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ABSTRACT 
 

EFFECTS OF BIT TYPE ON MAXIMUM TORQUE AND AXIAL FORCE USING 
MANUAL SCREWDRIVERS 

 
BY 

 
Mark D. Hickok, B.S. 

 
The screwdriver is a tool that has been among the most widely used hand tools for 
decades and continues to be used in the workplace to perform a variety of fastening tasks.  
Advancements in fastener technology have been complemented by the development of 
new types of screwdriver bits. While designs may vary, so do the force application 
requirements placed on the tool user.  The primary objective of this experiment is to 
analyze the relationship between user torque and screwdriver bit design.  A further 
objective is to utilize the results to develop an effort metric by which bits of different 
designs can be compared.   
 
In this experiment, three types of screwdriver bit designs (straight, Phillips, and 
combination of straight/Phillips (ECX)) were tested to determine how the design affects 
the amount and type of force applied by the user when performing a fastening task.  The 
designs were tested to simulate fastener tightening and loosening operations.  Sixteen 
participants were tested in this study.  Although there was no significant effect, the data 
suggest that the Phillips bit design allow subjects to exert the maximum torque and the 
minimum axial force.  This divergence suggests that the Phillips bit may have a higher 
biomechanical effort ratio, which is greater torque for the same or lower axial force.   
Finally, the data suggest there is little difference in user torque exertion between the ECX 
bit and the straight bit designs.   Subjective assessment indicated that users 
overwhelmingly preferred the Phillips bit design. 
 
Bit designs requiring less axial force for the same torque exertion level reduce the overall 
muscular effort of the user, allowing work to be completed more efficiently and may 
reduce the risk of musculoskeletal disorder affecting the wrist, elbow, and shoulder.  
Results may also assist designers by allowing them to select fasteners that provide 
sufficient mechanical integrity of the design while maximizing user effectiveness.
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1.0 INTRODUCTION 

The screwdriver is among the most widely used hand tools by workers.  As the 

name suggests, it is a tool intended for use in driving screws.  However, in recent time the 

variety of fastening options has increased, which has led to an increase in the number of 

fastener head styles available.   Common to all these fastening options is they require the 

application of torque in order for them to be secured.  When torque is applied by a 

manually operated, hand-held tool, it is the tool operator’s hand that applies a force on 

the tool, often by repeatedly supinating and pronating the forearm, to turn the fastener.  

 While many fastening operations may involve a relatively low level of torque 

application, such as driving sheet metal screws or securing bolts into metal, others require 

a fairly high level of torque, especially those associated with fastening wood products.  

Historically, fastener development has shown head style (e.g. straight blade, Philips, 

square) has an effect on the user’s ability to apply torque; a tool should be designed to 

allow its operators to apply torque in the most efficient way possible for the intended 

applications.   

A recent innovation in screwdriver bit design is the ECXTM bit developed by 

Milwaukee Electric Tool, which features elements of both the straight blade and Philips 

head.  This combination is intended to allow the bit to have increased retention in the 

fastener, which may have the added benefit of decreasing the push force required for 

proper bit retention.  This can be significant, as when a driver bit does not stay in the 

fastener, the user must apply a forward “push” force in an attempt to increase bit 
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retention.   Reducing push force will minimize user fatigue and may increase 

productivity.  This may also reduce an operator’s risk of being affected by a 

musculoskeletal disorder affecting the wrist, elbow and shoulder.  Additional research is 

needed to determine the efficacy of bit design advancements that will provide hand tool 

designers greater insight into the effects bit design may have on the operator. 
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2.0 LITERATURE REVIEW 

2.1 Prior Studies 

A comprehensive literature review was conducted prior to initiating the testing 

phase of this study.  Results of the review identify factors shown to affect a person’s 

ability to apply torque; though there may not be consensus as to the extent each factor 

affects the results.  For example, studies conducted by Rhomert (1966), Chaffin (1999), 

O’Sullivan and Gallway (2001) suggest direction of torque application has an effect.  

They each report more torque can be applied in supination than in pronation.  The fact a 

majority of the population is right handed, coupled with these findings may, in part, 

explain why the convention for tightening a screw is clockwise and not counterclockwise.  

However, studies conducted by Kramer (1994) and Wang and Strasser (1993), in addition 

to data reported by Woodson (1981), suggest the opposite to be true.  When forearm 

angle is factored in, the ability to apply torque is further affected.  Again, the work of 

O’Sullivan and Gallway (2001) as well as that of Sanchez (2007) demonstrate that as 

wrist   angle increases from the neutral position the ability to apply torque decreases. This 

has been observed in both supination and pronation.   

An additional factor reported to have an effect is handle diameter.  Kong et al. 

(2005) determined that the proper diameter for a hand held screwdriver was in the range 

of 31.5-37.4 mm (~1.25 -1.47 in.) with the optimal diameter being 35 mm (1.43 in.).  

Woodson (1981) suggest the proper handle diameter to be between 3.2 to 3.81 cm (1.125 

and 1.50 inches).   Handle diameter is relevant to this study in as much as it is an 

important consideration when developing an experiment that includes application of 
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maximum torque under optimal conditions. 

Finally, it quickly became obvious the human ability to apply torque has been the 

subject of numerous studies, including many that involved manually operated 

screwdrivers.  Mital and Sanghavi (1986) suggest the mean torque applied by males using 

a screwdriver is 3.3 Nm while Kim et al. (2000) observed a mean torque for males of 

6.53 Nm.    Interestingly, Timm et al. (1992), Wang and Strasser (1993), and Shih et al. 

(1997) reported maximums in between these values, those being 5.6 Nm, 4.6 Nm, and 4.9 

Nm, respectively. Woodson (1981) reports a 50th percentile force value of 285 N (64 lbs.) 

in supination and 315 N (71 lbs.) in pronation.  Using the optimal diameter of the 

screwdriver handle suggested by Kong et al. (2005), this would equate to output torques 

of approximately 5 Nm and 5.53 Nm, respectively. 

2.2 Human Strength 

  To generate forearm torque subjects engage a number of muscles in their 

upper arm.  Among those of interests are the flexor digitorum superficialis, extensor 

digitorum communis, and biceps brachii.  Each has a unique function in the generation of 

this torque and has been shown by Gordon et al. (2004) to provide significant 

contributions.  Anatomica’s Body Atlas (2006) describes the function of each as follows: 
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 Flexor digitorum superficialis – The primary function is to flex the digits.  

This helps the user achieve the power grip.  Tayyari and Smith (1997) have 

shown that a power grip allows about four times the grip strength that a pinch grip 

allows.  They have a secondary function to assist in the flexing of the hand at the 

wrist.  This may have a small affect to assist in the application of force during 

supination.  Since the reaction force will tend to push the wrist towards extension, 

the application of wrist flexion force will help to maintain wrist position. 

 

Fig. 2.1: Location of the flexor digitorum superficialis (ref. Gray’s Anatomy) 
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 Extensor digitorum communis – The primarily function is to extend the 

digits.  Of interest to generating forearm torque, the extensor digitorum communis 

function to assist in the extension of the hand at the wrist, which may assist to 

apply force during pronation.  In a similar manner to the function of the flexor 

digitorum superficialis, when the hand is moved in pronation, it tends to move the 

wrist toward flexion.  The extensor digitorum communis helps to maintain wrist 

position. 

 

Fig. 2.2: Location of the extensor digitorum communis (ref. Gray’s Anatomy) 
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 Pronator Teres and Pronator Quadratus – Together these muscles act to 

pronate the forearm.  Unlike the extensor digitorum communis, these do not 

prevent wrist flexion. 

 

Fig. 2.3: Location of the Pronator Teres and Pronator Quadratus (ref. Gray’s 

Anatomy) 
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 Biceps brachii – The biceps brachii are a powerful supinator of the 

forearm, which has a large effect on the generation of torque when supinating.  A 

related function is to flex the forearm, which for this research is relevant since the 

subjects had to flex their forearms to hold them at the 90 degree position. 

