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Extensive DNA rearrangement occurs during the development of the somatic macronucleus from the germ
line micronucleus in ciliated protozoans. The micronuclear junctions and the macronuclear product of a
developmentally regulated DNA rearrangement in Tetrahymena thermophila, Tirl, have been cloned. The
intrachromosomal rearrangement joins sequences that are separated by more than 13 kb in the micronucleus
with the elimination of moderately repeated micronucleus-specific DNA sequences. There is a long, 825-bp,
inverted repeat near the micronuclear junctions. The inverted repeat contains two different 19-bp tandem
repeats. The 19-bp repeats are associated with each other and with DNA rearrangements at seven locations in
the micronuclear genome. Southern blot analysis is consistent with the occurrence of the 19-bp repeats within
pairs of larger repeated sequences. Another family member was isolated. The 19-mers in that clone are also in
close proximity to a rearrangement junction. We propose that the 19-mers define a small family of
developmentally regulated DNA rearrangements having elements with long inverted repeats near the junction
sites. We discuss the possibility that transposable elements evolve by capture of molecular machinery required

for essential cellular functions.

Ciliated protozoa have two different kinds of nuclei: diploid,
germ line micronuclei and transcriptionally active macronuclei.
During sexual reproduction (conjugation), the old macronu-
cleus is degraded and a new macronucleus develops from a
mitotic product of the zygotic micronucleus.

The developing macronucleus undergoes radical changes in
genome organization. In the holotrichous ciliate Tetrahymena
thermophila, there is a period of DNA replication which brings
the DNA content of the macronucleus to 45 times the haploid
DNA content of the micronucleus. When the developing
nucleus is between 4C and 8C, about 15% of the germ line
DNA sequences are eliminated from the somatic macronu-
cleus (11, 36, 58). Since DNA sequence elimination is site
specific, highly regular, and developmentally controlled, it is
expected that DNA rearrangement involves the interaction of
specific cis-acting sequences with the rearrangement machin-
ery.

Developmentally regulated DNA rearrangements in 7. ther-
mophila fall into two classes with respect to the fate of the
macronucleus-destined sequences which flank the eliminated
DNA (reviewed in reference 56). The first class of rearrange-
ments results in chromosome breakage. The five metacentric
chromosomes in the zygotic micronucleus are fragmented in
the developing macronucleus to produce 50 to 250 subchro-
mosomal molecules. A well-characterized example of this type
of rearrangement is one in which the single rRNA gene in the
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micronucleus is excised from the chromosome and short
stretches of DNA on either side of the gene are eliminated
(55). Both the extrachromosomal rRNA genes (rDNA) and
the new subchromosome-size molecules flanking the elimi-
nated DNA acquire telomeres, which stabilize the ends of the
molecules. A 15-bp chromosome breakage sequence (Cbs) is
thought to be the cis-acting sequence for chromosome frag-
mentation. The Cbs, originally found at the fragmentation sites
for the rDNA, occurs at numerous additional sites in the
micronuclear genome where it is associated exclusively with
chromosomal fragmentation sites (60). Cbs has been shown to
be both necessary and sufficient for chromosome breakage of
constructs microinjected into developing macronuclei (59).
The second class of rearrangements in 7. thermophila are
breakage and joining events in which DNA sequence elimina-
tion is accompanied by ligation of flanking sequences. Over
5,000 of these events occur per haploid genome (2, 29). The
length of eliminated DNA sequences varies over an order of
magnitude, ranging from 600 bp to more than 10 kb (12, 57).
Four short deletions, M, R, a deletion near the calmodulin
gene, and mse2.9, have been described in detail at the se-
quence level (3, 4, 26, 37). For the M rearrangement, A;Gs
polypurine tracts have been shown to be necessary and suffi-
cient for DNA rearrangement (23). The polypurine tracts are
outside the deleted DNA and direct DNA rearrangement at a
distance of 41 to 54 bp. Short direct repeats at the in vivo
junctions of M are not required for rearrangement but may
play a role in fine tuning the choice of junction site (24). The
R rearrangement, the deletion near the calmodulin gene, and
mse2.9 all lack polypurine tracts. cis-acting sequences for the
latter three rearrangements have not yet been identified.
Although the four deletion-ligation rearrangements studied
thus far have different sequences at the rearrangement junc-
tions, it is not expected that each of the 5,000 rearrangements
in the T. thermophila genome has unique cis-acting sequences.
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It has been suggested that the rearrangements belong to
several classes, each specified by different flanking sequences
(5).
We describe here a breakage and joining rearrangement
which also lacks AsGs tracts and is structurally distinct from
those described previously in that the rearrangement junctions
are widely separated in the micronuclear genome. The rear-
rangement is named TIrl, for Tetrahymena long repeat, with
reference to an 825-bp inverted repeat sequence located near
the junctions of the rearrangement. Within the long inverted
repeat of Tlrl are two different 19-bp tandem repeats. The
19-mers are associated with each other and with DNA rear-
rangements at seven sites in the genome. Southern blot
analysis suggests that the 19-mers occur within pairs of longer
repeated sequences. Another member of the family on which
the micronucleus-specific 19-mer repeats are linked to macro-
nucleus-retained DNA, as expected for a clone containing a
rearrangement junction, has been cloned. The data support a
model for a small family of three or four DNA rearrangements
having long repeated sequences near the rearrangement junc-
tions.

MATERIALS AND METHODS

Strains. The wild-type inbred strain BVII and the hetero-
karyon strains CU428, Mpr/Mpr (6mp-s, VII), CU441, Chx/
Chx (cy-s, VI), and CU354 ChxA,/ChxA, (cy-s, IV) were
obtained from P. Bruns. Strain C2-468-3 (III) was provided by
E. Orias. Caryonidal lines MU4A-D and MUSA-D were
isolated from a cross between CU428 and CU441. Lines A and
B are the caryonidal lines derived from one exconjugant and
lines C and D are from the other exconjugant.

Cloning. Macronuclear DNA and micronuclear DNA were
isolated by a modification of the method of Gorovsky et al. (25)
as described Capowski et al. (16). DNA was digested with
appropriate restriction enzymes and size fractionated on 0.7 to
1.0% agarose gels. The level of the running buffer was lowered
to the top of the gel. A trough was cut in the agarose below the
DNA of the desired size and filled with 25% glycerol in
running buffer. The DNA was run into the trough at 200 V for
2.5 min and then collected and stored. The trough was refilled
with glycerol in running buffer, and the procedure was re-
peated. Several fractions were collected. The DNA was con-
centrated with an Elutip-D column (Schleicher & Schuell) as
per the manufacturer’s instructions. DNA slot blot analysis was
done to determine which fraction(s) contained the desired
DNA fragment.

