across the RC

mesh. In the current model this artifact is suppressed through a dynamic mesh

rezoning, which is utilized to correct element volumes so that the coupled gas

conservation equations and state equation are simultaneously solved. In previous

MZM formulations an isentropic compression/expansion step was preformed at

each time step to achieve this. A slightly different approach is taken here, where

the mesh cell isentropic volume change is prescribed as a coupled rate term. This

method is outlined below.

The volume change of an arbitrary volume element to achieve pressure

equilibrium at each time step throughout the mesh is prescribed by the
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isentropic compression/expansion relation Eq. (3.31).

∆VPR,n =

(
VRC

VRC +
∑m

n=1 ∆VPR,n

)
Vn

(
Pn
P̄RC

)1/(γn−1)

− Vn (3.31)

The above isentropic equation has been normalized so that there is no change in

the total mesh volume after rezoning, and here P̄RC is the volume weighted

average reaction chamber mesh pressure. The rate of volume change of each

mesh volume is then calculated using a first-order backwards differencing

scheme, given by Eq. (3.32).

d

dt
[V ]PR,n =

∆VPR,n
∆t

(3.32)

The pressure rezoning rate is added to the volumetric change rate due to piston

motion of each cell, and mesh pressure equilibrium is achieved. The boundary

work on each cell due to the dynamic mesh rezoning is added as a source term to

the discretized gas energy equation, and is given by Eq. (3.33).

ẆPR,n = −

(
URC,v

URC,v +
∑m

n=1 ẆPR,n∆t

)
1

2
(Pn + P̄RC)

d

dt
[V ]PR,n (3.33)

Where again the work rate is normalized to conserve the total gas-phase reaction

chamber energy.

Dispersed Droplet Evaporation/Condensation

Governing Equations

As noted above a diffusion limited, sub-grid droplet vaporization/condensation

model is employed to prescribe species and energy transfer rates between the
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bulk liquid and gas phases, effectively closing the governing equations for the

MP-MZM reaction chamber. The details of this model are discussed in this

section.

In this formulation one-dimensional energy and species fluxes from a

spherical, single-component liquid droplet are calculated through a quasi-steady,

droplet-locally stratified gas phase. The single-droplet calculations are used to

determine average aerosol phase change rates within each computational zone.

Again, the effects of the droplet local, gas-phase stratification are not resolved by

the “bulk” MP-MZM governing equations. The quasi-steady conservation of

species and energy equations for the local gas-phase domain are given by

Eq. (3.34) & (3.35). These equations are quasi-steady in the sense that the local

gas domain instantaneously comes to equilibrium with changes in the liquid

droplet. This assumption has been shown to produce modest errors under some

conditions, these are assessed in the following chapter.

r2ρv
dχf
dr

=
d

dr

[
r2Dfρ

dχf
dr

]
(3.34)

r2ρv
d

dr
[cpT ] =

d

dr

[
k

cp
r2 d

dr
[cpT ]

]
(3.35)

Here the subscript f is used to denote the single vaporizing fuel species.

Ongoing work is being conducted to extend these equations to a tractable form

for an arbitrary number of fuel species, where analytic solutions can be obtained.

The formulation used in this study, however, is restricted to a single fuel species

to retain computational efficiency. The Fourier conduction and Fickian diffusion

terms in these equations are relatively straight-forward, and the bulk motion

transport is included as an Eulerian reference frame is chosen for the

growing/shrinking droplet. Here the ρv term accounts for transport though the

traveling droplet surface boundary.

Additional constraints are needed to formally solve the droplet local

governing equations. The first constraint applies is the assured satisfaction of the
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local gas mixture (i.e. fuel + oxidizer + diluent) continuity equation at the

boundary surface. The is achieved by invoking Eq. (3.36).

ρsvs = ρf,svs + Jf,s (3.36)

The left hand side (LHS) of Eq. (3.36) represents the bulk gas-phase mixture

molar flux at the droplet surface. The right hand side (RHS) accounts for the

bulk and Fickian species flux away from the droplet, so that the local diluent +

oxidizer is effectively stagnant.

The constraint that energy is conserved at the droplet surface is also

imposed. This is given by Eq. (3.37).

kg
∂T

∂r

∣∣∣∣∣
r=rs

= ρl(hl,f + ∆hvap,f )
∂rs
∂t

(3.37)

Where the LHS of Eq. (3.37) corresponds to the conductive heat flux into the

droplet from the gas-phase domain, and the RHS is the heat released/absorbed

by the liquid droplet due to phase change. It should be noted that species and

energy fluxes through the droplet surface due to droplet internal compositional

and thermal gradients are neglected in Eqs. (3.36) and (3.37), respectively.

Under certain conditions neglecting these terms can produce substantial error,

where this will be assesed in the following chapter.

The gas-phase domain species equation is bounded by the two boundary

conditions shown below.

χf (r =∞) = χ̄f (3.38)

χf (r = rs) = χf,s =
Pf,s
P

(3.39)

The Dirichlet boundary condition shown in Eq. (3.38) specifies the far-field,

gas-phase fuel composition. Practically, for this formulation the “infinite radius”

is taken as half of the spacing between a droplet and it’s nearest neighbor, and
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the far-field fuel fraction is taken as the bulk average computational volume fuel

mole fraction. At the droplet surface the gas-phase fuel fraction is specified by

enforcing phase equilibrium at the boundary, where gas kinetic effects are

neglected at the phase interface. The models used to specify partial pressure are

discussed with the other thermophysical and transport property models in

Appendix A.

The gas domain energy equation is spatially bounded by Eqs. (3.40) and

(3.41).

T (r ≤ rs) = Tl (3.40)

T (r =∞) = T̄ (3.41)

The surface temperature, which is continuous through the surface, is obtained

from the integrated bulk liquid phase energy equation for each RC mesh node.

The far-field temperature of the gas is obtained in the same way; from the

integrated bulk gas-phase equations.

The conservation ODEs are solved using a separation of variables

methodology, and a detailed account of this fairly straight-forward process is not

offered in this manuscript. For the detailed mathematical rigor used to obtain

analytic solutions to the conservation equations constrained by the above

boundary conditions the reader is directed to ref. [267], where a succinct analysis

is presented.
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Analytic Solutions

Solutions to the droplet equations for the rate of energy and species transfer

between the phases are given by Eqs. (3.42-3.44).

∀ j 6= f : ṅj,PC = 0 (3.42)

ṅf,PC = ρsDf,sAs
ln(1 +BM)

rs
(3.43)

Q̇PC = ksAs
(Tinf − Tl)

rs

ln(1 +BT )

BT

− ṅPC(hl + ∆hvap) (3.44)

As a result of the single-component fuel assumption, phase change of a single

fuel species is allowed (i.e. Eq. (3.42)), and the rates of species vaporization or

condensation are given by Eq. (3.43). The transport and thermophysical

properties in Eqs. (3.43) and (3.44) are evaluated for the gas-phase mixture at

the droplet surface, excluding liquid properties denoted by the subscript l. The

areas and radii in Eqs. (3.43) and (3.44) are the time dependent droplet surface

area and radius stored in the mesh node where the droplet model is applied. In

literature BM , which appears in Eq. (3.43), is typically referred to as the

Spalding mass transfer number. Here it is utilized in molar based form, i.e.

Eq. (3.45).

BM =
χf,s − χ̄f
1− χf,s

(3.45)

A slightly modified solution for the thermal transfer number BT appearing in

Eq. (3.44) is used in this formulation. The modified term is given by Eq. (3.46),

and was originally derived for droplets in a locally convective environment in

ref. [267]. This modified term is utilized here to better match detailed simulation
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results, which are presented in the next Chapter.

BT = (1 +BM)(cp,f/(cpLe))film (3.46)

In Eq. (3.46), the thermal transfer transfer number is dependent on the Spalding

number as well as the gas film mixture specific heat, fuel specific heat and fuel

Lewis number. Film properties are evaluated at the “one-third rule” film

condition suggested by [267]. For example, the film temperature is determined

by Ts + 0.33̄(Tinf − Ts).

Through the droplet analysis Eqs. (3.43) and (3.44) are used to close the

multi-phase species and energy equation in the RC mesh. These closure terms

for the RC are given by Eqs. (3.47) and (3.48).

ṅj,PC,n =


ρs,nDf,s,nAs,n ln(1+BM,n)

rs,n
if j = f,

0 otherwise
(3.47)

Q̇PC,n = ks,nAs,n
(Tn − Tl,n)

rs,n

ln(1 +BT,n)

BT,n

− ṅf,PC,n(hf,l,n + ∆hvap,f,n) (3.48)

Piston Gap

Governing Equations

The piston gap region, which is the volume adjacent to the tapered section on the

piston, is modeled as a fully transient 0D “black box” style control volume, where

the complex two-phase fluid dynamics are calculated by using reduced-order

methods. Since high, turbulent gas velocities are present in this region, the heat

transfer to the reaction chamber wall and piston surfaces is assumed to be
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controlled by convective transport. A low Stokes number assumption is invoked

in a similar fashion as is applied to the reaction chamber, which has the effect

making the bath gas and droplet velocities equivalent. The validity of this

assumption has yet to be determined due to the lack of simulated or

experimental data for aerosol flows within these types of geometries. In contrast

to previously developed MZMs, the gap inlet and exit flows are determined by

assuming pressure equilibrium between the RC, gap and crevice volumes. The

mathematical rigor of this process is described in the next subsection.

