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ABSTRACT 
CHARACTERIZATION OF TWO-DIMENSIONAL OCULOMOTOR 

CONTROL DURING GOAL-DIRECTED 

EYE MOVEMENTS IN HUMANS 

 

 

Vincent Dang, B.S. 

 
Marquette University, 2013 

 
 Oculomotor control is a subset of sensorimotor control that allows humans to 

make extremely accurate eye movements for ADL.  Impairments to oculomotor control 

can increase the impact of sensorimotor control deficits, especially in neurodegenerative 

diseases such as MS.  Here, a two-dimensional computational control system of saccades 

and smooth-pursuit eye movements was compiled from literature to systematically 

characterize oculomotor control in eight visually-healthy humans as a precursor to 

studying the relationship between oculomotor and sensorimotor control in patient 

populations.   

 

 Subjects visually tracked a single dot on a 41 x 30.5 cm monitor in a dark room 

while eye positions were recorded at 60 Hz by a video based eye tracker.  Data from 

visual tasks separately consisting of saccades and smooth-pursuit along the horizontal 

and/or vertical midlines were inputs to an error minimization algorithm that identified 

individually for each subject the parameters characterizing motor command generation 

and two-dimensional interactions within ocular dynamics, with bootstrap analysis 

quantifying the certainty of parameter estimates.  Cross-correlation between target and 

subject gaze positions was used to identify neuronal conduction speeds for saccades and 

smooth-pursuit processing.  A task consisting of small saccades identified the minimum 

position error required for saccade initiation.  A final task combining saccade and 

smooth-pursuit movements was used to evaluate model performances.      

 

 The model accounted for 96% and 98% of variability for subject saccade and 

smooth-pursuit eye movements, respectively.  The 2-D model analysis of saccades and 

smooth-pursuit identified interactions between horizontal and vertical oculomotor control 

indicative of component stretching but did not verify the increased speed of vertical 

versus horizontal eye movements reported in literature. A novel interaction associated 

with centrifugal curvature was also identified, but the functional effects the interactions 

were small.  Estimated latencies of saccade and smooth-pursuit processing of 242 and 

107 ms, respectively, were within ranges provided by literature, while dead zone values 

for saccade initiation had a 97% error from values provided by literature.  The 

quantitative framework presented in this study may be used in future studies that include 

MS patients, in which oculomotor control characterization may reveal differences in 

control strategies for goal-directed ocular movements relative to healthy individuals.   
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1 INTRODUCTION 

 

 

 Sensorimotor control is characterized by the use of sensory information (visual, 

auditory, tactile and proprioceptive) to control movements, including those required for 

activities of daily living (ADL).  The field of oculomotor control studies the use of 

sensory information in the control of goal-directed eye movements, which are extremely 

accurate compared to limb movements.  Computational models have been developed to 

emulate eye movements using control systems that incorporate eye dynamics, sensory 

feedback, neuronal conduction speeds and motor command generation.  Impairments to 

oculomotor control can increase the impact of sensorimotor control deficits by providing 

inaccurate visual feedback during goal-directed tasks.  Understanding how deficits in 

oculomotor control contribute to impairments in goal-directed arm movements is 

important in neurodegenerative diseases such as Multiple Sclerosis (MS).  Systematically 

characterizing an individual’s oculomotor control mechanisms is a precursor to studying 

this relationship.  The goal of this study is to characterize oculomotor control in a cohort 

of healthy subjects.  Three specific aims will be addressed.    

 

1.1 Specific Aims 

 

1. Develop a model of oculomotor control and characterize its response to saccade 

and smooth-pursuit eye movements based on published literature. 

2. Apply system identification techniques to characterize experimentally the 

oculomotor control model for individual subjects and evaluate the model 

performance in response to saccades and smooth-pursuit eye movements.  
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3. Characterize position and velocity-based interactions between horizontal and 

vertical oculomotor control during oblique eye movements in neurologically 

intact subjects.   

 
1.2 Significance 

  

Many studies of eye movement deficits focus on characterizing deficit features to 

more clearly define and detect them.  The use of oculomotor control models provides a 

theoretical framework to relate the features of eye movement deficits to specific 

functional and/or computational sources of impairment. In work presented here, a model 

of 2D oculomotor control is developed based on the literature and evaluated in terms of 

its stability and accuracy in modeling eye movements of visually healthy subjects.  The 

model’s stability was evaluated based on replication of a well-known velocity-based 

characteristic for eye movements, and the accuracy was evaluated based on detection of 

known features in two-dimensional eye movements.  Successful implementation of this 

model, and the methodology required to characterize it based on individual subject data, 

will provide a quantitative framework for characterizing the functional source(s) of 

impairment that contribute to oculomotor deficits and their contribution to impairments in 

goal-directed arm movement.  At that point, inferences may be made about the functional 

source(s) of the deficits by understanding what control element(s) can account for the 

deficit-induced movements.  In addition, this model may be sensitive to effects in 

oculomotor control not previously described in the literature, such as interactions 

between horizontal and vertical eye dynamics.  Thus, this study provides methodology 

for future patient studies while further characterizing oculomotor control in healthy 

subjects.   
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2 BACKGROUND 

 

 

2.1 Eye Movement Types 

 

Models of the oculomotor system typically characterize 4 types of eye 

movements: saccades, smooth-pursuit, vergence and vestibular-ocular reflex (VOR) 

movements.  Saccades are used for ADL such as reading and scanning the environment, 

and are characterized by rapid, jerky movements, with speeds up to 1000˚/second, 

durations ranging 30-80 ms and latencies between movements of 200-250 ms (Abrams, 

Meyer, & Kornblum, 1989; Robinson, 1964; Thomas, 1969; Westheimer, 1954).  

Smooth-pursuit movements occur during voluntary tracking of moving targets with 

speeds up to 100˚/second and latencies of about 100 ms (Meyer, Lasker, & Robinson, 

1985; Purves, 2001).  Vergence eye movements occur when the oculomotor system 

fixates targets in depth, resulting in opposite motion between eyes.  VOR movements are 

reflexive and used to maintain fixation on a target in response to head movements 

(Purves, 2001).   

 
2.2 Saccade Models 

 

 Some eye movement control models are typically characterized by saccadic eye 

movements.  A variety of models have been developed to characterize saccades (Bahill, 

Clark, & Stark, 1975a; Becker & Jurgens, 1990; Chen-Harris, Joiner, Ethier, Zee, & 

Shadmehr, 2008; Clark & Stark, 1976; G.; Cook & L. Stark, 1968; Freedman & Cecala, 

2008; Grossman & Robinson, 1988; van Gisbergen, van Opstal, & Schoenmakers, 1985; 

L. R. S. Young, L, 1963) including the quasi-linear relationship between saccade peak 

velocity and amplitude for saccades smaller than 20˚ (A. T. C. Bahill, M.R.; Stark, L, 
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1975).  This effect is characterized by saturation of the peak velocity curve with saccade 

magnitude, referred to as the main sequence, for saccades larger than 20˚ (A. T. C. Bahill, 

M.R.; Stark, L, 1975).   

 

 
Figure 1: Saccade Main Sequence curve (Bahill, 1975).  Peak velocity during a saccade increases 

linearly with saccade magnitudes for small and medium eye displacements (<20˚).  For saccades 

greater than 20˚, peak velocity saturates.   

  

Head-restrained models of goal-directed saccades generally simulate oculomotor 

control as a closed-loop process for multiple saccades characterized by a controller, 

comparing current eye position with target location, a signal transduction and ocular 

muscle dynamics (Becker & Jurgens, 1990; Chen-Harris et al., 2008; Freedman & 

Cecala, 2008; Nichols & Sparks, 1996; van Gisbergen et al., 1985).  Six ocular muscles 

actuate each human eye and can be modeled individually as mass-spring-damper systems.  

Previous studies have shown the resultant dynamics of the eye during rotation about a 

single axis can be approximately accounted for by a 2
nd

 order system whose inertia, 

friction and elasticity can be collectively characterized by time constants of 224 and 13 

ms (Robinson, Gordon, & Gordon, 1986).  Saccade models accounting for nerve input 
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are important for understanding the input-output signal transduction of the visual system, 

but the nerve input encodes visual target location and is commonly replaced by visual 

target input for models focusing only on control characteristics.   

Saccade control models assume an open-loop response for single saccades 

because saccade duration (30-80 ms) is shorter than the delay associated with the visual 

feedback (200 ms), resulting in an all-or-nothing response to the displacement of a visual 

target.  The response is typically modulated by a short burst signal (pulse) to provide the 

high saccade velocity followed by a longer tonic signal (step) to hold eye position, both 

of which comprise the pulse-step controller (Bahill, Clark, & Stark, 1975b).  Following a 

primary ballistic saccade, error-corrective eye movements have been shown to 

undershoot the target (Kapoula & Robinson, 1986), consistent with a negative feedback 

closed-loop control process.  Closed-loop control is also required to account for 

sequential saccades, where an efference copy of the motor command is typically used 

together with an internal representation of the ocular plant to predict the consequences of 

a motor command on eye position in the absence of visual feedback (Bridgeman, 2007; 

Chen-Harris et al., 2008; Miall, Weir, Wolpert, & Stein, 1993).  This signal is compared 

to target position to give a predictive error signal, accounting for the high accuracy and 

speed of saccades.   

Nonlinear saccade models focusing on the discrete nature of saccades have 

incorporated a sampler with a 200 ms duration and a dead zone of ±0.5˚ (L. R. S. Young, 

L, 1963).  The sampler limits the oculomotor system output to one saccade within a 

duration window corresponding to the duration of a typical saccade to prohibit a new 

saccade from interrupting a current saccade.  The sampling zone enables visual 
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information processing by preventing saccades when the target is projected sufficiently 

onto the fovea.   

 
2.3 Smooth-pursuit Models 

  

During continuous movement of a visual target, the oculomotor system uses 

smooth-pursuit eye movements to place the target on the fovea as accurately as possible.  

In contrast to saccade models which operate on the position error, smooth-pursuit models 

aim to reduce retinal slip, or the velocity error between the target and the eye (Forster, 

Van Houtte, & Young, 1969; Lisberger, Evinger, Johanson, & Fuchs, 1981; Robinson et 

al., 1986; L. R. Young, 1971)Depending on the type of movement, these models may 

involve target prediction.  For example, when presented with a sinusoidal, predictive 

target, the smooth-pursuit system can extrapolate future target positions to emulate 

physiological zero-latency tracking using a target menu-selection method, which 

identifies the target movement as one from a set of pre-defined movement types (Bahill 

& McDonald, 1983).  Other models disregard this physiological phenomenon assuming 

that an encounter with a predictive continuous target is rare (Lisberger et al., 1981; 

Robinson et al., 1986).  Despite not always showing zero-latency tracking, smooth-

pursuit eye movements are advantageous over saccades in that the latency, ~100 ms, for 

initiation of a smooth pursuit movement is approximately half of the saccade latency 

(Orban de Xivry & Lefevre, 2007).   

More so than in saccade models, smooth-pursuit models place an emphasis on 

nonlinearities in order to model smooth-pursuit characteristics.  Traditionally a position-

based dead zone has not explicitly been a part of smooth-pursuit models as the positional 

error has been regarded as irrelevant for a velocity-driven system.  For velocity-driven 
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systems, two nonlinearities are typically considered: a rate limiter of about ±70 

degrees/seconds to prohibit response to high-velocity targets, and velocity saturation of 

about ±60 degrees/seconds  to model physiological limitations on smooth-pursuit eye 

movement speed (Bahill & McDonald, 1983).  These nonlinearities are modeled after 

smooth-pursuit dynamics observed experimentally and typically act in conjunction with a 

second order controller in a feed-forward path.  Similar to the saccade models, these 

models incorporate an internal feedback loop to minimize error in the absence of visual 

feedback.  However, because smooth-pursuit relies more heavily on visual feedback, 

especially for unpredictable targets, the closed loop nature of the control system plays a 

more prominent role in reducing the overall error, compared to saccade control.   

 
2.4 Saccade and Smooth-pursuit Interactions 

 

Smooth-pursuit is rarely observed without some saccade interaction.  During a 

visual tracking task, catch-up saccades compensate for excessive positional error due to 

velocity constraints in the execution of a smooth-pursuit movement (Orban de Xivry & 

Lefevre, 2007).  Unlike saccades made to discrete targets, catch-up saccades consider 

velocity error to predict and compensate for the low velocity of a smooth-pursuit 

command (de Brouwer, Yuksel, Blohm, Missal, & Lefevre, 2002).  The disadvantage of 

fast error-correction with catch-up saccades is that vision is lost for the duration of the 

saccade, as the high velocity movement negates the eye’s ability to maintain the target on 

the fovea.  Due to the trade-off between poor vision and poor tracking when considering 

use of catch-up saccades, its use may vary based on the complexity of the tracking tasks 

(Orban de Xivry & Lefevre, 2007).   
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The interaction between saccades and smooth-pursuit can be accounted for by the 

use of a dual-movement model (Young & Stark, 1963; de Brouwer et al., 2002).  In the 

model, the smooth-pursuit system is continuously activated during target tracking, while 

the saccade system only generates a motor command when the eye-crossing time exceeds 

140 ms, or the positional error exceeds the dead zone (Young & Stark, 1963; de Brouwer 

et al., 2002).  The eye-crossing time, TXE, is an artificial parameter defined as the time 

calculated for the eye to coincide with the target at constant eye velocity, (Equation 2.1), 

where PE and RS are position error and retinal slip, respectively (de Brouwer et al., 

2002).  If the eye-crossing time or dead zone output is such that both subsystems output 

 XE

PE
T

RS
   (2.1) 

a motor command, the commands are summed before actuating the ocular plant.  Figure 2 

shows a block diagram representation of the proposed interaction of the two subsystems.   

 

 
Figure 2: Interactions between saccade and smooth-pursuit systems.  Positional error and velocity 

based errors (retinal slip) influence the motor command output of both subsystems and the trigger, 

which is a binary signal enabling a saccade output.  The dashed orange line indicates the influence of 

positional error on smooth-pursuit is based only on partial evidence, as it has been difficult to 

disassociate positional errors from persistent velocity based errors for smooth-pursuit experiments.  

Efference copies, which are neurological copies of the motor command signal, of the saccade and 

smooth-pursuit subsystems are compared with the retinal inputs encoding target position to compute 

positional and velocity based errors respectively, with the smooth-pursuit efference copy additionally 
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influencing the computation of positional error.  Regardless of the state of the trigger signal, the 

outputs of the two subsystems are continuously summed to provide the motor command to the eye 

(Orban de Xivry & Lefevre, 2007). 

 
2.5 2-Dimensional Relationships between Axial Components 

  

Oculomotor models have been extended to the 2-D plane to characterize control 

during vertical and oblique eye movements.  Historically, horizontal eye movement 

studies in humans have dominated the literature due to their behavioral prominence in 

daily activities and in part to eyelid interference during vertical eye movements.  Despite 

the relative recentness of oblique eye movement studies, one quantitative property of 

human oblique saccades has been well established: component duration stretching to 

reduce (but not eliminate) saccade curving (Becker and Jurgens 1989, Smit 1990).  

Component stretching increases the duration of the component with a smaller amplitude 

and is used to synchronize the end time of the axial components during an oblique 

saccade.  For example, an oblique saccade traveling 10˚ horizontally and 5˚ vertically 

may decrease vertical velocity to synchronize movement end times across axes.  

