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this study. The is due to the fact that the species diffusion process from the core

to the RC walls, where most fuel is in the condensed phase, is slow compared to

a 100 ms delay period (ignition time). This is encouraging, and builds confidence

that aerosol fuel loaded RCM experiments will be able to produce high fidelity

chemical kinetic data. Contrary to the previous results a large deviation in the

average RC gas equivalence ratio from the adiabatic core is observed for the

n-hexadecane cases compared to the n-dodecane cases, where this is due to the

lower vapor pressure of n-hexadecane, so that more fuel condenses in the

boundary layer.

Figure 4.26: Simulated reaction cham-
ber non-dimensional temperature gradi-
ents for a D0 = 8 µm aerosol at φ = 0.0,
1.0 and 2.0 initially at P0 = 1 bar and
T0 = 350 K.

Figure 4.27: Simulated reaction cham-
ber non-dimensional gas equivalence ra-
tio gradients for a D0 = 8 µm aerosol at
φ = 0.0, 1.0 and 2.0 initially at P0 = 1
bar and T0 = 350 K.

Figures 4.24 and 4.25 show the non-dimensional thermal and compositional

boundary layers at the end of the 100 ms delay period for six cases simulated in

this study. As can be seen, the thermal boundary layer is almost identical for

both fuels, however the global equivalence ratio has a larger influence on the

shape of the boundary layer. The sharper profile of the fuel rich simulations,

compared to the stoichiometric, is due to the lowered gas mixture thermal
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diffusivity by the introduction of more high specific heat fuel. The lowering of

thermal diffusivity at rich conditions protracts the rate at which the thermal

boundary layer is propagated into the core gases.

Fuel composition, as well as global equivalence ratio have a larger effect on

the gas-phase equivalence ratio boundary layer than the thermal boundary layer.

Fuel vapor pressure, binary diffusion coefficient of the fuel into the oxidizer +

diluent mixture and the composition gradient across the RC are the parameters

which control the curvature of the compostional boundary layer. The low-vapor

pressure of the heavier fuel results in fuel condensation further into the thermal

boundary layer, compared to more volatile n-dodecane. High fuel loadings have

the effect of widening the compositional boundary layer, as increased gas-phase

oversaturation drives a high potential for condensation in the thermal boundary

layer. The fuel rich conditions also create a higher composition gradient from the

core gases to the wall, which drives faster species diffusion across the reaction

chamber.

Figure 4.28: Simulated reaction cham-
ber thermal boundary layer thickness for
a D0 = 8 µm aerosol at φ = 0.0, 1.0 and
2.0 initially at P0 = 1 bar and T0 = 350
K.

Figure 4.29: Simulated reaction cham-
ber compositional boundary layer thick-
ness for a D0 = 8 µm aerosol at φ = 0.0,
1.0 and 2.0 initially at P0 = 1 bar and
T0 = 350 K.
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Figures 4.28 and 4.29 present the thermal and compositional boundary layer

growth in the reaction chamber. The large “steps” in the data is due to

inadequate spatial resolution in the reaction chamber computational mesh (i.e.

mesh courseness). This artifact makes isolating changes in the boundary layer

thickness from dynamic mesh rezoning difficult, however some trends may be

inferred from these results. First, the thermal boundary layer propagates into the

core gases at a faster rate than the fuel composition boundary layer for the cases

investigated in this study. Also, there is little difference in the rate at which the

equivalence ratio boundary layer propagates after complete vaporization is

achieved for the cases investigated here. These features indicate that the species

diffusion process for all of the cases is similar, and that differences in the

compositional boundary layer are mainly controlled by fuel vapor pressure.

Figure 4.30: Simulated gap and crevice liquid film thickness for a D0 = 8 µm
aerosol at φ = 0.0, 1.0 and 2.0 initially at P0 = 1 bar and T0 = 350 K.

Lastly, Figure 4.30 shows the liquid film thickness on the gap and crevice

surfaces due to wall condensation and liquid droplet impingement on the

surfaces. First, it should be noted that a numerical instability in the solution

scheme led to an erroneous result for the fuel-rich, n-hexadecane case. This

instability occurs for some fuel rich conditions and causes spikes in the gap exit
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velocity, and is caused by a stiff coupling between cell pressure decrease due to

rapid condensation and calculation of the velocity required to achieve pressure

equilibrium throughout the zones.