A combined equation for gap momentum is applied to the gap volume, which

is given by Eq. (3.49). The tot notation is used here to denote both the liquid +

vapor phases. Also, the g notation is used to signify values corresponding to the

volumetric gap center, while in and ex represent variables at the RC-gap and

gap-crevice boundaries, respectively.

d

dt
[ntotv]g =

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Nsp∑
j=1

[
m∑
n=1

ṅj,in,n,totvin,n

(
χl,n
χv,n

+ 1

)
− ṅj,ex,totvex

(
χl,g
χv,g

+ 1

)]
−HHHτAs ≈ 0

(3.49)

The gap momentum, for both phases, is assumed to be quasi-steady, where this

assumption has previously been validated for single-phase flows in [36]. In the

previous formulation, however, fluid shear on the RC walls and piston crown

were taken into account, where this effect is neglected in the current formulation.

Also, a discrete pressure gradient was resolved across the gap length and the

momentum equation was solved to determine the rate of pressure driven flows

from the reaction chamber to the crevice volume. Again, this pressure differential

is neglected in the current formulation, where flow is forced to the gap and

crevice regions to ensure pressure equilibrium throughout the three regions. An

attempt to account for these effects in the multi-phase simulations was

unsuccessful due to unresolvable numerical instabilities produced by the solution

scheme. In the formulation used for this study the gap momentum equation is
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trivially solved, and offers no new insight into the physics of the experiment.

Figure 3.3: A schematic of the multi-phase flow through the piston gap.

The remaining conservation equations are applied to the gap separately for

each of the phases. The gas-phase conservation of species and energy are given

by Eqs. (3.50) and (3.51), respectively.

d

dt
[n]j,g =

m∑
n=1

ṅj,in,n − ṅj,ex + ṅj,PC,g (3.50)

Nsp∑
j=1

d

dt
[nu]j,g =

Nsp∑
j=1

[
m∑
n=1

ṅj,in,n

(
hj,n +

v2
in,n

2

)
− ṅj,ex

(
hj,g +

v2
ex

2

)]

− Q̇conv,g − Q̇PC,gNd,g

(3.51)

The liquid species continuity and energy equation along with the droplet

population number equation are given by Eq. (3.52)-(3.54), respectively.

d

dt
[n]j,g,l =

m∑
n=1

(
χv,n
χl,n

)
ṅj,in,n −

(
χv,g
χl,g

)
ṅj,ex − ṅj,PC,g (3.52)
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Nsp∑
j=1

d

dt
[nu]j,g,l =

Nsp∑
j=1

[
m∑
n=1

(
χv,n
χl,n

)
ṅj,in,nhj,n,l −

(
χv,g
χl,g

)
ṅj,exhj,g,l

]

+ Q̇PC,g

(3.53)

d

dt
[N ]d,g =

m∑
n=1

1

ρl,nVd,n

Nsp∑
j=1

(
χv,n
χl,n

)
ṅj,in,nhj,n,l

− 1

ρl,gVd,g

Nsp∑
j=1

(
χv,g
χl,g

)
ṅj,exhj,g,l

(3.54)

Figure 3.3 illustrates the mechanisms of species and energy transport that are

modeled in the piston gap region by the MP-MZM. As was discussed earlier,

species are transferred to the gap from each RC volume elements, where

gas-phase molar flow is determined by invoking pressure equilibrium between the

RC and gap and liquid is transferred assuming a low Stokes number, aerosol

flow. An exactly analogous methodology is used to transport gas and liquid

species from the gap to the crevice region. The energy equation is constructed

accounting for the enthalpy exchange of the gap with the RC and crevice

regions, and the methodology for including the convective sink term will be

described later in this section. The phase-change source/sink terms are evaluated

by assuming convective mass transfer in a manner similar to the convective heat

loss, and this is described shortly..

Since varying rates of droplet vaporization exist throughout the RC mesh and

aerosol from each of these cells is passed to the gap region, a polydispersed

situation (i.e. distribution of droplet sizes) exists in the gap region, even though

a mono dispersed aerosol is modeled in each RC volume element. The current

formulation does not have the capability to model polydisperse aerosols. As

such, a single effective droplet size for the gap is passed to the sub-grid droplet

phase change model, and is prescribed by Eq. (3.55).

Dg =

[
3

4πNd,g

Nsp∑
j=1

nj,g,l
ρj,l,g

]1/3

(3.55)
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The gap droplet diameter is obtained from the “bulk” liquid species equation.

While this may introduce discrepencies between the MP-MZM and the true

physical process, this approach is taken so that consistency is achieved between

the bulk “black box” conservation equations and the sub-grid droplet phase

change model. The multi-phase physics in this region is complex and as more

validation cases become available the modeled physics in this region can be

better refined.

Gap Velocities

Pressure equilibrium is dynamically achieved between the RC, gap and crevice

gases where the ideal gas equation of state (i.e. Eq. (3.56)) is utilized to compute

the flow rates necesary for this, via Eqs. (3.57) and (3.58), respectively.

1

P

dP

dt
+

1

V

dV

dt
=

1

n

dn

dt
+

1

T

dT

dt
(3.56)

ṅin = ρ̄RCAx,invin = ng

[
1

Pg

dPRC
dt
− 1

Tg

dTg
dt

]
+ ṅex − ṅPC + ṅ∗in (3.57)

ṅex = ρgAx,exvex = nc

[
1

Pc

dPRC
dt
− 1

Tc

dTc
dt

]
+ ṅ∗ex (3.58)

Three key assumptions are made while prescribing the molar gap flow rates.

First, inviscid flow the gap the gap is assumed for the purpose of evaluating inlet

and exit velocities, where this assumption is relaxed while calculating convective

heat transfer rates as will become apparent shortly. The consequences of this

assumption are assessed in the following chapter through comparisons to a

previous MZM formulation. Also, the volume of gas is assumed to be temporally

constant throughout the simulation. While the geometric volume of the gap and

crevice region is held constant, the partial occupation of this volume by varying

amounts of liquid phase species makes the above statement approximately
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correct. This effect is thought to be negligible for the conditions explored here.

Finally, the rate of pressure change is taken to be equivalent to the RCM RC in

all regions of the model. This approach can be difficult to implement as there is

no coupling between small, artificial pressure differences that develop due to

numerical errors. Using this formulation, these artificial gradients can evolve

between the zones during the solution procedure where this results in physically,

nonsensical simulation results.

To reduce the extent of this error across the gap control volume a crude, but

effective pressure-velocity scheme is developed. The methodology of this scheme

is to correct the molar flow rates given by Eq. (3.57) & (3.58) by coupling the

mass flow term to inter-zone pressure gradients. This is achieved by the use of

Eq. (3.59) & (3.59) below.

ṅ∗in =
Vg
RuTg

d

dt
[PRC − Pg] (3.59)

ṅ∗ex =
Vc
RuTc

d

dt
[PRC − Pc] (3.60)

These equations have been derived from the standard form of the ideal gas

equation, and effectively give the rate of mass flow to each of the regions if

pressure gradients happen to develop at the flux boundaries. The pressure

change rate term is evaluated using a numerically stable, high-order backwards

differencing scheme.

Convective Heat Transfer

The convective heat transfer within the gap from the gas to the RCM RC walls

and piston crown is calculated using a modified Newtonian cooling expression

given by Eq. (3.61), which makes use of the gap log-mean temperature-difference
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given by Eq. (3.62).

Q̇conv,g = [hconvAsLMTD]g (3.61)

LMTDg =
(T̄RC − Twall)− (Tg − Twall)

ln

 Tg − Twall
T̄RC − Twall


(3.62)

The convection coefficient is evaluated via a Nusselt correlation given by

Eq. (3.63).

Nug =
hconv,gζg
kg

= 7.54 +
0.028(ζg/lg)PrgReg

1 + 0.011[(ζg/lg)PrgReg]2/3
(3.63)

The gap Nusselt correlation is for turbulent, developing flow in an annular

geometry [268], where the parameters in Eq. (3.63) are fit based on data found in

the same source. Properties are evaluated at the gas-phase film temperature

0.5(0.5(T̄RC + Tg) + Twall), and the Reynolds number is calculated using an

average of the inlet and exit velocities. The characteristic length of the gap ζg is

taken as the mean hydraulic diameter of the gap. Convective heat transfer from

the liquid phase to the RCM surfaces is neglected as the liquid surface area in

contact with the RC wall and piston is assumed to be minimal. It is also

assumed that the presence of the liquid droplets do not affect the validity of the

gas phase Nusselt correlation.

Phase Change

In the gap fuel condensation is assumed to occur on the RCM surfaces as high

convective velocities transport gas-phase fuel to the cool walls. The liquid film

on the cylinder walls and piston crown is assumed to be in thermodynamic (i.e.
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phase) equilibrium at the wall temperature.

For this approach, convective species transfer rates from the bulk gas to the

walls are calculated by Eq. (3.64) in an analogous fashion to convective heat

transfer rates; by use of a mean mass transfer coefficient.

ṅj,PC,g = [hm,gAsLMρD]g (3.64)

Where LMρD is the molar density analogy to Eq. (3.62), and the average mass

transfer coefficient is evaluated from the Sherwood number, i.e. Eq. (3.65).

hm,g =
ShgDj
ζg

(3.65)

Again, a low Stokes number approximation is made in the gap, and it is also

assumed that the presence of liquid particles in the flow do not influence the

gas-phase fluid dynamics. In light of these assumptions a mass analogy is used to

evaluate the Sherwood number, which is given by Eq. (3.66).