 

Fig. 2.4: Location of the Biceps Brachii (ref. Gray’s Anatomy) 
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  2.3 Screw Head Design 

 According to Mowins (1991), the introduction of the first “factory” produced 

screws, those being common wood screws produced by the Wyatt brothers, coincided 

with the American industrial revolution, cited by many historians to have begun with the 

development of the steam engine by James Watt in 1765.  The design featured a straight 

slot cut across the diameter of the head that allowed a simple tool (including a coin) to be 

inserted in the slot that could be used to turn the screw, reference Fig. 2.5.  Though 

simple, the design was not without its problems.  The design requires the tool user to 

precisely place the head of the tool into the slot that may increase time to complete an 

operation.  Additionally, the only mechanism to keep the tool head in contact with the 

fastener is friction, making the straight design susceptible to slippage and disengagement, 

especially if the user did not keep the tool perpendicular to the fastener.  

 

 

Fig. 2.5: Slotted Screw Head Design 

  

 In the 1920’s and 30’s alternate head designs were eventually developed that 

addressed these shortcomings.  This included the Phillips head, see Fig. 2.6, designed by 

Henry Phillips, a dentist from Oregon, circa 1934 (Mowins, 1991).  The Phillips design 
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included a cross-shaped, or cruciform, feature formed into the head of the fastener.   

 

 

Fig. 2.6: Phillips Screw Head Design 

 

This design required less precision on the part of the tool operator as the tool bit centers 

itself into the fastener head.  This means the operator can work faster with increased work 

output, especially when performing highly repetitive tasks.  The tool head is also more 

constrained by the fastener head and may make it less likely to slip out.  The Phillips, 

known today as ANSI/ASME B18.6.3 Type 1, was soon joined by other cruciform 

designs, including the Frearson (or Reed and Prince) that is designated by ANSI/ASME 

B18.6.3 as Type 2.  Details drawings of the Type I and Type II designs are shown in 

Appendix A.  While cruciform designs are improvements over their slotted predecessors, 

they did allow the tool head to “cam-out” of the fastener under high torque.  Due in large 

part to the fact many domestic applications do not require the application of large 

tightening torques; the cruciform design continues to be one of the most popular styles 

currently available.  

 Many modern cruciform designs, especially those encountered during electrical 

work, feature geometry combining the self-centering aspect of the Phillips design with 
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the simplicity of the slotted design as shown in Fig. 2.7.   

 

 

Fig. 2.7: Modern Electrical Screw Head Design 

 

This provides flexibility for workers as either a Phillips or straight blade screwdriver can 

be used to tighten or loosen the screw.  A recent development in screwdriver bit design is 

the ECXTM bit, a patent pending design from the Milwaukee Electric Tool Corp.  The bit 

features a straight potion to engage the slot feature of the fastener along with a Phillips 

inspired component.  The design intent is to allow greater torque application than the 

Phillips bit as it would be less prone to allowing the driver to cam-out.  This may come 

with a trade-off though.  The slotted portion of the design requires the tool operator to be 

precise when engaging the tool head with the fastener.  This causes the user to work 

slowly and deliberately, lending itself better to non-repetitive work tasks. 

2.4 Research Void 

 While much of the cited work describes many factors affecting a human’s ability 

to generate forearm torque, there is a need to understand the role the bit style has in 
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relation to the actual use of the screwdriver.  There is also a need to understand the 

overall effort a user put into the application of maximum torque.  In other words, the 

relationship between torque application and push force is not well understood.  

2.5 Objectives  

The prime objective of this experiment was to analyze the relationship between user 

torque exertion and screwdriver bit design.  An additional objective was to record and 

analyze the axial (push) force exerted while using the tool under the multiple conditions 

and determine what, if any relationship exists.  The final objective was to utilize the 

results to develop an effort metric relating the force applied by the user to create torque 

and axial force that would allow bits of different types to be compared.  As part of this 

analysis, screwdriver bit designs were evaluated under various conditions of use.   It was 

hypothesized the ECXTM bit allows the user to apply greater torque than both the Philips 

style bits as they were intentionally designed such that the driver head would “cam-out” 

under strain to prevent over tightening.  Since the ECX and straight style bits share the 

same “blade style” design element, it is expected they will perform essentially the same. 
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3.0 METHODS 

3.1 General Approach 

 The research goal was to determine the tangential and axial forces applied by the 

operator to the handle of a manual screwdriver using three commercially available 

screwdrivers commonly used by tradesman.  Each screwdriver sample had the same 

length and handle diameter, only differing by the style of bit provided on the end.  A 

parametric model of a common electrical screw was created so that test specimens 

capable of being installed in a torque measurement fixture could be made.   Testing was 

conducted in two directions, supination and pronation, as each is associated with 

screwdriver use.  The study focused on measuring the forces so the levels of user applied 

torque and axial force could be determined.  The data were used for to directly compare 

torque levels achieved with each bit style.  They were also used to calculate the ratio of 

the tangential and then axial forces applied to the screwdriver handle to compare the 

overall effort of the user when using each bit style.   

3.2 Hypotheses 

 Hypothesis 1:  The ECX bit will allow the user to apply a greater level of torque 

than the Phillips bit. 

 Hypothesis 2:  There will be difference in the amount of user applied push force 

between bits. 

Hypothesis 3:  Users will apply more torque in supination that in pronation. 
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3.3 Experimental Design 

 A repeated measures, full factorial design was selected to provide sufficient 

statistical power.  There were 2 independent variables in this experiment and 3 dependent 

variables, as shown in Table 3.1.   

 
Table 3.1: Experimental variables 

Variable Type 
Screwdriver bit design (Philips, straight, 
ECXTM) 

Independent 

Direction (pronation and supination) Independent 
Forearm torque in Nm Dependent 
Push force in N Dependent 
Effort Ratio Dependent 

 
 

The independent variable bit type had 3 levels, ECX, Phillips and Straight, and 

the independent variable direction had 2 levels, supination and pronation, resulting in 6 

possible combinations of factors for which torque and push force data were collected. As 

subject performed 2 exertions for each condition, each completed a total of 12 exertions 

as part of this experiment.    See Fig. 3.1 for a graphical representation of the 

experimental design. 
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Bit Style 
 

Direction of 
Application 

Phillips Straight ECX 

Pronation 

S01 
S02 
… 
Sn 

S01 
S02 
… 
Sn 

S01 
S02 
… 
Sn 

Supination 

S01 
S02 
… 
Sn 

S01 
S02 
… 
Sn 

S01 
S02 
… 
Sn 

  
Fig. 3.1: Experimental Design 

	

3.4 Experimental Controls 

To minimize the number of variable associated with this experiment, a number of 

test conditions were standardized.  Each subject was tested in the same environment, that 

being a laboratory setting where temperature, humidity, lighting, background noise and 

physical space around the fixture were constant.  The screwdriver models, test specimens 

design, and test specimen orientation in the fixture were also kept constant.  During 

participation, subjects were instructed as to the proper body position and grip on the test 

screwdriver and asked to maintain that position for each trial of the experiment.  The 

height of the test fixture was adjusted for each participant to ensure they could maintain 

the prescribed body positioning.  

3.5 Sample Size 

 To calculate the minimum number of participant required to ensure reasonable 

statistical power, the operating characteristic curves provided by Montgomery (2002) 
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were used.  To utilize the curves, three (3) variables need to be determined.  The first is 

Ф, which is determined using equation 1 (Montgomery, 2002).   

 

Ф2 = nbD2 

         2aб2          (1) 

 

Where: 

n = observations per level 
a = number of levels of primary independent variable 
b = number of levels of primary independent variable 
D = minimum difference between means 
б = standard deviation 
 

Since there are no prior studies relating differences in torque application related to 

bit type, the work of Sanchez (2007) and work conducted in preparation for this study 

suggest a standard deviation of 1.5 Nm and a minimum differed D of 1.2 Nm.  The 

primary independent variable (bit type) had 3 levels and the secondary independent 

variable (direction) had 2 levels.   

The next two variables, V1 and V2 are calculated using equations 2 and 3, 

respectively.  The variable V1 represents the degrees of freedoms value of the primary 

independent variable and V2 represent the degrees of freedom associated with the error. 

V1 = (a-1)          (2) 

V2 = a*b(n-1)          (3) 

The value for V1, which for this experiment equaled 2, was used to select the 

proper set of curve.   Once the proper curves were selected, a value of Ф could be 

calculated using equation 1 and that along with the value of V2 used to determined β from 

the chart.  To simply the samples size determination, a spreadsheet was created and an 
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initial value of n entered to calculate and an initial value of Ф that could be used to find 

the β associated with that sample size determined.  If β was too low, a new value of n was 

chosen and the calculation repeated.  This iterative process continued until a sample size 

having β = 0.2 or less was determined, which indicates the Type II error associated with a 

type I error (α=0.05) of 5% would be less than 20%. 