Reported in 40% of oblique saccades, the mechanism for duration stretching includes 

glissades (smooth gliding movement), dynamic overshoot and multiple saccades to reach 

the target (A. T. S. Bahill, L, 1975).  It should be noted that 1-D curvature, defined by 

inconsistencies in velocity throughout the movement profile, was shown in models that 

use pulse-step controllers to modulate saccades (Bahill et al., 1975b).   

One hypothesis for interaction between the horizontal and vertical eye movements 

is independent feedback control, defined as independent generations of motor commands 

for horizontal and vertical eye movements where the horizontal error feedback does not 

influence the vertical eye movements (and vice versa), ensuring the magnitudes of the 
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motor commands are simply not scalars of one another as proposed by a contrasting 

hypothesis known as vectorial comparator control (Nichols & Sparks, 1996).  Recent 

studies using head movements and electrical stimulation of the Superior Colliculus have 

shown that the independent feedback control model more accurately accounts for oblique 

saccade characteristics compared to the vectorial comparator control model (Nichols & 

Sparks, 1996; Freedman & Cecala, 2008).   

Another hypothesis for 2-D interaction control is known as the mutual-coupling 

hypothesis (Becker & Jurgens, 1990; Grossman & Robinson, 1988).  Grossman and 

Robinson proposed that the position output of one component attenuates the gain of its 

orthogonal component (Grossman & Robinson, 1988).  Becker and Jurgens suggested a 

cross-coupling of the horizontal and vertical motor errors as shown in Equations 2.2 and 

2.3 (Becker & Jurgens, 1990).  Both equations show that the magnitude of the position in 

horizontal or vertical eye movements attenuates the velocity of the orthogonal 

component, where posh, posv, velh, velv, and c respectively represent the horizontal 

position, vertical position, horizontal velocity, vertical velocity and a tuning coefficient  

 

 
 1

h
h

v

pos
vel

c pos


 
 (2.2) 

 

 
 1

v
v

h

pos
vel

c pos


 
 (2.3) 

 

that is typically fit to experimental data as a positive value (Becker & Jurgens, 1990).  

Both of these mechanisms incorporate positional cross-coupling between the two 

orthogonal control components.  To our knowledge, velocity-based error has not been 
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tested as a contributor to component stretching in oblique saccades.  The influence of 

velocity-based error towards 1-D control of eye movements has been shown in previous 

studies (Orban de Xivry & Lefevre, 2007), so it is reasonable to believe that this error 

type could influence 2-D control if 2-D control retains control mechanisms from 1-D 

control sub-systems.  System interactions between horizontal and vertical eye movements 

such as centrifugal curving (Becker & Jurgens, 1990) and vertical position offset as a 

function of horizontal eccentricity (A. T. S. Bahill, L, 1975), have been shown 

qualitatively and provide context for investigating quantitatively the 2-D interactions 

between horizontal and vertical oculomotor control.   

 

2.6 System identification of Oculomotor Control 

 

Previous efforts have been made to model normative saccade and/or smooth-

pursuit control systems and acquire typical control characteristics across subjects  (Chen-

Harris et al., 2008; Clark & Stark, 1976; Freedman & Cecala, 2008; Quaia & Optican, 

1997; Robinson et al., 1986; L. R. S. Young, L, 1963).    However, few of these 

normative models have been used to distinguish characteristics between subjects, which 

can be important for studying heterogeneous patient populations such as MS.  Existing 

studies using system identification has been used to characterize oculomotor control in 

non-human systems such as humanoid vision systems (Schmidt-Cornelius, 2002).  

Studies motivated by human physiology have used oculomotor control models to 

describe neurological deficits, such as those in Duane-Syndrome or Progressive 

Supranuclear Palsy, but these have been limited to either 1-dimensional movement or a 

single type of movement (saccade or smooth-pursuit) (Helmle, Jahn, & Bille, 1983; 
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Schneider et al., 2011).  Models capable of characterizing a wider array of movement 

types may be more representative of typical oculomotor control, since eye movements to 

everyday targets are rarely exclusively saccade, smooth-pursuit or 1-D.  Identification of 

these models in individuals could provide greater insights into oculomotor control 

strategies and how their impairment impacts other forms of goal-directed movements.    
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3 METHODS 

 
 

3.1 2-D Oculomotor Control Model 

 

The proposed oculomotor control model characterizes two types of eye 

movement, saccades and smooth-pursuits, to constrain the number of variables in the 

model and improve curve-fitting.  Saccades and smooth-pursuit movement were chosen 

because of their presence in oculo-manual relationships, particularly the influence of eye 

movement control on arm movement control, seen in goal-directed movements (Feys et 

al., 2008; Feys, Helsen, Lavrysen, Nuttin, & Ketelaer, 2003; Feys, Helsen, Liu, et al., 

2003; Feys et al., 2005; Vercher, Quaccia, & Gauthier, 1995).  The impact of Vergence 

and VOR movements were reduced in the experimental design by avoiding 3-D stimuli 

and using a forehead and chin rest to minimize head movement.   

The model was implemented using MATLAB’s Systems Identification toolbox.  

As a nonlinear grey box model, our model structure was built into a separate file, similar 

to a function, with 54 parameters.  Twelve parameters were dependent on others and ten 

parameters were obtained through non-parametric analysis, resulting in 32 unique 

parameters obtained through system identification.  Code within the model file represents 

the model block diagram (Figure 3).   

 
3.1.1 Overall Control Scheme 

 

Figure 3 shows a block diagram of the oculomotor control model used in this 

study.  The multiple input, multiple output model receives visual input about target 

position in the horizontal and/or vertical plane, and adjusts the eye position to fixate on 

the target.  The model contains separate control paths, one for saccade and one for 
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smooth-pursuit, that combine to provide corrective motor command to the eye.  The 

outermost feedback path compares the current eye position to the target input to compute 

a position error which drives the system.   

 

 
Figure 3: 2-D Oculomotor Control Model.  The input and output signals are comprised of horizontal 

and vertical components of the target and eye positions, respectively.  Saccade generation is mediated 

by the top forward and feedforward paths, while smooth-pursuit generation is mediated by the 

bottom paths. Each control path incorporates an internal model to generate a predictive error signal 

to minimize error and response time.  The largest loop compares the eye position to the target to 

generate an actual error signal that drives the system.  The ocular plant is a 2
nd

 order system 

characterizing inertia, friction and elasticity of the eyeball.   

 

 

The model assumes that smooth-pursuit eye movement control is continuously 

enabled, and saccade control is discretely enabled.  The two system’s motor commands 

are always summed, even if saccade control is momentarily disabled.  It should be noted 

that the output of the saccade control path is typically much larger than that of the 

smooth-pursuit control path for tasks with larger discrete target movement, resulting in 

insignificant difference between the sum of the two motor commands and the saccade 

command. 

The position error relative to the target forms the input to the saccade and smooth-

pursuit control loops.  The outputs from the loops are summed to form the motor 
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command and used to actuate a second order model of the eye dynamics, proposed by 

Chen-Harris (Chen-Harris et al., 2008).  Earlier smooth-pursuit models approximated the  
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ocular plants as a dual lag system (P(s)) where T1 and T2 are time constants of 224 ms 

and 13 ms (Robinson et al., 1986).  This model assumes that antagonistic muscle actuator 

dynamics in each direction is lumped into a single passive plant driven by an implicit 

differential drive.  In the current model, the continuous time transfer function was 

transformed to a state-space representation with horizontal and vertical eye  

 

 x Ax Bu   (3.2) 

 

 y Cx Du   (3.3) 

 

 

position and velocity as the state variables (Equations 3.2 and 3.3), where x, u and y 

correspond to the state variables, inputs and outputs in vector form, and A, B, C and D 

correspond to state, input, output and feedforward matrices respectively.  The system and 

input matrices were discretized by computing the state transition, or matrix exponential, 

of the system using a step size of 16 ms based on the 60 Hz resolution of the eye tracking 

system, resulting in a 2 input / 2 output model characterizing eye position, where the  

 

   (3.4) 
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internal states of the model correspond to horizontal eye position (posh), horizontal eye 

velocity (velh), vertical eye position (posv) and vertical eye velocity (velv) (Equations 3.4 

and 3.5).  The state matrix, A, characterizes the influence of the current states on future 

states.  Coefficients A1-A4 for the horizontal (h) and vertical (v) components (Equation 

3.4; shaded blue) characterize the horizontal and vertical dynamics of the eye and were 

fixed from literature, with vertical dynamics equivalent to horizontal dynamics, to 

increase model tractability (Robinson et al., 1986).  The input matrix, B, was used to 

weight the motor command to each state, where B1-B2 for both components were fixed to 

values obtained from the literature (Robinson et al., 1986).  The remaining coefficients 

characterize interactions between horizontal and vertical position and velocity (Equation 

3.4: shaded orange), where the superscripts pos, vel and e represent position, velocity and 

error along the associated direction.  The inputs to the model were current horizontal and 

vertical eye positions, and the outputs were future horizontal and vertical positions. 

The parameters for the state and input matrices derived from Robinson’s time 

constants are shown in Equations 3.6 and 3.7 (Robinson et al., 1986).  In this 

representation, there are no 2-D interactions between the horizontal and vertical states 

and parameters characterizing dynamics for the horizontal and vertical components are 

constrained to be equal to increase feasibility of model fitting (Chen-Harris et al., 2008).   
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Internal representations of the ocular dynamics and delays in response to 

corrective command signals are critical for accurate control in delayed feedback models.  

Here, accurate estimates of the plant and subsequent visual delay are incorporated into a 

Smith Predictor to reduce the error-inducing effects of feedback delays.  Without this 

estimation, stable control systems operating on a dynamic error signal are limited to 

changes whose period is greater than the delay along the closed-loop path.  With the 

forward model, the delayed visual feedback can be cancelled and replaced by a zero-lag 

estimate of the visual feedback, increasing the dynamic range of the system.  To achieve 

the high accuracy in target tracking seen in healthy populations, the parameters 

characterizing the internal estimate of the ocular dynamics,  ̂ and  ̂ were set equal to the 

actual dynamics of the model (Equations 3.8 and 3.9).   
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The model of ocular dynamics reported by Robinson (Robinson et al., 1986) 

showed a position-dependent ocular drift that brings the eye back to center when fixating 

an eccentric position.  This results in larger steady-state error between the eye and target 

as eccentricity increases, consistent with the known nonlinear viscoelasticity of the soft 

connective tissues involved in maintaining the eyeball in its orbit (Robinson, 1964, 1975; 

Westheimer, 1954).  Figure 4 shows the response for the normative controller, in which 

steady-state error is dependent on position relative to visual axis.  An ocular drift 

compensator gain on the target position was added to the saccade and smooth-pursuit 

control paths to negate the drift.  Physiologically, this represents the constant torque 

applied to ocular muscles associated with fixation on an eccentric target.  Manual tuning 

determined that a value of 1 was optimal for drift cancellation.    
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Figure 4: Model outputs showing the effect of drift compensation.  Normative model without the 

ocular drift compensation (ODC; red dotted line) results in eccentricity-dependent steady-state error 

between the eye position and target that increases with eccentricity.  Model with an ocular drift 

compensation gain of 1.0 (green dashed line), found through manual tuning, multiplied with the 

target amplitude to provide a constant torque needed to correct for ocular drift.    

  

3.1.2 Saccade Loop 

 

 The saccade control loop acts as a discrete process that compensates for positional 

error greater than 0.5˚ (L. R. S. Young, L, 1963).  The saccade motor command is driven 

by an extra-retinal error calculated between the eye and target positions.  Saccade motor 

commands (Uh, Uv) are generated using a proportional-derivative (PD) controller 

(Equation 3.10) to drive changes in ocular position and velocity states using the  
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difference between horizontal and vertical target positions (Tposh and Tposv) and 

perceived eye positions (pôsh and pôsv) (Chen-Harris et al., 2008).  For example, the 

model uses horizontal proportional (Ph) and derivative (Dh) gains with horizontal position 

error (Tposh - pôsh) and velocity error (
d
/dt (Tposh - pôsh)) to compute the horizontal motor 

command.  Interactions between horizontal and vertical motor commands were restricted 

to the state and input matrices.  Prior to subject analysis, the controller gains were set to 

approximate the range of saccade velocities using model fits to averaged ballistic velocity 

profile and maximum velocity obtained from pilot data.  During subject analysis, the 

controller parameters were fit to subject’s saccade response to characterize motor 

generation using target position.    

 In the model, saccade commands were delayed before actuating the ocular plant.  

The delay was defined by a single lumped parameter that included propagation delays of 

the visual information and subsequent processing and generation of the saccade.   

 
3.1.3 Smooth-pursuit Loop 

 

 Smooth-pursuit movements are slower than saccades and act to minimize steady-

state tracking error, rather than merely bringing the eye to a region of interest.  A 

proportional-integral-derivative (PID) controller was chosen as a general control 

mechanism to reduce both transient and steady-state error, where here, the proportional, 
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integrative and derivative gains modulate sensitivity to current error, accumulated error 

and the change in error, respectively.  PID control has higher accuracy compared to PD 

control but requires a richer data set, as optimizing a larger number of parameters 

requires data with more distinct features.  Equation 3.11 shows the smooth-pursuit motor 

command generation using position and velocity error.  Horizontal and vertical motor 

commands are generated independently, indicated by zeros where axial (single axis) 

errors may influence cross-axial (opposite axis) motor commands.   
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 Both the smooth-pursuit and saccade branches were similar in terms of the 

internal feedback path.  Consistent with earlier smooth-pursuit eye movement models, the 

forward path uses a derivative function acting on the positional error to allow the system 

to operate on the change in error (velocity error) (Bahill & McDonald, 1983; Krauzlis & 

Lisberger, 1994; Robinson et al., 1986).  Prior to the controller, the velocity error was 

rate limited to ±70 degrees/second to account for the shift from smooth-pursuit 

movements to saccades in response to high velocity targets (Bahill & McDonald, 1983).    

 
3.2 Subjects 

  

Nine healthy college students (4 Female; Mean age – 22.6 years, SD – 2.4 years) 

participated in the study.  One of the nine subjects (EM_S02) was excluded from the 
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study due to persistent failure to track the visual target and reported ocular fatigue.  

Among the remaining subjects, three wore glasses regularly and one wore glasses 

occasionally.  Although glasses were prohibited during the experiment, subjects verbally 

indicated they could identify target location on the screen.  All subjects gave written 

informed consent prior to participation in accordance with Marquette University’s 

Institutional Review Board.   

 
3.3 Experimental Materials/Setup 

 
The general setup used to experimentally measure eye movements is illustrated by 

Figure 5.  An Arrington Research Systems BS007 Binocular EyeFrame Mounted 

EyeTracker® was used to track eye movements.  The system uses two infrared (940nm) 

LEDs (one per eye) together with a pair of infrared CCD cameras to image the cornea of 

the subject’s eye based on pupil roundness and corneal glint.  Infrared (IR) corneal 

images are collected at 60 Hz with a USB-interface on a computer running Windows 7 

and processed in real-time using Arrington Research’s ViewPoint software system.  The 

IR-LED sources are mounted on an eyeglass frame and placed approximately 2 cm from 

the eye.  Prior to testing, the subject was fit with the head-mounted eyetracker and a head 

strap was used to prevent the eyetracker from slipping.  