The left junction of the rearrangement was cloned as a
1,930-bp HindlIlI fragment of micronuclear DNA, IIC7 (36). In
order to clone the macronuclear junction site, size-fractionated
4.4-kb BgllI-Xbal-digested macronuclear DNA was ligated to
BamHI-Xbal-digested pUC18. Approximately 500 colonies
were screened by an in situ lysis method (47). The probe was
the 0.9-kb HindIII-Sau3A fragment, IIC7.1a, which contains
single-copy DNA from the micronuclear clone (48).

Micronuclear DNA from the right-end rearrangement site
was isolated from a library of 4.0-kb Bg/II fragments ligated to
BamHI-digested pUC13. Approximately 500 colonies were
screened with a 1.8-kb Sau3A fragment, TIrl.mS-S. Tlrl.mS-S
contains single-copy DNA from the right side of the rearrange-
ment.

Micronuclear DNA clone TIr2.rX-C was cloned from size-
fractionated HindIII-EcoRI-digested micronuclear DNA li-
gated to BluescriptSK vector and transformed into Escherichia
coli CES201 (54). Approximately 500 colonies were screened
with the 525-bp Clal-HindIII fragment from Tlrl.rB-H, which
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contains the 19-mer repeats, as a probe. The clone was
propagated in XL1-Blue cells (Stratagene) for sequencing.

PCR amplification of inverted repeat sequences near the
right junction. For PCR amplification of sequences near the
right junction of Tlrl, micronuclear DNA was digested with
HindIII and EcoRI. Restriction fragments were circularized
by ligation of the DNA in the presence of two complemen-
tary oligonucleotides, 5'-AGCTTGAGCTCTCGAGTCGAC
GATCG-3' and 5'-AATTCGATCGTCGACTCGAGAGCT
CA-3’, which hybridize to each other to form a linker with
HindIII and EcoRI sticky ends. The DNA sequences between
the Bglll site of TIrl.rB-H and the internal EcoRI site were
amplified by PCR with oligonucleotides 1 and 7 (see Fig. 2) as
the primers. Oligonucleotide 7 is present in the inverted repeat
of Tlr1 and possibly at other sites in the genome. Oligonucle-
otide 1, which hybridized to unique DNA, conferred specificity
on the PCR.

Southern hybridization. Purified micronuclear DNA iso-
lated from strain CU441 was digested with the appropriate
restriction endonucleases, fractionated by electrophoresis
through 0.8% agarose gels, and blotted by the alternate
method in the GeneScreen Plus protocol manual. Probes were
radioactively labelled by the random primer method (47). The
nylon filters were washed in 0.1X SSC (1X SSCis 0.15 M NaCl
plus 0.015 M sodium citrate) and 0.1% sodium dodecyl sulfate
(SDS) at 65°C.

In-gel hybridization. Macronuclear DNA and micronuclear
DNA fragments were fractionated by electrophoresis through
1.0% agarose gels. The gels were dried in a Bio-Rad slab dryer
(model 483) for 2 h at 60°C. Dried-gel hybridizations of 19A
and 19B to digested genomic DNA were performed (20). The
probes were end labelled with T4 polynucleotide kinase and
put over a Sephadex G-50 spin column to separate the probe
from the unincorporated nucleotides (47). 19A and 19B probes
were hybridized in a 6X SSPE (1X SSPE is 0.18 M NaCl, 10
mM NaPO,, and 1 mM EDTA [pH 7.7]) solution at 37 and
42°C, respectively, in a shaking water bath for 18 h. The gels
were washed with tetramethylammonium chloride solution [3
M (CH,),NCl, 50 mM Tris-Cl (pH 8.0), 2 mM EDTA, 1 mg of
SDS per ml], which minimizes the effect of GC content on the
dissociation temperature (7,) (53). Washes in tetramethylam-
monium chloride were done at 55°C (T, — 3°C), which allows
hybridization of the oligonucleotide to only perfectly matched
genomic sequences.

DNA sequencing. Double-stranded DNA sequencing was
done by the Sanger dideoxynucleotide sequencing method, as
previously described (1). Single-stranded DNA for sequencing
was produced from Bluescript plasmids in XL1-Blue cells by
using helper phage M13K07 (Stratagene) per the manufactur-
er’s instructions. Direct sequencing of the right junction PCR
product from two independent PCR amplifications was done
as described by Klobutcher et al. (39). All micronuclear DNA
was sequenced in both directions, and macronuclear DNA was
sequenced at least twice.

Nucleotide sequence accession numbers. The left and right
junction sequences of the Tlrl rearrangement have been
deposited in the GenBank database (accession numbers
125253 and 125254, respectively).

RESULTS

A developmentally regulated DNA rearrangement in T.
thermophila, Tirl, results in elimination of DNA from the
macronuclear genome with ligation of the flanking sequences.
The 1.9-kb clone pTtIIC7 (Fig. 1) was isolated from a library of
T. thermophila micronuclear DNA. The subclone pTtIIC7.2
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FIG. 1. Restriction maps of the micronuclear (Mic) and macro-
nuclear (Mac) genomes in the vicinity of the Tirl rearrangement.
Cloned sequences are indicated by the bars. Restriction sites: P, Hpal;
A, Haelll; B, Bglll; H, HindIll; S, Sau3A; C, Clal; X, Xbal; 1, HindII;
E, EcoRI. Additional Sau3A sites which are not shown on the map are
present. 7 indicates that there is more than 13 kb of micronuclear
DNA between the rearrangement junctions which has not been
mapped in detail.

belonged to a family of repeated micronucleus-specific se-
quences (36, 48). The subclone pTtIIC7.1a contained single-
copy DNA which hybridized to a 1.9-kb fragment in Southern
blots of HindIlI-digested micronuclear DNA and to a 1.1-kb
fragment in macronuclear DNA. The simplest explanation for
the difference in size between the micronuclear and macro-
nuclear HindIII fragments was that the micronuclear HindIII
fragment undergoes rearrangement during development of the
macronucleus. IIC7 was arbitrarily designated as the left end of
the TIrl rearrangement.

In order to determine the DNA sequence at the junction
sites, it was necessary to obtain the micronuclear DNA repre-
senting the left and right ends of the rearrangement site and
the macronuclear DNA which is the product of the rearrange-
ment. The left and right junctions are a large, but undeter-
mined, distance apart (data presented below), and the pres-
ence of repeated sequences in the eliminated DNA precluded
a chromosome walk from the left to the right micronuclear
junction. Therefore, a chromosome jump across the deleted
DNA was done by isolating the macronuclear junction frag-
ment and using a subclone of it to identify the micronuclear
right junction clone.