Shg = NugLe1/3
g (3.66)

Heat is removed from the 0D, “black box” gas due to wall condensation via

Eq. (3.67).

Q̇PC,g =

Nsp∑
j=1

ṅj,PC,ghj,g (3.67)

Currently, dispersed fuel condensation is not modeled within the gap. This

neglection is due numerical challenges associated with a strong coupling between

droplet phase change species and energy rates and bulk velocities from the RC

and to the crevice. Ongoing work may be conducted to resolve these challenges,

and investigate dispersed condensation in the gap.
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Piston Crevice

Governing Equations

As with the piston gap region, the crevice zone of the MP-MZM is also modeled

as a transient 0D “black box” style control volume, where the complex fluid

dynamics inside the zone utilizing reduced-order modeling methods. Fluid

dynamically, two distinct regions exist in the piston crevice. The first is the high

velocity gas exiting the piston gap region, where this is modeled as a gas jet

moving along the RCM cylinder wall. The gas jet feeds recirculative vortex

structures in the main crevice volume. The advective motion created by the

vortex structures enhance convective heat transfer rates from the gas to the

piston crevice circumference at different rates than the entering gas jet.

Convective heat transfer and fluid shear to the RCM surfaces are calculated in

the 0D model using a weighting of these two effects.

As opposed to previously discussed computational zones, the multi-phase

momentum equation is evaluated non-trivially by Eq. (3.68).

d

dt
[ntotv]c =

Nsp∑
j=1

ṅj,ex,totvex

(
χl,g
χv,g

+ 1

)
− 1

2
(τjet + τpist)As,c (3.68)

Here the volume centered crevice velocity vc is characteristic of the recirculative

vortex motion, and the gap exit velocity is used to characterize the incoming gas

jet are used to evaluate the fluid shear stress on the piston circumference and

cylinder wall, respectively. The specific methodology to obtain the fluid shear

stresses is addressed later in this section.

The gas-phase species and energy equations are shown by Eqs. (3.69) and
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Figure 3.4: A schematic of the multi-phase flow through the piston crevice.

(3.70), and the rates of energy and species transfer are illustrated by Figure 3.4.

d

dt
[n]j,c = ṅj,ex + ṅj,PC,c (3.69)

Nsp∑
j=1

d

dt
[nu]c =

Nsp∑
j=1

ṅj,ex

(vex
2

+ hj,g

)
− Q̇conv,c − Q̇PC,c (3.70)

High velocities in the crevice are present so that convection is assumed the

controlling mechanism of heat transfer.

The liquid species continuity and energy equations are given by Eqs. (3.71)

and (3.72).

d

dt
[n]j,c,l =

(
χl,g
χv,g

)
ṅj,ex − ṅj,PC,c − ṅj,wall,c,l (3.71)

Nsp∑
j=1

d

dt
[nu]j,c,l =

(
χl,g
χv,g

) Nsp∑
j=1

ṅj,exhj,g + Q̇PC,c − Q̇wall,c,l (3.72)
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Here a slightly different approach is taken for the phase change effects than is

observed in other regions of the model. The aerosol dynamics in the crevice

region are especially complex compared to other computational MZM zone, and

thus a crude model for phase change is included as a first-cut approximation.

This approach can be improved as future work to diligently characterize the

gas-phase and multi-phase flows in this region. For the model used here it

assumed that the high velocity liquid droplets entering the crevice in the gas jet

have significant inertia to impact the surface at the bottom of the crevice, falling

out of gas phase suspension and coating the RCM surfaces. Once the liquid

phase reaches the wall, heat is transferred to the surfaces so that thermal

equilibrium is achieved instantaneously with the machine surfaces. Additionally,

fuel condensation from the gas phase is assumed to occur at the RCM surfaces

by convective transport.

Fluid Shear

The fluid shear on the cylinder wall due to the incoming jett, and on the piston

surface due to vorticular motion, is determined using a mean friction coefficient

as shown by Eqs. (3.73-3.74), respectively.

τjet =
1

2
Cf,jetρgv

2
ex (3.73)

τpist =
1

2
Cf,pistρcv

2
c (3.74)

A friction coefficient correlation for a turbulent jet along a wall is

used [269,270] for the incoming crevice flow.

Cf,jet = 0.0042 + 0.0021 log[Reex] (3.75)
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A Reynolds analogy of Eq. (3.63) for flow through an annular geometry is

applied to the recirculative flow inside the crevice volume.

Cf,pist =
24

Rec

[
1 +

0.008(ζc/lc)Rec
1 + 0.025[(ζc/lc)Rec]2/3

]
(3.76)

As with the gap volume, it is assumed that the suspended liquid phase does not

influence the gas-phase fluid behavior so that using an established correlation for

gas-phase flow is valid.

Convective Heat Transfer

Newton’s law of cooling is used to prescribe the convective heat transfer rates

within the crevice, where this is given by Eq. (3.77),

Q̇conv,c = hconv,cAs,c(Tc − Twall) (3.77)

As noted above an effective convection coefficient is utilized in this formulation,

where the effects of the incoming jet and vorticular flow inside the crevice are

equally weighted. This is shown by Eq. (3.78).

hconv,c =
1

2

[
Cf,jetReex

2ζex
+

Nuc
ζc

]
kc (3.78)

A Reynolds analogy employing Eq. (3.75) is used to characterize the effects of

the convective jet heat transfer to the cylinder wall. The heat transfer due to the

recirculative flows are calculated by employing the same Nusselt correlation for

turbulent, annular flow that is utilized by the gap. This is given by Eq. (3.79)
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below.

Nuc = 7.54 +
0.028(ζc/lc)PrcRec

1 + 0.011[(ζc/lc)PrcRec]2/3
(3.79)

Phase Change

As in the gap, the gas-phase crevice fuel is assumed to condense on the crevice

surfaces as high convective velocities transport gas-phase fuel to the cool walls.

The liquid film on the cylinder walls and piston circumference is assumed to be

in thermodynamic (i.e. phase) equilibrium at the wall temperature.

For this approach, convective species transfer rates from the bulk gas to the

walls are calculated by Eq. (3.80) in an analogous fashion to convective heat

transfer rates; by use of a mean mass transfer coefficient.

ṅj,PC,c = hm,cAs,c(ρj,c − ρj,wall) (3.80)

The average mass transfer coefficient is evaluated from the Sherwood number,

i.e. Eq. (3.81).

hm,c =
ShcDj
ζc

(3.81)

A mass analogy is again used to calculate the Sherwood number in the

crevice, given by Eq. (3.82).

Shc = NucLe1/3
c (3.82)

Heat is removed from the 0D, “black box” crevice gas due to wall
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condensation via Eq. (3.83).

Q̇PC,c =

Nsp∑
j=1

ṅj,PC,chj,c (3.83)

Future work may be conducted to relax the high Stokes number complete

droplet impingement assumption, and relsove some of the aerosol dynamics in

the crevice.

The equations presented in this chapter now represent the complete aRCM

MZM. Validation of this new model is achieved in the following chapter where

comparisons are made against high-level CFD simulations. An assessment of the

reaction chamber stratification present during aerosol RCM experiments is also

provided over a range of conditions.
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Chapter 4

RCM Aerosol Multizone Model
Validation and Results

Validation Approach

The new MP-MZM model is validated here against detailed, non-reacting,

single-fuel CFD simulations, where the focus is on droplet vaporization as well as

the in-cylinder gas-phase mass, momentum and energy transport. For the

phase-change sub-model the droplet surface area and surface temperature

histories are of interest, as this information is used as a metric to investigate how

well the coupled mass and energy equations are approximated. The

phase-change sub-model utilized by the MP-MZM like many other dispersed,

multi-phase software assumes a quasi-steady gas phase, and a zero-gradient

temperature model for the liquid phase. These approximations may become

invalid under high pressure, gas-phase or large initial droplet diameter

conditions [267]. Under these conditions, mass and energy storage in the gas

phase as well as temperature gradients within the droplet may develop. These

will be referred to as “transient effects” here.

First the droplet formulation utilized by the MP-MZM is validated against a

fully transient droplet vaporization model developed by Zhu and Aggarwall [271]

for a single stagnant 50 µm droplet at pressures up to 70 bar. Even though the

droplets in these validation simulations are larger than those expected to be used

in an aRCM, the simulation results are useful for ensuring the MP-MZM model

is valid over a wide range of conditions.

Modeling of the two phase physics in an aRCM has two main functions.

First, the rate of evaporative cooling or condensive heating of the gas phase is
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needed in order to accurately prescribe the gas-phase temperature where

chemistry occurs. Second, phase-change modeling allows an adequate prediction

of the gas-phase equivalence ratio within the reaction chamber, where chemistry

is modeled to occur. Stagnant, single droplet simulations are certainly not

sufficient to validate that these are correctly predicted as the gas-phase

undergoes compression during evaporation and far-field fuel concentrations for

real fuel loadings (i.e. φ=1-3) affect evaporation transport. For this the aRCM

MZM droplet model is compared to the detailed droplet wet compression

simulations of Goldsborough et al. [116] over a range of global equivalence ratios

and initial droplet sizes.

Finally, the aRCM MZM is validated against the original RCM MZM

developed by Goldsborough et al. [36] as well as the laminar flow Fluent

simulations from the same study. This is to ensure that the reformulated MZM

with detailed species tracking, updated energy calculation scheme, fully transient

gap and pressure equilibrated crevice is still able to adequately predict rates of

heat transfer to the reaction chamber surfaces as well as the crevice dynamics.

