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ABSTRACT 
NUMERICAL SIMULATION MODEL ON IRREVERSIBILITY OF 

SHOCK-WAVE PROCESS 

Longhao Huang, B.S. 

Marquette University, 2013 

The objective of this research is to develop a better understanding of the 
irreversibilities associated with the shock compaction of matter, especially as a result of 
impact. Due to complex shock processes, experimentation alone cannot fix the material 
state, since properties such as internal energy, entropy as well as the shock process are 
not measurable. Thus, in addition to experimentation, analytical and numerical methods 
are also used to completely characterize the shock process, although they are restricted by 
underlying constitutive assumptions. Instead of using artificial irreversibility, such as 
artificial viscosity to simplify and stabilize the numeric shock model, this work will 
directly incorporate and solve the correct constitutive relations that describe the sources 
of irreversibility. 

Shock wave processes in gas and water are simulated and two equations of state 
(EOS) are discussed. For a one-dimensional shock wave in gas, results from simulations 
at two different non-dimensional scales utilizing two different EOS are comparable to the 
idealized analytical solution and experimental data. Besides, the Mie-Grüneisen (M-G) 
equation of state, which has been used for solids, is extended to study gas and liquid. The 
value of Mie-Grüneisen constant, which is a function of atom oscillator frequency and 
specific volume, is hard to detect from experiment. Based on statistical mechanics, a 
relationship between the gas Mie-Grüneisen constant and specific heat ratio is derived 
analytically, which makes Mie-Grüneisen EOS available for gas. The M-G constant is 
also derived from shock jump condition and Mie-Grüneisen EOS for water and a 
sensitivity analysis is done based on the simulation result. 
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Chapter 1 

Introduction 

1.1 Objectives 

Research related to shock wave processes has a long history. Compared with 

elastic deformation process, shock wave process can make irreversible change to the 

material state. According to material states, constitutive models can be divided into gas, 

liquid and solid groups, which vary from simple to complex respectively. Due to complex 

shock processes, there are various kinds of ways to research shock processes. One 

approach is to design an experiment to directly collect material property data and capture 

the shock wave profile, such as velocity, density or pressure. Based on experimental data, 

the shock Hugoniot compression curve can be established, which is used to estimate the 

shock compressed state. While shock temperature is usually obtained by a theoretical 

calculations based on the various thermodynamic quantities or shock Hugoniot data 

available. So experimental methods alone are insufficient to establish the complete 

equation of state and the preciseness need to be improved. Numeric methods can assist in 

fixing the complete equation of state.  Results from numeric simulations can be compared 

to specific points on a thermodynamic surface to assess the effectiveness of simulation 

procedure. 

The objective of this research is to develop a better understanding of the 

irreversibility associated with the shock compaction of matter, especially as a result of 

impact, based on numerical simulation. In classical numeric formulations the cells size of 
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the simulation is large compared to the shock thickness, thus the shock is not numerically 

resolved. As a result, the evolution of irreversibilities within the shock process is not 

resolved. In order to simplify or stabilize the shock model, artificial irreversibility, such 

as artificial viscosity, are introduced and applied [1-3]. For one-dimensional shock wave 

processes in monatomic gas, Navier-Stoke (NS) equations and ideal gas equation of state 

(EOS) are able to describe the generation of irreversibilities [4]. The use of Navier-Stoke 

equations makes for a more complete analysis including thermodynamically consistent of 

temperature [5]. In order to simulate shock interactions that are under resolved, artificial 

viscosity is included in most simulations in order to dampen-out spurious numeric 

instabilities. In this work the complete classic Newtonian viscous stress tensor is directly 

incorporated in the simulation. In order to resolve the gradients required by the 

Newtonian viscous stress tensor, the very sharp, very thin (<1 μm) shock fronts must be 

resolved.  

Furthermore, shock wave processes in liquids are more complex than those in 

gases. In order to make one-dimensional Navier-Stoke formulation more robust, 

additional modifications can be considered, such as non-dimensional scales, different 

equations of state (EOS), parameter studies and the inclusion of the Newtonian 

compressibility terms and second viscosity.  Specific experimental data and analytical 

simulation results are to be used to check the accuracy of these simulations. In addition, a 

sensitivity analysis is presented to analyze the effects of irreversibility in shock wave 

process.  
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1.2 Methodology 

This work compares numerical simulation, analytical simulation and specific 

experimental data to accomplish stated objectives.  

Experiments are usually conducted under Lagrange coordinate, while parameters 

from Lagrange coordinate are not convenient to use in numeric simulations, so Euler 

coordinates are used instead. Work starts from assumptions, which are made from 

experimental design, physics phenomenon and mathematics derivation process. Then, 

finite difference techniques are used in the discretization based on simplified equations. 

A second-order central difference is chosen to discretize numerical equations from 

analytical Navier-Stoke equations, similar to a Crank–Nicolson method. The scheme is 

programed in FORTRAN. 

Two kinds of equations of state are used in these simulations: ideal gas EOS and 

Mie-Grüneisen EOS. Sub-models of irreversibility come from the full Newtonian fluid 

stress tensor, where the transport constants for viscosity are assumed constant or follow 

an experimentally observed trend line, such as power law of viscosity or Maxwell method 

of viscosity.  In order to shorten the simulation time and keep accuracy high, two kinds of 

non-dimensional scales are used with these equations and variables. This also helps 

extend the availability of the numerical model from gas to liquid.
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Chapter 2 

Ideal Gas EOS Model 

2.1 Derivation of Dimensional NS Equations 

The following is the general governing Navier-Stokes equations:  

Continuity  

∂
∂t
ρ =  −(∇ ∙ ρu)                                               (2.1.1) 

Motion 

∂
∂t
ρu = −[∇ ∙ ρuu] − ∇p − [∇ ∙ τ] + ρg                              (2.1.2) 

Energy 

∂
∂t
ρ�𝐾� + 𝑈�� =  −�∇ ∙ 𝜌�𝐾� + 𝐻��𝑢� − (∇ ∙ 𝑞) − (∇ ∙ [𝜏 ∙ 𝑢]) + 𝜌(𝑢 ∙ 𝑔)      (2.1.3) 

where ρ stands for density, u for the velocity, T for the temperature, 𝞽 for the 

stress and P is the pressure. In addition the kinetic and internal energy and enthalpy are 

defined as follows: 

 𝐾� =  1
2
𝑢2 for the kinetic energy per unit mass, 

 𝑈� =  𝐶𝑣𝑇 for the internal energy per unit mass, 

 𝐻� = 𝑈� +  𝑝
𝜌
  for the enthalpy per unit mass.  

The heat flux due to conduction, q, is described by Fourier’s Law: q =  −κ∇T.  

Assuming one-dimensional plane flow, u, T, ρ and p are functions of space in the 

x direction and time t, noted as u(x,t), T(x,t), ρ(x,t) and p(x,t). The velocities in the y and 
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z drop out of the formulation. The one-dimensional governing equations can be 

simplified as follows. 

Continuity 

∂
∂t
ρ =  − ∂

∂x
ρ𝑢𝑥                                                  (2.1.4) 

Use u to replace 𝑢𝑥 and set the momentum j = ρ𝑢𝑥, inserting into equation above, 

results in 

∂ρ
∂t

+ ∂j
∂x

= 0                                                    (2.1.5) 

Motion 

∂
∂t
ρu𝑥 = −∂ρu𝑥𝑢𝑥

∂x
− ∂p

∂x
− ∂𝜏𝑥𝑥

∂x
                                      (2.1.6) 

Rearrange equation (2.1.6) to get 

∂j
∂t

+ ∂ju
∂x

+ ∂p
∂x

= −∂𝜏𝑥𝑥
∂x

                                            (2.1.7) 

Energy 

∂
∂t
ρ�𝐾� + 𝑈�� =  −𝜕𝜌(𝐾�+𝐻�)𝑢

𝜕𝑥
− ∂𝑞𝑥

∂x
− ∂𝜏𝑥𝑥𝑢

∂x
                             (2.1.8) 

Where the total energy per unit volume is defined as: 

E = ρ�𝐾� + 𝑈�� = 𝐾 + 𝑈                                         (2.1.9) 

In equation (2.1.9), the U stands for internal energy per unit volume and K stands 

for kinetic energy per unit volume. 

Then, combined with their respective definitions the following equations result: 

U =  ρ𝐶𝑣𝑇                                                  (2.1.10) 

K =  1
2
𝜌𝑢2                                                  (2.1.11) 
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E = 1
2
𝜌𝑢2 + ρ𝐶𝑣𝑇                                            (2.1.12) 

The thermodynamic relationships for the specific heats𝐶𝑝, 𝐶𝑣, and γ and R can be 

written as 

R =  𝐶𝑝 − 𝐶𝑣                                                  (2.1.13) 

γ =  𝐶𝑝
𝐶𝑣

                                                      (2.1.14) 

where γ is the specific heat ratio and,  

R is the gas constant.  

Combining the equations (2.1.13) and (2.1.14), the following results are 

𝐶𝑣 = 𝑅
𝛾−1

                                                    (2.1.15) 

𝐶𝑝 =  𝑅
𝛾−1

+ 𝑅 = 𝑅𝛾
𝛾−1

                                           (2.1.16) 

This can be combined with the ideal gas equation of state 

p =  ρRT                                                     (2.1.17) 

𝜌𝐶𝑣𝑇 =  𝜌𝑅𝑇
𝛾−1

= 𝑝
𝛾−1

                                            (2.1.18) 

Total energy can be expressed by ρ,γ and u, as 

E =  1
2
𝜌𝑢2 + 𝑝

𝛾−1
                                               (2.1.19) 

The enthalpy is defined in the usual way and can be combined with the kinetic 

energy for simplification: 

H = 𝐸+𝑝
𝜌

= 𝜌(𝐾�+𝑈�)+𝑝
𝜌

=  𝐾� + �𝑈� + 𝑝
𝜌

 � =  𝐾� + 𝐻�                    (2.1.20) 

The energy evolution equation can be obtained by substituting E and H into 

energy equation (2.1.8) to get 
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∂
∂t

E = −𝜕(𝑗𝐻)
𝜕𝑥

− ∂𝑞𝑥
∂x

− ∂(𝜏𝑥𝑥𝑢)
∂x

                                    (2.1.21) 

Finally the energy equation becomes, 

Energy 

∂
∂t

E + 𝜕(𝑗𝐻)
𝜕𝑥

+ ∂𝑞𝑥
∂x

= −∂(𝜏𝑥𝑥𝑢)
∂x

                                    (2.1.22) 

where q is the Fourier Law flux defined as:  

q =  𝑞𝑥 =  −𝜅 𝜕𝑇
𝜕𝑥

                                              (2.1.23) 

Heat conductivity 

Some of the transport properties can be combined into dimensionless parameters 

in order to simplify the governing equations. Since the Prandlt number, Pr, is defined as  

Pr =  𝐶𝑝𝜂
𝜅

                                                     (2.1.24) 

Then rearranging for the heat conduction, k, yields, 

κ =  𝐶𝑝𝜂
𝑃𝑟

                                                     (2.1.25) 

Insert the expression for the specific heat, 𝐶𝑝, equation (2.1.16) to get 

κ =  𝛾𝑅𝜂
(𝛾−1)𝑃𝑟

                                                  (2.1.26) 

The Newtonian stress tensor is defined in equation 2.1.27.  

𝜏𝑥𝑥 =  −𝜂 �2 𝜕𝑢𝑥
𝜕𝑥
� + (2

3
𝜂 − 𝜇)(∇ ∙ 𝑢)                              (2.1.27) 

For a monatomic noble gas with low density, where there are no free electrons in 

the valence shells, one can assume the second viscosity μ is zero [7]. This is born out by 

experimental results. As a result, one arrives at the simplified one dimensional stress 

𝜏𝑥𝑥 =  −4
3
𝜂 𝜕𝑢
𝜕𝑥

                                                (2.1.28) 
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One should note that equation 2.1.28 retains the compressibility terms from 2.1.27. 

But it has been simplified greatly. Finally, one should note that in order to resolve this 

scheme the gradients in equations 2.1.28 and 23 must be resolved. 

2.2 Non-Dimensional NS Equations – Ideal Gas Scheme 

Since the upstream densityρ∞, mean-free path λ and sound speed 𝐶∞ can be 

obtained from experiments and the gas constant R is a constant, they are well suited to be 

used as non-dimensional scales. In addition the ratio of specific heats, γ is used to 

dimensionalize the energy equation. The mean free path for a perfect gas is from 

G.A.Bird [6]. It can be manipulated to the following form,  

λ =  4𝜂
(𝜌√2𝜋𝑅𝑇Ω)

                                                 (2.2.1) 

where, Ω is a coefficient from mean collision rate of molecule, which is defined 

as, 

Ω =  5(𝛼+1)(𝛼+2)
𝛼(7−2𝜔)(5−2𝜔)

                                              (2.2.2) 

where, 𝛼 is an exponent in the variable molecular model. When 𝛼 = 1, equation 

(2.2.1) is applicable for hard sphere assumption and ω is viscosity index, a coefficient 

related to fluid. 

Using scales above mentioned, the following basic dimensionless parameters can 

be formulated as ρ =  𝜌�𝜌∞, u =  𝑢�𝐶∞, p =  𝑝�𝜌∞𝐶∞2 , x =  𝑥�𝜆, t =  �̃� 𝜆
𝐶∞

 

Substituting these into the one dimensional governing equations (2.1.5, 2.1.7 and 

2.1.22), yields: 
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                                     ∂𝜌�𝜌∞
∂�̃� 𝜆

𝐶∞

+ ∂𝜌�𝑢�𝜌∞𝐶∞
∂𝑥�𝜆

= 0                                             (2.2.3) 

where the momentum flux is defined as: 

j =  ρu =  𝜌�𝑢�𝜌∞𝐶∞.                                              (2.2.4) 

Combining these two and factoring yields 

𝜌∞𝐶∞
𝜆

(∂𝜌�
∂�̃�

+ ∂𝜌�𝑢�
∂𝑥�

) = 0                                              (2.2.5) 

which simplifies to                                      

∂𝜌�
∂�̃�

+ ∂𝜌�𝑢�
∂𝑥�

= 0.                                                   (2.2.6) 

The stress can be non-dimensionalized as 

𝜏𝑥𝑥 = −  4
3
𝜂 𝜕𝑢
𝜕𝑥

= −  4
3
𝜂 𝜕𝑢�𝐶∞

𝜕𝑥�𝜆
                                       (2.2.7) 

Inserting into the momentum equation yields 

∂𝜌�𝑢�𝜌∞𝐶∞
∂�̃� 𝜆

𝐶∞

+ ∂𝜌�𝑢�𝜌∞𝐶∞𝑢�𝐶∞
∂𝑥�𝜆

+ ∂𝑝�𝜌∞𝐶∞2

∂𝑥�𝜆
= −

∂43𝜂
𝜕𝑢�𝐶∞
𝜕𝑥�𝜆

∂𝑥�𝜆
                        (2.2.8) 

By collect terms the following equation results, 

𝜌∞𝐶∞2

𝜆
(∂𝜌�𝑢�
∂�̃�

+ ∂𝜌�𝑢�2

∂𝑥�
+ ∂𝑝�

∂𝑥�
) = −4

3
𝜂 𝐶∞
𝜆2

∂2𝑢�
∂𝑥�2

                             (2.2.9) 

(∂𝜌�𝑢�
∂�̃�

+ ∂𝜌�𝑢�2

∂𝑥�
+ ∂𝑝�

∂𝑥�
) = −4

3
η

𝜆𝜌∞𝐶∞

∂2𝑢�
∂𝑥�2

                                  (2.2.10) 

The left side of equation (2.2.10) is dimensionless, in order to keep the right side 

dimensionless, the following requirement is enforced. 

η
𝜆𝜌∞𝐶∞

= 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠                                        (2.2.11) 

To get non-dimensional scale for η, η =  𝜂�(𝜆𝜌∞𝐶∞), the momentum equation can 

be non-dimensionalized as follows: 



10 

   

 

  

Momentum 

�∂𝜌�𝑢�
∂�̃�

+ ∂𝜌�𝑢�2

∂𝑥�
+ ∂𝑝�

∂𝑥�
� = −4

3
𝜂� ∂

2𝑢�
∂𝑥�2

=  −∂𝜏�𝑥𝑥
∂x�

= ∂Π�𝑥𝑥
∂x�

                      (2.2.12) 

where the stress tensor is 

Π�𝑥𝑥 =  −τ�𝑥𝑥 

The dimensionless total energy can be written as 

E =  1
2
𝜌𝑢2 + 𝑝

𝛾−1
=   1

2
𝜌�𝜌∞(𝑢�𝐶∞)2 + 𝑝�𝜌∞𝐶∞2

𝛾−1
= 𝜌∞𝐶∞2 �

1
2
𝜌�𝑢�2 + 𝑝�

𝛾−1
� = 𝜌∞𝐶∞2  𝐸�   

(2.2.13) 

where the dimensionless enthalpy is defined as 

H = 𝐸+𝑝
𝜌

= 𝜌∞𝐶∞2  𝐸�+ 𝑝�𝜌∞𝐶∞2

𝜌�𝜌∞
=  𝐶∞2

𝐸�+𝑝�
𝜌�

= 𝐶∞2𝐻�                       (2.2.14) 

From the ideal gas equation of state p =  ρRT, the dimensionless temperature can 

be derived, 

T =  𝑝
𝜌𝑅

=  𝑝�𝜌∞𝐶∞
2

𝜌�𝜌∞𝑅
                                              (2.2.15) 

The various thermodynamic variables can be made non-dimensional, which 

results in 

T = 𝛾𝑝�𝐶∞2

𝛾𝜌�𝑅
=  𝑇� 𝐶∞

2

𝛾𝑅
                                              (2.2.16) 

Further, the heat flux can be non-dimensionalized as 

q =  𝑞𝑥 =  −𝜅 𝜕𝑇
𝜕𝑥

= −𝜅
𝜕𝑇�𝐶∞

2

𝛾𝑅

𝜕𝑥�𝜆
=  −𝜅 𝐶∞2

𝜆𝛾𝑅
𝜕𝑇�

𝜕𝑥�
                          (2.2.17) 

The dimensionless variables E�, H�, ȷ̃, T�, �̃�𝑥𝑥 and q�  with corresponding parameters 

can be substituted into the energy equation to get  
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∂

∂�̃� 𝜆
𝐶∞

𝜌∞𝐶∞2  𝐸� + 𝜕�𝜌�𝑢�𝜌∞𝐶∞𝐶∞2 𝐻��
𝜕𝑥�𝜆

+
∂−𝐶∞

2

𝜆𝛾𝑅𝑞�

∂𝑥�𝜆
=

∂(43𝜂�𝜆𝜌∞𝐶∞
𝜕𝑢�𝐶∞
𝜕𝑥�𝜆 𝑢�𝐶∞)

∂𝑥�𝜆
          (2.2.18) 

which reduces to 

𝜌∞𝐶∞3

𝜆
(∂𝐸

�

∂�̃�
 + 𝜕(�̃�𝐻�)

𝜕𝑥�
) + (−𝜅 𝐶∞2

𝜆2𝛾𝑅
) ∂

2𝑇�

∂𝑥�2
= 4𝜂�𝜌∞𝐶∞3

3𝜆
∂
∂𝑥�

(𝑢� 𝜕𝑢�
𝜕𝑥�

)                (2.2.19) 

Since both sides are multiply by 𝜆
𝜌∞𝐶∞3

 , then the above simplifies to  

∂𝐸�

∂�̃�
 + 𝜕(�̃�𝐻�)

𝜕𝑥�
+ ( −𝜅

𝜌∞𝐶∞𝜆𝛾𝑅
) ∂

2𝑇�

∂𝑥�2
= 4η�

3
∂
∂𝑥�

(𝑢� 𝜕𝑢�
𝜕𝑥�

)                         (2.2.20) 

The right side of this equation is dimensionless, which requires 

−𝜅
𝜌∞𝐶∞𝜆𝛾𝑅

= 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠                                     (2.2.21) 

Assuming the non-dimensional scale for heat conductivity is 

𝜅 =  �̃�𝜌∞𝐶∞𝜆𝛾𝑅.                                             (2.2.22) 

Energy equation reduces to 

∂𝐸�

∂�̃�
 + 𝜕(�̃�𝐻�)

𝜕𝑥�
− �̃� ∂2𝑇�

∂𝑥�2
= −4

3
𝜂�[(𝜕𝑢�

𝜕𝑥�
)2 + 𝑢� 𝜕

2𝑢�
𝜕𝑥�2

] = −∂(τ�𝑥𝑥𝑢�)
∂x�

 =  𝜕(Π�𝑥𝑥𝑢�)
𝜕x�

       (2.2.23) 

where, Π�𝑥𝑥 =  −τ�𝑥𝑥 . 