 

Table 3.2: Iterative Minimum Sample Size Calculation 

n Ф2 Ф V2 β 1-β 
5 1.066667 1.032796 24 0.7 0.3 
10 2.133333 1.460593 54 0.5 0.5 
12 2.56 1.6 66 0.35 0.65 
13 2.773333 1.665333 72 0.3 0.7 
14 2.986667 1.728198 78 0.25 0.75 
15 3.2 1.788854 84 0.15 0.85 

16 3.413333 1.847521 90 0.1 0.9 

 

The results of this process indicated a minimum number of subjects needed to be 

15.   

3.6 Test Fixture 

A custom-built torque measurement device, as shown in Fig. 3.2, which was 

previously constructed for a similar experiment, was utilized.   
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Fig. 3.2: Custom Built Test Fixture 

 

The torque device comprises a metal plate with a plurality of drilled and tapped 

holes to allow for many possible load application points. The plate is mounted on a set of 

vertical guides with locking mechanisms that allow the height of the device to be adjusted 

between 4 and 24 inches above the base to accommodate differences is subject stature 

and to provide flexibility when investigation a number of different body positions.   Two 

load cells are mounted on the rear portion of the device, one to determine applied torque 

and one to measure axial force which corresponds to push force.  The torque load cell has 



  19
a range of 0-500 N and is connected to the text fixture by an adjustable linkage provided 

with holes spaced 2 cm apart.  The linkage holes allow the investigator to adjust the 

fixture based on the levels of torque being measured such that the load cell is operating in 

a proper portion of its useful range.  For this experiment the linkage was set to provide 

a10 cm moment arm. 

 

 

Fig. 3.3: Load Cell Location in Test Fixture 

 

The axial load cell had a range of 0-1000 N and was connected to a ¼” hex 

shaped input shaft running through the interior and extending outside the front of the test 

fixture.  No means to adjust the location of the axial load cell is provided as the force 

application is always in-line with the load cell. 
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Secured to the input shaft is a coupling that connects the subject’s torque 

application device, in this experiment a screwdriver, to the test fixture as shown in Fig. 

3.4.  

 

 

Fig. 3.4: Coupling Assembly Mounted on Test Fixture 

 

The coupling design is based on a ¼” socket with a 3/8” square drive.  The 

coupling features a hole on one end machined to accept the ¼” hex shaft built into the 

text fixture.  The opposite end of the connector has a 3/8” square opening that accepts a 

custom designed test specimen mounting element.  The mounting element is machined 

from a round bar to have a 3/8” square feature protruding from the rear of the element 

and a square recess that accepts a custom designed test specimen machined into the front 

face.  Photograph of the mounting system are show in Figs. 3.5 and 3.6. 
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Fig. 3.5: Coupling Assembly 

 

Fig. 3.6: Disassembled View of Coupling Assembly 

 

The test specimen for this experiment is a custom made metal part designed to 

replicate a screw head commonly encounter by tradesmen.  In this case, the screw from a 
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commercial electrical outlet, which is equivalent to an ANSI/ASME #10 machine screw.  

This size was chosen based on its prevalence in both residential and industrial 

construction.  

 

Fig. 3.7: Comparison of Electric Screw and Test Specimen 

 

The screw was removed from the outlet and measured to determine the head 

diameter, head height, and the bit reception geometry.  The values were compared to 

those provided by ANSI/ASME B18.6.3, Machine Screws, Tapping Screws, and Metallic 

Drive Screws (Inch Series), to ensure accuracy.   

The dimensions were used to create a three dimensional, parametric model of the 

screw head using Pro/Engineer (“Pro/E”) software (PTC, Needham, MA).  The screw 

head model was added to a square base model to form the test specimen’s final design.  

The Pro/E model was sent to a Selective Laser Sintering (“SLS”) machine that created a 

nylon plastic prototype, ref. Fig. 3.8.   



  23
 

 

Fig. 3.8: SLS Model of Test Specimen 

 

The SLS prototype was measured and the dimensions compared to those of the 

electrical screw.  The base was also measured to ensure it would fit properly into the 

mounting element.  Adjustments to the model to account for tolerance and shrinkage 

were made and another prototype was made.  Once the prototype design was finalized, 

the Pro/E model was sent to a metal fabricator where sintered parts made from 420 

stainless steel were made.   
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3.7 Data Recording 

Each load cell is connected to the Biometrics Ltd (Gwent, UK) Datalog Wireless 

Bluetooth Data Unit, model MWX8.  Also connected to the data unit was a manually 

operated triggering device that was used to start and stop the data recording of the unit.  

Data was transmitted wirelessly to a laptop computer operating the Biometrics DataLog 

Management and Analysis Software, version 8.0, which was used to configure the data 

unit and provide graphical representations of the data being recorded.  Channel 

sensitively, sampling rate, excitation voltage and full-scale range were all set via the 

software.  The software also allowed data to be analyzed and exported to Microsoft Excel 

for further analysis and data presentation preparation.  For this experiment, the sampling 

rate was set to 100Hz and the scale was set to display 0-100% of full-scale range. 

  

Fig. 3.9: Biometrics Datalog Wireless Data Unit 
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3.8 Screwdrivers 

To apply torque, a screwdriver design having a straight (conventional) handle was 

used.  The design is comprised of a thermoplastic handle secured to a steel shank having 

the specified bit style machined into one end.  This creates what is referred to as an “in-

line” style screwdriver since that the handle has the same long axis as the bit shank.  

Three screwdriver bit styles were evaluated in this experiment: a Phillips head that 

engages screws and bolts having a cross shaped depression when viewed from the front, a 

straight of slotted head having a flat blade head that engages a slot on the top of a 

fastener, and the ECXTM bit, which is essentially a combination of the Philips bit and a 

straight blade. 

The screwdrivers chosen for this experiment were the Milwaukee 48-22-2012 

(Phillips), the Milwaukee 48-22-2041 (ECX), and the 48-22-2021 (straight blade).  Each 

was identical in size, having overall lengths of approximately 210 mm, handle lengths of 

approximately 104 mm, and handle diameters of approximately 31 mm.  Detailed 

engineering drawings of each screwdriver are shown in Appendix A.  Important to their 

selection was that the handle diameter was within the range suggested by Kong et al. 

(2005) of 31.5 mm to 37.4 mm. 
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Fig. 3.10: Photo of Screwdrivers used in this Study 

 

3.9 Calibration 

Calibration of both the torque and axial load cells was needed to ensure the data 

recorded during the experiment was proper.  The load cells were calibrated before each 

test session using the same calibration procedures.   

3.9.1 Torque Load Cell Calibration 

The torque load cell was calibrated by means of a custom designed calibration bar 

that could be connected to the test fixture.  The bar is approx. 40 cm long and has 

machined lines every 1 cm across which correspond to the distance the line is from the 

centerline of the test fixture’s input shaft.   The bar was installed and a small bubble level 
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was placed on the top of the bar to ensure that it was parallel the surface was level as 

shown in Fig. 3.11.   

 

 

Fig. 3.11: Calibration Bar being Leveled on Test Fixture 

 

A calibrated 1 kg weight was hung from the bar, as shown in Fig. 3.12, at various 

distances so a calibration curve could be generated.  Utilizing equation 4, the torque 

resulting from the weight was determined. 

 

T=F*d                                   (4) 

Where T = torque (Nm) 

 F = force (N) 

 d = distance from then fixture center (m) 
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Fig. 3.12: Torque Load Cell Calibration. 

 

As related to the calibration, the torque (T) would be that caused by the hanging 

weight.  Since the weight had a mass of 1 kg mass, the resulting force (F) applied by the 

weight on the bar was approximately 9.81N.  The distance (d) is then the distance from 

then fixture center to the location of the hanging weight.  After the weight was hung, it 

was allowed to come to rest and the Biometric system used to record the output of the 

load cell.    The value indicated by the load cell and the calculated torque were entered 

into a Microsoft Excel table.  The weight was hung at distance of 5 cm, 10, cm, 15 cm, 20 

cm, 25 cm and 30 cm and the above mentioned data enter into the table.   Two 

applications were made at each distance resulting in 12 data points for the calibration.  
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The resulting calibration data was plotted on a graph and a curve fit was created, ref. fig. 

