
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional
Projects

Numerical Simulation Model on Irreversibility of Shock-Wave Numerical Simulation Model on Irreversibility of Shock-Wave

Process Process

Longhao Huang
Marquette University

Follow this and additional works at: https://epublications.marquette.edu/theses_open

 Part of the Acoustics, Dynamics, and Controls Commons

Recommended Citation Recommended Citation
Huang, Longhao, "Numerical Simulation Model on Irreversibility of Shock-Wave Process" (2013). Master's
Theses (2009 -). 228.
https://epublications.marquette.edu/theses_open/228

https://epublications.marquette.edu/
https://epublications.marquette.edu/theses_open
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/theses_open?utm_source=epublications.marquette.edu%2Ftheses_open%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/294?utm_source=epublications.marquette.edu%2Ftheses_open%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/theses_open/228?utm_source=epublications.marquette.edu%2Ftheses_open%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages

NUMERICAL SIMULATION MODEL ON IRREVERSIBILITY OF
SHOCK-WAVE PROCESS

by

Longhao Huang, B.S.

A Thesis submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Master of Science

Milwaukee, Wisconsin

December 2013

ABSTRACT
NUMERICAL SIMULATION MODEL ON IRREVERSIBILITY OF

SHOCK-WAVE PROCESS

Longhao Huang, B.S.

Marquette University, 2013

The objective of this research is to develop a better understanding of the
irreversibilities associated with the shock compaction of matter, especially as a result of
impact. Due to complex shock processes, experimentation alone cannot fix the material
state, since properties such as internal energy, entropy as well as the shock process are
not measurable. Thus, in addition to experimentation, analytical and numerical methods
are also used to completely characterize the shock process, although they are restricted by
underlying constitutive assumptions. Instead of using artificial irreversibility, such as
artificial viscosity to simplify and stabilize the numeric shock model, this work will
directly incorporate and solve the correct constitutive relations that describe the sources
of irreversibility.

Shock wave processes in gas and water are simulated and two equations of state
(EOS) are discussed. For a one-dimensional shock wave in gas, results from simulations
at two different non-dimensional scales utilizing two different EOS are comparable to the
idealized analytical solution and experimental data. Besides, the Mie-Grüneisen (M-G)
equation of state, which has been used for solids, is extended to study gas and liquid. The
value of Mie-Grüneisen constant, which is a function of atom oscillator frequency and
specific volume, is hard to detect from experiment. Based on statistical mechanics, a
relationship between the gas Mie-Grüneisen constant and specific heat ratio is derived
analytically, which makes Mie-Grüneisen EOS available for gas. The M-G constant is
also derived from shock jump condition and Mie-Grüneisen EOS for water and a
sensitivity analysis is done based on the simulation result.

i

ACKNOWLEDGMENTS

Longhao Huang, B.S.

First and foremost I would like to thank my advisor Dr. John P. Borg, a real
gentleman in academic research, for give me the opportunity to advance my engineering
knowledge. I benefit a lot from his patient assistance and guidance in this research. I also
would like to thank Dr. Jon D. Koch and Dr. Margaret Mathison for their helpful advice
and technical insight in my entire master research and study. I would like to thank my
wife and parents for their full support. Finally, I would like to appreciate the Graduate
School and the Department of Mechanical Engineering at Marquette University for
providing me such a good platform of study.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... i

I. INTRODUCTION .. 1

1.1 Objectives ... 1

1.2 Methodology ... 3

II. IDEAL GAS EOS MODEL ... 4

2.1 Derivation of Dimensional NS Equations... 4

2.2 Non-Dimensional NS Equations – Ideal Gas Scheme 8

2.3 Non-Dimensional NS Equations – General Fluid Scheme 11

2.4 Gas Viscosity Sub-Models .. 13

2.5 Discretization .. 15

2.6 Boundary Condition (B.C.) ... 19

2.7 Entropy Calculation Equations ... 21

2.8 Theoretical Solution for Gas ... 21

2.9 Mie-Grüneisen EOS .. 22

2.10 Mie-Grüneisen Parameter – Gas ... 24

III. GAS SIMULATION RESULTS ... 29

3.1 Gas Dimensionless Scales Based Simulation 29

3.2 General Dimensionless Scales Based Simulation 46

3.3 Mie-Grüneisen EOS Model - Argon ... 55

IV. MIE-GRÜNEISEN EOS MODEL - WATER ... 62

4.1 Experimental Geometry .. 62

iii

4.2 Determination of Shock Wave Velocity ... 63

4.3 Mie-Grüneisen Parameter ... 64

4.4 Relation of Bulk Viscosity and Dilatational Viscosity 65

4.5 Numerical Simulation ... 66

4.6 Sensitivity Analysis .. 67

V. CONCLUSION ... 71

VI. REFERENCES .. 74

VII. APPENDIX - FORTRAN CODE ... 75

1

Chapter 1

Introduction

1.1 Objectives

Research related to shock wave processes has a long history. Compared with

elastic deformation process, shock wave process can make irreversible change to the

material state. According to material states, constitutive models can be divided into gas,

liquid and solid groups, which vary from simple to complex respectively. Due to complex

shock processes, there are various kinds of ways to research shock processes. One

approach is to design an experiment to directly collect material property data and capture

the shock wave profile, such as velocity, density or pressure. Based on experimental data,

the shock Hugoniot compression curve can be established, which is used to estimate the

shock compressed state. While shock temperature is usually obtained by a theoretical

calculations based on the various thermodynamic quantities or shock Hugoniot data

available. So experimental methods alone are insufficient to establish the complete

equation of state and the preciseness need to be improved. Numeric methods can assist in

fixing the complete equation of state. Results from numeric simulations can be compared

to specific points on a thermodynamic surface to assess the effectiveness of simulation

procedure.

The objective of this research is to develop a better understanding of the

irreversibility associated with the shock compaction of matter, especially as a result of

impact, based on numerical simulation. In classical numeric formulations the cells size of

2

the simulation is large compared to the shock thickness, thus the shock is not numerically

resolved. As a result, the evolution of irreversibilities within the shock process is not

resolved. In order to simplify or stabilize the shock model, artificial irreversibility, such

as artificial viscosity, are introduced and applied [1-3]. For one-dimensional shock wave

processes in monatomic gas, Navier-Stoke (NS) equations and ideal gas equation of state

(EOS) are able to describe the generation of irreversibilities [4]. The use of Navier-Stoke

equations makes for a more complete analysis including thermodynamically consistent of

temperature [5]. In order to simulate shock interactions that are under resolved, artificial

viscosity is included in most simulations in order to dampen-out spurious numeric

instabilities. In this work the complete classic Newtonian viscous stress tensor is directly

incorporated in the simulation. In order to resolve the gradients required by the

Newtonian viscous stress tensor, the very sharp, very thin (<1 μm) shock fronts must be

resolved.

Furthermore, shock wave processes in liquids are more complex than those in

gases. In order to make one-dimensional Navier-Stoke formulation more robust,

additional modifications can be considered, such as non-dimensional scales, different

equations of state (EOS), parameter studies and the inclusion of the Newtonian

compressibility terms and second viscosity. Specific experimental data and analytical

simulation results are to be used to check the accuracy of these simulations. In addition, a

sensitivity analysis is presented to analyze the effects of irreversibility in shock wave

process.

3

1.2 Methodology

This work compares numerical simulation, analytical simulation and specific

experimental data to accomplish stated objectives.

Experiments are usually conducted under Lagrange coordinate, while parameters

from Lagrange coordinate are not convenient to use in numeric simulations, so Euler

coordinates are used instead. Work starts from assumptions, which are made from

experimental design, physics phenomenon and mathematics derivation process. Then,

finite difference techniques are used in the discretization based on simplified equations.

A second-order central difference is chosen to discretize numerical equations from

analytical Navier-Stoke equations, similar to a Crank–Nicolson method. The scheme is

programed in FORTRAN.

Two kinds of equations of state are used in these simulations: ideal gas EOS and

Mie-Grüneisen EOS. Sub-models of irreversibility come from the full Newtonian fluid

stress tensor, where the transport constants for viscosity are assumed constant or follow

an experimentally observed trend line, such as power law of viscosity or Maxwell method

of viscosity. In order to shorten the simulation time and keep accuracy high, two kinds of

non-dimensional scales are used with these equations and variables. This also helps

extend the availability of the numerical model from gas to liquid.

4

Chapter 2

Ideal Gas EOS Model

2.1 Derivation of Dimensional NS Equations

The following is the general governing Navier-Stokes equations:

Continuity

∂
∂t
ρ = −(∇ ∙ ρu) (2.1.1)

Motion

∂
∂t
ρu = −[∇ ∙ ρuu] − ∇p − [∇ ∙ τ] + ρg (2.1.2)

Energy

∂
∂t
ρ�𝐾� + 𝑈�� = −�∇ ∙ 𝜌�𝐾� + 𝐻��𝑢� − (∇ ∙ 𝑞) − (∇ ∙ [𝜏 ∙ 𝑢]) + 𝜌(𝑢 ∙ 𝑔) (2.1.3)

where ρ stands for density, u for the velocity, T for the temperature, 𝞽 for the

stress and P is the pressure. In addition the kinetic and internal energy and enthalpy are

defined as follows:

 𝐾� = 1
2
𝑢2 for the kinetic energy per unit mass,

 𝑈� = 𝐶𝑣𝑇 for the internal energy per unit mass,

 𝐻� = 𝑈� + 𝑝
𝜌
 for the enthalpy per unit mass.

The heat flux due to conduction, q, is described by Fourier’s Law: q = −κ∇T.

Assuming one-dimensional plane flow, u, T, ρ and p are functions of space in the

x direction and time t, noted as u(x,t), T(x,t), ρ(x,t) and p(x,t). The velocities in the y and

5

z drop out of the formulation. The one-dimensional governing equations can be

simplified as follows.

Continuity

∂
∂t
ρ = − ∂

∂x
ρ𝑢𝑥 (2.1.4)

Use u to replace 𝑢𝑥 and set the momentum j = ρ𝑢𝑥, inserting into equation above,

results in

∂ρ
∂t

+ ∂j
∂x

= 0 (2.1.5)

Motion

∂
∂t
ρu𝑥 = −∂ρu𝑥𝑢𝑥

∂x
− ∂p

∂x
− ∂𝜏𝑥𝑥

∂x
 (2.1.6)

Rearrange equation (2.1.6) to get

∂j
∂t

+ ∂ju
∂x

+ ∂p
∂x

= −∂𝜏𝑥𝑥
∂x

 (2.1.7)

Energy

∂
∂t
ρ�𝐾� + 𝑈�� = −𝜕𝜌(𝐾�+𝐻�)𝑢

𝜕𝑥
− ∂𝑞𝑥

∂x
− ∂𝜏𝑥𝑥𝑢

∂x
 (2.1.8)

Where the total energy per unit volume is defined as:

E = ρ�𝐾� + 𝑈�� = 𝐾 + 𝑈 (2.1.9)

In equation (2.1.9), the U stands for internal energy per unit volume and K stands

for kinetic energy per unit volume.

Then, combined with their respective definitions the following equations result:

U = ρ𝐶𝑣𝑇 (2.1.10)

K = 1
2
𝜌𝑢2 (2.1.11)

6

E = 1
2
𝜌𝑢2 + ρ𝐶𝑣𝑇 (2.1.12)

The thermodynamic relationships for the specific heats𝐶𝑝, 𝐶𝑣, and γ and R can be

written as

R = 𝐶𝑝 − 𝐶𝑣 (2.1.13)

γ = 𝐶𝑝
𝐶𝑣

 (2.1.14)

where γ is the specific heat ratio and,

R is the gas constant.

Combining the equations (2.1.13) and (2.1.14), the following results are

𝐶𝑣 = 𝑅
𝛾−1

 (2.1.15)

𝐶𝑝 = 𝑅
𝛾−1

+ 𝑅 = 𝑅𝛾
𝛾−1

 (2.1.16)

This can be combined with the ideal gas equation of state

p = ρRT (2.1.17)

𝜌𝐶𝑣𝑇 = 𝜌𝑅𝑇
𝛾−1

= 𝑝
𝛾−1

 (2.1.18)

Total energy can be expressed by ρ,γ and u, as

E = 1
2
𝜌𝑢2 + 𝑝

𝛾−1
 (2.1.19)

The enthalpy is defined in the usual way and can be combined with the kinetic

energy for simplification:

H = 𝐸+𝑝
𝜌

= 𝜌(𝐾�+𝑈�)+𝑝
𝜌

= 𝐾� + �𝑈� + 𝑝
𝜌

 � = 𝐾� + 𝐻� (2.1.20)

The energy evolution equation can be obtained by substituting E and H into

energy equation (2.1.8) to get

7

∂
∂t

E = −𝜕(𝑗𝐻)
𝜕𝑥

− ∂𝑞𝑥
∂x

− ∂(𝜏𝑥𝑥𝑢)
∂x

 (2.1.21)

Finally the energy equation becomes,

Energy

∂
∂t

E + 𝜕(𝑗𝐻)
𝜕𝑥

+ ∂𝑞𝑥
∂x

= −∂(𝜏𝑥𝑥𝑢)
∂x

 (2.1.22)

where q is the Fourier Law flux defined as:

q = 𝑞𝑥 = −𝜅 𝜕𝑇
𝜕𝑥

 (2.1.23)

Heat conductivity

Some of the transport properties can be combined into dimensionless parameters

in order to simplify the governing equations. Since the Prandlt number, Pr, is defined as

Pr = 𝐶𝑝𝜂
𝜅

 (2.1.24)

Then rearranging for the heat conduction, k, yields,

κ = 𝐶𝑝𝜂
𝑃𝑟

 (2.1.25)

Insert the expression for the specific heat, 𝐶𝑝, equation (2.1.16) to get

κ = 𝛾𝑅𝜂
(𝛾−1)𝑃𝑟

 (2.1.26)

The Newtonian stress tensor is defined in equation 2.1.27.

𝜏𝑥𝑥 = −𝜂 �2 𝜕𝑢𝑥
𝜕𝑥
� + (2

3
𝜂 − 𝜇)(∇ ∙ 𝑢) (2.1.27)

For a monatomic noble gas with low density, where there are no free electrons in

the valence shells, one can assume the second viscosity μ is zero [7]. This is born out by

experimental results. As a result, one arrives at the simplified one dimensional stress

𝜏𝑥𝑥 = −4
3
𝜂 𝜕𝑢
𝜕𝑥

 (2.1.28)

8

One should note that equation 2.1.28 retains the compressibility terms from 2.1.27.

But it has been simplified greatly. Finally, one should note that in order to resolve this

scheme the gradients in equations 2.1.28 and 23 must be resolved.

2.2 Non-Dimensional NS Equations – Ideal Gas Scheme

Since the upstream densityρ∞, mean-free path λ and sound speed 𝐶∞ can be

obtained from experiments and the gas constant R is a constant, they are well suited to be

used as non-dimensional scales. In addition the ratio of specific heats, γ is used to

dimensionalize the energy equation. The mean free path for a perfect gas is from

G.A.Bird [6]. It can be manipulated to the following form,

λ = 4𝜂
(𝜌√2𝜋𝑅𝑇Ω)

 (2.2.1)

where, Ω is a coefficient from mean collision rate of molecule, which is defined

as,

Ω = 5(𝛼+1)(𝛼+2)
𝛼(7−2𝜔)(5−2𝜔)

 (2.2.2)

where, 𝛼 is an exponent in the variable molecular model. When 𝛼 = 1, equation

(2.2.1) is applicable for hard sphere assumption and ω is viscosity index, a coefficient

related to fluid.

Using scales above mentioned, the following basic dimensionless parameters can

be formulated as ρ = 𝜌�𝜌∞, u = 𝑢�𝐶∞, p = 𝑝�𝜌∞𝐶∞2 , x = 𝑥�𝜆, t = 𝑡̃ 𝜆
𝐶∞

Substituting these into the one dimensional governing equations (2.1.5, 2.1.7 and

2.1.22), yields:

9

 ∂𝜌�𝜌∞
∂𝑡̃ 𝜆

𝐶∞

+ ∂𝜌�𝑢�𝜌∞𝐶∞
∂𝑥�𝜆

= 0 (2.2.3)

where the momentum flux is defined as:

j = ρu = 𝜌�𝑢�𝜌∞𝐶∞. (2.2.4)

Combining these two and factoring yields

𝜌∞𝐶∞
𝜆

(∂𝜌�
∂𝑡̃

+ ∂𝜌�𝑢�
∂𝑥�

) = 0 (2.2.5)

which simplifies to

∂𝜌�
∂𝑡̃

+ ∂𝜌�𝑢�
∂𝑥�

= 0. (2.2.6)

The stress can be non-dimensionalized as

𝜏𝑥𝑥 = − 4
3
𝜂 𝜕𝑢
𝜕𝑥

= − 4
3
𝜂 𝜕𝑢�𝐶∞

𝜕𝑥�𝜆
 (2.2.7)

Inserting into the momentum equation yields

∂𝜌�𝑢�𝜌∞𝐶∞
∂𝑡̃ 𝜆

𝐶∞

+ ∂𝜌�𝑢�𝜌∞𝐶∞𝑢�𝐶∞
∂𝑥�𝜆

+ ∂𝑝�𝜌∞𝐶∞2

∂𝑥�𝜆
= −

∂43𝜂
𝜕𝑢�𝐶∞
𝜕𝑥�𝜆

∂𝑥�𝜆
 (2.2.8)

By collect terms the following equation results,

𝜌∞𝐶∞2

𝜆
(∂𝜌�𝑢�
∂𝑡̃

+ ∂𝜌�𝑢�2

∂𝑥�
+ ∂𝑝�

∂𝑥�
) = −4

3
𝜂 𝐶∞
𝜆2

∂2𝑢�
∂𝑥�2

 (2.2.9)

(∂𝜌�𝑢�
∂𝑡̃

+ ∂𝜌�𝑢�2

∂𝑥�
+ ∂𝑝�

∂𝑥�
) = −4

3
η

𝜆𝜌∞𝐶∞

∂2𝑢�
∂𝑥�2

 (2.2.10)

The left side of equation (2.2.10) is dimensionless, in order to keep the right side

dimensionless, the following requirement is enforced.

