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ABSTRACT 

ANAEROBIC CO-DIGESTION PLANNING AND RESEARCH FOR  

THE GREEN BAY METROPOLITAN SEWERAGE DISTRICT 

 

 

Jonathan Kusowski 

 

Marquette University, 2013 

 

 The aspiration to find an alternative sustainable fuel source is an ever growing 

concern.  Anaerobic digestion might hold the answer to finding an alternative sustainable 

energy source.  Anaerobic digestion does not only provide a renewable resource in the 

form of biogas, but also stabilizes wastes, preventing large amounts from being landfilled 

or incinerated.  Anaerobic digestion of municipal wastewater sludges can often be 

improved by the addition of high strength industrial wastes, in a process called co-

digestion.  High strength industrial wastes provide an additional carbon source for the 

microbes to utilize and convert into usable biogas.  Co-digestion also offers the 

opportunity for the high strength wastes to be converted to renewable energy (biogas) 

rather than being landfilled of incinerated.  During co-digestion, the three possible 

outcomes are synergistic, neutral or antagonistic with respect to gas production.  This 

study was designed to test the effects of co-digesting various high strength industrial 

wastes in addition to actual municipal sludge from a wastewater treatment plant.  

Preliminary screening of 20 industrial wastes was completed to narrow the list down to 

four of the most promising wastes to be used during the bench-scale study.  The most 

promising wastes were characterized by haul distance, chemical oxygen demand (COD), 

Volatile Solids (VS):Total Solids (TS) and biochemical methane potential (BMP) results.  

A long term bench-scale study was designed to test the effect of anaerobic digestion as 

well as co-digestion.   The bench-scale digesters were run for 275 days over four different 

phases.  The first phase tested the effect of digesting actual municipal sludge at an 

organic loading rate (OLR) range of 3 to 6 gCOD/L-day.  The second, third and fourth 

phases tested co-digestion of a consistent mix of the four co-digestates with municipal 

wastewater sludge at increasing organic loading rates.  The OLRs increased during each 

phase: Phase 2 OLR (4 to 7 gCOD/L-day), Phase 3 OLR (4 to 9 gCOD/L-day) and Phase 

4 OLR (6 to 10 gCOD/L-day).  Phase 3 and Phase 4 tested the effect of increasing the 

volume of co-digestate added in an attempt to achieve the maximum OLR of the bench-

scale digesters.  Co-digestion during Phase 2 and Phase 3 proved to be very beneficial.  

Phase 2 compared to Phase 1 resulted in an increase in CH4 production ranging from 18% 

to 31% as well as an increase in VSR of 6.7% to 13%.  Phase 3 compared to Phase 1 saw 

an increase in CH4 production ranging from 34% to 45% as well as an increase in VSR 

ranging from 9.4% to 23%.  Phase 4 digestion proved to be near or above the maximum 

OLR for the bench-scale digesters, resulting in operational issues and digester failure.  

Co-digestion could prove to be a solution to finding an improved renewable energy, but 

testing on the different high strength wastes that could be used to improve this 

technology.   
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1 Introduction and Literature Review 

1.1 Renewable Energy 

A continuous supply of energy is crucial for sustainability and growth of modern 

societies (Asif and Muneer, 2007).  Presently, the majority of the world’s energy is 

supplied by burning fossil fuels.  Renewable energy could be a solution to the world’s 

growing energy challenges (Asif and Muneer, 2007).  Various renewable processes are 

currently being used as an alternative to burning fossil fuels.  These processes include: 

solar, wind, biogas and wave/tidal energy, as well as other processes (Mohanty, 2011).  

Energy production and waste stabilization are both benefits of anaerobic digestion 

(McCarty, 1964).  Anaerobic digestion is a stable and beneficial process that can supply 

renewable energy through biogas production as well as treat high strength wastes 

(Alatriste-Mondragόn et al., 2006, Martín-González et al., 2010, Luoustarinen et al., 

2009, Merlino et al., 2013).   

1.2 Anaerobic Digestion 

Anaerobic Digestion (AD) is a process that has been used for approximately a 

century to treat high-strength organic wastes while supplying energy from biogas 

(Merlino et al., 2013).  Biogas produced from the process is composed of (55-75%) 

methane (CH4) and (25-45%) carbon dioxide (CO2), with trace concentrations of 

hydrogen sulfide (H2S), water vapor and other constituents (de Mes et al., 2003).  Biogas 

can be utilized for the production of heat, power generation and co-generation of 
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combined heat and power (CHP) (de Mes et al., 2003).  The process to convert waste into 

methane requires several microorganisms, typically in the absence of oxygen (McCarty, 

1964).   

Anaerobic microorganisms can be classified into two groups with respect to 

oxygen tolerance: facultative (O2) and obligate (no O2) anaerobes (Brock and Madigan, 

1991).  Facultative anaerobes are able to live and grow in the presence or absence of 

oxygen.   Obligate anaerobes only have the ability to grow in the absence of oxygen.  

Organisms killed by oxygen such as obligate anaerobes are also known as “strict 

anaerobes” (Gottschalk, 1986).   

Anaerobic digestion is carried out in four main steps: hydrolysis, acidogenesis, 

acetogenesis and methanogenesis (de Mes et al., 2003).  The four steps are carried out by 

four different groups of microorganisms: hydrolytic bacteria, acidogenic bacteria, 

acetogenic bacteria and methanogenic archaea (Speece 1996; White 2000; Ecke and 

Lagerkvist, 2000; de Mes et al., 2003).  The process is illustrated in Figure 1.1.   

Hydrolysis is the first step in the anaerobic digestion process.  During hydrolysis, 

organic matter, often containing long chain polymers in the form of fats, proteins and 

carbohydrates, is broken down into monomers such as amino acids, sugars, fatty acids 

and alcohols (Ecke and Lagerkvist, 2000; de Mes et al., 2003).  The long chain polymers 

are broken down by bacteria that produce hydrolytic enzymes e.g., cellulases, lipases and 

proteases (Ecke and Lagerkvist, 2000).   

Acidogensis, or fermentation, is the second step in anaerobic digestion.  The 

hydrolyzed materials are used as substrates to form fermented products (de Mes et al., 

2003).  The major products are volatile fatty acids, carbon dioxide, hydrogen gas, 
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ammonia and sulfide (Ecke and Lagerkvist, 2000).  The third step is acetogenesis, where 

the fatty acids are converted into hydrogen, acetate and CO2 (de Mes et al., 2003).  

Acetogenesis and acidogensis can occur at the same time.  In the final step, 

methanogensis, methanogenic microorganisms convert hydrogen and acetic acid to 

methane and CO2 (Mosey, 1983; Mah, 1982).   

 

 

Figure 1.1: Anaerobic Digestion Process  

 As a result of being a biological system, certain environmental and operational 

factors play an important role in anaerobic digester performance.  The important 

environmental and operating factors include: temperature, pH, mixing, hydraulic 

retention time (HRT), solids retention time (SRT) and reactor configuration (Karakashev 
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et al., 2005; McCarty, 1964; de Mes et al., 2003; Graef and Andrews, 1974, Parkin and 

Owen, 1986).  Anaerobic digesters are often operated in the mesophilic range (30 to 38ºC 

or 95-105ºF) (Metcalf and Eddy, 2003).  Optimum pH for methanogensis is in the range 

of 6.8-8.3 (Speece, 2008).  Sufficient time has to be given to allow substantial destruction 

of volatile suspended solids (VSS) and/or chemical oxygen demand (COD), so an 

optimum HRT or SRT has to be employed for anaerobic digesters (Metcalf & Eddy, 

2003).  Mixing is another important factor for ensuring digester efficiency.  Three 

common types of mixing include: gas injection, mechanical stirring and mechanical 

pumping (Metcalf & Eddy, 2003).     