The liquid thickness in the gap is completely due to convective species

transport to the walls where fuel condenses. The fuel film in the crevice is due to

wall condensation, as well as droplet impingement. The rapid rate of film growth

in the gap compared to crevice, after the compression process is complete

indicates that most of the fuel vapor condensation occurs in the gap, and this

process is much slower in the crevice.
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Chapter 5

Summary, Conclusions and Future
Work

Summary

Rapid compression machine experiments are used to collect chemical kinetic

validation targets for fuel decomposition and oxidation processes at engine

relevant conditions. Conventionally, these experiments are limited to gas-phase

or volatile fuels. Pre-heating the RCM and test gas has been a successful method

to incorporate low-vapor pressure fuels into RCM experiments, however only for

a narrow range of conditions as significant pre-test heating can cause fuel

pyrolysis and degradation of machine seals. Even if pre-test fuel vaporization is

achieved, fuel may condense during the experiment at the high pressure

compressed conditions. Loading a test charge of a finely atomized fuel + diluent

+ oxidizer aerosol has been suggested to extend RCM experiments to involatile

fuels, where vaporization and oxidizer mixing is achieved during the compression

process. The effects of phase-change in aerosol and pre-heated fuel experiments

on the well-defined RCM adiabatic core have not been investigated in previous

work. The goal of this study is to assess the extent of thermal and compositional

stratification within the RCM reaction chamber, to determine if an accurate

comparison can be made between computationally-efficient 0D homogeneous

reactor models and RCM experiments.

To facilitate this study a reduced-order, computationally-efficient multi-zone

model for two-phase RCM experiments has been developed. This transient

formulation separates the RCM into three computational zones; the reaction

chamber, the piston gap and the piston crevice. The multi=phase model differs
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from a previously developed RCM MZM, in that detailed species tracking,

molecular and convective species transport and phase-change physics are taken

into account. In addition to offering insight into the physics of these novel RCM

experiments, the model is computationally tractable to provide energy and

composition changes in the test charge to HRMs where detailed chemistry can be

simulated.

The new model has been validated here against detailed simulations for

droplet evaporation as well as the single-phase formulation of the MZM, and

exhibits good agreement. For this study, the new model is used to obtain

non-reactive predictions of bulk pressures as well as temperature and

composition gradients for two commonly used diesel surrogates, n-dodecane and

n-hexadecane.

Conclusions

For the conditions investigated here, the equivalence ratio of the adiabatic core is

predicted to be unaltered after compression by the presence of involatile fuels in

the RCM test charge. This provides confidence that high fidelity chemical data

can be collected from RCM experiments with involatile fuels and adequately

compared to tractable HRMs simulating detailed kinetics, for the conditions

investigated in this study. In general the thickness of the gas-phase compositional

boundary layer is found to be smaller than the thermal boundary layer inside the

RCM reaction chamber. This suggests that, for these fuels and initial conditions,

the species diffusion process to the reaction chamber walls is slower than than

the heat diffusion process. The effects on the experimentally accessible reaction

chamber pressure traces by aerosol fuel loading has been assessed, where the

predicted traces varied weakly as a function of molecular structure and strongly
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as a function of the extent of fuel loading. Predictions for the temperature and

composition in each zone of the new MZM have been made where these results

seem reasonable as they follow the correct physical trends. Confidence in the

quantitative validity of the data presented here, however, should be assessed as

more detailed simulation results and experimental data sets become available.

Future Work

The majority of the effort of this work has been focused on developing and

validating a physics-based model as well as software to simulate the multi-phase

physics of RCM experiments that utilized heavy, transportation relevant fuels.

The initial results presented here represent a starting point for interesting

studies that could be undertaken using the new model. For instance, the

MP-MZM could be updated to investigate the effects of preferential boiling in

multi-component fuels. Also, the code could be updated to investigate, in more

detail, aerosol dynamics (i.e. settling, impingement, coagulation, polydispersed

droplets) that occur within the RCM. The effects of chemical reaction on

transport processes could also be included so that comparisons could be made

with experimental data sets.
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Appendix A

Thermophysical and Transport
Properties

This appendix outlines the various thermophysical and transport property

models utilized by the new MP-MZM. A few modifications have been made to

the referenced specific heat fits in order to accommodate the scheme used here to

calculate two-phase intensive energies. Details of this modification are provided

below. Models for transport coefficients have mainly been employed based on the

suggestions of ref. [273], where these details are also provided in this appendix.

Specific Heat

Gas-phase specific heat is evaluated for each species from the ideal gas (IG)

NASA polynomial fits [274], which have the functional form of Eq. (A.1).