This chapter ends with the results of simulations from the new aRCM MZM

model. This study investigates the thermal and compositional stratification that

occurs in the RCM reaction chamber for non-reacting, single-component fuels at

varied initial droplet diameters and global equivalence ratios. Future studies are

planned to investigate the effects of preferential boiling and chemical heat release

as well. In addition to reaction chamber stratification, adiabatic core pressure

traces are simulated, which could be used to validate experimental setups as this

data is easily measured. Temperature history for each zone and adiabatic core

gas-phase equivalence ratio plots are also presented, where these data could be

used to assign a thermodynamic state to reacting mixtures for comparison of

kinetic mechanisms with experimental data.
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Droplet Evaporation Model Validation

Detailed Validation Model

Detailed droplet vaporization simulations were conducted using a

spherically-symmetric, fully transient model developed by Zhu and

Aggarwal [271] that was further expanded by Goldsborough et al. [36, 117]. A

brief description of this model is presented here, while more details can be found

in [36].

The vapor and liquid phase are modeled as symmetric spheres, where

transient mass, species, momentum and energy conservation along with an EOS

are applied to the liquid and vapor phase. As such thermal and compositional

variations are taken into account for both the vapor and liquid phases. A

boundary condition of phase equilibrium is applied at the droplet surface, and

real gas effects are taken into account utilizing the Peng-Robinsen EOS. Spatial

pressure variations are allowed across the vapor phase, however convective

motion is suppressed (i.e. Re=0). For the conditions explored here no pressure

gradients were observed. Volumetric compression of the vapor phase is used to

simulate wet compression. Global stoichiometrics are prescribed by

volumetrically adjusting the initial gas domain size (i.e. higher equivalence ratios

are simulated by a closer far-field boundary which corresponds to denser droplet

populations). An arbitrary Lagrangian-Eulerian numerical scheme is used to

directly solve the governing equations, with a dynamically adaptive mesh.

Thermo-physical and transport properties are evaluated locally at each grid

point and updated at each time step.
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Single Stagnant Droplet Comparison

The performance of the MP-MZM droplet model is compared against the

detailed droplet simulations for a single, stagnant n-hetptane droplet with an

initial diameter of 50 µm at pressures of 1, 10, 30 and 70 bar. Initially the gas

phase is pure N2 and the liquid is pure n-dodecane. The liquid temperature is

initially set to 300 K and the vapor temperature is initialized at 500 K. During

the simulation, phase change proceeds as heat is conducted from the gas phase

to the cooler droplet. The far-field conditions are held constant throughout the

droplet lifetime, so that effects of far-field evaporative cooling and fuel saturation

are not present in these simulations. The results of the two sets of simulations

are displayed in Figures 4.1 and 4.2, where the droplet surface area and surface

temperature histories are shown, respectively. An overall fair agreement is

observed. For the 1 bar case excellent agreement in the droplet evaporation rate

and surface temperature is encouraging though, as this establishes confidence in

the validity of the MP-MZM droplet model, coding and solution scheme to

reasonably estimate the effects of phase change for dispersed droplets.

In Figure 4.1, two distinct regions of droplet vaporization can be seen, at the

start of vaporization where droplet size increases which is followed by typical d2

(i.e. linear) behavior. Evident here is that the MP-MZM droplet model

consistently produces a higher initial droplet growth in addition to accelerated

and delayed vaporization times at high and low pressures, respectively. This

phenomena is attributed to an overprediction of the initial rise rate of droplet

temperature by the MP-MZM, which causes a decrease in density and an

increase in liquid volume. Another source of the discrepancies is that in the

detailed simulations a portion of the liquid mass is denser near the droplet core

than at the surface due to thermal stratification, and the reduced-order model

does not resolve the liquid phase thermal stratification. The MP-MZM also

calculates accelerated evaporation rates in the d2 region. This is inferred by a
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Figure 4.1: Comaprison of an n-heptane
droplet surface area histories for the cur-
rent droplet evaporation model and the
detailed model developed by Zhu and
Aggarwal [271], for a single stagnant
droplet over a range of pressures.

Figure 4.2: Comaprison of droplet sur-
face temperature histories for the cur-
rent droplet evaporation model and the
detailed model developed by Zhu and
Aggarwal [271], for a stagnant droplet
over a range of pressures.

steeper slope in the surface area decay for all but the high pressure case. These

different rates are due to an overprediction in equilibrium surface temperatures

by the MP-MZM which creates a greater driver for fuel vaporization. This is not

observed in the 70 bar case because the model for gas phase diffusion coefficient

is not accurate at high pressures in the reduced order model and this slows the

rate at which fuel is diffused away from the droplet. An improved diffusion

coefficient model could be implemented as future work to improve the fidelity of

the MP-MZM. Although RCMs typically do not operate at such high compressed

pressures, future investigations may in order to collect data relevant to advanced

combustion engines.

The droplet surface temperatures are controlled by competing effects of

conduction from the gas phase to the droplet surface, vaporization and sensible

enthalpy of mass leaving the liquid phase, and liquid phase conduction from the

droplet surface to the cooler center. During the droplet lifetime these effects

come to an equilibrium, and eventually a constant surface temperature is

realized. The detailed simulations capture all of the droplet transport
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mechanisms, while the zero-gradient liquid model utilized by the MP-MZM

cannot account for liquid phase conduction. After the initial heating period,

internal thermal gradients are minimized as surface temperature reaches a

constant value. This suggests that internal conduction has a small influence on

equilibrium temperature. Since the same model for vaporization enthalpy is used

by both sets of simulations, and droplet evaporation rates are similar as the

droplet begins to exhibit d2 behavior, suggests that energy transport due to

vaporization has only a small influence on equilibrium temperature differences.

However, enthalpy transfer has a larger effect during the droplet growth period,

during which larger discrepancies in evaporation rates exist. Transient thermal

effects are seen to become important in the gas phase conduction term as higher

pressures are reached, and the quasi-steady gas phase approximation becomes

invalid. The quasi-steady approximation becomes less accurate with increased

pressures due to a decrease in gas thermal and species diffusivities where energy

and mass are stored across the domain faster than can be diffused to and from

the droplet, respectively.

The effect of internal droplet temperature gradients can be inferred as the

cause of discrepancies between the models during the droplet initial

heating/growth period. The rapid surface temperature increase occurs for the 1

bar case where gas thermal diffusivity is relatively high and evaporative mass

flows agree. The disagreement in equilibrium temperature is harder to isolate,

and is most likely due to a small contribution from all three heating effects. The

discrepancy appears to become more severe at higher temperatures indicating

that transient gas phase effects may be the most prominent source of

disagreement. The discrepancies seen between the MP-MZM and the detailed

model are considered acceptable for this study.
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Wet Compression Comparison

The performance of the phase change sub-models is also assessed under wet

compression conditions by comparing simulation results to the transient model

for n-dodecane droplets of 2, 3, 8 and 14 µm diameters, at global equivalence

ratios of 0, 0.5, 1 and 2. For both the detailed and reduced order models, wet

compression is simulated by gas-phase mesh compression based on a piston

trajectory that is characteristic of RCMs and is identical for both models. In

addition to the quasi-steady gas phase and the internal droplet zero-gradient

approximations utilized by the MP-MZM, another modeling difference exists for

real fuel loading (i.e. φ 6= 1) conditions. In the MP-MZM global equivalence

ratios are set by adjusting the number of droplets in the reaction chamber, where

in the transient model equivalence ratios are prescribed by adjusting the size of

the gas-phase domain to emulate a more highly populated aerosol. This is not a

discrepency in and of itself, but a small discrepency arises when specifying the

far-field boundary condition. In the MP-MZM, the far-field boundary condition

is taken as the average cell condition, which is not truly correct, but the error is

generally small.

For this comparison the initial temperature of the gas and liquid phases are

initially set to 350 K, where this temperature corresponds to a pre-heated RCM.

Initially the gas phase consists air (i.e. N2 + 3.76O2), and the liquid phase is

composed of pure n-dodecane; no fuel initially exists in the gas phase for these

calculations. A typical RCM compression ratio of 13.4 and compression time of

15.3 ms are used as in [116]. The results are presented in Figures 4.3 - 4.11, and

as can be seen generally a fair agreement is achieved. Figures 4.3 - 4.6 show the

results for varied initial droplet diameters and Figures 4.7 - 4.11 show the results

for varied global equivalence ratios. The results for varied droplet diameters will

be discussed first.

Discrepancies in the simulations are consistent with the previous comparisons,
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Figure 4.3: Comparison of n-dodecane
droplet surface area histories undergoing
wet compression for the current vapor-
ization model and that of Goldsborough
et al. [36] at two global equivalence ra-
tios and a range of initial droplet diam-
eters.

Figure 4.4: Comparison of n-dodecane
droplet surface and far-field temperature
histories undergoing wet compression for
the current vaporization model and that
of Goldsborough et al. [36] at a global
equivalence ratio of φ=1 and a range of
initial droplet diameters.

Figure 4.5: Comparison of n-dodecane
droplet surface fuel fraction as a func-
tion of non-dimensional surface area, for
droplets undergoing wet compression for
the current vaporization model and that
of Goldsborough et al. [36] at a global
equivalence ratio of φ=1 and a range of
initial droplet diameters.

Figure 4.6: Comparison of n-dodecane
droplet far-field fuel fraction as a func-
tion of non-dimensional surface area, for
droplets undergoing wet compression for
the current vaporization model and that
of Goldsborough et al. [36] at a global
equivalence ratio of φ=1 and a range of
initial droplet diameters.

droplet heating rates are again overpredicted for varied droplet diameters

undergoing wet compression. This results in similar behavior as seen earlier,
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where the initial droplet heating delays vaporization due to volumetric growth,

while vaporization rates are overpredicted once a steady temperature is reached.