Genomic restriction maps of the micronuclear DNA in the
region of the left end of the rearrangement and of the
macronuclear DNA were constructed by using IIC7.1a as a
probe (Fig. 1). The mapping data suggested that the rearrange-
ment junction was present on a 4.4-kb BgllI-Xbal fragment in
macronuclear DNA. The macronuclear fragment was isolated
from T. thermophila BVII by screening a minilibrary of size-
fractioned macronuclear DNA digested with Bgl/II and Xbal,
with IIC7.1a as the probe. This clone, designated Tlrl.mB-X,
was digested with restriction enzymes and shown to contain the
HindlIll, Sau3A, and Haelll sites predicted from the genomic
map of macronuclear DNA. The 1.1-kb HindIll fragment
containing the rearrangement junction, Tlrl.mH-H, was sub-
cloned. It hybridized to the expected 1.9- and 1.1-kb HindIII
fragments on Southern blots of micronuclear and macro-
nuclear DNA, respectively.

The strategy used in cloning the right side of the IIC7
rearrangement was similar to the one used to clone the
macronuclear DNA. A 4.0-kb Bg/II restriction fragment in
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micronuclear DNA was identified by hybridization with the
1.8-kb Sau3A subclone, TIrl.mS-S. The cloned fragment,
designated TIrl.rB-B, had seven restriction sites identical to
those in Tlrl.mB-X and ~800 bp of DNA not present in the
macronuclear clone. The right junction of the rearrangement
was located in the 844-bp BglII-HindIIlI fragment, Tlr1.rB-H.

The DNA sequences of the left junction clone IIC7 and the
right junction clones Tlrl.rB-H and Tlrl.rH-H1 were deter-
mined (Fig. 2). Comparison with the sequence of the macro-
nuclear clone, Tlrl.mH-H, confirmed the ligation event indi-
cated by the restriction maps and unambiguously identified the
junction site in strain BVIL.

The TIrl rearrangement is intrachromosomal. The junc-
tions of Tlrl are more widely separated in the micronuclear
genome than those of breakage and joining rearrangements in
T. thermophila which have been studied previously. Genomic
restriction maps of micronuclear DNA were constructed by
using pTtIIC7.1a and Tlrl.rH-H1 as hybridization probes (Fig.
1). In no case did the two probes hybridize to a restriction
fragment of the same size. Hybridization of micronuclear DNA
with oligonucleotide 1 (Fig. 2B) showed that the right junction
is on a 12-kb HindIIl fragment, with only 51 bp of DNA
between the right junction and the HindIII site of Tlrl.rB-H.
Since there is an additional 891 bp of micronucleus-specific
DNA between the left junction of the rearrangement and the
HindIII site at the end of the IIC7 fragment, the left and right
junctions of the Tirl rearrangement are separated by at least
13 kb in the micronucleus.

The relatively long distance between the right and left
junctions of Tlrl raised the question of whether the Tirl
rearrangement is intrachromosomal. Linkage of the left and
the right junctions of the TIrl rearrangement was demon-
strated by PCR analysis of nullisomic strains of 7. thermophila.
Nullisomic strains are heterokaryons which have an intact
macronuclear genome but lack one or more pairs of chromo-
somes in the micronucleus (14). The left junction of TIrl was
PCR amplified with oligonucleotides 2 and 3 (Fig. 2A) as
primers. Oligonucleotide 2 is located within single-copy DNA
and conferred site specificity on the reaction. Oligonucleotide
3, located within micronucleus-specific DNA, was chosen to
obtain the PCR product which resulted from amplification of
micronuclear, and not macronuclear, DNA sequences. Whole-
cell DNAs from diploid cells and from all nullisomic cell lines
except those which lack chromosome 3 have the expected
1,726-bp PCR product (18). The 786-bp right junction frag-
ment generated in a PCR with oligonucleotides 4 and 5 (Fig.
2B) was similarly mapped to chromosome 3. Thus, the Tirl
rearrangement is intrachromosomal.

Variability in the junction sites of the TIrl rearrangement.
Southern blot analysis of DNA from caryonidal strains was
done in order to assess the degree of variability of the Tirl
rearrangement. The four caryonidal strains isolated from a
mating pair of T. thermophila are genetically identical but
developmentally independent (13). DNA rearrangement oc-
curs after the genome has undergone one or two rounds of
DNA replication (2, 11), when there are four to eight copies of
the genome present in the macronuclear anlagen. Thus, for
rearrangements having alternate junctions, a single macronu-
cleus may produce more than one rearrangement product (5).

Two sets of caryonidal strains were isolated from a mating
between strains CU428 and CU441. The cell lines were grown
only to mid-log phase before preparation of DNA in order to
minimize selection of particular variants due to possible dif-
ferences in growth rate among the vegetative progeny. Thus,
the DNA from the caryonidal lines was expected to contain all
of the rearrangement products that were produced in the
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A

HindIII

AAGCTTTCATGATAAACTAAAAGAGAAAAATGATAAATACAACCTCCATGTTCAATATTTTAAGATAAAATTATAATTACTAAAAAAGCTAGAATGATTT 100
oligo 2

AAAAAATTATATTGAATTTTTAATAAAGGTACTCTTTTGACTAAAGTTACTTTAGAAAACAAAAGCAGTAAATARATAAAAAAATGAACTGGATTAATTT 200

AATTAATAAATTATAATTCTTGTAGAAGATTTAAAGAAATTTGCATAATTTAAAAAAAATTTTGAGAAAAAAATATATTTAATGAATGAATAGCTTATCT 300
TATCTATATCATCTAAATTATAAATTTGATTGATTATAATACAAGTTTCTCAAATTAACTTATTTATTAATAGAAATTTGATAGTATTAATTTAAATTTT 400
GCTCAACTAGAAATTGTAGCTCATTTTCTACCTTTCTAAATTTCAATACATTTATTTTGAGTTTAATACTTTTTTATATTGTCGATTTTAAAATCATTTG 500
GCAATCAATTATTATAAAAATTATAAATCAAATTCAACCATAAATATTTTTGCACTTTTATTTATTGAAGTTAAGTATTATAATTAATAAGTGCAATATT 600

TTTACCAAGAAACTAATATATTATGAATATTTTCACTTCAATTTAAAATAATAAATAAATTAGCTTTACATATAATTATCTGCTTCTTATACGAAAAAAA 700

v
CTAAAAAAATCTTTGATTATAGAAATTAAAAGCAAAATTATATTTTTTAATTTATATAAATTAAAATTTCAAATTATAATTTCATTTGCTACTCGTGAGA 800
Sau3A-Rsal v
GAATTTACAATCGGAGCATTTTTAGATCAGTACAGGTAAAAAAAATATTCTACATAAAATTAAAATTATAATTTTATTTACATTTGTTATTTTATAAAAT 900
* * * * *
AATTATTTCTTTTTACATTTATTATTTCTTTTTACATTTATTATTTCTTTTTACATTTATGATTTCTTTTTATATTTCTTACTTCTTTTTATATTTTTAT 1000
*