Co
p,j

R
= aNASA,j + bNASA,jT + cNASA,jT

2 + dNASA,jT
3 + fNASA,jT

4 (A.1)

The numerical coefficients a through f are obtained from ref. [274]. For the new

model only the low-temperature fits of specific heats are utilized, where both

low-temperature and high-temperature fits are available. This is due to slightly

non-monotonic behavior in specific heats at the splitting temperatures (typically

∼ 1000-1500 K), which causes numerical instabilities when inferring

temperatures from gas internal energies and also artificial energy increases near

the fit splitting temperatures. Also, the low-temperature fits for gas specific
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heats have been extrapolated beyond their suggested low-temperature limit

(typically ∼ 300 K), in order to calculate liquid-phase specific heats.

Currently, liquid-phase specific heats are calculated as a departure from IG

specific heats by employing the corresponding states principle (CSP). More

specifically, the form given by ref. [275], i.e. Eq. (A.2), is used with the modified

coefficients suggested by ref. [273] to better match experimental data for liquid

Ar, which is often used as a gas diluent in RCM experiments.

Cp,l,j
R

= 1.586 +
0.49

1− Tr,j
+ ωj

[
4.2775 +

6.3(1− Tr,j)1/3

Tr,j

+
0.4355

1− Tr,j

]
+
Co
p,j

R

(A.2)

The RHS of Eq. (A.2) has been slightly modified to achieve a

computationally-efficient MP-MZM framework. As will become apparent shortly,

enthalpies are calculated by integrating specific heats with respect to

temperature. An analytic solution for
∫

6.3(1− Tr,j)1/3/Tr,j dT does not exist,

thus a computationally expensive numerical integration method must be

employed to evaluate enthalpies from Eq. (A.2). For the work presented in this

thesis, an analytic solution for internal energy is obtained by fitting the

problematic term in Eq. (A.2) to a polynomial, which is given by Eq. (A.3).

From inspection of Figure A.1 the error introduced by modifying this term is

thought to be small compared to the error associated with using the original

CSP fit.

6.3(1− Tr,j)1/3 ≈ 0.9882− 0.1013 Tr,j − 1.3324 T 2
r,j + 2.2870 T 3

r,j

− 1.5661 T 4
r,j

(A.3)

A parabolic functional form, i.e. Eq. (A.4), for evaluating liquid specific heat,

as suggested by ref. [276], was also investigated for use in the MP-MZM.

Cp,l,j
R

= aRD,j + bRD,j
T

100
+ dRD,j

(
T

100

)2

(A.4)
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Figure A.1: A schematic of the multi-phase flow through the piston crevice.

Here the coefficients a, b and d are estimated using Benson-style group additivity

methods. While having a much simpler form this correlation was found to be

ill-suited for the MP-MZM, where typically Eq. (A.4) poorly predicts values for

specific heat at temperatures that greatly deviate from the normal boiling

temperature.

This departure is demonstrated in Figure A.1, where Eqs. (A.1), (A.2),

(A.2)+(A.3) and (A.4) are used to calculate the specific heat of n-dodecane. The

parabolic fit of Rùzicka and Domalski does a reasonable job approximating the

liquid specific heat over the limited temperature range where experimental

validation data is available. However, the fit does a poor job of capturing the

rapid increase in liquid specific heat near the critical point, while CSP fit has

previously been shown to correctly predict the physics in this region [273]. The

CSP model blows up as temperatures approaches zero, which is numerically

probalematic for the MP-MZM when root-solving for temperatures from internal

energies. Even though RCM gases do not reach these temperatures during
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experiments, a very low temperature (∼ 40 K) is selected for a thermodynamic

reference state so that diluent, oxidizer and fuels share a common (liquid) phase

from where energies are referenced. To facilitate a stable solution scheme for gas

and liquid temperatures, a constant liquid specific heat is utilized below

temperatures of Tr,j=0.4.

Energy

Liquid enthalpies are calculetd from the definition of specific heat at constant

pressure (i.e. dh/dT = Cp), and more specifically for this formulation by

Eq. (A.5).

hl,j = (Tsplit,j − Tref )Cp,l,j

∣∣∣
Tsplit,j

+

∫ T

Tsplit,j

Cp,l,j dT ∗∗ + href (A.5)

Here a constant liquid specific heat, evaluated at Tsplit,j = 0.4Tcrit,j, is used to

calculate liquid enthalpies at low temperatures (i.e. T < Tsplit,j) for the reasons

discussed above. At temperatures above Tsplit,j Eq. (A.2), with the modification

presented by Eq. (A.3) is analytically integrated to obtain enthalpies. A single

reference temperature and enthalpy are chosen to be consistant between all

species, which ensures a consistant reference (liquid) phase between diluents,

oxidizers and fuels. For the simulations presented in this thesis, a reference

temperature of Tref=40 K and reference enthalpy of href=1000 J/mol were used.