During a 1-hour test session, subjects participated in a series of eye movement 

tasks, in which they were asked to track the motion of a target (0.5˚ diameter) presented 

on a computer display.  All tests were performed in the Integrative Neural Systems Lab, 

in a curtain-enclosed space to eliminate ambient lighting.  Subjects were seated 

comfortably in a pivot-less chair 60 cm in front of a computer monitor and asked to place 

their head on a custom-made chin rest to minimize head movements during the task.   
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Figure 5: Experimental Setup (Wakde, 2011).  The experimenter uses separate computers (left table) 

to generate stimuli and record eye movements.  A chin rest positions the subject’s head 60 cm in 

front of a NEC monitor.  A switch box is used to direct displays at either a calibration grid from the 

eye movement data collection computer or stimuli from the computer running the experiment.      

 
 
3.4 Visual Tasks 

 

Stimuli were presented on a 41 x 30.5 cm NEC AccuSync 120 monitor with a 

1400 x 1050 resolution at a refresh rate of 60 Hz, resulting in horizontal and vertical 

fields of view of 36˚ and 28˚ respectively.  Stimulus generation and presentation was 

controlled using Bravishell and PsychToolbox 3.0.8 running in MATLAB R2010a 

(Mathworks, Natick, MA).  Prior to testing, subject eye position was calibrated using an 
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Arrington (ViewPoint) 16-point calibration grid of sequentially displayed targets 

presented evenly spaced across the visual display.   

Four visual tasks were used to quantify eye movements: saccade steps, smooth-

pursuit ramps, combined saccade and smooth-pursuit targets and saccade threshold steps 

(the latter designed to characterize the target-response dead zone).  Stimuli consisted of a 

target (yellow dot; 55 candela/meters square for both red and green colors) with a 0.5˚ 

diameter presented on a gray background (25 candela/meters square) that moved along 

the horizontal midline of the display, along the vertical midline of the display, and across 

the 2-D display, resulting in 12 task conditions.  The direction of the target dot motion 

was randomized to minimize prediction of the target trajectory.  For each task condition, 

10 trials were obtained, each with a 10-second duration, to minimize the effects of fatigue 

(determined from a previous pilot study).  No other features were present in the display.  

Thus, within the display, the only source of visual information was the target. 

 The duration, range of motion and types of sub-movements differed by task 

condition (described below).  The target motion in each trial was generated randomly, 

reducing the chance of producing two trials with exact sub-movements.   

 
3.4.1 Saccade Task 

 

The random saccade task consisted of a visual target that performed a sequence of 

instantaneous displacements along the horizontal and/or vertical midline.  The amplitudes 

of displacement were selected randomly from the range of 0-37˚, with the upper range 

corresponding to the full width of the display.  The target was positioned at the display 

center at trial onset, and each new target location (TN) was applied relative to the current 

target location (TC), (Eq 3.10).  Target locations were constrained to fall within the range 
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of the display.  In each trial, the last displacement moved the target to the screen center 

for a minimum of 1 second to facilitate the concatenation of eye movement sequences 

across trials during analysis.  

Following each random displacement, the target remained stationary for a 

pseudorandom interval ranging 0.0167-1.983 seconds.  The duration range was used to 

characterize the amount of time required to fixate the target, and the pseudorandom 

selection of the displacement duration was used to prevent subjects from predicting the 

timing of eye movements.  Subjects were instructed to move their eyes to the target as 

quickly and as accurately as possible.   

 
3.4.2 Smooth-pursuit Task 

 
During the smooth-pursuit task, the target moved in a series of constant velocity 

intervals along the horizontal and/or vertical midline with speeds ranging 1-20˚/seconds.  

At the start of each trial, the target was positioned at the center of display. The target then 

moved at a constant velocity in a randomly selected direction for period ranging 0.0167-

3.983 seconds.  The upper bound for the duration of movement was longer than that of 

the random saccade task to allow subjects sufficient time to match the velocity of the 

target.  The target accelerated/decelerated at rates up to 15˚/seconds
2
 for 75% of the 

movement intervals to reduce the predictability of the target movement.  To minimize the 

occurrence of saccades between successive constant velocity/acceleration intervals, the 

new target location was momentarily equal to the previous target location such that the 

target followed a piece-wise continuous motion.  When the target reached the bounds of 

the display, the target direction was reversed while maintaining the specified 
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speed/acceleration.  During the last movement interval, the target moved at a 

predetermined speed of 18.43˚/seconds towards the display center.  Given a maximum 

display half-width of 18.43˚, this ensured that the target reached the display center within 

the one second duration of the last interval.  When the target reached the center, it 

remained stationary until the end of the trial to characterize gaze fixation.  All trials 

began and ended at the display center to facilitate the concatenation of eye movements 

into a single time series to be fit by the model.  

 
3.4.3 Combined Saccade and Smooth-pursuit Task 

  

During each trial, the target followed a sequence of random displacements 

(saccades) and constant velocity/acceleration intervals (smooth-pursuit), similar to those 

described in the preceding tasks.  The order of sub-movements was selected randomly 

and the duration of each sub-movement was randomly selected from the range 0.0167-

1.983 seconds.  Similar to the preceding tasks, the target was positioned at the center of 

the display prior to the first sub-movement and was returned to the center of the display 

during the last sub-movement interval.  Smooth-pursuit target sub-movements had an 

arbitrary probability of three times that of saccade sub-movements due to the occurrence 

of catch-up saccades during smooth-pursuit movements.   
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3.4.4 Saccade Threshold Task  

  

The saccade threshold task consisted of a series of target steps with amplitudes 

randomly selected from the range 0-2˚.  The duration of each target step was randomly 

selected over the range 0.5-1.983 seconds, to allow subjects sufficient time to fixate the 

target.  The target was positioned at the display center at trial onset and was displaced 

along the horizontal or vertical midlines, or across the 2-D display.  In each trial, the last 

displacement moved the target to the screen center for a minimum of 1 second to 

facilitate the concatenation of eye movement sequences across trials. 

 
3.5 Data Analysis 

 

3.5.1 Data Preprocessing 

 

Eye movement data collected from the eye tracker was pre-processed prior to the 

model fit to remove eye blinks using a pupil roundness algorithm (Eq. 3.10).  Data points 

in which the pupil height to width ratio fell below 0.8 were removed and the remaining 

data were concatenated.   

To align subject gaze data to the appropriate sub-targets, the eye tracking data 

during each 10-second trial was extracted using stimulus markers sent from Bravishell to 

the ViewPoint software to label the start and end points of each trial.  Trials containing 

gaze artifacts (e.g. subject re-fixation during the task, in which subjects momentarily 

brought the eye position towards the screen center), were excluded from analysis.  The 

remaining trials (≥5 per condition) were then concatenated to form a single continuous 

data set to aid model fitting. 



28 
 

 To correct for slight head movements between trials, an amplitude offset was 

applied to each trial of the subject gaze data.  This offset was computed as the difference 

between the mean positions (degs) of the target and subject gaze data.  After subject gaze 

offset was corrected, the data was smoothed to reduce noise using a 100 ms sliding 

window.  A gaze displacement threshold corresponding to 50% of the stimulus 

displacement was used to determine which targets displacements elicited a saccade.  The 

gaze displacements were computed as the difference in positions across 133 ms 

durations, which were approximated as the durations of each saccade for the 2˚ 

displacement range from the saccade threshold task, to measure the full distance of a 

saccade displacement.  To find the corresponding sub-target for every gaze point, the 

algorithm iteratively searched backwards in time for a unique non-zero sub-target 

displacement. 

 
3.5.2 Initial-Model 

 

 Accurate fitting of the model to the eye tracking data required initial estimates for 

the model parameters that resulted in a stable system response, (see section 3.5.3 for 

more details).  Initial conditions for the saccade’s PD and smooth-pursuit’s PID 

controllers were determined through a combination of inspection and model fitting to 

pilot data.  The initial state for the model controllers was obtained by manually fitting the 

saccade and smooth-pursuit models to one randomly-selected (10-second duration) trial 

from the saccade and smooth-pursuit tasks obtained from two subjects in a separate pilot 

study.  For the saccade task, the PD controller gains were adjusted until the rise time and 

overshoot error percentages were less that 10% between the two subjects.  To capture the 

oscillatory movement about the dynamic target and low latency in the smooth-pursuit 
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data, the PID controller was tuned until model output matched the oscillatory motion seen 

at target onset of the data from one pilot subject (Figure 6).  The initial parameter values 

for the vertical controller were then matched to those of the horizontal controller.   

 

     A           B 

 
Figure 6: Saccade (A) and smooth-pursuit (B) controller outputs using the initial-model, compared to 

subject eye movements from pilot data.  Saccade rise time error, calculated as the percent difference 

between the rise times of the target and subject step responses, was 8.108 %, and the saccade 

overshoot error, calculated as the percent difference between the overshoot values, was 9.491 %.  The 

rise time and overshoot criteria were met for the saccade controller output, and the smooth-pursuit 

controller showed overshoot similar to subject data. 

 

 

To further validate the initial-model controllers’ tune to the pilot data, the model 

response characteristics were also compared to the literature.  Two phenomena, the 

saccade main sequence (peak velocity as a function of displacement amplitude) and the 

smooth-pursuit main sequence (peak acceleration as a function of retinal slip velocity 

error), were evaluated for the model.  Physiologically, both sequences show primarily a 

linear relationship, with velocity saturation shown in higher target amplitudes for 

saccades (Figure 7A,B).  The exact saturation region varies across studies due to 

differences in data collection and differentiation techniques (Boghen et al, 1974).  Figure 

7 shows saccade and smooth-pursuit main sequences from earlier studies (A and B), 
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together with pilot data from one subject (C and D) and the model response (E and F).  

For the typical range of displacements used in the current study (<25 degs), the pilot data 

showed little (if any) saturation, making direct experimental estimation of the saturation 

point problematic.  Figure 7 shows that the peak velocities from the saccade data in the 

literature and pilot subjects (A and C) show the same linear relationship (for 

displacements < 22 degs), with the pilot subjects showing peak velocities approximately 

half of those from the literature, likely due to a difference in eye tracker temporal 

resolutions between the studies affecting the accuracy of peak velocity computations with 

lower resolution here.  The peak accelerations from the smooth-pursuit data in the 

literature and pilot subjects (B and D) resemble similar linear relationships, with the pilot 

subjects showing peak accelerations approximately an order of magnitude above those 

from literature.  The lower peak accelerations from Lisberger’s study may result from an 

attempt to remove catch-up saccades, which showed higher velocities than smooth-

pursuit movements, through visual inspection of data (Lisberger et al., 1981).  In the pilot 

data, the smooth-pursuit movements were smoothed by a 500 ms averaging window and 

assumed to contain no catch-up saccades.   

Examination of the main sequence relationships suggested that saturation of the 

peak velocities and accelerations were not required in the model to represent the 

relationships from literature.  Figure 7 shows that the peak velocities from the saccade 

data in pilot subjects and model (C and E) compare favorably in the linear region, but the 

pilot data does not consistently show peak velocities within a saturation region similar to 

the model.  Similarly, without a peak acceleration saturation in the model, the peak 
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accelerations from the smooth-pursuit data compare favorably (D and F).  Therefore the 

saturations of velocity and acceleration points were not implemented in the model.   

 

 

 

Figure 7: Main sequences for saccades and smooth-pursuit eye movements defined as the peak 

velocity to displacement during saccades, and peak acceleration to velocity for smooth pursuit.  (A) 

and (B) show the main sequences for saccades (A. T. C. Bahill, M.R.; Stark, L, 1975) and smooth 

pursuit (Lisberger et al., 1981) from literature.  The main sequence from the saccade sub-model with 

velocity saturation (E) approximates the linear and saturation regions of the main sequence of 

recorded eye movements from earlier studies (A) and the linear region of the pilot data (C).  The 

main sequence from the smooth-pursuit sub-model (F) resembles the linear main sequence seen in 

earlier studies (B) and peak accelerations seen in the pilot data (D).   

 
 
3.5.3 System Identification 
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Figure 8 shows the workflow for the 3-stage system identification process used to 

characterize the model parameters in response to subjects’ responses to the oculomotor  

 

 

 
Figure 8: Workflow for System Identification Process.  The experimental data and oculomotor 

control model were input to the predictive error minimization algorithm that yielded the best-fit 

parameters.  Axial components of the same task types comprised the data used to acquire parameters 

for saccade, smooth-pursuit and 2-D control.  The end result of this workflow is the subject-specific 

best-fit oculomotor control model.   

 

 

tasks.  The structure and free parameters of the oculomotor model were defined using the 

nonlinear greybox identification object (idnlgrey) in the Systems Identification Toolbox 

(Matlab, 2012).  The predictive error minimization (PEM) function was used to optimize 

the free parameters by minimizing a least squared error cost function.  The PEM function 



33 
 

simultaneously and systematically adjusted all free parameters iteratively using the 

Gauss-Newton algorithm (Rovati, 1990).  After each iteration, the updated model output 

was estimated from the new parameter estimates to determine if the model change 

contributed to a lower cost.  Observations from model fitting to pilot data showed 

parameter estimates typically reached a steady-state within 10 iterations, so the PEM 

function was limited to 10 iterations before beginning a new fit.  Using a minimum error 

bound that was a percentage of the cost function in real time required more simulation 

time (up to a factor of 20) to reach the error bound. 

During the model fit, only the controller gains and 2-D interaction parameters 

were fit to the visual tracking tasks.  Model parameters characterizing ocular dynamics, 

rate limiter and velocity saturation were fixed at average values obtained from the 

literature.  The dead zone, saccade processing delay and smooth pursuit processing delay 

were calculated directly from eye movement responses during the tasks.  The dead zone 

was measured from the saccade threshold task as the smallest sub-target displacement 

shown to induce a saccade response.  Delays between target displacement and saccade 

onset were computed for each sub-target (10 per trial) in the random saccade tasks by 

detecting when subject’s gaze moved 50% of the target displacement.  These delays were 

averaged, with values beyond one standard deviation (optimized threshold verified with 

time-series of saccade data from pilot data) identified as errors in the saccade detection 

and removed.  Delays associated with smooth-pursuit were measured from the smooth-

pursuit tasks using cross-correlation between the target position and subject’s gaze to 

identify the shift needed for maximum overlap.   
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Temporal mismatch between the target and subject eye movement compounds 

error in the parameter estimates from model fitting.  To minimize this mismatch, the 

subject gaze data from each trial were backward-shifted in time using the trial-wise delay.  

Performing this shift on each trial accounted for the effect of inter-trial variability in 

delays.   

At the beginning of each model fit, initial conditions were randomly selected from 

a range spanning two orders of magnitude centered on the base values (the initial model 

whose parameters were optimized to pilot data; see section 4.1.3 for additional details), to 

characterize the uncertainty in the model fits.   

The model was fit to the experimental results in stages by task condition.  During 

the first stage, the horizontal and vertical PD gains for the saccade controller were fit to 

the subject’s eye movements from the horizontal and vertical saccade tasks, respectively.  