η
𝜆𝜌∞𝐶∞

= 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 (2.2.11)

To get non-dimensional scale for η, η = 𝜂�(𝜆𝜌∞𝐶∞), the momentum equation can

be non-dimensionalized as follows:

10

Momentum

�∂𝜌�𝑢�
∂𝑡̃

+ ∂𝜌�𝑢�2

∂𝑥�
+ ∂𝑝�

∂𝑥�
� = −4

3
𝜂� ∂

2𝑢�
∂𝑥�2

= −∂𝜏�𝑥𝑥
∂x�

= ∂Π�𝑥𝑥
∂x�

 (2.2.12)

where the stress tensor is

Π�𝑥𝑥 = −τ�𝑥𝑥

The dimensionless total energy can be written as

E = 1
2
𝜌𝑢2 + 𝑝

𝛾−1
= 1

2
𝜌�𝜌∞(𝑢�𝐶∞)2 + 𝑝�𝜌∞𝐶∞2

𝛾−1
= 𝜌∞𝐶∞2 �

1
2
𝜌�𝑢�2 + 𝑝�

𝛾−1
� = 𝜌∞𝐶∞2 𝐸�

(2.2.13)

where the dimensionless enthalpy is defined as

H = 𝐸+𝑝
𝜌

= 𝜌∞𝐶∞2 𝐸�+ 𝑝�𝜌∞𝐶∞2

𝜌�𝜌∞
= 𝐶∞2

𝐸�+𝑝�
𝜌�

= 𝐶∞2𝐻� (2.2.14)

From the ideal gas equation of state p = ρRT, the dimensionless temperature can

be derived,

T = 𝑝
𝜌𝑅

= 𝑝�𝜌∞𝐶∞
2

𝜌�𝜌∞𝑅
 (2.2.15)

The various thermodynamic variables can be made non-dimensional, which

results in

T = 𝛾𝑝�𝐶∞2

𝛾𝜌�𝑅
= 𝑇� 𝐶∞

2

𝛾𝑅
 (2.2.16)

Further, the heat flux can be non-dimensionalized as

q = 𝑞𝑥 = −𝜅 𝜕𝑇
𝜕𝑥

= −𝜅
𝜕𝑇�𝐶∞

2

𝛾𝑅

𝜕𝑥�𝜆
= −𝜅 𝐶∞2

𝜆𝛾𝑅
𝜕𝑇�

𝜕𝑥�
 (2.2.17)

The dimensionless variables E�, H�, ȷ̃, T�, 𝜏̃𝑥𝑥 and q� with corresponding parameters

can be substituted into the energy equation to get

11

∂

∂𝑡̃ 𝜆
𝐶∞

𝜌∞𝐶∞2 𝐸� + 𝜕�𝜌�𝑢�𝜌∞𝐶∞𝐶∞2 𝐻��
𝜕𝑥�𝜆

+
∂−𝐶∞

2

𝜆𝛾𝑅𝑞�

∂𝑥�𝜆
=

∂(43𝜂�𝜆𝜌∞𝐶∞
𝜕𝑢�𝐶∞
𝜕𝑥�𝜆 𝑢�𝐶∞)

∂𝑥�𝜆
 (2.2.18)

which reduces to

𝜌∞𝐶∞3

𝜆
(∂𝐸

�

∂𝑡̃
 + 𝜕(𝚥̃𝐻�)

𝜕𝑥�
) + (−𝜅 𝐶∞2

𝜆2𝛾𝑅
) ∂

2𝑇�

∂𝑥�2
= 4𝜂�𝜌∞𝐶∞3

3𝜆
∂
∂𝑥�

(𝑢� 𝜕𝑢�
𝜕𝑥�

) (2.2.19)

Since both sides are multiply by 𝜆
𝜌∞𝐶∞3

 , then the above simplifies to

∂𝐸�

∂𝑡̃
 + 𝜕(𝚥̃𝐻�)

𝜕𝑥�
+ (−𝜅

𝜌∞𝐶∞𝜆𝛾𝑅
) ∂

2𝑇�

∂𝑥�2
= 4η�

3
∂
∂𝑥�

(𝑢� 𝜕𝑢�
𝜕𝑥�

) (2.2.20)

The right side of this equation is dimensionless, which requires

−𝜅
𝜌∞𝐶∞𝜆𝛾𝑅

= 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 (2.2.21)

Assuming the non-dimensional scale for heat conductivity is

𝜅 = 𝜅̃𝜌∞𝐶∞𝜆𝛾𝑅. (2.2.22)

Energy equation reduces to

∂𝐸�

∂𝑡̃
 + 𝜕(𝚥̃𝐻�)

𝜕𝑥�
− 𝜅̃ ∂2𝑇�

∂𝑥�2
= −4

3
𝜂�[(𝜕𝑢�

𝜕𝑥�
)2 + 𝑢� 𝜕

2𝑢�
𝜕𝑥�2

] = −∂(τ�𝑥𝑥𝑢�)
∂x�

 = 𝜕(Π�𝑥𝑥𝑢�)
𝜕x�

 (2.2.23)

where, Π�𝑥𝑥 = −τ�𝑥𝑥 .

So finally on arrives at a consistent dimensionless scheme for gas behavior:

𝑢 ∼ 𝐶∞, 𝑥 ∼ 𝜆, 𝑡 ∼ 𝜆
𝐶∞

, 𝜌 ∼ 𝜌∞, 𝑃 ∼ 𝜌∞𝐶∞2 ,

𝑇 ∼ 𝐶∞2

𝛾𝑅
, 𝜂 ∼ 𝜆𝜌∞𝐶∞, 𝜅 ∼ 𝜌∞𝐶∞𝜆𝛾𝑅.

2.3 Non-Dimensional NS Equations – General Fluid Scheme

The non-dimensional scales used in the previous derivation are for gas simulation.

This is because the ideal gas equation of state is explicit in these assumptions. In order to

extend the applicability of the non-dimensional scheme to fluids and solids, a set of more

12

general non-dimensional scales needs to be introduced. As upstream density ρ∞, mean-

free path λ and sound speed 𝐶∞ can be also taken from experiments and analytical

calculation in liquid, they can be used for this purpose. To get more general the gas

constant R can be replaced by the specific heat Cv. This eliminates the need for the gas

specific heat ratio γ.

Thus the more general non-dimensional scales are as following:

Fundamental scales

ρ = 𝜌�𝜌∞, u = 𝑢�𝐶∞, p = 𝑝�𝜌∞𝐶∞2 , x = 𝑥�𝜆, t = 𝑡̃ 𝜆
𝐶∞

,

where, 𝐶∞ is no longer local sound speed, but bulk sound speed.

The secondary scales can be expressed as follows:

 η = 𝜂�(𝜆𝜌∞𝐶∞), T = 𝑇� 𝐶∞
2

𝐶𝑣
, k = 𝑘�(𝐶𝑣𝜆𝜌∞𝐶∞), q = 𝑞�(𝜌∞𝐶∞3)

During the dimensionless process, the main differences between the gas and the

more general fluid/solid dimensionless process is in terms related to temperature. The

temperature does not directly appear in the continuity equation and momentum equation.

However they are loosely coupled through the transport properties. So the dimensionless

forms of these two equations are the same as equation (2.2.6) and (2.2.12).

In order to keep the same unit of heat conductivity, a non-dimensional scale of

heat conductivity is introduced, 𝐶𝑣𝜆𝜌∞𝐶∞ , instead of 𝜌∞𝐶∞𝜆𝛾𝑅.

Thus the energy equation is

∂𝐸�

∂𝑡̃
𝜌∞𝐶∞3

𝜆
+ 𝜕�(𝜌�𝑢�𝐻�)𝜌∞𝐶∞3 �

𝜕𝑥�𝜆
+ ∂𝑞�𝜌∞𝐶∞3

∂𝑥�𝜆
=

∂(43𝜂�𝜆𝜌∞𝐶∞
𝜕𝑢�𝐶∞
𝜕𝑥�𝜆 𝑢�𝐶∞)

∂𝑥�𝜆
 (2.3.1)

which simplifies to,

13

∂𝐸�

∂𝑡̃
+ 𝜕(𝚥̃𝐻�)

𝜕𝑥�
+ ∂𝑞�

∂𝑥�
= 4

3

∂(𝜂�𝜕𝑢�𝜕𝑥�𝑢�)

∂𝑥�
= 4

3
𝜕(Π�𝑥𝑥𝑢�)

𝜕x�
 (2.3.2)

where, Π�𝑥𝑥 = −τ�𝑥𝑥 .

2.4 Gas Viscosity Sub-Models

Viscosity η and heat conductivity κ are functions of temperature. Four models of

viscosity have been investigated in the work, constant viscosity model, power law model,

Maxwell model [6] and Chapman-Enskog model [7].

Power Law Model

The power law viscous model is derived from simple observation of experimental

measurements that illustrate that viscosity varies with respect to temperature.

Experimental data is found to fit a power law form of the following:

η = 𝜂∞(𝑇
𝑇∞

)𝜔 (2.4.1)

where, 𝜂∞ is upstream viscosity, 𝑇∞ is upstream temperature, and 𝜔 is viscosity

index based on the data in Chapman and Cowling (1970) [6].

Equation (2.4.1) can be converted into dimensionless form

η� = 𝜂�∞(𝑇�

𝑇�∞
)𝜔 (2.4.2)

Since the dimensionless upstream boundary condition for temperature is 𝑇�∞ = 1.0,

the viscosity simples to

η� = 𝜂�∞(𝑇�)𝜔 (2.4.3)

Maxwell model

The Maxwell model is an analytic viscosity model derived from ridged body

particle behavior and a Boltzman velocity distribution [7]. The result is

14

η = 2
3
�𝑚𝑘𝑇 𝜋⁄
𝜋𝑑2

 (2.4.4)

where, 𝑚 is molecular mass, 𝑘 is Boltzmann’s constant, 𝑑 is the diameter of gas

molecule, such as argon, 𝑘𝑇 = 𝑘�𝑇�𝜌∞𝜆3𝐶∞2 , 𝑚 = 𝑚�𝜌∞𝜆3, 𝑑 = 𝑑̃𝜆.

Inserting and simplifying yields

𝜂� = 2
3𝜋𝑑�2

�𝑚�𝑘�𝑇�

𝜋
 (2.4.5)

Chapman-Enskog Model

The Chapman-Enskog model is based a semi-theoretical assumption by Chapman

and Enskog. It’s an extension of the rigid ball/Botzman distribution model of Maxwell

that includes weak attractive forces. The resulting equation is

η = 5
16

√𝜋𝑚𝑘𝑇
𝜋𝜎2Ω𝑢

 (2.4.6)

where, 𝑚 is molecular mass, 𝑘 is Boltzmann’s constant, 𝜎 is the diameter of gas

molecule, Ω𝑢 is dimensionless collision integrals, which can be derived from the trend

line as a function of kT/𝜀, which is an empirical parameter.

Inserting dimensional properties, 𝑚 = 𝑚�𝜌∞𝜆3, 𝜎 = 𝜎�𝜆, and 𝑘𝑇 = 𝑘�𝑇�𝜌∞𝜆3𝐶∞2

into equation (2.4.6) one arrives at the following simplified result:

𝜂� = 5
16Ω𝑢𝜎�2

�𝑚�𝑘�𝑇�

𝜋
 (2.4.7)

With regard to the non-dimensional process, these viscosity models are not

affected by the choice of non-dimensional scales.

15

2.5 Discretization

A second order, central difference, finite difference method is used to discretize

the analytic equations presented above. The resulting numerical equations and schemes

are similar to a Crank–Nicolson method, where parameters with even subscript are face

grids and node grids are marked by odd subscripts. This effectively stagers the space grid

and stabilizes the solution integration.

The following finite difference scheme is used:

Continuity

Analytical Form,

∂𝜌�
∂𝑡̃

+ ∂𝜌�𝑢�
∂𝑥�

= 0 (2.5.1)

Finite difference form,

(∂𝜌�
∂𝑡̃

)𝑖𝑛 + ∂ȷ̃(𝑖)
∂𝑥�

= 0 (2.5.2)

The subscript i is corresponding to space change and superscript n is for time

change.

The discrete form can be written as follows:

𝜌�𝑛+1(𝑖)−𝜌�𝑛(𝑖)
Δ𝑡̃

+ 𝚥̃(𝑖+1)−𝚥̃(𝑖−1)
2Δ𝑥�

= 0 (2.5.3)

The hat (or carrot) is used to denote time change,

𝜌�𝑛+1(𝑖) = 𝜌�(𝑖) (2.5.4)

therefore the forward time density can be expressed as:

𝑝̂(𝑖) = 𝑝�(𝑖) − Δ𝑡̃
2Δ𝑥�

[𝚥̃(𝑖 + 1) − 𝚥̃(𝑖 − 1)] (2.5.5)

16

Momentum

The generalized non-dimensional differential form of the energy equation can be

written as,

(∂𝜌�𝑢�
∂𝑡̃

+ ∂𝜌�𝑢�2

∂𝑥�
+ ∂𝑝�

∂𝑥�
) = −4

3
𝜂� ∂

2𝑢�
∂𝑥�2

 (2.5.6)

The finite difference form is,

(∂𝚥̃
∂𝑡̃

)𝑖𝑛 + ∂𝚥̃𝑢�
∂𝑥�

+ ∂𝑝�
∂𝑥�

= −∂𝜏�𝑥𝑥
∂x�

= ∂Π�𝑥𝑥
∂x�

 (2.5.7)

where the discrete form can be written as:

𝚥̃𝑛+1(𝑖)−𝚥̃𝑛(𝑖)
Δ𝑡̃

= Π�𝑥𝑥
𝑛+1(𝑖+1)−Π�𝑥𝑥

𝑛(𝑖−1)
2Δx�

− 𝑝�(𝑖+1)−𝑝�(𝑖−1)
2Δ𝑥�

− 𝚥̃(𝑖+1)−𝚥̃(𝑖−1)
2Δ𝑥�

 (2.5.8)

Again, the hat notation denotes time change

𝚥̃𝑛+1(𝑖) = 𝚥̂(𝑖) (2.5.9)

Thus the momentum can be expressed as:

𝚥̂(𝑖) = 𝚥̃(𝑖) +
Δ𝑡̃�Π�𝑥𝑥

𝑛+1(𝑖+1)−Π�𝑥𝑥
𝑛(𝑖−1)−𝑝�(𝑖+1)+𝑝�(𝑖−1)−𝚥̃(𝑖+1)+𝚥̃(𝑖−1)�

2Δx�
 (2.5.10)

where the viscous terms can be written as:

Π𝑥𝑥 = 4
3
𝜂�(𝑖) 𝜕𝑢�

𝜕𝑥�
= 4

3
𝜂�(𝑖+1)+𝜂�(𝑖−1)

2
𝑢�(i+1)−𝑢�(i−1)

2Δ𝑥�
 (2.5.11)

Energy

The analytical form of the energy equation is:

∂𝐸�

∂𝑡̃
 + 𝜕(𝚥̃𝐻�)

𝜕𝑥�
− 𝜅̃ ∂2𝑇�

∂𝑥�2
= −3

4
𝜂�[(𝜕𝑢�

𝜕𝑥�
)2 + 𝑢� 𝜕

2𝑢�
𝜕𝑥�2

] = 𝜕(Π�𝑥𝑥𝑢�)
𝜕x�

 (2.5.12)

The finite difference form reduces to:

(∂𝐸
�

∂𝑡̃
)𝑖𝑛 = −𝜕(𝚥̃𝐻�)

𝜕𝑥�
+ 𝜅̃ ∂2𝑇�

∂𝑥�2
+ 𝜕�Π

�𝑥𝑥𝑢��
𝜕x�

 (2.5.13)

where the discrete form is:

17

𝐸�𝑛+1(𝑖) − 𝐸�𝑛(𝑖)
Δ𝑡̃ =

Π�𝑥𝑥(𝑖 + 1)𝑢�(𝑖 + 1) − Π�𝑥𝑥(𝑖 − 1)𝑢�(𝑖 − 1)
2Δ𝑥�

 − 𝚥̃(𝑖+1)𝐻�(𝑖+1)−𝚥̃(𝑖−1)𝐻�(𝑖−1)
2Δ𝑥�

− 𝑞�(𝑖+1)−𝑞�(𝑖−1)
2Δ𝑥�

 (2.5.14)

𝐸�𝑛+1(𝑖) = 𝐸�(𝑖) (2.5.15)

Discrete forms for velocity 𝑢�(𝑖) and 𝜌�(𝑖) have been derived from the Navier-

Stokes (NS) equation. Furthermore, pressure 𝑝̂(𝑖) and temperature 𝑇�(𝑖) need to be

determined. Constitutive equations can be applied to solve for these two variables.

Because 𝐸�(𝑖) is known by definition,

E�(i) = 1
2
𝜌�(𝑖) ∙ 𝑢�2(𝑖) + 𝑝�(𝑖)

𝛾−1
 (2.5.15)

then, 𝑝̂(𝑖) can be written as:

𝑝̂(𝑖) = (𝛾 − 1)[E�(i)− 1
2
𝜌�(𝑖) ∙ 𝑢�2(𝑖)] (2.5.16)

According to the ideal gas equation of state,

𝑝̂(𝑖) = 𝜌�(𝑖)𝑅𝑇�(𝑖) (2.5.17)

Since temperature can be written as:

T = 𝑇� 𝐶∞
2

𝛾𝑅
 (2.5.18)

𝑇�(i) can be resolved from equation 2.5.17 and 18, as:

𝑇�(i) = 𝛾𝑝�(𝑖)
𝜌�(𝑖)

 (2.5.19)

Heat flux

The heat flux is defined by Fourier Law as:

q = −𝜅 𝜕𝑇
𝜕𝑥

 (2.5.20)

18

Heat conductivity can be written in a function related to viscosity and gas

parameters, γ, R and Prandtl number Pr, as:

κ = 𝛾𝑅𝜂
(𝛾−1)𝑃𝑟

 (2.5.21)

Inserting this into equation 2.5.20, the following expression for the heat flux can

be written:

q�(i) = − 𝛾𝑅𝜂
(𝛾−1)𝑃𝑟

𝜕𝑇(𝑖)
𝜕𝑥

= − 1
(𝛾−1)𝑃𝑟

𝜂�(𝑖+1)+𝜂�(𝑖−1)
2

𝑇�(𝑖+1)−𝑇�(𝑖−1)
2Δ𝑥�

 (2.5.22)

Face grids are assigned the average of adjoining node values [4], as:

Mass flux,

𝑗(𝑖) = 𝑗(𝑖+1)+𝑗(𝑖−1)
2

 (2.5.23)

Velocity,

𝑢(𝑖) = 𝑢(𝑖+1)+𝑢(𝑖−1)
2

 (2.5.24)

Pressure,

𝑝(𝑖) = 𝑝(𝑖+1)+𝑝(𝑖−1)
2

 (2.5.25)

Density,

𝜌(𝑖) = 𝜌(𝑖+1)+𝜌(𝑖−1)
2

 (2.5.26)

Total Energy,

𝐸(𝑖) = 𝐸(𝑖+1)+𝐸(𝑖−1)
2

 (2.5.27)

Enthalpy,

𝐻(𝑖) = 𝐸(𝑖)+𝑃(𝑖)
𝜌(𝑖)

 (2.5.28)

i are odd numbers for faces and even numbers for nodes as following:

19

Figure 2.5.1 Numerical Scheme

2.6 Boundary Condition (B.C.)

The left hand side boundary condition can be determined by measurements and

analytical calculation or fixed under specific conditions that are reasonable. While the

right hand side boundary conditions are more difficult to determine, They depend on a

jump relation which include material specific behavior. Two kinds of methods are used to

determine right hand side B.C. of shock wave in gas medium. One is the normal shock

equations, which is restricted to ideal gas behavior; the other is Rankine-Hugoniot jump

condition equations, which is available both for both gas and liquid medium.

2.6.1 Normal Shock Equations

The ideal gas specific shock jump equations are as following:

Pre-shock Mach number is:

𝑀𝑎1 = 𝑢1
�𝛾𝑅𝑇1

 (2.6.1.1)

Post-shock Mach number is:

𝑀𝑎2 = �
𝑀𝑎12+

2
𝛾−1

2𝑀𝑎1
2𝛾

𝛾−1 −1
 (2.6.1.2)

Pressure ratio is:

20

𝑃2
𝑃1

= 1+𝛾𝑀𝑎1
2

1+𝛾𝑀𝑎22
 (2.6.1.3)

Temperature ratio is:

𝑇2
𝑇1

=
1+(𝛾−1)𝑀𝑎1

2

2

1+
(𝛾−1)𝑀𝑎2

2

2

 (2.6.1.4)

Density ratio is:

𝜌2
𝜌1

= 𝑃2𝑇1
𝑃1𝑇2

 (2.6.1.5)

Usually, it is more convenient to present the boundary conditions as ratios across

shock wave conditions. So, dimensionless parameters are often specified and the right

hand side B.C. is determined from the ratios. In this thesis state 1 stands for pre-shock

condition, state 2 stands for post-shock condition.

2.6.2 Rankine-Hugoniot Equations

In order to specify boundary conditions for non-ideal gas behavior with the

context of this numerical model, the following Rankine-Hugoniot Equations are

incorporated, which are more general than normal shock equations.

Continuity

𝜌2𝑈2 = 𝜌1𝑈1 (2.6.1.5)

Momentum

𝜌2𝑈22 + 𝑃2 = 𝜌1𝑈12 + 𝑃1 (2.6.1.6)

Energy

𝜌2𝑈2(𝑒2 + 𝑈22

2
+ 𝑃2

𝜌2
) = 𝜌1𝑈1(𝑒1 + 𝑈12

2
+ 𝑃1

𝜌1
) (2.6.1.7)

21

2.7 Entropy Calculation Equations

In order to specify the reliability of the numerical simulation, the values of

entropy change from theoretical calculation and numerical simulation are compared.