 Anaerobic digestion is a much more attractive process for treating higher strength 

wastes compared to aerobic digestion, because it is more cost effective and is more 

efficient at stabilizing wastes (McCarty, 1964).  The main cost savings are from 

operations because the anaerobic system does not need to be aerated (Speece, 1983). 

Anaerobic digestion can also handle a higher volumetric organic loading rate compared 

to aerobic digestion (Speece, 1983).  Anaerobic digestion also offers the opportunity for 

energy recovery from the CH4 that is produced (McCarty, 1964).    

 Sludge reduction is another advantage to anaerobic digestion compared to 

aerobic, because anaerobic systems produce approximately one tenth the amount of 

biomass as aerobic systems (McCarty, 1964; Lafitte-Trouqué and Forster, 2000).  In 

aerobic digestion, a large amount of the energy produced when degrading material goes 

into forming new cells, whereas in anaerobic only a small fraction of the energy goes into 

producing new cells, while the rest of the energy is used to produce methane and other 
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byproducts(McCarty, 1964).  Since only a small portion of the waste is converted to cells 

in anaerobic systems, the problem of disposal of excess sludge is greatly minimized.   

1.3 Anaerobic Co-Digestion 

A modification to the anaerobic digestion process, called “co-digestion,” is being 

used to digest a combination of municipal and industrial wastes also referred to as co-

digestates.  Co-digestion is the process of combining high strength industrial organic 

wastes in an anaerobic digester (Totzke, 2009).  In this process, the industrial wastes 

provide the anaerobic digesters with more degradable material resulting in higher CH4 

production.  The three possible outcomes with respect to biogas productoin when co-

digestion occurs are synergistic, neutral and antagonistic (Zitomer et al., 2008).  A 

synergistic outcome occurs when the total CH4 production is more when the co-digestates 

are combined, relative to each co-digestate digested alone.  A neutral outcome occurs 

when the total CH4 production is the same when the co-digestates are combined, relative 

to each co-digestate digested alone.  An antagonistic outcome occurs when the total CH4 

production is less when the co-digestates are combined, relative to each co-digestate 

digested alone.  Studies have been conducted on a variety of industrial wastes and the 

effects they have on already working anaerobic digesters (Alatriste-Mondragόn et al., 

2006).  The results of some of these tests and the industrial wastes used are described 

below.   
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1.3.1 Bench-Scale Anaerobic Co-Digestion  

There are many different benefits that coincide with co-digestion.  In addition to 

an increase in CH4 production, treatment plants could also benefit from being able to 

process multiple waste streams, digest poorly degradable material (for example, fat oil 

and grease (FOG), decrease pollution and greenhouse gas (GHG) emissions, and 

biologically remove toxins (Kabouris et al., 2009).  Many different wastes have been 

studied to determine their potential advantages and disadvantages when added to 

anaerobic digesters.  Some of the co-digestates and the results from pilot-scale testing are 

shown in Table 1.1.  

1.3.2 Full-Scale Anaerobic Co-Digestion  

Testing the effects of co-digestion has also been completed using existing full-

scale digesters.  Because often no major construction has to occur to accommodate the 

additional waste the co-digestates can simply be added to the existing full-scale digesters, 

although storage tanks, receiving facilities, and pumping equipment must be present.  

Some of the co-digestates and the results from full-scale testing are shown in Table 1.2.   
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Table 1.1: Industrial Waste Pilot-Scale Analysis 

Pilot-Scale Anaerobic Co-Digestion Tests 

Synergistic Antagonistic Neutral 

 

fat, oil and grease 

(Kabouris et al., 2008)  

 

fat, oil and grease 

(Kabouris et al., 2009) 

aircraft deicing fluid 

(Zitomer et al., 2008) 

woody and agricultural wastes 

with high content of cellulose 

(Converti et al., 1997) 

 

 

Yeast waste 

(Zitomer et al., 2008) 

 

  

Restaurant waste 

(Zitomer et al., 2008) 

 

fish offal, fruit and vegetable 

waste, brewery sludge, 

dissolved air flotation 

(Callaghan et al., 1999) 

 

 molasses, chicken manure, sheep 

and goat manure, and fruit and 

vegetable waste 

(Misi and Forster, 2001)  

 

cattle manure and milk 

wastes 

(Callaghan et al., 1997) 

 

 Algae 

(Cecchi et al., 1996) 

 

agricultural and industrial 

wastes 

(Kaparaju et al., 2001) 

 

 

 

carbohydrate-rich food waste 

(Björnsson et al., 2000) 

hog and poultry waste 

(Magbanua et al., 2001) 

 

  

food waste 

(Kim et al., 2004) 

 

  

 

food waste 

(Edelmann et al., 2000) 

 

  

winery wastewater 

(Rodriguez et al., 2007) 
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Table 1.2: Industrial Waste Full-Scale Analysis 

Full-Scale Co-Digestion Tests 

Synergistic Anatagonistic Neutral 

 

organic fraction of 

municipal waste, food 

waste and rumen content 

(Kübler et al., 2000) 

 

human waste and domestic 

kitchen waste 

(Yoneyama and Takeno, 

2001) 

 

carbohydrate-rich food 

waste 

(Björnsson et al., 2000) 

organic fraction of 

municipal solids waste 

(Edelmann et al., 2000) 

organic fraction of municipal 

solid waste and municipal 

wastewater sludge 

(Rintala and Järvinen, 1996) 

Restaurant Waste 

(Zitomer et al., 2008) 

fruit and vegetable waste 

and sewer sludge 

(Park et al., 2011) 

 

 

Aircraft Deicing Fluid 

(Zitomer et al., 2008) 

Food Flavoring Waste 

(Zitomer et al., 2008) 

slaughter residues 

(Rosenwinkel and Meyer, 

1999) 

  

cow manure, confectionary 

byproducts and energy 

crops 

(Kaparaju et al., 2001) 

  

 

 

1.4 Synergistic, Neutral and Antagonistic Outcomes 

Though many different co-digestates have been studied by themselves and in 

addition with other co-digestates, it is difficult to predict the outcome unless bench-scale 

and/or batch anaerobic bioassay tests are conducted.   

 Successful combinations of different types of wastes and wastewater require 

careful management (Navaratnam, 2012).  To determine these combinations and 
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concentrations, bioassay testing techniques are used to test possible co-digestates.  There 

are two bioassay tests used to identify the effects of potential co-digestates: (1) 

biochemical CH4 potential (BMP) tests and (2) anaerobic toxicity assays (ATA).   

1.5 Organic Loading Rates in Continuous Stirred-Tank Reactor (CSTR) Anaerobic 

Digesters 

 

 The typical organic loading rate of a high-rate, mesophilic, complete-mix 

anaerobic digester stabilizing municipal wastewater sludge at a 15- to 20-day SRT is 

approximately 2.3 to 6.8 grams of  COD per liter of digester per day (g COD/L-day), 

assuming a COD/VSS ratio of  approximately1.4 (Metcalf & Eddy, 2003).   For design, 

the suggested minimum SRT for a completely mixed anaerobic digester stabilizing 

municipal wastewater sludge is 10 days, but the theoretical minimum can be as low as 4 

days (Metcalf & Eddy, 2003).  For readily degradable, rapidly acidified or soluble 

industrial wastewaters, such as soft drink bottling wastewater, the typical organic loading 

rate for a CSTR is typically less than 5 g COD/L-day. If the organic loading rate is too 

high, then the volatile acids concentration increases in the digester, the digester pH 

decreases and methanogenic organisms can be inhibited. This can lead to a decrease or 

stoppage of methane production. Under this condition, the digester is said to be “sour” or 

“stuck” and the process fails. Therefore, it is essential that the maximum sustainable 

organic loading rate is not exceeded. 
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1.6 Problem Statement 

 Anaerobic digestion and co-digestion have the capability of being a great 

alternative renewable energy resource. Increasing concern with landfilling and green 

house gas (GHG) emissions have encouraged more research to determine the potential of 

anaerobic digestion and co-digestion.  In this study, research was conducted to determine 

the beneficial effects anaerobic co-digestion could have for an operating municipal 

wastewater treatment plant.  Five hypotheses were tested: 

1. Co-digestion allows CSTR anaerobic digesters to be operated at an OLR of 5g 

COD/L of digester per day or higher.    