3.13.  

 

 

Fig. 3.13: Torque Load Cell Calibration Curve 

 

3.9.2 – Axial Load Cell Calibration 

The axial load cell was calibrated by means of a hand-held force gauge (Imada 

DPS-44).  The gauge was set to read N and configured to display the Peak value observed 

during a measurement.  The gauge was applied directly to the input shaft of the test 

fixture and the experimentor attempted to apply certain value of push force, ref. Fig. 3.14.   
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Fig. 3.14: Axial Load Cell Calibration 

The application of the force was recorded using the Biometrics system.  The peak 

value recorded by the gauge and the max value indicated by the Biometrics software were 

entered into a Microsoft Excel table.  The gauge was used to apply forces of ranging from 

4.5N to 135N.  In total 17 measurements were taken.  The resulting calibration data was 

plotted on a graph and a curve fit was created, ref. Fig. 3.15. 
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Fig. 3.15: Axial Load Cell Calibration Curve 

 

 Each of the calibration curve equations was used to condition the data output form 

the Biometrics software to detemine the torque and push force applied by the users. 

3.9 Subjects 

Professionals responsible for hand tool design volunteered to be subjects of this 

study.  A total of 8 men and 8 women participated in the study.  Prior to participation in 

the study, each volunteer was asked to read and sign a consent form which had previously 

been approved by the Institutional Review Board of Marquette University, ref. Appendix 

B.   

The investigator went through participation requirements with each subject prior 

to their inclusion in the study.  Items discussed included the test procedure, the purpose 

of the study and it benefits, confidentiality requirements and reviewed any risks 
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associated with the study.  For this study it was stated there were no risks beyond those 

encountered in normal life.  If the volunteer was willing to participate, they signed and 

dated the consent form and were asked to complete an Occupational Health Background 

Information Form, ref Appendix B.  In order to participate, volunteers were required to 

be between 18 and 65 years of age and physically able to complete all of the trials with 

minimal rest using the specified methods.  In addition, subjects could not have any past 

or present physical injuries that could be exacerbated by participation in this study such 

as, but not limited to, upper extremity pain or injury, back or neck pain or injury, or lower 

extremity pain or injury that prevents the subject from standing for the entire experiment.   
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4.0 PROCEDURE 

The experiment was broken into 2 parts.  One part focused on determining the 

anthropometric dimensions of each subject with respect to certain aspects of the dominant 

upper extremity, body parts of interest, and grip strength.   The second part focused on 

recording the torque applied by the screwdriver and the axial force when performing a 

screw-driving task.   Typically, 4 test subjects would participate during a test session, the 

length of which was normally 1 to 1-1/2hrs.   

4.1 Anthropometry 

To measure a subject’s body dimensions, standard anthropometric tools were 

employed.  The following anthropometric measurements were recorded for each subject 

along with a recording of the subject’s gender and dominant upper extremity (R or L): 

 Stature 
 Acromial Height 
 Acromion to Dactylion Length 
 Hand Length 
 Hand Breadth 
 Wrist Circumference 
 Forearm Circumference 
 Arm Circumference 
 Grip Strength 
 Weight 

 

 
All data were measured using metric dimensions with length and circumference 

being recorded in centimeters and weight in kilograms, respectively.  Measurements were 

performed in accordance with the methods described by Van Cott and Kinkade (1972) 

and NASA (1978).  Examples of the location at which each measurement was taken can 
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be found in Annex D.  An investigator using the anthropometric measuring tool measured 

each subject.  In some cases, an observer who ensured the test subjects assumed the 

proper position for the measurement of interest assisted the investigator.  Data were 

recorded on a data sheet, a sample of which is shown in Annex B.  

A Jamar hand dynamometer was used to measure each subject’s grip strength.  

The device features a fixed handle and an adjustable handle that could be installed into 

one of five preset positions.   A gauge is located on the top of the device that has a 

movable pointer that can be used to indicate maximum force, which is read in kg.  The 

handle was set for a 6.0 cm, grip span.  The subjects were instructed to stand tall, facing 

straight ahead with their dominate arm positioned with the elbow at a 90 degree angle, 

making the forearm parallel to floor.  The wrist was held in the neutral position.  Two 

trials were conducted and the mean of the trials reported. 

4.2 Force Testing 

 The second part of this experiment involved the measurements of the torque and 

the push force exerted by the subject on the test fixture with a screwdriver.  After the text 

fixture was calibration, which occurred outside the presence of test subjects, the 

investigator had subjects prepare for participation by providing protocol instruction  and 

what the subject would be asked to do as part of this experiment, including the number of 

trials to be completed.  Each subject was shown how to grasp the handle of the tool with 

a neutral grip, how to position their arms to form a 90o angle between the forearm and 

upper arm, how to keep the elbow tucked near the body, and where to stand when 

addressing the test fixture.  They were also instructed as to the commands that would be 

given by the investigator to ensure they would perform each trial in the proper direction 
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and for the requisite length of time.   

 

 

Fig. 4.1: Subject’s Test Postion 

  

 Once trained, the subject was asked to move towards the  test fixture and assume 

the experimental position.  To ensure the subject’s arm was in the correct position, the 

lateral epicondyle, which is located near the subject’s elbow, was marked representing 

one end point of the humerous bone in the forearm.  The opposite end of the humerous 

bone, which is located by palpating the depression near the center of the wrist, was also 

marked.  A level was placed between these points and the wrist end of the subject’s arm 

was moved up or down until the bubble indicated the arm was level.   
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Fig. 4.2: Test Subject’s Arm being Leveled 

 

 The subject was advised to maintain that position and the height of the test fixture 

was adjusted to the proper height, which was recorded for that subject to ensure the 

fixture could be returned to the correct position during subsequent trials. After the fixture 

height was set, a test specimen was installed in the test fixture and the subject was 

allowed to perform 2 practice trials to get familiar with the commands of the investigator 

and to get comfortable using the test fixture.  The subject was then given a rest period and 

the process repeated for the next subject.  After all test subjects had been trained and had 

a chance to complete their practice, the collection of experimental data was initiated. 
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Fig. 4.3: Test Subject Conducting Experiment. 

 

 To begin the data collection phase of the experiment, the subject was provided a 

screwdriver and asked to address the test fixture and again assume the experimental 

position so the test fixture could be adjusted to the proper height.  The subject then was 

instructed by the investigator regarding which direction, supination (clockwise for a right 

handed subject) or pronation (counterclockwise for a right handed subject), to apply 

torque.   

 The investigator started the collection of data by first installing a test specimen 

into the test fixture and then setting each data collection channel to zero using the 

Biometric software.  The subject was instructed to place the screwdriver into the test 

specimen and wait for the command to begin.  The investigator pressed the manual 

switch connected to the Datalog system to being data collection, waited a second, and 
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then instructed the subject to exert their maximum torque on the handle of the 

screwdriver in the prescribed direction.  The subject applied torque for approximately 5 

seconds, at the end of which the investigator advised the subject to stop.  Data continued 

to be recorded for an additional second after which the investigator again operated the 

switch to stop data collection.  The subject was then allowed to rest for a period of at 

least 2 minutes in accordance with the recommendation of Caldwell et al. (1974) to 

prevent fatigue before repeating the experiment under the same conditions. 

 The data collected were saved to the laptop computer into a folder for that subject 

and labeled such that the subject number, bit type, direction of torque application, and 

trial number were able to be identified.  A sample of the naming convention is below for 

subject 3 using an ECX bit, apply torque in pronation, first trial: 

 

  S3                     ECX                 PRO            1              .log 

 Subject Number Bit Type Direction     Trial   File Type 

 

  
 After the subject completed the second trial in the initial direction, the average of 

2 data points was calculated and the data reviewed to ensure each was point was 

reasonable.  Data points found to be too dispersed were rejected and replaced with a new 

measurement.   

 The experimental was then repeated using the next test sequence.  Once all trials 

pertaining to a particular bit style were complete, the subject was asked to complete the 

portion of the subjective assessment relevant to that bit style.   