So finally on arrives at a consistent dimensionless scheme for gas behavior: 

𝑢 ∼ 𝐶∞, 𝑥 ∼ 𝜆, 𝑡 ∼ 𝜆
𝐶∞

, 𝜌 ∼ 𝜌∞, 𝑃 ∼ 𝜌∞𝐶∞2 , 

𝑇 ∼ 𝐶∞2

𝛾𝑅
, 𝜂 ∼ 𝜆𝜌∞𝐶∞, 𝜅 ∼ 𝜌∞𝐶∞𝜆𝛾𝑅. 

2.3 Non-Dimensional NS Equations – General Fluid Scheme 

The non-dimensional scales used in the previous derivation are for gas simulation. 

This is because the ideal gas equation of state is explicit in these assumptions. In order to 

extend the applicability of the non-dimensional scheme to fluids and solids, a set of more 
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general non-dimensional scales needs to be introduced. As upstream density ρ∞, mean-

free path λ and sound speed 𝐶∞ can be also taken from experiments and analytical 

calculation in liquid,  they can be used for this purpose. To get more general the gas 

constant R can be replaced by the specific heat Cv. This eliminates the need for the gas 

specific heat ratio γ.  

Thus the more general non-dimensional scales are as following: 

Fundamental scales 

ρ =  𝜌�𝜌∞, u =  𝑢�𝐶∞, p =  𝑝�𝜌∞𝐶∞2 , x =  𝑥�𝜆, t =  �̃� 𝜆
𝐶∞

, 

where, 𝐶∞ is no longer local sound speed, but bulk sound speed.  

The secondary scales can be expressed as follows: 

 η =  𝜂�(𝜆𝜌∞𝐶∞), T = 𝑇� 𝐶∞
2

𝐶𝑣
, k =  𝑘�(𝐶𝑣𝜆𝜌∞𝐶∞), q =  𝑞�(𝜌∞𝐶∞3 ) 

During the dimensionless process, the main differences between the gas and the 

more general fluid/solid dimensionless process is in terms related to temperature. The 

temperature does not directly appear in the continuity equation and momentum equation. 

However they are loosely coupled through the transport properties. So the dimensionless 

forms of these two equations are the same as equation (2.2.6) and (2.2.12).  

In order to keep the same unit of heat conductivity, a non-dimensional scale of 

heat conductivity is introduced, 𝐶𝑣𝜆𝜌∞𝐶∞ , instead of 𝜌∞𝐶∞𝜆𝛾𝑅. 

Thus the energy equation is  

∂𝐸�

∂�̃�
𝜌∞𝐶∞3

𝜆
+ 𝜕�(𝜌�𝑢�𝐻�)𝜌∞𝐶∞3 �

𝜕𝑥�𝜆
+ ∂𝑞�𝜌∞𝐶∞3

∂𝑥�𝜆
=

∂(43𝜂�𝜆𝜌∞𝐶∞
𝜕𝑢�𝐶∞
𝜕𝑥�𝜆 𝑢�𝐶∞)

∂𝑥�𝜆
                 (2.3.1) 

which simplifies to, 
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∂𝐸�

∂�̃�
+ 𝜕(�̃�𝐻�)

𝜕𝑥�
+ ∂𝑞�

∂𝑥�
= 4

3

∂(𝜂�𝜕𝑢�𝜕𝑥�𝑢�)

∂𝑥�
= 4

3
𝜕(Π�𝑥𝑥𝑢�)

𝜕x�
                               (2.3.2) 

where, Π�𝑥𝑥 =  −τ�𝑥𝑥 . 

2.4 Gas Viscosity Sub-Models 

Viscosity η and heat conductivity κ are functions of temperature. Four models of 

viscosity have been investigated in the work, constant viscosity model, power law model, 

Maxwell model [6] and Chapman-Enskog model [7].  

Power Law Model 

The power law viscous model is derived from simple observation of experimental 

measurements that illustrate that viscosity varies with respect to temperature. 

Experimental data is found to fit a power law form of the following: 

η = 𝜂∞( 𝑇
𝑇∞

)𝜔                                                 (2.4.1) 

where, 𝜂∞ is upstream viscosity, 𝑇∞ is upstream temperature, and 𝜔 is viscosity 

index based on the data in Chapman and Cowling (1970) [6]. 

Equation (2.4.1) can be converted into dimensionless form 

η� = 𝜂�∞( 𝑇�

𝑇�∞
)𝜔                                                  (2.4.2) 

Since the dimensionless upstream boundary condition for temperature is 𝑇�∞ = 1.0, 

the viscosity simples to  

η� = 𝜂�∞(𝑇�)𝜔                                                   (2.4.3) 

Maxwell model 

The Maxwell model is an analytic viscosity model derived from ridged body 

particle behavior and a Boltzman velocity distribution [7]. The result is  
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η = 2
3
�𝑚𝑘𝑇 𝜋⁄
𝜋𝑑2

                                                   (2.4.4) 

where, 𝑚 is molecular mass, 𝑘 is Boltzmann’s constant, 𝑑 is the diameter of gas 

molecule, such as argon, 𝑘𝑇 =   𝑘�𝑇�𝜌∞𝜆3𝐶∞2 , 𝑚 =  𝑚�𝜌∞𝜆3, 𝑑 =  �̃�𝜆. 

Inserting and simplifying yields 

𝜂� = 2
3𝜋𝑑�2

�𝑚�𝑘�𝑇�

𝜋
                                                 (2.4.5) 

Chapman-Enskog Model 

The Chapman-Enskog model is based a semi-theoretical assumption by Chapman 

and Enskog. It’s an extension of the rigid ball/Botzman distribution model of Maxwell 

that includes weak attractive forces. The resulting equation is 

η = 5
16

√𝜋𝑚𝑘𝑇
𝜋𝜎2Ω𝑢

                                                   (2.4.6) 

where, 𝑚 is molecular mass, 𝑘 is Boltzmann’s constant, 𝜎 is the diameter of gas 

molecule, Ω𝑢 is dimensionless collision integrals, which can be derived from the trend 

line as a function of kT/𝜀, which is an empirical parameter. 

Inserting dimensional properties, 𝑚 =  𝑚�𝜌∞𝜆3, 𝜎 =  𝜎�𝜆, and 𝑘𝑇 =   𝑘�𝑇�𝜌∞𝜆3𝐶∞2  

into equation (2.4.6) one arrives at the following simplified result: 

𝜂� = 5
16Ω𝑢𝜎�2

�𝑚�𝑘�𝑇�

𝜋
                                            (2.4.7) 

With regard to the non-dimensional process, these viscosity models are not 

affected by the choice of non-dimensional scales. 
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2.5 Discretization 

A second order, central difference, finite difference method is used to discretize 

the analytic equations presented above. The resulting numerical equations and schemes 

are similar to a Crank–Nicolson method, where parameters with even subscript are face 

grids and node grids are marked by odd subscripts. This effectively stagers the space grid 

and stabilizes the solution integration. 

The following finite difference scheme is used: 

Continuity 

Analytical Form, 

∂𝜌�
∂�̃�

+ ∂𝜌�𝑢�
∂𝑥�

= 0                                                   (2.5.1) 

Finite difference form, 

(∂𝜌�
∂�̃�

)𝑖𝑛 + ∂ȷ̃(𝑖)
∂𝑥�

= 0                                                (2.5.2) 

The subscript i is corresponding to space change and superscript n is for time 

change.  

The discrete form can be written as follows: 

𝜌�𝑛+1(𝑖)−𝜌�𝑛(𝑖)
Δ�̃�

+ �̃�(𝑖+1)−�̃�(𝑖−1)
2Δ𝑥�

= 0                                    (2.5.3) 

The hat (or carrot) is used to denote time change, 

𝜌�𝑛+1(𝑖) =  𝜌�(𝑖)                                                 (2.5.4) 

therefore the forward time density can be expressed as: 

�̂�(𝑖) = 𝑝�(𝑖) − Δ�̃�
2Δ𝑥�

[𝚥̃(𝑖 + 1) − 𝚥̃(𝑖 − 1)]                              (2.5.5) 
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Momentum 

The generalized non-dimensional differential form of the energy equation can be 

written as, 

(∂𝜌�𝑢�
∂�̃�

+ ∂𝜌�𝑢�2

∂𝑥�
+ ∂𝑝�

∂𝑥�
) = −4

3
𝜂� ∂

2𝑢�
∂𝑥�2

                                      (2.5.6) 

The finite difference form is, 

(∂�̃�
∂�̃�

)𝑖𝑛 + ∂�̃�𝑢�
∂𝑥�

+ ∂𝑝�
∂𝑥�

= −∂𝜏�𝑥𝑥
∂x�

= ∂Π�𝑥𝑥
∂x�

                                   (2.5.7) 

where the discrete form can be written as: 

�̃�𝑛+1(𝑖)−�̃�𝑛(𝑖)
Δ�̃�

= Π�𝑥𝑥
𝑛+1(𝑖+1)−Π�𝑥𝑥

𝑛(𝑖−1)
2Δx�

− 𝑝�(𝑖+1)−𝑝�(𝑖−1)
2Δ𝑥�

− �̃�(𝑖+1)−�̃�(𝑖−1)
2Δ𝑥�

         (2.5.8) 

Again, the hat notation denotes time change 

𝚥̃𝑛+1(𝑖) =  𝚥̂(𝑖)                                                (2.5.9) 

Thus the momentum can be expressed as: 

𝚥̂(𝑖) =  𝚥̃(𝑖) +
Δ�̃��Π�𝑥𝑥

𝑛+1(𝑖+1)−Π�𝑥𝑥
𝑛(𝑖−1)−𝑝�(𝑖+1)+𝑝�(𝑖−1)−�̃�(𝑖+1)+�̃�(𝑖−1)�

2Δx�
         (2.5.10) 

where the viscous terms can be written as: 

Π𝑥𝑥 = 4
3
𝜂�(𝑖) 𝜕𝑢�

𝜕𝑥�
=  4

3
𝜂�(𝑖+1)+𝜂�(𝑖−1)

2
𝑢�(i+1)−𝑢�(i−1)

2Δ𝑥�
                        (2.5.11) 

Energy 

The analytical form of the energy equation is: 

∂𝐸�

∂�̃�
 + 𝜕(�̃�𝐻�)

𝜕𝑥�
− �̃� ∂2𝑇�

∂𝑥�2
= −3

4
𝜂�[(𝜕𝑢�

𝜕𝑥�
)2 + 𝑢� 𝜕

2𝑢�
𝜕𝑥�2

] =  𝜕(Π�𝑥𝑥𝑢�)
𝜕x�

                  (2.5.12) 

The finite difference form reduces to: 

(∂𝐸
�

∂�̃�
)𝑖𝑛 = −𝜕(�̃�𝐻�)

𝜕𝑥�
+ �̃� ∂2𝑇�

∂𝑥�2
+ 𝜕�Π

�𝑥𝑥𝑢��
𝜕x�

                                (2.5.13) 

where the discrete form is: 
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𝐸�𝑛+1(𝑖) − 𝐸�𝑛(𝑖)
Δ�̃� =

Π�𝑥𝑥(𝑖 + 1)𝑢�(𝑖 + 1) − Π�𝑥𝑥(𝑖 − 1)𝑢�(𝑖 − 1)
2Δ𝑥�  

 − �̃�(𝑖+1)𝐻�(𝑖+1)−�̃�(𝑖−1)𝐻�(𝑖−1)
2Δ𝑥�

− 𝑞�(𝑖+1)−𝑞�(𝑖−1)
2Δ𝑥�

                (2.5.14) 

𝐸�𝑛+1(𝑖) =  𝐸�(𝑖)                                             (2.5.15) 

Discrete forms for velocity 𝑢�(𝑖) and 𝜌�(𝑖) have been derived from the Navier-

Stokes (NS) equation. Furthermore, pressure �̂�(𝑖) and temperature 𝑇�(𝑖) need to be 

determined. Constitutive equations can be applied to solve for these two variables. 

Because 𝐸�(𝑖) is known by definition, 

E�(i) =  1
2
𝜌�(𝑖) ∙ 𝑢�2(𝑖) + 𝑝�(𝑖)

𝛾−1
                                       (2.5.15) 

then,  �̂�(𝑖) can be written as: 

�̂�(𝑖) =  (𝛾 − 1)[E�(i)−  1
2
𝜌�(𝑖) ∙ 𝑢�2(𝑖)]                             (2.5.16) 

According to the ideal gas equation of state, 

�̂�(𝑖) =  𝜌�(𝑖)𝑅𝑇�(𝑖)                                             (2.5.17) 

Since temperature can be written as: 

T =  𝑇� 𝐶∞
2

𝛾𝑅
                                                    (2.5.18) 

𝑇�(i) can be resolved from equation 2.5.17 and 18, as: 

𝑇�(i) = 𝛾𝑝�(𝑖)
𝜌�(𝑖)

                                                   (2.5.19) 

Heat flux 

The heat flux is defined by Fourier Law as: 

q =  −𝜅 𝜕𝑇
𝜕𝑥

                                                    (2.5.20) 
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Heat conductivity can be written in a function related to viscosity and gas 

parameters, γ, R and Prandtl number Pr, as:                                                                                                  

κ =  𝛾𝑅𝜂
(𝛾−1)𝑃𝑟

                                                   (2.5.21) 

Inserting this into equation 2.5.20, the following expression for the heat flux can 

be written:                                                                                                           

q�(i) =  − 𝛾𝑅𝜂
(𝛾−1)𝑃𝑟

𝜕𝑇(𝑖)
𝜕𝑥

=  − 1
(𝛾−1)𝑃𝑟

𝜂�(𝑖+1)+𝜂�(𝑖−1)
2

𝑇�(𝑖+1)−𝑇�(𝑖−1)
2Δ𝑥�

            (2.5.22) 

Face grids are assigned the average of adjoining node values [4], as: 

Mass flux, 

𝑗(𝑖) =  𝑗(𝑖+1)+𝑗(𝑖−1)
2

                                            (2.5.23) 

Velocity, 

𝑢(𝑖) =  𝑢(𝑖+1)+𝑢(𝑖−1)
2

                                           (2.5.24) 

Pressure, 

𝑝(𝑖) =  𝑝(𝑖+1)+𝑝(𝑖−1)
2

                                            (2.5.25) 

Density, 

𝜌(𝑖) =  𝜌(𝑖+1)+𝜌(𝑖−1)
2

                                           (2.5.26) 

Total Energy, 

𝐸(𝑖) =  𝐸(𝑖+1)+𝐸(𝑖−1)
2

                                            (2.5.27) 

Enthalpy, 

𝐻(𝑖) =  𝐸(𝑖)+𝑃(𝑖)
𝜌(𝑖)

                                               (2.5.28) 

i are odd numbers for faces and even numbers for nodes as following: 
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Figure 2.5.1 Numerical Scheme 

2.6 Boundary Condition (B.C.)  

The left hand side boundary condition can be determined by measurements and 

analytical calculation or fixed under specific conditions that are reasonable. While the 

right hand side boundary conditions are more difficult to determine, They depend on a 

jump relation which include material specific behavior. Two kinds of methods are used to 

determine right hand side B.C. of shock wave in gas medium. One is the normal shock 

equations, which is restricted to ideal gas behavior; the other is Rankine-Hugoniot jump 

condition equations, which is available both for both gas and liquid medium. 

2.6.1 Normal Shock Equations 

The ideal gas specific shock jump equations are as following: 

Pre-shock Mach number is: 

𝑀𝑎1 = 𝑢1
�𝛾𝑅𝑇1

                                                 (2.6.1.1) 

Post-shock Mach number is: 

𝑀𝑎2 =  �
𝑀𝑎12+

2
𝛾−1

2𝑀𝑎1
2𝛾

𝛾−1 −1
                                            (2.6.1.2) 

Pressure ratio is: 
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𝑃2
𝑃1

=  1+𝛾𝑀𝑎1
2

1+𝛾𝑀𝑎22
                                                 (2.6.1.3) 

Temperature ratio is: 

𝑇2
𝑇1

=  
1+(𝛾−1)𝑀𝑎1

2

2

1+
(𝛾−1)𝑀𝑎2

2

2

                                              (2.6.1.4) 

Density ratio is: 

𝜌2
𝜌1

=  𝑃2𝑇1
𝑃1𝑇2

                                                   (2.6.1.5) 

Usually, it is more convenient to present the boundary conditions as ratios across 

shock wave conditions. So, dimensionless parameters are often specified and the right 

hand side B.C. is determined from the ratios. In this thesis state 1 stands for pre-shock 

condition, state 2 stands for post-shock condition. 

2.6.2 Rankine-Hugoniot Equations 

In order to specify boundary conditions for non-ideal gas behavior with the 

context of this numerical model, the following Rankine-Hugoniot Equations are 

incorporated, which are more general than normal shock equations.  

Continuity 

𝜌2𝑈2 =  𝜌1𝑈1                                               (2.6.1.5) 

Momentum 

𝜌2𝑈22 + 𝑃2 =  𝜌1𝑈12 + 𝑃1                                      (2.6.1.6) 

Energy 

𝜌2𝑈2(𝑒2 + 𝑈22

2
+ 𝑃2

𝜌2
) = 𝜌1𝑈1(𝑒1 + 𝑈12

2
+ 𝑃1

𝜌1
)                          (2.6.1.7) 
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2.7 Entropy Calculation Equations 

In order to specify the reliability of the numerical simulation, the values of 

entropy change from theoretical calculation and numerical simulation are compared. 

Theoretical entropy change: 

𝑆2 −  𝑆1 = 𝐶𝑣 ∙ ln �𝑇2
𝑇1
� + 𝑅 ∙ ln (𝜌1

𝜌2
)                             (2.7.1) 

Integrate form of entropy change is used in numerical simulation: 

𝑆2 −  𝑆1 = 1
�̇�

(∫ 𝜏
𝑇
𝑑𝑣
𝑑𝑥
𝑑𝑥 − ∫ 1

𝑇
𝑑𝑞
𝑑𝑥
𝑑𝑥)                            (2.7.2) 

Where, �̇� is mass flow rate, τ is shear force, 𝑞 is heat flux. 

2.8 Theoretical Solution for Gas 

Theoretical solution is set up on one-dimensional compressible flow in a 

stationary shock wave condition and assumes steady flow with constant viscosity, heat 

conductivity and specific heat. Second viscosity is neglected for low density gas. [7] 

Subscript 1 is corresponding to upstream conditions. The dimensionless velocity 

distribution equation 𝜙(𝜉) can be written as: 

1−𝜙
(𝜙−𝛼)𝛼

= exp [𝛽𝑀𝑎1(1 − 𝛼)(𝜉 − 𝜉0)]    (𝛼 < 𝜙 < 1)      (2.8.1) 

where, 𝜙 is dimensionless velocity, 𝜙 =  𝜐𝑥
𝜐1

; 𝜉 is dimensionless coordinate, 𝜉 =  𝑥
𝜆
; 

𝑀𝑎1 is the Mach number at the upstream condition,  

𝑀𝑎1 =  𝜐1
�𝛾𝑅𝑇1 𝑀⁄

;                                             (2.8.2) 

𝛼 and 𝛽 are group terms as follows: 

𝛼 =  𝛾−1
𝛾+1

+ 2
𝛾+1

1
𝑀𝑎12

 ,                                       (2.8.3) 
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𝛽 =  9
8

(𝛾 + 1)�𝜋 8𝛾⁄  .                                      (2.8.4) 

The reference mean free path 𝜆 is defined as: 

𝜆 =  3𝑢1
𝜌1
� 𝜋𝑀
8𝑅𝑇1

                                                (2.8.5) 

2.9 Mie-Grüneisen EOS  

Comparing with section 2.3, this section uses Mie-Grüneisen EOS instead of ideal 

gas EOS to find the relationship between these two kinds of EOS [8-9]. 

Mie-Grüneisen equation of state (M-G EOS) 

𝑃 −  𝑃0 =  𝛾
𝜈

(𝜀 −  𝜀0)                                          (2.9.1) 

where, 𝑃 is the pressure, 𝜀 is the internal energy, 𝑃0 and 𝜀0 are pressure and 

internal energy at zero-kelvin states, they can be calculated out by polynomial equations, 

𝛾 is the Mie-Grüneisen parameter, 𝜈 is the specific volume. 