Theoretical entropy change:

𝑆2 − 𝑆1 = 𝐶𝑣 ∙ ln �𝑇2
𝑇1
� + 𝑅 ∙ ln (𝜌1

𝜌2
) (2.7.1)

Integrate form of entropy change is used in numerical simulation:

𝑆2 − 𝑆1 = 1
𝑚̇

(∫ 𝜏
𝑇
𝑑𝑣
𝑑𝑥
𝑑𝑥 − ∫ 1

𝑇
𝑑𝑞
𝑑𝑥
𝑑𝑥) (2.7.2)

Where, 𝑚̇ is mass flow rate, τ is shear force, 𝑞 is heat flux.

2.8 Theoretical Solution for Gas

Theoretical solution is set up on one-dimensional compressible flow in a

stationary shock wave condition and assumes steady flow with constant viscosity, heat

conductivity and specific heat. Second viscosity is neglected for low density gas. [7]

Subscript 1 is corresponding to upstream conditions. The dimensionless velocity

distribution equation 𝜙(𝜉) can be written as:

1−𝜙
(𝜙−𝛼)𝛼

= exp [𝛽𝑀𝑎1(1 − 𝛼)(𝜉 − 𝜉0)] (𝛼 < 𝜙 < 1) (2.8.1)

where, 𝜙 is dimensionless velocity, 𝜙 = 𝜐𝑥
𝜐1

; 𝜉 is dimensionless coordinate, 𝜉 = 𝑥
𝜆
;

𝑀𝑎1 is the Mach number at the upstream condition,

𝑀𝑎1 = 𝜐1
�𝛾𝑅𝑇1 𝑀⁄

; (2.8.2)

𝛼 and 𝛽 are group terms as follows:

𝛼 = 𝛾−1
𝛾+1

+ 2
𝛾+1

1
𝑀𝑎12

 , (2.8.3)

22

𝛽 = 9
8

(𝛾 + 1)�𝜋 8𝛾⁄ . (2.8.4)

The reference mean free path 𝜆 is defined as:

𝜆 = 3𝑢1
𝜌1
� 𝜋𝑀
8𝑅𝑇1

 (2.8.5)

2.9 Mie-Grüneisen EOS

Comparing with section 2.3, this section uses Mie-Grüneisen EOS instead of ideal

gas EOS to find the relationship between these two kinds of EOS [8-9].

Mie-Grüneisen equation of state (M-G EOS)

𝑃 − 𝑃0 = 𝛾
𝜈

(𝜀 − 𝜀0) (2.9.1)

where, 𝑃 is the pressure, 𝜀 is the internal energy, 𝑃0 and 𝜀0 are pressure and

internal energy at zero-kelvin states, they can be calculated out by polynomial equations,

𝛾 is the Mie-Grüneisen parameter, 𝜈 is the specific volume.

Zero-kelvin curve can be evaluated using the Hugoniot as a reference curve,

𝑃𝐻 − 𝑃0 = 𝛾
𝜈

(𝜀𝐻 − 𝜀0) (2.9.2)

With equation of state of material,

𝑈𝑠 = 𝑐 + 𝑠𝑈𝑝 (2.9.3)

 Hugoniot pressure can be expressed,

𝑃𝐻 = 𝜌0𝑐2𝑥
(1−𝑠𝑥)2

 (2.9.4)

where, 𝑥 = 1 − 𝑉
𝑉0

= 1 − 𝜌0
𝜌

.

Corresponding internal energy is

𝜀𝐻=
𝑃𝐻𝜈0𝑥
2

 (2.9.5)

23

A good approximation (2.9.6) from experiments is also used during derivation

process.

𝛾
𝜈

= 𝛾0
𝜈0

= 𝐶𝑜𝑛𝑡𝑎𝑛𝑡 (2.9.6)

Plug above equations into equation (2.9.2) to get

𝛾0
𝜈0
𝜀0 + 𝜕𝜀0

𝜕𝜐
+ 𝜌0𝑐2𝑥

(1−𝑠𝑥)2
(1 − 𝛾0

2
𝑥) = 0 (2.9.7)

4th order polynomial equation of internal energy𝜀0 is written as:

𝜀0 = 𝜀00 + 𝜀01𝑥 + 𝜀02𝑥2 + 𝜀03𝑥3 + 𝜀04𝑥4 (2.9.8)

4th order polynomial equation of 𝑃0 is:

𝑃0 = −𝜕𝜀0
𝜕𝜈

= 𝜌0(𝜀01 + 2𝜀02𝑥 + 3𝜀03𝑥2 + 4𝜀04𝑥3) (2.9.9)

 𝜀0 and 𝑃0 in equation (2.9.7) can be replaced with equation (2.9.8) and (2.9.9).

Form any strain value, equation (2.9.7) is established generally. So coefficients

can be determined.

𝜀01 = 𝛾0𝜀00, (2.9.10)

𝜀02 = 1
2

(𝑐2 + 𝛾02𝜀00), (2.9.11)

𝜀03 = 1
6

(4𝑠𝑐2 + 𝛾03𝜀00), (2.9.12)

𝜀04 = 1
24

(18𝑠2𝑐2 − 2𝛾0𝑠𝑐2 + 𝛾04𝜀00), (2.9.13)

Plug these coefficients from equation (2.9.10) to (2.9.13) into equation (2.9.7) and

neglect 4th order term; M-G EOS is expanded as following,

𝑃 = 𝜌0𝑐2 �𝑥 + �2𝑠 − 𝛾0
2
� 𝑥2 + 𝑠(3𝑠 − 𝛾0)𝑥3� + 𝛾0𝜀

𝜐0
 (2.9.14)

Its corresponding dimensionless form is

24

𝑃� = �𝑥 + �2𝑠 − 𝛾0
2
� 𝑥2 + 𝑠(3𝑠 − 𝛾0)𝑥3� + 𝛾0𝜀̃ (2.9.15)

During shock wave transmitting, corresponding to iteration in numerical

simulation, density, pressure and internal energy can be solved by NS equations and M-G

EOS. Temperature is derived from equation (2.9.16)

𝜀 − 𝜀0 = ∫ 𝐶𝑣𝑑𝑇𝑇
𝑇0

 (2.9.16)

For constant Cv, specific heat at constant volume, temperature T is

𝑇 = 𝑇0 + 𝜀−𝜀0
𝐶𝑣

 (2.9.17)

Its dimensionless form is:

𝑇� = 𝑇0� + 𝜀̃ − 𝜀0� (2.9.18)

Actually, Cv is a function related to temperature, which is discussed in chapter 4

sensitive analysis.

2.10 Mie-Grüneisen Parameter – Gas

2.10.1 General Derivation

M-G EOS

𝑃 − 𝑃0 = 𝛾
𝜈

(𝜀 − 𝜀0) (2.10.1.1)

where, 𝑃0, 𝜀0 and 𝛾
𝜈
 are constant.

Differential both sides of equation (2.10.1.1) to get

𝑑𝑃 = 𝛾
𝜈
𝑑𝜀 (2.10.1.2)

Rearrange equation (2.10.1.2), an equation for 𝛾 is derived,

𝛾 = 𝜈 𝑑𝑃
𝑑𝜀

 (2.10.1.3)

25

For gas, relation between pressure and internal energy is 𝜀 = 𝑃
𝜌(𝛾−1)

 , so 𝑑𝑃
𝑑𝜀

=

𝜌(𝛾 − 1),

where, 𝛾 is specific heat ratio. In order to distinguish M-G parameter 𝛾 with

specific heat ratio 𝛾. 𝛾ℎ is used to replace specific heat ratio.

A relation between M-G parameter 𝛾 and specific heat ratio 𝛾ℎ is derived.

𝛾 = 𝛾ℎ − 1 (2.10.1.4)

2.10.2 Reference State

As known from equation (2.9.8) and (2.9.9), for reference state, x = 0,

𝜀0 = 𝜀00 (2.10.2.1)

𝑃0 = 𝜌0𝜀01 (2.10.2.2)

Solving these two equations above with 𝜀01 = 𝛾0𝜀00 to get

𝜀0 = 𝑃0
𝜌0𝛾0

 (2.10.2.3)

Compare with ideal gas internal energy equation 𝜀0 = 𝑃0
𝜌0(𝛾−1)

, 𝛾0 can be

determined.

𝛾0 = (𝛾 − 1) (2.10.2.4)

From above derivation, M-G 𝛾 is constant for gas. The physical meaning of M-G

𝛾 is the resistance of compression at certain temperature, which means the resistance of

compression for low density gas is not sensitive to temperature change.

26

2.10.3 Eulerian and Lagrangian Referential

In reality, gas can transmit in wind tunnel in several Mach number, while shock-

wave transmits though liquid phase materials and experiments are usually conducted in

Lagrangian referential. This model set meshes fixed in space, in order to extend the

availability of this model. Lagrangian referential is to be transferred to Eulerian

referential. The relationship between particle velocity and shock wave velocity are as

following:

𝑈1 = 𝑈𝑠 − 𝑈𝑝1 (2.10.3.1)

𝑈2 = 𝑈𝑠 − 𝑈𝑝2 (2.10.3.2)

where,

𝑈1 and 𝑈2 are material pre-shock and post-shock velocities in Lagrangian

referential,

𝑈𝑠 is shock wave velocity, 𝑈𝑠 = 𝑠𝑈𝑝2 + 𝑐,

𝑈𝑝1 is pre-shock particle velocity. 𝑈𝑝1 = 0, for stationary materials,

𝑈𝑝2 is post-shock particle velocity.

This model mainly simulates first shock caused by impact. For stationary

materials, there is only one particle velocity 𝑈𝑝1 = 0, 𝑈𝑝2 = 𝑈𝑝. Equation (2.10.3.1) and

equation (2.10.3.2) are simplified,

𝑈1 = 𝑈𝑠 (2.10.3.3)

𝑈2 = 𝑈𝑠 − 𝑈𝑝 (2.10.3.4)

Solving above linear equation system to get

27

𝑈𝑝 = 𝑈1 − 𝑈2 (2.10.3.5)

2.10.4 Extended Equation of State of Material (Us-Up curve)

Equation of state of material is usually used for liquid and solid. There is no

accurate reference for gas, while coefficients of S and C for gas can be solved by

analytical way. From chapter 2.6, boundary conditions of shock wave are determined.

There are two more equations, M-G EOS and Us-Up curve, as following

𝑃 = 𝜌0𝑐2 �𝑥 + �2𝑠 − 𝛾0
2
� 𝑥2 + 𝑠(3𝑠 − 𝛾0)𝑥3� + 𝛾0𝜀

𝜐0
 (2.10.4.1)

𝑈𝑠 = 𝑠𝑈𝑝 + 𝐶 (2.10.4.2)

where, Pressure 𝑃, density 𝜌0, internal energy 𝜀, M-G gamma 𝛾0, stain 𝑥, shock

velocity 𝑈𝑠 and particle velocity 𝑈𝑝 are known. There are two equations and two

unknown. So Hugoniot slope S and bulk sound speed C can be solved from this equation

system.

Table 2.10.4.1 S and C values of Air under different Mach number
Ma 1.1 1.4 1.7 2.0 2.3 2.6 2.9
S 3.148 0.969 0.649 0.517 0.443 0.395 0.360
C 208.013 293.862 381.402 470.106 559.651 649.824 740.481

Us-Up curves under different Mach numbers are shown in Figure 2.10.4.1.

Intersections between every two curves are the conditions, which are both workable for

Rankine-Hugoniot jump condition equation and equation of state of material. Figure 3.4.1

shows that Us-Up relation of air is not linearly, which means that Hugoniot slope S and

bulk sound speed C of air vary according to Mach number.

28

Figure 2.10.4.1: Red curve is the converted Us-Up relation of air based on upstream and

downstream Mach numbers. The others are linear Us-Up relation. Intersections are
conditions that are both available for Rankine-Hugoniot equations and Us-Up relation.

29

Chapter 3

Gas Simulation Results

3.1 Gas Dimensionless Scales Based Simulation

3.1.1 B.C. & Parameters Evaluation

In this section the left hand side boundary conditions (B.C.) are defined as follows:

𝑢 = 𝑀𝑎, 𝑃 = 1
𝛾
 , 𝑇 = 1.0, 𝜌 = 1.0, 𝑒 = 𝑃

𝛾−1

where, Ma is Mach number, 𝛾 is specific heat ratio, e is internal energy per unit

mass.

The right hand side B.C. can either be determined based on the downstream Mach

number supplemented with normal shock equations or which is a subset of the more

generalized Rankine-Hugoniot jump equations.

Parameters evaluations for argon and air are presented in Tables 3.1.1.1 and

3.1.1.2.

Table 3.1.1.1 Parameters Evaluation, Argon
Mach# 𝛾 𝜔 𝑃𝑟 ℎ𝑥 𝑁𝑜𝑑𝑒𝑠

1.55

5/3

0.81

2/3

1/8 4800
3.38 1/8 4800
3.38 1/16 9600
9.00 1/16 9600
9.00 1/32 19200

Table 3.1.1.2 Parameters Evaluation, Air
Mach# 𝛾 𝜔 𝑃𝑟 ℎ𝑥 𝑁𝑜𝑑𝑒𝑠

1.6 1.4 0.77 0.715 1/16 9600

30

The dimensionless B.C.s for Argon are presented in Tables 3.1.1.3 through

3.1.1.4.

Table 3.1.1.3 Dimensionless B.C. of Argon, Ma = 1.55
 𝑢 𝜌 𝑃 𝑇 𝑒

LHS 1.550 1.000 0.600 1.000 0.900
RHS 0.871 1.779 1.652 1.548 2.478
Ratio 0.562 1.779 2.753 1.548 2.753

Table 3.1.1.4 Dimensionless B.C. of Argon, Ma = 3.38
 𝑢 𝜌 𝑃 𝑇 𝑒

LHS 3.380 1.000 0.600 1.000 0.900
RHS 1.067 3.168 8.418 4.429 12.627
Ratio 0.316 3.168 14.031 4.429 14.031

Table 3.1.1.5 Dimensionless B.C. of Argon, Ma = 9.0
 𝑢 𝜌 𝑃 𝑇 𝑒

LHS 9.000 1.000 0.600 1.000 0.900
RHS 2.333 3.857 60.600 26.185 90.900
Ratio 0.259 3.857 100.999 26.185 100.999

3.1.2 Validation Check

In order to validate the model, Figures 3.1.2.1 presents the shock wave profile of

the numerical simulation compared both the theoretical solution [7] and experimental

values [10]. The numeric and analytic solutions are nearly identical; the RMS error is

0.2e-4. This is an indication that the numeric scheme is functioning well. However,

neither the analytic nor numeric solutions agree well with the experimental data. As can

be seen in the figure, the experimentally measured thickness of the shock is wider and the

gradients within the shock are smaller as compared to the analytic and numeric solutions.

The reasons for this difference in shock thickness can be attributed to the formulation of

31

the analytic solution. Namely the viscous and diffusive transport properties are assumed

constant in the analytic solution. However in reality, temperature variations in the shock

front cause significant deviations in the transport properties resulting in a smearing or

thickening of the wave. From the experimental result, the thickness of shock front is

around 10 times of gas mean free path.

Figure 3.1.2.1: Argon shock profile for Mach number 1.55. Nodes = 4800, hx = 1/8.

Analytic and numeric solutions assume constant viscosity.

Figure 3.1.2.2 presents the effect of node numbers on shock wave profile. In order

to set boundary in infinity, 300 times mean free path domain is selected experientially

firstly. Even though node number doubles, which means the total domain doubles, the

gradient and thickness of shock front does not change. Two kinds of marker are identical

32

in values. Thus 300 times mean free path is enough to be recognized as infinity and larger

domain does not affect the shock profile.

Figure 3.1.2.2 Argon shock wave profile for Mach number 1.55, hx = 1/8. Shock wave

profiles of node number 4800 and 9600 are identical.

Figure 3.1.2.3 presents the effect of grid spacing, hx, on shock wave profile. In

order to keep the accuracy of the simulation, adequate nodes, i.e. resolution, in shock

front are need. The value of the parameter hx, distance between two nodes, corresponds

to the number of nodes is related to resolving local gradient. The figure presents the

shock profile with two different values of hx, both results in a change in the domain.

However, the gradient and thickness of shock front do not change. Thus the domain is

33

converged for values of hx of 1/8th or smaller, which is to say the solution is invariant to

grid resolution for hx<1/8.

Figure 3.1.2.3 Argon shock wave profile for Mach number 1.55, Node = 9600.

Shock wave profiles of hx =1/8 and 1/16 are identical.

Another important aspect of these solutions is the location of the far stream

boundary condition relative to the location of the shock thickness. In the above analysis,

the far field boundary conditions, which are applied at infinity, are place 30 times the

shock. In the same condition except node number and hx value, this numerical model is

not sensitive to these two parameters. Ultimately a value of 300 times of gas mean free

was used as the total domain size.

34

Additionally, parameter ht, time step, can affect the stability of the numerical

models. According to the Courant stability criteria [11], the requirement for ht is that the

distance local disturbances would travel per time step must be no more than the distance

between two nodes. Usually, a Courant-Friedrichs-Lewy (CFL) number ranges from 0.1

to 0.5 [12] is used in order to keep gets accurate and stable simulation.

3.1.3 Argon Simulation Analysis – Gas Dimensionless Scale

Figure 3.1.3.1 presents the total entropy change across the shock as a function of

iteration number. In addition the theoretical entropy change, equation 2.7.1, across a

shock is presented for comparison. The numerically determined entropy converges to the

theoretical entropy with iteration, and is nearly identical to the theoretical results from 6.0

in logarithm axis (1 million iterations). Thus one million iterations are enough to get

converge the entropy difference. In the following simulations with Mach number of 1.55,

iterations are set to 1 million.

35

Figure 3.1.3.1: Argon, Mach number 1.55, Nodes = 4800, hx = 1/8. Entropy changes

converge and are identical to theoretical profile within iteration increasing.

Figure 3.1.3.2 presents the change in the sum of entropy generation as a function

of iteration number for the four viscosity sub-models. Thus as the simulation proceeds

and the solution converges, the total increase in entropy asymptotically approaches a

steady value very close to the theoretical value.

36

Figure 3.1.3.2: Argon, Mach number 1.55, Nodes = 4800, hx = 1/8. 4 types of viscosity

models are built. Entropy changes of these sub-models converge in 1M iteration and
approach to theoretical value.

Figure 3.1.3.3 presents the shock profiles using several different viscosity models

alongside the analytic solution and experimental data for a Mach number 1.55 in argon.

The simulations were evolved over 1 million iterations. Shock wave thickness ranges

between 10 to 20 times of mean free path of argon. These four sub-models profiles are set

in the area between experimental result and analytical result. The power law model is the

closest to experimental profile, which consequently has the largest entropy change, as

would be expected.

37

Figure 3.1.3.3: Argon, Mach number 1.55, Nodes = 4800, hx = 1/8, Domain 300. Shock

profiles of 4 different types of viscosity models compare with experimental and
analytical solutions in domain 20.

With an increase in Mach number, the shock thickness decreases, thus the number

of nodes and the node spacing, hx, are adjusted in order to better resolve the shock profile.

Each adjustment related to the number of nodes and node spoacing, hx, is companied

with a sensitivity analysis. The relationship between hx, nodes number and total domain

size is

Domain = Nodes×hx
2

 (3.1.3.1)

38

Figure 3.1.3.4: Entropy Change Error within 30M Iteration. Nodes = 4800, hx = 1/8.

The figure shows that it takes less than 0.1M iteration for convergence of entropy

change. Theoretical entropy change value is 224.6224 J/Kg/K, Numerical result converge

at 220.7 J/Kg/K. There is a 4 J/Kg/K entropy difference compared with theoretical value.

39

Figure 3.1.3.5: Entropy Change Error within 30M Iteration. Nodes = 9600, hx = 1/16.

 The convergence of entropy change takes around 0.1M iteration. But the

difference between theoretical and numerical results is much smaller under the same y-

axis gradation, compared with Figure 3.1.3.4.

1M Iteration. Nodes = 9600, hx= 1/16. Theoretical entropy change value is

224.6224 J/Kg/K, Numerical result converge at 223.5 J/Kg/K, which is much better than

the value from Nodes 4800, hx = 1/8. In sum, more nodes and smaller grids distance

make larger variation of entropy change and longer iteration for convergence, while more

accurate value of entropy changes.

According the sensitive analysis of nodes scales, the number of nodes is set to

9600 and the grid spacing, hx, is set to 1/16 of the mean free path of argon in the

following viscosity sub-model simulations.