This influence is further observed in Figure 4.5, where fuel mass fractions are

overpridicted due to elevated surface temperatures that leads to higher

vaporization potentials. The high fuel fraction increases the diffusive mass flux

to the far-field, while droplet geometry also has an effect on the mass diffusion

process. Initially large droplet diameters control the mass diffusion process,

where later in the vaporization these effects become small. In all cases far-field

compositions closely match the detailed simulations where these eventually

converge to the same mass fraction which corresponds to a stoichiometric

equivalence ratio. This is encouraging because correct far field mass fraction

predictions are critical to the MP-MZM model. Discrepancies in the far-field

composition for the larger droplets is due to large compositional stratification in

the gas phase caused by mass storage throughout the domain. The quasi-steady

gas-phase model has limited capabilities to capture these trends.

Far-field gas temperatures are also higher for the MP-MZM model at any

instantaneous droplet diameter, this is due to initialy delayed droplet

vaporization. Inspection of both Figure 4.3 and 4.4 simultaneously at times

where surface areas match supports this. At these times far-field temperatures

closely match, suggesting that delayed droplet vaporization effects dominate the

discrepancies, and that evaporative cooling rates are correctly calculated.

Simulation results are presented in Figures 4.7 - 4.11 where varied fuel

loadings are used with an initial droplet diameter of 3 µm. Comparisons,

between the two models demonstrate generally good agreement, although higher

temperatures are again predicted by the MP-MZM along with delayed droplet

vaporization times. The very good agreement observed in Figures 4.10 and 4.11

for the surface and far-field fuel mass fraction provide confidence that the mass

transport is properly simulated for these conditions. The poor agreement in

surface and far-field temperatures can be attributed to a combination of the
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Figure 4.7: Comparison of n-dodecane droplet surface area histories undergoing
wet compression for the current vaporization model and that of Goldsborough et
al. [36] at varied global equivalence ratios.

Figure 4.8: Comparison of n-dodecane
droplet surface temperature as a func-
tion of non-dimensional surface area, for
droplets undergoing wet compression for
the current vaporization model and that
of Goldsborough et al. [36] at varied
global equivalence ratios.

Figure 4.9: Comparison of n-dodecane
droplet far-field temperature as a func-
tion of non-dimensional surface area, for
droplets undergoing wet compression for
the current vaporization model and that
of Goldsborough et al. [36] at varied
global equivalence ratios.

mechanisms discussed above. The higher temperatures once again result in

overestimates of the initial growth period, where this leads to delayed

vaporization times. However, it can be seen that discrepancies in the surface area

slope (e.g. vaporization rate) are minimal after the initial droplet heating period.
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This may be caused at the high fuel loadings where far-field saturation effects

have more impact on mass diffusion than the droplet surface vapor pressure.

Figure 4.10: Comparison of n-dodecane
droplet surface fuel mass fraction as
a function of non-dimensional surface
area, for droplets undergoing wet com-
pression for the current vaporization
model and that of Goldsborough et
al. [36] at varied global equivalence ra-
tios.

Figure 4.11: Comparison of n-dodecane
droplet far-field mass fraction as a func-
tion of non-dimensional surface area, for
droplets undergoing wet compression for
the current vaporization model and that
of Goldsborough et al. [36] at varied
global equivalence ratios.

Gas-phase Transport Validation

Validation Methodology

The ability of the MP-MZM to accurately predict the gas-phase physics of RCM

experiments is assessed in this section by comparing simulation results to results

of the original MZM. A discussion of the previously validated MZM was

presented in Chapter 2, while differences between the modeling approachs have
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been outlined in Chapter 3. A further review of the validation model will not be

presented here.

Table 4.1: Conditions of each validation case for the RCM gas-phase processes.
Case T0 [K] P0 [bar] Molar Composition [N2/Ar]
1 300 0.426 1.0/0.0
2 300 0.866 1.0/0.0
3 300 1.430 1.0/0.0
4 300 0.381 0.6/0.4
5 300 0.736 0.6/0.4

For this validation step non-reactive conditions, are used where results are

compared over a range of initial pressures and two argon + nitrogen diluent

compositions. A summary of these test cases is presented in Table 4.1. Cases 1

and 4 as well as 2 and 5 are utilized as they yield nearly equivalent compressed

pressures for both neat N2, as well as the 60% N2 40% Ar blends. The addition

of argon in the diluent has the effect of achieving higher compressed

temperatures than pure nitrogen, due to it’s relatively small specific heat.

However the lower mixture specific heat of the argon blends and lower density

results in an increased gas thermal diffusivity, where heat diffusion rates through

the gas to the reaction chamber walls are greater compared to a pure nitrogen

test gas. Thus the validation conditions are selected in order to ensure that the

new model is valid for a range of conditions that exhibit varied thermodynamic

and transport properties that are relevent to RCM experiments.

Computations are performed utilizing a typical RCM geometry and piston

compression time A schematic of the relevant dimensions is shown in Figure 4.12

where the corresponding values used in the calculations are given in Table 4.2.

In these simulations, the piston motion is prescribed in a manner simular to that

of an operating engine where the dimensions for a crank radius and connecting

rod length are specified, and the piston motion is actuated at BDC and comes to
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Figure 4.12: Schematic of key RCM dimensions at maximum compression, values
used in this study as well as for gas phase model validation are available in table
4.2.

Table 4.2: RCM dimensions used in this study, as well as gas phase model valida-
tion. Lettered dimensions correspond to Figure 4.12.

Dimension Value
a 25.0 mm
b 14.0 mm
c 0.50 mm
d 4.00 mm
e 0.15 mm
f 20.0 mm
g 1.50 mm

stroke 216 mm
compression time 30 ms

rest at TDC. This is do in order tp be consistant with the CFD simulations that

were used to validate the original MZM. While this piston trajectory is not quite

representative of RCM experiments, the computed bulk pressures, temperatures

and velocities are fairly similar. Discrepancies between this trajectory model and

one characteristic of an operating RCM are considered negligible for this study,

as the goal here is only to ensure that the new MZM formulation agrees with

previously obtained results.

The reaction chamber mesh is constructed using a slightly different approach

compared to previous MZM formulations. Previously the MZM reaction chamber

mesh was initially generated using elements of equal volumes across the mesh
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where higher spatial resolution is achieved near the wall of the reaction chamber.

The current formulation relaxes this constraint and allows for an even higher

mesh densities in the boundary layer volume. This is needed because the

previous MZM simulations used a mesh cell count of 200, while the current

formulation uses only 100 due to increased computational requirements.

Improved spatial resolution in the thermal boundary layer is achieved in the

current simulations at the expense of resolution in the core gases.

For the MP-MZM a modified approach for calculating thermochemistry is

utilized where this is briefly described here with more details available in

Appendix A. The single-phase MZM calculates gas-phase energy from the

integration of gas-phase specific heat, where the reference states are taken to be

in the gas phase. A more general approach is needed in the MP-MZM that

ensures consistent reference states for two-phase physics. In the MP-MZM,

thermodynamic reference states are taken in the liquid phase and the total

gas-phase energy is used. This approach enables information about the sensible

heating prior to vaporization, vaporization enthalpy at the phase change

condition, as well as the sensible energy change during gas-phase heating to be

carried by a gas-phase species. For these simulations it is assumed that

vaporization of the nitrogen and argon occurs prior to the experiment at each

species normal boiling temperature.

Validation Results

Figures 4.13 and 4.14 show the comparison of predicted pressure traces for the

pure N2 and the N2+Ar blend, respectively. Very good agreement is observed

between the MP- and previous MZM for low-pressure cases, though for the high

pressure case (i.e. Case 3) there is a noticeable discrepency. In all cases the
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Figure 4.13: A comparison of pure N2

simulated pressure traces for the current
MZM and a previous multi-zone formu-
lation [36].

Figure 4.14: A comparison of a
0.6N2/0.4Ar blend simulated pressure
traces for the current MZM and a previ-
ous multi-zone formulation [36].

MP-MZM formulation underpredicts the compressed pressure, where this

becomes more apparent with increasing pressure. The underprediciton of RC

pressure is attributed to an overprediction of the rate at which gas is transferred

to the piston gap and crevice region by the new formulation which assumes

pressure equilibrium. This can be seen in Figures 4.15 - 4.17, where the

predicted gap exit and crevice velocities for Cases 2 and 5, as well as the mole

fractions of gas in the crevice are plotted, respectively. Cases 2 and 5 are

highlighted here while Cases 1, 3 and 4 show similar trends.

Here it can be seen that the MP-MZM predicts elevated velocities compared

to the SP-MZM. As stated this is due to the assumption of the new model that

the three computational zone are in pressure equilibrium, opposed to the

previous formulation which solves the momentum equation, where fluid shear in

the piston gap region is taken into account. The greater gas velocity to the

piston crevice during compression is thought to be the main cause of

underpredicted compressed pressures by the new model. Pressure is decreased as

gas is transferred to the piston crevice at overpredicted velocities, which thereby

results in higher rates of convective heat transfer to the RCM surfaces and thus a
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Figure 4.15: A comparison of case 2 sim-
ulated gas velocities in the piston gap
and crevice for the current MZM and a
previous multi-zone formulation [36].