During the second stage, the horizontal and vertical PID gains for the smooth-pursuit 

controller were fit to the subject’s eye movements from the horizontal and vertical 

smooth-pursuit tasks, respectively. For each PID fit, the controller gains in the saccade 

path were randomly drawn from the distribution of estimates obtained in the stage-one 

fits and held constant.  This considerably expanded the parameter space for the smooth-

pursuit controller fits to increase the probability of capturing more accurate combinations 

of parameter estimates for the subject data, as shown in Figure 9.  For example, during  
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Figure 9: Parameter Space for 2nd stage fitting to a single parameter.  Each circle corresponds to 

final estimates of a model fit.  A) Effect of using the average saccade proportional gain from stage 1 

on the range of final estimates obtained for smooth pursuit proportional gain obtained from the 

second stage fit.  B) Effect of randomly selecting a constant saccade proportional gain from the 

distribution of estimates in the stage 1 fit on the range of final estimates obtained for smooth pursuit 

proportional gain obtained from the second stage fit.  Subplot B shows initial conditions for the 

saccade proportional gain expanding a greater range of values, which is intended to increase the 

probability of the model finding the optimal combination of parameters to fit to the subject data.  

Note that the L-shape resulting from clustered points indicates a skewed distribution for both 

parameters.   

 

 

fits of the horizontal smooth-pursuit controller gains, horizontal saccade controller gain 

pairs were randomly selected from the stage-1 fits and held constant during the smooth 

pursuit fit.  During the third stage, the interactions between horizontal and vertical 

movements characterized by the 2-D ocular dynamics (state matrix) and motor command 

weights (input matrix) were fit to subjects’ responses from the 2-D tasks.  During the 

stage three fits, the 1D saccade and smooth pursuit control parameters were randomly 

sampled from the stage 1 and 2 distributions and held constant. The interaction 

parameters were fit to the 2-D saccade and smooth-pursuit trials separately to quantify 

the effects of task on these parameters.  Two sets of interaction parameters correspond to 

the saccade and smooth-pursuit tasks and are presented separately.   
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3.5.4 Bootstrap Analysis 

 

To characterize the distribution of best-fit parameters, a bootstrap analysis of at 

least 1000 model fits was performed for each subject and at each stage of the model fit.  

This is a systematic approach to quantify the uncertainty of the estimates.   

To remove parameter estimates corresponding to unsuccessful fits, such as 

insensitive fits where the initial conditions are returned or unstable fits where the 

parameter estimates elicit an unstable response, three computational filters were used.  

The first filter removed model fits where the best-fit parameters were equal to initial 

conditions.  The second filter removed inaccurate fits that included any horizontal and 

vertical positional errors that were greater than 10% of the screen width and height 

respectively.  The third filter removed fits whose best-fit parameters were five standard 

deviations from the average best-fit parameter value.   

Parameter estimates characterized by a normal distribution can be reported as the 

mean and standard deviations across the bootstrap distribution (or trial-wise estimates) to 

facilitate statistical analyses within and across subjects.  Distributions for all parameters 

in this study showed some degree of skewness (approximately -1 to 2.5) and were first 

transformed to a normal distribution using a box-cox transformation, (Equation 3.13).  

  

  (3.13) 

 

 

The transformation parameter (lambda) was determined using the boxcox function in 

Matlab to maximize the log-likelihood function of the transformed data to a normal 

 
1data

trans data






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distribution.  The transformed data tended to be shifted from the original data as a side 

effect of the transformation. To facilitate comparisons in conventional units, the mean 

value of the transformed distribution was inverse-transformed using Equation 3.14.  

 

  (3.14) 

 

Since the box-cox transformation requires positive values, data sets were shifted prior to 

the transform by the minimum value needed to bring all values to the positive range prior 

to transformation.  Thus, parameters yielding negative values required a post-shift of the 

inversed-transformed mean (Equation 3.15).  The 95% confidence interval, using 2  

 

  (3.15) 

 

standard deviations, was obtained from the transformed distribution using Equations 3.16 

and 3.17, where CI (5%) and CI(95%) are the values for the lower and upper bounds of 

the 95% confidence intervals, respectively.     

 

 (3.16) 

 

 (3.17) 

  

In cases where the boot-strap distribution was bimodal (~20% of fitted 

parameters), a double-Gaussian fit was applied to the bimodal box-cox transformed 
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       



38 
 

distribution of each parameter using the Levenberg-Marquardt algorithm to minimize the 

least squares error.  The distance between the two estimated means, normalized to the 

95% confidence intervals of the two distributions, was compared to a threshold of 0.75 

(optimized to EM_S01’s estimated saccade and smooth-pursuit controller gains that 

showed bimodal distributions) to automatically flag bimodal distributions.  A threshold 

value of 1.0 corresponds to the upper 95% of one primary distribution overlapping with 

the lower 5% of the distribution.  The distance between distributions revealed the degree 

of distinction between parameter estimates, and the relative width of the distributions was 

characterized by the amount of overlap.  Equation 3.18 summarizes this approach, where 

B is the binary-encoded flag, µ is the mean, σ is the 95% confidence interval and α is the 

optimized threshold.  Bimodal distributions flagged during the bootstrap analysis were 

manually inspected to determine if the flag was accurate and whether one or both means 

were used to represent a parameter for a given subject; with two estimates likely 

suggesting two control modes for the given task.   

 

  (3.18) 
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4 RESULTS 

 

 

4.1 Analyses Prior to Model Fitting 

 

4.1.1 Delay Analysis 

  

Figure 10 shows the measured oculomotor delays for saccades and smooth pursuit 

eye movements.  Across subjects, the average latencies for saccades and smooth-pursuit 

eye movements were 242 (± 24) ms and 107 (± 33) ms, respectively (Figure 11).  This is 

comparable to saccade latencies of 200 ms smooth-pursuit latencies of 100 ms reported in 

earlier studies (Erkelens, 2006; Meyer et al., 1985; Orban de Xivry & Lefevre, 2007).  

Paired t-tests of saccade (t(8)=-0.82, p=0.42) and smooth-pursuit (t(8)=0.42, p=0.68) 

showed no significant difference between horizontal and vertical latencies across 

subjects.   
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Figure 10: Average saccade and smooth-pursuit latencies across trials (±1 S.E.) for horizontal and 

vertical (A) saccades and (B) smooth-pursuit eye movements. 

 

 
Figure 11: Task-dependent latencies averaged across all subjects.  Error bars denote ± 1 S.E. about 

the mean.   
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4.1.2 Dead Zone Analysis 

  

The dead zone places a lower threshold on the eye position error required to 

enable the saccade controller.  Analysis of the saccade threshold task was used to 

determine displacement needed to initiate a corrective saccade for each primary saccade 

(see Section 3.4.4).  

 Two metrics were used to determine the position error threshold for saccade 

onset: saccade percentage (percentage of detected saccades for a given number of sub-

targets) and component-wise dead zone (minimum saccade displacement detected).  The 

percentages of sub-targets eliciting a saccade averaged across all subjects were 96.67 

(±3.14) % and 93.51 (±5.02) % for the horizontal and vertical components, respectively.  

The average dead zones across all subjects, determined as the minimum stimulus 

displacement to elicit a saccade, were 0.027 (±0.034)˚ and 0.0133 (±0.009)˚ for 

horizontal and vertical displacements respectively.  Both values are more than one order 

of magnitude less than the reported dead zone of 0.5˚, required to illicit a saccade- 

response (L. R. S. Young, L, 1963), suggesting an inability of the mode/measurement 

system to accurately characterize the dead zone.  The dead zone values in this study could 

be affected by the reported 0.5˚ accuracy of the eye tracker (Arrington), and the measured 

eye displacements below 0.5˚ may be residual noise resulting from an ineffective 

smoothing window of 100 ms.  In addition, the saccade threshold task had a 0-2˚ sub-

target displacement range in which very small sub-target displacements identified small 

eye displacements as saccades.  For example, Figure 12 A showed that all small sub-

target displacements (<0.5˚) had eye displacements that were within 50% of the sub-

target displacement, and Figure 12 B appropriately showed sub-target displacements 
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under 0.5˚ all elicited saccades. For the subsequent parametric analysis, saccade 

thresholds were set to the literature value of 0.5˚ to provide a general characterization of 

the transition between smooth pursuit and saccade control.  

 

     A        B 

 
Figure 12: (A) Example time-series from a typical subject (EM_S03).  The limited resolution of the 

eye tracker (~0.5 deg) likely contributed to the variation in subject’s eye movement (dashed line) 

about the target position (solid line).  (B) Example histogram of target sub-movements eliciting 

saccades from a typical subject (EM_S03).  Nearly all target sub-movements showed corresponding 

saccades (the green bar shows the only target sub-movement without a corresponding saccade).  As 

seen here, target sub-movement displacements as small as 0.0133 degrees produced saccades.   

 
 

Subject 
Horizontal 

Saccade Percent 
Vertical Saccade 

Percent 
Horizontal 

Threshold (degs) 
Vertical  

Threshold (degs) 

1 93.33 88.89 0.03 0.03 

3 100.00 97.78 1e-03 0.01 

4 91.11 88.37 0.07 0.02 

5 97.78 95.24 2.6e-03 0.02 

6 97.78 86.67 0.01 0.01 

7 95.56 93.33 3.4e-03 2.5e-03 

8 97.78 97.78 0.01 0.01 

9 100.00 100.00 0.09 0.01 
Table 1: Dead zone estimates for each subject.  The horizontal and vertical saccade percentages 

indicate the number of detected saccades per sub-target displacement.  The threshold values indicate 

the minimum sub-target displacement needed to elicit a saccade.   
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4.1.4 Accuracy and Precision Analysis 

 

Prior to fitting the model to subject’s eye movement data, the accuracy and 

precision of fitting the model parameters to task-specific eye movements was 

characterized.  This provided an estimate of the bias and uncertainty in parameter 

estimates relative to known values drawn randomly from the range of initial conditions 

(ICs).  A -10 to 10 factor range of the true value was used as the perturbation, or IC, 

range.   

A model with known parameter values was used to generate simulated data sets 

that were subsequently fit by an unconstrained model with randomly sampled ICs. 

Parameters including the 1-D ocular dynamics (plant) and dead zone were fixed to values 

from literature and were not perturbed during this analysis.  Free parameters, including 

the 1-D controller gains and 2-D system interactions, were fixed to values from the 

initial-model (nominal values) and were individually perturbed one-at-a-time.  The 2D 

interaction parameters, A
v-pos

h-vel, A
h-pos

v-vel and B
v-e

h-vel were fixed to 0.3, 0.2 and 0.1 

respectively. The remaining 2-D interaction parameters were fixed to 0.01 based on fits 

to pilot data.  To evaluate the accuracy and precision of fitting each parameter, 1000 

model fits were made to 50 seconds of simulated eye movements. A box-cox 

transformation was then applied (Equations 3.13 and 3.14) to normalize the distributions 

and estimate the best-fit parameter.   

 The accuracy of the model fits was evaluated by comparing the nominal values 

with the best-fit values from the bootstrap analysis.  The relative standard deviation as a 

percentage of the mean (best-fit) value was computed from the box-cox transformed 

distributions using Equation 4.2 (PNNL, 2008) to evaluate the precision of the model fit 
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for each parameter. The 95% confidence interval was used to characterize the skewness 

in the distribution and the z-score (Equation 4.3) was used to quantify the accuracy of the 

best-fit estimate relative to the nominal value.   

 

 
Standard Deviation

RSTD%= 100
Best-Fit Estimate

  (4.2)  

 

 
|Best-Fit Estimate - Nominal|

Z-score=
Standard Deviation

 (4.3)  

 
 

.    
Parameter 

Nominal Estimated RSTD% 95% Conf Int 
Z-

score 

Saccade P gain 3.76 3.73 1.61 3.54-3.82 0.517 

Saccade D gain 0.0418 0.0417 0.17 0.0416-0.0419 0.911 

SP P gain 1.75 0.55 519.1 -8.07-5.12 0.4163 

SP I gain 0.75 0.73 7.79 0.58-0.82 0.337 

SP D gain 0.02 -0.0041 106.9 -0.017-0.003 5.466 

A
v-pos

h-pos 0.01 0.007 285.8 -0.038-0.043 0.156 

A
v-vel

h-pos 0.01 0.007 90.6 -0.009-0.017 0.513 

A
v-pos

h-vel 0.3 0.34 213.3 -1.375-1.644 0.057 

A
v-vel

h-vel 0.01 0.013 165.3 -0.033-0.051 0.121 

A
h-pos

v-pos 0.01 0.006 267.8 -0.038-0.006 0.303 

A
h-vel

v-pos 0.01 0.007 69.7 -0.007-0.015 0.635 

A
h-pos

v-vel 0.2 0.22 193.9 -0.926-0.946 0.052 

A
h-vel

v-vel 0.01 0.012 185.5 -0.041-0.050 0.082 

B
v-e

h-pos 0.01 0.006 444.6 -0.046-0.017 0.145 

B
v-e

h-vel 0.1 0.094 179.9 -0.275-0.426 0.021 

B
h-e

v-pos 0.01 0.009 262.2 -0.031-0.062 0.045 

B
h-e

v-vel 0.01 0.014 46.7 0.003-0.028 0.567 

Table 2: Sensitivity analysis results for the controller and 2-D interaction parameters using initial-

model values.  The nominal values of the parameters are compared with the best-fit estimates 

obtained from a bootstrap analysis of 1000 fits. Estimation certainty and skewness are characterized 

by the 95% confidence intervals in parameter estimates from the box-cox distributions.  The relative 

standard deviation percentage (RSTD%) was used to quantify the precision of parameter estimation.  

The box-cox transformed mean and standard deviation values from the parameter distributions were 

used to compute the z-score that quantifies the difference between the best-fit and nominal values of 

the parameter in units of standard deviations.  Sixteen of the 17 best-fit parameter estimates were 
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within one standard deviation from the nominal value.  The estimate for the smooth-pursuit integral 

gain (SP I gain) was more than 5 standard deviations from the nominal value, suggesting that the 

parameter estimate was inaccurate and may be unreliable for fitting to subject data.   

  

 

The controller parameters were generally precise with the exception of the 

proportional and derivative gains of smooth-pursuit control.  The lack of precision 

suggests these parameters are less sensitive to changes in the model that lower the 

positional error, resulting in a wide range of estimates.  This could suggest that the values 

of the initial-model, around which the initial parameter estimates are sampled, and the 

ranges/types of motion tested may not have adequately spanned the space needed to 

properly fit the integral gain. 

 The parameters characterizing the interactions between horizontal and vertical eye 

movements had less precision than the saccade and smooth-pursuit control parameters.  

Interestingly, the velocity-on-position effect for both directions had standard deviations 

within 100% of the best-fit estimate.   The horizontal error’s influence on the vertical 

velocity had the most precision: one standard deviation within 46.7% of the best-fit 

estimate.  One explanation for differences in precision between horizontally-based 

parameters (A
h-pos

v-pos, B
h-e

v-vel…etc.) and vertically-based parameters (A
v-pos

h-pos, B
v-e

h-

vel…etc.) is based on the randomly-chosen data set, where larger horizontal targets give 

more influence to horizontally-based parameters and vice versa.   