Zero-kelvin curve can be evaluated using the Hugoniot as a reference curve, 

𝑃𝐻 −  𝑃0 =  𝛾
𝜈

(𝜀𝐻 −  𝜀0)                                       (2.9.2) 

With equation of state of material, 

𝑈𝑠 = 𝑐 + 𝑠𝑈𝑝                                                  (2.9.3) 

 Hugoniot pressure can be expressed,  

𝑃𝐻 =  𝜌0𝑐2𝑥
(1−𝑠𝑥)2

                                                 (2.9.4) 

where,  𝑥 = 1 − 𝑉
𝑉0

= 1 − 𝜌0
𝜌

. 

Corresponding internal energy is  

𝜀𝐻= 
𝑃𝐻𝜈0𝑥
2

                                                    (2.9.5) 
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A good approximation (2.9.6) from experiments is also used during derivation 

process. 

𝛾
𝜈

=  𝛾0
𝜈0

= 𝐶𝑜𝑛𝑡𝑎𝑛𝑡                                         (2.9.6) 

Plug above equations into equation (2.9.2) to get 

𝛾0
𝜈0
𝜀0 + 𝜕𝜀0

𝜕𝜐
+ 𝜌0𝑐2𝑥

(1−𝑠𝑥)2
(1 − 𝛾0

2
𝑥) = 0                          (2.9.7) 

4th order polynomial equation of internal energy𝜀0 is written as: 

𝜀0 = 𝜀00 + 𝜀01𝑥 + 𝜀02𝑥2 + 𝜀03𝑥3 + 𝜀04𝑥4                   (2.9.8) 

4th order polynomial equation of 𝑃0 is: 

𝑃0 = −𝜕𝜀0
𝜕𝜈

=  𝜌0(𝜀01 + 2𝜀02𝑥 + 3𝜀03𝑥2 + 4𝜀04𝑥3)             (2.9.9) 

 𝜀0 and 𝑃0 in equation (2.9.7) can be replaced with equation (2.9.8) and (2.9.9). 

Form any strain value, equation (2.9.7) is established generally. So coefficients 

can be determined. 

𝜀01 = 𝛾0𝜀00,                                                               (2.9.10) 

𝜀02 = 1
2

(𝑐2 + 𝛾02𝜀00),                                                (2.9.11) 

𝜀03 = 1
6

(4𝑠𝑐2 + 𝛾03𝜀00),                                             (2.9.12) 

𝜀04 = 1
24

(18𝑠2𝑐2 − 2𝛾0𝑠𝑐2 + 𝛾04𝜀00),                       (2.9.13) 

Plug these coefficients from equation (2.9.10) to (2.9.13) into equation (2.9.7) and 

neglect 4th order term; M-G EOS is expanded as following, 

𝑃 =  𝜌0𝑐2 �𝑥 + �2𝑠 − 𝛾0
2
� 𝑥2 + 𝑠(3𝑠 − 𝛾0)𝑥3� + 𝛾0𝜀

𝜐0
              (2.9.14) 

Its corresponding dimensionless form is  



24 

   

 

  

𝑃� =  �𝑥 + �2𝑠 − 𝛾0
2
� 𝑥2 + 𝑠(3𝑠 − 𝛾0)𝑥3� + 𝛾0𝜀̃               (2.9.15) 

During shock wave transmitting, corresponding to iteration in numerical 

simulation, density, pressure and internal energy can be solved by NS equations and M-G 

EOS. Temperature is derived from equation (2.9.16) 

𝜀 − 𝜀0 = ∫ 𝐶𝑣𝑑𝑇𝑇
𝑇0

                                        (2.9.16) 

For constant Cv, specific heat at constant volume, temperature T is 

𝑇 = 𝑇0 + 𝜀−𝜀0
𝐶𝑣

                                             (2.9.17) 

Its dimensionless form is: 

𝑇� = 𝑇0� + 𝜀̃ − 𝜀0�                                          (2.9.18) 

Actually, Cv is a function related to temperature, which is discussed in chapter 4 

sensitive analysis. 

2.10 Mie-Grüneisen Parameter – Gas 

2.10.1 General Derivation 

M-G EOS 

𝑃 −  𝑃0 =  𝛾
𝜈

(𝜀 −  𝜀0)                                    (2.10.1.1) 

where, 𝑃0, 𝜀0 and 𝛾
𝜈
 are constant. 

Differential both sides of equation (2.10.1.1) to get 

𝑑𝑃 =  𝛾
𝜈
𝑑𝜀                                             (2.10.1.2) 

Rearrange equation (2.10.1.2), an equation for 𝛾 is derived, 

𝛾 = 𝜈 𝑑𝑃
𝑑𝜀

                                                (2.10.1.3) 
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For gas, relation between pressure and internal energy is 𝜀 =  𝑃
𝜌(𝛾−1)

 , so 𝑑𝑃
𝑑𝜀

=

𝜌(𝛾 − 1), 

where, 𝛾 is specific heat ratio. In order to distinguish M-G parameter 𝛾 with 

specific heat ratio 𝛾. 𝛾ℎ is used to replace specific heat ratio. 

A relation between M-G parameter 𝛾 and specific heat ratio 𝛾ℎ is derived. 

𝛾 = 𝛾ℎ − 1                                            (2.10.1.4) 

2.10.2 Reference State 

As known from equation (2.9.8) and (2.9.9), for reference state, x = 0, 

𝜀0 = 𝜀00                                                (2.10.2.1) 

𝑃0 =  𝜌0𝜀01                                             (2.10.2.2) 

Solving these two equations above with 𝜀01 = 𝛾0𝜀00 to get 

𝜀0 = 𝑃0
𝜌0𝛾0

                                               (2.10.2.3) 

Compare with ideal gas internal energy equation 𝜀0 = 𝑃0
𝜌0(𝛾−1)

, 𝛾0 can be 

determined.  

𝛾0 = (𝛾 − 1)                                            (2.10.2.4) 

From above derivation, M-G 𝛾 is constant for gas. The physical meaning of M-G 

𝛾 is the resistance of compression at certain temperature, which means the resistance of 

compression for low density gas is not sensitive to temperature change. 
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2.10.3 Eulerian and Lagrangian Referential  

In reality, gas can transmit in wind tunnel in several Mach number, while shock-

wave transmits though liquid phase materials and experiments are usually conducted in 

Lagrangian referential. This model set meshes fixed in space, in order to extend the 

availability of this model. Lagrangian referential is to be transferred to Eulerian 

referential. The relationship between particle velocity and shock wave velocity are as 

following: 

𝑈1 =  𝑈𝑠 −  𝑈𝑝1                                             (2.10.3.1) 

𝑈2 =  𝑈𝑠 −  𝑈𝑝2                                             (2.10.3.2) 

where,  

𝑈1 and 𝑈2 are material pre-shock and post-shock velocities in  Lagrangian 

referential, 

𝑈𝑠 is shock wave velocity, 𝑈𝑠 = 𝑠𝑈𝑝2 + 𝑐, 

𝑈𝑝1 is pre-shock particle velocity. 𝑈𝑝1 = 0, for stationary materials, 

𝑈𝑝2 is post-shock particle velocity.  

This model mainly simulates first shock caused by impact. For stationary 

materials, there is only one particle velocity 𝑈𝑝1 = 0, 𝑈𝑝2 =  𝑈𝑝. Equation (2.10.3.1) and 

equation (2.10.3.2) are simplified, 

𝑈1 =  𝑈𝑠                                              (2.10.3.3) 

𝑈2 =  𝑈𝑠 −  𝑈𝑝                                        (2.10.3.4) 

Solving above linear equation system to get 
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𝑈𝑝 = 𝑈1 − 𝑈2                                         (2.10.3.5) 

2.10.4 Extended Equation of State of Material (Us-Up curve) 

Equation of state of material is usually used for liquid and solid. There is no 

accurate reference for gas, while coefficients of S and C for gas can be solved by 

analytical way. From chapter 2.6, boundary conditions of shock wave are determined. 

There are two more equations, M-G EOS and Us-Up curve, as following 

𝑃 =  𝜌0𝑐2 �𝑥 + �2𝑠 − 𝛾0
2
� 𝑥2 + 𝑠(3𝑠 − 𝛾0)𝑥3� + 𝛾0𝜀

𝜐0
         (2.10.4.1) 

𝑈𝑠 = 𝑠𝑈𝑝 + 𝐶                                        (2.10.4.2) 

where, Pressure 𝑃, density 𝜌0, internal energy 𝜀, M-G gamma 𝛾0, stain 𝑥, shock 

velocity 𝑈𝑠 and particle velocity 𝑈𝑝 are known. There are two equations and two 

unknown. So Hugoniot slope S and bulk sound speed C can be solved from this equation 

system. 

Table 2.10.4.1 S and C values of Air under different Mach number 
Ma 1.1 1.4 1.7 2.0 2.3 2.6 2.9 
S 3.148 0.969 0.649 0.517 0.443 0.395 0.360 
C 208.013 293.862 381.402 470.106 559.651 649.824 740.481 

Us-Up curves under different Mach numbers are shown in Figure 2.10.4.1. 

Intersections between every two curves are the conditions, which are both workable for 

Rankine-Hugoniot jump condition equation and equation of state of material. Figure 3.4.1 

shows that Us-Up relation of air is not linearly, which means that Hugoniot slope S and 

bulk sound speed C of air vary according to Mach number.   
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Figure 2.10.4.1: Red curve is the converted Us-Up relation of air based on upstream and 

downstream Mach numbers. The others are linear Us-Up relation. Intersections are 
conditions that are both available for Rankine-Hugoniot equations and Us-Up relation.
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Chapter 3  

Gas Simulation Results 

3.1 Gas Dimensionless Scales Based Simulation 

3.1.1 B.C. & Parameters Evaluation 

In this section the left hand side boundary conditions (B.C.) are defined as follows: 

𝑢 = 𝑀𝑎, 𝑃 = 1
𝛾
 ,   𝑇 = 1.0, 𝜌 = 1.0, 𝑒 = 𝑃

𝛾−1
 

where, Ma is Mach number, 𝛾 is specific heat ratio, e is internal energy per unit 

mass. 

The right hand side B.C. can either be determined based on the downstream Mach 

number supplemented with normal shock equations or which is a subset of the more 

generalized Rankine-Hugoniot jump equations. 

Parameters evaluations for argon and air are presented in Tables 3.1.1.1 and 

3.1.1.2. 

Table 3.1.1.1 Parameters Evaluation, Argon 
Mach# 𝛾 𝜔 𝑃𝑟 ℎ𝑥 𝑁𝑜𝑑𝑒𝑠 

1.55  
 

5/3 

 
 

0.81 

 
 

2/3 

1/8 4800 
3.38 1/8 4800 
3.38 1/16 9600 
9.00 1/16 9600 
9.00 1/32 19200 

Table 3.1.1.2 Parameters Evaluation, Air 
Mach# 𝛾 𝜔 𝑃𝑟 ℎ𝑥 𝑁𝑜𝑑𝑒𝑠 

1.6 1.4 0.77 0.715 1/16 9600 
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The dimensionless B.C.s for Argon are presented in Tables 3.1.1.3 through 

3.1.1.4. 

Table 3.1.1.3 Dimensionless B.C. of Argon, Ma = 1.55 
 𝑢 𝜌 𝑃 𝑇 𝑒 

LHS 1.550 1.000 0.600 1.000 0.900 
RHS 0.871 1.779 1.652 1.548 2.478 
Ratio 0.562 1.779 2.753 1.548 2.753 

Table 3.1.1.4 Dimensionless B.C. of Argon, Ma = 3.38 
 𝑢 𝜌 𝑃 𝑇 𝑒 

LHS 3.380 1.000 0.600 1.000 0.900 
RHS 1.067 3.168 8.418 4.429 12.627 
Ratio 0.316 3.168 14.031 4.429 14.031 

Table 3.1.1.5 Dimensionless B.C. of Argon, Ma = 9.0 
 𝑢 𝜌 𝑃 𝑇 𝑒 

LHS 9.000 1.000 0.600 1.000 0.900 
RHS 2.333 3.857 60.600 26.185 90.900 
Ratio 0.259 3.857 100.999 26.185 100.999 

3.1.2 Validation Check 

In order to validate the model, Figures 3.1.2.1 presents the shock wave profile of 

the numerical simulation compared both the theoretical solution [7] and experimental 

values [10]. The numeric and analytic solutions are nearly identical; the RMS error is 

0.2e-4. This is an indication that the numeric scheme is functioning well. However, 

neither the analytic nor numeric solutions agree well with the experimental data. As can 

be seen in the figure, the experimentally measured thickness of the shock is wider and the 

gradients within the shock are smaller as compared to the analytic and numeric solutions. 

The reasons for this difference in shock thickness can be attributed to the formulation of 
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the analytic solution. Namely the viscous and diffusive transport properties are assumed 

constant in the analytic solution. However in reality, temperature variations in the shock 

front cause significant deviations in the transport properties resulting in a smearing or 

thickening of the wave. From the experimental result, the thickness of shock front is 

around 10 times of gas mean free path. 

 
Figure 3.1.2.1: Argon shock profile for Mach number 1.55. Nodes = 4800, hx = 1/8. 

Analytic and numeric solutions assume constant viscosity. 

Figure 3.1.2.2 presents the effect of node numbers on shock wave profile. In order 

to set boundary in infinity, 300 times mean free path domain is selected experientially 

firstly. Even though node number doubles, which means the total domain doubles, the 

gradient and thickness of shock front does not change. Two kinds of marker are identical 



32 

   

 

  

in values. Thus 300 times mean free path is enough to be recognized as infinity and larger 

domain does not affect the shock profile.  

 
Figure 3.1.2.2 Argon shock wave profile for Mach number 1.55, hx = 1/8. Shock wave 

profiles of node number 4800 and 9600 are identical. 

Figure 3.1.2.3 presents the effect of grid spacing, hx, on shock wave profile. In 

order to keep the accuracy of the simulation, adequate nodes, i.e. resolution, in shock 

front are need. The value of the parameter hx, distance between two nodes, corresponds 

to the number of nodes is related to resolving local gradient. The figure presents the 

shock profile with two different values of hx, both results in a change in the domain. 

However, the gradient and thickness of shock front do not change. Thus the domain is 
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converged for values of hx of 1/8th or smaller, which is to say the solution is invariant to 

grid resolution for hx<1/8. 

 
Figure 3.1.2.3 Argon shock wave profile for Mach number 1.55, Node = 9600.  

Shock wave profiles of hx =1/8 and 1/16 are identical. 

Another important aspect of these solutions is the location of the far stream 

boundary condition relative to the location of the shock thickness. In the above analysis, 

the far field boundary conditions, which are applied at infinity, are place 30 times the 

shock. In the same condition except node number and hx value, this numerical model is 

not sensitive to these two parameters. Ultimately a value of 300 times of gas mean free 

was used as the total domain size. 
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Additionally, parameter ht, time step, can affect the stability of the numerical 

models. According to the Courant stability criteria [11], the requirement for ht is that the 

distance local disturbances would travel per time step must be no more than the distance 

between two nodes. Usually, a Courant-Friedrichs-Lewy (CFL) number ranges from 0.1 

to 0.5 [12] is used in order to keep gets accurate and stable simulation. 

3.1.3 Argon Simulation Analysis – Gas Dimensionless Scale 

Figure 3.1.3.1 presents the total entropy change across the shock as a function of 

iteration number. In addition the theoretical entropy change, equation 2.7.1, across a 

shock is presented for comparison. The numerically determined entropy converges to the 

theoretical entropy with iteration, and is nearly identical to the theoretical results from 6.0 

in logarithm axis (1 million iterations). Thus one million iterations are enough to get 

converge the entropy difference. In the following simulations with Mach number of 1.55, 

iterations are set to 1 million. 
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Figure 3.1.3.1: Argon, Mach number 1.55, Nodes = 4800, hx = 1/8. Entropy changes 

converge and are identical to theoretical profile within iteration increasing. 

Figure 3.1.3.2 presents the change in the sum of entropy generation as a function 

of iteration number for the four viscosity sub-models. Thus as the simulation proceeds 

and the solution converges, the total increase in entropy asymptotically approaches a 

steady value very close to the theoretical value. 
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Figure 3.1.3.2: Argon, Mach number 1.55, Nodes = 4800, hx = 1/8.  4 types of viscosity 

models are built. Entropy changes of these sub-models converge in 1M iteration and 
approach to theoretical value. 

Figure 3.1.3.3 presents the shock profiles using several different viscosity models 

alongside the analytic solution and experimental data for a Mach number 1.55 in argon. 

The simulations were evolved over 1 million iterations. Shock wave thickness ranges 

between 10 to 20 times of mean free path of argon. These four sub-models profiles are set 

in the area between experimental result and analytical result. The power law model is the 

closest to experimental profile, which consequently has the largest entropy change, as 

would be expected. 
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Figure 3.1.3.3: Argon, Mach number 1.55, Nodes = 4800, hx = 1/8, Domain 300. Shock 

profiles of 4 different types of viscosity models compare with experimental and  
analytical solutions in domain 20. 

With an increase in Mach number, the shock thickness decreases, thus the number 

of nodes and the node spacing, hx, are adjusted in order to better resolve the shock profile. 

Each adjustment related to the number of nodes and node spoacing, hx, is companied 

with a sensitivity analysis. The relationship between hx, nodes number and total domain 

size is  

Domain = Nodes×hx
2

                                         (3.1.3.1) 
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Figure 3.1.3.4: Entropy Change Error within 30M Iteration. Nodes = 4800, hx = 1/8.  

The figure shows that it takes less than 0.1M iteration for convergence of entropy 

change. Theoretical entropy change value is 224.6224 J/Kg/K, Numerical result converge 

at 220.7 J/Kg/K. There is a 4 J/Kg/K entropy difference compared with theoretical value. 
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Figure 3.1.3.5: Entropy Change Error within 30M Iteration. Nodes = 9600, hx = 1/16. 

 The convergence of entropy change takes around 0.1M iteration. But the 

difference between theoretical and numerical results is much smaller under the same y-

axis gradation, compared with Figure 3.1.3.4.  

1M Iteration. Nodes = 9600, hx= 1/16. Theoretical entropy change value is 

224.6224 J/Kg/K, Numerical result converge at 223.5 J/Kg/K, which is much better than 

the value from Nodes 4800, hx = 1/8. In sum, more nodes and smaller grids distance 

make larger variation of entropy change and longer iteration for convergence, while more 

accurate value of entropy changes. 

According the sensitive analysis of nodes scales, the number of nodes is set to 

9600 and the grid spacing, hx, is set to 1/16 of the mean free path of argon in the 

following viscosity sub-model simulations. 
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Figure 3.1.3.6: Entropy Change Trends of Different Viscosity Models, Nodes 9600,  

hx = 1/16. Entropy changes of these sub-models converge in 1M iteration and  
approach to theoretical value. 

 
Figure 3.1.3.7: Comparison of Different Viscosity Sub-Models Profiles. 
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According to the above figure, under Mach number 3.38, shock wave thickness 

ranges between 10 to 20 times of mean free path of argon. These four sub-models profiles 

are also set in the area between experimental result and analytical result. Power law 

model is closest to experimental profile, while with largest entropy change. 

 
Figure 3.1.3.8: Comparison of Analytical and Numerical Results at Constant Viscosity at 
Mach number 9. This figure shows that when using constant viscosity sub-model, shock 

wave profile matches analytical simulation, even under large march number. 
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Figure 3.1.3.9: Entropy Change Error at Constant Viscosity. Node = 9600, hx = 1/16. 

The figure also shows that errors of entropy change converge within iteration 

increasing and entropy changes get stable over 30M iterations. According to figure, 

theoretical value is around 738.4 J/Kg/K, numerical values converge at 739 J/Kg/K.  
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Figure 3.1.3.10: RMS Error of Entropy Changes at Constant Viscosity, Mach number 9. 

The figure shows that RMS Errors get stable over 30M iterations and around 0.5. 

Difference between top and bottom is around 1 J/Kg/K. In order to keep the accuracy of 

simulation, the total number of nodes was increased to 19,200 for the Mach number 9.0 

simulation in order to insure the shock slope was well resolved. 
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Figure 3.1.3.11: Entropy Change Error within 30M Iteration. Nodes = 19200, hx = 1/32. 