40

Figure 3.1.3.6: Entropy Change Trends of Different Viscosity Models, Nodes 9600,

hx = 1/16. Entropy changes of these sub-models converge in 1M iteration and
approach to theoretical value.

Figure 3.1.3.7: Comparison of Different Viscosity Sub-Models Profiles.

41

According to the above figure, under Mach number 3.38, shock wave thickness

ranges between 10 to 20 times of mean free path of argon. These four sub-models profiles

are also set in the area between experimental result and analytical result. Power law

model is closest to experimental profile, while with largest entropy change.

Figure 3.1.3.8: Comparison of Analytical and Numerical Results at Constant Viscosity at
Mach number 9. This figure shows that when using constant viscosity sub-model, shock

wave profile matches analytical simulation, even under large march number.

42

Figure 3.1.3.9: Entropy Change Error at Constant Viscosity. Node = 9600, hx = 1/16.

The figure also shows that errors of entropy change converge within iteration

increasing and entropy changes get stable over 30M iterations. According to figure,

theoretical value is around 738.4 J/Kg/K, numerical values converge at 739 J/Kg/K.

43

Figure 3.1.3.10: RMS Error of Entropy Changes at Constant Viscosity, Mach number 9.

The figure shows that RMS Errors get stable over 30M iterations and around 0.5.

Difference between top and bottom is around 1 J/Kg/K. In order to keep the accuracy of

simulation, the total number of nodes was increased to 19,200 for the Mach number 9.0

simulation in order to insure the shock slope was well resolved.

44

Figure 3.1.3.11: Entropy Change Error within 30M Iteration. Nodes = 19200, hx = 1/32.

 According to figure, theoretical value is around 738.4 J/Kg/K, numerical values

converge at 740.8 J/Kg/K for constant viscosity. Compared with Figure 2.7.1.2.12,

convergence process under this scale is much faster, which is much shorter than 30M

iteration to get stable state, while with larger entropy variation, which is around 200

J/Kg/K.

45

Figure 3.1.3.12: Entropy Change Trends of Different Viscosity Models, Nodes=19200,

hx = 1/32. Entropy changes of these sub-models converge in 1 million iteration and
approach to theoretical value.

Figure 3.1.3.13: Comparison of Different Viscosity Sub-Models Profiles, Ma = 9.0,

Nodes = 19200, hx = 1/32. Domain = 10λ.

46

According to the above figure, under Mach number 9.0, shock wave thickness

ranges between 10 to 20 times of mean free path of argon. These four sub-models profiles

are also set in the area between experimental profile and analytical profile. Power law

model is closest to experimental profile, while with largest entropy change.

Table 3.1.1.1 Value of Entropy Change, Argon, Specific Gas Dimensionless Scale
Mach Number 1.55 3.38 9.0
Nodes Number 4800 9200 19200

hx 1/8 1/16 1/32
 Entropy Change (J/Kg/K)

Theoretical Solution 16.51354 224.62240 738.47375
Constant Viscosity 16.46207 223.53973 740.88910
Power Law Model 16.50063 224.52104 738.56009

Maxwell Model 16.46703 224.30592 740.19109
Chapman-Enskog Model 16.47625 224.48048 739.18252

3.2 General Dimensionless Scales Based Simulation

3.2.1 Argon Simulation Analysis – General Dimensionless Scales

In order to keep the same B.C. as chapter 2.7.1 for argon,

Left hand side B.C.

𝑢 = 𝑀𝑎, 𝑃 = 1
γ
 , 𝑇 = 1

γ(γ−1)
, 𝜌 = 1.0, 𝑒 = 𝑇

Right hand side boundary condition is also can be determined Rankine-Hugoniot

jump equations.

47

Figure 3.2.1.1: Entropy Change Trends of Different Viscosity Models, Nodes 4800,
hx = 1/8, Ma = 1.55. Entropy changes of these sub-models converge in 1M iteration
and approach to theoretical value 16.4917 J/Kg/K. Each sub-model’s stable entropy

change value is shown in Table 3.2.1.1

Figure 3.2.1.2 Comparison of Different Dimensionless Scales, Ma = 1.55, Domain = 20 λ.

48

Figure 3.2.1.3: Comparison of Different Dimensionless Scales. Ma = 1.55, Domain = 10λ.

According to the above figure, under Mach number 1.55, the thicknesses of two

shock wave profiles are larger than10 times of mean free path of argon. These four sub-

models profiles are all set in the area between experimental profile and analytical profile,

even thought, profiles under the same B.C. are mismatch. This condition is caused by two

types of dimensionless scales. Power law model is closest to experimental profile, while

with largest entropy change.

49

Figure 3.2.1.4: Entropy Change Trends of Different Viscosity Models, Nodes = 9600, hx

= 1/16, Ma=3.38. Entropy changes of these sub-models converge in 1M iteration and
approach to theoretical value 16.4917 J/Kg/K. Each sub-model’s stable entropy change

value is shown in Table 3.2.1.1.

Figure 3.2.1.5: Comparison of Different Dimensionless Scales. Ma = 3.38.

50

Comparing with profiles of Mach number 1.55, all the thicknesses of shock wave

profiles are smaller than10 times of mean free path of argon. These four sub-models

profiles are all set in the area between experimental profile and analytical profile, Power

law model is closest to experimental profile, while with largest entropy change.

Figure 3.2.1.6: Entropy Change Trends of Different Viscosity Models, Nodes = 19200,
hx = 1/32, Ma = 9.0. Entropy changes of these sub-models converge in 1M iteration and
approach to theoretical value 16.4917 J/Kg/K. Each sub-model’s stable entropy change

value is shown in Table 3.2.1.1

51

Figure 3.2.1.7: Comparison of Different Dimensionless Scales. Ma = 9.0. Comparing

with profiles of Mach number 1.55 and 3.38, profiles under the same B.C trend to
match each other.

Table 3.2.1.1 Value of Entropy Change, Argon, General Dimensionless Scale
Mach Number 1.55 3.38 9.0
Nodes Number 4800 9200 19200

hx 1/8 1/16 1/32
 Entropy Change (J/Kg/K)

Theoretical Solution 16.49170 224.54799 738.31049
Constant Viscosity 16.46207 223.53973 740.88910
Power Law Model 16.49263 224.51563 738.65994

Maxwell Model 16.46400 224.27904 740.40087
Chapman-Enskog Model 16.47370 224.47266 739.28363

52

3.2.2 Air Simulation Analysis – Ideal Gas EOS

Parameters evaluation of air are shown as Table 3.2.2.1

Table 3.2.2.1 Parameters Evaluation, Air, Nodes = 4800, hx = 1/8.
Mach# 𝛾0 𝜔 𝑃𝑟 𝑠 𝐶0
1.4 0.4 0.77 0.715 0.968793 293.8619

Dimensional left hand side B.C. for air simulation is shown in Table 3.2.2.2.

Table 3.2.2.2 Parameters Evaluation, Air, Nodes = 4800, hx = 1/8.
Mach# 𝜌1(Kg/m3) P1(Pa) T1(K) 𝑢1(m/s)

1.4 1.205 103.320 300.0 486.064193

Figure 3.2.2.1: Entropy Change Trends of Different Viscosity Models, Air, Ma = 1.4,

Nodes 4800, hx = 1/8.

53

Entropy changes of these sub-models converge in 1M iteration and approach to

theoretical value 12.25622 J/Kg/K. Each sub-model’s stable entropy change value is

shown in Table 3.2.2.3.

Figure 3.2.2.2: Entropy Change Trends of Different Viscosity Models, Air, Ma = 1.4,

Nodes 4800, hx = 1/8. Entropy changes of these sub-models converge in 1M iteration and
approach to theoretical value 12.25622 J/Kg/K. Each sub-model’s stable entropy change

value is shown in Table 3.2.2.3.

54

Figure 3.2.2.3: Comparison of Different Dimensionless Scales. Ma = 1.4, Nodes = 4800,

hx = 1/8, Domain 20 λ.

Figure 3.2.2.4: Comparison of Different Dimensionless Scales. Ma = 1.4, Nodes = 4800,

hx = 1/8, Domain 10λ.

55

Comparing with profiles of argon, these four sub-models profiles have similar

trends. Shock wave thicknesses of Power Law profile are 20 times of mean free path of

air. Power law model has largest entropy change.

Table 3.2.2.3 Value of Entropy Change, Air, Ideal Gas EOS
Mach Number 1.4
Nodes Number 4800

hx 1/8

Viscosity Sub-Models
Entropy Change (J/Kg/K)

Gas Dimensionless
Scales

General Dimensionless
Scales

Theoretical Solution 12.25622 12.25622
Constant Viscosity 12.24533 12.24533
Power Law Model 12.30687 12.49248

Maxwell Model 12.23883 12.27202
Chapman-Enskog Model 12.27070 12.36467

3.3 Mie-Grüneisen EOS Model - Argon

In order to research the availability of M-G EOS on gas medium, parameter s and

C0 need to be determined as chapter 2 mentioned. Mach number 1.55 is set to keep same

B.C. in ideal gas EOS simulation.

Table 3.3.1 Parameters Evaluation, Argon, Nodes = 4800, hx = 1/8.
Mach# 𝑠 𝐶0 (m/s)

1.55 1.00095565 207.664409

56

Figure 3.3.1: Entropy Change Trends of Different Viscosity Models, M-G EOS, Argon,

Ma = 1.55, Nodes 4800, hx = 1/8.

Entropy changes of these sub-models converge in 1M iteration and approach to

value 14.33 J/Kg/K, which is off the theoretical value of entropy change 16.49 J/Kg/K

from ideal gas EOS.

57

Figure 3.3.2: Comparison of Different Dimensionless Scales, M-G EOS, Argon,

Ma = 1.55, Nodes = 4800, hx = 1/8, Domain 20 λ, λ is the mean free path of argon.

Figure 3.3.3: Comparison of Different Dimensionless Scales, M-G EOS, Argon,

Ma = 1.55, Nodes = 4800, hx = 1/8, Domain 10λ.

58

The shock wave density profiles are similar to those from ideal gas EOS, Power

Law model is the closet one to experimental result, then Chapman-Enskog model.

Maxwell model almost overlaps with constant viscosity model. The difference is that all

the viscosity sub-models in M-G EOS are more approaching experimental result.

Especially; Power Law model result is closer to experimental result. Shock wave

thicknesses range from 10 to 15 times of mean free path.

Figure 3.3.4: Heat Flux and Stress relationship, Constant Viscosity, Argon, Ma = 1.55,

Nodes = 4800, hx = 1/8. M-G EOS result has smaller absolute value in
both heat flux and stress.

59

Figure 3.3.5: Heat Flux and Stress relationship, Power Law model, Argon, Ma = 1.55,

Nodes = 4800, hx = 1/8.

Figure 3.3.6: Heat Flux and Stress relationship, Maxwell model, Argon, Ma = 1.55,

Nodes = 4800, hx = 1/8.

60

Figure 3.3.7: Heat Flux and Stress relationship, Chapman-Enskog model, Argon,

Ma = 1.55, Nodes = 4800, hx = 1/8.

Table 3.2.2.3 Value of Entropy Change, Argon, General Dimensionless Scales
Mach Number 1.55
Nodes Number 4800

hx 1/8
Viscosity

Sub-Models
Entropy Change (J/Kg/K)

Ideal Gas EOS M-G EOS
Theoretical Solution 16.49170 16.49170
Constant Viscosity 16.46207 14.33946
Power Law Model 16.49263 14.43678

Maxwell Model 16.46400 14.34159
Chapman-Enskog Model 16.47370 14.36217

61

3.4 Summary

In chapter 3, two types of dimensionless scales are used and compared in argon

and air simulation. Four types of viscosity modes are used to simulated shock profiles in

argon and air for different Mach numbers. Entropy change errors of these sub-models are

smaller than ten thousandth. The Power Law model profile is closest to the experimental

result, followed with Chapman-Enskog and Maxwell model. The power law is derived

from a fit to experimental data whereas Maxwell model and Chapman-Enskog model are

hard sphere and soft sphere theoretical models respectively. Shock wave thickness

becomes thinner when Mach number increases and as a result more difficult to resolve.

M-G EOS and Ideal Gas EOS are derived based on different assumption and

physical principles from statistic mechanics. M-G EOS mainly focus on the internal

energy contributed from vibration energy of oscillators, while for gas, most of the

internal energy are contributed by translational kinetic energy not rotation or vibration

energy. That’s one main explanation for the differences in entropy change across the

shock for the different equations of state.

62

Chapter 4

Mie-Grüneisen EOS Model - Water

4.1 Experimental Geometry

Measurement of shock wave pressure is conducted by University of Cambridge

[13]. Figure 4.1.1 is the geometry of experiment.

Figure 4.1.1: Experiment schematic of shock wave pressure in water.

63

Copper flyer hitting the O-ring causes shock wave transmitting in water, which is

detected by rear gauge.The initial temperature for stationary water is 18 ± 2C. The

copper flyer is traveling at 295 m/s towards O-ring. The thickness of gauge is neglected.

4.2 Determination of Shock Wave Velocity

An impedance matching technique in pressure-particle velocity, P-Up, space is

used to determine shock velocity in water. [8]

𝑃𝑤𝑎𝑡𝑒𝑟 = 𝜌𝑤𝑎𝑡𝑒𝑟𝐶𝑤𝑎𝑡𝑒𝑟𝑈𝑝 + 𝜌𝑤𝑎𝑡𝑒𝑟𝑆𝑤𝑎𝑡𝑒𝑟𝑈𝑝2 (4.2.1)

𝑃𝑐𝑜𝑝𝑝𝑒𝑟 = 𝜌𝑐𝑜𝑝𝑝𝑒𝑟𝐶𝑐𝑜𝑝𝑝𝑒𝑟(𝑈𝑓𝑙𝑦𝑒𝑟 − 𝑈𝑝) + 𝜌𝑐𝑜𝑝𝑝𝑒𝑟𝑆𝑐𝑜𝑝𝑝𝑒𝑟(𝑈𝑓𝑙𝑦𝑒𝑟 − 𝑈𝑝)2 (4.2.2)

Solving equation (4.2.1) and equation (4.2.2), Up and Us can be derived. Table

4.2.1 and Figure4.2.1 are results of impedance match.

Table 4.2.1 Parameters and results of impedance match
Material Flyer velocity(m/s) Temperature(k) S C(m/s) 𝜌(kg/m3) Up(m/s)
Copper 295 293.15 1.49 3940 8930 277.8668
Water 1.92 1650 1000

64

Figure 4.2.1: Impedance match of Us-Up lines.

The intersection is the final condition after impact. Up is the particle velocity of

water, which can be used to calculate shock wave velocity in water. According to chapter

2, pre-shock and post-shock flow velocities, U1 and U2, can be converted from known

Us and Up values.

4.3 Mie-Grüneisen Parameter

As chapter 2 mentioned, boundary conditions of shock wave in water also can be

determined by Rankine-Hugoniot jump condition equations. The Mie-Grüneisen EOS is a

function incorporating pressure, internal energy, Hugoniot slope, bulk sound speed,

strains and Mie-Grüneisen gamma. As all the parameters except M-G gamma are

determined though the above impedance matching process, M-G gamma can be derived

65

based on the assumption that shock wave boundary conditions are both available in

Rankine-Hugoniot jump condition equations and M-G EOS as shown in Figure 4.3.1.

Figure 4.3.1: Dimensionless impedance match to derive M-G gamma. X axis is the
specific volume; Y axis is the pressure. Blue is M-G EOS; Green is Rayleigh line;

Red is post-shock pressure and yellow is pre-shock pressure.

4.4 Relation of Bulk Viscosity and Dilatational Viscosity

 During the research of shock wave in water, in order to get better understanding

and make use of literature data accurately, one of the difficulties is that notations in

literatures can be different. For liquid, stress is not only related to first viscosity but also

related to second viscosity. First viscosity is the dynamic viscosity. Second viscosity has

at least two kinds of notations, bulk viscosity or dilatational viscosity. Bulk viscosity is

used in Compressible-Fluid Dynamics, Philip.A.T, expressed in viscous stress equation

66

∑𝑖𝑘 = 2𝜇 �𝐷𝑖𝑘 −
1
3
𝛿𝑖𝑘𝐷𝑚𝑚� + 𝜇𝜈𝛿𝑖𝑘𝐷𝑚𝑚, (4.4.1)

Where,𝜇 is the first viscosity,

𝐷𝑖𝑘 = 1
2

(
𝜕𝜐𝑗
𝜕𝑥𝑖

+ 𝜕𝜐𝑖
𝜕𝑥𝑗

), (4.4.2)

𝐷𝑚𝑚 = (𝜕𝜐𝑥
𝜕𝑥

+ 𝜕𝜐𝑦
𝜕𝑦

+ 𝜕𝜐𝑧
𝜕𝑧

), (4.4.3)

Replace 𝐷𝑖𝑘 and 𝐷𝑚𝑚 in equation (4.4.1) and rearrange it, get

∑𝑖𝑘 = 𝜇 �
𝜕𝜐𝑗
𝜕𝑥𝑖

+ 𝜕𝜐𝑖
𝜕𝑥𝑗
� − (2

3
𝜇 − 𝜇𝜈)(𝜕𝜐𝑥

𝜕𝑥
+ 𝜕𝜐𝑦

𝜕𝑦
+ 𝜕𝜐𝑧

𝜕𝑧
)𝛿𝑖𝑘 (4.4.4)

Equation (4.4.4) is just opposite to the equation in Transport Phonomena, 2nd

Edition, R.B.Bird.

𝜏𝑖𝑘 = −𝜇 �
𝜕𝜐𝑗
𝜕𝑥𝑖

+ 𝜕𝜐𝑖
𝜕𝑥𝑗
� + (2

3
𝜇 − 𝜇𝜈)(𝜕𝜐𝑥

𝜕𝑥
+ 𝜕𝜐𝑦

𝜕𝑦
+ 𝜕𝜐𝑧

𝜕𝑧
)𝛿𝑖𝑘 (4.4.5)

So, for one dimensional shock wave, simplified stress is

 Π𝑥𝑥 = ∑𝑥𝑥 = −𝜏𝑥𝑥 (4.4.6)

As a result, bulk viscosity is the same as dilatational viscosity in same coordinate.

𝜅 = 𝜇𝜈 (4.4.7)

Second viscosity reference value is from Compressible-Fluid Dynamics,

Philip.A.T, Table 1.1.

4.5 Numerical Simulation

Left hand side dimensional B.C.

𝑢 = 𝑀𝑎, 𝑃 = 1 𝑎𝑡𝑚 , 𝑇 = 300𝑘, 𝜌 = 1000𝑘𝑔/𝑚3, 𝑒 = 𝑃
𝛾0

where, 𝛾0 is M-G gamma, e is internal energy per unit mass.

67

Right hand side B.C. is determined by impact impedance match and Rankine-

Hugoniot jump equations.

Parameters evaluations for water are presented in Table 4.5.1 and Dimensionless

B.C.s of water are shown in Table 4.5.2.

Table 4.5.1 Parameters Evaluation, Water
Mach# Up S C0 𝛾0 𝑢𝑣 ℎ𝑥 𝑁𝑜𝑑𝑒𝑠
1.323 277.867 1.920 1650 4.984 3.100 1/8 4800

Table 4.5.2 Dimensionless B.C. of Water, Ma = 1.32
 𝑢 𝜌 𝑃 𝑇 𝑖𝑒
LHS 1.323 1.000 3.722e-5 0.455 7.467e-6
RHS 1.155 1.146 0.223 0.469 0.780
Ratio 0.872 1.146 5988.894 1.031 104459.622

4.6 Sensitivity Analysis

Datas from NIST [15] are incorporated in numerical code to conduct sensitivity

analysis of shock wave thickness.

4.6.1 Specific Heat at Constant Volume (Cv)

68

Figure 4.6.1: Specific Heat Effect on Shock Wave Thickness. This figure shows that

varying specific heat contributes the same shockwave profile as constant specific heat.
Conclusion is that shock wave thickness is not obviously sensitive to the specific heat.

4.6.2 Heat Conductivity (k)

Figure 4.6.2: Heat Conductivity Effect on Shock Wave Thickness.