 The z-scores indicated that 16 of 17 parameters had best-fit values estimated 

within 1 standard deviation from their nominal values.  The exception was the derivative 

gain of the smooth-pursuit control (z-score=5.466), which suggests that the estimation of 

this parameter is unreliable for our model.  Its estimation to a negative value suggests a 

preference to add resistance to the smooth-pursuit movement already initiated by the 
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fixed proportional and integral gains, which points to a flaw in the initial-model 

development where individual parameter performance was not evaluated thoroughly 

enough.  The best-fit estimation of the derivative gain suggests that a more optimal 

initial-model would hold a negative derivative gain.  A negative derivative gain negating 

the effect of the proportional and integral gains seems counter-intuitive.  Once again, it 

should be noted that the ranges/types of motion tested may have inadequately allowed the 

model to accurately find a positive derivative gain.   

 
4.2 Parametric Analysis 

 

4.2.1 Saccade Controllers  

 

Fitting the saccade sub-model to the time-series of the random saccade task 

yielded average R
2
 values of 0.964 and 0.947 across subjects for the horizontal and 

vertical components, respectively.  An example time-series of subject and model gaze is 

shown in Figure 13 and Figure 14.   
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Figure 13: Sample Fit to the Horizontal Saccade Task for (EM_S03).  The saccade latencies from the 

subject data were minimized using cross-correlation.  Distributions of the best-fit estimates for the 

(A) proportional gain and (B) derivative gain of the saccade controller across 1,000 fits.  The red 

dashed line shows the median of the distribution.  The horizontal proportional and integral gains 

were estimated as 4.01 and 0.062, respectively.  C) Time-series of one trial for subject 3 used to 

estimate the horizontal controller parameters.  The R
2
 value of the best-fit response based on the 

parameter estimates was 0.9773 across all horizontal saccade trials.    
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Figure 14: Sample Fit to the Vertical Saccade Task for Subject 3.  Distributions of the best-fit 

estimates for the (A) proportional gain and (B) derivative gain of the saccade controller across 1,000 

fits.  The red dashed line shows the median of the distribution.  The vertical proportional and 

integral gains were estimated as 4.31 and 0.1, respectively.  C) Time-series of one trial for subject 3 

used to estimate the vertical controller parameters.  The R
2
 value of the best-fit response based on 

the parameter estimates was 0.9287 across all vertical saccade trials.    

 

 

The horizontal and vertical saccade controllers were characterized separately, 

with horizontal controller parameters fixed when fit to vertical saccades, and vice versa.  

Both the proportional and derivative gains tended to show higher values in the vertical 

direction than in the horizontal direction (Figure 15), however, the difference was not 

statistically significant (proportional gain: t(14.09)=-0.96, p=0.35; derivative gain: 

t(13.06)=-0.24, p=0.81).   
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Figure 15: Box-coxed transformed mean of saccade controller gains across subjects.  The average 

parameter estimates across subjects for the proportional (A) and derivative (B) gains of the saccade 

controller are shown (± 1 SE).  Individual estimates of the proportional and derivative gains are 

shown in (C) and (D).  Likewise, the vertical saccade task was used to estimate the vertical 

proportional (E) and derivative (F) gains.  Solid red lines denote the 95% confidence interval. The 

distribution mean for each subject's was obtained from 1000 separate model fits and all showing R
2
 

values > 0.91 between the subject data and best-fit model’s response.  Note that subject 2 was 

excluded from all analysis.   

 
 
4.2.2 Smooth-pursuit Controllers 
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fitting to the saccade controller, where the base values were fixed to the initial-value 

model, the smooth-pursuit controller was coupled with fixed values of the saccade 

controller drawn from their respective bootstrap distributions obtained from the saccade 

task.  Figure 16 and Figure 17 show the distributions and sample time-series for subject 

EM_S03 for the horizontal and vertical smooth pursuit eye movements, respectively.  In 

subject EM_S03 and most subjects, the distribution of best-fit gains for the horizontal and 

vertical smooth-pursuit controllers, show considerable right skewness.  The skewness is 

driven in part by the need to have positive integral gains to reduce visual tracking error.  

It should be noted that the model shows very few catch-up saccades. This may reflect a 

strategic difference associated with the model fitting whereby an aggressive smooth-

pursuit control, versus weak control aided by catch-up saccades, may better minimize 

error between the model and subject gaze data.   

 

 

 
Figure 16: Sample fit to the Horizontal Smooth-Pursuit Task (EM_S03).  Distributions for the 

proportional (A), integral (B) and derivative (C) gains for horizontal smooth-pursuit were fitted 

simultaneously while the vertical gains were held constant.  Subject 3’s proportional, integral and 
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derivative gains were estimated as 3.30, 1.08 and -0.01, respectively.  D) Example subset of visual 

tracking data used to fit horizontal smooth-pursuit control.   

   

 
Figure 17: Sample Fit to Vertical Smooth-Pursuit Task (Subject 3).  Distributions for the 

proportional (A), integral (B) and derivative (C) gains for vertical smooth-pursuit were fitted 

simultaneously while the horizontal gains were held constant.  Subject 3’s proportional, integral and 

derivative gains were estimated as 2.73, 1.52 and -0.08, respectively.  D) Example subset of visual 

tracking data used to fit vertical smooth-pursuit control.   
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Figure 18: Average parameter estimates across subjects for smooth-pursuit controller gains.  The 

gains estimated from the horizontal (blue) and vertical (red) smooth-pursuit tasks were consistent 

within and across subjects. No preferential axis of movement was observed in the smooth-pursuit 

sub-model.   

 

 Fitting to the time-series of the smooth-pursuit tasks yielded average R
2
 values of 

0.983 and 0.966 across all subjects for horizontal and vertical smooth-pursuit, 

respectively.  The higher correlation values for the smooth-pursuit tasks are consistent 

with smaller overshoots, compared to the saccade tasks.   

Across subjects, there was a generally a preference for higher horizontal gains.  

However, paired t-tests showed no statistical difference between any of the gains 

(proportional gain: t(12.12)=-0.35, p=0.73; integral gain: t(15.90)=0.30, p=0.77; 

derivative gain: t(15.92)=0.67, p=0.511) across the axial components. 

 

 
Figure 19: PID Gains for the best-fit smooth-pursuit (SP) controllers across subjects.  Solid red lines 

indicate the 95% intervals of the parameter fits.  Each subject's parameter was fitted with 1000 

samples and all showing R
2
 values > 0.95 between the subject data and best-fit model’s response.   
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each subject suggest the model can detect individual differences in subjects’ eye 
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movement responses, when compared to the average best-fit parameters across all 

subjects.  Figure 20 shows an example time-series from two subjects.  EM_S05’s 

 

 

 

Figure 20: Sample time-series for vertical smooth-pursuit movements for subjects (A) EM_S09 and 

(B) EM_S05.  The solid blue and green lines denote the target position and best-fit model response, 

respectively.  The measured gaze positions over time are shown in red.  The smooth-pursuit 

movements from EM_S05 shows more overshoot about the target position, and the steady-state 

positional error minimization for EM_S05’s best-fit model response is sub-par to the typical best-fit 

model represented as the best-fit model for EM_S09.   

 

 

gaze during vertical smooth-pursuit exhibited systematic overshoot, EM_S09’s gaze 

during vertical smooth-pursuit showed little if any overshoot.  The proportional gain for 

EM_S05 was approximately three times as large for vertical eye movements compared to 

the average gain across all subjects, while the integral gain was about half as large for 

vertical eye movements compared to the average value across subjects.  The relative 

increase in proportional gain and decrease in integral gain suggests the subject utilized a 

control strategy where speed was prioritized over accuracy.  This is supported by Figure 

20 where EM_S05’ best-fit model response showed more overshoot than the typical best-

fit response represented by EM_S09.   
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4.2.3 2-D Interaction Parameters 

  

To examine the interaction between the horizontal and vertical eye movements, 

the model was fit to subjects’ responses to the 2-D (oblique) saccade and smooth-pursuit 

tasks.  Table 3 and Table 4 show the best-fit parameter values (by subjects) 

characterizing the system interactions between horizontal and vertical position and 

velocity during saccade and smooth-pursuit eye movements.  Positive values indicate 

horizontal eye movements accentuate either the magnitude of vertical eye position or the 

magnitude of vertical eye velocity (and vice versa).  Negative values indicate that 

horizontal eye movements attenuate the same aspects of vertical eye movements (and 

vice versa).  In addition to the parametric statistical metrics, the relative mean absolute 

error (RMAE) was used to characterize the model output’s sensitivity to each parameter 

(Equation 4.3, where MAE_R is the mean absolute error with the parameter removed 

from the model and MAE_F is the mean absolute error with the full model).  From  

 

 
 _ _

*100
_

MAE R MAE F
RMAE

MAE F


  (4.3) 

 

Table 3, the interaction gains indicate that subjects tended to increase their eye velocity 

as a function of cross-axial eye position, such that changes in horizontal position pushed 

the eye vertically outward (upward and downward) for the saccade task.  Conversely, the 

smooth-pursuit task showed that more medial eye positions increased cross-axial 

velocities, and that vertical velocity increased horizontal velocity.   
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  2-D Saccade Task 

Subject 

Number 
A

v-pos
h-pos A

v-vel
h-pos A

v-pos
h-vel A

v-vel
h-vel A

h-pos
v-pos A

h-vel
v-pos A

h-pos
v-vel A

h-vel
v-vel 

1 0.004 0.001 0.552 0.032 0.011 0.003 0.093 -0.020 

3 -0.001 -0.002 0.117 -0.007 0.002 -0.001 0.110 -0.001 

4 0.003 0.000 0.333 0.069 0.002 0.000 0.217 -0.019 

5 0.001 0.001 0.157 0.014 0.006 -0.001 0.088 0.009 

6 -0.006 -0.003 0.177 0.041 -0.002 -0.003 0.190 0.001 

7 0.002 -0.001 0.191 0.021 0.001 -0.001 0.084 -0.001 

8 0.004 0.001 0.134 -0.011 0.007 0.001 0.157 0.003 

9 -0.002 -0.003 0.185 -0.010 0.004 -0.003 0.071 -0.025 

Avg 0.001 -0.001 0.231 0.019 0.004 0.000 0.126 -0.007 

Std 1.09E-03 5.85E-04 4.84E-02 9.39E-03 1.34E-03 6.89E-04 1.83E-02 4.31E-03 

t-value 0.5475 1.1517 4.4936 1.8713 2.6048 0.6267 6.5082 1.4671 

p-value 0.6010 0.2872 0.0028 0.1035 0.0352 0.5507 0.0003 0.1858 

df 7 7 7 7 7 7 7 7 

RMAE Avg 0.090 -0.609 -0.038 0.163 0.436 -0.626 -0.043 -0.049 

RMAE Ste 0.063 0.163 0.057 0.084 0.275 0.440 0.070 0.036 

  

 
2-D Smooth-Pursuit Task 

Subject 

Number 
A

v-pos
h-pos A

v-vel
h-pos A

v-pos
h-vel A

v-vel
h-vel A

h-pos
v-pos A

h-vel
v-pos A

h-pos
v-vel A

h-vel
v-vel 

1 0.000 -0.003 0.025 0.004 0.000 -0.002 0.003 0.000 

3 0.001 -0.003 0.003 0.001 0.000 -0.002 0.002 0.001 

4 -0.002 -0.004 0.172 0.043 0.002 -0.004 0.128 0.035 

5 -0.001 -0.003 0.003 0.002 0.001 -0.004 0.000 -0.001 

6 0.000 -0.003 0.034 0.025 0.000 -0.004 0.078 0.019 

7 -0.001 -0.002 0.011 0.003 -0.001 -0.002 0.001 0.001 

8 0.000 -0.004 0.032 0.010 0.000 -0.003 0.006 0.003 

9 -0.001 -0.003 0.049 0.011 0.001 -0.003 0.021 0.011 

Avg -0.001 -0.003 0.041 0.012 0.000 -0.003 0.030 0.009 

Ste 2.65E-04 1.83E-04 1.84E-02 4.81E-03 2.94E-04 2.70E-04 1.58E-02 4.19E-03 

t-value 1.7895 15.8956 2.1046 2.4044 1.1816 10.2774 1.7793 1.9796 

p-value 0.1167 9.46E-07 0.0734 0.0472 0.2760 1.79E-05 0.1184 0.0882 

df 7 7 7 7 7 7 7 7 

RMAE Avg 0.466 1.326 0.517 0.055 0.057 -0.090 0.011 0.018 

RMAE Ste 0.397 0.523 0.459 0.037 0.057 0.131 0.026 0.021 

Table 3: 2-D plant interaction parameters for 2-D saccade and smooth-pursuit tasks.  For each 

parameter, the average (Avg), standard error (Ste), t-value, p-value and degrees of freedom (df) were 

computed across subjects.  The relative mean absolute error (RMAE) characterizes the change in 

model error (actual response – model response) when the parameter in that column is removed from 

the model.  Parameters where values were significant (p<0.05) are shown in red, regardless of the 

RMAE.   
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  2-D Saccade Task 

Subject 

Number 
B

v-e
h-pos B

v-e
h-vel B

h-e
v-pos B

h-e
v-vel 

1 0.004 0.133 0.002 -0.065 

3 0.000 -0.240 -0.001 -0.201 

4 0.015 -0.318 0.006 -0.048 

5 0.004 0.172 0.003 0.143 

6 0.007 -0.189 0.006 -0.103 

7 0.003 -0.027 0.000 -0.177 

8 0.002 -0.071 0.004 0.133 

9 0.004 -0.217 0.003 -0.191 

Avg 0.005 -0.095 0.003 -0.064 

Ste 1.48E-03 5.95E-02 8.82E-04 4.56E-02 

t-value 3.1496109 1.4996651 3.1241845 1.3154151 

p-value 0.0161608 0.1773831 0.0167454 0.2298164 

df 7 7 7 7 

RMAE Avg 0.762 -0.237 0.499 0.078 

RMAE Ste 0.369 0.100 0.218 0.132 

  

  2-D Smooth-Pursuit Task 

Subject 

Number 
B

v-e
h-pos B

v-e
h-vel B

h-e
v-pos B

h-e
v-vel 

1 0.000 -0.038 0.000 -0.043 

3 0.000 0.008 0.001 -0.017 

4 0.002 -0.073 0.006 0.105 

5 0.000 -0.026 0.001 -0.008 

6 0.001 0.002 0.002 0.028 

7 0.001 -0.049 0.001 -0.017 

8 0.000 -0.040 0.001 -0.033 

9 0.000 -0.059 0.001 0.014 

Avg 0.001 -0.034 0.002 0.004 

Std 2.58E-04 9.36E-03 5.75E-04 1.58E-02 

t-value 2.3094428 3.4542107 2.4739448 0.21118 

p-value 0.0542313 0.0106305 0.0425862 0.8387632 

df 7 7 7 7 

RMAE Avg 0.017 0.004 0.054 -0.009 

RMAE Ste 0.011 0.008 0.025 0.013 

Table 4: 2-D error-driven interaction parameter summary for 2-D saccade and smooth-pursuit tasks.  

Row labels are the same as in Table 3.   
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The interaction between horizontal and vertical eye movements characterized by 

the error-driven ocular dynamics gains (Table 4), indicates a tendency for the position 

error to push the cross-axial position outward for the saccade task.  In the smooth-pursuit 

task vertical error slowed down horizontal velocity, while the horizontal error pushed the 

eye vertically outward.   