 The experiment was repeated for all other sequences until 2 trials under each of 



  39
the 6 possible combinations of bit type and direction had been completed.  This resulted 

in a total of 12 torque exertions for each subject (3 head designs x 2 torque directions x 2 

trials).  Once all trials were complete, and the user answered all question in the subjective 

assessment for the each bit types, they were asked to complete the ranking portion of the 

subjective assessment. 

4.3 Subjective Assessment 

A subject assessment form in the style of a questionnaire was developed.  The 

questions included in the form were designed to illicit feedback as to how easy the user 

felt he/she could apply torque using each bit.  The questions asked for each bit type tested 

were: 

1. Please rate the ease of applying torque in a counterclockwise direction 
2. Please rate the ease of applying torque in a clockwise direction 
 
 At the end of the document the subjects were asked rank each bit in order of 

which they liked best on a 1-3 scale with 1 being the best.  The subjective assessment 

form is shown in Appendix B. 

4.4 Presentation Order 

 To control for order and carryover effects, the sequence in which the different 

combinations of independent variables were adjusted as recommended by D’Amato 

(1970).  Essentially, the order in which the different screwdriver bit types was given to 

the subject, and the direction of applied effort to begin the experiment, were varied as 

indicated in Table 4.1. 

 
 



  40

Table 4.1: List of Test Sequences 
Sequence Bit type Direction of Torque Application 

1 ECX Supination 
2 Phillips Pronation 
3 Straight Supination 
4 ECX Pronation 
5 Phillips Supination 
6 Straight Pronation 

 

 This method allows the sequence to be repeated every 6 subjects per Table 4.2.  

The layout of this method would cause each condition to precede each of the others only 

once in the whole sequence. 

 

Table 4.2: Presentation Order 
Subject Presentation Order 

S01 1 2 6 3 5 4 
S02 2 3 1 4 6 5 
S03 3 4 2 5 1 6 
S04 4 5 3 6 2 1 
S05 5 6 4 1 3 2 
S06 6 1 5 2 4 3 
S07 1 2 6 3 5 4 
S08 2 3 1 4 6 5 
S09 3 4 2 5 1 6 
S10 4 5 3 6 2 1 
S11 5 6 4 1 3 2 
S12 6 1 5 2 4 3 
S13 1 2 6 3 5 4 
S14 2 3 1 4 6 5 
S15 3 4 2 5 1 6 
S16 4 5 3 6 2 1 

 

4.5 Data Conditioning and Analysis 

 First, the data for anthropometry of all subjects was placed into a table and a 

summary of statistics, including mean, standard deviation, minimum and maximum for 

each measurement was created.  Next, the data output from the Biometric system was 
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analyzed to obtain the torque applied and the axial force for each trial.  Each data file 

(192 total) was opened and the mean value of the central 2 seconds of data for both 

torque and axial force was determined.  Since both torque and axial force data graphs 

were parallel and essentially steady, the maximums for each occurred during the time 

period.  An example of a data collection file along with the 2-second selection is shown 

in Fig. 4.4. 

 
 

 

Fig. 4.4: Screen Capture of Exemplar Data Collection File. 

 

 The actual value of the torque and axial force applied for a that trial was 

calculated using the equations determined during the calbibration process, ref Figs. 3.13 

and 3.15.  The data for each of the 2 trials were averaged to determine the actual torque 

and axial force applied by that subject and entered into the data table.  This was done for 

each of the 12 trial performed for all subjects.  A summary of statistics was created for 

the torque and axial force data that included mean, standard deviation, minimum value 
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and maximum value.  An analysis of variance (ANOVA) was also perfomed to analyze 

the main effects, any interactions, and their significance.   

 To calculate an effort metric, the torque value for a particlar condition was 

divided by the diameter of the screwdriver handle to determine the tangential force 

applied to the tool handle.  This along with the axial force applied under that condition 

was used to calculate an “effort ratio” per equation 5.  The ratio relates overall effort of 

the user for that condition.  The effort ratio for each of the 6 condition was calculated for 

each subject. 

 

 Effort Ratio = Force Tangential       (eq 5) 
                 Force Axial 

  

 Finally, the results of the subjective assessment were tabulated and the percentage 

of responses for each level of the 6 questions regarding ease of use.  The data were then 

analyzed using a non-parametric analysis tool, the Friedman’s ANOVA Test.  The results 

of the overall rating of each bit style were also tabulated.  To determine the bit most 

preferred by users, points were assigned to each the ranking levels with 3 being awarded 

for each number 1 ranking, 2 being assigned to each number 2 ranking and 1 being 

assigned to each number 3 ranking.  The values were then totaled and the bit having the 

highest number of points was considered the most preferred.  The bit having the least 

number of points was the least preferred.   

  



  43

5.0 RESULTS 

5.1 Anthropometry 

 A summary of the data for the anthropometric data collected is shown in Table 

5.1.  The descriptive statistics for the experiment, including mean, standard deviation, 

and maximum and minimum values for each body dimension are also included.  For the 

upper extremity data, the subject’s dominant hand was indicated as either R (right) or L 

(left).   The complete set of data recorded for all subjects is shown in Annex D. 

 
Table 5.1: Summary of Statistics for Anthropometry Data  (n=16) 

S
u

b
je

ct
 #

 

S
ta

tu
re

 (
cm

) 

A
cr

om
io

n
 

H
ei

gh
t 

(c
m

) 

A
cr

om
io

n
 t

o 
D

ac
ty

lio
n

 
L

en
gt

h
 (

cm
) 

H
an

d
 L

en
gt

h
  

(c
m

) 

H
an

d
 B

re
ad

th
 

(c
m

) 

W
ri

st
 C

ir
c.

 
(c

m
) 

F
or

e-
ar

m
 C

ir
c.

 
(c

m
) 

A
rm

 C
ir

c.
 

(c
m

) 

H
an

d
 D

yn
o.

  
(k

g)
 

W
ei

gh
t 

 (
kg

) 

Mean: 167.6 140.2 73.9 18.7 8.4 16.6 26.9 30.3 42.8 65.7

SD: 11.3 9.5 5.5 1.2 0.8 1.3 3.4 4.6 19.8 20.4

Max: 185.8 153.3 83.6 20.5 9.7 18.1 31.2 40.0 88.5 104.5

Min: 155.6 129.3 68.6 17.2 7.4 13.9 21.5 24.2 19.5 42.9

 

5.2 Torque 

 A summary statistics of data recorded for the maximum user applied torque is 

shown in Table 5.2 and Figure 5.1.   The complete set of torque data recorded for all 

subjects is shown in Appendix E. An analysis of variance (ANOVA) was performed to 

determine whether there were any significant effects.  The results suggest neither bit, 

direction, nor their interaction has a significant effect.  A summary of the ANOVA is 

shown in Table 5.3. 
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  Although there were  no significant effects for bit design and direction and their 

interaction, the data suggest that  subjects may be able to exert more torque in pronation 

than supination.    

 

Table 5.2: Summary of Statistics for Maximum Forearm Torque (Nm) (n=16) 
Bit Type  ECX Philips Straight 

Direction Pro Pro Sup Pro Sup Sup 

Mean 2.850 2.973 2.641 2.873 2.636 2.617 
SD 1.170 1.325 1.175 1.128 1.106 1.134 
Max 5.715 5.828 4.732 4.931 4.837 5.049 
Min 1.256 1.158 1.163 0.887 1.106 0.938 

 

  

 

Fig 5.1: Average of Maximum Torque (n=16) 

 

 To simplify the analysis of the data, the data were split into two types:  that 

recorded when the subjects applied torque through supination and when they applied it 

through pronation.  A bar chart was chosen to display the data as it lends itself nicely to 
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quick visual analysis.  Fig 5.2 shows the data for pronation plotted next to supination .bit. 

 

 

Fig 5.2: Average of Maximum Torque (n=16) 

 
 

  

 
Table 5.3: Summary Table of ANOVA for Torque Data (n=16) 

SS d.f. MS F P 
Total SS 126.165 95
Subjects 1.861 15 0.124 0.075 1.000 

Bit 0.092 2 0.046 0.028 0.973 
Dir. 1.719 1 1.719 1.037 0.312 
DxB 0.050 2 0.025 0.015 0.985 

Error 124.304 75 1.657 
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5.3 Axial Force 

 A summary statistics of data recorded for the maximum user applied axial force is 

shown in Table 5.4.   The complete set of axial force data recorded for all subjects is 

shown in Annex E.  The data shows subjects applied more axial, or push force, using the 

ECX bit than with both the straight and Phillips bits.  The data also suggests users will 

apply more axial force while pronating than when supinating for all bits, though the 

difference is relatively small.   