¥ ]
ATATTTCTTATTTCTTTTTATTTTTCTCAAGTTTCTAAAgtttctcacgtttctaaaaatttttaaaatttctcattttatgaaaagtttctcattttat 1100

4 L ] ¥ .
gaaaagtttctcattttatgaaaagtttcttattttatgaaaagtttcttatttatcaaaattttcttatttatcaaaattttcttaatttttttagtct 1200
Clarl

tatgttttatttaaaaatcgataaaacatttaaaaataatttcaaaaaaattttttaattaaatttttcaattaatataaatagaacacaaaaaatacat 1300,

atcaacttttatcttaaggcataatttaaattttttaaaaaaatgacaaaaaaacaaacaaaaacaaaaaaaataaattaaaaacacaaaaacacaaaat 1400

ttaaaaaactttttattatcaaatcttaatttttcatttatttttcatttatcccttaaatccaaatcatttaattattcagctatctattcatcacttt 1500
BglII

cttaagtcatagatttctttccagccaatttagtagaatttagatcctaattcaaatttttattctaaaatttcagagtggcttgactagcattcaattc 1600

atcgttctctaattctccttcaataaaaaaactaaaaaatttaaaataaattaaaaaaaaatatcaaaacccaaaaagcatgactaaaacataccttate 1700

attttcaatccttaatgataagatatgcccagttccttecttttggtctcacaaagaaaaaattcaacaactctcattttttattattaaattcaaatac 1800

aatcctctagacctctttgaacacaaaatccttattagattcatcaaatcttctaaacagctatttaattttaccattttcatcatagtaatgaattctt 1900
HindIII oligo 3
agttatcagcatattcacaataataagcett

B

atgctgaagggaatagtaaaatgaaaatattttaagactaacaggaatgaatgaagattttgaagaaagagaatttgagaatgatgaattgaatgctagt 100
BglII

caagccactctgaaattttagaataaaaatttgaattaagatctaaattctactaaattggctggaaagaaatctatgacttaagaaagtqgatgaataga 200

oligo 7
tagctgaataattaaatgatttggatttaagggataaatgaaaaataaatgaaaaattaaaatttgataataaaaagttttttaaattttgtgtttttgt 300

gtttttaatttattttttttgtttttgtttgtttttttgtcatttttttaaaaaatttaaattatgeccttaagataaaaattgatatgtattttttgtgt 400
Clal
tctatttatattaattgaaaaatttaattaaaaaatttttttgaaattatttttaaatgttttatcgatttttaaataaaacataagactaaaaaaatta 500

+
agaaaattttgataaataagaaaattttgataaataagaaacttttcataaaataagaaacttttcataaaatgagaaacttttcataaaatgaqaaact 600
* *
tttcataaaatqgagaaattttaaaaatttttagaaacqtgagaaactttagaaacttgagaaaaataaaaagaaataagaaatatataaaaatataaaaa 700
* * *

*
gaagtaaqaaatataaaaagaaatcataaatgtaaaaagaaataataaatqgtaaaaagaaataataaatgtaaaaagaaataattattttataaaataac 800
Rsal Sau3A
aaatgtaaataaaattataattttaattttatgtagaatattttttttacctgtactgatctaaaaatgctccgattgtaaattctctctctegtgtate 900
oligo 4 w oligo 1 HindIII

agaaagaaatgactattttctaaaaaatcaagttgcCAAAAAAGATTAATTATCAAGTATAATTTTAATTTTATGTAAGTGAAAGCTTACGAGGAATCAT 1000
AGTAAATATATCTAATATATAAATGATTATCAATATAAAAAATATGAATATATTGCTAACTAAGTTATGTTTTATTTAACTCGTATATTTAAACTATAAA 1100
TAGATTCTTTAAAAAATTTTTTGGATGTACCCTACTTTCTTTTGAATAATATTCTAATAACTTTCAGGTAAACATTATCGTAAAGATAGCTATATATATT 1200
CTTTGTTAAATTATCCTATTAAAAATGTAATAATAAAAAACAAAACATATTATATTCAATTATTAAAGTATTTTTTCAATTTATTCATCTTATTATCATT 1300~
TATTTATCATCCATCATAAGTCTGTCTATATTTTAACTTATCTTTTTGGTTTAAGAAAATAACTTTTTAGTTTCAATTTTTTTTGAGATTTATTGATTTA 1400
GTTTAATCTATTATTATAAGCAGCTTTAACATATTTTAAAAGGTTGATTTTGATAATAAAATAATTAAAAATACAGTTAGTTATCAATGAGATGTTTTCT 1500
TGAACTTATTTTTTTGTGGAATCAGATTTGAAGAATATGGAGTAGCTTACATTTATATTTAAAATCAAATAACAAAGTAGTTTTTTTTCAATATAATTGT 1600

AATCAAAATCTGAAAGAATAATATTAGTAAATCCAAAGCAAATAACATTAATTATCGAATCGAAATTCACATTAAAATTTTATCTTGGACTTTATTAAAA 1700
HindIII oligo 5
ATTGATAGAGTTGAAAGCTT

FIG. 2. DNA sequence of the left junction (A) and the right junction (B) of the Tlrl rearrangement. The left junction is the sequence of
pTtIIC7. The right junction is sequence of PCR product, pTtTIrl.rB-H, and pTtTIrl.rH-H1. Uppercase letters designate sequence in both
micronuclear and macronuclear DNA, and lowercase letters represent DNA which is deleted from the macronucleus in strain BVII. Alternate
junction sites in strains CU354 (filled arrowhead) and C2-468-3 (open arrowhead) result in the deletion of more DNA than in the major
rearrangement. Alternate junction sites occur either 5’ or 3’ to the indicated adenines, an ambiguity due to the location of the right junction within
a run of adenines. Double underlining indicates the 825-bp inverted repeat. Symbols: initial nucleotides of the 19A (*) and 19B (#) tandem repeats.
Boldface indicates the oligonucleotides referred to in the text, including the perfect 19A and 19B repeats. Oligonucleotides of the sequence as
written are numbered above the sequence, and oligonucleotides of the complementary sequence are numbered below the sequence.
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FIG. 3. Southern blots of macronuclear DNA isolated from two
sets of caryonidal T. thermophila strains (A) and whole-cell DNA from
subclones of the caryonidal strains SA and 5B (B) following phenotypic
assortment. DNA was digested with HindIIl, and Southern blots were
probed with IIC7.1a. The faint bands at 1.9 kb in panel B are the result
of hybridization of the probe to micronuclear DNA. Numbers at the
left indicate the approximate sizes (in kilobases) of the fragments.

developing macronuclear anlagen of the progenitor cell. Fig-
ure 3A shows that all eight cell lines from two caryonidal sets
tested contained the 1.1-kb macronuclear HindlIII fragment as
the major product of the rearrangement. Five of the eight cell
lines also contained alternative rearrangement products rep-
resented by 0.8-, 0.9-, 1.5-, and 2.0-kb HindIII fragments.