 According to figure, theoretical value is around 738.4 J/Kg/K, numerical values 

converge at 740.8 J/Kg/K for constant viscosity. Compared with Figure 2.7.1.2.12, 

convergence process under this scale is much faster, which is much shorter than 30M 

iteration to get stable state, while with larger entropy variation, which is around 200 

J/Kg/K. 
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Figure 3.1.3.12: Entropy Change Trends of Different Viscosity Models, Nodes=19200, 

hx = 1/32. Entropy changes of these sub-models converge in 1 million iteration and 
approach to theoretical value. 

 
Figure 3.1.3.13: Comparison of Different Viscosity Sub-Models Profiles, Ma = 9.0, 

Nodes = 19200, hx = 1/32. Domain = 10λ. 
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According to the above figure, under Mach number 9.0, shock wave thickness 

ranges between 10 to 20 times of mean free path of argon. These four sub-models profiles 

are also set in the area between experimental profile and analytical profile. Power law 

model is closest to experimental profile, while with largest entropy change. 

Table 3.1.1.1 Value of Entropy Change, Argon, Specific Gas Dimensionless Scale 
Mach Number 1.55 3.38 9.0 
Nodes Number 4800 9200 19200 

hx 1/8 1/16 1/32 
 Entropy Change (J/Kg/K) 

Theoretical Solution 16.51354 224.62240 738.47375 
Constant Viscosity 16.46207 223.53973 740.88910 
Power Law Model 16.50063 224.52104 738.56009 

Maxwell Model 16.46703 224.30592 740.19109 
Chapman-Enskog Model 16.47625 224.48048 739.18252 

 

3.2 General Dimensionless Scales Based Simulation 

3.2.1 Argon Simulation Analysis – General Dimensionless Scales 

In order to keep the same B.C. as chapter 2.7.1 for argon, 

Left hand side B.C. 

𝑢 = 𝑀𝑎, 𝑃 = 1
γ
 ,   𝑇 = 1

γ(γ−1)
, 𝜌 = 1.0, 𝑒 = 𝑇 

Right hand side boundary condition is also can be determined Rankine-Hugoniot 

jump equations. 
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Figure 3.2.1.1: Entropy Change Trends of Different Viscosity Models, Nodes 4800,  
hx = 1/8, Ma = 1.55. Entropy changes of these sub-models converge in 1M iteration  
and approach to theoretical value 16.4917 J/Kg/K. Each sub-model’s stable entropy 

change value is shown in Table 3.2.1.1 

 
Figure 3.2.1.2 Comparison of Different Dimensionless Scales, Ma = 1.55, Domain = 20 λ. 
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Figure 3.2.1.3: Comparison of Different Dimensionless Scales. Ma = 1.55, Domain = 10λ. 

According to the above figure, under Mach number 1.55, the thicknesses of two 

shock wave profiles are larger than10 times of mean free path of argon. These four sub-

models profiles are all set in the area between experimental profile and analytical profile, 

even thought, profiles under the same B.C. are mismatch. This condition is caused by two 

types of dimensionless scales. Power law model is closest to experimental profile, while 

with largest entropy change. 
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Figure 3.2.1.4: Entropy Change Trends of Different Viscosity Models, Nodes = 9600, hx 

= 1/16, Ma=3.38. Entropy changes of these sub-models converge in 1M iteration and 
approach to theoretical value 16.4917 J/Kg/K. Each sub-model’s stable entropy change 

value is shown in Table 3.2.1.1. 

 
Figure 3.2.1.5: Comparison of Different Dimensionless Scales. Ma = 3.38. 
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Comparing with profiles of Mach number 1.55, all the thicknesses of shock wave 

profiles are smaller than10 times of mean free path of argon. These four sub-models 

profiles are all set in the area between experimental profile and analytical profile, Power 

law model is closest to experimental profile, while with largest entropy change. 

 
Figure 3.2.1.6: Entropy Change Trends of Different Viscosity Models, Nodes = 19200, 
hx = 1/32, Ma = 9.0. Entropy changes of these sub-models converge in 1M iteration and 
approach to theoretical value 16.4917 J/Kg/K. Each sub-model’s stable entropy change 

value is shown in Table 3.2.1.1 
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Figure 3.2.1.7: Comparison of Different Dimensionless Scales. Ma = 9.0. Comparing 

with profiles of Mach number 1.55 and 3.38, profiles under the same B.C trend to  
match each other. 

Table 3.2.1.1 Value of Entropy Change, Argon, General Dimensionless Scale 
Mach Number 1.55 3.38 9.0 
Nodes Number 4800 9200 19200 

hx 1/8 1/16 1/32 
 Entropy Change (J/Kg/K) 

Theoretical Solution 16.49170 224.54799 738.31049 
Constant Viscosity 16.46207 223.53973 740.88910 
Power Law Model 16.49263 224.51563 738.65994 

Maxwell Model 16.46400 224.27904 740.40087 
Chapman-Enskog Model 16.47370 224.47266 739.28363 
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3.2.2 Air Simulation Analysis – Ideal Gas EOS 

Parameters evaluation of air are shown as Table 3.2.2.1 

Table 3.2.2.1 Parameters Evaluation, Air, Nodes = 4800, hx = 1/8. 
Mach# 𝛾0 𝜔 𝑃𝑟 𝑠 𝐶0 
1.4 0.4 0.77 0.715 0.968793 293.8619 

Dimensional left hand side B.C. for air simulation is shown in Table 3.2.2.2. 

Table 3.2.2.2 Parameters Evaluation, Air, Nodes = 4800, hx = 1/8. 
Mach# 𝜌1(Kg/m3) P1(Pa) T1(K) 𝑢1(m/s) 

1.4 1.205 103.320 300.0 486.064193 

 
Figure 3.2.2.1: Entropy Change Trends of Different Viscosity Models, Air, Ma = 1.4, 

Nodes 4800, hx = 1/8.  
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Entropy changes of these sub-models converge in 1M iteration and approach to 

theoretical value 12.25622 J/Kg/K. Each sub-model’s stable entropy change value is 

shown in Table 3.2.2.3. 

 
Figure 3.2.2.2: Entropy Change Trends of Different Viscosity Models, Air, Ma = 1.4, 

Nodes 4800, hx = 1/8. Entropy changes of these sub-models converge in 1M iteration and 
approach to theoretical value 12.25622 J/Kg/K. Each sub-model’s stable entropy change 

value is shown in Table 3.2.2.3. 
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Figure 3.2.2.3: Comparison of Different Dimensionless Scales. Ma = 1.4, Nodes = 4800, 

hx = 1/8, Domain 20 λ. 

 
Figure 3.2.2.4: Comparison of Different Dimensionless Scales. Ma = 1.4, Nodes = 4800, 

hx = 1/8, Domain 10λ. 
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Comparing with profiles of argon, these four sub-models profiles have similar 

trends. Shock wave thicknesses of Power Law profile are 20 times of mean free path of 

air. Power law model has largest entropy change. 

Table 3.2.2.3 Value of Entropy Change, Air, Ideal Gas EOS 
Mach Number 1.4 
Nodes Number 4800 

hx 1/8 
 

Viscosity Sub-Models 
Entropy Change (J/Kg/K) 

Gas Dimensionless 
Scales 

General Dimensionless 
Scales 

Theoretical Solution 12.25622 12.25622 
Constant Viscosity 12.24533 12.24533 
Power Law Model 12.30687 12.49248 

Maxwell Model 12.23883 12.27202 
Chapman-Enskog Model 12.27070 12.36467 

 

3.3 Mie-Grüneisen EOS Model - Argon 

In order to research the availability of M-G EOS on gas medium, parameter s and 

C0 need to be determined as chapter 2 mentioned. Mach number 1.55 is set to keep same 

B.C. in ideal gas EOS simulation. 

Table 3.3.1 Parameters Evaluation, Argon, Nodes = 4800, hx = 1/8. 
Mach# 𝑠 𝐶0 (m/s) 

1.55 1.00095565 207.664409 
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Figure 3.3.1: Entropy Change Trends of Different Viscosity Models, M-G EOS, Argon, 

Ma = 1.55, Nodes 4800, hx = 1/8.  

Entropy changes of these sub-models converge in 1M iteration and approach to 

value 14.33 J/Kg/K, which is off the theoretical value of entropy change 16.49 J/Kg/K 

from ideal gas EOS. 
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Figure 3.3.2: Comparison of Different Dimensionless Scales, M-G EOS, Argon,  

Ma = 1.55, Nodes = 4800, hx = 1/8, Domain 20 λ, λ is the mean free path of argon. 

 
Figure 3.3.3: Comparison of Different Dimensionless Scales, M-G EOS, Argon,  

Ma = 1.55, Nodes = 4800, hx = 1/8, Domain 10λ. 
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The shock wave density profiles are similar to those from ideal gas EOS, Power 

Law model is the closet one to experimental result, then Chapman-Enskog model. 

Maxwell model almost overlaps with constant viscosity model. The difference is that all 

the viscosity sub-models in M-G EOS are more approaching experimental result. 

Especially; Power Law model result is closer to experimental result. Shock wave 

thicknesses range from 10 to 15 times of mean free path.  

 
Figure 3.3.4: Heat Flux and Stress relationship, Constant Viscosity, Argon, Ma = 1.55, 

Nodes = 4800, hx = 1/8. M-G EOS result has smaller absolute value in  
both heat flux and stress. 
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Figure 3.3.5: Heat Flux and Stress relationship, Power Law model, Argon, Ma = 1.55, 

Nodes = 4800, hx = 1/8. 

 
Figure 3.3.6: Heat Flux and Stress relationship, Maxwell model, Argon, Ma = 1.55, 

Nodes = 4800, hx = 1/8. 
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Figure 3.3.7: Heat Flux and Stress relationship, Chapman-Enskog model, Argon,  

Ma = 1.55, Nodes = 4800, hx = 1/8. 

Table 3.2.2.3 Value of Entropy Change, Argon, General Dimensionless Scales 
Mach Number 1.55 
Nodes Number 4800 

hx 1/8 
Viscosity 

Sub-Models 
Entropy Change (J/Kg/K) 

Ideal Gas EOS M-G EOS 
Theoretical Solution 16.49170 16.49170 
Constant Viscosity 16.46207 14.33946 
Power Law Model 16.49263 14.43678 

Maxwell Model 16.46400 14.34159 
Chapman-Enskog Model 16.47370 14.36217 
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3.4 Summary 

In chapter 3, two types of dimensionless scales are used and compared in argon 

and air simulation. Four types of viscosity modes are used to simulated shock profiles in 

argon and air for different Mach numbers. Entropy change errors of these sub-models are 

smaller than ten thousandth. The Power Law model profile is closest to the experimental 

result, followed with Chapman-Enskog and Maxwell model. The power law is derived 

from a fit to experimental data whereas Maxwell model and Chapman-Enskog model are 

hard sphere and soft sphere theoretical models respectively. Shock wave thickness 

becomes thinner when Mach number increases and as a result more difficult to resolve. 

M-G EOS and Ideal Gas EOS are derived based on different assumption and 

physical principles from statistic mechanics. M-G EOS mainly focus on the internal 

energy contributed from vibration energy of oscillators, while for gas, most of the 

internal energy are contributed by translational kinetic energy not rotation or vibration 

energy. That’s one main explanation for the differences in entropy change across the 

shock for the different equations of state.  
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Chapter 4 

Mie-Grüneisen EOS Model - Water 

4.1 Experimental Geometry 

Measurement of shock wave pressure is conducted by University of Cambridge 

[13]. Figure 4.1.1 is the geometry of experiment. 

 
Figure 4.1.1: Experiment schematic of shock wave pressure in water. 
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Copper flyer hitting the O-ring causes shock wave transmitting in water, which is 

detected by rear gauge.The initial temperature for stationary water is 18 ± 2C. The 

copper flyer is traveling at 295 m/s towards O-ring. The thickness of gauge is neglected. 

4.2 Determination of Shock Wave Velocity 

An impedance matching technique in pressure-particle velocity, P-Up, space is 

used to determine shock velocity in water. [8] 

𝑃𝑤𝑎𝑡𝑒𝑟 =  𝜌𝑤𝑎𝑡𝑒𝑟𝐶𝑤𝑎𝑡𝑒𝑟𝑈𝑝 + 𝜌𝑤𝑎𝑡𝑒𝑟𝑆𝑤𝑎𝑡𝑒𝑟𝑈𝑝2                         (4.2.1) 

𝑃𝑐𝑜𝑝𝑝𝑒𝑟 =  𝜌𝑐𝑜𝑝𝑝𝑒𝑟𝐶𝑐𝑜𝑝𝑝𝑒𝑟(𝑈𝑓𝑙𝑦𝑒𝑟 − 𝑈𝑝) + 𝜌𝑐𝑜𝑝𝑝𝑒𝑟𝑆𝑐𝑜𝑝𝑝𝑒𝑟(𝑈𝑓𝑙𝑦𝑒𝑟 − 𝑈𝑝)2    (4.2.2) 

Solving equation (4.2.1) and equation (4.2.2), Up and Us can be derived. Table 

4.2.1 and Figure4.2.1 are results of impedance match. 

Table 4.2.1 Parameters and results of impedance match 
Material Flyer velocity(m/s) Temperature(k) S C(m/s) 𝜌(kg/m3) Up(m/s) 
Copper 295 293.15 1.49 3940 8930 277.8668 
Water  1.92 1650 1000 
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Figure 4.2.1: Impedance match of Us-Up lines.  

The intersection is the final condition after impact. Up is the particle velocity of 

water, which can be used to calculate shock wave velocity in water. According to chapter 

2, pre-shock and post-shock flow velocities, U1 and U2, can be converted from known 

Us and Up values. 

4.3 Mie-Grüneisen Parameter 

As chapter 2 mentioned, boundary conditions of shock wave in water also can be 

determined by Rankine-Hugoniot jump condition equations. The Mie-Grüneisen EOS is a 

function incorporating pressure, internal energy, Hugoniot slope, bulk sound speed, 

strains and Mie-Grüneisen gamma. As all the parameters except M-G gamma are 

determined though the above impedance matching process, M-G gamma can be derived 
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based on the assumption that shock wave boundary conditions are both available in 

Rankine-Hugoniot jump condition equations and M-G EOS as shown in Figure 4.3.1. 

  
Figure 4.3.1: Dimensionless impedance match to derive M-G gamma. X axis is the 
specific volume; Y axis is the pressure. Blue is M-G EOS; Green is Rayleigh line;  

Red is post-shock pressure and yellow is pre-shock pressure. 

4.4 Relation of Bulk Viscosity and Dilatational Viscosity 

 During the research of shock wave in water, in order to get better understanding 

and make use of literature data accurately, one of the difficulties is that notations in 

literatures can be different. For liquid, stress is not only related to first viscosity but also 

related to second viscosity. First viscosity is the dynamic viscosity. Second viscosity has 

at least two kinds of notations, bulk viscosity or dilatational viscosity. Bulk viscosity is 

used in Compressible-Fluid Dynamics, Philip.A.T, expressed in viscous stress equation 
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∑𝑖𝑘 = 2𝜇 �𝐷𝑖𝑘 −
1
3
𝛿𝑖𝑘𝐷𝑚𝑚� + 𝜇𝜈𝛿𝑖𝑘𝐷𝑚𝑚,                    (4.4.1) 

Where,𝜇 is the first viscosity, 

𝐷𝑖𝑘 =  1
2

(
𝜕𝜐𝑗
𝜕𝑥𝑖

+ 𝜕𝜐𝑖
𝜕𝑥𝑗

),                                        (4.4.2) 

𝐷𝑚𝑚 = (𝜕𝜐𝑥
𝜕𝑥

+ 𝜕𝜐𝑦
𝜕𝑦

+ 𝜕𝜐𝑧
𝜕𝑧

),                                 (4.4.3)  

Replace 𝐷𝑖𝑘 and 𝐷𝑚𝑚 in equation (4.4.1) and rearrange it, get 

∑𝑖𝑘 = 𝜇 �
𝜕𝜐𝑗
𝜕𝑥𝑖

+ 𝜕𝜐𝑖
𝜕𝑥𝑗
� − (2

3
𝜇 − 𝜇𝜈)(𝜕𝜐𝑥

𝜕𝑥
+ 𝜕𝜐𝑦

𝜕𝑦
+ 𝜕𝜐𝑧

𝜕𝑧
)𝛿𝑖𝑘             (4.4.4) 

Equation (4.4.4) is just opposite to the equation in Transport Phonomena, 2nd 

Edition, R.B.Bird. 

𝜏𝑖𝑘 = −𝜇 �
𝜕𝜐𝑗
𝜕𝑥𝑖

+ 𝜕𝜐𝑖
𝜕𝑥𝑗
� + (2

3
𝜇 − 𝜇𝜈)(𝜕𝜐𝑥

𝜕𝑥
+ 𝜕𝜐𝑦

𝜕𝑦
+ 𝜕𝜐𝑧

𝜕𝑧
)𝛿𝑖𝑘            (4.4.5) 

So, for one dimensional shock wave, simplified stress is 

 Π𝑥𝑥 =  ∑𝑥𝑥 =  −𝜏𝑥𝑥                                      (4.4.6) 

As a result, bulk viscosity is the same as dilatational viscosity in same coordinate. 

𝜅 = 𝜇𝜈                                                  (4.4.7) 

Second viscosity reference value is from Compressible-Fluid Dynamics, 

Philip.A.T, Table 1.1. 

4.5 Numerical Simulation 

Left hand side dimensional B.C. 

𝑢 = 𝑀𝑎, 𝑃 = 1 𝑎𝑡𝑚 ,   𝑇 = 300𝑘, 𝜌 = 1000𝑘𝑔/𝑚3, 𝑒 = 𝑃
𝛾0

 

where, 𝛾0 is M-G gamma, e is internal energy per unit mass. 
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Right hand side B.C. is determined by impact impedance match and Rankine-

Hugoniot jump equations.  

Parameters evaluations for water are presented in Table 4.5.1 and Dimensionless 

B.C.s of water are shown in Table 4.5.2. 

Table 4.5.1 Parameters Evaluation, Water 
Mach# Up S C0 𝛾0 𝑢𝑣 ℎ𝑥 𝑁𝑜𝑑𝑒𝑠 
1.323 277.867 1.920 1650 4.984 3.100 1/8 4800 

Table 4.5.2 Dimensionless B.C. of Water, Ma = 1.32 
 𝑢 𝜌 𝑃 𝑇 𝑖𝑒 
LHS 1.323 1.000 3.722e-5 0.455 7.467e-6 
RHS 1.155 1.146 0.223 0.469 0.780 
Ratio 0.872 1.146 5988.894 1.031 104459.622 

4.6 Sensitivity Analysis 

Datas from NIST [15] are incorporated in numerical code to conduct sensitivity 

analysis of shock wave thickness.  

4.6.1 Specific Heat at Constant Volume (Cv) 
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Figure 4.6.1: Specific Heat Effect on Shock Wave Thickness. This figure shows that 

varying specific heat contributes the same shockwave profile as constant specific heat. 
Conclusion is that shock wave thickness is not obviously sensitive to the specific heat. 

4.6.2 Heat Conductivity (k) 

 
Figure 4.6.2: Heat Conductivity Effect on Shock Wave Thickness. 
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This figure shows that varying Heat Conductivity contributes the same shockwave 

profile as constant heat conductivity. Conclusion is that shock wave thickness is not 

obviously sensitive to the heat conductivity. 

4.6.3 Viscosity (𝛍) 

 
Figure 4.6.3: Viscosity Effect on Shock Wave Thickness. 

This figure shows that varying viscosity contribute slightly difference to the 

profile compared with constant viscosity. As known, viscosity of water decreases when 

temperature rises. The slope of shock wave profile gets greater matching the conclusion 

from gas. So shock wave thickness is weakly sensitive to the viscosity. 
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4.6.3 Length Scale 

 
Figure 4.6.4: Effect of Length Scale on Shock Wave Thickness. This figure shows that 
varying lambda contribute the same shockwave profile as former molecular diameter. 

Conclusion is that shock wave thickness is not sensitive to the length scale.
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Chapter 5 

Conclusion 

In order to develop a better understanding of the irreversibilities associated with 

the shock compaction of fluids, 3 materials (argon, air and water), 2 equations of state 

(EOS) (Ideal Gas EOS and Mie-Grüneisen EOS incorporated with Material EOS) and 4 

viscosity sub models are studied in one-dimension via a numerical solution. The 

numerical solution is validated with the analytical solution for perfect gas behavior and 

compared to experimental data where available. 