2. Co-digestion of municipal and industrial wastes increases volatile solids reduction 

(VSR) relative to digestion of municipal waste alone. 

3. Co-digestion of municipal and industrial wastes results in higher methane 

production. 

4. Co-digestion of municipal and industrial wastes results in a synergistic effect on 

digester operation.    

5. Anaerobic bench-scale digesters can be run at a maximum OLR of 8g COD/L of 

digester, when the ratio of co-digestate OLR to the total OLR is less than or equal 

to 0.45.     
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2 Methodology 

 To test the effects of co-digestion, bench-scale anaerobic digesters were 

maintained over four phases of operation.  The bench-scale anaerobic digesters were fed 

the same volume of primary and waste activated sludge throughout the duration of the 

project.  Various high-strength industrial wastes within the state of Wisconsin were 

considered as co-digestates for the bench-scale digestion study.   

2.1 Preliminary Characterization of Co-Digestates 

 An initial study was conducted to gather a list of suitable industrial wastes that 

could potentially be used for co-digestion.   The criteria used to determine acceptable 

industrial wastes are displayed in Table 2.1.   

 

Table 2.1: Characterization Criteria 

Determining Acceptable Industrial Wastes 

Acceptable Criteria Unacceptable Criteria 

Liquid Form Solid Form 

Highly Degradable Waste Requiring Special Treatment 

Consistent Production Volume Elevated Chloride Concentrations 

Adequate Production Volume Reduced Degradability 

Proximity to NEW Water Treatment Plant Odorous 

Low TSS Highly Dilute 

Waste Supplier/Industry Cooperativeness Long Haul Distance 
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2.3.1 Biochemical Methane Potential (BMP) Test 

 A BMP test is a measure of anaerobic biodegradability (Owen et al., 1979).  A 

BMP test can also be used as a screening tool to test the possible toxicity of wastes, the 

potential inhibitory effects of a waste when mixed with the seed sludge, distinguish 

between biodegradable and non-biodegradable wastes, and the possible maximum CH4 

yield of a waste (Owen et al., 1979).    

The BMP test of Owen et al. (1979) was used as one of the tools to determine the 

maximum expected CH4 production from municipal sludges and industrial wastes.  The 

seed biomass used was from a laboratory bench-scale anaerobic digester fed nutrients and 

non-fat dry milk.  Serum bottles were seeded with 25 to 50 mL of biomass depending on 

the number of bottles being run.  All bottles were brought to the same total volume using 

deionized water.  Standards and the samples being tested contained approximately 65 mg 

COD of glucose or waste, respectively, in addition to the biomass.     

The BMP tests were run using 160-mL serum bottles sparged with oxygen-free 

gas (7:3 v/v N2:CO2) after being filled with biomass and sample.  The bottles were then 

sealed with black rubber stoppers and aluminum-crimped seals.  Each BMP was run in 

triplicate at 35ºC and 150 rpm using an incubator shaker table (model C25KC, New 

Brunswick Scientific, Edison, NJ).  Biogas production volume was recorded daily by 

measuring the displacement volume with a 100-mL glass syringe.  Once recorded, the 

volume of biogas was injected back into the serum bottle.  Once biogas production 

ceased, the biogas was extracted from the serum bottle and injected into 2.5 mL vials and 

analyzed for methane concentration using a gas chromatograph (Series 7890A GC 
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system, Agilent Technologies, Santa Clara, CA, USA).  The maximum volume of CH4 

produced was calculated as the total volume of CH4 produced by the samples minus the 

total volume of CH4 produced by the blanks that contained seed biomass only.  The BMP 

results were expressed as the maximum CH4 produced divided by the initial grams of 

COD of the waste sample.    

2.3.2 Anaerobic Toxicity Assay (ATA) Test 

 The ATA test was developed to determine the toxicity of a substance or waste to 

the microorganisms that convert acetate to CH4 (Owen et al., 1979).  Similar to the BMP 

test, the ATA test measures CH4 production, but rather than the total CH4 yield, the ATA 

test focuses on the initial CH4 production rate (Speece, 1996).  The test is set up similarly 

to the BMP test, but in the ATA, an identical dose of acetate is added to each bottle; a 

different does of the waste in questions is then added to each bottle.  The ATA test is 

devised to test the effect of different waste doses on the rate of methane production from 

acetate; the results can be used to determine the concentrations of co-digestates that result 

in a decrease in biogas production and are, therefore toxic.  Although the test was devised 

to determine the toxic or inhibitory affects of various materials, under some conditions, 

higher concentrations of materials result in higher CH4 production rates and are, 

therefore, stimulatory. 

An ATA test was run to determine the potential inhibitory or stimulatory effects 

of each co-digestate on the initial CH4 rate when digested with calcium acetate (Owen et 

al., 1979).  The test was set up by adding increasing concentrations of waste to a set of 

six serum bottles, each receiving 50 mL of seed biomass along with calcium acetate (10 
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g/L) as the main, non-limiting substrate.  The seed biomass was from a laboratory bench-

scale anaerobic digester fed nutrients and non-fat dry milk.  The ATA tests were run in 

160-mL serum bottles sparged with oxygen-free gas (7:3 v/v N2:CO2) after being filled 

with sample, and then sealed with solid black stoppers and aluminum-crimped seals.  The 

tests were run at 35ºC and 150 rpm using an incubator shaker table (model C25KC, New 

Brunswick Scientific, Edison, NJ).  Biogas volume was measured multiple times per day 

at ambient temperature and pressure using a 100-mL glass syringe.  At the culmination of 

the test, linear regression was performed using the initial linear observations of 

cumulative biogas volume produced versus time to determine the maximum CH4 

production rate. Inhibitory effects were quantified as a waste concentration causing a 

50% decreased in the CH4 production rate (i.e., the IC50 concentration).  Failures due to 

organic overload were assumed when the serum bottle content pH was below 6.8 at the 

end of the test.  

2.2 Four Phases of Operation 

In Phase 1 (control period), bench-scale digesters received only a mixture of 

thickened primary sludge and thickened waste activated sludge.  In Phase 2 (low-load co-

digestion period), bench-scale digesters continued to receive the same volume of 

municipal sludge, but with an additional increasing volume of industrial waste co-

digestates.  In Phase 3, (moderate-load co-digestion period), an increased volume of co-

digestates was added to the bench-scale digesters.  In Phase 4 (high-load co-digestion 

period) the bench-scale digesters received the largest volume of co-digestates to test for 

the maximum organic loading rate possible before the digesters went sour.          



15 

 

 

 

2.3 Identification of Most Suitable Co-Digestates 

 At the conclusion of the preliminary screening, the most suitable co-digestates 

were categorized by a biochemical methane potential (BMP) test, anaerobic toxicity 

assay (ATA) test, pH, average TS and VS concentrations, COD, ammonia nitrogen (NH3-

N), total Kjeldahl nitrogen (TKN) and total phosphorus (P) concentrations.  The five 

most promising co-digestates were assayed for metal concentrations.   

2.3.3 Sludge Nutrient Analysis  

 During Phase 1, analyses of NH3-N, TKN, total P, total solids (TS), metals, and 

fat, oil and grease (FOG) concentrations were conducted by an external laboratory 

(Northern Lake Service, Inc., Analytical Laboratory and Environmental Services, 

Crandon, WI, USA).  During Phase 2, analyses of NH3-N, TKN, TP , TS and metals 

concentrations were conducted by the Marquette University environmental laboratory 

manager (Mr. Mike Dollhopf), while the FOG analysis was conducted by an outside 

laboratory (Northern Lake Service, Inc., Analytical Laboratory and Environmental 

Services, Crandon, WI, USA).  Five different samples of thickened primary (TPS) and 

thickened waste activated sludge (TWAS) were analyzed for nutrients during Phase 1 and 

Phase 2. FOG testing was completed according to EPA procedures (EPA 1664M) (1999).  