The 0.8-, 0.9-, and 1.5-kb products were bona fide alternative
rearrangements by the criterion that they undergo phenotypic
assortment in vegetatively dividing cells. The macronucleus of
T. thermophila has no functional centromeres. Immediately
following conjugation of cells with two different alleles, the
macronucleus is heterozygous and contains multiple copies of
both alleles. Through subsequent amitotic macronuclear divi-
sions, the macronuclear chromosomes are apparently parti-
tioned randomly and thus unequally to the progeny cells.
Clonal cell lines established after 100 to 200 vegetative fissions
are pure for one allele or the other. This phenomenon, called
phenotypic assortment (13), has been established genetically
for over 90 loci. The cell lines MU5SA and MU5B were grown
for 100 fissions. Clonal cell lines were established from the
vegetative progeny. In the case of the progeny of strain MUSA,
two of the subclones had assorted for the rearrangement
product which has a 1.1-kb macronuclear HindIll fragment,
and two had assorted for the 0.9-kb product. In other experi-
ments, a cell line which has only the 1.5-kb fragment has been
isolated. Assortment for the 2.0-kb HindlIII fragment has not
yet been observed.

A 0.8- and a 0.9-kb HindIII fragment encompassing the Tlrl
macronuclear junction have been cloned from strains C2-468-3
and CU354, respectively. Sequence analysis confirmed that
they represent alternative versions of the TIrl rearrangement
in which the left junctions of TIrl were further to the left than
in strain BVII, resulting in the elimination of an additional 187
bp in CU354 or an additional 282 bp in C2-468-3 (Fig. 2A).
Thus, although the 1.1-kb HindIII fragment was the most
common product of the Tir-1 rearrangement, there was a
discrete set of alternative junction sites.

Long inverted repeats near the Tirl rearrangement junc-
tions. The most striking feature of the DNA sequence near the
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rearrangement junctions was a perfect repeat of 751 bp (Fig.
2). In view of this characteristic, the rearrangement has been
named TIrl, for Tetrahymena long repeat. Because the DNA
between the junctions has not been completely mapped, the
relative orientation of the long repeats in the micronuclear
genome is unknown. With respect to sequences retained in the
macronuclear genome, the repeats are in an inverted orienta-
tion. The inverted repeat spans the left junction of the Tirl
rearrangement and lies within the eliminated DNA at the right
junction (see Fig. SA).

All of the sequences to the Bg/II end of the fragment which
covers the right junction, Tlrl.rB-H, were repeated in the left
junction fragment, IIC7 (Fig. 1). In order to determine
whether the repeat extended beyond the BgIII site, several
attempts were made to clone additional sequences at the right
junction. These were unsuccessful because of instability of the
cloned DNA in a variety of bacterial host strains. Genomic
restriction mapping suggested that the inverted repeat did not
extend as far as the EcoRI and HindIII sites in the left junction
clone, IIC7. Micronuclear DNA between the EcoRI site and
the BglII site inside the right junction of TIrl was amplified by
PCR, as described in Materials and Methods. Direct sequenc-
ing of the PCR product revealed that the inverted repeat
extends 74 bp beyond the BgllI site, and the total length of the
inverted repeat is 825 bp with only three base pairs different
between the left and right repeats.

Long inverted repeats are a characteristic feature of ele-
ments which undergo DNA-mediated transposition. In gen-
eral, such elements are repeated in the genome, with copy
numbers ranging from 30 to 50 (8) to >10* (33). In order to
obtain an estimate of the copy number of fragments containing
sequences with homology to the inverted repeat, Southern
blots of genomic DNA were hybridized with the Sau3A-Clal
fragment, IIC7.1b. In macronuclear DNA, only the fragments
corresponding in size to TIrl.1 were observed (data not
shown). That is, with the exception of the part of the inverted
repeat retained in the macronucleus at the Tirl junction,
sequences in IIC7.1b are micronucleus specific. Micronuclear
DNA was digested with three enzymes. HindIII has no sites
within the TIrl repeat and was expected to display the full
array of fragments with sequences homologous to IIC7.1b.
BglII cuts within the inverted repeat (Fig. 2). The hybridizing
fragments from TIrl contain IIC7.1b and DNA outside the
inverted repeat which is retained in the macronucleus (Fig. 2).
Rsal also digests within the TIr1 repeat, to generate fragments
in which IIC7.1b is linked to additional micronucleus-specific
DNA. Figure 4 shows that DNA digested with these restriction
enzymes contains seven or eight fragments with homology to
sequences within the inverted repeat. This is in accord with
previously published data showing that the IIC7.1b probe
hybridized to micronuclear DNA with less intensity than the
single-copy IIC7.1a region (48). Thus, the copy number of
fragments with homology to IIC7.1b is lower than expected for
a family of eukaryotic transposable elements.

Tandem 19-bp repeats within the inverted repeat of Tir1 are
associated with DNA rearrangements at other sites in the
micronuclear genome. Two different 19-bp tandemly repeated
sequences were found within the TIrl inverted repeat. The
sequence of the first repeat, 19A, is 5'-ATTATTTCTTTTTA
CATTT-3'. There are three copies of this repeat followed by a
two more degenerate repeats in tandem and a third which is
separated from the tandem array by 10 bp. The sequence of the
second repeated 19-mer, 19B, is S5'-TTTCTCATTTTATG
AAAAG-3'. Three perfect copies of 19B are followed by three
degenerate repeats (Fig. 2). Both kinds of tandem repeats
contain the pentamer TTTCT, which is present 17 times within
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FIG. 4. Southern blot of micronuclear DNA digested with Bg/II
(lane 1), HindIII (lane 2), and Rsal (lane 3) and hybridized with
IIC7.1b. Bars represent the mobilities of HindIII restriction fragments
of A DNA run as molecular weight standards.

the 398 bp of DNA near the left end of the rearrangement.
This is much higher than the expected frequency of one
TTTCT in 404 bp. Parts of the inverted repeat, particularly in
the region of the 19A repeats, have a strong purine-pyrimidine
strand bias.