For the saccade task, the influence of position on the cross-axial velocity was 

shown to be positive and significant (A
v-pos

h-vel and Ah-pos
v-vel; p<0.005) for both horizontal 

and vertical components of the 2D eye movement.  As the eye moved outward, speed 

along the perpendicular direction increased.  However, functionally the impact of the 

interaction on the model response was relatively low, with relative mean absolute errors 

(RMAE) of -0.038 for the horizontal direction and -0.043 for the vertical direction.   

In contrast, the influence of horizontal position (and position error) on vertical 

position, and the influence of vertical error on horizontal position were less significant 

(A
h-pos

v-pos, B
h-e

v-pos and Bv-e
h-pos; 0.01<p<0.05), but showed greater impact on the model 

response (RMAE≥0.5).  One practical impact on model performance was to increase 

vertical eccentricity (distance from center) as a function of horizontal eye position.  The 

other impacts on model performance were to increase horizontal eccentricity as a 

function of vertical error and to increase vertical eccentricity as a function of horizontal 

error resulting in more outward eye positions for inaccurate goal-directed movements.  
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Figure 21: Distributions of best-fit system interaction parameters for EM_S03 (n>1000) using the 2-

D Saccade task.  Blue bars indicate the number of parameter estimated in each bin.  Dashed red lines 

indicate the best-fit mean estimate for each parameter obtained from the box-cox transformation. 

 

 

 
Figure 22: Distributions of best-fit error-driven system interaction parameters for EM_S03 (n>1000) 

using the 2-D Saccade Task.  Labeling is the same as in Figure 21.   

  

 

The smooth-pursuit task yielded different interactions.  The influence of velocity 

on cross-axial position for the horizontal and vertical directions were both highly 

significant (A
v-vel

h-pos and Ah-vel
v-pos; p<0.0001) and had the greatest effect on simulated eye 
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position (RMAE≥0.09).  The negative sign associated with the coefficient meant that 

increasing horizontal or vertical velocity pushed the eye medially (inward).   Other 

significant interactions included a proportional increase in horizontal velocity with 

vertical velocity (A
v-vel

h-vel; p=0.047), a decrease in vertical error slowing with horizontal 

velocity (B
v-e

h-vel; p=0.011) and a vertical outward shift in eye position with horizontal 

position error (B
h-e

v-pos; p=0.043).  Some significant interactions, such as Av-vel
h-vel, B

v-e
h-vel 

and Bv-e
h-vel showed relatively less effect on the model (RMAE≤0.055) compared to other 

significant interactions, such as Av-vel
h-pos and Ah-vel

v-pos, suggesting that 2-D interactions of 

eye velocity on eye position are more discernible than interactions of eye position on eye 

velocity during smooth-pursuit eye movements.   

 

 
Figure 23: Distributions of best-fit system interaction parameters for EM_S03 (n>1000) using the 2-

D Smooth-Pursuit Task.  Labeling is the same as in Figure 21.   
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Figure 24: Distributions of best-fit error-driven system interaction parameters for EM_S03 (n>1000) 

using the 2-D Smooth-Pursuit Task.  Labeling is the same as in Figure 21.   

 

 

Figure 25: Effects of 2-D system interactions on saccade response for EM_S09.  The model response 

shown here is the best-fit model for EM_S09.  Each subplot shows the target (solid black line), 

EM_S09's visual response (dashed blue line), the best-fit model response for a 1-D model response 

(all interaction parameters are zeroed; solid red line) and 2-D model (significant interaction 

parameters are enabled; solid green line).  Subplots C and D show exploded views of responses in A 

and B indicated by the blue boxes.   
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Figure 26: Effects of 2-D system interactions on smooth-pursuit response from EM_S09.  Labeling is 

the same as in Figure 25.   

 

Figure 27 shows the correlation (R
2
) between subjects’ individual response and 

the corresponding best-fit model together with the root mean square error (RMSE),  
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Figure 27: Goodness of fits for 2-D interaction parameters under training data for (A) saccade data and (B) smooth-
pursuit data.  The correlation (R

2
) and root mean squared error values were computed between the model 

response and subject gaze for each set of trials of a given task.   

 

for all subjects, axial components and tasks.  Typically, the R
2
 and RMSE metrics show 

an inverse relationship with high R
2
 and low RMSE values for good fits between two 

data sets.  Deviations from this relationship reveal characteristics about the model-fitting 

process.  Figure 27 shows that the horizontal saccade and smooth-pursuit eye movements 

had different R
2
 values for similar RMSE values (more so than multiple RMSE values for 

similar R
2
 values), indicating greater sensitivity to temporal errors than spatial errors 

(positional error between best-fit model and subject responses).  The vertical component 

of the movements had different RMSE values for similar R
2
 values, resulting from 

greater sensitivity to spatial errors.   

It should be noted that temporal mismatches between the model and subject 

saccades dominated the high RMSE values (Figure 28), where position transitions during 

saccades can produce an error up to 20˚.  Errors of this magnitude give more weight to 

points associated with saccades when computing the average error across a data set, 
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resulting in accentuated RMSE values.  Errors resulting from saccadic position errors are 

influenced by errors in temporal matching between the subject and model output 

positions, with the lag size contributing a multiplicative effect on the error.  Thus, the 

seemingly high RMSE values may be reduced in future studies for eye tracking systems 

with higher resolution and improved algorithms for temporally aligning the subject and 

model output positions.   

 

 
Figure 28: Sample subject (EM_S06) and model responses from the combined saccade and smooth-

pursuit task.  The red and blue lines indicate the best-fit model’s position and subject gaze position, 

respectively, in response to both discrete and continuous targets.  The magenta line represents the 

point-by-point positional error between these two signals.  The error is consistently larger in 

magnitude for saccades than for smooth-pursuit eye movements.  

 

Table 5 shows the average metrics across all subjects for 1-D and 2-D saccade 

and smooth pursuit.  Paired t-tests between the metrics of 1-D saccade and 1-D smooth-

pursuit, 2-D saccade and 2-D smooth-pursuit, 1-D saccade and 2-D saccade, and 1-D 

smooth-pursuit and 2-D smooth-pursuit tasks were computed to show the influence of 
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tasks on model fitting performance, with the latter two comparisons indicating how well 

the 2-D data are modeled by independent 1-D controllers.  The difference in RMSE 

between the 1-D saccade and 1-D smooth-pursuit tasks was significant (t(30)=2.56, 

p=0.016) as expected, however, the other comparisons were not (p>0.05), indicative of 

the model’s consistency in fitting to saccade and smooth-pursuit eye movements across 

the 2-D space and inconsistency across the 1-D space.   

 
 Horizontal Component Vertical Component 

Saccade - RMSE (degs) 1.377 (±0.08) 1.338 (±0.10) 

Saccade - R
2
 0.972 (±0.01) 0.957 (±0.01) 

   

Smooth-pursuit - RMSE (degs) 0.929 (±0.09) 1.262 (±0.11) 

Smooth-pursuit - R
2
 0.984 (±0.01) 0.967 (±0.01) 

   

2-D Saccade – RMSE (degs) 1.524 (±0.078) 1.360 (±0.084) 

2-D Saccade – R
2
  0.967 (±0.003) 0.962 (±0.003) 

   
2-D SP – RMSE (degs) 1.132 (±0.103) 1.351 (±0.201) 

2-D SP – R
2
 0.974 (±0.006) 0.956 (±0.013) 

Table 5: Goodness of Fit Summary for the Controller Parameters.  Metrics shown here are averages 

and standard errors computed across all subjects.    

 
4.3 Model Performance Evaluation 

  

The performance of the best-fit model for each subject was evaluated using the 

responses from the 2-D dual-movement tasks as experimental test data.  Five trials from 

each subject’s data set were selected and concatenated using the criteria and procedures 

outlined in section 3.5.1 to reduce variability in data length between the training and 

testing data.  The models were evaluated under two conditions: delays removed and 

delays intact from the experimental data.  Removing the delays from each trial using 

cross-correlation, while zeroing the subject-specific delay parameters, eliminated 

variability caused by delay estimations.  Keeping the delays from the experimental data, 

while implementing the subject-specific delay estimations to the model, tests the variance 
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introduced by the delay estimations.  For each condition, the dead zone for saccade onset 

was set to 0.5˚.  The correlation and root mean squared error between the subjects’ 

responses and the best-fit model were used to compare the best-fit model to the subject 

gaze.   

 
4.3.1 Model Performance without Delay Estimations 

  

Figure 29A shows the correlations and root mean squared errors for the horizontal 

and vertical components of the 2-D eye movements across subjects.  Performance on the  

 

 
Figure 29: Model Validation using subject-specific best-fit models with test data.  A) Delay-exclusive 

condition: the delays were removed from test data using cross-correlation and only the fitted 

parameters are tested here.  B) Delay-inclusive condition: with subject gaze delays intact, the subject-

specific estimated delays for the model are tested along with the fitted parameters.  Including the 

delays into the validation analysis generally increased root mean squared error and decreased 

correlation.     
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test data showed lower correlations and higher root mean squared errors than the training 

data in Figure 27, suggesting that the data sets have an influence on the best-fit model 

estimation.   

 
4.3.2 Model Performance with Delay Estimations 

  

Figure 29B shows the correlations and root mean squared errors between the 

delay-inclusive conditions for each subject.  The lower correlations and higher errors 

show that the model performed with less accuracy in this condition than in the delay-

exclusive condition.  The lower correlations imply that the delays interfered with the 

model’s ability to predict the subject’s response.  Figure 30 shows sample time-series for  

 

A              B 

  
Figure 30: Sample time-series from 2-D dual-movement tasks for model validation with delays 

included.  A) EM_S09's data and best-fit model response, which showed the lowest correlation across 

all subjects.  B) EM_S04’s data and best-fit model response, which showed the highest correlation 

across subjects.  In both (A) and (B), inconsistent differences between the model and experimental 

delays are due to inconsistent delays from subject responses that affected the delay estimation for the 

trial.  

 

 

subjects whose best-fit models, along with delay estimations, showed lowest and highest 

correlation values between subject and best-fit model responses.  The contrast in model 

response accuracy between the two subjects shows a correlation range of 0.75-0.95.  
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Considering the range of positive correlation values is 0-1, corresponding to no 

relationship and a perfectly linear relationship, respectively, the correlations indicate that 

the models can account for the subject responses even for test data. 

As expected, the model’s goodness of fit decreased across all subjects when fitted 

to testing, or untrained, data consisting of 2-D saccade and smooth-pursuit sub-targets 

(Table 6).  T-tests revealed significant differences between the performance metrics 

 
 Horizontal Component Vertical Component 

Training Data – RMSE (degs) 1.328 (±0.196) 1.356 (±0.005) 
1
Testing Data – RMSE (degs) 2.183 (±0.149) 2.007 (±0.200) 

2
Testing Data – RMSE (degs) 2.987 (±0.252) 2.627 (±0.210) 

 
  

Training Data – R
2
 0.971 (±0.004) 0.959 (±0.003) 

1
Testing Data – R

2
 0.937 (±0.007) 0.916 (±0.015) 

2
Testing Data – R

2
 0.874 (±0.020) 0.852 (±0.020) 

Table 6: Goodness of Fits Summary.  Training data yielded the lowest root mean squared error 

(RMSE) and highest correlation between model output and actual subject data.  Both goodness of fit 

metrics became progressively worse for 
1
Testing Data, or delay-exclusive data where cross-

correlation reduced delays, and 
2
Testing Data, or delay-inclusive data where delay estimates were 

evaluated as well.   

 

 

of the three different data types (p<0.05), except for the horizontal RMSE between the 

delay-exclusive (
1
Testing Data) and delay-inclusive (

2
Testing Data) delay conditions 

(t(14)=2.1, p=0.05).  The model performance under the delay-inclusive condition was 

less accurate than the delay-exclusive condition, likely resulting from the additional 

variance to the best-fit model due to the delay estimations, which suggests that increasing 

the number of parameters to be fit decreases the performance accuracy of the model to 

testing data.  It is unlikely that the difference between these conditions reflects 

inconsistently computed delays resulting from experimental attention and fatigue, since 

those delays are also used in the delay-exclusive condition (to align subject data to 

target).   
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5. DISCUSSION 

  

 For the 1-D analysis of saccade and smooth-pursuit eye movements, although parameters 

characterizing the horizontal and vertical eye movements were not statistically different, trends in 

the parameter estimates characterized higher velocities in vertical versus horizontal saccades and 

more overshoot in the vertical versus horizontal smooth-pursuit eye movements.  The parameter 

estimates suggest that the model can characterize eye movement characteristics such as speed and 

overshoot, but a larger sample size of subjects or a higher resolution eye tracking system may be 

required to classify statistically significant effects across subjects.  The analysis of 2-D eye 

movements suggest a variety of position-based and velocity-based interactions between 

horizontal and vertical eye movements based on parameter estimates across subjects.  However, 

the effect of these interactions on the functional response were generally small, and both 

quantitative (best-fit parameter estimates) and qualitative (functional responses) results should be 

considered to investigate the independent control hypothesis clearly.  

 

5.1 Delay and Dead zone Analyses 

 

5.1.1 Delay Estimates 

 

 The experimental estimates of saccade and smooth-pursuit eye movement 

latencies (242± 24 ms and 107± 33 ms respectively) was generally high but fell within 

the margin of error reported across previous studies. An earlier study on saccadic eye 

movements reported latency ranges of 200-250 ms (Yang, Bucci, & Kapoula, 2002), 

while another reported a mean of 211 (± 8) ms for healthy adults (Rashbass, 1961).   

 Latency estimates for both movement types may have been influenced by an 

unresolved delay between the target and subject gaze markers.  For each trial, markers, 
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from the stimuli-generating computer, corresponding to the onset of each trial’s first 

target were sent to the Arrington ViewPoint software to temporally align stimuli and gaze 

positions.  The temporal mismatch may arise from time-consuming computational tasks 

performed after the marker is sent but before the actual onset of the trial’s first target.  

However, whether these delays had a large effect on computations of eye movement 

latencies is questionable because only the saccade latency is slightly inconsistent with 

reported values from literature.  An issue with the marker delays would have affected 

both saccade and smooth-pursuit latencies equally, and the consistency of the smooth-

pursuit latencies with values from literature suggests the size of the marker delays is 

negligible.   

The error in the saccade latency estimates could also result from a non-optimal 

saccade detection algorithm.  The implemented algorithm required eye position 

displacements to exceed 50% of the corresponding sub-target step displacement before a 

saccade is detected and recorded.  Since the duration of saccades ranged 37-45 ms for 8-

10˚ displacements (Collins, Semroud, Orriols, & Dore-Mazars, 2008), in many cases 

saccades were defined by two or three data points due to the 60 Hz temporal resolution of 

the eye tracker.  The limited temporal resolution resulted in saccade latencies with a 

minimum error of 16 ms.  Coupled with the method used to detect saccade onset, this 

suggests that the saccade latencies may have been overestimated.  This did not impact the 

subsequent model fits since the delays were removed as a result of temporal alignment of 

subject gaze to target position.      
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5.1.2 Dead Zone Estimates 

 

Our estimates for the horizontal and vertical dead zones of 0.027 (±0.034)˚ and 

0.0133 (±0.009)˚ showed 94.6 (±3.14) % and 97.3 (5.02) % differences from the reported 

0.5˚ (L. R. S. Young, L, 1963).  Using our estimated dead zones of 0.027˚ and 0.0133˚, 

the model output would be dominantly controlled by the saccade branch for all sub-target 

displacements.   