Calculating gas-phase enthalpies that are consistant with the liquid phase by

employing property models is a bit more challenging. This approach was

originally undertaken instead of calculating thermophysical properties from a

state equation so that a wide variety of chemical species can be investigated,

where state equations with few parameters are typically only rigoursly validated

for a few types of species. While a conistant framework for gas-phase enthalpy
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was successfully developed and demonstrated by utilizing property models, more

elegant state equation methods for calculating thermodynamic properties may be

explored in the future.

Gas-phase enthalpies are calculated in a manner similar to the liquid-phase

enthalpies, using Eq. (A.6), where Eq. (A.1) is analytically integrated with

respect to temperature.

hv,j = hl,j(T = T̄b,j) + ∆hvap,j(T = T̄b,j) +

∫ T

T̄b,j

Co
p,j dT ∗∗ (A.6)

In addition to gas-phase sensible heating, the gas-phase enthalpies also carry

information about the sensible heating prior to vaporization as well as the

phase-change temperature and energy. In this sense, the enthalpies calculated

from Eq. (A.6) are total gas-phase enthalpies. This complex tracking of the

conditions prior to vaporization is required to ensure that energies are conserved

during two-phase simulations. Evaluating total gas-phase enthalpies is achieved

by integrating the liquid specific heat from the reference state to the boiling

temperature, adding the vaporization enthalpy at the boiling temperature and

finally integrating the gas specific heat to account for sensinble gas-phase

heating.

Diluent and oxidizer species (e.g. N2, Ar, O2, etc.) are loaded into the

reaction chamber in the gas phase, and are not allowed to condense in the

MP-MZM. For these species the normal boiling temperature is used to evaluate

the pre-vaporization sensible heating and vaporization enthalpy, which assumes

that the species were vaporized at atmospheric pressure before being loaded into

the machine.

Determining a boiling temperature for fuel species that can be used in

Eq. (A.6) is more challenging. A rigourous approach would be to track the

amount and temperature of each vaporizing fuel species at each time step,

however this approach is infeasable. The memory requirements to store this

information would limit the number of computational zones and species able to
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be simulated. Also, root solving gas temperature from Eq. (A.6) would be

numerically challenging and computationally expensive. Thus, a

computationally-efficient, reduced order approach is utlized in the MP-MZM

framework, given by Eq. (A.7).

T̄b,j =

t∫
t0

Tb,j ṅPC,j dt∗∗

t∫
t0

ṅPC,j dt∗∗
(A.7)

Here a rolling average boiling temperature is used for each species, where this

molar weighted temperature is updated at every time step based on the

cumilative amount of fuel vaporized at a given temperature.

Vaporiztion enthalpies are calculated from a Lee-Kessler fit given by

Eq. (A.8), where coefficients from ref. [277] are used.

∆hvap,j =
[
7.08(1− T̄b,r,j)0.354 + 10.95 ωj (1− T̄b,r,j)0.456

]
Tcrit,jR (A.8)

Intensive internal enrgies are calculated from the thermodynamic relation

h = u+ P/ρ. Liquid internal energies are calculated from Eq. (A.9), where

compressability effects are assumed to be small.

ul,j = hl,j (A.9)

Gas-phase internal energies are calculated by Eq. (A.10), where the ideal gas

equation of state has been employed (i.e. P/ρ = RT ).

uv,j = hv,j −RT (A.10)

At each time step, a secant root solver is employed to determine liquid-phase

temperature from Eqs. (A.5) and (A.9) and gas-phase temperature from Eqs.

(A.6)-(A.8) and (A.10).
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Equation of State

The ideal gas equation of state, i.e. Eq. (A.11), is employed at each time step

after species and energies to calculate presures in each computational zone.

Pj = ρjRT (A.11)

Thus, real gas effects are neglected in the MP-MZM framework, which becomes

important for fuels during vaporization.

The liquid mixture density is a function of liquid temperature, where a

compressability factor is used to calculate the departure in density from the ideal

gas value, i.e. Eq. (A.12), where the mixing rule suggested by Li [273] is utilized.

ρl,mix =

[
R

(
Nsp∑
j=1

χl,jTcrit,j
Pcrit,j

)
Z

1+(1−Tr,mix)0.2857

mix

]−1

(A.12)

The mixture dearture function is evaluated based on the correlation in ref. [278],

i.e. Eq. (A.13).

Zmix =

Nsp∑
j=1

χl,j (0.29056− 0.08775ωj) (A.13)

The mixing rule suggested by ref. [279], i.e. Eq. (A.14), is used to calcute the

mixture critical temperature.