Figure 4.16: A comparison of case 5 sim-
ulated gas velocities in the piston gap
and crevice for the current MZM and a
previous multi-zone formulation [36].

lower zone-equilibrated pressure. This conclusion is further supported by

inspection of the average crevice velocities in Figures 4.15 and 4.16 which are

indeed increased by neglecting shear losses in the gap. Also, Figure 4.17 shows

that the amount of gas in the crevice is overpredicted, where this gas cools

quickly due to high convective velocities lowering the RCM pressure.

Figures 4.18 and 4.19 present the gas temperatures computed by both model

formulations for Cases 2 and 5, respectively. As with the velocities these plots

are presented as representative cases, where the other investigated conditions

show similar trends. First, it is noted that good agreement is achieved in the

adiabatic core and average reaction chamber temperatures. Differences between

the reaction chamber temperatures predicted by the two MZMs are attributed to

an over prediction of the amount of gas in the crevice at maximum compression,

as well as differences in mesh geometry and resolution.

Significant disagreement is observed in the gap and crevice temperatures,

however this disagreement appears to have only a small influence on the reaction

chamber. A lower temperature is observed in both the gap and crevice regions

for the MP-MZM. This is an effect of neglecting fluid shear in the gap, which
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Figure 4.17:
A comparison of simulated crevice mole fraction for the current MZM and a

previous multi-zone formulation [36].

Figure 4.18: A comparison of case 2 sim-
ulated gas temperatures for the current
MZM and a previous multi-zone formu-
lation [36].

Figure 4.19: A comparison of case 5 sim-
ulated gas temperatures for the current
MZM and a previous multi-zone formu-
lation [36].

subsequently leads to overpredicted convective velocities in these regions.

Overall it can be seen that the new, MP-MZM does a fairly good job capturing

the important gas-phase physics in the RCM.
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Single Component Fuel Results

For the current study phase-change effects on RCM experiments are asessed by

using the newly developed MP-MZM to simulate aerosol fueled experiments

where n-dodecane and n-hexadecane are used as fuels; these are two commonly

used petro-diesel fuel surrogates with fairly high boiling points, 216 C and 286

C,respectively. An initial droplet diameter of 8 µm is used in all simulations

where this is expected to be experimentally achievable [272] and sufficiently

small to ensure complete vaporization before fuel decomposition and oxidation

chemistry becomes important. Initially, the mixture and machine are assumed to

be heated to 350 K, with the fuel loaded at atmospheric pressure. It is also

assumed that the aerosol bath gas is initially saturated with fuel vapor at the

pre-heat conditions, based on prior modeling of an aerosol fuel delivery

system [272]. Computations are performed here using a machine geometry

consistent with Table 4.2, and a motored engine piston trajectory is used, which

has been described above.

Figure 4.20: Simulated pressure traces
for an n-dodecane D0 = 8 µm aerosol at
φ = 0.0, 1.0 and 2.0 initially at P0 = 1
bar and T0 = 350 K.

Figure 4.21: Simulated pressure traces
for an n-hexadecane D0 = 8 µm aerosol
at φ = 0.0, 1.0 and 2.0 initially at P0 =
1 bar and T0 = 350 K.
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Figures 4.20 and 4.21 show the simulated pressure traces for n-dodecane and

n-hexadecane, respectively, at these equivalence ratios, φ=0, 1.0 and 2.0.

Compressed pressures decrease with increasing global equivalence ratios due to

evaporative cooling effects. It is interesting to note that the pressure traces for

both fuels are almost identical. At their respective normal boiling temperature

n-hexadecane has ∼30% larger vaporization enthalpy than n-dodecane, where

this suggests that evaporative cooling effects should have a greater affect on RC

pressure for the n-hexadecane cases. Careful inspection of Figures 4.20 and 4.21

confirms that this is the case for the simulations presented here, and also that a

seemingly large perturbation of vaporization enthalpy only has a small effect on

RC pressure. It is suspected from this study, which will be supported further,

that the fuel is present in such minute quantities, even at high equivalence ratio

conditions, that fuel effects on bulk mixture thermophysical and transport

properties are very small.

Figure 4.22: Simulated temperatures for
an n-dodecaneD0 = 8 µm aerosol at φ =
1.0 initially at P0 = 1 bar and T0 = 350
K.

Figure 4.23: Simulated temperatures for
an n-hexadecane D0 = 8 µm aerosol at
φ = 1.0 initially at P0 = 1 bar and T0 =
350 K.

The temperatures in each computational zone as well as the adiabatic core

for both fuels at stoichiometric fuel loading are shown in Figures 4.22 and 4.23.
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As can be seen the effects of the vaporization enthalpy are more prominent when

evaluating these results, where n-hexadecane has slightly lower compressed RC,

gap and crevice temperatures due to enhanced evaporative cooling during

vaporization. The high specific heat of the n-hexadecane, which reduces the

mixture thermal diffusivity relative to n-dodecane has a small effect on the rate

of decay of the average RC temperature. This is again thought to be due to the

small amounts of fuel present in the reaction chamber.

Figure 4.24: Simulated gas-phase equiv-
alence ratios for an n-dodecane D0 = 8
µm aerosol at φ = 1.0 initially at P0 =
1 bar and T0 = 350 K.

Figure 4.25: Simulated gas-phase equiv-
alence ratios for an n-hexadecane D0 =
8 µm aerosol at φ = 1.0 initially at P0 =
1 bar and T0 = 350 K.

Figures 4.24 and 4.25 illustrate the gas-phase equivalence ratios in each

computational zone for both fuels at a stoichiometric global (i.e. liquid + gas)

equivalence ratio. First, it is noted that the decay in piston gap and crevice gas

equivalence ratio is completely due to convective mass transfer to the RCM

surfaces and condensation. The sharp falloff in the gap equivalence ratio during

compression is due to a rapid increase in convective velocity in the gap, which

drives fuel transport to the wall.

As is evident here, the adiabatic core, gas-phase fuel equivalence ratio, after

complete vaporization, remains unaltered for all of the conditions investigated in
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this study. The is due to the fact that the species diffusion process from the core

to the RC walls, where most fuel is in the condensed phase, is slow compared to

a 100 ms delay period (ignition time). This is encouraging, and builds confidence

that aerosol fuel loaded RCM experiments will be able to produce high fidelity

chemical kinetic data. Contrary to the previous results a large deviation in the

average RC gas equivalence ratio from the adiabatic core is observed for the

n-hexadecane cases compared to the n-dodecane cases, where this is due to the

lower vapor pressure of n-hexadecane, so that more fuel condenses in the

boundary layer.

Figure 4.26: Simulated reaction cham-
ber non-dimensional temperature gradi-
ents for a D0 = 8 µm aerosol at φ = 0.0,
1.0 and 2.0 initially at P0 = 1 bar and
T0 = 350 K.

Figure 4.27: Simulated reaction cham-
ber non-dimensional gas equivalence ra-
tio gradients for a D0 = 8 µm aerosol at
φ = 0.0, 1.0 and 2.0 initially at P0 = 1
bar and T0 = 350 K.

Figures 4.24 and 4.25 show the non-dimensional thermal and compositional

boundary layers at the end of the 100 ms delay period for six cases simulated in

this study. As can be seen, the thermal boundary layer is almost identical for

both fuels, however the global equivalence ratio has a larger influence on the

shape of the boundary layer. The sharper profile of the fuel rich simulations,

compared to the stoichiometric, is due to the lowered gas mixture thermal
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diffusivity by the introduction of more high specific heat fuel. The lowering of

thermal diffusivity at rich conditions protracts the rate at which the thermal

boundary layer is propagated into the core gases.

Fuel composition, as well as global equivalence ratio have a larger effect on

the gas-phase equivalence ratio boundary layer than the thermal boundary layer.

Fuel vapor pressure, binary diffusion coefficient of the fuel into the oxidizer +

diluent mixture and the composition gradient across the RC are the parameters

which control the curvature of the compostional boundary layer. The low-vapor

pressure of the heavier fuel results in fuel condensation further into the thermal

boundary layer, compared to more volatile n-dodecane. High fuel loadings have

the effect of widening the compositional boundary layer, as increased gas-phase

oversaturation drives a high potential for condensation in the thermal boundary

layer. The fuel rich conditions also create a higher composition gradient from the

core gases to the wall, which drives faster species diffusion across the reaction

chamber.

Figure 4.28: Simulated reaction cham-
ber thermal boundary layer thickness for
a D0 = 8 µm aerosol at φ = 0.0, 1.0 and
2.0 initially at P0 = 1 bar and T0 = 350
K.

Figure 4.29: Simulated reaction cham-
ber compositional boundary layer thick-
ness for a D0 = 8 µm aerosol at φ = 0.0,
1.0 and 2.0 initially at P0 = 1 bar and
T0 = 350 K.
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Figures 4.28 and 4.29 present the thermal and compositional boundary layer

growth in the reaction chamber. The large “steps” in the data is due to

inadequate spatial resolution in the reaction chamber computational mesh (i.e.

mesh courseness). This artifact makes isolating changes in the boundary layer

thickness from dynamic mesh rezoning difficult, however some trends may be

inferred from these results. First, the thermal boundary layer propagates into the

core gases at a faster rate than the fuel composition boundary layer for the cases

investigated in this study. Also, there is little difference in the rate at which the

equivalence ratio boundary layer propagates after complete vaporization is

achieved for the cases investigated here. These features indicate that the species

diffusion process for all of the cases is similar, and that differences in the

compositional boundary layer are mainly controlled by fuel vapor pressure.