The rest of the nutrient tests were performed according to standard methods (APHA, et 

al., 1998).  No nutrient analysis was conducted during Phases 3 or 4. 
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2.3.4 Sludge Dewatering 

 During Phase 1 and Phase 2 steady-state, digested sludge from Digester Set D was 

sent out to the following dewatering equipment vendors: Andritz Separation, Inc. 

(Arlingtion, TX, USA), Alfa Laval, Inc. (Kenosha, WI, USA), Centrisys (Kenosha, WI, 

USA), Infilco Degremont, Inc. (Richmond, VA, USA) and Siemens (Holland MI, USA).  

Three different dewatering techniques were explored: Twist Piston Press, J-Vap Thermal 

Dryer and Centrifuge.  The vendors dewatered the sludge using different polymers and 

techniques to achieve the maximum cake solids.   

2.3.5 Biogas Analysis 

 During Phase 1 and 2 steady-state periods, Tedlar gas sampling bags collecting 

biogas from each reactor were closed, sealed and analyzed for siloxanes and hydrogen 

sulfide (H2S) concentrations.  Siloxanes concentrations were determined by an external 

laboratory (Analytical Solutions, Inc., Willbrook, IL, USA), by measuring the total and 

speciation of volatile organic silicon in fuel gases by gas chromatography-atomic 

emission detector.  A complete description of the siloxane analysis procedure can be seen 

in the Appendix.  H2S concentrations were measured by Mr. Mike Dollhopf using 

commercial gas sampling tubes (tube number CH29101, range 100-2000 ppm, Drager, 

Inc., Pittsburgh, PA).  Ammonia and chlorine in biogas were also analyzed using 

commercial gas sampling tubes (tube numbers CH20501 and CH24301, Drager, Inc., 

Pittsburgh, PA).  No H2S or siloxane analyses were conducted during Phases 3 and 4.     

 



17 

 

 

 

2.3.6 Analytical Methods 

 TS, VS, TSS, VSS, COD, soluble chemical oxygen demand (sCOD), NH3-N, 

TKN, total P and alkalinity concentrations were measured using standard methods 

(APHA et al., 1998).  The pH was measured using a pH probe and meter (Orion 4 Star, 

Thermo Scientific, West Palm Beach, FL, USA).  Biogas CH4 content and volatile fatty 

acid (VFA) concentrations were measured using a gas chromatograph (Series 7890A GC 

system, Agilent Technologies, Santa Clara, CA, USA).   

2.4 Bench-Scale Anaerobic Digesters 

 Seven lab-scale anaerobic digesters were operated.  Six digesters (Digesters 1A, 

2A, 1B, 2B, 1C and 2C) were constructed of a transparent acrylic cylinder having a 14-

cm internal diameter and 30-cm height.  The top and bottom of each digester was sealed 

with plates made of the same acrylic material.  The total volume of the digesters was 4.5-

L with a working liquid volume of 2-L that was held constant throughout the duration of 

the study.  Magnetic stir bars and stir plates were used to keep the digesters completely 

mixed.  All six 4.5-L digesters had a total of three ports in the lid: one was sealed off, the 

second was used to extract digested sludge/add feed and the third was used for biogas 

collection.  The biogas produced was collected in 5-L, 12-inch by 12-inch, polyvinyl 

fluoride film (PVDF) gas sampling bag (Laboratory Products Association, Fairfax, VA, 

USA).  A schematic diagram of the 4.5-L digesters is shown in Figure 2.1.   

The seventh anaerobic digester (1D) was operated to provide an adequate volume 

of digested sludge for shipment to dewatering equipment vendors.  The seventh digester 
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was a 20-L vessel with a 15-L working volume, mechanically stirred using a laboratory 

mixer (Model 50002-30, Cole-Parmer, Vernon Hills, IL, USA) regulated by a speed 

controller (Masterflex, Cole-Parmer, Vernon Hills, IL, USA).  There were four active 

ports, three on top and one at the bottom of the digester.  The first top port was plugged 

and sealed to prevent biogas from leaking, the second was used to add feed material and 

the third was used for biogas collection.  The fourth port, located at the bottom of the 

digester, was used to collect the digested sludge.   

 

 

 

Figure 2.1: Diagram of Bench-Scale Anaerobic Digester 
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2.4.1 Phase 1, No Co-Digestion (OLR 3-6g COD/L of digester) 

The seven digesters (1A, 2A, 1B, 2B, 1C, 2C and 1D) were initially seeded with 

biomass from an operating full-scale, municipal anaerobic digester at the Fox River 

Water Reclamation District (Brookfield, WI).  Immediately following seeding, each 

digester was sparged with oxygen-free gas (7:3 v/v N2:CO2) and sealed so mixing could 

begin.  The digesters were run in a temperature-controlled room with an average 

temperature and standard deviation of (34 ± 1⁰C) and continuously mixed.  The six 

bench-scale digesters were continuously mixed with magnetic stir bars (300 rpm), 

whereas the seventh digester (1 D) was mixed with a propeller mixer on a speed-

controlled motor.  During the first day of operation, the digesters were not fed, but the 

temperature and pH were monitored.  Over the next nine days of operation, the digesters 

were fed at 25, 50 and 75% for three days each of the Phase 1 loading rate, while the pH 

and temperature were monitored. Digesters 1A and 1B were subsequently operated at 10-

day SRT, whereas Digester 2A and 2B were operated at a 15-SRT, and Digesters 1C and 

2C were operated at a 20-day SRT.  The mixed sludge substrate (TS = 4.30% and VS = 

3.38%) was a combination of municipal TPS (TS = 3.57% and VS = 2.68%) and TWAS 

(TS = 5.27% and VS = 4.36%) mixed at a ratio of 45:55 (TWAS:TPS), respectively, 

based on TS concentration.  The TPS and TWAS was shipped weekly from the City of 

Green Bay to the Marquette University Water Quality Center and analyzed for TS, VS, 

COD and sCOD concentrations.       

 A wet test gas meter (Scientific Petroleum Instrument, San Antonio, TX, USA) 

was used to measure the volume of biogas collected each day in the gas sampling bag 
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from each digester (initially every other day, but daily once biogas volumes reached >2.0 

L/day).   

 For Phase 1, the 10-day SRT (1A and 2A), the 15-day SRT (1B, 2B and 1D) and 

the 20-day SRT (1C and 2C) were fed only the blend of municipal wastewater sludge 

until reaching quasi-steady state (after 3 SRTs).  Prior to reaching quasi-steady state, 

weekly analytical tests were conducted.  The analytical tests and frequencies are 

presented in Table 2.6.   

2.4.2 Phase 2, Co-Digestion (OLR 4-7g COD/ L of digester) 

After day 119, all seven digesters were fed a mixture of the four industrial wastes 

(see Table 2.3), in addition to municipal wastewater sludge.  The co-digestate mixture 

was comprised of the four most promising industrial wastes (see Table 2.2): Milk 

Processing Wash Water (COD= 26±6 g/L, TS=1.36%, VS=1.14%), Cheese Production 

Dissolved Air Flotation (DAF) Sludge (COD=61±37 g/L, TS=5.51%, VS=3.79%), 

Cheese Production DAF Sludge and Float (COD=26±11 g/L, TS=2.81%, VS=2.20%) 

and Vegetable Blancher Water (COD=28±10 g/L, TS=3.24%, VS=2.64%).  The co-

digestate blend was mixed according to the four co-digestates TS/VS concentrations as 

well as the TPS and TWAS TS/VS concentrations to achieve a desired VS loading rate.  