69

This figure shows that varying Heat Conductivity contributes the same shockwave

profile as constant heat conductivity. Conclusion is that shock wave thickness is not

obviously sensitive to the heat conductivity.

4.6.3 Viscosity (𝛍)

Figure 4.6.3: Viscosity Effect on Shock Wave Thickness.

This figure shows that varying viscosity contribute slightly difference to the

profile compared with constant viscosity. As known, viscosity of water decreases when

temperature rises. The slope of shock wave profile gets greater matching the conclusion

from gas. So shock wave thickness is weakly sensitive to the viscosity.

70

4.6.3 Length Scale

Figure 4.6.4: Effect of Length Scale on Shock Wave Thickness. This figure shows that
varying lambda contribute the same shockwave profile as former molecular diameter.

Conclusion is that shock wave thickness is not sensitive to the length scale.

71

Chapter 5

Conclusion

In order to develop a better understanding of the irreversibilities associated with

the shock compaction of fluids, 3 materials (argon, air and water), 2 equations of state

(EOS) (Ideal Gas EOS and Mie-Grüneisen EOS incorporated with Material EOS) and 4

viscosity sub models are studied in one-dimension via a numerical solution. The

numerical solution is validated with the analytical solution for perfect gas behavior and

compared to experimental data where available.

A non-dimensional numeric scheme based upon an explicit Eulerian finite volume

method was developed. The spatial resolution converges at less than 1/8th of the mean

free path, ensuring the stability of the numerical algorithm without resorting to

implementing artificial dissipation. Space derivatives are approximated by second order

central differences and time derivatives are approximated by first order forward

differences.

Initial simulations focused on argon, i.e. a monatomic perfect gas. Simulation

boundaries are set more than ten shock wave thickness away from the shock. Simulations

indicate that shock wave thickness becomes thinner as Mach number increases up to a

Mach number of 9. Simulated density profiles slightly differ from experimental results.

From the shock profiles, the entropy change can be calculated. Entropy change provides a

single metric as to the quality of the simulation, when compared to the theoretical entropy

change. The theoretical entropy change for a perfect gas is around 0.3% different to the

72

simulated entropy change of the viscous models considered in this work, the Maxwell

model for viscosity gives results which are closed to the analytic solution, whereas the

Power Law viscous model results in profiles that most resemble the experimental data.

The Power Law viscous model results in the largest value of entropy change at low Mach

numbers (Mach number 1.55 and 3.38), but the smallest value of entropy change at large

Mach number (Mach number 9), compared with other viscous models.

Next, the shock wave profile in a non-monatomic gas, i.e. air, is simulated for

Mach number 1.4. The results indicate similar phenomena as argon at low Mach number

(Mach number 1.55).

While validating the Mie-Grüneisen (M-G) EOS for shock waves in fluids,

several challenges are resolved. The shock Hugoniot equation, used as the reference

curve for the M-G EOS for gas was derived. The relationship between equivalent M-G

constant and the ratio of specific heat was derived. When modeling gaseous argon

passing through a shock at Mach number 1.55, the M-G EOS predicts lower entropy

change, 14.437 J/Kg/K, as compared to the ideal gas EOS, which predicts in 16.493

J/Kg/K. The main reason causing this difference is discussed in chapter 3. Finally, it is

observed that heat flux dominates the entropy change for M-G EOS.

Finally the M-G EOS for water was numerically investigated and the results were

compared to experimental data. The M-G constant is derived by impedance matching the

M-G EOS and Rayleigh line. The bulk viscosity is also incorporated into the stress term.

From a parametric study of transport properties, it was found that the shock wave

thickness is weakly sensitive to the specific heat, heat conductivity, viscosity and grid

73

dimension, whereas changes in the viscosity have the largest effect on the shock profile

thickness. However, the shock wave thickness, even at varying viscosities still too thin

compared to experimental data.

This research mainly focuses on deriving a suitable set of equations for doing

direct numeric simulations of shock profiles in gasses and liquid and then numerically

solving these equations using a finite volume technique. Simulations of shock wave in

liquids and gases serve as a bridge to better understand the applicability of the M-G EOS

for resolving the shock profiles in solids. This is especially true when considering the

viscous dissipation mechanisms in solids across the shock. Further considerations from

statistical mechanics might provide more insight in the future; by supporting assumptions

with more precise governing equations; the simulated shock wave profiles may be better

resolved.

74

REFERENCES

[1] VonNeumann, J.; Richtmyer, R. D.; 1950, “A Method for the Numerical
Calculation of Hydrodynamic Shocks”, J. of Appl. Physics, Vol. 21.

[2] Wilkins, M. L.; 1980, “Use of Artificial Viscosity in Multidimensional Fluid
Dynamic Calculations”, J. of Comp. Physics, Vol. 36.

[3] Caramana, E. J.; Shashkov, M. J.; Whalen, P. P.; 1998, “Formulations of
Artificial Viscosity for Multi-dimensional Shock Wave Computations”, J. of Comp.
Physic, Vol. 144

[4] Tatiana, G. E.; Ivan, A. S.; Salvador, M.; 2005, “Numerical Simulation of shock-
wave structure for argon and helium”, Physics of Fluids, Vol. 17

[5] Arp, V.; Persichetti, M. J.; Guo-bang, C.; 1984, “The Grüneisen Parameter in
Fluids”, Journal of Fluids Engineering, Vol. 106

[6] G. A. Bird; 1994, “Molecular Gas Dynamics and the Direct Simulation of Gas
Flows”.

[7] R. Byron, Bird; Warren, E. Stewart; Edwin, N. Lightfoot; “Transport Phenomena,
2nd edition”.

[8] Marc, A. Meyers; “Dynamic Behavior of Materials”.

[9] Mark, L. Wilkins; “Computer Simulation of Dynamic Phenomena”.

[10] H. Alsmeyer; 1976, “Density profiles in argon and nitrogen shock waves
measured by the absorption of an electron beam”, J. Fluid Mech, 74, 497.

[11] Courant, R.; Friedrichs, K.; Lewy, H.; (September 1956) [1928], “On the partial
difference equations of mathematical physics”, AEC Research and Development
Report, NYO-7689, translated from the German by Phyllis Fox.

[12] Anderson; Lohn David; 1995, “Computational fluid dynamics: the basics with
applications”.

[13] Mike J. Morley; David M. Williamson; “Shock/reload response of water and
aqueous solutions of ammonium nitrate”, AIP 1426.

[14] Philip.A.T; “Compressible-Fluid Dynamics”.

[15] NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/.

75

APPENDIX - FORTRAN CODE

 parameter(jj=4800)
 parameter(limit = 99999999)
 real*8 T(0:jj),rho(0:jj),p(0:jj),u(0:jj),E(0:jj),eta(0:jj)
 real*8 rhohat(0:jj),uhat(0:jj),Ehat(0:jj),phat(0:jj),jhat(0:jj)
 real*8 j(0:jj),PI(0:jj),q(0:jj),H(0:jj)
 real*8 Pr, gama,mu, R, Tinf, rhoinf, cinf, lambda, etainf
 real*8 hx, ht, Ma, w
 real*8 c1, x0, M1, v1, alpha, beta
 real*8 xa, xb, xx, dx, fa, fb
 real*8 psi(0:jj),etad(0:jj)
 real*8 m0, m, k0, k, sigma0, sigma
 real*8 ratioe, Tinter, x, omegau(0:jj)
 real*8 Cv,kappa, deltax, dsa, ds, dsu(0:jj), dsT(0:jj), dsus,
dsTs
 real*8 gama0, gama00,Pref,eref,rhoref, Pinter, entropy(0:limit)
 real*8 ie(0:jj),ke(0:jj)
 real*8 Pless, rholess, Tless, eless, kaless,kappa0
 real*8 Mmass, uv, e00, e01, e02, e03, e04, s, C, e0, einter,C0
 real*8 Temperature, Cv0,CvD, gam0, Us, Up, P0
 real*8 sa, sb, fs, u0, u1
 integer i,eos, counter, bug
 character*14 filen
c character*14 entropy
 character*1 ans

c M-G gamma: gama0 reference pressure: Pref
c reference internal energy: eref

c entropy = 'en00000000.dat'
 filen = 'ns00000000.dat'

c open(unit=23,file='zeta.dat',form='formatted',status='unknown')

c.............................Choose EOS.............................
c eos=0,1,2,4, Gas. eos = 3 liquid
c eos = 0,ideal gas EOS with Gas Specific Dimensionless Scales
c eos = 1,M-G for gas, General Dimensionless Scales
c eos = 2,M-G general dimensionless, need check
c eos = 3,water M-G, general dimensionless
c eos = 4,ideal gas eos, General Dimensionless scales

 eos = 1

c.............................Parameters.............................
c--------------------------------Gas---------------------------
 if(eos .ne. 3) then
c s= 1.059d0 ! Hugoniot slope, Air, JAP experiment
c C0 = 243.d0 ! Bulk sound speed, Air, JAP experiment
c s = 0.4086132999 ! Ma=2.5 Air solved value from maple, 3rd
order eos

76

c C0 = 619.7064063 ! Ma=2.5 Air solved value from maple, 3rd
order eos
c s = 0.3878659442 ! Ma=2.5 Air solved value from maple, 4th
order eos
c C0 = 632.3120897 ! Ma=2.5 Air solved value from maple, 4th
order eos
c s = 0.9687928698 ! Ma=1.4 Air solved value from maple, 3rd
order eos
c C0 = 293.8619384 ! Ma=1.4 Air solved value from maple, 3rd
order eos
 s = 1.0009556d0 ! Ma = 1.55, Argon
 C0 = 207.66440d0 ! Ma = 1.55, Argon
 w = 0.81d0 ! Argon
c w = 0.77d0 ! Air
 Ma = 1.55d0 ! Argon
c Ma =1.4d0 ! Air
c Pr = 0.715d0 ! Air
 Pr = 2.d0/3.d0 ! Argon
c gama = 1.4d0 !Air
 gama = 5.d0/3.d0 ! Argon
c mu = 1.80d-5 ! kg/m/s Air JB
c mu = 1.983d-5 ! Kg/m/s Air viscosity online data
c mu = 2.27d-5 ! kg/m/s Argon viscosity online data
 mu = 1.3275d-5 !kg/m/s Argon NIST data
c kappa = 0.0252793d0 ! W/m/k Air Forced kappa
c kappa = 0.0240d0 ! W/m/k Air heat conductivity,
c Another way is force fromideal gas kappa = gama*R*eta/(gama-1)/Pr
 kappa = 0.0163d0 ! W/m.k Argon heat conductivity
 R = 208.1d0 !J/kg/K Argon
c R = 287.0d0 ! J/Kg/K Air
c Cv = 718.d0 ! J/Kg/K Air from online data
c Cv = 717.5d0 ! J/kg/k Air from ideal gas Eos
 Cv = R/(gama-1.d0) ! J/kg/k Air ideal gas, analytical
c Cv = 312.2d0 !J/kg/K Argon
c Tinf = 300.d0 ! kelvin, k
c Pref = 103.320d3 ! Pa
 Tinf = 164.d0 ! Helium from Muntz, same for Argon and Air
 Tref = Tinf
c rhoinf = 1.205d0 ! Kg/m^3 Air
c rhoinf = 1.2d0 ! kg/m^3 Air JB
 rhoinf = 1.62d0 !kg/m^3 Argon - see BSL notes
 rhoref = rhoinf
 Pref = rhoinf*R*Tinf ! Analytical Pressure from Gas EOS
 cinf = dsqrt(gama*R*Tinf) ! [m/s] upstream sound speed
c C0 = cinf ! for gas with analytical sound speed
 etainf = gama**(w-0.5d0)*5.d0*sqrt(2.d0*acos(-1.d0))/16.d0
 & *(1.d0/gama)**w !dimensionless far field viscosity
 lambda = 3.d0*mu*sqrt(acos(-1.d0)/8.d0/R/Tinf)/rhoinf ! hard
sphere mean free path
 eta(0) = mu/(rhoinf*cinf*lambda) ! dimensionless pre-shock
viscosity
c eta(0) = etainf*(T(0))**w
c m0 = 28.964d-3/(6.022d23) ! kg molecule mass of Air
 m0 = 39.948d-3/(6.022d23) ! kg molecule mass of Argon

77

 k0 = 1.38066d-23 ! J/kg Boltzmann's constant
c sigma0 = 3.617d-10 ! m Diameter Air
 sigma0 = 3.432d-10 ! m Diameter Argon
 m = m0/(rhoinf*lambda**3) ! dimensionless m
 k = k0/(rhoinf*R*gama*lambda**3) ! dimensionless k
 sigma = sigma0/lambda ! dimensionless sigma
 ratioe = 122.4d0 ! K Kelvin, Argon
c ratioe = 97.d0 ! K Kelvin, Air
c Tinter = cinf**2/(gama*R*ratioe) ! Gas Dimensionless Scales
 Tinter = cinf**2/(Cv*ratioe) ! General Dimensionless Scales
 gama0 = gama - 1.d0
c kaless = gama*R*rhoinf*cinf*lambda ! Gas Dimensionless Scales
 kaless = Cv*rhoinf*cinf*lambda ! General Dimensionless
Scales
 kappa0 = kappa/kaless ! dimensionless heat conductivity, General
Dimesionless scale

c.....................shock velocity from Ma number.................
 u0 = Ma*cinf
 u1 = Ma*(2.d0+(gama-1.d0)*Ma**2)/((gama+1.d0)*Ma**2)*cinf
 Us = u0
 Up = Us - u1
 print *,'Mach Number Ma', Ma
 print *,'Shock velocity Us', Us
 print *,'Partical velocity Up', Up
c pause
c print *, kappa0,eta(0)/((gama-1.d0)*Pr)
c pause
c print *,'bulk and local sound velocity',cinf,C0
c cinf = C0
c print *, cinf

c------------------------------Liuquid--------------------------
 elseif (eos .eq. 3) then

c--------------------------EOS parameters----------------------
 Up = 277.8668114d0 ! m/s ! cambridge expriment, impedance match
 s = 1.92d0 ! Hugoniot slope, Meyers book P133
 C0 = 1650.d0 ! m/s, Bulk sound speed, Meyers book P133
 Us = Up*s+C0
 gama0 = 4.984362390d0 ! Gruneisen gama, impedance match from
maple

c-----------------------------properties------------------------
c mu = 0.798d-3 !kg/m/s viscosity, water online data
 mu = 0.85258d-3 !kg/m/s viscosity, water,NIST(300k,1g/cm^3)
c kappa = 0.58d0 !w/m/k heat conductivity,water
 kappa = 0.61384d0 !w/m/k heat conductivity,water,NIST(300k,
1g/cm^3)
 Cp = 4159.3d0 !J/kg/K specific heat,water,NIST(300k,1g/cm^3)
 Cv = 4105.1d0 !J/kg/K specific heat,water,NIST(300k,1g/cm^3)
 Mmass = 18.01528d0 !g-mol molar mass, water
 R = 8.31451d3/Mmass !J/kg/K water

78

c------------------------dimensionless scale------------------
 Tref = 300.d0 !k,upstream Temperature
 Tinf = Tref
 rhoinf = 1000.d0 !kg/m^3,water
 cinf = C0 !m/s, upstream sound speed
 Pref = 1.01325d5 !pa, upstream pressure
 lambda = ((Mmass*0.001d0)/(rhoinf*6.02d23))**(1.d0/3.d0) !space
scale, average distance of water molecular
 print *, 'lambda',lambda
 pause
 eta(0) = mu/(rhoinf*cinf*lambda) ! dimensionless viscosity
 kappa0 = kappa/(Cv*rhoinf*cinf*lambda) !dimensionless heat
conductivity
 uv = 3.1d0 !dimensionless bulk viscosity
 endif

c.................initial contant viscosity coefficient.........

 do i=0,jj
 eta(i) = eta(0) ! 10**5
 enddo

c.........................dimensionless scales..................
c cinf = C0
 Tless = cinf**2/Cv
 Pless = rhoinf*cinf**2
 rholess = rhoinf
 eless = Pless
c print *, Tless, Pless, rholess, eless,Cv
c pause

c--------------------initial spece and time step----------------
 ht=1.0d-8
 hx=0.25d0/2.d0
 deltax = hx*1.d0

c---------------------set boundary conditions-------------------
 if(eos .eq. 0) then
 p(0) = 1.d0/gama
c pressure = p(0)*gama
 rho(0) = 1.d0
 u(0) = Ma
 T(0) = gama*p(0)/rho(0)
 j(0) = rho(0)*u(0)
 ie(0) = p(0)/(gama - 1.d0)
 ke(0) = rho(0)*u(0)**2/2.d0
 e(0) = ie(0) + ke(0)
 dsus = 0.d0 ! sum of entropy form stress
 dsu(0) = 0.d0 ! stress entropy term
 dsTs = 0.d0 ! sum of entropy from T
 dsT(0) = 0.d0 ! T entropy term

 omegau(0) = 1.16145d0/((Tinter*T(0))**0.14874d0) ! Chapman-
Enskog

79

 & + 0.52487d0/(exp(0.77320d0*Tinter*T(0)))
 & + 2.16178d0/(exp(2.43787d0*Tinter*T(0)))
 eta(0) = 5.d0*dsqrt(m*k*T(0)/acos(-1.d0))
 & /(16.d0*omegau(0)*sigma**2)

c eta(0) = 2.d0*dsqrt(m*k*T(0)/acos(-1.d0))
c & /(3.d0*acos(-1.d0)*sigma**2) ! Maxwell

c x = T(0)*Tinf/vari0
c omegau = -0.0799d0*x**5 + 0.743d0*x**4 - 2.7973d0*x**3
c & + 5.485d0*x**2
c & -5.9588d0*x + 4.1996d0
c etad(0) = 5.d0*dsqrt(acos(-1.0)*m*k*T(0))/
c & ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c eta(0) = etad(0)/(rhoinf*cinf*lambda)

c eta(0) = etainf*(T(0))**w ! Power Law
c
c p(jj) = 4.5000*p(0)
c T(jj) = 1.6875*T(0)
c rho(jj) = 2.667*rho(0)
c u(jj) = 0.5774
c j(jj) = rho(jj)*u(jj)
c e(jj) = rho(jj)*u(jj)*u(jj)/2 + p(jj)/(gama-1)

 rho(jj) = rho(0)*(gama+1.d0)*Ma**2/((gama-1.d0)*Ma**2+2.d0)
 u(jj) = rho(0)*u(0)/rho(jj)
 p(jj) = rho(0)*u(0)**2 + p(0) - rho(jj)*u(jj)**2
 ie(jj) = (ie(0)+u(0)**2/2.d0+p(0)/rho(0)-u(jj)**2/2.d0
 & -p(jj)/rho(jj))*rho(jj)
 print *, 'rankine', u(jj),p(jj),ie(jj)
 u(jj) = u(0)*(2.d0+(gama-1.d0)*Ma**2)/((gama+1.d0)*Ma**2)
 p(jj) = p(0)*(2.d0*gama*Ma**2-gama+1.d0)/(gama+1.d0)
 e(jj) = rho(jj)*u(jj)*u(jj)/2.d0 + p(jj)/(gama-1.d0)
 ie(jj) = p(jj)/(gama - 1.d0)
 print *, 'eos', u(jj),p(jj),ie(jj)
 pause
 T(jj) = gama*p(jj)/rho(jj)
 dsu(jj) = 0.d0 ! stress entropy term
 dsT(jj) = 0.d0 ! T entropy term

c eta(jj) = etainf*(T(jj))**w ! power law

c eta(jj) = 2.d0*dsqrt(m*k*T(jj)/acos(-1.d0))
c & /(3.d0*acos(-1.d0)*sigma**2) ! Maxwell

 omegau(jj) = 1.16145d0/((Tinter*T(jj))**0.14874d0) ! Chapman-
Enskog
 & + 0.52487d0/(exp(0.77320d0*Tinter*T(jj)))
 & + 2.16178d0/(exp(2.43787d0*Tinter*T(jj)))
 eta(jj) = 5.d0*dsqrt(m*k*T(jj)/acos(-1.d0))
 & /(16.d0*omegau(jj)*sigma**2)

c x = T(jj)*Tinf/vari0

80

c omegau = -0.0799d0*x**5 + 0.743d0*x**4 - 2.7973d0*x**3
c & + 5.485d0*x**2
c & -5.9588d0*x + 4.1996d0
c etad(jj) = 5.d0*dsqrt(acos(-1.0)*m*k*T(jj))/
c & ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c eta(jj) = etad(jj)/(rhoinf*cinf*lambda)

c Cv0 = ie(jj)/rho(jj)/T(jj)
c CvD = Cv0*gama*R
c print *,Pr, gama, mu, R, Tinf, rhoinf, cinf,lambda,eta(0)
c print *, kappa0,eta(0)/((gama-1.d0)*Pr)
c pause

 elseif(eos .eq. 4) then
c pressure = p(0)*gama
 rho(0) = 1.d0
 u(0) = Ma
 T(0) = 1.d0/(gama*(gama-1.d0))
 p(0) = rho(0)*(gama-1.d0)*T(0)
 j(0) = rho(0)*u(0)
 ie(0) = p(0)/(gama - 1.d0)
 ke(0) = rho(0)*u(0)**2/2.d0
 e(0) = ie(0) + ke(0)
 dsus = 0.d0 ! sum of entropy form stress
 dsu(0) = 0.d0 ! stress entropy term
 dsTs = 0.d0 ! sum of entropy from T
 dsT(0) = 0.d0 ! T entropy term
c omegau(0) = 1.16145d0/((Tinter*T(0))**0.14874d0) ! Chapman-
Enskog
c & + 0.52487d0/(exp(0.77320d0*Tinter*T(0)))
c & + 2.16178d0/(exp(2.43787d0*Tinter*T(0)))
c eta(0) = 5.d0*dsqrt(m*k*T(0)/acos(-1.d0))
c & /(16.d0*omegau(0)*sigma**2)

c eta(0) = 2.d0*dsqrt(m*k*T(0)/acos(-1.d0))
c & /(3.d0*acos(-1.d0)*sigma**2) ! Maxwell

c x = T(0)*Tinf/vari0
c omegau = -0.0799d0*x**5 + 0.743d0*x**4 - 2.7973d0*x**3
c & + 5.485d0*x**2
c & -5.9588d0*x + 4.1996d0
c etad(0) = 5.d0*dsqrt(acos(-1.0)*m*k*T(0))/
c & ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c eta(0) = etad(0)/(rhoinf*cinf*lambda)

c eta(0) = etainf*(T(0))**w ! Power Law
c
c p(jj) = 4.5000*p(0)
c T(jj) = 1.6875*T(0)
c rho(jj) = 2.667*rho(0)
c u(jj) = 0.5774
c j(jj) = rho(jj)*u(jj)
c e(jj) = rho(jj)*u(jj)*u(jj)/2 + p(jj)/(gama-1)