A non-dimensional numeric scheme based upon an explicit Eulerian finite volume 

method was developed. The spatial resolution converges at less than 1/8th of the mean 

free path, ensuring the stability of the numerical algorithm without resorting to 

implementing artificial dissipation. Space derivatives are approximated by second order 

central differences and time derivatives are approximated by first order forward 

differences. 

Initial simulations focused on argon, i.e. a monatomic perfect gas. Simulation 

boundaries are set more than ten shock wave thickness away from the shock. Simulations 

indicate that shock wave thickness becomes thinner as Mach number increases up to a 

Mach number of 9. Simulated density profiles slightly differ from experimental results. 

From the shock profiles, the entropy change can be calculated. Entropy change provides a 

single metric as to the quality of the simulation, when compared to the theoretical entropy 

change. The theoretical entropy change for a perfect gas is around 0.3% different to the 
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simulated entropy change of the viscous models considered in this work, the Maxwell 

model for viscosity gives results which are closed to the analytic solution, whereas the 

Power Law viscous model results in profiles that most resemble the experimental data. 

The Power Law viscous model results in the largest value of entropy change at low Mach 

numbers (Mach number 1.55 and 3.38), but the smallest value of entropy change at large 

Mach number (Mach number 9), compared with other viscous models. 

Next, the shock wave profile in a non-monatomic gas, i.e. air, is simulated for 

Mach number 1.4. The results indicate similar phenomena as argon at low Mach number 

(Mach number 1.55). 

While validating the Mie-Grüneisen (M-G) EOS for shock waves in fluids, 

several challenges are resolved. The shock Hugoniot equation, used as the reference 

curve for the M-G EOS for gas was derived. The relationship between equivalent M-G 

constant and the ratio of specific heat was derived. When modeling gaseous argon 

passing through a shock at Mach number 1.55, the M-G EOS predicts lower entropy 

change, 14.437 J/Kg/K, as compared to the ideal gas EOS, which predicts in 16.493 

J/Kg/K. The main reason causing this difference is discussed in chapter 3. Finally, it is 

observed that heat flux dominates the entropy change for M-G EOS. 

Finally the M-G EOS for water was numerically investigated and the results were 

compared to experimental data. The M-G constant is derived by impedance matching the 

M-G EOS and Rayleigh line. The bulk viscosity is also incorporated into the stress term. 

From a parametric study of transport properties, it was found that the shock wave 

thickness is weakly sensitive to the specific heat, heat conductivity, viscosity and grid 
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dimension, whereas changes in the viscosity have the largest effect on the shock profile 

thickness. However, the shock wave thickness, even at varying viscosities still too thin 

compared to experimental data. 

This research mainly focuses on deriving a suitable set of equations for doing 

direct numeric simulations of shock profiles in gasses and liquid and then numerically 

solving these equations using a finite volume technique. Simulations of shock wave in 

liquids and gases serve as a bridge to better understand the applicability of the M-G EOS 

for resolving the shock profiles in solids. This is especially true when considering the 

viscous dissipation mechanisms in solids across the shock. Further considerations from 

statistical mechanics might provide more insight in the future; by supporting assumptions 

with more precise governing equations; the simulated shock wave profiles may be better 

resolved. 
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APPENDIX - FORTRAN CODE 

      parameter(jj=4800) 
      parameter(limit = 99999999) 
      real*8 T(0:jj),rho(0:jj),p(0:jj),u(0:jj),E(0:jj),eta(0:jj) 
      real*8 rhohat(0:jj),uhat(0:jj),Ehat(0:jj),phat(0:jj),jhat(0:jj) 
      real*8 j(0:jj),PI(0:jj),q(0:jj),H(0:jj) 
      real*8 Pr, gama,mu, R, Tinf, rhoinf, cinf, lambda, etainf 
      real*8 hx, ht, Ma, w 
      real*8 c1, x0, M1, v1, alpha, beta 
      real*8 xa, xb, xx, dx, fa, fb 
      real*8 psi(0:jj),etad(0:jj) 
      real*8 m0, m, k0, k, sigma0, sigma 
      real*8 ratioe, Tinter, x, omegau(0:jj) 
      real*8 Cv,kappa, deltax, dsa, ds, dsu(0:jj), dsT(0:jj), dsus, 
dsTs 
      real*8 gama0, gama00,Pref,eref,rhoref, Pinter, entropy(0:limit) 
      real*8 ie(0:jj),ke(0:jj) 
      real*8 Pless, rholess, Tless, eless, kaless,kappa0 
      real*8 Mmass, uv, e00, e01, e02, e03, e04, s, C, e0, einter,C0 
      real*8 Temperature, Cv0,CvD, gam0, Us, Up, P0 
      real*8 sa, sb, fs, u0, u1  
      integer i,eos, counter, bug 
      character*14 filen 
c     character*14 entropy 
      character*1 ans 
 
c M-G gamma: gama0 reference pressure: Pref 
c reference internal energy: eref 
   
c      entropy = 'en00000000.dat' 
      filen = 'ns00000000.dat' 
 
c      open(unit=23,file='zeta.dat',form='formatted',status='unknown') 
 
c.............................Choose EOS............................. 
c eos=0,1,2,4, Gas. eos = 3 liquid 
c eos = 0,ideal gas EOS with Gas Specific Dimensionless Scales 
c eos = 1,M-G for gas, General Dimensionless Scales 
c eos = 2,M-G general dimensionless, need check 
c eos = 3,water M-G, general dimensionless         
c eos = 4,ideal gas eos, General Dimensionless scales         
        
       eos = 1  
 
c.............................Parameters............................. 
c--------------------------------Gas--------------------------- 
       if(eos .ne. 3) then 
c       s= 1.059d0    ! Hugoniot slope, Air, JAP experiment 
c       C0 = 243.d0   ! Bulk sound speed, Air, JAP experiment 
c       s = 0.4086132999  ! Ma=2.5 Air solved value from maple, 3rd 
order eos 
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c       C0 = 619.7064063  ! Ma=2.5 Air solved value from maple, 3rd 
order eos 
c       s = 0.3878659442  ! Ma=2.5 Air solved value from maple, 4th 
order eos 
c       C0 = 632.3120897  ! Ma=2.5 Air solved value from maple, 4th 
order eos 
c       s  = 0.9687928698 ! Ma=1.4 Air solved value from maple, 3rd 
order eos 
c       C0 = 293.8619384  ! Ma=1.4 Air solved value from maple, 3rd 
order eos 
       s = 1.0009556d0   ! Ma = 1.55, Argon 
       C0 = 207.66440d0  ! Ma = 1.55, Argon 
       w  = 0.81d0       ! Argon 
c       w = 0.77d0        ! Air 
       Ma = 1.55d0       ! Argon 
c       Ma =1.4d0         ! Air 
c       Pr = 0.715d0      ! Air 
       Pr = 2.d0/3.d0    ! Argon 
c       gama = 1.4d0      !Air 
       gama = 5.d0/3.d0  ! Argon 
c       mu = 1.80d-5      ! kg/m/s Air JB 
c       mu = 1.983d-5     ! Kg/m/s Air viscosity online data 
c       mu = 2.27d-5      ! kg/m/s Argon viscosity online data 
       mu = 1.3275d-5 !kg/m/s Argon NIST data 
c       kappa =  0.0252793d0 ! W/m/k Air Forced kappa 
c       kappa = 0.0240d0 ! W/m/k Air heat conductivity,  
c Another way is force fromideal gas kappa = gama*R*eta/(gama-1)/Pr 
       kappa = 0.0163d0  ! W/m.k  Argon heat conductivity 
       R      = 208.1d0 !J/kg/K Argon 
c       R = 287.0d0  ! J/Kg/K Air 
c       Cv = 718.d0  ! J/Kg/K Air from online data 
c       Cv = 717.5d0 ! J/kg/k Air from ideal gas Eos 
       Cv = R/(gama-1.d0) ! J/kg/k Air ideal gas, analytical  
c       Cv = 312.2d0     !J/kg/K Argon 
c       Tinf = 300.d0    ! kelvin, k 
c       Pref = 103.320d3 ! Pa 
       Tinf   = 164.d0   ! Helium from Muntz, same for Argon and Air 
       Tref = Tinf 
c       rhoinf = 1.205d0 ! Kg/m^3 Air 
c       rhoinf = 1.2d0   ! kg/m^3 Air JB 
       rhoinf = 1.62d0   !kg/m^3 Argon - see BSL notes 
       rhoref = rhoinf 
       Pref = rhoinf*R*Tinf ! Analytical Pressure from Gas EOS 
       cinf   = dsqrt(gama*R*Tinf)  ! [m/s] upstream sound speed 
c       C0 = cinf ! for gas with analytical sound speed 
       etainf = gama**(w-0.5d0)*5.d0*sqrt(2.d0*acos(-1.d0))/16.d0 
     &         *(1.d0/gama)**w  !dimensionless far field viscosity 
       lambda = 3.d0*mu*sqrt(acos(-1.d0)/8.d0/R/Tinf)/rhoinf ! hard 
sphere mean free path 
       eta(0) = mu/(rhoinf*cinf*lambda) ! dimensionless pre-shock 
viscosity 
c      eta(0) = etainf*(T(0))**w 
c       m0 = 28.964d-3/(6.022d23) ! kg   molecule mass of Air 
       m0 = 39.948d-3/(6.022d23) ! kg   molecule mass of Argon 
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       k0 = 1.38066d-23           ! J/kg Boltzmann's constant 
c       sigma0 = 3.617d-10        ! m Diameter Air 
       sigma0 = 3.432d-10         ! m Diameter Argon 
       m = m0/(rhoinf*lambda**3)         ! dimensionless m       
       k = k0/(rhoinf*R*gama*lambda**3)  ! dimensionless k 
       sigma = sigma0/lambda             ! dimensionless sigma 
       ratioe = 122.4d0                  ! K Kelvin, Argon 
c       ratioe = 97.d0                   ! K Kelvin, Air 
c       Tinter = cinf**2/(gama*R*ratioe) ! Gas Dimensionless Scales 
       Tinter = cinf**2/(Cv*ratioe)      ! General Dimensionless Scales 
       gama0 = gama - 1.d0 
c       kaless = gama*R*rhoinf*cinf*lambda ! Gas Dimensionless Scales 
       kaless = Cv*rhoinf*cinf*lambda      ! General Dimensionless 
Scales 
       kappa0 = kappa/kaless ! dimensionless heat conductivity, General 
Dimesionless scale 
 
c.....................shock velocity from Ma number.................  
       u0 = Ma*cinf  
       u1 = Ma*(2.d0+(gama-1.d0)*Ma**2)/((gama+1.d0)*Ma**2)*cinf 
       Us = u0 
       Up = Us - u1 
       print *,'Mach Number       Ma', Ma 
       print *,'Shock velocity    Us', Us 
       print *,'Partical velocity Up', Up 
c       pause  
c       print *, kappa0,eta(0)/((gama-1.d0)*Pr) 
c       pause 
c       print *,'bulk and local sound velocity',cinf,C0 
c       cinf = C0 
c       print *, cinf 
 
c------------------------------Liuquid-------------------------- 
       elseif (eos .eq. 3) then 
 
c--------------------------EOS  parameters---------------------- 
       Up = 277.8668114d0 ! m/s ! cambridge expriment, impedance match 
       s = 1.92d0    ! Hugoniot slope, Meyers book P133 
       C0 = 1650.d0  ! m/s, Bulk sound speed, Meyers book P133 
       Us = Up*s+C0 
       gama0 = 4.984362390d0  ! Gruneisen gama, impedance match from 
maple 
 
c-----------------------------properties------------------------ 
c       mu = 0.798d-3    !kg/m/s viscosity, water online data 
       mu = 0.85258d-3   !kg/m/s viscosity, water,NIST(300k,1g/cm^3) 
c       kappa = 0.58d0   !w/m/k  heat conductivity,water 
       kappa = 0.61384d0 !w/m/k heat conductivity,water,NIST(300k, 
1g/cm^3) 
       Cp = 4159.3d0     !J/kg/K specific heat,water,NIST(300k,1g/cm^3) 
       Cv = 4105.1d0     !J/kg/K specific heat,water,NIST(300k,1g/cm^3)     
       Mmass = 18.01528d0 !g-mol molar mass, water 
       R  = 8.31451d3/Mmass !J/kg/K water 
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c------------------------dimensionless scale------------------ 
       Tref   = 300.d0  !k,upstream Temperature 
       Tinf = Tref 
       rhoinf = 1000.d0  !kg/m^3,water 
       cinf   = C0       !m/s, upstream sound speed 
       Pref = 1.01325d5 !pa, upstream pressure 
       lambda = ((Mmass*0.001d0)/(rhoinf*6.02d23))**(1.d0/3.d0) !space 
scale, average distance of water molecular  
       print *, 'lambda',lambda 
       pause 
       eta(0) = mu/(rhoinf*cinf*lambda) ! dimensionless viscosity 
       kappa0 = kappa/(Cv*rhoinf*cinf*lambda) !dimensionless heat 
conductivity 
       uv = 3.1d0         !dimensionless bulk viscosity 
       endif 
 
c.................initial contant viscosity coefficient......... 
 
      do i=0,jj 
      eta(i) = eta(0) ! 10**5 
      enddo 
 
c.........................dimensionless scales.................. 
c      cinf = C0 
      Tless   = cinf**2/Cv 
      Pless   = rhoinf*cinf**2 
      rholess = rhoinf 
      eless   = Pless 
c      print *, Tless, Pless, rholess, eless,Cv 
c      pause  
      
c--------------------initial spece and time step---------------- 
      ht=1.0d-8 
      hx=0.25d0/2.d0 
      deltax = hx*1.d0 
 
c---------------------set boundary conditions------------------- 
      if(eos .eq. 0) then 
      p(0)   = 1.d0/gama 
c      pressure = p(0)*gama  
      rho(0) = 1.d0 
      u(0)   = Ma 
      T(0)   = gama*p(0)/rho(0) 
      j(0)  = rho(0)*u(0) 
      ie(0) = p(0)/(gama - 1.d0) 
      ke(0)  = rho(0)*u(0)**2/2.d0 
      e(0)  = ie(0) + ke(0) 
      dsus = 0.d0                          ! sum of entropy form stress 
      dsu(0) = 0.d0                        ! stress entropy term 
      dsTs = 0.d0                          ! sum of entropy from T 
      dsT(0) = 0.d0                        ! T entropy term 
   
      omegau(0) = 1.16145d0/((Tinter*T(0))**0.14874d0)    ! Chapman-
Enskog 
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     &          + 0.52487d0/(exp(0.77320d0*Tinter*T(0))) 
     &          + 2.16178d0/(exp(2.43787d0*Tinter*T(0))) 
      eta(0) = 5.d0*dsqrt(m*k*T(0)/acos(-1.d0)) 
     &        /(16.d0*omegau(0)*sigma**2) 
 
c      eta(0) = 2.d0*dsqrt(m*k*T(0)/acos(-1.d0)) 
c     &        /(3.d0*acos(-1.d0)*sigma**2)               ! Maxwell 
 
c      x = T(0)*Tinf/vari0 
c      omegau = -0.0799d0*x**5 + 0.743d0*x**4 - 2.7973d0*x**3  
c     &       + 5.485d0*x**2 
c     &       -5.9588d0*x + 4.1996d0 
c      etad(0) = 5.d0*dsqrt(acos(-1.0)*m*k*T(0))/ 
c     &        ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c      eta(0) = etad(0)/(rhoinf*cinf*lambda) 
 
c       eta(0) = etainf*(T(0))**w                        ! Power Law 
c 
c      p(jj) = 4.5000*p(0) 
c      T(jj) = 1.6875*T(0) 
c      rho(jj) = 2.667*rho(0) 
c      u(jj)   = 0.5774 
c      j(jj)  = rho(jj)*u(jj) 
c      e(jj)  = rho(jj)*u(jj)*u(jj)/2 + p(jj)/(gama-1) 
 
       rho(jj) = rho(0)*(gama+1.d0)*Ma**2/((gama-1.d0)*Ma**2+2.d0) 
       u(jj)  = rho(0)*u(0)/rho(jj) 
       p(jj)  = rho(0)*u(0)**2 + p(0) - rho(jj)*u(jj)**2 
       ie(jj) = (ie(0)+u(0)**2/2.d0+p(0)/rho(0)-u(jj)**2/2.d0 
     &         -p(jj)/rho(jj))*rho(jj) 
       print *, 'rankine', u(jj),p(jj),ie(jj) 
       u(jj)   = u(0)*(2.d0+(gama-1.d0)*Ma**2)/((gama+1.d0)*Ma**2) 
       p(jj)   = p(0)*(2.d0*gama*Ma**2-gama+1.d0)/(gama+1.d0) 
       e(jj)   = rho(jj)*u(jj)*u(jj)/2.d0 + p(jj)/(gama-1.d0) 
       ie(jj)  = p(jj)/(gama - 1.d0) 
       print *, 'eos', u(jj),p(jj),ie(jj) 
       pause  
       T(jj)   = gama*p(jj)/rho(jj) 
       dsu(jj) = 0.d0                         ! stress entropy term 
       dsT(jj) = 0.d0                         ! T entropy term 
 
c       eta(jj) = etainf*(T(jj))**w                       ! power law 
 
c       eta(jj) = 2.d0*dsqrt(m*k*T(jj)/acos(-1.d0)) 
c     &          /(3.d0*acos(-1.d0)*sigma**2)             ! Maxwell 
 
      omegau(jj) = 1.16145d0/((Tinter*T(jj))**0.14874d0)  ! Chapman-
Enskog 
     &           + 0.52487d0/(exp(0.77320d0*Tinter*T(jj))) 
     &           + 2.16178d0/(exp(2.43787d0*Tinter*T(jj))) 
      eta(jj) = 5.d0*dsqrt(m*k*T(jj)/acos(-1.d0)) 
     &          /(16.d0*omegau(jj)*sigma**2) 
 
c       x = T(jj)*Tinf/vari0 
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c       omegau = -0.0799d0*x**5 + 0.743d0*x**4 - 2.7973d0*x**3  
c     &        + 5.485d0*x**2 
c     &        -5.9588d0*x + 4.1996d0 
c       etad(jj) = 5.d0*dsqrt(acos(-1.0)*m*k*T(jj))/ 
c     &        ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c       eta(jj) = etad(jj)/(rhoinf*cinf*lambda) 
 
c       Cv0 = ie(jj)/rho(jj)/T(jj)       
c       CvD = Cv0*gama*R 
c       print *,Pr, gama, mu, R, Tinf, rhoinf, cinf,lambda,eta(0) 
c       print *, kappa0,eta(0)/((gama-1.d0)*Pr) 
c       pause 
      
      elseif(eos .eq. 4) then 
c      pressure = p(0)*gama  
      rho(0) = 1.d0 
      u(0)   = Ma 
      T(0)   = 1.d0/(gama*(gama-1.d0)) 
      p(0)  = rho(0)*(gama-1.d0)*T(0) 
      j(0)  = rho(0)*u(0) 
      ie(0) = p(0)/(gama - 1.d0) 
      ke(0)  = rho(0)*u(0)**2/2.d0 
      e(0)  = ie(0) + ke(0) 
      dsus = 0.d0                          ! sum of entropy form stress 
      dsu(0) = 0.d0                        ! stress entropy term 
      dsTs = 0.d0                          ! sum of entropy from T 
      dsT(0) = 0.d0                        ! T entropy term 
c      omegau(0) = 1.16145d0/((Tinter*T(0))**0.14874d0)    ! Chapman-
Enskog 
c     &          + 0.52487d0/(exp(0.77320d0*Tinter*T(0))) 
c     &          + 2.16178d0/(exp(2.43787d0*Tinter*T(0))) 
c      eta(0) = 5.d0*dsqrt(m*k*T(0)/acos(-1.d0)) 
c     &        /(16.d0*omegau(0)*sigma**2) 
 
c      eta(0) = 2.d0*dsqrt(m*k*T(0)/acos(-1.d0)) 
c     &        /(3.d0*acos(-1.d0)*sigma**2)                ! Maxwell 
 