The ratio and loading rates of the co-digestates were based on the expected production 

volumes of industrial wastes that NEW Water would be receiving from each facility 

daily.  All seven digesters were fed the same ratio of co-digestates, but different volumes 

(see Table 2.3).  The digesters were operated until reaching quasi steady-state (3 SRTs).  

Prior to reaching quasi steady-state, analytical tests were conducted weekly (see Table 
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2.6).  Once reaching quasi steady-state, analytical tests were conducted on the effluent of 

a set of duplicate digesters over a two-week period (see Table 2.6). 

 

Table 2.2: Co-Digestate Analytical Results 

 

 

Table 2.3: Phase 2 Co-Digestate Feed Volumes (mL/day) 

 

2.4.3 Phase 3, Increased Co-Digestion Loading (OLR 4-9g COD/L of digester) 

 After day 210, all seven digesters were fed an increased volume of the co-

digestate mixture, in addition to the municipal wastewater sludge mixture.  The co-

digestates were mixed according to the four co-digestates TS/VS concentrations and the 

TPS and TWAS TS/VS concentrations.  All seven digesters were fed the same mix ratio 

of co-digestates, but larger volumes than were fed during Phase 2 (see Table 2.4).  The 

volumes of co-digestates added during Phase 3 were increased to three times those added 

Average STDEV Average STDEV Average STDEV Average STDEV

COD (g/L) 23 13 27 6.3 27 12 60 38

Total Phosphorus (mg/L) 160 - 51 - 350 - 310 -

NH3-N (mg/L) 100 - 8 - 59 - 20 -

TKN (mg/L) 770 - 750 - 3,100 - 1,300 -

pH 6.2 0.34 9.3 1.1 6.3 0.42 4.4 0.2

TS (%) 2.6 1.6 1.5 0.29 2.9 1.7 4.7 2.7

VS (%) 1.7 1.0 1.3 0.32 2.3 1.5 3.2 2.4

Parameters

Co-digestate 1 

(Vegetable Blancher 

Water)

Co-digestate 2 (Milk 

Processing Wash Water)

Co-digestate 3 (Cheese 

Production DAF Tank 

Sludge and Float)

Co-digestate 4 (Cheese 

Production DAF Tank 

Sludge)

Average STDEV Average STDEV Average STDEV Average STDEV

Digester Set A 22 4 16 8 14 7 7 3

Digester Set B 11 7 11 5 9 4 5 2

Digester Set C 9 5 8 4 7 3 3 2

Co-digestate 1 

(Vegetable Blancher 

Water)

Co-digestate 2 (Milk 

Processing Wash Water)

Co-digestate 3 (Cheese 

Production DAF Tank 

Sludge and Float)

Co-digestate 4 (Cheese 

Production DAF Tank 

Sludge)
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during Phase 2 in an attempt to reach or exceed the maximum OLR possible before the 

digesters went sour.  The digesters were run until reaching quasi-steady state (3 SRTs).  

Prior to reaching steady-state, analytical tests were conducted weekly (see Table 2.7).  

Once reaching steady-state, analytical tests were conducted on the effluent of each set of 

digesters over a two-week period (see Table 2.7).   

 

Table 2.4: Phase 3 Co-Digestate Feed Volumes (mL/day) 

 

2.4.4 Phase 4, Maximum Co-Digestion OLR and Digester Failure (OLR 6-10g 

COD/L of digester) 

  

After day 253, all seven digesters were fed an increased volume of the co-

digestate mixture, in addition to the municipal wastewater sludge mixture.  The co-

digestate blend was mixed according to the four co-digestates TS/VS concentrations and 

the TPS and TWAS TS/VS concentrations.  All seven digesters were fed the same mix of 

co-digestates as in Phase 2 and Phase 3, but different increased volumes (see Table 2.5).  

The volumes added were estimated to be near or above the maximum OLR for the bench-

scale anaerobic digesters.  The digesters were run until reaching quasi-steady state (3 

SRTs).  Prior to reaching steady-state, analytical tests were conducted (see Table 2.7).  

Once reaching steady-state, digester operation ceased.     

Average STDEV Average STDEV Average STDEV Average STDEV

Digester Set A 68 13 38 7 33 6 17 3

Digester Set B 49 9 25 2 22 4 11 2

Digester Set C 34 7 19 4 16 3 8 2

Co-digestate 1 

(Vegetable Blancher 

Water)

Co-digestate 2 (Milk 

Processing Wash Water)

Co-digestate 3 (Cheese 

Production DAF Tank 

Sludge and Float)

Co-digestate 4 (Cheese 

Production DAF Tank 

Sludge)
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Table 2.5: Phase 4 Co-Digestate Feed Volumes (mL/day) 

 

 

Table 2.6: Phase 1 and Phase 2 Analytical Testing Schedules 

Parameter Phase 1, Pre 

Steady-state 

Phase 1, 

Steady-state 

Phase 2, Pre 

Steady-state 

Phase 2, 

Steady-state 

Temperature 

 

1/Day 1/Day 1/Day 1/Day 

Biogas volume 

produced 

 

1/Day 1/Day 1/Day 1/Day 

Biogas methane 

content 

 

2/Week 5/2 Weeks 2/Week 5/2 Weeks 

Intermediate and 

partial alkalinity 

 

2/Week 5/2 Weeks 2/Week 5/2 Weeks 

TS* 

 

2/Week 5/2 Weeks 2/Week 5/2 Weeks 

VS* 

 

2/Week 5/2 Weeks 2/Week 5/2 Weeks 

Chemical oxygen 

demand (COD)* 

 

1/Week 5/2 Weeks 1/Week 5/2 Weeks 

Soluble chemical 

oxygen demand 

(sCOD)* 

 

1/Week 5/2 Weeks 1/Week 5/2 Weeks 

Individual and 

total VFA* 

 

2/Week 5/2 Weeks 2/Week 5/2 Weeks 

Total suspended 

solids** 

 

-- -- 1/2Week 1/2Week 

Volatile 

suspended 

solids** 

-- -- 1/2Week 1/2Week 

*-parameters were also measured for TPS, TWAS, feed and co-digestates 

**-parameters were only measured for co-digestates 

Average STDEV Average STDEV Average STDEV Average STDEV

Digester Set A 64 33 39 14 33 12 63 59

Digester Set B 73 30 44 16 38 13 70 66

Digester Set C 65 34 40 13 35 12 64 59

Co-digestate 1 

(Vegetable Blancher 

Water)

Co-digestate 2 (Milk 

Processing Wash Water)

Co-digestate 3 (Cheese 

Production DAF Tank 

Sludge and Float)

Co-digestate 4 (Cheese 

Production DAF Tank 

Sludge)
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Table 2.7: Phase 3 and Phase 4 Analytical Testing Schedules 

Parameter Phase 3, Pre 

Steady-state 

Phase 3, 

Steady-state 

Phase 4, Pre 

Steady-state 

Phase 4, 

Steady-state 

Temperature 

 

1/Day 1/Day 1/Day 1/Day 

Biogas volume 

produced 

 

1/Day 1/Day 1/Day 1/Day 

Biogas methane 

content 

 

2/Week 5/2 Weeks 3 Times 3 Times 

Intermediate and 

partial alkalinity 

 

2/Week 5/2 Weeks   

TS* 

 

2/Week 5/2 Weeks 3 Times 3 Times 

VS* 

 

2/Week 5/2 Weeks 3 Times 3 Times 

Chemical oxygen 

demand (COD)* 

 

1/Week 5/2 Weeks   

Soluble chemical 

oxygen demand 

(sCOD)* 

 

1/Week 5/2 Weeks   

Individual and 

total VFA* 

 

2/Week 5/2 Weeks 3 Times 3 Times 

Total suspended 

solids** 

 

-- -- 1/2Week  

Volatile 

suspended 

solids** 

-- -- 1/2Week  

*-parameters were also measured for TPS, TWAS, feed and co-digestates 

**-parameters were only measured for co-digestates 

 

2.5 Statistical Analysis 

 Statistical analysis was run on data from the same digester comparing different 

phases of operation as well as analyzing the data of duplicate digesters to determine if a 
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statistical difference was present.  Statistical tests were run on data from the same 

digesters.  Different phases of operation were subject to a student t-test run in Excel as a 

two tail, type I test.  Analysis of duplicate digesters during the same phase of operation 

was first subject to an F-test, in which the test statistics have an F-distribution under the 

null hypothesis.  If the F-test resulted in a P value less than or equal to 0.05 then a two-

tail type 3 student t-test would be run to analyze the duplicate digester data.  If the F-test 

resulted in a P value greater than or equal to 0.05 then a two-tail type 2 student t-test 

would be run to analyze the duplicate digester data.     
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3 Results and Discussion 

The results for identification of co-digestates, selection of co-digestates for further 

testing, and Phases 1 through 4 co-digestion testing are discussed in the following 

sections.  