The errors in estimated dead zones are most likely due to the eye tracker noise 

and saccade detection techniques.  The resolution of the Arrington eye tracker is 

comparable to the saccade threshold reported in literature, making accurate estimates 

difficult.  The saccade detection algorithm registered eye movements as saccades if the 

eye position displacements exceeded 50% of corresponding target displacements.  

Although this method was an attempt to disqualify noise measurements from detected 

saccades, the 50% threshold for saccade detection was arbitrary and was too sensitive for 

detecting saccades.  Lower threshold values risk more false saccade detections, while the 

dead zone estimation did not change for higher threshold values.  A lower bound of 0˚ for 

sub-target displacements also contributed to the low dead zone values (see Section 4.1.2), 

and implementing a lower bound equal to the estimated eye tracker noise level may limit 

dead zone detection to higher (and more reasonable) values.   

 
5.2 Parametric Analysis 

 

5.2.1 Initial-Model 

   

The initial-model was able to replicate two common characteristics of human 

saccade and smooth-pursuit eye movement: the main sequences, shown in Figure 1 and 
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Figure 7.  The model showed a saturating linear relationship between peak velocity and 

saccade magnitude for saccades ranging 0˚-35˚, and exhibited a linear relationship 

between peak acceleration and smooth-pursuit velocity.  Earlier studies showed nonlinear 

relationships for saccade distances greater than 20 degrees, assuming that glissades are 

classified as saccades in this study.  Removing the velocity saturation in this model 

(based on pilot data) showed a linear relationship above those bounds, but it did not affect 

our subsequent parametric analysis, as the 60 Hz temporal resolution of the eye tracker 

system may have underestimated the actual peak velocities due to single saccades being 

represented by as few as 2 points.  However, the model was able to replicate the peak 

velocities and accelerations from the pilot study, seen in Figure 7 C-F.  The resemblance 

to pilot data indicates that the parameters from the normative model produced stable 

saccade and smooth-pursuit responses to visual targets.     

 
5.2.2 Saccade Control  

  

To our knowledge, only one study has modeled saccades with PD control (Chen-

Harris et al., 2008).  However, the control parameters varied adaptively over the course of 

a trial and values were not reported.  Thus, the accuracy of the estimated control gains in 

our model was evaluated through comparison to subjects individual eye movements using 

the correlation and root mean squared error between the fitted model output and subject 

gaze (Table 5).  The high linear relationship between the model and actual data suggests 

the PD control was sufficient to capture the temporal characteristics (temporal lag 

between model and subject gaze) of the subjects’ gaze.  The RMSE values of 2.031 

(±0.084) and 2.024 (±0.281) degrees between the model response and subject gaze from 

testing data are more than three factors outside of the 0.5˚ dead zone, suggesting that the 
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model did not spatially match the subjects’ gaze (offset errors between model and subject 

gaze) as well as it did for the temporal characteristics as suggested by high root mean 

squared error versus high correlation.   

Previous studies have reported saccade characteristics for horizontal and vertical 

eye movements that compare unfavorably to our 1-D saccade analysis (Becker & 

Jurgens, 1990; Collewijn, Erkelens, & Steinman, 1988a, 1988b).  Although not 

statistically significant (t(14)=0.85, p=0.41 and t(14)=0.07, p=0.95), the proportional gain 

was typically larger for vertical than for horizontal eye movement, suggesting more 

likelihood to overshoot the target.  Typically smaller derivative gains for vertical versus 

horizontal saccades suggest.  Collewijn’s study showed lower maximum speeds for 

vertical saccades up to 40 degrees by approximately 15% than for horizontal saccades of 

similar amplitudes (Collewijn et al., 1988a, 1988b).  Becker and Jurgens also showed 

slower vertical saccades than horizontal saccades (Becker & Jurgens, 1990).  The subject 

gaze movements here, encompassing a 36 degree visual range, tended to show faster 

vertical saccades than horizontal saccades although the effect was not significant.  For 

example, EM_S09 showed approximately 20% higher velocities for vertical versus 

horizontal saccades.  Figure 31 shows a sample subject’s gaze data, whose overshoot is 

more observable for vertical versus horizontal eye movements although similar 

observations were made for the other subjects.  The differences in horizontal and vertical 

saccade speeds may be influenced by the pitch of the subjects’ head relative to the screen, 

where a lower pitch causes the subject to look up to fixate on the screen center resulting 

in more downward versus upward saccades.  An earlier study showed that downward 

saccades showed higher velocities than upward saccades (Collewijn et al., 1988b), and if 



73 
 

some subjects positioned their head at a lower pitch, the higher probability of downward 

saccades explains higher velocities for vertical versus horizontal saccades.   

 

       A       B 

 

Figure 31: Sample time-series (EM_S09) for 1-D (A) horizontal and (B) vertical saccades.  Target 

position is shown in blue.  The model output and subject gaze positions are shown in green and red 

respectively.  Positional offsets of about 2˚ are more prevalent for vertical saccades than for 

horizontal saccades.    

 

 

The differences in control gains between horizontal and vertical saccade control 

may be influenced by the experimental setup.  The eyelids can limit the measurable range 

of vertical eye movements. Yee and colleagues found that that measurements of vertical 

eye position saturated at 10˚ above and 20˚ below screen center for most subjects using 

an infrared eye tracker (Yee et al., 1985).  When eyelids interfere with the Arrington 

system, the eye tracker software attempts to find another round object in the camera view, 

which can result in misidentification of eye position or a registered eye blink.  This issue 

may have contributed to the larger positional error in the vertical eye movement.  Also, 

horizontal movement was limited to a range of motion of 37˚ while vertical movement 

was limited to 28˚, based on the asymmetry of the viewing monitor.  Larger movements 

may have emphasized derivative over proportional control in order to move the eyeball 
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across longer distances over a short time and reduce error, which may explain why the 

horizontal saccade control showed larger derivative and smaller proportional gains 

compared to the vertical saccade control.   

While additional subjects may be required to obtain sufficient statistical power 

across the population, the current results show the saccade control parameters’ sensitivity 

to positional overshoot for saccades.  This suggests that the saccade controller is sensitive 

to similar overshoot characteristics in saccade data seen with ocular dysmetria, a common 

visual condition in persons with MS.   

Other studies have characterized saccades using different types of control, 

including bang-bang-step control (Bahill et al., 1975b), where horizontal position is 

determined by all-or-nothing signals in the left and right directions, or quasi-bang-bang-

step (pulse-step) where the maximum was amplitude-sensitive (Winters, Nam, & Stark, 

1984).  Pulse-step control, where saccade onset is mediated by a high constant amplitude 

“pulse” signal and a lower amplitude “step” signal, has also been used to initiate a 

saccade and maintain steady-state position (Lesmana, 2011).  Both of these are more 

physiologically correct for actuating the horizontally-active medial and lateral recti 

muscles and replicating the high velocities in saccades, but the PD controller is a more 

general model that is less computationally difficult to implement.  The PD controller is 

also more closely related to the PID controller in smooth-pursuit control than the other 

controllers, allowing relationships between saccade and smooth-pursuit control to be 

more clearly understood.   

 
5.2.3 Smooth-Pursuit Control  
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Unlike saccade control, smooth-pursuit control emphasizes speed and accuracy 

during closed-loop control and is often approximated as a PID controller in oculomotor 

control models (Balkenius & Johansson, 2005; Brown, 1989), where the addition of the 

integral gain is crucial for the minimization of steady-state error during closed-loop 

tracking.  However, comparison of actual gain values is difficult due to a lack of reported 

values from literature.   

 Vertical smooth-pursuit eye movements have been observed to be less accurate 

than horizontal movements (Baloh, Yee, Honrubia, & Jacobson, 1988; Rottach et al., 

1996).  In the current study, PID gains were not significantly different for horizontal and 

vertical eye movements (P: t(9)=0.40, p=0.70; I: t(11)=0.55, p=0.59; D: t(14)=0.68, 

p=0.51).  Despite insignificance, the integral and derivative gains, averaged across 

subjects (Figure 18), were generally higher for the horizontal versus vertical control, with 

the opposite relationship seen for the proportional gain.  Previous studies have reported 

smaller target-eye phase lag during smooth-pursuit in the horizontal direction and higher 

accelerations during smooth-pursuit in the vertical direction (Baloh et al., 1988; Rottach 

et al., 1996).  Based on these results, the proportional and integral gains were expected to 

be higher for the horizontal versus vertical control to emulate accurate horizontal 

tracking, and the derivative gain larger for vertical control to account for higher eye 

accelerations.  This reveals the ambiguity of interpreting movement strategy based on 

PID gains as the effects of the gains on the movement dynamics can overlap, especially 

the proportional gain’s influence on both movement speed and accuracy.  Regardless of 

the interpretation of the individual control gains, a larger sample size of subjects would 
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be needed to determine parametrically if horizontal and vertical smooth-pursuit are 

statistically different.        

 

5.2.4 2-D Interaction Control  

 
  

Table 3 indicates an interaction between horizontal and vertical control, with 

horizontal position influenced by vertical position.  However, Figure 32 shows the 

consistency of this interaction, where a perfect interaction of this type is represented by a 

V-shape of vertical positional error versus horizontal eccentricity (A) or vice versa (B).  

The figure indicates large variability in interaction of horizontal position on vertical 

position, where the scatter plot’s deviation from a V-shape indicates inconsistency with 

the 0.007 best-fit value for EM_S08’s parameter A
h-pos

v-pos that simulates increasing 

overshoot in the vertical direction as the eye moves horizontally outward.  To the best of 

our knowledge, this interaction has not been reported previously in literature.  It is 

possible the best-fit 2-D models are affected by residual fitting errors from the 1-D 

model, especially with more pronounced vertical overshoots versus horizontal overshoots 

in the 1-D tasks as mentioned in section 5.2.2.  Perhaps an unresolved eye tracker error 

that is sensitive to the vertical directions seen during the 1-D data could manifest in the 2-

D data, resulting in larger overshoots in the vertical versus horizontal eye movements for 

both 1-D and 2-D data.   

With regards to model evaluation, the model was oblivious to the eye tracker 

issues and whether eye movement characteristics were real or induced by experimental 

errors, and the resulting best-fit models can be used to measure the model’s sensitivity to 

2-D interactions.  The interaction of horizontal position on vertical position was 

statistically significant (Table 3: t(7)=2.60, p=0.035), yet the quantitative impact of the 
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interaction was unclear (Figure 32: a V-shape corresponding to a perfect interaction 

between horizontal and vertical positions is not clearly shown), suggesting the system 

identification procedure was sensitive to small effects that may not be readily detected 

based simply on the subject’s responses.  Similarly, the interaction effects induced by the 

controllers on the horizontal and vertical positions (B
v-e

h-pos and B
h-e

v-pos) were statistically 

significant (Table 4), however their impact on subject’s actual eye movements appear to 

be minimal, seen by rotating Figure 32 by 90 degrees to show the interaction of positional 

error on position.   

 

   A          B 

 
Figure 32:  Interaction effects within the system based solely on position (A

h-pos
v-pos and A

h-pos
v-pos) 

from the 2-D saccade task of a sample subject (EM_S08).  Each dot shows the steady-state error 

between the absolute values of the subject gaze and target positions, computed by averaging the 

positional error over the duration of a target step.  Positive position errors indicate subjects’ gaze 

was more centrifugal (toward position away from center) compared to the target positions.  For both 

interaction effects shown, the horizontal and vertical position errors did not increase systematically 
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as vertical and horizontal positions increased.  For A
h-pos

v-pos, the magnitudes of the overshoots 

(positive position errors) and undershoots (negative position errors) tended to increase for more 

centrifugal horizontal positions, but the variability in the vertical errors indicate inconsistency in this 

effect.   

 

 

An earlier study by Bahill and Stark (1975) showed horizontal position influence 

on vertical velocity, such that vertical velocity was decreased by 20% for a 39 degree 

horizontal abduction (eye movement away from center).  They suggested that the effect 

may be due to differences in the particular muscles contributing to the two directions of 

movement.  Anatomically, the medial and lateral recti muscles aligned on the horizontal 

axis of the eyeball actuate horizontal eye movements, while the inferior and superior recti 

muscles aligned on the vertical axis of the eyeball actuate vertical eye movements 

(Kandel, Schwartz, & Jessell, 2000).  The inferior and superior oblique muscles are 

positioned diagonally on the eyeball and mainly provide torsion (rotation about line of 

vision) but also contribute to horizontal and vertical eye movements (Kandel et al., 2000).  

For the observed reduction in vertical velocity with horizontal positions, it is possible that 

the superior and inferior recti muscles’ influence on vertical movement decreases for 

increasing horizontal eye eccentricities because those muscles are stretched beyond 

optimal functioning lengths.  At high eccentricities, driving forces for the vertical eye 

movements may rely more on oblique muscles, and perhaps these muscle types do not 

generate as much force as the recti muscles.   

A comparable effect was not seen in this study due to the more limited range of 

motion tested (±18 degrees). Instead, the best-fit models indicated that horizontal and 

vertical velocities increased with vertical and horizontal eccentricity.  This result cannot 
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be compared to Bahill’s observations, whose data was taken at an eccentricity (39˚) 

outside of the range of motion for this study (±18˚).   

 For the 2-D smooth-pursuit task, there was a clear effect of velocity on cross-axial 

position for both horizontal and vertical movements (p<0.0001).  Specifically, an increase 

in speed resulted in a tendency to move to the center position along the opposite axis, 

resulting in oblique movements curving centripetally (towards the horizontal and vertical 

midlines) based on the speed of eye movements along the horizontal or vertical midlines.  

This may be compensated by centrifugally curved oblique movements (for both saccades 

and smooth-pursuit eye movements) based on the error between eye and target positions 

along the horizontal or vertical midlines (B
v-e

h-pos and B
h-e

v-pos).  The results suggest that 

centripetal curving may occur naturally as a result of system interactions, and that 

centrifugal curving driven by the controller may be used to correct for the resulting 

position errors to produce oblique movements with straighter trajectories and reduce 

travel distance to fixate the target.  Becker and Jurgens (1990), showed that oblique 

saccades typically correct for early deviations from a projected straight trajectory to a 

target (Becker & Jurgens, 1990).  For example, a saccade towards a target located 

directly beneath the fixation point may begin with some horizontal displacement that is 

corrected after movement onset resulting in a curved trajectory.  The responses of the 

best-fit models support the interpretation of the interaction as a “correction” that acts on 

positional error to correct for curvature naturally induced by the ocular system.  