c      x = T(0)*Tinf/vari0 
c      omegau = -0.0799d0*x**5 + 0.743d0*x**4 - 2.7973d0*x**3  
c     &       + 5.485d0*x**2 
c     &       -5.9588d0*x + 4.1996d0 
c      etad(0) = 5.d0*dsqrt(acos(-1.0)*m*k*T(0))/ 
c     &        ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c      eta(0) = etad(0)/(rhoinf*cinf*lambda) 
 
c       eta(0) = etainf*(T(0))**w                          ! Power Law 
c 
c      p(jj) = 4.5000*p(0) 
c      T(jj) = 1.6875*T(0) 
c      rho(jj) = 2.667*rho(0) 
c      u(jj)   = 0.5774 
c      j(jj)  = rho(jj)*u(jj) 
c      e(jj)  = rho(jj)*u(jj)*u(jj)/2 + p(jj)/(gama-1) 
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       rho(jj) = rho(0)*(gama+1.d0)*Ma**2/((gama-1.d0)*Ma**2+2.d0) 
       u(jj)  = rho(0)*u(0)/rho(jj) 
       p(jj)  = rho(0)*u(0)**2 + p(0) - rho(jj)*u(jj)**2 
       ie(jj) = (ie(0)+u(0)**2/2.d0+p(0)/rho(0)-u(jj)**2/2.d0 
     &         -p(jj)/rho(jj))*rho(jj) 
       print *, 'rankine', u(jj),p(jj),ie(jj) 
       u(jj)   = u(0)*(2.d0+(gama-1.d0)*Ma**2)/((gama+1.d0)*Ma**2) 
       p(jj)   = p(0)*(2.d0*gama*Ma**2-gama+1.d0)/(gama+1.d0) 
       e(jj)   = rho(jj)*u(jj)*u(jj)/2.d0 + p(jj)/(gama-1.d0) 
       ie(jj)  = p(jj)/(gama - 1.d0) 
       print *, 'eos', u(jj),p(jj),ie(jj) 
c       pause        
       T(jj)   = p(jj)/(rho(jj)*(gama-1.d0)) 
       dsu(jj) = 0.d0                         ! stress entropy term 
       dsT(jj) = 0.d0                         ! T entropy term 
c       pause 
c       eta(jj) = etainf*(T(jj))**w                        ! power law 
 
c       eta(jj) = 2.d0*dsqrt(m*k*T(jj)/acos(-1.d0)) 
c     &          /(3.d0*acos(-1.d0)*sigma**2)              ! Maxwell 
 
c      omegau(jj) = 1.16145d0/((Tinter*T(jj))**0.14874d0)  ! Chapman-
Enskog 
c     &           + 0.52487d0/(exp(0.77320d0*Tinter*T(jj))) 
c     &           + 2.16178d0/(exp(2.43787d0*Tinter*T(jj))) 
c      eta(jj) = 5.d0*dsqrt(m*k*T(jj)/acos(-1.d0)) 
c     &          /(16.d0*omegau(jj)*sigma**2) 
 
c       x = T(jj)*Tinf/vari0 
c       omegau = -0.0799d0*x**5 + 0.743d0*x**4 - 2.7973d0*x**3  
c     &        + 5.485d0*x**2 
c     &        -5.9588d0*x + 4.1996d0 
c       etad(jj) = 5.d0*dsqrt(acos(-1.0)*m*k*T(jj))/ 
c     &        ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c       eta(jj) = etad(jj)/(rhoinf*cinf*lambda) 
 
c       Cv0 = ie(jj)/rho(jj)/T(jj)       
c       CvD = Cv0*gama*R 
c       print *,Pr, gama, mu, R, Tinf, rhoinf, cinf,lambda,eta(0) 
c       print *, kappa0,eta(0)/((gama-1.d0)*Pr) 
c       pause 
 
      elseif(eos .eq. 1) then ! M-G,AIR 
c..................coefficients of epsilon in M-G................. 
      e00 = Cv*Tref/(cinf**2) ! positive or negative? question  
      e01 = gama0*e00 
      e02 = (C0**2/(cinf**2)+gama0**2*e00)/2.d0 
      e03 = (4.d0*s*C0**2/(cinf**2)+gama0**3*e00)/6.d0 
      e04 = ((18.d0*s**2*C0**2-2.d0*gama0*s*C0**2)/(cinf**2) 
     &     +gama0**4*e00)/24.d0       
 
c............................left BC.............................. 
      x = 0.d0    ! String is zero, pre-shock 
      p(0)   = Pref/Pless 
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      print *, 'Pressure Direct',p(0),p(0)*Pless 
      rho(0) = rhoref/rholess 
c      Us = Up*s+C0 
      u(0)   = Us/cinf 
      T(0)   = Tref/Tless 
      j(0)   = rho(0)*u(0) 
      ke(0)  = rho(0)*u(0)**2/2.d0 
      ie(0)  = Pref/gama0/Pless  ! Mass internal energy 
      p(0)   = rho(0)*(e01 + 2.d0*e02*x + 3.d0*e03*x**2 + 4.d0*e04*x**3) 
      print *, 'Pressure Poly  ',p(0),p(0)*Pless 
      p(0) = (rhoinf*C0**2 
     &      *(x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3)) 
     &      /(rhoinf*cinf**2) + gama0*rho(0)*(ie(0)/rho(0)) 
      print *, 'Pressure M-G   ',p(0),p(0)*Pless  
      e(0)  = ke(0)+ie(0) 
c      eta(0) = etainf*(T(0))**w                        ! Power Law 
      print *,'Left B.C. Dimensionless', rho(0),u(0),p(0),T(0), 
     &                                   ie(0)/rho(0) 
      print *,'Left B.C. Dimensional  ', rho(0)*rhoinf,u(0)*cinf, 
     &                                   p(0)*Pless,T(0)*Tless,  
     &                                   ie(0)*eless/rhoinf 
 
      dsus   = 0.d0             ! sum of entropy form stress 
      dsu(0) = 0.d0             ! stress entropy term 
      dsTs   = 0.d0             ! sum of entropy from T 
      dsT(0) = 0.d0             ! Temperature entropy term 
 
c..............................Right B.C..........................  
c      rho(jj) = rho(0)*(gama+1.d0)*Ma**2/((gama-1.d0)*Ma**2+2.d0)      
c      x = 1.d0 - rho(0)/rho(jj) 
      u(jj) = (Us-Up)/cinf 
cx       u(jj) = Us-Up 
c      u(jj)   = u(0)*(2.d0+(gama0)*Ma**2)/((gama0+2.d0)*Ma**2)  
c      u(jj) = rho(0)*u(0)/rho(jj) ! rankine hugoniot jump equations 
for stationary Euler shock wave     
      rho(jj) = rho(0)*u(0)/u(jj) 
cx       rho(jj) = rhoinf*Us/u(jj) 
      x = 1.d0 - rho(0)/rho(jj) 
cx      x = 1.d0 - rhoinf/rho(jj) 
      p(jj) = rho(0)*u(0)**2 + p(0) - rho(jj)*u(jj)**2 
cx       p(jj) = rhoinf*Us**2 + Pref - rho(jj)*u(jj)**2 
      print *,'Pressure Hugoniot',p(jj),p(jj)*Pless 
cx       print *, 'pressure hugoniot', p(jj) 
      ie(jj) = (rho(0)*u(0)*(ie(0)/rho(0) + u(0)**2/2.d0 + p(0)/rho(0)) 
     &        /(rho(jj)*u(jj)) - u(jj)**2/2.d0 - p(jj)/rho(jj)) 
     &        *rho(jj)           ! Mass internal energy 
      print *,'Internal Energy Hugoniot',ie(jj), 
     &        ie(jj)*eless,ie(jj)*eless/(rho(jj)*rhoinf) 
cx      ie(jj) = (Cv*Tref/rhoinf+Us**2/2.d0 + Pref/rhoinf 
cx     &        - u(jj)**2/2.d0 - p(jj)/rho(jj)) 
cx     &        *rho(jj)           ! Mass internal energy 
 
c      ie(jj) = (p(jj) - (rho(0)*C0**2 
c     &      *(x+(2.d0*s - gama0/2.d0)*x**2+s*(3.d0*s-gama0)*x**3)) 
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c     &      /(rhoinf*cinf**2))/gama0/rho(0) 
c      ie(jj) = ie(jj)*rho(jj) 
c      print *,'internal energy eos', ie(jj)   
      gam0 = 2.d0*(-p(jj) + C0**2/cinf**2*x + 2.d0*x**2*s*C0**2/cinf**2 
     &       + 3.d0*s**2*x**3*C0**2/cinf**2) 
     &     /(x**2*C0**2/cinf**2 + 2.d0*x**3*s*C0**2/cinf**2  
     &       - 2.d0*ie(jj)/rho(jj))      
c      gam0 = 2.d0*(p(jj) - x-2.d0*x**2*s-3.d0*s**2*x**3) 
c     &      /(-x**2-2.d0*x**3*s+2.d0*rho(0)*ie(jj)/rho(jj)) 
      print *,'M-G Gamma Diff is/was',gam0,gama0 
c      pause 
      gama0 = gam0  
      print *,'Values to find pressure'  
      print *, 'rho(0)',rho(0)*rhoinf,'C0', 
C0,'x',x,'s',s,'gama0',gama0 
      print *, 'rhoinf', rhoinf,'cinf', cinf, 
     &         'ie(jj)',ie(jj)*eless/(rho(jj)*rhoinf), 
     &         'rho(jj)',rho(jj)*rhoinf, 'Pless', Pless, 'eless', eless, 
     &         'rhoinf*cinf**2', rhoinf*cinf**2 
c       p(jj) = -
gama0**5*x**4*e00/(24.d0*cinf**2)+gama0**2*x**4*s/12.d0 
c     &       - 3.d0*gama0*x**4*s**2/4.d0 
c     &       + (x+(2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3) 
c     &       + gama0*rho(0)*ie(jj)/rho(jj) ! 4th order eos 
      p(jj) = (x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3) 
     &        *C0**2/cinf**2 + gama0*ie(jj)/rho(jj)      ! 3rd order 
eos 
      print *, 'Prssure M-G       ',p(jj),p(jj)*Pless      
c      p(jj) = rhoinf*C0**2 
c     &       *(x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - 
gama0)*x**3) 
c     &       + gama0*ie(jj)*eless/rho(jj) 
c      print *, 'prssure M-G DN     ',p(jj)/Pless,p(jj) 
c      print *, rho(0), rhoinf 
      ke(jj) = rho(jj)*u(jj)**2/2.d0     
      e(jj) = ie(jj) + ke(jj) 
      T(jj) = T(0) + ie(jj)/rho(jj) - ie(0)/rho(0) 
      print *,'Temperature       ',T(jj),T(jj)*Tless 
      e0 = e00+e01*x+e02*x**2+e03*x**3+e04*x**4 
      P0 = rho(0)*(e01+2.d0*e02*x+3.d0*e03*x**2+4.d0*e04*x**3) 
      print *, 'P(v)         ', P0-gama0*rho(0)*e0  
      print *, 'P(T)         ', gama0*rho(0)*ie(jj)/rho(jj) 
      print *, 'P with Strain', x+(2.d0*s-gama0/2.d0)*x**2 
     &         +s*(3.d0*s-gama0)*x**3 
      print *, 'P with Temp  ', gama0*rho(0)*ie(jj)/rho(jj)    
             
           
c      print *,'p0 and p(0)', p0, p(0) 
c      e0 = e00+e01*x+e02*x**2+e03*x**3+e04*x**4 
c      print *,'e0 and e(0)', e0, e(0) 
c      p(jj) = p0 + gama0*rho(0)*(ie(jj)/rho(jj) - e0) 
c      print *, 'prssure changed e0', p(jj), p(jj)*Pless 
      print *, 'Right B.C. Dimensionless ',rho(jj),u(jj),p(jj),T(jj), 
     &                                     ie(jj) 
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      print *, 'Right B.C. Dimensional   ',rho(jj)*rhoinf,u(jj)*cinf, 
     &                                     p(jj)*Pless,T(jj)*Tless, 
     &                                     e(jj)*eless/(rho(jj)*rhoinf)  
c      pause   
 
c      eta(jj) = etainf*(T(jj))**w ! power law 
 
      dsu(jj) = 0.d0                                ! stress entropy 
term 
      dsT(jj) = 0.d0                                ! T entropy term 
       
      elseif(eos .eq. 2) then 
      T(0) = Tinf/Tless 
      p(0)   = (gama - 1.d0)*T(0)  
      rho(0) = 1.d0 
      u(0)   = Ma 
c      T(0)   = 1.d0 
      j(0)  = rho(0)*u(0) 
      e(0)  = rho(0)*u(0)*u(0)/2.d0 + p(0)/(gama-1.d0) 
      dsus = 0.d0                          ! sum of entropy form stress 
      dsu(0) = 0.d0                        ! stress entropy term 
      dsTs = 0.d0                          ! sum of entropy from T 
c      omegau(0) = 
1.16145/((Tinter*T(0))**0.14874)                     ! Chapman-Enskog 
c     &          + 0.52487/(exp(0.77320*Tinter*T(0))) 
c     &          + 2.16178/(exp(2.43787*Tinter*T(0))) 
c      eta(0) = 5.0*sqrt(m*k*T(0)/acos(-1.0))/(16.0*omegau(0)*sigma**2) 
c      eta(0) = 2.0*sqrt(m*k*T(0)/acos(-1.0))/(3.0*acos(-
1.0)*sigma**2) ! Maxwell 
 
c      x = T(0)*Tinf/vari0 
c      omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2 
c     &         -5.9588*x + 4.1996 
c      eta(0) = 5.0*sqrt(acos(-1.0)*m*k*T(0))/ 
c     &        ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c      eta(0) = etad(0)/(rhoinf*cinf*lambda) 
c       eta(0) = etainf*(T(0))**w                     ! Power Law 
c 
c      p(jj) = 4.5000*p(0) 
c      T(jj) = 1.6875*T(0) 
c      rho(jj) = 2.667*rho(0) 
c      u(jj)   = 0.5774 
c      j(jj)  = rho(jj)*u(jj) 
c      e(jj)  = rho(jj)*u(jj)*u(jj)/2 + p(jj)/(gama-1) 
 
       rho(jj) = rho(0)*(gama+1.d0)*Ma**2/((gama-1.d0)*Ma**2+2.d0) 
       u(jj)   = u(0)*(2.d0+(gama-1.d0)*Ma**2)/((gama+1.d0)*Ma**2) 
       p(jj)   = p(0)*(2.d0*gama*Ma**2-gama+1.d0)/(gama+1.d0) 
       e(jj)   = rho(jj)*u(jj)*u(jj)/2.d0 + p(jj)/(gama-1.d0) 
       ie(jj)  = p(jj)/(gama - 1.d0)  
       T(jj)   = p(jj)/(gama - 1.d0)/rho(jj) 
       dsu(jj) = 0.d0                         ! stress entropy term 
       dsT(jj) = 0.d0                         ! T entropy term 
c       Cv0 = ie(jj)/rho(jj)/T(jj)       
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c       CvD = Cv0*gama*R 
        
c      omegau(jj) =1.16145/((Tinter*T(jj))**0.14874)   ! Chapman-Enskog 
c     &           + 0.52487/(exp(0.77320*Tinter*T(jj))) 
c     &           + 2.16178/(exp(2.43787*Tinter*T(jj))) 
c      eta(jj) = 5.0*sqrt(m*k*T(jj)/acos(-1.0)) 
c     &          /(16.0*omegau(jj)*sigma**2) 
c      eta(jj) = 2.0*sqrt(m*k*T(jj)/acos(-1.0))/(3.0*acos(-
1.0)*sigma**2)  ! Maxwell 
c      eta(jj) = eta(0) 
c      eta(jj) = etainf*(T(jj))**w 
 
c--------------------------------liquid---------------------------- 
      elseif(eos .eq. 3) then    !M-G LIQUID       
      print *, 'Us = ', Us, 'Up = ', Up 
 
c.............................LHS BC..................... 
      u(0) = Us/cinf 
      rho(0) = rhoinf/rhoinf 
      p(0) = Pref/Pless 
      print *, 'pressure direct', p(0),p(0)*Pless 
      T(0) = Tref/Tless 
      ke(0) = rho(0)*u(0)*u(0)/2.d0 
      ie(0) = p(0)/gama0 
      e(0) = ke(0)+ ie(0) 
      print *,'left HS DL', rho(0),u(0), p(0), T(0), e(0) 
      print *,'left HS DN', rho(0)*rhoinf, u(0)*cinf, p(0)*Pless, 
     &        T(0)*Tless, e(0)*eless 
 
      dsus = 0.d0             ! sum of entropy form stress 
      dsu(0) = 0.d0           ! stress entropy term 
      dsTs = 0.d0             ! sum of entropy from T 
      dsT(0) = 0.d0           ! T entropy term 
   
c.............................RHS BC..................... 
      u(jj) = (Us-Up)/cinf 
      rho(jj) = u(0)*rho(0)/u(jj) 
      x = 1.d0 - rho(0)/rho(jj)      
      p(jj) = p(0) + rho(0)*u(0)**2 - rho(jj)*u(jj)**2 
      print *,'pressure hugoniot',p(jj),p(jj)*Pless 
      ie(jj) =(rho(0)*u(0)*(ie(0)/rho(0)+u(0)**2/2.d0 + p(0)/rho(0)) 
     &         /(rho(jj)*u(jj)) - u(jj)**2/2.d0 - p(jj)/rho(jj)) 
     &         *rho(jj)  
      print *,'internal energy hugoniot',ie(jj), 
     &        ie(jj)*eless, ie(jj)*eless/(rho(jj)*rhoinf) 
      ke(jj) = rho(jj)*u(jj)**2/2.d0      
      e(jj) = ie(jj) + ke(jj) 
      gam0 = 2.d0*(p(jj)-x-2.d0*x**2*s-3.d0*s**2*x**3) 
     &      /(-x**2-2.d0*x**3*s+2.d0*rho(0)*ie(jj)/rho(jj)) 
      print *,'Gamma diff is/was', gam0, gama0 
      gama0 = gam0  
      print *,'values to find pressure'  
      print *, 'rho(0)',rho(0)*rhoinf,'C0', 
C0,'x',x,'s',s,'gama0',gama0 
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      print *, 'rhoinf', rhoinf,'cinf', cinf, 
     &         'ie(jj)',ie(jj)*eless/(rho(jj)*rhoinf), 
     &         'rho(jj)',rho(jj)*rhoinf, 'Pless', Pless, 'eless', eless, 
     &         'rhoinf*cinf**2', rhoinf*cinf**2 
c       p(jj) = -
gama0**5*x**4*e00/(24.d0*cinf**2)+gama0**2*x**4*s/12.d0 
c     &       - 3.d0*gama0*x**4*s**2/4.d0 
c     &       + (x+(2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3) 
c     &       + gama0*rho(0)*ie(jj)/rho(jj) ! 4th order eos 
      p(jj) = (x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3) 
     &       + gama0*rho(0)*ie(jj)/rho(jj) ! 3rd order eos 
      print *, 'prssure M-G DL     ',p(jj), p(jj)*Pless      
      T(jj) = T(0) + ie(jj)/rho(jj) - ie(0)/rho(0) 
      print *,'Temp DL', T(jj), T(jj)*Tless 
      print *, 'right HS DL', rho(jj),u(jj),p(jj),T(jj),e(jj) 
      print *, 'right HS DN', rho(jj)*rhoinf,u(jj)*cinf,p(jj)*Pless, 
     &                        T(jj)*Tless,e(jj)*eless  
 
c      pause   
 
      dsu(jj) = 0.d0                           ! stress entropy term 
      dsT(jj) = 0.d0                           ! T entropy term 
 
      endif      
c-----------------------printout jump condition------------------ 
 
      print *,'Jump Conditions' 
c     Print *,'dimensional Tem',T(0)*cinf**2/Cv 
c      Print *, T(jj)*cinf**2/Cv, T(jj) 
c      Print *,'Tem and InterE', T(0),ie(0)/rho(0),T(jj),ie(jj)/rho(jj) 
      Print *,'Velocity    ratio     ',u(jj)/u(0) 
      print *,'Temperature ratio    ',T(jj)/T(0) 
      print *,'Density     ratio    ',rho(jj)/rho(0) 
      Print *,'Pressure    ratio    ',p(jj)/p(0) 
      print *,'Velocity Dimensional ',u(0)*cinf,u(jj)*cinf 
      Pause 
 
c.........update heat conductivity to calculate entropy (GAS Only).... 
      if (eos .ne. 3) then 
      kappa0 = gama*R*eta(0)/((gama-1.d0)*Pr*Cv) 
      kappa = kappa0*(Cv*rhoinf*cinf*lambda) 
      endif 
 