In-gel hybridization experiments suggested that 19A and
19B are associated with each other at several sites in the
micronuclear genome. The two 19-mers hybridized to seven
fragments of the same mobility in micronuclear DNA digested
with either Bg/II or HindIIl (Fig. 5B). 19B hybridized to an
additional 3.3-kb HindIII fragment from micronuclear DNA
which was not recognized by 19A. One possibility is that there
is a HindIII site within the group of tandem 19B repeats at one
of the genomic loci. Digestion at that site would produce a
fragment which hybridizes to both 19A and 19B and another
fragment with homology to only 19B. A T-to-C transition at
the first base of an internal 19B repeat would produce such a
HindIII restriction site. The patterns of fragments observed
after hybridization of genomic DNA with the 19-mers were
very similar to those seen when the DNA was probed with
IIC7.1b (Fig. 4).

Not all of the fragments hybridize to 19-mers with equal
intensity. At least two possibilities might account for this
observation. First, some loci might have more copies of the
tandem repeat. Since the hybridizations were done at a strin-
gency chosen to retain only perfect hybrids, this would occur if
some of the hybridizing regions contained a repeat similar to
those at Tlrl1, but lacking the degeneracy. Alternatively, some
of the bands in the blot shown in Fig. 5 may represent
comigrating fragments. Rehybridization of the oligonucleotide
gels with single-copy probes showed comigration of the frag-
ments containing Tirl.r and Tlr2.1 in DNA digested with Bg/II
(but not HindIII).

The patterns of 19-mer hybridization are different in micro-
nuclear and macronuclear DNA. In macronuclear DNA, 19A
hybridized to only one fragment, which was the expected size
for the left junction of Tlrl. All of the 19B sequences are
eliminated from macronuclear DNA, as they are in the Tirl
rearrangement. The lack of comigrating fragments in micro-
nuclear DNA and macronuclear DNA indicates that 19A and
19B are associated with DNA rearrangements.

The 19-mer repeats are present within pairs of longer
repeated sequences. DNA sequence analysis revealed that 19A
and 19B are part of the larger (825-bp) TIrl inverted repeat
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FIG. 5. (A) Maps of the restriction fragments which cover the Tlr1
rearrangement junctions. H, HindIIl; S, Sau3A; C, Clal; B, Bglll; X,
Xbal; E, EcoRI. Arrows indicate the inverted repeat. Probes used in
the experiments shown in Fig. 5B and 6 are as follows: %, 19A tandem
repeats; #, 19B tandem repeats; stippled bar, IIC7.1b; hatched bar,
IIC7.2a. (B) Hybridization of end-labelled 19A or 19B to DNA
immobilized in gels. Macronuclear (Ma) or micronuclear (Mi) DNA
was digested with BglII or HindIIl. The indicated bands in micro-
nuclear DNA have been identified as the left and right junctions of
Tir1 by rehybridization of the gels with single-copy probes specific for
each family member. The macronuclear fragments are the product of
the Tlrl rearrangement. Bars represent the mobility of HindIII
restriction fragments of A DNA run as molecular weight standards.

(Fig. 2). This raised the question of whether the entire Tirl
inverted repeat is conserved at all of the seven locations in the
micronuclear genome that hybridized to the 19-mers. A sub-
clone containing the 19-mers, IIC7.1b, was used to probe
micronuclear DNA digested with restriction enzymes that cut
within the TIrl inverted repeat, Sau3A and Clal (Fig. 6A). If
the long terminal repeat was conserved at other sites in the
micronuclear genome, the probe would hybridize to restriction
fragments the same size as those from Tlrl. Instead, IIC7.1b
hybridization produced multiple bands, suggesting that at least
some of the restriction sites within the TIrl long inverted
repeat are not conserved at every site where there are 19-mer
repeats.

Fragments of the expected size for the TIrl inverted repeat,
a 718-bp Sau3A fragment (Fig. 6A, lane 2), were generated by
digestion with Sau3A at the Sau3A and BglII sites within the
inverted repeat. That fragment was further digested by Clal to
generate the 394-bp fragment Sau3A-Clal fragment (Fig. 6A,
lane 1), confirming the presence of the Clal site in Tirl.

Hybridization of Sau3A-digested DNA with IIC7.1b re-
sulted in two major bands in addition to the one derived from
the TIrl inverted repeats. Since there are at least two 718-bp
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FIG. 6. Southern blots of micronuclear DNA digested with restric-
tion enzymes and probed with subclones of the Tirl inverted repeat.
(A) Probe was IIC7.1b (Fig. 5A). Restriction enzymes were as follows:
lane 1, Clal and Sau3A; lane 2, Sau3A; lane 3, Sau3A and Xbal; lane
4, Sau3A and EcoRI. (B and C) Probe was IIC7.2a (Fig. 5A).
Restriction enzymes were as follows: lane 1, Sau3A; lane 2, Clal and
BgllI; lane 3, Clal and Xbal; lane 4, Clal and EcoRlI; lane 5, Clal and
HindIII. Exposure was for 38 h (A), 20 h (B), and 48 h (C). The
fragments indicated by arrows are the sizes expected for Tirl. Bars
represent the mobility of HindIII restriction fragments of A DNA run
as molecular weight standards. Panel A shows only the five smallest
fragments.

Sau3A restriction fragments from the Tlr1 inverted repeat and
because the hybridization intensities of the three major bands
in lane 2 of Fig. 5 were similar, we propose that each of the
three prominent bands in Fig. 6A, lanes 2, 3, and 4, may
contain a pair of comigrating restriction fragments. This hy-
pothesis was supported by the observation that the ~650-bp
Sau3A fragment (Fig. 6A, lane 2) was reduced in intensity by
half upon digestion with Clal (Fig. 5A, lane 1). This suggested
that the ~650-bp band generated by Sau3A resulted from two
restriction fragments, only one of which contained a Clal site.
The data support a model in which the 19-mers are located
within pairs of longer repeated sequences.

Although the inverted repeat containing the 19-mers is not
perfectly conserved, it may be conserved to a large extent with
some restriction site polymorphism. It is notable that the
largest band in the Sau3A digest probed with IIC7.1b, which is
about 1.4 kb, is reduced in size by about 300 bp upon Clal
digestion (Fig. 6A, compare lanes 1 and 2), suggesting that the
region between the internal Bg/II and Clal sites is of the Tirl
inverted repeat is conserved and linked to 19-mer tandem
repeats. Assuming that the Bg/II site is conserved, polymor-
phisms in the Sau3A site could account for the three major
Sau3A fragments (Fig. 6A, lane 2). In fact, a clone of micro-
nuclear DNA containing 19-mer repeats other than those from
TIrl has been isolated. That clone, designated TIr2.1, has
sequence identical to Tirl from the Clal to the Rsal sites of
IIC7.1b and diverges before the Sau3A site (Fig. 2A).