 

Table 5.4: Summary of Statistics for Axial Force (N) (n=16) 
Bit Type  ECX Philips Straight 

Direction Pro Pro Sup Pro Sup Sup 

Mean 81.001 67.482 65.798 76.722 72.922 79.942 
SD 54.255 51.015 50.512 54.664 51.195 60.755 
Max 196.355 191.277 181.939 204.843 187.463 224.502 
Min 20.895 12.921 12.065 24.215 18.472 17.480 

 

 The means of the data for all subjects under each condition were plotted in Fig. 

5.3.  The shape of each line is approximately the same for both a pronation and 

supination, suggesting there is no interaction between bit type and direction. The 

difference is demonstrated graphically by the bar chart show in Fig. 5.4. 
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Fig 5.3: Mean Axial Force for All Subjects (n=16) 

 

   

 

 

Fig 5.4: Average of Mean Axial Force (n=16) 
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 The results of the ANOVA suggest bits have a significant effect.  Neither 

direction nor the interaction of direction and bit were shown to have a significant effect.  

A summary of the ANOVA is shown in Table 5.5. 

Table 5.5: Summary Table for ANOVA of Axial Force (n=16) 
    SS d.f. MS F P 

Total SS   317131.335 95       
Subjects   151363.744 15 10090.916 4.566 0.000

  Bit 151248.450 2 75624.225 34.215 0.000
  Dir. 49.148 1 49.148 0.022 0.882
  DxB 66.147 2 33.073 0.015 0.965

Error   165767.591 75 2210.235     
 

  

5.4 Effort Ratio  

  To investigate the existence of a relationship between screwdriver head 

design and user effort, an effort ratio was calculated.  For the purpose of this experiment, 

the effort ratio was a dimensionless value calculated by dividing the tangential force 

causing the maximum applied torque and the axial force applied by the subject.  A 

summary statistics of data recorded for the effort ratio is shown in Table 5.6.   The 

complete set of effort ratio data recorded for all subjects is shown in Annex E.   
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Table 5.6: Summary of Statistics for Effort Ratio (N/N) (n=16) 
Bit Type  ECX Philips Straight 

Direction Pro Pro Sup Pro Sup Sup 

Mean 2.870 4.006 3.636 3.051 3.114 2.969 
SD 1.287 2.616 2.116 1.261 1.741 1.623 
Max 6.048 10.295 8.731 4.968 7.010 6.666 
Min 0.950 1.742 1.526 1.199 1.407 0.995 

 

   

 A higher value of the ratio indicates more of the overall effort exerted by the 

subject went into the application of torque and less into pushing the screwdriver bit into 

the fastener.  The data shows subjects had the greatest effort ratio using the Phillips bit.  

The data also suggests users will have a higher effort ratio while pronating than when 

supinating with the Phillips bit.  However, the opposite was observed for the straight and 

ECX  bits, though the difference of the means is small.  The effort ratio values for all 

subjects were plotted as shown in Fig 5.5. 

 

 
Fig. 5.5: Graph for Effort Ratio 
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Fig. 5.6: Average Effort Ratio (n=16) 

 

 The results of the ANOVA suggest neither bits, direction, or their interaction has a 

significant effect.  A summary of the ANOVA is shown in Table 5.6. 

 

Table 5.6: Summary Table for ANOVA of Effort Ratio (n=16) 

    SS d.f. MS F P 
Total SS   319.544 95       

Among  Cells   15.965 15 1.064 0.263 0.997
  Bit 14.760893 2 7.380 1.823 0.169
  Dir. 0.1150655 1 0.115 0.028 0.867
  DxB 1.089 2 0.544 0.135 0.874

Within cells   303.579 75 4.048     
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5.5 Subjective Assessment 

 After testing with each bit was complete, the subjects used a 7-point Likert scale 

to rate the ease of use for that bit.  The median rank data for all subjects are presented in 

Fig. 5.7  were within a close range (5 to 6).   The  Friedman’s non-parametric (ANOVA) 

test revealed s bit type did not have a systematic effect on the ratings.  Results of the 

Friedman’s test are shown in Appendix F. 

 

 

 Fig. 5.7: Bar Chart for Median Ease of Use Ratings 

 

 Analysis of the subjective rankings where a rating of 1 indicates the bit subjects 

liked best and 3 the bit they liked least, subjects ranked the Phillips bit as being the best 

more often than any other bit tested.  The data shows the Phillips bit was rated as the best 

by 56.2% of all subjects.  A summary of the result for all subjects is show in Fig. 5.8.   
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Table 5.8: Bit Rankings (n=16) 
Ranking 1 2 3 Points 
Phillips 9 (56.2%) 7 (43.8%) 0   (0%) 41 

ECX 4 (25%) 2 (12.5%) 10 (62.5%) 26 
Straight 3 (18.7%) 7 (43.8%)     6   (37.5%) 29 
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6.0 DISCUSSION 

6.1 General  

 This study was designed to determine what, if any, effect bit type had on the 

ability to a user to apply maximum torque to a fastener using a conventional screwdriver. 

The study also endeavored to analyze the relationship between torque application and 

axial force as a way to relate the user’s overall effort to the task being completed.  With 

the large variety of fastener styles available, there is little data regarding full user effort 

available to product designers.  Such data would make it possible to consider not only a 

user’s ability to apply torque, but also their overall effort  when making fastener choices.  

These data may  lead to a reduction in musculoskeletal injuries. 

6.2 Torque exertion 

 At the start of this experiment, it was hypothesized that the bit design would have 

an effect on maximum torque.  The data did not show a significant effect.  

6.3 Torque levels 

 The levels of torque applied by test subjects were consistent with the literature, 

though on the lower end of the reported values from relevant studies.  A factor that 

differentiates many previously conducted studies and this study is the fact those subjects 

performed simulated work tasks using tools that were not actually engaging a fastener.  

When using the screwdriver handle purely as a connecting device to a torque 

measurement fixture, the subject is actually being tested more for their physical ability to 
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apply torque using that connection and less on their ability to apply torque to a fastener.  

For example, Kim et al. (2000) employed a screwdriver handle connected to work task 

simulator as part of their study yielding a mean applied torque reported was 6.53 Nm 

(S.D 1.22) with a range of 5.2 Nm to 9.8 Nm.  These values are much higher than the 

mean value of 3.3 Nm (SD 1.2) and range of 1.9 Nm to 5.8 Nm measured as part of this 

study where an actual work task was performed.  The results of this study are consistent 

with those of Sanchez (2007) who reported between 3.33 Nm (SD 1.15) and 4.06 Nm 

(SD 1.51) for college males using a conventional screwdriver while turning an actual 

screw.   

 The difference between simulated work tasks and actual work tasks may appear 

subtle but  values of torque can be substantially different between actual tool use and 

maximal human ability.  It is important to recognize the difference may be important to 

those developing a product or making a fastener selection.  Using data from a simulated 

work task may not accurately replicate a fastening operation and could overestimate a 

person’s ability to complete the operation with an actual tool.  Having access to data that 

more accurately represent the actual user experience will be a benefit to both the designer 

and the worker. 

 During torque application, it was observations the screwdriver bit would “cam-

out” or disengagement from the fastener on 13 of 192 (6.8%) trials.  The fact tools 

disengage from the fastener at this rate implies a self-limiting factor associated with the 

fastener/driver interface design relevant to this work.  Cam-out is a well-known issue in 

the field of fastener design and plays an important role in fastener selection.  For 

example, when assembling a joint that requires high clamping force, the fabricator of the 

joint may be required to apply a high level of torque to meet the design specification.  
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Choosing a fastener prone to cam-out at low torque would cause a fabricator to have 

difficulty applying sufficient torque to assemble the joint properly.  In contrast, to prevent 

a fastener from being over-tightened, a fastener prone to cam-out at high torque may be 

desirable.  The data recorded as part of this study may be more helpful to a designer than 

pure human strength data as one could more closely predict the field conditions under 

which a fabricator would be working, allowing additional insight into their design. 