3.1 Identification and Classification of Most Suitable Co-Digestates 

 A total of 20 industrial wastes were identified for possible use in co-digestion 

after a survey was sent out to facilities in the treatment plant area.  All of the facilities 

contacted were located within a 30-mile radius of the treatment plant.  The wastes 

collected at the facilities were food, dairy, brewery, and waste treatment residuals.  The 

industrial wastes were categorized by haul distance, flow rate anticipated, pH, average TS 

and VS concentration, average COD, average NH3-N, average TKN and average total P 

concentrations, as well as the company cooperativeness (see Table 3.1).  From the 

original 20 wastes, five were chosen for further analysis.  The primary criteria used to 

choose the five most suitable wastes were: high COD, high VS content
1
 and 

high/consistent production volumes.   

3.1.1 Co-Digestate Characterization  

The five industrial wastes chosen were subject to additional characterization 

testing (see Table 3.2). The list of industrial wastes was narrowed down to four co-

digestates (Cheese Production DAF Tank Sludge, Cheese Production DAF Tank Sludge 

                                                 
1
 Wastes having a VS concentration over 80 % were only considered, with the exception of Milk 

Processing Wash Water.   
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and Float, Milk Processing Wash Water and Vegetable Blancher Water) for use in co-

digestion.  The four co-digestates chosen were used throughout the remainder of the 

project.  
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Table 3.1: Co-Digestate Analytical Results 

 

 

 

Amount Unit

Filter cake solids 2,000,000 -- -- 10 8.1 6.5 N/A 140 46,000 9,600

High acid solids 1,400,000 -- -- 9.9 9.1 6.5 N/A 780 31,000 4,200

Anaerobic contact WAS 240,000 9.3 wet tons 19 15 4.7 N/A 4,900 71,000 10,000

Paunch manure 240,000 33 wet tons 29 26 4.7 N/A 450 11,000 3,100

Primary wastewater sludge 160,000 -- -- 11 9.4 6.5 5.9 11,000 50,000 3,200

Beer 110,000 64 gal 3.0 2.2 0.4 6.8 380 25,000 4,700

Cheese Production DAF Tank Sludge 110,000 5,500 gal 10 8.0 21 3.9 630 14,000 4,600

Somat Sludge 90,000 -- -- 7.6 6.7 6.5 N/A 8,400 130,000 11,000

Vegetable Blancher Water 66,000 5,000 gal 5.7 4.8 19 6.6 400 13,000 3,700

Cheese Production DAF Tank Sludge and Float 38,000 11,000 gal 2.8 2.2 25 6.2 1,100 43,000 14,000

Pepper/pickle solids 38,000 -- -- 5.8 3.4 2.8 4.1 1,200 23,000 2,700

Milk processing sour cream: Sample 2 30,000 13,000 gal 1.1 0.78 8.7 12 TBD TBD TBD

Milk Processing Wash Water 26,000 13,000 gal 1.2 0.94 8.7 12 TBD TBD TBD

Irrigation field corn 21,000 5,000 gal 0.98 0.83 19 4.5 700 82,000 7,900

Wastewater hole 15,000 8,500 gal 12 1 27 6.8 3,200 22,000 8,500

Cheese Wash Water 7,900 100,000 gal 0.69 0.52 10 9.7 4,000 19,000 8,100

Holding cell 7,400 8,500 gal 0.60 0.32 27 6.1 13,000 45,000 14,000

Cheese water (high chlorides) 6,800 19,000 gal 2.4 0.33 10 5.8 TBD TBD TBD

Primary wastewater water 5,700 -- -- 2.3 0.26 6.5 6.7 29,000 42,000 1,300

Ridge and furrow 1,800 8,500 gal 0.37 0.13 27 7.9 7,700 ND 18,000

*TP is Total Phosphorus

Average 

TKN 

(mg/L)

Average 

TP* 

(mg/L)

Average COD (mg/L)

Daily Production

Average 

%TS

Haul Distance 

to NEW 

Water (miles)

Average 

%VS
pH

Average 

NH3-N 

(mg/L)

Co-digestate description
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Table 3.2: Four Co-Digestates - Characterization Test Results 

 

 

 

 

 

Parameters Average STDEV Average STDEV Average STDEV Average STDEV

COD (mg/L) 23,000 13,000 27,000 6,300 27,000 12,000 60,000 38,000

sCOD (mg/L) 18,000 9,500 8,800 1,400 1,500 1,300 20,000 15,000

TS (%) 26 16 1.5 0.29 29 17 47 27

VS (%) 17 10 1.3 0.32 23 15 32 24

VS/TS (%) 65.0 65 87 -- 78 -- 67 --

TSS (mg/L) 4.6 6.2 5.4 3.4 25 15 14 13

VSS (mg/L) 2.6 3 4.4 2.8 22 14 13 12

pH 6.2 0.34 9.3 1.1 6.3 0.42 4.4 0.2

Total Phosphorus (mg/L) 160 -- 51 -- 350 -- 310 --

NH3-N (mg/L) 100 -- 8 -- 59 -- 20 --

TKN (mg/L) 770 -- 750 -- 3,100 -- 1,300 --

Oil and Grease (mg/L) 9 -- 1,400 -- 12 -- 96 --

Alkalinity (mg/L as CaCO3) 810 -- 1,100 -- 900 -- 160 --

BMP (ml CH4/gCOD) 310 3.6 210 6.2 200 36 280 16

ATA IC50>8% -- IC50>8% -- IC50>8% -- IC50=4% --

Beryllium (µg/L) 19 -- 2 -- 5 -- 1 --

Sodium (µg/L) 61 -- 620 -- 1,600 -- 6,400 --

Magnesium (µg/L) 300 -- 24 -- 33 -- 88 --

Aluminum (µg/L) 17,000 -- 14,000 -- 110,000 -- 23,000 --

Potassium (mg/L) 1,700 -- 140 -- 170 -- 400 --

Calcium (mg/L) 120 -- 140 -- 380 -- 800 --

Chromium (µg/L) 120 -- 130 -- 58 -- 190 --

Mangenese (µg/L) 470 -- 36 -- 110 -- 140 --

Iron (mg/L) 7 -- 2 -- 7 -- 19 --

Cobalt (µg/L) 41 -- 10 -- 55 -- 41 --

Nickel (µg/L) 530 -- 58 -- 38 -- 73 --

Copper (µg/L) 730 -- 430 -- 560 -- 900 --

Zinc (µg/L) 5,200 -- 3,200 -- 980 -- 1,300 --

Arsenic (µg/L) 16 -- 3 -- 3 -- 3 --

Selenium (µg/L) 34 -- 70 -- 11 -- 10 --

Molybdenum (µg/L) 45 -- 8 -- 12 -- 16 --

Silver (µg/L) 34 -- 14 -- 33 -- 21 --

Cadmium (µg/L) 40 -- 51 -- 7 -- 22 --

Mercury (µg/L) 93 -- 15 -- 21 -- 34 --

Lead (µg/L) 200 -- 240 -- 220 -- 240 --

Quantity (gal/day) 5,000 -- 13,000 -- 11,000 -- 5,500 --

Distance (miles) 19 -- 9 -- 25 -- 21 --

Vegetable Blancher 

Water

Milk Processing Wash 

Water

Cheese Production 

DAF Tank Sludge and 

Float

Cheese Production 

DAF Tank Sludge

1 2 3 4
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3.1.2 Co-digestate Biochemical Methane Potential (BMP) Results 

Two types of BMP tests were conducted to estimate the potential maximum CH4 

yields when the co-digestates were digested alone and when the co-digestates were 

digested with the municipal wastewater sludge mixture. In synergistic situations, 

industrial wastes have the potential to increase CH4 yield when digested with municipal 

wastewater sludge.  