In order to investigate the conservation of sequences be-
tween the Clal and BglII sites of the inverted repeat, the
IIC7.2a fragment was used to probe Southern blots of micro-
nuclear DNA (Fig. 6B). Discrete bands of the sizes expected
from IIC7, the 325-bp Clal-Bg/II (lane 2), the 589-bp Clal-
Xbal (lane 3), the 675-bp Clal-EcoRI (lane 4), and the 708-bp
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FIG. 7. (A) Restriction map of TIr2.1X-C. X, Xbal; R, Rsal; C,
Clal. The shaded bar is the TIr2.1X-R subclone used to probe the blot
shown in panel B. *, 19A repeats; #, 19B repeats. (B) Southern blots
of macronuclear (Ma) and micronuclear (Mi) DNA digested with Bg/II
or HindIIl and probed with TIr2.1X-R. Minor bands in the micro-
nuclear DNA lanes which comigrate with the fragments in macro-
nuclear DNA are due to the contamination of the micronuclear DNA
preparations with macronuclear DNA. Bars to the right of the
Southern blot represent the mobilities of HindIII restriction fragments
of A DNA run as molecular weight standards.

Clal-HindIII (lane 5), are indicated by the arrows in Fig. 6C.
However, the probe also hybridized to many additional restric-
tion fragments. In all, approximately 30 bands were resolved,
showing that sequences with homology to IIC7.2a are present
at a higher copy number than the sequences with homology to
the outer region of the TIrl inverted repeat containing the
19-mers.

19-mer repeats are proximal to a second rearrangement
junction, TIr2. The experiment whose results are given in Fig.
5 showed that 19A and 19B were linked to each other and
associated with rearrangements at seven sites in the micro-
nuclear genome. The data in Fig. 6 suggested that the 19-mers
were located within pairs of longer repeated sequences. Our
working hypothesis is that the Tlrl rearrangement is a member
of a small family of DNA rearrangements with long terminal
repeats containing the 19-bp tandem repeats near the rear-
rangement junctions.

If the micronucleus-specific 19-mers are near rearrangement
junctions they should be in close proximity to DNA sequences
which are retained in the macronuclear genome. A clone
designated TIr2.1X-C (Fig. 7A) was selected from a plasmid
library of micronuclear DNA fragments on the basis of hybrid-
ization to the subclone IIC7.1b, which contains the 19-mer
repeats (Fig. SA). The presence of the 19-mers on the clone
was verified by sequence analysis. The sequence of TIr2.1X-C
was identical to the region of the Tlrl inverted repeat from the
Clal site 1217 (Fig. 2A) to the Rsal site 830 and diverged at bp
829. The sequence was confirmed by sequencing the opposite
strand from the TIr2.1R-C subclone and by sequencing of the
TIr2.1X-C clone across the Rsal site from an internal primer.
The sequencing data for TIr2 were consistent with the data in
Fig. 6A, which suggested that the Sau3A site adjacent to the
Rsal site in Tlrl was not conserved among the long repeats
containing the 19-mers.

In order to obtain a probe of unique DNA from TIr2.1X-C,
the 19-mer repeats were removed by subcloning the Xbal-Rsal
fragment TIr2.1X-R (Fig. 7A). If the 19-mers in TIr2.1X-C
were proximal to a DNA rearrangement junction, Tlr2.1X-R
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was expected to be analogous to IIC7.1a. That is, it would
hybridize to a fragment in micronuclear DNA the size of one
of the fragments containing the 19-mers and to a fragment of
a different but unpredictable size in macronuclear DNA.

The data shown in Fig. 7B suggested that Tlr2.1X-C contains
a rearrangement junction. TIr2.1X-R hybridized to a large
(>23-kb) restriction fragment in micronuclear DNA digested
with HindIII. The probe hybridized to a smaller fragment in
macronuclear DNA. Similarly, TIr2.1X-R hybridized to an
~4.4-kb Bglll fragment in micronuclear DNA and to two
fragments of about 1.0 and 6.4 kb in BgllI-digested macro-
nuclear DNA. Thus, the 19-mer repeats of the TIr2.1X-C
clone, like those in Tirl, are linked to a rearrangement
junction in micronuclear DNA.

DISCUSSION

TIrl is a novel DNA rearrangement in 7. thermophila. The
distance between the rearrangement junctions of Tirl is
greater than for developmentally regulated DNA rearrange-
ments previously described for T. thermophila. The four dele-
tion-ligation rearrangements analyzed to date result in the
elimination of 600 bp to 2.9 kb of DNA from the macronucleus
(2,4,5,26,37). The TIrl rearrangement joins sequences which
are separated by 13 kb or more in the micronuclear genome.
Since the Tirl rearrangement is intrachromosomal and the
DNA adjacent to both rearrangement junctions is micronu-
cleus specific, the simplest interpretation of the data is that
Tirl deletes a single, contiguous stretch of DNA. Clones
containing 10 to 15 kb of micronucleus-limited DNA have
been isolated in several laboratories (12, 29, 61), suggesting
that long stretches of micronucleus-limited DNA are not
uncommon. However, since the fate of most of the sequences
between the Tlrl junction sites is unknown, we cannot exclude
the possibility of a more complex series of events.

A second difference between Tlrl and rearrangements pre-
viously characterized for T. thermophila is the close proximity
of the rearrangement junctions to long inverted repeats. The
19-mers within the repeat constitute a small family of micro-
nucleus-specific sequences (Fig. 5). The exact size of the family
is unknown, but it is likely to contain about six to eight
members altogether (Fig. 4), which are located within longer
repeats (Fig. 6). A perfect copy of 393 bp of DNA from the
region of the TIrl inverted repeat containing the 19-mers was
found very close to the junction of a second rearrangement,
designated TIr2 (Fig. 7).

Transposable element or cis-acting signal for developmen-
tally regulated DNA rearrangement? cis-acting signals have
been identified for only one of the five developmentally
regulated rearrangements studied to date in T. thermophila.
Ten-base-pair A;Gs polypurine tracts near the junctions of the
M rearrangement have been shown to be both necessary and
sufficient cis-acting sequences (5, 23, 24). Since the other four
rearrangements in 7. thermophila analyzed to date all lack
AsG; sequences, the polypurine tracts cannot be the universal
signal for DNA rearrangement in 7. thermophila. The most
striking structural feature in the vicinity of the Tlrl rearrange-
ment junctions is the 825-bp inverted repeat. The association
of the inverted repeat with at least two different rearrangement
junctions suggests that the repeat contains cis-acting signals for
DNA rearrangement.