81

 rho(jj) = rho(0)*(gama+1.d0)*Ma**2/((gama-1.d0)*Ma**2+2.d0)
 u(jj) = rho(0)*u(0)/rho(jj)
 p(jj) = rho(0)*u(0)**2 + p(0) - rho(jj)*u(jj)**2
 ie(jj) = (ie(0)+u(0)**2/2.d0+p(0)/rho(0)-u(jj)**2/2.d0
 & -p(jj)/rho(jj))*rho(jj)
 print *, 'rankine', u(jj),p(jj),ie(jj)
 u(jj) = u(0)*(2.d0+(gama-1.d0)*Ma**2)/((gama+1.d0)*Ma**2)
 p(jj) = p(0)*(2.d0*gama*Ma**2-gama+1.d0)/(gama+1.d0)
 e(jj) = rho(jj)*u(jj)*u(jj)/2.d0 + p(jj)/(gama-1.d0)
 ie(jj) = p(jj)/(gama - 1.d0)
 print *, 'eos', u(jj),p(jj),ie(jj)
c pause
 T(jj) = p(jj)/(rho(jj)*(gama-1.d0))
 dsu(jj) = 0.d0 ! stress entropy term
 dsT(jj) = 0.d0 ! T entropy term
c pause
c eta(jj) = etainf*(T(jj))**w ! power law

c eta(jj) = 2.d0*dsqrt(m*k*T(jj)/acos(-1.d0))
c & /(3.d0*acos(-1.d0)*sigma**2) ! Maxwell

c omegau(jj) = 1.16145d0/((Tinter*T(jj))**0.14874d0) ! Chapman-
Enskog
c & + 0.52487d0/(exp(0.77320d0*Tinter*T(jj)))
c & + 2.16178d0/(exp(2.43787d0*Tinter*T(jj)))
c eta(jj) = 5.d0*dsqrt(m*k*T(jj)/acos(-1.d0))
c & /(16.d0*omegau(jj)*sigma**2)

c x = T(jj)*Tinf/vari0
c omegau = -0.0799d0*x**5 + 0.743d0*x**4 - 2.7973d0*x**3
c & + 5.485d0*x**2
c & -5.9588d0*x + 4.1996d0
c etad(jj) = 5.d0*dsqrt(acos(-1.0)*m*k*T(jj))/
c & ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c eta(jj) = etad(jj)/(rhoinf*cinf*lambda)

c Cv0 = ie(jj)/rho(jj)/T(jj)
c CvD = Cv0*gama*R
c print *,Pr, gama, mu, R, Tinf, rhoinf, cinf,lambda,eta(0)
c print *, kappa0,eta(0)/((gama-1.d0)*Pr)
c pause

 elseif(eos .eq. 1) then ! M-G,AIR
c..................coefficients of epsilon in M-G.................
 e00 = Cv*Tref/(cinf**2) ! positive or negative? question
 e01 = gama0*e00
 e02 = (C0**2/(cinf**2)+gama0**2*e00)/2.d0
 e03 = (4.d0*s*C0**2/(cinf**2)+gama0**3*e00)/6.d0
 e04 = ((18.d0*s**2*C0**2-2.d0*gama0*s*C0**2)/(cinf**2)
 & +gama0**4*e00)/24.d0

c............................left BC..............................
 x = 0.d0 ! String is zero, pre-shock
 p(0) = Pref/Pless

82

 print *, 'Pressure Direct',p(0),p(0)*Pless
 rho(0) = rhoref/rholess
c Us = Up*s+C0
 u(0) = Us/cinf
 T(0) = Tref/Tless
 j(0) = rho(0)*u(0)
 ke(0) = rho(0)*u(0)**2/2.d0
 ie(0) = Pref/gama0/Pless ! Mass internal energy
 p(0) = rho(0)*(e01 + 2.d0*e02*x + 3.d0*e03*x**2 + 4.d0*e04*x**3)
 print *, 'Pressure Poly ',p(0),p(0)*Pless
 p(0) = (rhoinf*C0**2
 & *(x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3))
 & /(rhoinf*cinf**2) + gama0*rho(0)*(ie(0)/rho(0))
 print *, 'Pressure M-G ',p(0),p(0)*Pless
 e(0) = ke(0)+ie(0)
c eta(0) = etainf*(T(0))**w ! Power Law
 print *,'Left B.C. Dimensionless', rho(0),u(0),p(0),T(0),
 & ie(0)/rho(0)
 print *,'Left B.C. Dimensional ', rho(0)*rhoinf,u(0)*cinf,
 & p(0)*Pless,T(0)*Tless,
 & ie(0)*eless/rhoinf

 dsus = 0.d0 ! sum of entropy form stress
 dsu(0) = 0.d0 ! stress entropy term
 dsTs = 0.d0 ! sum of entropy from T
 dsT(0) = 0.d0 ! Temperature entropy term

c..............................Right B.C..........................
c rho(jj) = rho(0)*(gama+1.d0)*Ma**2/((gama-1.d0)*Ma**2+2.d0)
c x = 1.d0 - rho(0)/rho(jj)
 u(jj) = (Us-Up)/cinf
cx u(jj) = Us-Up
c u(jj) = u(0)*(2.d0+(gama0)*Ma**2)/((gama0+2.d0)*Ma**2)
c u(jj) = rho(0)*u(0)/rho(jj) ! rankine hugoniot jump equations
for stationary Euler shock wave
 rho(jj) = rho(0)*u(0)/u(jj)
cx rho(jj) = rhoinf*Us/u(jj)
 x = 1.d0 - rho(0)/rho(jj)
cx x = 1.d0 - rhoinf/rho(jj)
 p(jj) = rho(0)*u(0)**2 + p(0) - rho(jj)*u(jj)**2
cx p(jj) = rhoinf*Us**2 + Pref - rho(jj)*u(jj)**2
 print *,'Pressure Hugoniot',p(jj),p(jj)*Pless
cx print *, 'pressure hugoniot', p(jj)
 ie(jj) = (rho(0)*u(0)*(ie(0)/rho(0) + u(0)**2/2.d0 + p(0)/rho(0))
 & /(rho(jj)*u(jj)) - u(jj)**2/2.d0 - p(jj)/rho(jj))
 & *rho(jj) ! Mass internal energy
 print *,'Internal Energy Hugoniot',ie(jj),
 & ie(jj)*eless,ie(jj)*eless/(rho(jj)*rhoinf)
cx ie(jj) = (Cv*Tref/rhoinf+Us**2/2.d0 + Pref/rhoinf
cx & - u(jj)**2/2.d0 - p(jj)/rho(jj))
cx & *rho(jj) ! Mass internal energy

c ie(jj) = (p(jj) - (rho(0)*C0**2
c & *(x+(2.d0*s - gama0/2.d0)*x**2+s*(3.d0*s-gama0)*x**3))

83

c & /(rhoinf*cinf**2))/gama0/rho(0)
c ie(jj) = ie(jj)*rho(jj)
c print *,'internal energy eos', ie(jj)
 gam0 = 2.d0*(-p(jj) + C0**2/cinf**2*x + 2.d0*x**2*s*C0**2/cinf**2
 & + 3.d0*s**2*x**3*C0**2/cinf**2)
 & /(x**2*C0**2/cinf**2 + 2.d0*x**3*s*C0**2/cinf**2
 & - 2.d0*ie(jj)/rho(jj))
c gam0 = 2.d0*(p(jj) - x-2.d0*x**2*s-3.d0*s**2*x**3)
c & /(-x**2-2.d0*x**3*s+2.d0*rho(0)*ie(jj)/rho(jj))
 print *,'M-G Gamma Diff is/was',gam0,gama0
c pause
 gama0 = gam0
 print *,'Values to find pressure'
 print *, 'rho(0)',rho(0)*rhoinf,'C0',
C0,'x',x,'s',s,'gama0',gama0
 print *, 'rhoinf', rhoinf,'cinf', cinf,
 & 'ie(jj)',ie(jj)*eless/(rho(jj)*rhoinf),
 & 'rho(jj)',rho(jj)*rhoinf, 'Pless', Pless, 'eless', eless,
 & 'rhoinf*cinf**2', rhoinf*cinf**2
c p(jj) = -
gama0**5*x**4*e00/(24.d0*cinf**2)+gama0**2*x**4*s/12.d0
c & - 3.d0*gama0*x**4*s**2/4.d0
c & + (x+(2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3)
c & + gama0*rho(0)*ie(jj)/rho(jj) ! 4th order eos
 p(jj) = (x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3)
 & *C0**2/cinf**2 + gama0*ie(jj)/rho(jj) ! 3rd order
eos
 print *, 'Prssure M-G ',p(jj),p(jj)*Pless
c p(jj) = rhoinf*C0**2
c & *(x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s -
gama0)*x**3)
c & + gama0*ie(jj)*eless/rho(jj)
c print *, 'prssure M-G DN ',p(jj)/Pless,p(jj)
c print *, rho(0), rhoinf
 ke(jj) = rho(jj)*u(jj)**2/2.d0
 e(jj) = ie(jj) + ke(jj)
 T(jj) = T(0) + ie(jj)/rho(jj) - ie(0)/rho(0)
 print *,'Temperature ',T(jj),T(jj)*Tless
 e0 = e00+e01*x+e02*x**2+e03*x**3+e04*x**4
 P0 = rho(0)*(e01+2.d0*e02*x+3.d0*e03*x**2+4.d0*e04*x**3)
 print *, 'P(v) ', P0-gama0*rho(0)*e0
 print *, 'P(T) ', gama0*rho(0)*ie(jj)/rho(jj)
 print *, 'P with Strain', x+(2.d0*s-gama0/2.d0)*x**2
 & +s*(3.d0*s-gama0)*x**3
 print *, 'P with Temp ', gama0*rho(0)*ie(jj)/rho(jj)

c print *,'p0 and p(0)', p0, p(0)
c e0 = e00+e01*x+e02*x**2+e03*x**3+e04*x**4
c print *,'e0 and e(0)', e0, e(0)
c p(jj) = p0 + gama0*rho(0)*(ie(jj)/rho(jj) - e0)
c print *, 'prssure changed e0', p(jj), p(jj)*Pless
 print *, 'Right B.C. Dimensionless ',rho(jj),u(jj),p(jj),T(jj),
 & ie(jj)

84

 print *, 'Right B.C. Dimensional ',rho(jj)*rhoinf,u(jj)*cinf,
 & p(jj)*Pless,T(jj)*Tless,
 & e(jj)*eless/(rho(jj)*rhoinf)
c pause

c eta(jj) = etainf*(T(jj))**w ! power law

 dsu(jj) = 0.d0 ! stress entropy
term
 dsT(jj) = 0.d0 ! T entropy term

 elseif(eos .eq. 2) then
 T(0) = Tinf/Tless
 p(0) = (gama - 1.d0)*T(0)
 rho(0) = 1.d0
 u(0) = Ma
c T(0) = 1.d0
 j(0) = rho(0)*u(0)
 e(0) = rho(0)*u(0)*u(0)/2.d0 + p(0)/(gama-1.d0)
 dsus = 0.d0 ! sum of entropy form stress
 dsu(0) = 0.d0 ! stress entropy term
 dsTs = 0.d0 ! sum of entropy from T
c omegau(0) =
1.16145/((Tinter*T(0))**0.14874) ! Chapman-Enskog
c & + 0.52487/(exp(0.77320*Tinter*T(0)))
c & + 2.16178/(exp(2.43787*Tinter*T(0)))
c eta(0) = 5.0*sqrt(m*k*T(0)/acos(-1.0))/(16.0*omegau(0)*sigma**2)
c eta(0) = 2.0*sqrt(m*k*T(0)/acos(-1.0))/(3.0*acos(-
1.0)*sigma**2) ! Maxwell

c x = T(0)*Tinf/vari0
c omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2
c & -5.9588*x + 4.1996
c eta(0) = 5.0*sqrt(acos(-1.0)*m*k*T(0))/
c & ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c eta(0) = etad(0)/(rhoinf*cinf*lambda)
c eta(0) = etainf*(T(0))**w ! Power Law
c
c p(jj) = 4.5000*p(0)
c T(jj) = 1.6875*T(0)
c rho(jj) = 2.667*rho(0)
c u(jj) = 0.5774
c j(jj) = rho(jj)*u(jj)
c e(jj) = rho(jj)*u(jj)*u(jj)/2 + p(jj)/(gama-1)

 rho(jj) = rho(0)*(gama+1.d0)*Ma**2/((gama-1.d0)*Ma**2+2.d0)
 u(jj) = u(0)*(2.d0+(gama-1.d0)*Ma**2)/((gama+1.d0)*Ma**2)
 p(jj) = p(0)*(2.d0*gama*Ma**2-gama+1.d0)/(gama+1.d0)
 e(jj) = rho(jj)*u(jj)*u(jj)/2.d0 + p(jj)/(gama-1.d0)
 ie(jj) = p(jj)/(gama - 1.d0)
 T(jj) = p(jj)/(gama - 1.d0)/rho(jj)
 dsu(jj) = 0.d0 ! stress entropy term
 dsT(jj) = 0.d0 ! T entropy term
c Cv0 = ie(jj)/rho(jj)/T(jj)

85

c CvD = Cv0*gama*R

c omegau(jj) =1.16145/((Tinter*T(jj))**0.14874) ! Chapman-Enskog
c & + 0.52487/(exp(0.77320*Tinter*T(jj)))
c & + 2.16178/(exp(2.43787*Tinter*T(jj)))
c eta(jj) = 5.0*sqrt(m*k*T(jj)/acos(-1.0))
c & /(16.0*omegau(jj)*sigma**2)
c eta(jj) = 2.0*sqrt(m*k*T(jj)/acos(-1.0))/(3.0*acos(-
1.0)*sigma**2) ! Maxwell
c eta(jj) = eta(0)
c eta(jj) = etainf*(T(jj))**w

c--------------------------------liquid----------------------------
 elseif(eos .eq. 3) then !M-G LIQUID
 print *, 'Us = ', Us, 'Up = ', Up

c.............................LHS BC.....................
 u(0) = Us/cinf
 rho(0) = rhoinf/rhoinf
 p(0) = Pref/Pless
 print *, 'pressure direct', p(0),p(0)*Pless
 T(0) = Tref/Tless
 ke(0) = rho(0)*u(0)*u(0)/2.d0
 ie(0) = p(0)/gama0
 e(0) = ke(0)+ ie(0)
 print *,'left HS DL', rho(0),u(0), p(0), T(0), e(0)
 print *,'left HS DN', rho(0)*rhoinf, u(0)*cinf, p(0)*Pless,
 & T(0)*Tless, e(0)*eless

 dsus = 0.d0 ! sum of entropy form stress
 dsu(0) = 0.d0 ! stress entropy term
 dsTs = 0.d0 ! sum of entropy from T
 dsT(0) = 0.d0 ! T entropy term

c.............................RHS BC.....................
 u(jj) = (Us-Up)/cinf
 rho(jj) = u(0)*rho(0)/u(jj)
 x = 1.d0 - rho(0)/rho(jj)
 p(jj) = p(0) + rho(0)*u(0)**2 - rho(jj)*u(jj)**2
 print *,'pressure hugoniot',p(jj),p(jj)*Pless
 ie(jj) =(rho(0)*u(0)*(ie(0)/rho(0)+u(0)**2/2.d0 + p(0)/rho(0))
 & /(rho(jj)*u(jj)) - u(jj)**2/2.d0 - p(jj)/rho(jj))
 & *rho(jj)
 print *,'internal energy hugoniot',ie(jj),
 & ie(jj)*eless, ie(jj)*eless/(rho(jj)*rhoinf)
 ke(jj) = rho(jj)*u(jj)**2/2.d0
 e(jj) = ie(jj) + ke(jj)
 gam0 = 2.d0*(p(jj)-x-2.d0*x**2*s-3.d0*s**2*x**3)
 & /(-x**2-2.d0*x**3*s+2.d0*rho(0)*ie(jj)/rho(jj))
 print *,'Gamma diff is/was', gam0, gama0
 gama0 = gam0
 print *,'values to find pressure'
 print *, 'rho(0)',rho(0)*rhoinf,'C0',
C0,'x',x,'s',s,'gama0',gama0