Figure 4.30: Simulated gap and crevice liquid film thickness for a D0 = 8 µm
aerosol at φ = 0.0, 1.0 and 2.0 initially at P0 = 1 bar and T0 = 350 K.

Lastly, Figure 4.30 shows the liquid film thickness on the gap and crevice

surfaces due to wall condensation and liquid droplet impingement on the

surfaces. First, it should be noted that a numerical instability in the solution

scheme led to an erroneous result for the fuel-rich, n-hexadecane case. This

instability occurs for some fuel rich conditions and causes spikes in the gap exit
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velocity, and is caused by a stiff coupling between cell pressure decrease due to

rapid condensation and calculation of the velocity required to achieve pressure

equilibrium throughout the zones.

The liquid thickness in the gap is completely due to convective species

transport to the walls where fuel condenses. The fuel film in the crevice is due to

wall condensation, as well as droplet impingement. The rapid rate of film growth

in the gap compared to crevice, after the compression process is complete

indicates that most of the fuel vapor condensation occurs in the gap, and this

process is much slower in the crevice.
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Chapter 5

Summary, Conclusions and Future
Work

Summary

Rapid compression machine experiments are used to collect chemical kinetic

validation targets for fuel decomposition and oxidation processes at engine

relevant conditions. Conventionally, these experiments are limited to gas-phase

or volatile fuels. Pre-heating the RCM and test gas has been a successful method

to incorporate low-vapor pressure fuels into RCM experiments, however only for

a narrow range of conditions as significant pre-test heating can cause fuel

pyrolysis and degradation of machine seals. Even if pre-test fuel vaporization is

achieved, fuel may condense during the experiment at the high pressure

compressed conditions. Loading a test charge of a finely atomized fuel + diluent

+ oxidizer aerosol has been suggested to extend RCM experiments to involatile

fuels, where vaporization and oxidizer mixing is achieved during the compression

process. The effects of phase-change in aerosol and pre-heated fuel experiments

on the well-defined RCM adiabatic core have not been investigated in previous

work. The goal of this study is to assess the extent of thermal and compositional

stratification within the RCM reaction chamber, to determine if an accurate

comparison can be made between computationally-efficient 0D homogeneous

reactor models and RCM experiments.

To facilitate this study a reduced-order, computationally-efficient multi-zone

model for two-phase RCM experiments has been developed. This transient

formulation separates the RCM into three computational zones; the reaction

chamber, the piston gap and the piston crevice. The multi=phase model differs
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from a previously developed RCM MZM, in that detailed species tracking,

molecular and convective species transport and phase-change physics are taken

into account. In addition to offering insight into the physics of these novel RCM

experiments, the model is computationally tractable to provide energy and

composition changes in the test charge to HRMs where detailed chemistry can be

simulated.

The new model has been validated here against detailed simulations for

droplet evaporation as well as the single-phase formulation of the MZM, and

exhibits good agreement. For this study, the new model is used to obtain

non-reactive predictions of bulk pressures as well as temperature and

composition gradients for two commonly used diesel surrogates, n-dodecane and

n-hexadecane.

Conclusions

For the conditions investigated here, the equivalence ratio of the adiabatic core is

predicted to be unaltered after compression by the presence of involatile fuels in

the RCM test charge. This provides confidence that high fidelity chemical data

can be collected from RCM experiments with involatile fuels and adequately

compared to tractable HRMs simulating detailed kinetics, for the conditions

investigated in this study. In general the thickness of the gas-phase compositional

boundary layer is found to be smaller than the thermal boundary layer inside the

RCM reaction chamber. This suggests that, for these fuels and initial conditions,

the species diffusion process to the reaction chamber walls is slower than than

the heat diffusion process. The effects on the experimentally accessible reaction

chamber pressure traces by aerosol fuel loading has been assessed, where the

predicted traces varied weakly as a function of molecular structure and strongly
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as a function of the extent of fuel loading. Predictions for the temperature and

composition in each zone of the new MZM have been made where these results

seem reasonable as they follow the correct physical trends. Confidence in the

quantitative validity of the data presented here, however, should be assessed as

more detailed simulation results and experimental data sets become available.

Future Work

The majority of the effort of this work has been focused on developing and

validating a physics-based model as well as software to simulate the multi-phase

physics of RCM experiments that utilized heavy, transportation relevant fuels.

The initial results presented here represent a starting point for interesting

studies that could be undertaken using the new model. For instance, the

MP-MZM could be updated to investigate the effects of preferential boiling in

multi-component fuels. Also, the code could be updated to investigate, in more

detail, aerosol dynamics (i.e. settling, impingement, coagulation, polydispersed

droplets) that occur within the RCM. The effects of chemical reaction on

transport processes could also be included so that comparisons could be made

with experimental data sets.
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Appendix A

Thermophysical and Transport
Properties

This appendix outlines the various thermophysical and transport property

models utilized by the new MP-MZM. A few modifications have been made to

the referenced specific heat fits in order to accommodate the scheme used here to

calculate two-phase intensive energies. Details of this modification are provided

below. Models for transport coefficients have mainly been employed based on the

suggestions of ref. [273], where these details are also provided in this appendix.

Specific Heat

Gas-phase specific heat is evaluated for each species from the ideal gas (IG)

NASA polynomial fits [274], which have the functional form of Eq. (A.1).

Co
p,j

R
= aNASA,j + bNASA,jT + cNASA,jT

2 + dNASA,jT
3 + fNASA,jT

4 (A.1)

The numerical coefficients a through f are obtained from ref. [274]. For the new

model only the low-temperature fits of specific heats are utilized, where both

low-temperature and high-temperature fits are available. This is due to slightly

non-monotonic behavior in specific heats at the splitting temperatures (typically

∼ 1000-1500 K), which causes numerical instabilities when inferring

temperatures from gas internal energies and also artificial energy increases near

the fit splitting temperatures. Also, the low-temperature fits for gas specific
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heats have been extrapolated beyond their suggested low-temperature limit

(typically ∼ 300 K), in order to calculate liquid-phase specific heats.

Currently, liquid-phase specific heats are calculated as a departure from IG

specific heats by employing the corresponding states principle (CSP). More

specifically, the form given by ref. [275], i.e. Eq. (A.2), is used with the modified

coefficients suggested by ref. [273] to better match experimental data for liquid

Ar, which is often used as a gas diluent in RCM experiments.

Cp,l,j
R

= 1.586 +
0.49

1− Tr,j
+ ωj

[
4.2775 +

6.3(1− Tr,j)1/3

Tr,j

+
0.4355

1− Tr,j

]
+
Co
p,j

R

(A.2)

The RHS of Eq. (A.2) has been slightly modified to achieve a

computationally-efficient MP-MZM framework. As will become apparent shortly,

enthalpies are calculated by integrating specific heats with respect to

temperature. An analytic solution for
∫

6.3(1− Tr,j)1/3/Tr,j dT does not exist,

thus a computationally expensive numerical integration method must be

employed to evaluate enthalpies from Eq. (A.2). For the work presented in this

thesis, an analytic solution for internal energy is obtained by fitting the

problematic term in Eq. (A.2) to a polynomial, which is given by Eq. (A.3).

From inspection of Figure A.1 the error introduced by modifying this term is

thought to be small compared to the error associated with using the original

CSP fit.

6.3(1− Tr,j)1/3 ≈ 0.9882− 0.1013 Tr,j − 1.3324 T 2
r,j + 2.2870 T 3

r,j

− 1.5661 T 4
r,j

(A.3)

A parabolic functional form, i.e. Eq. (A.4), for evaluating liquid specific heat,

as suggested by ref. [276], was also investigated for use in the MP-MZM.

Cp,l,j
R

= aRD,j + bRD,j
T

100
+ dRD,j

(
T

100

)2

(A.4)
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Figure A.1: A schematic of the multi-phase flow through the piston crevice.

Here the coefficients a, b and d are estimated using Benson-style group additivity

methods. While having a much simpler form this correlation was found to be

ill-suited for the MP-MZM, where typically Eq. (A.4) poorly predicts values for

specific heat at temperatures that greatly deviate from the normal boiling

temperature.

This departure is demonstrated in Figure A.1, where Eqs. (A.1), (A.2),

(A.2)+(A.3) and (A.4) are used to calculate the specific heat of n-dodecane. The

parabolic fit of Rùzicka and Domalski does a reasonable job approximating the

liquid specific heat over the limited temperature range where experimental

validation data is available. However, the fit does a poor job of capturing the

rapid increase in liquid specific heat near the critical point, while CSP fit has

previously been shown to correctly predict the physics in this region [273]. The

CSP model blows up as temperatures approaches zero, which is numerically

probalematic for the MP-MZM when root-solving for temperatures from internal

energies. Even though RCM gases do not reach these temperatures during
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experiments, a very low temperature (∼ 40 K) is selected for a thermodynamic

reference state so that diluent, oxidizer and fuels share a common (liquid) phase

from where energies are referenced. To facilitate a stable solution scheme for gas

and liquid temperatures, a constant liquid specific heat is utilized below

temperatures of Tr,j=0.4.