The first type of BMP tests were run using only one waste in each test setup; these 

tests were performed to estimate  the CH4 yielded when each of the four co-digestates or 

municipal wastewater sludge were digested alone (see Figure 3.1).  The CH4 yield for the 

co-digestates varied from 201 to 311 mL CH4/g COD.  The co-digestate mix, Cheese 

Production DAF Tank Sludge and Vegetable Blancher Water resulted in the highest CH4 

yields, while the Cheese Production DAF Tank Sludge and Float and Milk Processing 

Wash Water yielded more CH4 than the TWAS, but not the TPS.   

The second type of BMP tests were run using a mix of one industrial waste and 

municipal wastewater sludge in each test setup; these tests were performed to estimate  

the CH4 yielded when each of the four co-digestates was co-digested with municipal 

wastewater sludge in a 1:1 industrial waste:municipal wastewater sludge COD mix (see 

Figure 3.2). Synergistic and neutral outcomes were observed when co-digestates and 

municipal feed sludge were digested together.  Synergistic and neutral outcomes were 

determined by comparing the theoretical CH4 yield to the observed CH4 yield.  The 

theoretical CH4 yield (see Figure 3.2), was calculated as the sum of 50% of the municipal 

wastewater sludge BMP value and 50% of the co-digestate BMP value (see Figure 3.1).  
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The Milk Processing Wash Water was the only co-digestate that resulted in a synergistic 

outcome when digested with municipal sludge, whereas the three other co-digestates and 

co-digestate mixture resulted in statistically neutral outcomes.  

    

 

 

Figure 3.1: Individual BMP Results 
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Figure 3.2: Theoretical and Observed BMP Results 

 

3.1.3 Co-Digestate Anaerobic Toxicity Assay (ATA) Results 

 The ATA tests resulted in synergistic, neutral and antagonistic outcomes when the 

four co-digestates were digested separately with calcium acetate as the main non-limiting 

substrate (see Figure 3.3).  The Vegetable Blancher Water, Milk Processing Wash Water 

and Cheese Production DAF Tank Sludge and Float all resulted in synergistic outcomes.  

The maximum CH4 yield increased more than 35% for the Vegetable Blancher Water, 

25% for the Milk Processing Wash Water and 40% for the Cheese Production DAF Tank 

Sludge and Float.  The Cheese Production DAF Tank Sludge demonstrated mixed 

outcomes; first exhibiting antagonism, then synergism, and then antagonism (IC50=4%).  
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The reason for mixed results is unknown and further research could be conducted to 

determine the variation.    

 
Figure 3.3: Anaerobic Toxicity Assay of Co-Digestates 

3.2 Performance of Bench-Scale Anaerobic Digesters 

 The performance of the bench-scale anaerobic co-digestion process is described in 

the following sections.  

3.2.1 Digester Performance Results for Phases 1-4 

 The analytical results from Phase 1 to 4 varied for the bench-scale anaerobic 

digesters (see Tables 3.3-3.6).  The original scope of the project did not include Phases 3 

and 4; therefore, more analytical results are presented for Phases 1 and 2.  Phases 3 and 4 
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the effect of high organic loading rates and lower solids retention times on CH4 

production, VSR, and digester VFA concentrations.  
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Table 3.3: Phase 1 Steady-State Analytical Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev

VSR, % 42 8.9 41 9.3 48 4.4

Methane, % 66.9* 4.1 68.7 0.9 69.2 1.7

pH 7.17 6.90-7.30 7.2 7.09-7.32 7.22 7.10-7.35 5.86 5.54-6.37

TS, g/L 29.8 4.2 30.7 4.1 27.2* 1.1 45.1 2.4

VS, g/L 20.6 2.8 20.8 2.8 18.3* 0.8 35.4 1.6

COD, g/L 31.3 5.9 33.4 5.1 30.9* 1.9 58.8 3.8

sCOD, g/L 0.79* 0.22 0.59 0.025 0.6 0.041 2.9 0.36

Alkalinity, mg/L as CaCO3 3500 320 3800 150 4000 120

Biogas Production, L/L-day 1.51 0.19 1.09 0.16 0.94 0.11

VFAs**, mg/L <50 -- <50 -- <50 -- 2900 600

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Digester Set A Digester Set B Digester Set C Feed
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Table 3.4: Phase 2 Steady-State Analytical Results 

 

 

 

 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev

VSR, % 45 5.4 47 6.5 50 5.6

Methane, % 68.6 1.3 69.3 1.6 70.2 1.5

pH 7.05 6.81-7.21 7.00 6.82-7.12 7.04 6.93-7.21

TS, g/L 26.5* 1.4 26.4* 1.9 25.7 2.2 42.4 2.4

VS, g/L 18.6 1.1 18.2 1.6 17.6 1.9 34.5 1.9

COD, g/L 32.5 1.3 29.7 5.5 30.3 3.0 57.3 3.7

sCOD, g/L 0.45 0.03 0.45 0.03 0.48 0.04 4.6 1.4

Alkalinity, mg/L as CaCO3 3700 420 4100 290 4400 220

Biogas Production, L/L-day 1.81 0.22 1.42 0.15 1.09 0.08

VFAs**, mg/L <50 -- <50 -- <50 -- 3100 660

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Digester Set A Digester Set B Digester Set C Feed+Codigestate
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Table 3.5: Phase 3 Steady-State Analytical Results 

 

 

 

 

 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev

VSR, % 51 9 53 13 53 4

Methane, % 67.8 2.4 67.4 2.5 65.7* 1.6

pH 6.85 6.70-7.04 6.83 6.72-6.97 6.84 6.77-6.98

TS, g/L 21.6 2.8 20.5 3 21.7* 0.9 36.8 1.9

VS, g/L 14.7 2.1 13.7 2.1 14.3* 0.6 29.9 1.8

COD, g/L 29.1 1.9 24.9* 2.5 25.6* 1.0 50.4 4.3

sCOD, g/L 0.65* 0.08 0.44 0.04 0.46 0.03 3.8 0.73

Alkalinity, mg/L as CaCO3 3000 240 3200 180 3100 50

Biogas Production, L/L-day 1.99 0.12 1.62 0.14 1.35 0.16

VFAs**, mg/L <50 -- <50 -- <50 -- 2800 670

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Digester Set A Digester Set B Digester Set C Feed+Codigestate
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Table 3.6: Phase 4 Analytical Results 

 

Average Stdev Average Stdev Average Stdev Average Stdev

VSR, % 42 10 43 5 52 6

Methane, % 63.3 3.2 55.6 8 64.7 1.7

pH 6.75 6.50-6.99 6.43 5.28-7.05 6.72 6.58-6.99

TS, g/L 24.3 1.2 22.2 1.0 19.1 0.8

VS, g/L 16.1 1.1 14.5 0.5 11.7 0.4

Biogas Production, L/L-day 1.9 0.58 0.57 0.12 1.97 0.24

VFAs**, mg/L 95 95 1300 790 <50 -- 1800 470

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Feed+CodigestateDigester Set CDigester Set BDigester Set A
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3.3 CH4 Production and Composition 

 Production of CH4 (L/day) increased from Phase 1 to Phase 3 during steady-state 

operation.  During Phase 4 the only increase in CH4 production was observed in Digester 

Set C, while Digester Sets A and B exhibited a decrease (see Figure 3.4).  The CH4 

production rates for each set of digesters varied with the different organic loading rates.  