An alternative interpretation of the data is that Tlrl is a
member of a very small family of transposable elements.
Although there is to date no evidence for transposition, the
long inverted repeat of Tlr1 bears a striking resemblance to the
TU elements in sea urchins. The canonical TU element, TU1,
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has 840-bp inverted terminal repeats with an outer domain
composed of 15-bp tandem repeats and a nonrepeating inner
domain. Like IIC7.2a (Fig. 6B), the inner domain of TU
elements has homology to sequences repeated elsewhere in the
genome where they are not associated with the outer domain.
The inverted repeats of the TU element in an H2B orphon are
bounded by an 8-bp target site duplication (reviewed in
reference 28). The 5-bp sequence, CTCGT, immediately adja-
cent to the inverted repeat in IIC7, is repeated in a direct
orientation 1 bp from the end of the inverted repeat in
Tirl.rB-H. Thus, the inverted repeats associated with the Tlrl
rearrangement bear structural resemblance to the termini of
transposable elements.

If the fragments with 19-mer repeats are a small family of
transposable elements, there is a surprisingly high incidence of
insertion at sites immediately adjacent to junctions of devel-
opmentally regulated DNA rearrangement. Perhaps regions of
the genome near rearrangement junctions assume a chromatin
conformation that is particularly conducive to transposition.
The preferential (though not exclusive) insertion of yeast Ty
elements near the 5’ ends of active genes suggests that open
chromatin is particularly receptive to insertion of Ty elements
9).

Relationship between developmentally regulated DNA rear-
rangements and transposons. A relationship between devel-
opmentally regulated DNA rearrangement and transposition
of various elements has been suggested by the structure of the
elements themselves and of their excision products. The first of
these were the telomere-bearing elements (TBE) of Oxytricha
fallax and the transposon-like elements (Tel) of T. thermophila
(19, 27). These elements are repeated in the respective micro-
nuclear genomes and have terminal inverted repeats (77 or 78
bp for TBE and 30 bp for Tel) which end in sequences
corresponding to those of the telomeres of the respective
organism. This structure led to the suggestion that the ele-
ments were inserted into the micronuclear genome as a result
of transposition events. It was proposed that they existed at
some stage as extrachromosomal linears which acquired telo-
meres before they were integrated in the micronuclear ge-
nome. Since the bulk of the excised TBEs are excised as
circular molecules, it was further proposed that transposase
activity is modified in the developing macronuclear anlagen in
order to function in DNA excision (52).

The vast majority of the gene-size macronuclear DNA
molecules in the hypotrichs analyzed to date are formed by the
removal of internal eliminated sequences (IES), so named
because they are internal to macronucleus-destined sequences
in the micronuclear genome and are eliminated during macro-
nuclear development (38). These are generally short, 14- to
500-bp sequences which are single copy in the micronucleus
(46). In at least two cases, TBEs are IESs; they are precisely
excised from a macronucleus-destined sequence (30, 52). This
has led Herrick and his colleagues to propose the unifying
hypothesis that all IESs in the hypotrichs are transposon
derived and the short IESs are transposon remnants (27, 30).
In this view, the ciliates have evolved a mechanism that
recognizes and precisely excises transposons from the tran-
scriptionally active macronucleus.

There is precedent for association of long inverted repeats
with genome rearrangement in ciliates. Tec-1 and Tec-2 (for
transposon-like element, Euplotes crassus) are highly repeated
elements in the micronuclear genome of the hypotrich E.
crassus. These 5.3-kb elements have 700- to 800-bp terminal
inverted repeats and are preferentially located near macronu-
cleus-destined sequences (6, 33, 41). Although Tec elements
and TBEs have open reading frames that bear sequence
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similarity to the Tcl-IS630 family of transposases (21, 32),
transcripts of the Tec open reading frame are not detected in
amounts sufficient to account for the massive excision of these
elements (34). Striking similarities in the structure of the
excision products of Tec elements and the IESs of E. crassus
have led to the suggestion that they share at least some
components of the excision machinery (33, 35, 39, 49).

The presence of the long repeats near both the Tlrl and Tlr2
rearrangement junctions suggests that they contain cis-acting
sequences for DNA rearrangement. The similarity between the
structure of these sequences and that of transposons leads us
to further propose that such DNA rearrangements may have
been the precursors of some of the transposable elements. In
the ciliates, elements such as the TBEs and the Tec elements
may arise from sequences involved in DNA rearrangement.
These sequences may become associated with transposase-like
functions, which are either endogenous or imported by hori-
zontal transmission. Eventually such sequences may evolve
into independent, highly repeated, transposable elements. This
model predicts that in some systems there will be elements
which structurally resemble transposons but have not acquired
the ability to transpose. That is, although they undergo dele-
tion during development of the macronucleus, no mechanism
has evolved for insertion at a new site. The DNA deleted at
TIrl may be an example of such an element.

Transposable elements have a negative selective value as
mutagens. In order for them to evolve, this negative selective
pressure must be counterbalanced by positive selection con-
ferred either by the transposon itself or by the cellular process
which produced and/or maintains them. The selective advan-
tage of DNA rearrangement in the ciliates is not known, but it
has been suggested that micronucleus-specific sequences act as
negative regulatory sequences in the micronuclear genome of
T. thermophila (15, 37, 57) or that variable DNA rearrange-
ment might provide for genetic diversity (29, 43, 44) as it does
for the mammalian immunoglobulin genes (50) and the try-
panosome surface antigens (22).

There is good evidence that transposition plays a role in
maintenance of chromosome structure. The heterochromatic
Het-A element (50a) is located at the telomeres of Drosophila
chromosomes and is added to broken chromosome ends (7,
51). Het-A bears structural resemblance to the class II retro-
transposons, such as the mammalian LINE elements (31).
Because no evidence has been found that Het-A encodes its
own transposase, Pardue and her colleagues have suggested
that the transposition function is normally supplied by a gene
acting in trans and that elements which capture such a gene
then escape restrictions on chromosomal location and mobility
(45).

Transposable elements may take advantage of molecular
machinery which was originally dedicated to cellular events
other than DNA rearrangement and transposition. In Drosoph-
ila melanogaster, there are two types of pole cells. Only those
which migrate to the germ line and differentiate into germ cells
splice the third P element intron (40). Kobayashi et al.
suggested that an RNA splicing activity required for germ line
development also is used in P element transposition. Several
types of transposons, such as the Ty elements in Saccharomyces
cerevisiae, transpose through an RNA intermediate (10). These
elements presumably require reverse transcriptase as part of
the transposition machinery, which might have evolved from
reverse transcriptases needed for cellular processes such as
telomere synthesis (42). Thus, transposons may survive in the
eukaryotic genome despite a negative selective value because
they take advantage of cellular machinery which is required for
a variety of other, indispensable, cellular processes. Occasional
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generation of new transposons may contribute to the observed
inconsistencies between the phylogenies of transposons and
the phylogenies of their host species (17).
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