6.4 Direction 

 It was hypothesized that subjects would produce more torque in supination that in 

pronation.  This hypothesis was based, in part, by the fact the biceps brachii is known to 

be a strong supinator.  There is even a suggestion that the tightening direction of a screw 

is clockwise, or supination for a right handed user, due to the fact that for a majority of 

the population is right handed and supinating the right hand would allow a user to apply 

their maximum torque output.  While this may be anecdotal evidence, it may not be 

without merit as the Scientific American website (2013) states between 70 and 90% of 

the population is right handed, a contention supported by Bhattacharya and McGlothlin 

(1996) who report approximately 90% of the population is right handed.   Coupled with 

the human strength literature, a circumstantial argument can be made. 

 While many factors including, but not limited to, posture of the user, the 

fastener/bit interface design and overall effort  to exert torque, direction was not found to 

be a significant factor.  When compared to the work of Rhomert (1966), Chaffin (1999), 

O’Sullivan and Gallway (2001) who all suggest more torque can be applied in supination, 

the results of this study may seem inconsistent as it suggest the opposite.  However, those 

studies were human strength studies and not work task specific, the difference between 
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which was previously discussed.  Taking those differences into account, chiefly the 

relationship between torque application and axial force related to cam-out or bit 

disengagement, may help explain the results.  As shown in figs. 5.3 and 5.4, axial force 

was highest for conditions where torque applied was lowest, which includes those in 

supination.  This suggests higher torque output may be expected under conditions where 

subjects apply lower levels of axial force as less effort is exerted keeping the bit in 

contact with the fastener head leaving more available to generating torque.  This research 

suggests this to be the case in pronation.  This issue is further discussed under Effort 

Ratio. 

6.5 Axial Force 

 Another hypothesis was there would be a difference in the amount of user applied 

push force between bits, which  did have a  significant effect.  However, the results did 

not support an initial expectation that axial force would be greatest for the Phillips bit and 

lowest for the ECX bit.  The data indicate the opposite to be true.  A review of the 

fastener/bit interface may explain this result.  While the intended design of the ECX bit 

was to combine the length of the straight bit with the self-centering aspects of the Phillips 

bit, it does not provide the same level of surface contact between the tool head and the 

screw when compared to a Phillips bit.  As such, the tool head is more likely to ride-out 

of the screw head, which means less energy, is transmitted to torque the screw and more 

axial force applied by the user to keep the tool engaged.  This may be due to the fact the 

Phillips portion of the design does not penetrate the fastener head to the same depth a true 

Phillips bit does.  Similarly, the straight bit has a tendency of “sliding” out of the screw 

head, either from the front of the rear of the fastener, also causing the user to increase 
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axial force to prevent movement.   

 

6.6 Effort Ratio 

 For the purpose of this study, the ratio of tangential force applied to the tool 

handle causing torque and axial force is called the Effort Ratio.  The purpose is to 

develop a metric by which overall user effort can be determined, allowing comparisons 

between bit designs to be made.   The principle is simple, if a user applied less axial force 

when applying the same level of torque, the ratio goes up and they are exerting less 

overall energy.  This would suggest that employing a design requiring less axial force to 

keep the bit engaged in the screw head would increase worker effectiveness by reducing 

muscle fatigue.   

  

6.7 Sources of Error 

 There are a few sources of error identified during this experiment.  With respect 

to human error, anthropometric data are sensitive to investigators technique, especially 

identifying landmarks and being consistent, subject-to-subject.  With respect to 

procedural error, having the subject obtain proper posture during the test, and maintain 

for the duration of the test trial is important.  The subject is to remain vertical with the 

wrist in the neutral position.  Tayyari and Smith (1997) have shown that wrist deviation 

in any direction has an effect on the maximum force a subject can apply.   As a result, 

measurements made with subjects in different posture may produce results that are lower 

than expected.   Providing a tool with a higher coefficient of friction and with a better 
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system for adjustment may reduce the slipping, improve posture and increase the torque 

values.  Visual gauges the investigator could use to ensure proper posture is maintained 

could help reduce this affect.   

6.8 Limitations 

 The nature of this study required a number of variables to be controlled in order to 

limit their effects on results.  The number of fastener heads was one of those variables.  

Because the development of the effort metric is in its infancy it was decided to limit the 

study to just the one fastener type to determine if the concept had merit.   

 Similarly, the type of screwdriver handle utilized in this study was limited to one 

style, the conventional handle, and one size of that style.  While Kong et al. (2005) 

showed that handle size does have an effect on grip force and torque application, this 

study was limited to the one size to simplify the analysis of how torque application and 

axial force may be related.  

 This study had subjects applying torque in only one body posture.  O’Sullivan and 

Gallway (2001), Kim et al. (2002), and Sanchez (2007) have all shown that body posture 

does have a significant effect on a person’s ability to apply maximum torque.  However, 

the objective of this research was not to analyze posture but to more clearly understand 

the relationship between forces applied by the user, so it was limited to one posture. 

A limitation related to the statistical power of the results is the small sample size.  

Ideally, a larger sample would have been taken that would have allowed for more 

statistical power and an analysis of the effects of gender.  Again, since one of the 

objectives of this study was the initial development of the effort metric concept, a smaller 

sample was acceptable to determine whether additional research was indicated. 
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7.0 FUTURE WORK 

A number of future studies should be conducted to further investigate the concept 

of the effort ratio.  This would include performing the study described herein to 

determine of the results are consistent. 

The inclusion of additional bit and/or handle styles in a similar study may allow 

an investigator to determine if bit types or handle styles affect the relationship between 

torque application and axial force to a greater level than torque.   

Performing a study that includes a variety of postures may provide insight into 

whether axial force would be affected by body position in the same it has been shown to 

affect torque application.  This certainly would be valuable to the overall development of 

the effort ratio concept. 

Eventually the compilation of data from these studies may be used to develop 

recommendations for tool designers to improve the user experience and possibly reduce 

the likelihood of workers to suffer musculoskeletal injuries. 
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9.0 APPENDIX A:  DRAWINGS 

 
Fig. 9.1: Engineering Drawing of Phillips Screwdriver 

 

 
Fig. 9.2: Engineering Drawing of Straight Screwdriver 

 
Fig. 9.3: Engineering Drawing of ECXTM Screwdriver 
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Fig. 9.4: Engineering Drawing of ANSI/ASME B18.6.3 Type 1 Screw 

 

 

 
Fig. 9.5: Dimension Table for ANSI/ASME B18.6.1 Type I Screw 
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Fig. 9.6: Engineering Drawing of ANSI/ASME B18.6.3 Type II Screw 

 

 

 
 
 

Fig. 9.7: Dimension Table for ANSI/ASME B18.6.1 Type II Screw 
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10.0 APPENDIX B:  FORMS 

10.1: Marquette University IRB Approved Consent Form 
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10.2: Occupational and Health Background Information Form 

		

	
Laboratory Study of Maximum Torque and Axial Force 
Application Using a Manual Screwdriver 
 

Occupational and Health Background Information Form 

Date: ______/_____/______ 

Name:________________________________  

Age: ______________ Gender: ____________ 

Occupation: ___________________________________________________________________ 

How long have you been in this occupation? _________________________________________ 

Have you ever had an injury or illness of a musculoskeletal nature? YES   NO. 

If YES, please describe___________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

Do you have any current injury or illness or pain of a musculoskeletal nature? YES   NO. 

Please describe and when it occurred ______________________________________________ 

_____________________________________________________________________________ 

If YES, would using a screwdriver while participating in this experiment make your  injury or 

illness or pain worse? YES   NO. 

If YES, Please describe____________________________________________________________ 
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10.3: Subjective Assessment Form 
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10.4: Blank Anthropometry Data Sheet 
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11.0 APPENDIX C:  PARTICIPANT BACKGROUND 

Table 11.1: Participant Background Information 
Subject Date Age Gen. Occupation Yrs. Injury Comment Current 
S03 9-13-13 29 M Engineer 1 N N/A N/A 

S04 9-13-13 24 M Technician 3 N N/A N/A 

S05 9-13-13 39 M Engineer 13 N N/A N/A 

S06 9-13-13 21 M Intern .5 N N/A N/A 

S07 9-13-13 45 M Engineer 21 N N/A N/A 

S08 9-13-13 43 M Database 
prgmr. 