As discussed in Section 2.5, the independent control hypothesis postulates that 

motor commands to control horizontal and vertical eye movements are generated 

independently of one another.  The resultant best-fit parameters from the model suggest 
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interactions between the generation of motor commands for the horizontal and vertical 

eye movements, which contradicts the independent control hypothesis.  Table 4 shows 

statistical significance or almost statistical significance for error-induced centrifugal 

curvature (B
v-e

h-pos and B
h-e

v-pos; p<0.055) for both 2-D saccade and smooth-pursuit data, 

and with motor commands being proportional to position errors, this suggests interaction 

between the motor commands.  The error-induced effects on velocity (B
v-e

h-vel and B
h-e

v-

vel) were generally not significant (p>1.77), with the exception of B
v-e

h-vel from the 

smooth-pursuit task (p=0.01), perhaps due to the small sample size of the study, but the 

corresponding best-fit parameters were consistently negative across subjects, resulting in 

slower movements along the direction that requires greater eye displacement for an 

oblique eye movement.  This effect supports the concept of component stretching, where 

the duration of the longer-traveling component of an oblique saccade is stretched so that 

the end times of the two components coincide to produce straight trajectories to the 

target.  Overall, the presence of statistically significant interactions in the best-fit model 

is not generally consistent with an independent control hypothesis.  The results instead 

support the existence of interactions that result in centrifugal curvature, based on position 

errors, and component stretching.  However, the small effects of the significant 

interactions on the functional response seem to qualitatively support independent control 

hypothesis, and future studies may investigate which results are more valid.   

 
5.3 Model Limitations  

  

The oculomotor control model used in this study makes several assumptions.  The 

ocular dynamics were modeled by a second-order system that combined the eye muscles 

and plant into one entity (Robinson, 1964; Robinson et al., 1986).  Subsequent models 



81 
 

have improved on this by separating the agonist and antagonist muscles in order to 

improve the velocity profiles of saccades (Bahill et al., 1975b; Clark & Stark, 1976; G. 

Cook & L. Stark, 1968; Hsu, Bahill, & Stark, 1976).  The velocity profiles, relative to 

time, were not investigated in this study, but a more sophisticated ocular dynamics 

system could be incorporated to better characterize these effects in future studies.  The 

ocular dynamics and motor command contributions (A1-A4 and B1-B2 parameters) were 

also assumed to be identical for both horizontal and vertical movements.  Similar 

assumptions have been made in other studies of oblique eye movements (Chen-Harris et 

al., 2008), making it unclear if the effect on horizontal and vertical movement differences 

occurred at the level of the controller or ocular dynamics.  In the proposed model, we 

assumed that differences in 1-D axial movements were attributed to the controller.  

Future studies may individually fit the vertical ocular dynamics (A1y-A4y) along with the 

controllers, to quantify differences in ocular dynamics between horizontal and vertical 

eye movements.  Adding these parameters to the fitting process may reduce differences 

between the horizontal and vertical components of the best-fit 1-D controllers and could 

potentially impact the interpretation of the 2-D interactions. For example, larger 

differences between the 1-D horizontal and vertical ocular dynamics (1-D, state matrix 

‘A’ parameters) could further reduce the contributions of system interactions (2-D, state 

matrix ‘A’ parameters).  

 A second model assumption concerned the internal prediction of eye movement.  

The model assumed the oculomotor system completely and accurately estimated eye 

movements such that internal prediction of the movement completely canceled the 

delayed information from visual feedback.  This assumption was reasonable in the 
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current study with visually-healthy subjects for whom the accuracy of eye movements 

suggests the effects of an imperfect internal plant representation was negligible.  Fitting 

this model to subjects with visual deficits, such as those with MS, may require freeing the 

internal plant parameters, as this effect should not be ruled out.  This will likely also add 

uncertainty in the estimates.   

 The model was also limited by the range of motion in the visual tasks: ±18 

degrees of visual arc.  Saccade amplitudes above this range would require subject specific 

estimates of the velocity saturation in the model (Figure 7 A).  This may be implemented 

using appropriate sigmoidal or natural log equations to characterize movements within 

the saturation region.   

  In the proposed model, the smooth-pursuit control loop did not incorporate 

glissades, which are drifting ocular movements towards the target during the end of a 

saccade (Bahill, Clark, & Stark, 1975c).  Instead smooth-pursuit control was 

implemented for position error that fell within the saccade dead zone region, rather than 

glissade control.  Smooth-pursuit and glissade movements are both slow but may be 

driven by different target signals, as smooth-pursuit is mediated by a moving target while 

a glissade is mediated by a stationary target.  Future oculomotor models may attempt to 

characterize glissades by incorporating PID control within the dead zone separate from 

the smooth-pursuit PID control, where a stationary target may be required for activation 

of glissade control.   

 Limitations in the eye tracking resolution likely contributed errors in dead zone 

analysis and general parametric analysis.  Accurate estimation of the dead zone required 

detection of saccade amplitudes less than 0.5˚.  Smoothing the data reduced noise from 
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the Arrington system used in this study, but this reduced the displacements between 

consecutive gaze points, resulting in lower saccade velocities.   

 
5.4 Future Directions  

 

5.4.1 Improving Eye Movement Characterization 

 

 The eye tracking resolution of 60 Hz is much smaller than earlier studies that used 

infrared eye trackers with 1000 Hz (Bahill & Stark, 1975; Chen-Harris et al., 2008; Schmitt, 

Muser, Lanz, Walz, & Schwarz, 2007).  The low resolution contributes positional error to eye 

movement measurements when changes in eye position are misidentified, particularly during the 

30-80 ms saccade duration in which saccades can only be represented by 1-4 data points.  The 

lack of data points may under-characterize the curvature required to identify 2-D interactions 

between horizontal and vertical eye movements, and the misidentified timing of saccade 

movements affects velocity calculations used by the model to modulate derivative control.  Thus, 

future studies measuring eye movements with higher resolution eye tracking systems may help 

confirm or reject results seen in this study.   

 Alternatively, sampling could be augmented by running repeating trials for each subject.  

Assuming ergodicity and variability of sampling onset times, this could yield better sampling for 

eye movements to repeated targets, effectively increasing the sampling rate.  Interspersing the 

repeated trials within novel trials would be recommended to minimize subjects’ ability to make 

predictive eye movements.  Different eye movement measurement modalities such as the electro-

oculogram could also be coupled with the infrared eye tracker to yield more data .   

 To avoid computational complexity, saccade control was characterized here by a general 

PD controller. Controller performance could be improved by utilizing a more physiologically 

consistent pulse-step control. Pulse-step control can be approximated by a PD control model 

using a high derivative gain whose maximum amplitude is saturated (Winters et al., 1984), 
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whereby the high derivative gain accounts for the fixed rise time of a pulse signal, while the 

saturation accounts for the height of the motor command. This type of controller setup (pulse-

step) allows the model to produce faster saccades than a typical PD controller while maintaining 

stability. To illustrate the benefit, the high derivative gain with saturation PD controller was 

implemented for horizontal saccade control and fit to EM_S06’s horizontal saccade data 

(randomly selected) and the controller’s sensitivity and accuracy to subject data was examined.  

Table 7 shows the model’s fit to subject data, in which the derivative gain is fixed to values 

larger than the initial-model value and parameters accounting for proportional control and 

 

 Derivative 

Gain 

Saturation 

Gain Initial 

Saturation 

Gain Final 

Proportional 

Gain 
R

2
 

(degs) 
RMSE 
(degs) 

Fit #1 0.0418 25 41.44 6.05 0.9598 1.6218 

Fit #2 0.0418 50 49.02 5.29 0.9613 1.6263 

Fit #3 0.0418 75 59.65 4.47 0.9604 1.6502 

Fit #4 0.0418 100 50.96 4.31 0.96 1.617 

 

      Fit #5 0.0836 25 39.91 9.18 0.9595 1.6216 

Fit #6 0.0836 50 47.84 7.71 0.9589 1.612 

Fit #7 0.0836 75 47.65 6.5 0.9614 1.6045 

Fit #8 0.0836 100 99.99 3.73 0.9576 1.685 

 

      Fit #9 0.209 25 30.12 11.31 0.9484 1.7912 

Fit #10 0.209 50 51.49 9.39 0.9439 1.8909 

Fit #11 0.209 75 58.55 7.33 0.9578 1.6448 

Fit #12 0.209 100 52.41 9.34 0.9606 1.6123 
Table 7: Curve-fitting horizontal saccade data (from EM_S06) to modified PD controller with output 

saturation to model pulse-step control.  The derivative gain was fixed to an arbitrary values that 

were factors of 1, 2 and 5 larger than the initial-model value, and the proportional and saturation 

gains were free for fitting.  The proportional gain was pseudo-randomly perturbed using the -10 to 

10 factor range about the initial conditions, while the saturation gain had systematic initial conditions 

of 25, 50, 75 and 100 Newton-meters for each fit.  Correlation (R
2
) and root mean squared error 

(RMSE) are shown for each fit to quantify goodness of fit between model and subject response.  The 

sensitivity of fitting the saturation gain to the saccade data is demonstrated by the parameter’s 

convergence to approximately 50 (±10) N-m for 10 out of the 12 fits.  Fit #7 demonstrated the highest 

correlation and lowest error.   
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motor command saturation are freed for fitting.  Under all tested derivative gains and 

initial conditions for saturation, the fitted saturation parameter drifts towards a value of 

50 Newton-meters, suggesting the parameter can be fit to subject data.  From the tested 

conditions seen in Table 7, the model performed optimally with a derivative gain set 

twice as large or equal to the initial-model value, with Fit #7 (saturation of 47.65 N-m 

and proportional gain of 6.5) having the highest correlation and lowest error.  The best-fit 

controller from this small sample of fits were represented by values from Fit #7 and was 

compared to the initial-model’s PD controller in Figure 33.   

 

 
Figure 33: Comparison of Pulse-Step vs. PD saccade control.  The model response using the PD 

controller from the initial-model (solid red) is compared with the model response using the Pulse-

Step controller with proportional and saturation gains of 6.5 and 47.65 respectively (solid green).  

The target (solid black) and subject gaze (dotted blue) positions are example data from EM_S06.  

Implementing the pulse-step controller over the PD controller improved the model’s ability to match 

the subject’s saccade trajectory, as seen in the rising slope of the first target step and the falling slope 

of the last target step.  For the first target step, the pulse-step controller showed a more critically-

damped response as well, which is more consistent with the subject data.   
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From the figure, the pulse-step controller allowed the model to more accurately 

characterize the steep slope and critically-damped response from a subject’s saccades 

versus the PD controller.  The response from the pulse-step controller also showed a 

correlation and root mean squared error of 0.96 and 1.63 degrees between the model and 

subject responses, which is an improvement from the 0.95 and 1.81 degrees afforded by 

the PD controller.   

 Figure 33 shows that the saccade velocity from the best-fit pulse-step controller is 

lower than the subject response, so the velocity from the PD controller seems like a better 

fit.  It should be noted that increasing the motor command saturation noticeably increases 

the velocity for larger steps.  Figure 34 shows the effect of increasing this parameter by 

approximately 50% of the best-fit value, where the velocity of the simulated saccade was 

a better match qualitatively to the subject saccade.  The correlation and error between 
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Figure 34: Effect of increasing motor command saturation on pulse-step control.  The model 

response using the best-fit Pulse-Step controller except for a 50% increase in saturation to 75 N-m 

(solid red) is compared with the model response using the best-fit Pulse-Step controller which had a 

saturation gain of 47.65 (solid green).  The target (solid black) and subject gaze (dotted blue) 

positions are example data from EM_S06.  For the larger saccade step, the higher saturation gain 

increased the model’s velocity, which more closely represents the subject’s velocity for the first 75% 

of displacement (solid red vs. dotted blue) than the best-fit model with a lower saturation gain (solid 

green vs. dotted blue).    

 

 

this controller and subject response was lower than the best-fit controller (0.9584 versus 

0.9614, and 1.6988 degs versus 1.6045 degs), due to the unusually higher latency of the 

sample data for the subject.  These results support the incorporation of a pulse-step 

control for future studies. 

 In addition to saccade control, it could be argued that some parameters 

characterizing interactions between horizontal and vertical eye movements can be 

removed based on their lack of significance (Table 3 and Table 4).  However, these may 
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be mischaracterized by a lack of sufficient data in this study, especially when considering 

that only 1-4 data points were used to characterize the 2-D curvature of saccades with a 

60 Hz eye tracking system.  The results demonstrate that model fit to subjects’ data was 

sensitive to a subset of interactions, but this does not preclude other forms of significant 

interactions whose sensitivity was negatively impacted by the eye tracking system.  

Upgrading the eye tracker system is a recommended priority for follow-up studies to 

more accurately characterize interactions.  Therefore, while removing seemingly 

insignificant parameters may further constrain the model to improve curve-fitting, 

keeping the general model structure described in this study is recommended.   

 The influence of data preprocessing techniques on the results was not investigated 

here.  More advanced preprocessing techniques could improve the eye tracking data and 

subsequent analysis for the current system.  For example, the estimation of eye position 

during eye blinks could be improved by using a 5
th

 order spline interpolation to maintain 

eye velocity and acceleration continuity during the blink interval.  The current study 

simply cuts out eye position data classified as eye blinks; this is not recommended for 

follow-up studies where higher resolution eye trackers will be used and more accurate 

eye positions are expected.  Another example is the automation of artifact removal from 

eye tracking data to reduce the human error of visually inspecting the data, as was done 

in this study.   

 

5.4.2 Eye Movement Studies in Persons with Multiple Sclerosis 

 

Previous studies by Feys and colleagues have begun to examine the relationship 

between eye and arm movement deficits in MS (Feys, 2003, 2005, 2008).  Using 1-D 

wrist tracking and finger aiming tasks, their studies attempted to characterize the effects 
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of oculomotor deficits on manual movement by examining movements in the presence 

and absence of visual information as subjects performed goal-directed tasks.  They found 

correlation between initiation phase durations (time between visual target and onset of 

eye or hand movement) and directional changes between ballistic eye and hand 

movements for both MS and control subjects (Feys, 2003).  When visual information 

about the movement was available, eye and hand movements during stabilization 

exhibited a larger range in amplitudes compared to the condition where the subjects’ arm 

was hidden (Feys, 2003).  In a later study, Feys found that intention tremor during wrist 

tracking decreased when the subjects’ initial saccade (rapid, intermittent eye movements) 

to the target (first saccade reacting to a target step) decreased (Feys, 2005).   Error-

corrective movements decreased when the initial saccades decreased as well.  Their 

results suggest that eye movements affect the accuracy of arm movements.  However, the 

relationship between visual information and intention tremor was not shown to be causal.   

This study focused on oculomotor control in healthy subjects.  Including persons 

with MS may reveal characteristic changes between the two groups, reflecting differences 

in control strategies for goal-directed ocular movements.  In addition, this model can be 

incorporated into existing sensorimotor control models to integrate ocular and arm 

movements to understand the relationship between these two systems across different 

patient populations.   

  



90 
 

6. CONCLUSION 

 

 

 The three aims for this study were met.  A stabilized oculomotor control model 

was developed and the sensitivity of the model to characterize saccades and smooth-

pursuit eye movements in visually-healthy subjects was quantified.  A system 

identification process was developed to systematically acquire subject-specific 

parameters for the oculomotor control model using 1-D saccade, 1-D smooth-pursuit and 

2-D saccade and smooth-pursuit data.  The model was evaluated using test data with a 

2.987˚ (±0.252) and 2.627˚ (±0.210) root mean squared error for the horizontal and 

vertical eye movements respectively.  Higher temporal and spatial resolutions of eye 

tracker systems used in future studies may improve the fitting accuracy of the system 

identification process.  The 2-D analysis of eye movements in this study suggested 

interactions between horizontal and vertical oculomotor control that induce centrifugal 

curvature and component stretching, but the typically small functional effects 

qualitatively suggest an independent control hypothesis.   
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