86

 print *, 'rhoinf', rhoinf,'cinf', cinf,
 & 'ie(jj)',ie(jj)*eless/(rho(jj)*rhoinf),
 & 'rho(jj)',rho(jj)*rhoinf, 'Pless', Pless, 'eless', eless,
 & 'rhoinf*cinf**2', rhoinf*cinf**2
c p(jj) = -
gama0**5*x**4*e00/(24.d0*cinf**2)+gama0**2*x**4*s/12.d0
c & - 3.d0*gama0*x**4*s**2/4.d0
c & + (x+(2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3)
c & + gama0*rho(0)*ie(jj)/rho(jj) ! 4th order eos
 p(jj) = (x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s - gama0)*x**3)
 & + gama0*rho(0)*ie(jj)/rho(jj) ! 3rd order eos
 print *, 'prssure M-G DL ',p(jj), p(jj)*Pless
 T(jj) = T(0) + ie(jj)/rho(jj) - ie(0)/rho(0)
 print *,'Temp DL', T(jj), T(jj)*Tless
 print *, 'right HS DL', rho(jj),u(jj),p(jj),T(jj),e(jj)
 print *, 'right HS DN', rho(jj)*rhoinf,u(jj)*cinf,p(jj)*Pless,
 & T(jj)*Tless,e(jj)*eless

c pause

 dsu(jj) = 0.d0 ! stress entropy term
 dsT(jj) = 0.d0 ! T entropy term

 endif
c-----------------------printout jump condition------------------

 print *,'Jump Conditions'
c Print *,'dimensional Tem',T(0)*cinf**2/Cv
c Print *, T(jj)*cinf**2/Cv, T(jj)
c Print *,'Tem and InterE', T(0),ie(0)/rho(0),T(jj),ie(jj)/rho(jj)
 Print *,'Velocity ratio ',u(jj)/u(0)
 print *,'Temperature ratio ',T(jj)/T(0)
 print *,'Density ratio ',rho(jj)/rho(0)
 Print *,'Pressure ratio ',p(jj)/p(0)
 print *,'Velocity Dimensional ',u(0)*cinf,u(jj)*cinf
 Pause

c.........update heat conductivity to calculate entropy (GAS Only)....
 if (eos .ne. 3) then
 kappa0 = gama*R*eta(0)/((gama-1.d0)*Pr*Cv)
 kappa = kappa0*(Cv*rhoinf*cinf*lambda)
 endif

c-------------------------theoretical entropy-------------------

c e(jj) =(rho(0)*u(0)*(ie(0)/rho(0)+u(0)** print *,log(2.d0)
 dsa = Cv*dlog(T(jj)/T(0))+ R*dlog(rho(0)/rho(jj)) ! J/kg.k
theoretical Entropy
c print *,Cv,Cv*dlog(T(jj)/T(0))
c print *,R,R*dlog(rho(0)/rho(jj))
c print *,dsa
c pause

c omegau = 1.16145/(vari0*T(jj))**0.14874

87

c & + 0.52487/(exp(0.77320*vari0*T(jj)))
c & + 2.16178/(exp(2.43787*vari0*T(jj)))
c x = T(jj)*Tinf/vari0
c omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2
c & -5.9588*x + 4.1996
c eta(jj) = 5.0*sqrt(acos(-1.0)*m*k*T(jj))/
c & ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c etad(jj) = 5.0*sqrt(acos(-1.0)*m*k*T(jj))/
c & (16.0*acos(-1.0)*sigma**2*omegau)
c eta(jj) = etad(jj)/(rhoinf*cinf*lambda)
c eta(jj) = etainf*(T(jj))**w

c-------------------------set initial condidion-----------------------
c...........................Left Half..........................
 do i = 1,jj/2
 rho(i) = rho(0)
 T(i) = T(0)
 u(i) = u(0)
 p(i) = p(0)
 j(i) = u(i)*rho(i)
 e(i) = e(0)
 eta(i) = eta(0)
 ! write (*,'(i4,f12.5)') i,T(i)
 enddo

c...........................Right Half.........................
 do i=jj/2,jj-1
 rho(i) = rho(jj)
 T(i) = T(jj)
 u(i) = u(jj)
 p(i) = p(jj)
 j(i) = rho(i)*u(i)
 e(i) = e(jj)
 eta(i) = eta(jj)
 ! write (*,'(i4,f12.5)') i,t(i)
 enddo
c

 print *,'RH',p(jj)/p(0),rho(jj)/rho(0),u(jj)/u(0),T(jj)/T(0)
 print *,eta(0)
c pause
c
 do i=0,jj
 write(*,'(A2,i5,10f10.3)')
 & 'IC',i,rho(i),u(i),p(i),t(i),e(i),p(i)
 enddo

c--
c read restart file
c--
 nstep = 0
 ans='n'
 if (ans .eq. 'y' .or. ans .eq. 'Y') then

88

c read in old file
 open (unit=44, file='restart.dat',form='formatted',
 & status='old',err=135)
 do i = 0,jj,1 !Zero out variables
 read(44,'(i15,6e25.18)') nstep,rho(i),U(i),P(i),e(i),T(i),eta(i)
c write(*,'(6e25.18)') rho(i),U(i),P(i),e(i),T(i),eta(i)
 rhohat(i) = rho(i)
 uhat(i) = u(i)
 phat(i) = p(i)
 ehat(i) = e(i)
 enddo
 print *,'ShockLeft:',rho(0),u(0),p(0),e(0),T(0)
 print *,'ShockRigh: ',rho(jj),u(jj),p(jj),e(jj),T(jj)
 print *,'ShockJump: ',
 & rho(jj)/rho(0),u(jj)/u(0),p(jj)/p(0),e(jj)/e(0),t(jj)/t(0)
 print *,'*'
 goto 137
 135 Print *,'No *restart file...'
 137 close(44)
 if (1 .eq. 1) then ! average out a restart
 do i=0,jj-2,2
 rho(i+1) = (rho(i+2) + rho(i))/2.d0
 u(i+1) = (u(i+2) + u(i))/2.d0
 p(i+1) = (p(i+2) + p(i))/2.d0
 e(i+1) = (e(i+2) + e(i))/2.d0
 eta(i+1) = (eta(i+2) + eta(i))/2.d0
 enddo
c flag = .false.
 endif
 goto 456
 endif

c---------------------- state time steps -----------------------
 456 do n = nstep+1,nstep+1000000 !time
c------------------------shock move---------------------------
 if (eos .eq. 0) then ! ideal gas EOS
 umax = 0.
 do i = 0,jj
 uloc = abs(u(i))+dsqrt(T(i))
 if (uloc .gt. umax) umax=uloc
 enddo
 ht = 0.001*hx/uloc
c print *,'ht=',ht
c print *,'integer time ',n
 do i= 0,jj-2,2 !space
c calculate average
 j(i+1) = (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0
 PI(i+1) = 4.d0*(eta(i+2)+ eta(i))*(u(i+2)-u(i))/hx/6.d0
 q(i+1) = -1.d0*(eta(i+2)+ eta(i))*(T(i+2)-T(i))/hx
 & /((gama-1.d0)*Pr)/2.d0
c T(i+1) = gama*p(i+1)/rho(i+1)
 E(i) = rho(i)*u(i)*u(i)/2.d0+p(i)/(gama-1.d0)
 rho(i+1) = (rho(i+2)+ rho(i))/2.d0

89

 u(i+1) = (u(i+2)+u(i))/2.d0
 p(i+1) = (p(i+2)+ p(i))/2.d0
 E(i+1) = (E(i+2)+ E(i))/2.d0
 H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)
c
 enddo
c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,j(i),PI(i),q(i),T(i),E(i),rho(i),u(i),p(i),e(i),h(i)
c enddo
c
c print *,'1',n,rho(24)
 do i=2,jj-2,2
c
 q(i) = (q(i-1)+q(i+1))/2.d0
 rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx
 jhat(i) = rho(i)*u(i) + ht*((PI(i+1) - PI(i-1))
 & -(j(i+1)*u(i+1) - j(i-1)*u(i-1))
 & -(p(i+1) - p(i-1)))/hx
 Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))-
 & (j(i+1)*H(i+1) - j(i-1)*H(i-1))-
 & (q(i+1) - q(i-1)))/hx
 uhat(i) = jhat(i)/rhohat(i)
 phat(i)= (gama -1.d0)*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.d0)
c

c
 enddo
c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i)
c enddo
c
c print *,rho(24),ht,j(28+1),j(28-1),hx
c print *,'2',n,rhohat(28)

 do i=2,jj-2,2
 rho(i) = rhohat(i)
 u(i) = uhat(i)
 j(i) = jhat(i)
 E(i) = Ehat(i)
 p(i) = phat(i)
 T(i) = gama*p(i)/rho(i)
 omegau(i) = 1.16145d0/((Tinter*T(i))**0.14874d0) ! Chapman-Enskog
 & + 0.52487d0/(exp(0.77320d0*Tinter*T(i)))
 & + 2.16178d0/(exp(2.43787d0*Tinter*T(i)))
 eta(i) = 5.d0*dsqrt(m*k*T(i)/acos(-1.d0))
 & /(16.d0*omegau(i)*sigma**2)

c eta(i) = 2.d0*dsqrt(m*k*T(i)/acos(-1.d0))
c & /(3.d0*acos(-1.d0)*sigma**2) ! Maxwell

c omegau = 1.16145/(vari0*T(i))**0.14874
c & + 0.52487/(exp(0.77320*vari0*T(i)))

90

c & + 2.16178/(exp(2.43787*vari0*T(i)))
c eta(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/
c & ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))

c x = T(i)*Tinf/vari0
c omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2
c & -5.9588*x + 4.1996
c etad(i) = 5.d0*dsqrt(acos(-1.0)*m*k*T(i))/
c & ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c eta(i) = etad(i)/(rhoinf*cinf*lambda)

c etad(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/
c & (16.0*acos(-1.0)*sigma**2*omegau)
c eta(i) = etad(i)/(rhoinf*cinf*lambda)

c eta(i) = etainf*(T(i))**w ! Power Law
 enddo
c
c print *,'3',n,rho(28)

c do i=0,jj-2,2
c rho(i+1) = (rho(i+2)+rho(i))/2.0
c u(i+1) = (u(i+2)+u(i))/2.0
c p(i+1) = (p(i+2)+ p(i))/2.000
c E(i+1) = (E(i+2)+ E(i))/2.0
c H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)
c enddo

c do i=0,jj
c write(*,'(A1,i4,10f10.3)')
c & 'e',i,rho(i),j(i),e(i),p(i),u(i)
c enddo
c
c print *,'4',n,rho(28)

 elseif (eos .eq. 4) then ! ideal gas EOS with general Dless
scales
 umax = 0.
 do i = 0,jj
 uloc = abs(u(i))+dsqrt(gama*(gama-1.d0)*T(i))
 if (uloc .gt. umax) umax=uloc
 enddo
 ht = 0.001*hx/uloc
c print *,'ht=',ht
c print *,'integer time ',n
 do i= 0,jj-2,2 !space
c calculate average
 j(i+1) = (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0
 PI(i+1) = 4.d0*(eta(i+2)+ eta(i))*(u(i+2)-u(i))/hx/6.d0
 q(i+1) = -1.d0*gama*(eta(i+2)+ eta(i))*(T(i+2)-T(i))/hx
 & /(Pr)/2.d0
c T(i+1) = gama*p(i+1)/rho(i+1)

91

 E(i) = rho(i)*u(i)*u(i)/2.d0+p(i)/(gama-1.d0)
 rho(i+1) = (rho(i+2)+ rho(i))/2.d0
 u(i+1) = (u(i+2)+u(i))/2.d0
 p(i+1) = (p(i+2)+ p(i))/2.d0
 E(i+1) = (E(i+2)+ E(i))/2.d0
 H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)
c
 enddo
c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,j(i),PI(i),q(i),T(i),E(i),rho(i),u(i),p(i),e(i),h(i)
c enddo
c
c print *,'1',n,rho(24)
 do i=2,jj-2,2
c
 q(i) = (q(i-1)+q(i+1))/2.d0
 rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx
 jhat(i) = rho(i)*u(i) + ht*((PI(i+1) - PI(i-1))
 & -(j(i+1)*u(i+1) - j(i-1)*u(i-1))
 & -(p(i+1) - p(i-1)))/hx
 Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))-
 & (j(i+1)*H(i+1) - j(i-1)*H(i-1))-
 & (q(i+1) - q(i-1)))/hx
 uhat(i) = jhat(i)/rhohat(i)
 phat(i)= (gama -1.d0)*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.d0)
c

c
 enddo
c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i)
c enddo
c
c print *,rho(24),ht,j(28+1),j(28-1),hx
c print *,'2',n,rhohat(28)

 do i=2,jj-2,2
 rho(i) = rhohat(i)
 u(i) = uhat(i)
 j(i) = jhat(i)
 E(i) = Ehat(i)
 p(i) = phat(i)
 T(i) = p(i)/rho(i)/(gama-1.d0)
c omegau(i) = 1.16145d0/((Tinter*T(i))**0.14874d0) !
Chapman-Enskog
c & + 0.52487d0/(exp(0.77320d0*Tinter*T(i)))
c & + 2.16178d0/(exp(2.43787d0*Tinter*T(i)))
c eta(i) = 5.d0*dsqrt(m*k*T(i)/acos(-1.d0))
c & /(16.d0*omegau(i)*sigma**2)

c eta(i) = 2.d0*dsqrt(m*k*T(i)/acos(-1.d0))
c & /(3.d0*acos(-1.d0)*sigma**2) ! Maxwell

92

c omegau = 1.16145/(vari0*T(i))**0.14874
c & + 0.52487/(exp(0.77320*vari0*T(i)))
c & + 2.16178/(exp(2.43787*vari0*T(i)))
c eta(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/
c & ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))

c x = T(i)*Tinf/vari0
c omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2
c & -5.9588*x + 4.1996
c etad(i) = 5.d0*dsqrt(acos(-1.0)*m*k*T(i))/
c & ((16.d0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c eta(i) = etad(i)/(rhoinf*cinf*lambda)

c etad(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/
c & (16.0*acos(-1.0)*sigma**2*omegau)
c eta(i) = etad(i)/(rhoinf*cinf*lambda)

c eta(i) = etainf*(T(i))**w ! Power Law
 enddo
c
c
c print *,'3',n,rho(28)

c do i=0,jj-2,2
c rho(i+1) = (rho(i+2)+rho(i))/2.0
c u(i+1) = (u(i+2)+u(i))/2.0
c p(i+1) = (p(i+2)+ p(i))/2.000
c E(i+1) = (E(i+2)+ E(i))/2.0
c H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)
c enddo

c do i=0,jj
c write(*,'(A1,i4,10f10.3)')
c & 'e',i,rho(i),j(i),e(i),p(i),u(i)
c enddo
c
c print *,'4',n,rho(28)

 elseif (eos .eq. 1) then ! M-G EOS
 umax = 0.d0
 do i = 0,jj
 uloc = abs(u(i))+dsqrt((gama0+1.d0)*gama0*T(i))
 if (uloc .gt. umax) umax=uloc
 enddo
 ht = 0.001*hx/uloc
c print *,'ht=',ht

c print *,'integer time ',n
 do i= 0,jj-2,2 !space
c calculate average
 j(i+1) = (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0

93

 PI(i+1) = 4.d0*(eta(i+2)+ eta(i))*(u(i+2)-u(i))/hx/6.d0
 q(i+1) = -1.d0*(gama0+1.d0)*(eta(i+2)+ eta(i))*
 & (T(i+2)-T(i))/(hx*Pr*2.d0)
c q(i+1) = - kappa0*(T(i+2)-T(i))/hx
c q(i+1) = - (eta(i+2)+ eta(i))*(T(i+2)-T(i))/hx/((gama0)*Pr)/2.d0
c T(i+1) = gama*p(i+1)/rho(i+1)
c E(i) = rho(i)*u(i)*u(i)/2.d0+p(i)/gama0
 rho(i+1) = (rho(i+2)+ rho(i))/2.d0
 u(i+1) = (u(i+2)+ u(i))/2.d0
 p(i+1) = (p(i+2)+ p(i))/2.d0
 E(i+1) = (E(i+2)+ E(i))/2.d0
 H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)
 enddo

c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,j(i),PI(i),q(i),T(i),E(i),rho(i),u(i),p(i),e(i),h(i)
c enddo
c
c print *,'1',n,rho(24)

 do i=2,jj-2,2
c
 q(i) = (q(i-1)+q(i+1))/2.d0
 rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx
 jhat(i) = rho(i)*u(i) + ht*((PI(i+1) - PI(i-1))
 & -(j(i+1)*u(i+1) - j(i-1)*u(i-1))
 & -(p(i+1) - p(i-1)))/hx
 Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))-
 & (j(i+1)*H(i+1) - j(i-1)*H(i-1))-
 & (q(i+1) - q(i-1)))/hx
 uhat(i) = jhat(i)/rhohat(i)
 x = 1.d0 - rho(0)/rhohat(i)
c phat(i) = -
gama0**5*x**4*e00/(24.d0*cinf**2)+gama0**2*x**4*s/12.d0
c & - 3.d0*gama0*x**4*s**2/4.d0
c & + (x + (2.d0*s- gama0/2.d0)*x**2 + s*(3.d0*s -
gama0)*x**3)
c & + gama0*rho(0)*(Ehat(i)-rhohat(i)*uhat(i)**2/2.d0)
c & /rhohat(i) ! 4th order eos
 phat(i) = (x + (2.d0*s - gama0/2.d0)*x**2
 & + s*(3.d0*s - gama0)*x**3)*C0**2/cinf**2
 & + gama0*rho(0)*(Ehat(i)-rhohat(i)*uhat(i)**2/2.d0)
 & /rhohat(i) ! 3rd order eos

c print *,'values to find pressure'
c print *, 'rho(0)',rho(0),'x',x,'s',s,'gama0',gama0
c print *, 'rhohat',rhohat(i),'Ehat',Ehat(i),'uhat(i)',uhat(i)
c print *, 'phat(i)', phat(i)
c pause
c phat(i) = gama0*((Ehat(i)-rhohat(i)*uhat(i)**2/2.d0)
c phat(i) = p(0)
c & + gama0*rho(0)*((Ehat(i)-rhohat(i)*uhat(i)**2/2.d0)
c & /rhohat(i)

94

c & - ie(0)/rho(0))
c phat(i) = gama0*rhoref*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0
c & - eref) + Pref
c phat(i)= gama0*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0)
c
 enddo

c if (n/100 .eq. float(n)/100.) then
c do bug = 0,jj,10 !debug
c write (*,'(2i5,3f16.5)')n,bug,phat(bug),Ehat(bug),rhohat(bug)
c enddo
c pause
c endif
c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i)
c enddo
c
c print *,rho(24),ht,j(28+1),j(28-1),hx
c print *,'2',n,rhohat(28)

 do i=2,jj-2,2
 rho(i) = rhohat(i)
 u(i) = uhat(i)
 j(i) = jhat(i)
 E(i) = Ehat(i)
 p(i) = phat(i)
 T(i) = T(0)+ (E(i)-rho(i)*u(i)**2/2.d0)/rho(i)
 & - (E(0)-rho(0)*u(0)**2/2.d0)/rho(0)
 PI(i) = 4.d0*eta(i)*(u(i+2)-u(i))/2.d0/hx/3.d0

c omegau(i) =
1.16145/((Tinter*T(i))**0.14874) ! Chapman-Enskog
c & + 0.52487/(exp(0.77320*Tinter*T(i)))
c & + 2.16178/(exp(2.43787*Tinter*T(i)))
c eta(i) = 5.0*sqrt(m*k*T(i)/acos(-1.0))/(16.0*omegau(i)*sigma**2)
c eta(i) = 2.0*sqrt(m*k*T(i)/acos(-1.0))/(3.0*acos(-
1.0)*sigma**2) ! Maxwell

c omegau = 1.16145/(vari0*T(i))**0.14874
c & + 0.52487/(exp(0.77320*vari0*T(i)))
c & + 2.16178/(exp(2.43787*vari0*T(i)))
c eta(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/
c & ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c x = T(i)*Tinf/vari0
c omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2
c & -5.9588*x + 4.1996
c etad(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/
c & (16.0*acos(-1.0)*sigma**2*omegau)
c eta(i) = etad(i)/(rhoinf*cinf*lambda)

c eta(i) =
etainf*(T(i))**w ! Power Law
 enddo

95

c
c print *,'3',n,rho(28)

c do i=0,jj-2,2
c rho(i+1) = (rho(i+2)+rho(i))/2.0
c u(i+1) = (u(i+2)+u(i))/2.0
c p(i+1) = (p(i+2)+ p(i))/2.0
c E(i+1) = (E(i+2)+ E(i))/2.0
c H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)
c enddo

c do i=0,jj
c write(*,'(A1,i4,10f10.3)')
c & 'e',i,rho(i),j(i),e(i),p(i),u(i)
c enddo
c
c print *,'4',n,rho(28)
 elseif (eos .eq. 2) then ! ideal gas EOS general dimensionless
 umax = 0.
 do i = 0,jj
 uloc = abs(u(i))+dsqrt(gama*R*T(i)/Cv)
 if (uloc .gt. umax) umax=uloc
 enddo
 ht = 0.001*hx/uloc

c print *,'ht=',ht

c print *,'integer time ',n
 do i= 0,jj-2,2 !space
c calculate average
 j(i+1) = (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0
 PI(i+1) = 4.d0*(eta(i+2)+ eta(i))*(u(i+2)-u(i))/hx/6.d0
 q(i+1) = - kappa0*(T(i+2)-T(i))/hx
c q(i+1) = - (eta(i+2)+ eta(i))*(T(i+2)-T(i))/hx/((gama0)*Pr)/2.0
c T(i+1) = gama*p(i+1)/rho(i+1)
 E(i) = rho(i)*u(i)*u(i)/2.d0+p(i)/gama0
 rho(i+1) = (rho(i+2)+ rho(i))/2.d0
 u(i+1) = (u(i+2)+ u(i))/2.d0
 p(i+1) = (p(i+2)+ p(i))/2.d0
 E(i+1) = (E(i+2)+ E(i))/2.d0
 H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)

 enddo
c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,j(i),PI(i),q(i),T(i),E(i),rho(i),u(i),p(i),e(i),h(i)
c enddo
c
c print *,'1',n,rho(24)
 do i=2,jj-2,2
c
 q(i) = (q(i-1)+q(i+1))/2.d0
 rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx
 jhat(i) = rho(i)*u(i) + ht*((PI(i+1) - PI(i-1))