Tcrit,mix =

Nsp∑
i=1

Nsp∑
j=1

χl,iVcrit,i
Nsp∑
j=1

χl,jVcrit,j

χl,jVcrit,j
Nsp∑
j=1

χl,jVcrit,j

(Tcrit,iTcrit,j)
1/2 (A.14)
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Viscosity

Gas-phase viscosities are calculated by utlizing the method of Chung et

al. [280,281], i.e. Eq. (A.15), where the low-pressure formulation is extrapolated

to high pressures in the MP-MZM.

µj = 40.785
F ∗j (MWjT )1/2

V
2/3
crit,jΩj

(A.15)

In Eq. (A.15), F ∗j is a factor to account for varying molecular structures, and is

given by Eq. (A.16).

F ∗j = 1− 0.2756 ωj + 0.059035 µ4
DP,r,j + κ (A.16)

The dimensionless species dipole moments µDP,r,j are calculated via Eq. (A.17),

as suggested by ref. [273].

µDP,r,j = 131.3
µDP,j
Vcrit,jΩj

(A.17)

The empirical correlation proposed by ref. [282] is used to estimate the species

collision integrals, and is given by Eq. (A.18).

Ωj = 1.16145

(
kbT

εj

)−0.14874

+ 0.52487 exp

[
−0.77320

(
kbT

εj

)]
+ 2.16178 exp

[
−2.43787

(
kbT

εj

)] (A.18)

Mixture viscosities are calcuted via a simple mixing rule derived from kinetic

gas theory, i.e. Eq. (A.19), that was proposed by ref. [283].

µmix =

Nsp∑
i=1

χiµi
Nsp∑
j=1

χjηi,j

(A.19)
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Where,

ηi,j =
[1 + (µi/µj)

1/2(MWj/MWi)
1/4]2

[8(1 +MWi/MWj)]1/2
(A.20)

Thermal Conductivity

The method of Chung et al. [280,281], i.e. Eq. (A.21), is also used to calculte

thermal conductivities.

kj =
3.75RΨjµjCv

MWj

(A.21)

The varible Ψj in Eq. (A.21) is given by Eq. (A.22).

Ψj = 1 + αj
0.215 + 0.28288 αj − 1.061 βj + 0.26665 Zj

0.6366 + βjZj + 1.061 αjβj
(A.22)

The molecular parameters αj and βj are given by Eq. (A.23) and (A.24),

respectively.

αj =
Cv,j
R
− 3

2
(A.23)

βj = 0.7862− 0.7109 ωj + 1.3168 ω2
j (A.24)

Z is the number of collisions required to convert molecular rotational energy

to transitional energy, and is given by Eq. (A.25).

Zj = 2.0 + 10.5 T 2
r,j (A.25)

Gas mixture thermal conductivity is evaluated using the Wassiljewa mixing
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rule, i.e. Eq. (A.26), with the Mason and Saxena modification, i.e.

Eq. (A.27), [273].

kmix =

Nsp∑
i=1

χiki
Nsp∑
j=1

χjAij

(A.26)

Aij =
[1 + (ktr,i/ktr,j)

1/2(MWi/MWj)
1/4]2

[8(1 +MWi/MWj)]1/2
(A.27)

Diffusion Coefficient

Gas diffusion coefficients are calculated using the method of Wilke and Lee [273],

given by Eq. (A.28).

Dij =
[3.03− (0.98/MWij)]T

3/2

MW
1/2
ij σij2Ωij,DP

(A.28)

Where the diffusion collision integral is estimated by the fit proposed by

ref. [282], i.e. Eq. (A.29).

Ωij,D =
1.06036kbT
εij


0.15610 +

0.19300

exp

0.47635

kbT
εij




+
1.03587

exp

1.52996

kbT
εij




+
1.76474

exp

3.89411

kbT
εij




(A.29)
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As suggested by ref. [273], the Lennard-Jones parameter σj is estimated from the

species saturated liquid density via Eq. (A.30).

σj = 1.18 ρ
1/3
b,j (A.30)

Simple binary mixing rules are applied per the suggestions of ref. [273].

εij = (εiεj)
1/2 (A.31)

MWij =
2

1/MWi + 1/MWj

(A.32)

σij =
σi + σj

2
(A.33)

Diffusion coefficients for a single species diffusing into the gas mixture are

estimated utilizing Blanc’s Law [284], i.e. Eq. (A.34).

Dj,mix =

Nsp∑
i 6=j

χi

Dij


−1

(A.34)