19 Y Back injury 
from sports 

N 

S09 9-13-13 24 M Office Asst. 3 N N/A N/A 

S10 9-13-13 40 F Tech Writer 15 N N/A N/A 

S11 9-13-13 34 F Engineer 15 N N/A N/A 

S12 9-13-13 46 F Office Asst. 4 N N/A N/A 

S13 9-13-13 40 F Paralegal 5 N N/A N/A 

S14 9-13-13 37 F Accounting 3 N N/A N/A 

S15 9-13-13 44 F Accounting 8 N N/A N/A 

S16 9-13-13 35 F Analyst 14 N N/A N/A 

S17 9-13-13 44 F Accounting 3 N N/A N/A 

S18 9-13-13 43 M Technician 15 Y Lower Back, 
car accident 

N 
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12.0 APPENDIX D:  ANTHROPOMETRY 

Table 12.1: Summary of Anthropometry Data 
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12.2: Anthropometric Measurement Locations   
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13.0 APPENDIX E:  DATA ANALYSIS 

 
Table 13.1: Summary of mean torque data (Nm) 

Gender 
Str. 
Sup Str. Pro

PH 
Sup PH Pro 

ECX 
Sup 

ECX 
Pro 

S03 M 3.392 3.789 4.732 5.051 3.446 2.877 
S04 M 4.837 4.931 4.284 5.828 4.555 5.715 
S05 M 4.463 4.924 3.930 4.133 5.049 5.121 
S06 M 2.256 1.977 2.172 2.416 2.043 2.616 
S07 M 2.595 3.349 3.440 3.649 2.863 2.730 
S08 M 3.006 2.806 2.774 2.964 2.641 2.855 
S09 M 1.924 2.509 1.422 1.874 2.191 2.379 
S10 F 3.609 3.732 2.760 3.385 3.375 3.612 
S11 F 2.124 2.441 2.408 2.455 2.285 2.346 
S12 F 1.490 2.736 1.235 2.876 1.406 2.309 
S13 F 1.225 1.904 1.163 1.301 0.938 1.907 
S14 F 1.998 2.025 1.625 2.052 1.480 1.950 
S15 F 2.044 1.640 1.953 1.570 1.860 1.742 
S16 F 2.404 2.712 2.876 2.808 3.228 2.813 
S17 F 1.106 0.887 1.359 1.158 1.585 1.256 
S18 M 3.706 3.612 4.119 4.049 2.920 3.366 

Mean N/A 2.636 2.873 2.641 2.973 2.617 2.850 
SD N/A 1.106 1.128 1.175 1.325 1.134 1.170 

Max N/A 4.837 4.931 4.732 5.828 5.049 5.715 
Min N/A 1.106 0.887 1.163 1.158 0.938 1.256 
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Table 13.2: Analysis of Variance for torque data 
SS d.f. MS F P 

Total SS 126.165 95 
Subjects 1.861 15 0.124 0.075 1.000 

Bit 0.092 2 0.046 0.028 0.973 
Dir. 1.719 1 1.719 1.037 0.312 
DxB 0.050 2 0.025 0.015 0.985 

Error 124.304 75 1.657 

 

 

 
 

Fig. 13.1: Graph of Torque in Pronation 

 

 
 

Fig. 13.2: Graph of Torque in Supination 
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Table 13.3: Summary of axial force data (N) 

Subject Gender Str. Sup Str. Pro PH Sup PH Pro 
ECX 
Sup 

ECX 
Pro 

S03 M 131.454 204.843 128.207 154.785 224.502 196.355
S04 M 187.463 176.528 181.939 191.277 161.484 187.510
S05 M 141.265 134.729 106.113 80.131 150.610 140.071
S06 M 88.992 89.644 86.402 86.174 96.530 91.658 
S07 M 119.497 102.666 121.250 106.760 92.388 99.770 
S08 M 108.491 78.742 108.523 75.494 120.539 79.428 
S09 M 53.970 64.736 39.850 69.704 68.912 63.393 
S10 F 28.301 37.952 34.141 24.552 22.219 42.273 
S11 F 41.174 47.614 29.240 48.532 34.066 52.736 
S12 F 24.331 28.632 22.274 21.376 18.344 44.994 
S13 F 18.472 26.418 12.065 12.921 17.480 20.895 
S14 F 43.044 24.215 27.731 23.555 31.969 22.483 
S15 F 23.565 38.278 34.673 48.531 44.755 45.868 
S16 F 27.591 30.148 22.297 23.844 33.021 30.116 
S17 F 74.510 85.961 74.254 89.274 110.708 107.174
S18 M 54.629 56.452 23.809 22.801 51.547 71.289 

Mean N/A 72.922 76.722 65.798 67.482 79.942 81.001 
SD N/A 51.195 54.664 50.512 51.015 60.755 54.255 

Max N/A 187.463 204.843 181.939 191.277 224.502 196.355
Min N/A 18.472 24.215 12.065 12.921 17.480 20.895 
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Table 13.4: Analysis of Variance for axial force data 
    SS d.f. MS F P 
Total SS   317131.335 95       
Subjects   151363.744 15 10090.916 4.566 <0.005 
  Bit 151248.450 2 75624.225 34.215 <0.005 
  Dir. 49.148 1 49.148 0.022 0.882 
  DxB 66.147 2 33.073 0.015 0.965 
Error   165767.591 75 2210.235     

 

 
Fig. 13.3: Graph of Axial Force in Pronation 

 
 

 

Fig. 13.4: Graph of Axial Force in Supination 
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Table 13.3: Summary of ratio data (N/N) 

Subject Gender Str. Sup Str. Pro PH Sup PH Pro 
ECX 
Sup 

ECX 
Pro 

S03 M 1.672 1.199 2.392 2.115 0.995 0.950 
S04 M 1.672 1.810 1.526 1.975 1.828 1.975 
S05 M 2.048 2.369 2.400 3.342 2.173 2.369 
S06 M 1.643 1.429 1.629 1.817 1.371 1.850 
S07 M 1.407 2.114 1.839 2.215 2.008 1.774 
S08 M 1.796 2.309 1.657 2.545 1.420 2.330 
S09 M 2.310 2.512 2.312 1.742 2.061 2.433 
S10 F 4.865 4.169 4.571 6.481 6.666 3.597 
S11 F 2.345 3.724 2.737 3.841 2.674 2.838 
S12 F 3.263 4.309 3.384 3.944 3.312 2.747 
S13 F 7.010 4.968 8.731 10.295 5.488 6.048 
S14 F 3.077 4.388 4.565 4.321 3.771 5.021 
S15 F 6.612 4.593 5.376 3.750 4.675 3.975 
S16 F 2.598 1.907 3.949 3.148 3.111 2.702 
S17 F 3.223 2.723 3.595 2.940 1.709 2.035 
S18 M 4.282 4.285 7.512 9.622 4.244 3.284 
Mean N/A 3.114 3.051 3.636 4.006 2.969 2.870 
SD N/A 1.741 1.261 2.116 2.616 1.623 1.287 
Max N/A 7.010 4.968 8.731 10.295 6.666 6.048 
Min N/A 1.407 1.199 1.526 1.742 0.995 0.950 
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Table 13.5: Analysis of Variance for ratio data 

    SS d.f. MS F P 
Total SS   319.544 95       
Among  
Cells   15.965 15 1.064 0.263 0.997 
  Bit 14.761 2 7.380 1.823 0.169 
  Dir. 0.115 1 0.115 0.028 0.867 
  DxB 1.089 2 0.544 0.135 0.874 

Within cells   303.579 75 4.048     

 

 

 
Fig. 13.5: Graph of Ratio in Pronation 

 
Fig. 13.6: Graph of Ratio in Supination 
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Fig. 13.7 – Degrees of Freedom Analysis  
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14.0 APPENDIX F:  NON-PARAMETRIC FRIEDMAN’S TEST 

 

 

Table 14.1: Descriptive Statistics for Subjective Assessment 
  Phillips ECX Straight 
  Pro Sup Pro Sup Pro Sup 
Average 5.56 5.44 5.13 5 5.31 5.38 
Sum 89 87 82 80 85 86 
Median 6 6 5.5 5.5 6 6 

 
 
 

 
Fig. 14.1: Results of Friedman’s ANOVA 

 
 

 
Fig. 14.2: Box Plot of Friedman’s ANOVA Results 
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