96

 & -(j(i+1)*u(i+1) - j(i-1)*u(i-1))
 & -(p(i+1) - p(i-1)))/hx
 Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))-
 & (j(i+1)*H(i+1) - j(i-1)*H(i-1))-
 & (q(i+1) - q(i-1)))/hx
 uhat(i) = jhat(i)/rhohat(i)
 phat(i)= (gama -1.d0)*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.d0)
c phat(i) = gama0*rhoref*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0
c & - eref) + Pref
c phat(i)= gama0*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0)
c
c if (n/100 .eq. float(n)/100.) then
c do bug = 0,jj,10 !debug
c write (*,'(2i4,f12.5)')n,bug,phat(bug)
c enddo
c pause
c endif
c
 enddo
c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i)
c enddo
c
c print *,rho(24),ht,j(28+1),j(28-1),hx
c print *,'2',n,rhohat(28)

 do i=2,jj-2,2
 rho(i) = rhohat(i)
 u(i) = uhat(i)
 j(i) = jhat(i)
 E(i) = Ehat(i)
 p(i) = phat(i)
c T(i) = p(i)/rho(i)/(gama-1.d0)
 T(i) = T(0)+ (e(i)-rho(i)*u(i)**2/2.d0)/rho(i)
 & - (e(0)-rho(0)*u(0)**2/2.d0)/rho(0)
c omegau(i) =
1.16145/((Tinter*T(i))**0.14874) ! Chapman-Enskog
c & + 0.52487/(exp(0.77320*Tinter*T(i)))
c & + 2.16178/(exp(2.43787*Tinter*T(i)))
c eta(i) = 5.0*sqrt(m*k*T(i)/acos(-1.0))/(16.0*omegau(i)*sigma**2)
c eta(i) = 2.0*sqrt(m*k*T(i)/acos(-1.0))/(3.0*acos(-
1.0)*sigma**2) ! Maxwell

c omegau = 1.16145/(vari0*T(i))**0.14874
c & + 0.52487/(exp(0.77320*vari0*T(i)))
c & + 2.16178/(exp(2.43787*vari0*T(i)))
c eta(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/
c & ((16.0*acos(-1.0)*sigma**2*omegau)*(rhoinf*cinf*lambda))
c x = T(i)*Tinf/vari0
c omegau = -0.0799*x**5 + 0.743*x**4 - 2.7973*x**3 + 5.485*x**2
c & -5.9588*x + 4.1996
c etad(i) = 5.0*sqrt(acos(-1.0)*m*k*T(i))/
c & (16.0*acos(-1.0)*sigma**2*omegau)

97

c eta(i) = etad(i)/(rhoinf*cinf*lambda)

c eta(i) =
etainf*(T(i))**w ! Power Law
 enddo
c
c print *,'3',n,rho(28)

c do i=0,jj-2,2
c rho(i+1) = (rho(i+2)+rho(i))/2.0
c u(i+1) = (u(i+2)+u(i))/2.0
c p(i+1) = (p(i+2)+ p(i))/2.0
c E(i+1) = (E(i+2)+ E(i))/2.0
c H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)
c enddo

c do i=0,jj
c write(*,'(A1,i4,10f10.3)')
c & 'e',i,rho(i),j(i),e(i),p(i),u(i)
c enddo
c
c print *,'4',n,rho(28)

c------------------------------liquid------------------------------
 elseif (eos .eq. 3) then !liquid M-G
 umax = 0.
 do i = 0,jj
c uloc = abs(u(i))+dsqrt(gama*R*T(i)/Cv)
 uloc = abs(u(i))+1.d0
 if (uloc .gt. umax) umax=uloc
 enddo
 ht = 0.001*hx/uloc

c print *,'ht=',ht
c print *,'integer time ',n

 do i= 0,jj-2,2 !space
c calculate average
 j(i+1) = (rho(i+2)*u(i+2) + rho(i)*u(i))/2.d0
 PI(i+1) = (4.d0/3.d0+uv)*((eta(i+2)+ eta(i))/2.d0)
 & *(u(i+2)-u(i))/hx
 q(i+1) = -kappa0*(T(i+2)-T(i))/hx
 rho(i+1) = (rho(i+2)+ rho(i))/2.d0
 u(i+1) = (u(i+2)+ u(i))/2.d0
 p(i+1) = (p(i+2)+ p(i))/2.d0
 E(i+1) = (E(i+2)+ E(i))/2.d0
 H(i+1) = (E(i+1)+ p(i+1))/rho(i+1)

c if (n/1000 .eq. float(n)/1000.) then !debug
c print *,'debug',n,E(i)
c endif
 enddo

98

c print *,Pr, gama, mu, R, Tinf, rhoinf, cinf,lambda,eta(0)
c print *, kappa0,eta(0)/((gama-1.d0)*Pr)
c pause

 do i=2,jj-2,2
c
 q(i) = (q(i-1)+q(i+1))/2.d0
 rhohat(i)=rho(i)-ht*(j(i+1)-j(i-1))/hx
 jhat(i) = rho(i)*u(i) + ht*((PI(i+1) - PI(i-1))
 & -(j(i+1)*u(i+1) - j(i-1)*u(i-1))
 & -(p(i+1) - p(i-1)))/hx
 Ehat(i) = E(i)+ ht*(((PI(i+1)*u(i+1)) - PI(i-1)*u(i-1))-
 & (j(i+1)*H(i+1) - j(i-1)*H(i-1))-
 & (q(i+1) - q(i-1)))/hx
 uhat(i) = jhat(i)/rhohat(i)
 x = 1.d0 - rho(0)/rhohat(i)
c phat(i) = -
gama0**5*x**4*e00/(24.d0*cinf**2)+gama0**2*x**4*s/12.d0
c & - 3.d0*gama0*x**4*s**2/4.d0
c & + (x + (2.d0*s- gama0/2.d0)*x**2 + s*(3.d0*s -
gama0)*x**3)
c & + gama0*rho(0)*(Ehat(i)-rhohat(i)*uhat(i)**2/2.d0)
c & /rhohat(i) ! 4th order eos
 phat(i) = (x + (2.d0*s - gama0/2.d0)*x**2 + s*(3.d0*s-gama0)*x**3)
 & + gama0*rho(0)*(Ehat(i)-rhohat(i)*uhat(i)**2/2.d0)
 & /rhohat(i) ! 3rd order eos
c print *,'values to find pressure'
c print *, 'rho(0)',rho(0),'x',x,'s',s,'gama0',gama0
c print *, 'rhohat',rhohat(i),'Ehat',Ehat(i),'uhat(i)',uhat(i)
c print *, 'phat(i)', phat(i)
c pause
c phat(i) = gama0*((Ehat(i)-rhohat(i)*uhat(i)**2/2.d0)
c phat(i) = p(0)
c & + gama0*rho(0)*((Ehat(i)-rhohat(i)*uhat(i)**2/2.d0)
c & /rhohat(i)
c & - ie(0)/rho(0))
c phat(i) = gama0*rhoref*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0
c & - eref) + Pref
c phat(i)= gama0*(Ehat(i)-rhohat(i)*uhat(i)*uhat(i)/2.0)
c
c if (n/100 .eq. float(n)/100.) then
c do bug = 0,jj,10 !debug
c write (*,'(2i4,f12.5)')n,bug,phat(bug)
c enddo
c pause
c endif
c
 enddo
c do i=0,jj
c write(*,'(i4,10f10.3)')
c & i,rhohat(i),jhat(i),ehat(i),phat(i),uhat(i)
c enddo
c

99

c print *,rho(24),ht,j(28+1),j(28-1),hx
c print *,'2',n,rhohat(28)

 do i=2,jj-2,2
 rho(i) = rhohat(i)
 u(i) = uhat(i)
 j(i) = jhat(i)
 E(i) = Ehat(i)
 p(i) = phat(i)
 T(i) = T(0)+ (e(i)-rho(i)*u(i)**2/2.d0)/rho(i)
 & - (e(0)-rho(0)*u(0)**2/2.d0)/rho(0)
 enddo

c do i=0,jj
c write(*,'(A1,i4,10f10.3)')
c & 'e',i,rho(i),j(i),e(i),p(i),u(i)
c enddo

 endif

 if (n/10000 .eq. float(n)/10000.) then
 print *,'Time step n=',n
 if (n .gt. 99 .and. n .le. 999) then
 write(filen(8:10),'(i3)') n
c elseif (n .gt. 999 .and. n .le. 9999) then
c write(filen(7:10),'(i4)') n
c elseif (n .gt. 9999 .and. n .le. 99999) then
c write(filen(6:10),'(i5)') n
c elseif (n .gt. 99999 .and. n .le. 999999) then
c write(filen(5:10),'(i6)') n
 elseif (n .gt. 999999 .and. n .le. 9999999) then
 write(filen(4:10),'(i7)') n
 open(unit=22,file=filen,form='formatted',status='unknown')
 do i=0,jj
 write (22,'(81f12.5)') (hx/2.d0)*(float(i)-float(jj)/2.d0),
 & p(i),rho(i),(rho(i)-rho(0))/(rho(jj)-rho(0))
 enddo
 close(22)
c write(entropy(4:10),'(i7)') n
 elseif (n .gt. 9999999 .and. n .le. 99999999) then
 write(filen(3:10),'(i8)') n
 open(unit=22,file=filen,form='formatted',status='unknown')
 do i=0,jj
 write (22,'(81f12.5)') (hx/2.d0)*(float(i)-float(jj)/2.d0),
 & p(i),rho(i),(rho(i)-rho(0))/(rho(jj)-rho(0))
 enddo
 close(22)
c write(entropy(3:10),'(i8)') n
 endif

c open(unit=22,file=filen,form='formatted',status='unknown')
c print *,'Time step n=',n
c do i=0,jj
c write (22,'(81f12.5)') (hx/2.d0)*(float(i)-float(jj)/2.d0),

100

c & p(i),rho(i),(rho(i)-rho(0))/(rho(jj)-rho(0))
c enddo
c close(22)

 if(eos .eq. 0) then
c open(unit=21,file=entropy,form='formatted',status='unknown')
 dsus = 0
 dsTs = 0
 do i = 2,jj-2,2
 dsu(i) = 4.d0*eta(i)*((u(i+2)-u(i-2))/(2.d0*deltax))**2*deltax
 & /(3.d0*T(i))/(rho(i)*u(i))
 dsus = dsus + dsu(i)
 dsT(i) =-kappa*((T(i+2)-2.d0*T(i)+T(i-2))/(deltax**2))*deltax
 & /T(i)/(rho(i)*u(i))
 dsT(i) =((q(i+2)-q(i-2))/(2.d0*hx))*hx/T(i)/(rho(i)*u(i))
 dsTs = dsTs + dsT(i)
 enddo
 ds = (dsus -dsTs)*R*gama
 entropy(n) = ds
c write (21,'(4f12.5)') dsa, dsus*R*gama,dsTs*R*gama, ds
c close(21)
c
c do i = 0,jj
c write (* ,'(i4,f12.5)') i,rho(i)
c write (23,'(f12.6)') hx*(float(i)-float(jj)/2.0)
c enddo
c pause
c close(23)

 elseif(eos .ne. 0) then
 dsus = 0
 dsTs = 0
 do i = 2,jj-2,2
 dsu(i) = 4.d0*eta(i)*((u(i+2)-u(i-2))/(2.d0*deltax))**2*deltax
 & /(3.d0*T(i))/(rho(i)*u(i))
 dsus = dsus + dsu(i)
 dsT(i) =-kappa*((T(i+2)-2.d0*T(i)+T(i-2))/(deltax**2))*deltax
 & /T(i)/(rho(i)*u(i))
 dsT(i) =((q(i+2)-q(i-2))/(2.d0*hx))*hx/T(i)/(rho(i)*u(i))
 dsTs = dsTs + dsT(i)
 enddo
c do i = 2,jj-2,2
c dsu(i) = 4.d0*eta(i)*((u(i+2)-u(i))/deltax)**2*(deltax)
c & /(3.d0*T(i))/(rho(i)*u(i))
c dsus = dsus + dsu(i)
c dsT(i) =-gama*eta(i)/Pr*((T(i+2)-2*T(i)+T(i-2))/((deltax)**2))
c & *(deltax)/T(i)/(rho(i)*u(i))
c dsT(i) =((q(i+2)-q(i))/(deltax))*(deltax)/T(i)/(rho(i)*u(i))
c dsTs = dsTs + dsT(i)
c enddo
 ds = (dsus -dsTs)*Cv
 entropy(n) = ds
 endif

101

c output restart
 print *,'Write restart file...'
 open (unit=44, file='restart.dat', form='formatted',
 & status='unknown')
 do i = 0,jj,1 !Zero out variables
 write (44,'(i15,6e25.18)') n,rho(i),u(i),P(i),e(i),T(i),eta(i)
 enddo
 close(44)
c endif

 endif

 enddo !j-loop

c---------------analytic solution is only available for gas------------
c--------------------------analytic solution---------------------------
 print *,'Analytic solution'
 open (unit=41,file='shock.dat',form='formatted',status='unknown')
 open(unit=21,file='entropy.dat',form='formatted',status='unknown')

 if (eos .ne. 3) then
c caculate parameters

c print *,'alpha2=',alpha,' beta=',beta
 c1= sqrt(gama*R*Tinf) !sound speed of
inflow [cm/us]
c print *,'alpha2=',alpha,' beta=',beta
 x0=0.*t(1)*((gama+1.0)*u(0)/4.0 + !shock position from landau and
liftshitz pg 358. Why there is a 0. before t(n),besides, is t(n) the
same mean as T(n)?
 & sqrt((gama+1.0)**2*u(0)**2/16.0+ c1**2))
c print *,'alpha2=',alpha,' beta=',beta
 x0=0.*x0/lambda
c print *,'alpha2=',alpha,' beta=',beta
 M1= sqrt(((p(jj)/p(0))*(gama+1.0)+gama-1.0)/(2.d0*gama))! mach#
for the stationary shock solution
 v1=M1*c1 !
upstream velocity
 alpha=(gama-1.d0)/(gama+1.d0)+2.d0/((gama+1.d0)*M1**2) ! alpha,
asymptote of analytic solution see BSL notes
 beta=9.0*(gama+1.0)*sqrt(acos(-1.0)/8.0/gama)/8.0 ! beta,
from transport phonomena book P352
c lambda=3.d0*mu/rho(0)* ! mean free path [cm], use value in
numerical method
c & dsqrt(dacos(-1.d0)*M1/8.d0/R/T(0))

c bisection method

 do i=0,jj-2,2 ! space step through domain and
find the analytic solution psi
 xx =-5.0+(5.0+5.0)*float(i)/(float(jj)-1.0) !dimensionless
position

102

 xa = 1.0 ! first guess, psi must be
between xa and xb
 xb = alpha ! xb=alpha will always make f>0
c print *,'alpha2=',alpha,' beta=',beta
c print *,'psialpha3',alpha
c pause

 fa = 1.0-xa-(xa-alpha)**alpha ! analytic
solution at xa
 & *exp(beta*M1*(1.0-alpha)*(xx-x0))
 fb = 1.0-xb-(xb-alpha)**alpha ! analytic
solution at xb
 & *exp(beta*M1*(1.0-alpha)*(xx-x0))
 print *,'xa and xb',xx,xa,xb,fa,fb

 if (fa .eq. 0.0) then ! xa first
guess was right!
 psi(i) = xa
 goto 99
 elseif (fb .eq. 0.0) then ! xb first
guess was right!
 psi(i) = xb
 goto 99
 endif

 if (fa*fb .ge. 0) pause'root must be bracketed'!determine
interval limits
 if (fa .lt. 0) then !orient the search to
keep fa<0
 dx=xb-xa
 xa=xa
 else
 dx=xa-xb
 xa=xb
 endif
 print *,'alpha5=',alpha,' beta=',beta
 print *,xa,xb,fa,fb
 do iter=1,1000 ! iterate bisection method to find psi
at each r position
c print *,iter,'alpha6=',alpha,' beta=',beta
 dx=dx*0.5
 xb=xa+dx
 fb=1.0-xb-(xb-alpha)**alpha
 & *exp(beta*M1*(1.0-alpha)*(xx-x0))
c print *,iter,xx,xa,xb,dx,fb
 if (fb .le. 0) xa=xb
c print *,iter,'alpha6=',alpha,' beta=',beta
c if(fb .eq. 0) return
 enddo
c print *,'out of loop',j
 psi(i)=xb

 99 continue ! solution converged
c pause

103

 write(41,'(I5,10e13.4)')
 & i,xx,psi(i),
 & (1.0/psi(i)-rho(0))/(rho(jj)-rho(0)),
 & hx*(dfloat(i)-dfloat(jj)/2.d0)/2.0d0,
 & u(i)*c1/v1,v1/u(i)/c1,
 & (rho(i)-rho(0))/(rho(jj)-rho(0)),
 & q(i), PI(i)

 enddo
c print *,Pr, gama, mu, R, Tinf, rhoinf, cinf,lambda,eta(0)
c print *, kappa0,eta(0)/((gama-1.d0)*Pr)
c pause

 else
 do i = 0,jj
 write(41,'(I5,4e13.4)')
 & i,
 & hx*(dfloat(i)-dfloat(jj)/2.d0)/2.0d0,
 & (rho(i)-rho(0))/(rho(jj)-rho(0)),
 & p(i)*Pless/(1.d9)
 enddo
 endif

 write(21,'(f12.5)') dsa
 do counter = 0, n, 10000
 write(21,'(f12.5)') entropy(counter)
 enddo
 end

	Numerical Simulation Model on Irreversibility of Shock-Wave Process
	Recommended Citation

	ACKNOWLEDGMENTS
	Introduction
	1.1 Objectives
	1.2 Methodology

	Ideal Gas EOS Model
	2.1 Derivation of Dimensional NS Equations
	2.2 Non-Dimensional NS Equations – Ideal Gas Scheme
	2.3 Non-Dimensional NS Equations – General Fluid Scheme
	2.4 Gas Viscosity Sub-Models
	2.5 Discretization
	2.6 Boundary Condition (B.C.)
	2.6.1 Normal Shock Equations
	2.6.2 Rankine-Hugoniot Equations

	2.7 Entropy Calculation Equations
	2.8 Theoretical Solution for Gas
	2.9 Mie-Grüneisen EOS
	2.10 Mie-Grüneisen Parameter – Gas
	2.10.1 General Derivation
	2.10.2 Reference State

	Gas Simulation Results
	3.1 Gas Dimensionless Scales Based Simulation
	3.1.1 B.C. & Parameters Evaluation
	3.1.2 Validation Check
	3.1.3 Argon Simulation Analysis – Gas Dimensionless Scale

	3.2 General Dimensionless Scales Based Simulation
	3.2.1 Argon Simulation Analysis – General Dimensionless Scales
	3.2.2 Air Simulation Analysis – Ideal Gas EOS

	3.3 Mie-Grüneisen EOS Model - Argon
	3.4 Summary

	Mie-Grüneisen EOS Model - Water
	4.1 Experimental Geometry
	4.2 Determination of Shock Wave Velocity
	4.3 Mie-Grüneisen Parameter
	4.4 Relation of Bulk Viscosity and Dilatational Viscosity
	4.5 Numerical Simulation
	4.6 Sensitivity Analysis

	Conclusion
	REFERENCES
	APPENDIX - FORTRAN CODE