c-------------------------theoretical entropy------------------- 
 
c     e(jj) =(rho(0)*u(0)*(ie(0)/rho(0)+u(0)** print *,log(2.d0) 
      dsa = Cv*dlog(T(jj)/T(0))+ R*dlog(rho(0)/rho(jj))  ! J/kg.k  
theoretical Entropy 
c      print *,Cv,Cv*dlog(T(jj)/T(0)) 
c      print *,R,R*dlog(rho(0)/rho(jj)) 
c      print *,dsa 
c      pause 
 
c       omegau = 1.16145/(vari0*T(jj))**0.14874 
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c     &       + 0.52487/(exp(0.77320*vari0*T(jj))) 
c     &       + 2.16178/(exp(2.43787*vari0*T(jj))) 
c       x = T(jj)*Tinf/vari0 
c       omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2 
c     &         -5.9588*x + 4.1996 
c      eta(jj) = 5.0*sqrt(acos(-1.0)*m*k*T(jj))/ 
c     &        ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c       etad(jj) = 5.0*sqrt(acos(-1.0)*m*k*T(jj))/ 
c     &         (16.0*acos(-1.0)*sigma**2*omegau) 
c      eta(jj) = etad(jj)/(rhoinf*cinf*lambda) 
c       eta(jj) = etainf*(T(jj))**w 
 
      
c-------------------------set initial condidion----------------------- 
c...........................Left Half.......................... 
      do i = 1,jj/2 
        rho(i) = rho(0) 
        T(i)   = T(0) 
        u(i)   = u(0) 
        p(i)   = p(0) 
        j(i)   = u(i)*rho(i) 
        e(i)   = e(0) 
        eta(i) = eta(0) 
       ! write (*,'(i4,f12.5)') i,T(i) 
      enddo 
 
c...........................Right Half......................... 
      do i=jj/2,jj-1 
        rho(i) = rho(jj) 
        T(i)   = T(jj) 
        u(i)   = u(jj) 
        p(i)   = p(jj) 
        j(i)   = rho(i)*u(i) 
        e(i)   = e(jj) 
        eta(i) = eta(jj) 
       ! write (*,'(i4,f12.5)') i,t(i) 
      enddo 
c 
 
      print *,'RH',p(jj)/p(0),rho(jj)/rho(0),u(jj)/u(0),T(jj)/T(0) 
      print *,eta(0) 
c      pause 
c 
      do i=0,jj 
      write(*,'(A2,i5,10f10.3)') 
     &  'IC',i,rho(i),u(i),p(i),t(i),e(i),p(i) 
      enddo 
 
c---------------------------------------------------------------------- 
c read restart file 
c---------------------------------------------------------------------- 
      nstep = 0 
      ans='n' 
      if (ans .eq. 'y' .or. ans .eq. 'Y') then 
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c      read in old file 
       open (unit=44, file='restart.dat',form='formatted', 
     &  status='old',err=135) 
        do i = 0,jj,1 !Zero out variables 
        read(44,'(i15,6e25.18)') nstep,rho(i),U(i),P(i),e(i),T(i),eta(i) 
c      write(*,'(6e25.18)') rho(i),U(i),P(i),e(i),T(i),eta(i) 
       rhohat(i) = rho(i) 
       uhat(i) =   u(i) 
       phat(i) =   p(i) 
       ehat(i) =   e(i) 
       enddo 
       print *,'ShockLeft:',rho(0),u(0),p(0),e(0),T(0) 
       print *,'ShockRigh: ',rho(jj),u(jj),p(jj),e(jj),T(jj) 
       print *,'ShockJump: ', 
     & rho(jj)/rho(0),u(jj)/u(0),p(jj)/p(0),e(jj)/e(0),t(jj)/t(0)  
       print *,'*' 
       goto 137 
 135   Print *,'No *restart file...'  
 137   close(44) 
      if (1 .eq. 1) then ! average out a restart 
      do i=0,jj-2,2 
        rho(i+1) = (rho(i+2) + rho(i))/2.d0 
        u(i+1)   = (u(i+2)   + u(i))/2.d0 
        p(i+1)   = (p(i+2)   + p(i))/2.d0 
        e(i+1)   = (e(i+2)   + e(i))/2.d0 
        eta(i+1) = (eta(i+2) + eta(i))/2.d0  
        enddo 
c       flag = .false.  
        endif 
       goto  456 
       endif 
 
 
c---------------------- state time steps  ----------------------- 
 456  do n = nstep+1,nstep+1000000  !time 
c------------------------shock move--------------------------- 
      if (eos .eq. 0) then ! ideal gas EOS 
      umax = 0. 
      do i = 0,jj 
      uloc = abs(u(i))+dsqrt(T(i)) 
      if (uloc .gt. umax) umax=uloc 
      enddo 
      ht = 0.001*hx/uloc 
c      print *,'ht=',ht 
c      print *,'integer time ',n 
      do i= 0,jj-2,2    !space 
c calculate average 
      j(i+1) =    (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0 
      PI(i+1) = 4.d0*(eta(i+2)+ eta(i))*(u(i+2)-u(i))/hx/6.d0 
      q(i+1) = -1.d0*(eta(i+2)+ eta(i))*(T(i+2)-T(i))/hx 
     &        /((gama-1.d0)*Pr)/2.d0 
c     T(i+1) = gama*p(i+1)/rho(i+1) 
      E(i) = rho(i)*u(i)*u(i)/2.d0+p(i)/(gama-1.d0) 
      rho(i+1) = (rho(i+2)+ rho(i))/2.d0 
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      u(i+1) = (u(i+2)+u(i))/2.d0 
      p(i+1) = (p(i+2)+ p(i))/2.d0 
      E(i+1) = (E(i+2)+ E(i))/2.d0 
      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
c 
      enddo 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,j(i),PI(i),q(i),T(i),E(i),rho(i),u(i),p(i),e(i),h(i) 
c      enddo 
c 
c      print *,'1',n,rho(24) 
      do i=2,jj-2,2 
c 
      q(i) = (q(i-1)+q(i+1))/2.d0 
      rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx 
      jhat(i) = rho(i)*u(i) + ht*(  (PI(i+1)    -  PI(i-1)) 
     &                          -(j(i+1)*u(i+1) - j(i-1)*u(i-1)) 
     &                                 -(p(i+1) - p(i-1)))/hx 
      Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))- 
     &                     (j(i+1)*H(i+1)   -  j(i-1)*H(i-1))- 
     &                            (q(i+1)   -   q(i-1)))/hx 
      uhat(i) = jhat(i)/rhohat(i) 
      phat(i)= (gama -1.d0)*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.d0) 
c 
 
c 
      enddo 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i) 
c      enddo 
c 
c      print *,rho(24),ht,j(28+1),j(28-1),hx 
c      print *,'2',n,rhohat(28) 
 
      do i=2,jj-2,2 
      rho(i) = rhohat(i) 
      u(i) = uhat(i) 
      j(i) = jhat(i) 
      E(i) = Ehat(i) 
      p(i) = phat(i) 
      T(i) = gama*p(i)/rho(i) 
      omegau(i) = 1.16145d0/((Tinter*T(i))**0.14874d0) ! Chapman-Enskog 
     &           + 0.52487d0/(exp(0.77320d0*Tinter*T(i))) 
     &           + 2.16178d0/(exp(2.43787d0*Tinter*T(i))) 
      eta(i) = 5.d0*dsqrt(m*k*T(i)/acos(-1.d0)) 
     &        /(16.d0*omegau(i)*sigma**2) 
 
c      eta(i) = 2.d0*dsqrt(m*k*T(i)/acos(-1.d0)) 
c     &        /(3.d0*acos(-1.d0)*sigma**2)               ! Maxwell 
 
c      omegau = 1.16145/(vari0*T(i))**0.14874 
c     &       + 0.52487/(exp(0.77320*vari0*T(i))) 
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c     &       + 2.16178/(exp(2.43787*vari0*T(i))) 
c      eta(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/ 
c     &        ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
 
c      x = T(i)*Tinf/vari0 
c      omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2 
c     &         -5.9588*x + 4.1996 
c      etad(i) = 5.d0*dsqrt(acos(-1.0)*m*k*T(i))/ 
c     &        ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c      eta(i) = etad(i)/(rhoinf*cinf*lambda) 
 
 
c      etad(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/ 
c     &         (16.0*acos(-1.0)*sigma**2*omegau) 
c      eta(i) = etad(i)/(rhoinf*cinf*lambda) 
 
c      eta(i) = etainf*(T(i))**w                          ! Power Law 
      enddo 
c 
c      print *,'3',n,rho(28) 
 
c      do i=0,jj-2,2 
c      rho(i+1) = (rho(i+2)+rho(i))/2.0 
c      u(i+1) = (u(i+2)+u(i))/2.0 
c      p(i+1) = (p(i+2)+ p(i))/2.000 
c      E(i+1) = (E(i+2)+ E(i))/2.0 
c      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
c      enddo 
       
 
c      do i=0,jj 
c      write(*,'(A1,i4,10f10.3)') 
c     &  'e',i,rho(i),j(i),e(i),p(i),u(i) 
c      enddo 
c 
c      print *,'4',n,rho(28) 
 
      elseif (eos .eq. 4) then ! ideal gas EOS with general Dless 
scales 
      umax = 0. 
      do i = 0,jj 
      uloc = abs(u(i))+dsqrt(gama*(gama-1.d0)*T(i)) 
      if (uloc .gt. umax) umax=uloc 
      enddo 
      ht = 0.001*hx/uloc 
c      print *,'ht=',ht 
c      print *,'integer time ',n 
       do i= 0,jj-2,2    !space 
c calculate average 
      j(i+1) =    (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0 
      PI(i+1) = 4.d0*(eta(i+2)+ eta(i))*(u(i+2)-u(i))/hx/6.d0 
      q(i+1) = -1.d0*gama*(eta(i+2)+ eta(i))*(T(i+2)-T(i))/hx 
     &        /(Pr)/2.d0 
c     T(i+1) = gama*p(i+1)/rho(i+1) 
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      E(i) = rho(i)*u(i)*u(i)/2.d0+p(i)/(gama-1.d0) 
      rho(i+1) = (rho(i+2)+ rho(i))/2.d0 
      u(i+1) = (u(i+2)+u(i))/2.d0 
      p(i+1) = (p(i+2)+ p(i))/2.d0 
      E(i+1) = (E(i+2)+ E(i))/2.d0 
      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
c 
      enddo 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,j(i),PI(i),q(i),T(i),E(i),rho(i),u(i),p(i),e(i),h(i) 
c      enddo 
c 
c      print *,'1',n,rho(24) 
      do i=2,jj-2,2 
c 
      q(i) = (q(i-1)+q(i+1))/2.d0 
      rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx 
      jhat(i) = rho(i)*u(i) + ht*(  (PI(i+1)    -  PI(i-1)) 
     &                          -(j(i+1)*u(i+1) - j(i-1)*u(i-1)) 
     &                                 -(p(i+1) - p(i-1)))/hx 
      Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))- 
     &                     (j(i+1)*H(i+1)   -  j(i-1)*H(i-1))- 
     &                            (q(i+1)   -   q(i-1)))/hx 
      uhat(i) = jhat(i)/rhohat(i) 
      phat(i)= (gama -1.d0)*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.d0) 
c 
 
c 
      enddo 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i) 
c      enddo 
c 
c      print *,rho(24),ht,j(28+1),j(28-1),hx 
c      print *,'2',n,rhohat(28) 
 
      do i=2,jj-2,2 
      rho(i) = rhohat(i) 
      u(i) = uhat(i) 
      j(i) = jhat(i) 
      E(i) = Ehat(i) 
      p(i) = phat(i) 
      T(i) = p(i)/rho(i)/(gama-1.d0) 
c      omegau(i) = 1.16145d0/((Tinter*T(i))**0.14874d0)          ! 
Chapman-Enskog 
c     &           + 0.52487d0/(exp(0.77320d0*Tinter*T(i))) 
c     &           + 2.16178d0/(exp(2.43787d0*Tinter*T(i))) 
c      eta(i) = 5.d0*dsqrt(m*k*T(i)/acos(-1.d0)) 
c     &        /(16.d0*omegau(i)*sigma**2) 
 
c      eta(i) = 2.d0*dsqrt(m*k*T(i)/acos(-1.d0)) 
c     &        /(3.d0*acos(-1.d0)*sigma**2)      ! Maxwell 
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c      omegau = 1.16145/(vari0*T(i))**0.14874 
c     &       + 0.52487/(exp(0.77320*vari0*T(i))) 
c     &       + 2.16178/(exp(2.43787*vari0*T(i))) 
c      eta(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/ 
c     &        ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
 
c      x = T(i)*Tinf/vari0 
c      omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2 
c     &         -5.9588*x + 4.1996 
c      etad(i) = 5.d0*dsqrt(acos(-1.0)*m*k*T(i))/ 
c     &        ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c      eta(i) = etad(i)/(rhoinf*cinf*lambda) 
 
 
c      etad(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/ 
c     &         (16.0*acos(-1.0)*sigma**2*omegau) 
c      eta(i) = etad(i)/(rhoinf*cinf*lambda) 
 
c      eta(i) = etainf*(T(i))**w                 ! Power Law 
      enddo 
c 
c 
c      print *,'3',n,rho(28) 
 
c      do i=0,jj-2,2 
c      rho(i+1) = (rho(i+2)+rho(i))/2.0 
c      u(i+1) = (u(i+2)+u(i))/2.0 
c      p(i+1) = (p(i+2)+ p(i))/2.000 
c      E(i+1) = (E(i+2)+ E(i))/2.0 
c      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
c      enddo 
       
 
c      do i=0,jj 
c      write(*,'(A1,i4,10f10.3)') 
c     &  'e',i,rho(i),j(i),e(i),p(i),u(i) 
c      enddo 
c 
c      print *,'4',n,rho(28) 
 
      elseif (eos .eq. 1) then ! M-G EOS 
      umax = 0.d0 
      do i = 0,jj 
      uloc = abs(u(i))+dsqrt((gama0+1.d0)*gama0*T(i)) 
      if (uloc .gt. umax) umax=uloc 
      enddo 
      ht = 0.001*hx/uloc 
c      print *,'ht=',ht 
 
c      print *,'integer time ',n 
      do i= 0,jj-2,2    !space 
c calculate average 
      j(i+1) =    (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0 
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      PI(i+1) = 4.d0*(eta(i+2)+ eta(i))*(u(i+2)-u(i))/hx/6.d0 
      q(i+1) = -1.d0*(gama0+1.d0)*(eta(i+2)+ eta(i))* 
     &         (T(i+2)-T(i))/(hx*Pr*2.d0) 
c      q(i+1) = - kappa0*(T(i+2)-T(i))/hx 
c      q(i+1) = - (eta(i+2)+ eta(i))*(T(i+2)-T(i))/hx/((gama0)*Pr)/2.d0 
c     T(i+1) = gama*p(i+1)/rho(i+1) 
c      E(i) = rho(i)*u(i)*u(i)/2.d0+p(i)/gama0 
      rho(i+1) = (rho(i+2)+ rho(i))/2.d0 
      u(i+1) = (u(i+2)+ u(i))/2.d0 
      p(i+1) = (p(i+2)+ p(i))/2.d0 
      E(i+1) = (E(i+2)+ E(i))/2.d0 
      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
      enddo 
 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,j(i),PI(i),q(i),T(i),E(i),rho(i),u(i),p(i),e(i),h(i) 
c      enddo 
c 
c      print *,'1',n,rho(24) 
     
      do i=2,jj-2,2 
c 
      q(i) = (q(i-1)+q(i+1))/2.d0 
      rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx 
      jhat(i) = rho(i)*u(i) + ht*(  (PI(i+1)    -  PI(i-1)) 
     &                          -(j(i+1)*u(i+1) - j(i-1)*u(i-1)) 
     &                                 -(p(i+1) - p(i-1)))/hx 
      Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))- 
     &                     (j(i+1)*H(i+1)   -  j(i-1)*H(i-1))- 
     &                            (q(i+1)   -   q(i-1)))/hx 
      uhat(i) = jhat(i)/rhohat(i) 
      x = 1.d0 - rho(0)/rhohat(i)     
c      phat(i) = -
gama0**5*x**4*e00/(24.d0*cinf**2)+gama0**2*x**4*s/12.d0 
c     &       - 3.d0*gama0*x**4*s**2/4.d0 
c     &       + (x + (2.d0*s- gama0/2.d0)*x**2 + s*(3.d0*s - 
gama0)*x**3) 
c     &       + gama0*rho(0)*(Ehat(i)-rhohat(i)*uhat(i)**2/2.d0) 
c     &        /rhohat(i) ! 4th order eos 
      phat(i) = (x + (2.d0*s - gama0/2.d0)*x**2  
     &          + s*(3.d0*s - gama0)*x**3)*C0**2/cinf**2  
     &        + gama0*rho(0)*(Ehat(i)-rhohat(i)*uhat(i)**2/2.d0) 
     &          /rhohat(i) ! 3rd order eos 
 
c      print *,'values to find pressure'  
c      print *, 'rho(0)',rho(0),'x',x,'s',s,'gama0',gama0 
c      print *, 'rhohat',rhohat(i),'Ehat',Ehat(i),'uhat(i)',uhat(i) 
c      print *, 'phat(i)', phat(i) 
c      pause 
c      phat(i) = gama0*((Ehat(i)-rhohat(i)*uhat(i)**2/2.d0) 
c      phat(i) = p(0) 
c     &        + gama0*rho(0)*((Ehat(i)-rhohat(i)*uhat(i)**2/2.d0) 
c     &          /rhohat(i) 
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c     &        - ie(0)/rho(0)) 
c      phat(i) = gama0*rhoref*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0 
c     &          - eref) + Pref 
c      phat(i)= gama0*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0) 
c 
      enddo 
 
c      if (n/100 .eq. float(n)/100.) then 
c      do bug = 0,jj,10   !debug  
c      write (*,'(2i5,3f16.5)')n,bug,phat(bug),Ehat(bug),rhohat(bug) 
c      enddo 
c      pause 
c      endif 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i) 
c      enddo 
c 
c      print *,rho(24),ht,j(28+1),j(28-1),hx 
c      print *,'2',n,rhohat(28) 
 
      do i=2,jj-2,2 
      rho(i) = rhohat(i) 
      u(i) = uhat(i) 
      j(i) = jhat(i) 
      E(i) = Ehat(i) 
      p(i) = phat(i) 
      T(i) = T(0)+ (E(i)-rho(i)*u(i)**2/2.d0)/rho(i) 
     &           - (E(0)-rho(0)*u(0)**2/2.d0)/rho(0) 
      PI(i) = 4.d0*eta(i)*(u(i+2)-u(i))/2.d0/hx/3.d0 
      
c      omegau(i) = 
1.16145/((Tinter*T(i))**0.14874)                     ! Chapman-Enskog 
c     &           + 0.52487/(exp(0.77320*Tinter*T(i))) 
c     &           + 2.16178/(exp(2.43787*Tinter*T(i))) 
c      eta(i) = 5.0*sqrt(m*k*T(i)/acos(-1.0))/(16.0*omegau(i)*sigma**2) 
c      eta(i) = 2.0*sqrt(m*k*T(i)/acos(-1.0))/(3.0*acos(-
1.0)*sigma**2) ! Maxwell 
 
c      omegau = 1.16145/(vari0*T(i))**0.14874 
c     &       + 0.52487/(exp(0.77320*vari0*T(i))) 
c     &       + 2.16178/(exp(2.43787*vari0*T(i))) 
c      eta(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/ 
c     &        ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c      x = T(i)*Tinf/vari0 
c      omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2 
c     &         -5.9588*x + 4.1996 
c      etad(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/ 
c     &         (16.0*acos(-1.0)*sigma**2*omegau) 
c      eta(i) = etad(i)/(rhoinf*cinf*lambda) 
 
c      eta(i) = 
etainf*(T(i))**w                                        ! Power Law 
      enddo 
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c 
c      print *,'3',n,rho(28) 
 
c      do i=0,jj-2,2 
c      rho(i+1) = (rho(i+2)+rho(i))/2.0 
c      u(i+1) = (u(i+2)+u(i))/2.0 
c      p(i+1) = (p(i+2)+ p(i))/2.0 
c      E(i+1) = (E(i+2)+ E(i))/2.0 
c      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
c      enddo 
       