Energy

Liquid enthalpies are calculetd from the definition of specific heat at constant

pressure (i.e. dh/dT = Cp), and more specifically for this formulation by

Eq. (A.5).

hl,j = (Tsplit,j − Tref )Cp,l,j

∣∣∣
Tsplit,j

+

∫ T

Tsplit,j

Cp,l,j dT ∗∗ + href (A.5)

Here a constant liquid specific heat, evaluated at Tsplit,j = 0.4Tcrit,j, is used to

calculate liquid enthalpies at low temperatures (i.e. T < Tsplit,j) for the reasons

discussed above. At temperatures above Tsplit,j Eq. (A.2), with the modification

presented by Eq. (A.3) is analytically integrated to obtain enthalpies. A single

reference temperature and enthalpy are chosen to be consistant between all

species, which ensures a consistant reference (liquid) phase between diluents,

oxidizers and fuels. For the simulations presented in this thesis, a reference

temperature of Tref=40 K and reference enthalpy of href=1000 J/mol were used.

Calculating gas-phase enthalpies that are consistant with the liquid phase by

employing property models is a bit more challenging. This approach was

originally undertaken instead of calculating thermophysical properties from a

state equation so that a wide variety of chemical species can be investigated,

where state equations with few parameters are typically only rigoursly validated

for a few types of species. While a conistant framework for gas-phase enthalpy
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was successfully developed and demonstrated by utilizing property models, more

elegant state equation methods for calculating thermodynamic properties may be

explored in the future.

Gas-phase enthalpies are calculated in a manner similar to the liquid-phase

enthalpies, using Eq. (A.6), where Eq. (A.1) is analytically integrated with

respect to temperature.

hv,j = hl,j(T = T̄b,j) + ∆hvap,j(T = T̄b,j) +

∫ T

T̄b,j

Co
p,j dT ∗∗ (A.6)

In addition to gas-phase sensible heating, the gas-phase enthalpies also carry

information about the sensible heating prior to vaporization as well as the

phase-change temperature and energy. In this sense, the enthalpies calculated

from Eq. (A.6) are total gas-phase enthalpies. This complex tracking of the

conditions prior to vaporization is required to ensure that energies are conserved

during two-phase simulations. Evaluating total gas-phase enthalpies is achieved

by integrating the liquid specific heat from the reference state to the boiling

temperature, adding the vaporization enthalpy at the boiling temperature and

finally integrating the gas specific heat to account for sensinble gas-phase

heating.

Diluent and oxidizer species (e.g. N2, Ar, O2, etc.) are loaded into the

reaction chamber in the gas phase, and are not allowed to condense in the

MP-MZM. For these species the normal boiling temperature is used to evaluate

the pre-vaporization sensible heating and vaporization enthalpy, which assumes

that the species were vaporized at atmospheric pressure before being loaded into

the machine.

Determining a boiling temperature for fuel species that can be used in

Eq. (A.6) is more challenging. A rigourous approach would be to track the

amount and temperature of each vaporizing fuel species at each time step,

however this approach is infeasable. The memory requirements to store this

information would limit the number of computational zones and species able to
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be simulated. Also, root solving gas temperature from Eq. (A.6) would be

numerically challenging and computationally expensive. Thus, a

computationally-efficient, reduced order approach is utlized in the MP-MZM

framework, given by Eq. (A.7).

T̄b,j =

t∫
t0

Tb,j ṅPC,j dt∗∗

t∫
t0

ṅPC,j dt∗∗
(A.7)

Here a rolling average boiling temperature is used for each species, where this

molar weighted temperature is updated at every time step based on the

cumilative amount of fuel vaporized at a given temperature.

Vaporiztion enthalpies are calculated from a Lee-Kessler fit given by

Eq. (A.8), where coefficients from ref. [277] are used.

∆hvap,j =
[
7.08(1− T̄b,r,j)0.354 + 10.95 ωj (1− T̄b,r,j)0.456

]
Tcrit,jR (A.8)

Intensive internal enrgies are calculated from the thermodynamic relation

h = u+ P/ρ. Liquid internal energies are calculated from Eq. (A.9), where

compressability effects are assumed to be small.

ul,j = hl,j (A.9)

Gas-phase internal energies are calculated by Eq. (A.10), where the ideal gas

equation of state has been employed (i.e. P/ρ = RT ).

uv,j = hv,j −RT (A.10)

At each time step, a secant root solver is employed to determine liquid-phase

temperature from Eqs. (A.5) and (A.9) and gas-phase temperature from Eqs.

(A.6)-(A.8) and (A.10).
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Equation of State

The ideal gas equation of state, i.e. Eq. (A.11), is employed at each time step

after species and energies to calculate presures in each computational zone.

Pj = ρjRT (A.11)

Thus, real gas effects are neglected in the MP-MZM framework, which becomes

important for fuels during vaporization.

The liquid mixture density is a function of liquid temperature, where a

compressability factor is used to calculate the departure in density from the ideal

gas value, i.e. Eq. (A.12), where the mixing rule suggested by Li [273] is utilized.

ρl,mix =

[
R

(
Nsp∑
j=1

χl,jTcrit,j
Pcrit,j

)
Z

1+(1−Tr,mix)0.2857

mix

]−1

(A.12)

The mixture dearture function is evaluated based on the correlation in ref. [278],

i.e. Eq. (A.13).

Zmix =

Nsp∑
j=1

χl,j (0.29056− 0.08775ωj) (A.13)

The mixing rule suggested by ref. [279], i.e. Eq. (A.14), is used to calcute the

mixture critical temperature.

Tcrit,mix =

Nsp∑
i=1

Nsp∑
j=1

χl,iVcrit,i
Nsp∑
j=1

χl,jVcrit,j

χl,jVcrit,j
Nsp∑
j=1

χl,jVcrit,j

(Tcrit,iTcrit,j)
1/2 (A.14)
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Viscosity

Gas-phase viscosities are calculated by utlizing the method of Chung et

al. [280,281], i.e. Eq. (A.15), where the low-pressure formulation is extrapolated

to high pressures in the MP-MZM.

µj = 40.785
F ∗j (MWjT )1/2

V
2/3
crit,jΩj

(A.15)

In Eq. (A.15), F ∗j is a factor to account for varying molecular structures, and is

given by Eq. (A.16).

F ∗j = 1− 0.2756 ωj + 0.059035 µ4
DP,r,j + κ (A.16)

The dimensionless species dipole moments µDP,r,j are calculated via Eq. (A.17),

as suggested by ref. [273].

µDP,r,j = 131.3
µDP,j
Vcrit,jΩj

(A.17)

The empirical correlation proposed by ref. [282] is used to estimate the species

collision integrals, and is given by Eq. (A.18).

Ωj = 1.16145

(
kbT

εj

)−0.14874

+ 0.52487 exp

[
−0.77320

(
kbT

εj

)]
+ 2.16178 exp

[
−2.43787

(
kbT

εj

)] (A.18)

Mixture viscosities are calcuted via a simple mixing rule derived from kinetic

gas theory, i.e. Eq. (A.19), that was proposed by ref. [283].

µmix =

Nsp∑
i=1

χiµi
Nsp∑
j=1

χjηi,j

(A.19)
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Where,

ηi,j =
[1 + (µi/µj)

1/2(MWj/MWi)
1/4]2

[8(1 +MWi/MWj)]1/2
(A.20)

Thermal Conductivity

The method of Chung et al. [280,281], i.e. Eq. (A.21), is also used to calculte

thermal conductivities.

kj =
3.75RΨjµjCv

MWj

(A.21)

The varible Ψj in Eq. (A.21) is given by Eq. (A.22).

Ψj = 1 + αj
0.215 + 0.28288 αj − 1.061 βj + 0.26665 Zj

0.6366 + βjZj + 1.061 αjβj
(A.22)

The molecular parameters αj and βj are given by Eq. (A.23) and (A.24),

respectively.

αj =
Cv,j
R
− 3

2
(A.23)

βj = 0.7862− 0.7109 ωj + 1.3168 ω2
j (A.24)

Z is the number of collisions required to convert molecular rotational energy

to transitional energy, and is given by Eq. (A.25).

Zj = 2.0 + 10.5 T 2
r,j (A.25)

Gas mixture thermal conductivity is evaluated using the Wassiljewa mixing
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rule, i.e. Eq. (A.26), with the Mason and Saxena modification, i.e.

Eq. (A.27), [273].

kmix =

Nsp∑
i=1

χiki
Nsp∑
j=1

χjAij

(A.26)

Aij =
[1 + (ktr,i/ktr,j)

1/2(MWi/MWj)
1/4]2

[8(1 +MWi/MWj)]1/2
(A.27)

Diffusion Coefficient

Gas diffusion coefficients are calculated using the method of Wilke and Lee [273],

given by Eq. (A.28).

Dij =
[3.03− (0.98/MWij)]T

3/2

MW
1/2
ij σij2Ωij,DP

(A.28)

Where the diffusion collision integral is estimated by the fit proposed by

ref. [282], i.e. Eq. (A.29).

Ωij,D =
1.06036kbT
εij


0.15610 +

0.19300

exp

0.47635

kbT
εij




+
1.03587

exp

1.52996

kbT
εij




+
1.76474

exp

3.89411

kbT
εij




(A.29)
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As suggested by ref. [273], the Lennard-Jones parameter σj is estimated from the

species saturated liquid density via Eq. (A.30).

σj = 1.18 ρ
1/3
b,j (A.30)

Simple binary mixing rules are applied per the suggestions of ref. [273].

εij = (εiεj)
1/2 (A.31)

MWij =
2

1/MWi + 1/MWj

(A.32)

σij =
σi + σj

2
(A.33)

Diffusion coefficients for a single species diffusing into the gas mixture are

estimated utilizing Blanc’s Law [284], i.e. Eq. (A.34).

Dj,mix =

Nsp∑
i 6=j

χi

Dij


−1

(A.34)
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