c      do i=0,jj 
c      write(*,'(A1,i4,10f10.3)') 
c     &  'e',i,rho(i),j(i),e(i),p(i),u(i) 
c      enddo 
c 
c      print *,'4',n,rho(28) 
      elseif (eos .eq. 2) then ! ideal gas EOS general dimensionless 
      umax = 0. 
      do i = 0,jj 
      uloc = abs(u(i))+dsqrt(gama*R*T(i)/Cv) 
      if (uloc .gt. umax) umax=uloc 
      enddo 
      ht = 0.001*hx/uloc 
 
c      print *,'ht=',ht 
 
c      print *,'integer time ',n 
      do i= 0,jj-2,2    !space 
c calculate average 
      j(i+1) =    (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0 
      PI(i+1) = 4.d0*(eta(i+2)+ eta(i))*(u(i+2)-u(i))/hx/6.d0 
      q(i+1) = - kappa0*(T(i+2)-T(i))/hx 
c      q(i+1) = - (eta(i+2)+ eta(i))*(T(i+2)-T(i))/hx/((gama0)*Pr)/2.0 
c     T(i+1) = gama*p(i+1)/rho(i+1) 
      E(i) = rho(i)*u(i)*u(i)/2.d0+p(i)/gama0 
      rho(i+1) = (rho(i+2)+ rho(i))/2.d0 
      u(i+1) = (u(i+2)+ u(i))/2.d0 
      p(i+1) = (p(i+2)+ p(i))/2.d0 
      E(i+1) = (E(i+2)+ E(i))/2.d0 
      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
 
      enddo 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,j(i),PI(i),q(i),T(i),E(i),rho(i),u(i),p(i),e(i),h(i) 
c      enddo 
c 
c      print *,'1',n,rho(24) 
      do i=2,jj-2,2 
c 
      q(i) = (q(i-1)+q(i+1))/2.d0 
      rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx 
      jhat(i) = rho(i)*u(i) + ht*(  (PI(i+1)    -  PI(i-1)) 
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     &                          -(j(i+1)*u(i+1) - j(i-1)*u(i-1)) 
     &                                 -(p(i+1) - p(i-1)))/hx 
      Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))- 
     &                     (j(i+1)*H(i+1)   -  j(i-1)*H(i-1))- 
     &                            (q(i+1)   -   q(i-1)))/hx 
      uhat(i) = jhat(i)/rhohat(i) 
      phat(i)= (gama -1.d0)*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.d0) 
c      phat(i) = gama0*rhoref*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0 
c     &          - eref) + Pref 
c      phat(i)= gama0*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0) 
c 
c      if (n/100 .eq. float(n)/100.) then 
c      do bug = 0,jj,10   !debug  
c      write (*,'(2i4,f12.5)')n,bug,phat(bug) 
c      enddo 
c      pause 
c      endif 
c 
      enddo 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i) 
c      enddo 
c 
c      print *,rho(24),ht,j(28+1),j(28-1),hx 
c      print *,'2',n,rhohat(28) 
 
      do i=2,jj-2,2 
      rho(i) = rhohat(i) 
      u(i) = uhat(i) 
      j(i) = jhat(i) 
      E(i) = Ehat(i) 
      p(i) = phat(i) 
c      T(i) = p(i)/rho(i)/(gama-1.d0) 
      T(i) = T(0)+ (e(i)-rho(i)*u(i)**2/2.d0)/rho(i) 
     &           - (e(0)-rho(0)*u(0)**2/2.d0)/rho(0) 
c      omegau(i) = 
1.16145/((Tinter*T(i))**0.14874)                      ! Chapman-Enskog 
c     &           + 0.52487/(exp(0.77320*Tinter*T(i))) 
c     &           + 2.16178/(exp(2.43787*Tinter*T(i))) 
c      eta(i) = 5.0*sqrt(m*k*T(i)/acos(-1.0))/(16.0*omegau(i)*sigma**2) 
c      eta(i) = 2.0*sqrt(m*k*T(i)/acos(-1.0))/(3.0*acos(-
1.0)*sigma**2)  ! Maxwell 
 
c      omegau = 1.16145/(vari0*T(i))**0.14874 
c     &       + 0.52487/(exp(0.77320*vari0*T(i))) 
c     &       + 2.16178/(exp(2.43787*vari0*T(i))) 
c      eta(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/ 
c     &        ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda)) 
c      x = T(i)*Tinf/vari0 
c      omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2 
c     &         -5.9588*x + 4.1996 
c      etad(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/ 
c     &         (16.0*acos(-1.0)*sigma**2*omegau) 
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c      eta(i) = etad(i)/(rhoinf*cinf*lambda) 
 
c      eta(i) = 
etainf*(T(i))**w                                         ! Power Law 
      enddo 
c 
c      print *,'3',n,rho(28) 
 
c      do i=0,jj-2,2 
c      rho(i+1) = (rho(i+2)+rho(i))/2.0 
c      u(i+1) = (u(i+2)+u(i))/2.0 
c      p(i+1) = (p(i+2)+ p(i))/2.0 
c      E(i+1) = (E(i+2)+ E(i))/2.0 
c      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
c      enddo 
       
 
c      do i=0,jj 
c      write(*,'(A1,i4,10f10.3)') 
c     &  'e',i,rho(i),j(i),e(i),p(i),u(i) 
c      enddo 
c 
c      print *,'4',n,rho(28) 
 
c------------------------------liquid------------------------------ 
      elseif (eos .eq. 3) then !liquid M-G      
      umax = 0. 
      do i = 0,jj 
c      uloc = abs(u(i))+dsqrt(gama*R*T(i)/Cv) 
      uloc = abs(u(i))+1.d0 
      if (uloc .gt. umax) umax=uloc 
      enddo 
      ht = 0.001*hx/uloc 
 
c      print *,'ht=',ht 
c      print *,'integer time ',n 
 
 
      do i= 0,jj-2,2    !space 
c calculate average 
      j(i+1) =  (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0 
      PI(i+1) = (4.d0/3.d0+uv)*((eta(i+2)+ eta(i))/2.d0) 
     &         *(u(i+2)-u(i))/hx 
      q(i+1) = -kappa0*(T(i+2)-T(i))/hx 
      rho(i+1) = (rho(i+2)+ rho(i))/2.d0 
      u(i+1) = (u(i+2)+ u(i))/2.d0 
      p(i+1) = (p(i+2)+ p(i))/2.d0 
      E(i+1) = (E(i+2)+ E(i))/2.d0 
      H(i+1) = (E(i+1)+ p(i+1))/rho(i+1) 
 
c      if (n/1000 .eq. float(n)/1000.) then   !debug 
c      print *,'debug',n,E(i) 
c      endif 
      enddo 
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c       print *,Pr, gama, mu, R, Tinf, rhoinf, cinf,lambda,eta(0) 
c       print *, kappa0,eta(0)/((gama-1.d0)*Pr) 
c       pause 
 
      do i=2,jj-2,2 
c 
      q(i) = (q(i-1)+q(i+1))/2.d0 
      rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx 
      jhat(i) = rho(i)*u(i) + ht*(  (PI(i+1)    -  PI(i-1)) 
     &                          -(j(i+1)*u(i+1) - j(i-1)*u(i-1)) 
     &                                 -(p(i+1) - p(i-1)))/hx 
      Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))- 
     &                     (j(i+1)*H(i+1)   -  j(i-1)*H(i-1))- 
     &                            (q(i+1)   -   q(i-1)))/hx 
      uhat(i) = jhat(i)/rhohat(i) 
      x = 1.d0 - rho(0)/rhohat(i)     
c      phat(i) = -
gama0**5*x**4*e00/(24.d0*cinf**2)+gama0**2*x**4*s/12.d0 
c     &       - 3.d0*gama0*x**4*s**2/4.d0 
c     &       + (x + (2.d0*s- gama0/2.d0)*x**2 + s*(3.d0*s - 
gama0)*x**3) 
c     &       + gama0*rho(0)*(Ehat(i)-rhohat(i)*uhat(i)**2/2.d0) 
c     &        /rhohat(i) ! 4th order eos 
      phat(i) = (x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s-gama0)*x**3) 
     &        + gama0*rho(0)*(Ehat(i)-rhohat(i)*uhat(i)**2/2.d0) 
     &        /rhohat(i) ! 3rd order eos 
c      print *,'values to find pressure'  
c      print *, 'rho(0)',rho(0),'x',x,'s',s,'gama0',gama0 
c      print *, 'rhohat',rhohat(i),'Ehat',Ehat(i),'uhat(i)',uhat(i) 
c      print *, 'phat(i)', phat(i) 
c      pause 
c      phat(i) = gama0*((Ehat(i)-rhohat(i)*uhat(i)**2/2.d0) 
c      phat(i) = p(0) 
c     &        + gama0*rho(0)*((Ehat(i)-rhohat(i)*uhat(i)**2/2.d0) 
c     &          /rhohat(i) 
c     &        - ie(0)/rho(0)) 
c      phat(i) = gama0*rhoref*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0 
c     &          - eref) + Pref 
c      phat(i)= gama0*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0) 
c 
c      if (n/100 .eq. float(n)/100.) then 
c      do bug = 0,jj,10   !debug  
c      write (*,'(2i4,f12.5)')n,bug,phat(bug) 
c      enddo 
c      pause 
c      endif 
c 
      enddo 
c      do i=0,jj 
c      write(*,'(i4,10f10.3)') 
c     &  i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i) 
c      enddo 
c 
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c      print *,rho(24),ht,j(28+1),j(28-1),hx 
c      print *,'2',n,rhohat(28) 
 
      do i=2,jj-2,2 
      rho(i) = rhohat(i) 
      u(i) = uhat(i) 
      j(i) = jhat(i) 
      E(i) = Ehat(i) 
      p(i) = phat(i) 
      T(i) = T(0)+ (e(i)-rho(i)*u(i)**2/2.d0)/rho(i) 
     &           - (e(0)-rho(0)*u(0)**2/2.d0)/rho(0) 
      enddo 
  
c      do i=0,jj 
c      write(*,'(A1,i4,10f10.3)') 
c     &  'e',i,rho(i),j(i),e(i),p(i),u(i) 
c      enddo 
 
      endif 
 
      if (n/10000 .eq. float(n)/10000.) then 
      print *,'Time step n=',n 
      if     (n .gt. 99 .and. n .le. 999) then 
      write(filen(8:10),'(i3)') n 
c      elseif (n .gt. 999 .and. n .le. 9999) then 
c      write(filen(7:10),'(i4)') n 
c      elseif (n .gt. 9999 .and. n .le. 99999) then 
c      write(filen(6:10),'(i5)') n 
c      elseif (n .gt. 99999 .and. n .le. 999999) then 
c      write(filen(5:10),'(i6)') n 
      elseif (n .gt. 999999 .and. n .le. 9999999) then 
      write(filen(4:10),'(i7)') n 
      open(unit=22,file=filen,form='formatted',status='unknown') 
      do i=0,jj 
      write (22,'(81f12.5)') (hx/2.d0)*(float(i)-float(jj)/2.d0), 
     & p(i),rho(i),(rho(i)-rho(0))/(rho(jj)-rho(0)) 
      enddo 
      close(22) 
c      write(entropy(4:10),'(i7)') n 
      elseif (n .gt. 9999999 .and. n .le. 99999999) then 
      write(filen(3:10),'(i8)') n 
      open(unit=22,file=filen,form='formatted',status='unknown') 
      do i=0,jj 
      write (22,'(81f12.5)') (hx/2.d0)*(float(i)-float(jj)/2.d0), 
     & p(i),rho(i),(rho(i)-rho(0))/(rho(jj)-rho(0)) 
      enddo 
      close(22) 
c      write(entropy(3:10),'(i8)') n 
      endif 
 
c      open(unit=22,file=filen,form='formatted',status='unknown') 
c      print *,'Time step n=',n 
c      do i=0,jj 
c      write (22,'(81f12.5)') (hx/2.d0)*(float(i)-float(jj)/2.d0), 
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c     & p(i),rho(i),(rho(i)-rho(0))/(rho(jj)-rho(0)) 
c      enddo 
c      close(22) 
 
      if(eos .eq. 0) then 
c      open(unit=21,file=entropy,form='formatted',status='unknown') 
      dsus = 0 
      dsTs = 0 
      do i = 2,jj-2,2 
      dsu(i) = 4.d0*eta(i)*((u(i+2)-u(i-2))/(2.d0*deltax))**2*deltax 
     &         /(3.d0*T(i))/(rho(i)*u(i)) 
      dsus = dsus + dsu(i) 
      dsT(i) =-kappa*((T(i+2)-2.d0*T(i)+T(i-2))/(deltax**2))*deltax 
     &   /T(i)/(rho(i)*u(i)) 
      dsT(i) =((q(i+2)-q(i-2))/(2.d0*hx))*hx/T(i)/(rho(i)*u(i)) 
      dsTs = dsTs + dsT(i) 
      enddo 
      ds = (dsus -dsTs)*R*gama 
      entropy(n) = ds 
c      write (21,'(4f12.5)') dsa, dsus*R*gama,dsTs*R*gama, ds 
c      close(21) 
c 
c      do i = 0,jj 
c      write (* ,'(i4,f12.5)') i,rho(i) 
c      write (23,'(f12.6)') hx*(float(i)-float(jj)/2.0) 
c      enddo 
c         pause 
c      close(23) 
  
      elseif(eos .ne. 0) then 
      dsus = 0 
      dsTs = 0 
      do i = 2,jj-2,2 
      dsu(i) = 4.d0*eta(i)*((u(i+2)-u(i-2))/(2.d0*deltax))**2*deltax 
     &         /(3.d0*T(i))/(rho(i)*u(i)) 
      dsus = dsus + dsu(i) 
      dsT(i) =-kappa*((T(i+2)-2.d0*T(i)+T(i-2))/(deltax**2))*deltax 
     &   /T(i)/(rho(i)*u(i)) 
      dsT(i) =((q(i+2)-q(i-2))/(2.d0*hx))*hx/T(i)/(rho(i)*u(i)) 
      dsTs = dsTs + dsT(i) 
      enddo 
c      do i = 2,jj-2,2 
c      dsu(i) = 4.d0*eta(i)*((u(i+2)-u(i))/deltax)**2*(deltax) 
c     &         /(3.d0*T(i))/(rho(i)*u(i)) 
c      dsus = dsus + dsu(i) 
c      dsT(i) =-gama*eta(i)/Pr*((T(i+2)-2*T(i)+T(i-2))/((deltax)**2)) 
c     &        *(deltax)/T(i)/(rho(i)*u(i)) 
c      dsT(i) =((q(i+2)-q(i))/(deltax))*(deltax)/T(i)/(rho(i)*u(i)) 
c      dsTs = dsTs + dsT(i) 
c     enddo 
      ds = (dsus -dsTs)*Cv 
      entropy(n) = ds 
      endif  
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c output restart 
      print *,'Write restart file...'  
      open (unit=44, file='restart.dat', form='formatted', 
     &      status='unknown') 
       do i = 0,jj,1 !Zero out variables 
      write (44,'(i15,6e25.18)') n,rho(i),u(i),P(i),e(i),T(i),eta(i) 
       enddo 
       close(44) 
c       endif 
 
      endif 
 
      enddo !j-loop 
 
c---------------analytic solution is only available for gas------------  
c--------------------------analytic solution--------------------------- 
      print *,'Analytic solution' 
      open (unit=41,file='shock.dat',form='formatted',status='unknown') 
      open(unit=21,file='entropy.dat',form='formatted',status='unknown') 
 
      if (eos .ne. 3) then 
c caculate parameters 
 
c      print *,'alpha2=',alpha,' beta=',beta 
      c1= sqrt(gama*R*Tinf)                            !sound speed of 
inflow [cm/us] 
c      print *,'alpha2=',alpha,' beta=',beta 
      x0=0.*t(1)*((gama+1.0)*u(0)/4.0 + !shock position from landau and 
liftshitz  pg 358. Why there is a 0. before t(n),besides, is t(n) the 
same mean as T(n)? 
     &  sqrt((gama+1.0)**2*u(0)**2/16.0+ c1**2 )) 
c      print *,'alpha2=',alpha,' beta=',beta 
      x0=0.*x0/lambda 
c      print *,'alpha2=',alpha,' beta=',beta 
      M1= sqrt(((p(jj)/p(0))*(gama+1.0)+gama-1.0)/(2.d0*gama) )! mach# 
for the stationary shock solution 
      v1=M1*c1                                                 ! 
upstream velocity 
      alpha=(gama-1.d0)/(gama+1.d0)+2.d0/((gama+1.d0)*M1**2)   ! alpha, 
asymptote of analytic solution see BSL notes 
      beta=9.0*(gama+1.0)*sqrt(acos(-1.0)/8.0/gama)/8.0        ! beta, 
from transport phonomena book P352 
c     lambda=3.d0*mu/rho(0)*       ! mean free path [cm], use value in 
numerical method 
c    &   dsqrt(dacos(-1.d0)*M1/8.d0/R/T(0)) 
 
c bisection method 
 
      do i=0,jj-2,2                    ! space step through domain and 
find the analytic solution psi 
      xx =-5.0+(5.0+5.0)*float(i)/(float(jj)-1.0)       !dimensionless 
position 



102 

   

 

  

      xa = 1.0                         ! first guess, psi must be 
between xa and xb 
      xb = alpha                       ! xb=alpha will always make f>0 
c     print *,'alpha2=',alpha,' beta=',beta 
c     print *,'psialpha3',alpha 
c     pause 
 
      fa   = 1.0-xa-(xa-alpha)**alpha                        ! analytic 
solution at xa 
     &      *exp(beta*M1*(1.0-alpha)*(xx-x0)) 
      fb   = 1.0-xb-(xb-alpha)**alpha                        ! analytic 
solution at xb 
     &      *exp(beta*M1*(1.0-alpha)*(xx-x0)) 
      print *,'xa and xb',xx,xa,xb,fa,fb 
 
       if (fa .eq. 0.0) then                                 ! xa first 
guess was right! 
       psi(i) = xa 
       goto 99 
       elseif (fb .eq. 0.0) then                             ! xb first 
guess was right! 
       psi(i) = xb 
       goto 99 
       endif 
 
       if (fa*fb .ge. 0) pause'root must be bracketed'!determine 
interval limits 
       if (fa .lt. 0) then                       !orient the search to 
keep fa<0 
       dx=xb-xa 
       xa=xa 
       else 
       dx=xa-xb 
       xa=xb 
       endif 
      print *,'alpha5=',alpha,' beta=',beta 
      print *,xa,xb,fa,fb 
      do iter=1,1000            ! iterate bisection method to find psi 
at each r position 
c      print *,iter,'alpha6=',alpha,' beta=',beta 
       dx=dx*0.5 
       xb=xa+dx 
       fb=1.0-xb-(xb-alpha)**alpha 
     &      *exp(beta*M1*(1.0-alpha)*(xx-x0)) 
c      print *,iter,xx,xa,xb,dx,fb 
       if (fb .le. 0) xa=xb 
c      print *,iter,'alpha6=',alpha,' beta=',beta 
c      if(fb .eq. 0) return 
       enddo 
c     print *,'out of loop',j 
      psi(i)=xb 
 
 99   continue      ! solution converged 
c      pause 
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      write(41,'(I5,10e13.4)') 
     &  i,xx,psi(i), 
     &  (1.0/psi(i)-rho(0))/(rho(jj)-rho(0)), 
     &  hx*(dfloat(i)-dfloat(jj)/2.d0)/2.0d0, 
     &   u(i)*c1/v1,v1/u(i)/c1, 
     &  (rho(i)-rho(0))/(rho(jj)-rho(0)), 
     &  q(i), PI(i) 
 
      enddo 
c       print *,Pr, gama, mu, R, Tinf, rhoinf, cinf,lambda,eta(0) 
c       print *, kappa0,eta(0)/((gama-1.d0)*Pr) 
c       pause 
      
      else 
      do i = 0,jj 
      write(41,'(I5,4e13.4)') 
     &  i, 
     &  hx*(dfloat(i)-dfloat(jj)/2.d0)/2.0d0, 
     &  (rho(i)-rho(0))/(rho(jj)-rho(0)), 
     &  p(i)*Pless/(1.d9) 
      enddo 
      endif 
       
      write(21,'(f12.5)') dsa 
      do counter = 0, n, 10000 
      write(21,'(f12.5)') entropy(counter) 
      enddo 
      end 
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