Digester Set A, Digester Set B and Digester Set C exhibited an average increase of 23%, 

31% and 18% in CH4 production from Phase 1 to Phase 2.  The theoretical, expected CH4 

production increase calculated for Phase 1 to Phase 2 and the data are shown in Figure 

3.5.  The theoretical CH4 production was calculated by determining the additional COD 

added from the co-digestate mixture and multiplying that by a conversion factor of 400 

mL CH4/g COD to find the theoretical maximum additional CH4.  The theoretical 

expected average increase in CH4 production for Digester Set A, Digester Set B and 

Digester Set C was 27%, 23% and 21%, respectively (see Table 3.7).  The observed and 

theoretical CH4 production rates were not statistically different (P>0.05).         

 For all digester sets, CH4 biogas concentrations increased during Phase 2, but 

decreased during Phases 3 and 4.  The CH4 concentrations during steady-state operation 

are presented in Figure 3.6.  The increases in CH4 concentrations from Phase 1 to Phase 2 

were statistically significant (P<0.05) for each digester set.  During Phase 3 the additional 

volume of co-digestate resulted in a decrease in CH4 concentration that was statistically 

significant (P<0.05) when compared to Phase 2.  In Phase 4, bench-scale digesters 

received the largest volume per day of co-digestate causing the biogas CH4 
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concentrations to drop to the lowest values of the study.  The difference in CH4 

concentrations measured in Phases 3 and 4 were statistically significant (P<0.05).     

 Typical biogas engine requirements stipulate a maximum siloxanes concentration 

in biogas of 10 mg/m
3
 (Smith et al., 2007).  None of the biogas measurements exceeded 3 

mg/m
3
.
 
No significant changes in siloxane concentrations were observed from Phase 1 to 

Phase 2 (see Figure 3.7).  The average siloxane concentration in Digester set A decreased 

while the average siloxane concentrations increased in Digester Set B and Digester Set C, 

but the changes in the digester sets were not statistically significant (P>0.05).     

 The H2S concentrations during steady-state in Phase 1 and Phase 2 had mixed 

results (see Figure 3.8).  The average H2S concentrations from Digester Set A increased 

from Phase 1 to Phase 2 and was statistically significant (P<0.05).  The changes for 

Digester Set B and Digester Set C were not statistically significant (P>0.05). For engines 

and other equipment, H2S concentration should not exceed 3,000 ppmv (Smith et al., 

2007). The measured concentration did exceed this maximum value. Ferric chloride can 

be added to the full-scale digesters to decrease the final H2S concentrations.  
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Figure 3.4: Steady-State CH4 Production Results 

 

 

 

Figure 3.5: Theoretical CH4 Production during Phase 2 
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Table 3.7: Phase 1 and Phase 2 Theoretical Biogas Production Increase 

 

 

 

 

Figure 3.6: Steady-State CH4 Concentrations 

 

Average Stdev Average Stdev Average Stdev

Phase 1 CH4 production (L/day) 2.02 0.25 1.5 0.22 1.3 0.15

Phase 2 CH4 production (L/day) 2.48 0.30 1.96 0.20 1.53 0.11

Theoretical CH4 from co-digestates 

(L/day)
0.73 0.12 0.45 0.09 0.34 0.07

Theoretical CH4 Production (L/day) 2.75 0.28 1.95 0.24 1.64 0.17

Theoretical increase % 26.5% 23.1% 20.7%

Observed increase in CH4 from co-

digestates
23.0% 31.0% 18.0%
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Figure 3.7: Steady-State Siloxane Concentrations 

 

 

 

Figure 3.8: Steady-State H2S Concentrations 
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3.4 Digested Sludge Dewaterability 

 Co-digestion had no significant impact on dewaterability or polymer dose 

required to achieve maximum cake solids.  Multiple samples of digested sludge were sent 

to various dewatering vendors to test different polymers and dewatering techniques.  The 

techniques used, polymer dose and maximum achievable cake solids data are presented in 

Figure 3.9.  The complete sets of data tables are presented in the Appendix (A22-A23). 

 There was no statistically significant (P>0.05) difference between cake solids 

concentrations from Phase 1 to Phase 2.  The polymer dose range for Phase 1 was 

approximately 22 to 28 lb/ dry ton and the range for Phase 2 was approximately 17 to 27 

lb/dry ton.  Though the average polymer dose was slightly lower during Phase 2, the 

difference in overall dose required was not statistically significant (P>0.05).       

  

 

Figure 3.9: Cake Solids and Polymer Dose 
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3.5 Bench-Scale Anaerobic Co-Digestion Operation 

  The operation and performance of the bench-scale anaerobic co-digesters is 

discussed below.   

3.5.1 Increased Organic Loading with Co-Digestion 

 During the four phases of operation, the OLR of each digester set was increased.  

The increase in OLR was a result of the additional volume of co-digestate added during 

Phases 2, 3 and 4.  Because the volume of municipal sludge fed and the digester volumes 

were kept constant throughout the duration of the study, the HRT and SRT values 

decreased as volume of co-digestates and OLR were increased.  The OLR significantly 

increased from Phase 1 to Phase 4 (see Figure 3.10).  The SRT for each digester set 

decreased during each phase of operation (see Figure 3.11).  Despite the increase in OLR 

and decrease in SRT, the bench-scale anaerobic digesters were still able to operate under 

most conditions. 

 The bench-scale anaerobic digesters consistently demonstrated good operation 

during Phases 1 through 3; it was not until reaching quasi-steady-state during Phase 4 that 

some of the digesters went sour or failed.  The criteria used to express healthy operation 

included the following: average pH (>6.8) and VFA (<2,000 mg/L as acetic acid).  The 

results for Phase 1 through Phase 4 operation are shown in Table 3.8.  

 The high volume of co-digestate mix added in Phase 4 caused all three sets of 

digesters to decrease in operational health.  Upon reaching quasi-steady-state, all three 

digester sets were functioning at stressed levels, and eventually Digester Set B failed (pH 
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decreased below 6.5, the CH4 concentration decreased below 60% and total VFA 

concentration increased above 2,000 mg/L as acetic acid).  The effect of organic loading 

rate on the healthy operation factors can be seen in Figures 3.12 and 3.13.   

The volumetric ratio of municipal sludge:co-digestates appeared to be the reason 

why the bench-scale digesters were able to operate at higher OLRs than typically seen in 

CSTRs.  A completely mixed anaerobic digester has the ability to run at a minimum of a 

4-day SRT (Metcalf and Eddy, 2003).  A typical loading rate for a CSTR at a 15- to 20-

day SRT digesting municipal wastewater sludge is 2.4 to 6.8 g COD/L-day (Metcalf and 

Eddy, 2003).  Surprisingly, the bench-scale digesters fed a mixture of co-digestate and 

municipal sludge were able to function at higher OLR and lower SRT than the values 

described above (see Figures 3.10 and 3.11).  The co-digestate mixture was ostensibly 

comprised of a high fraction of readily degradable substrates, such as acetic acid, while 

the municipal wastewater sludge was composed of more slowly degradable substrates, 

such as cellulose, that take longer to break down before being converted to CH4. In 

addition, primary sludge contains a mixture of microorganisms, including methanogens 

that carry out methanogenesis. Therefore, by adding TPS, beneficial microorganisms 

were ostensibly continuously added to the digesters.  The blends of readily available and 

slower digesting wastes as well as the continuous addition of beneficial microorganisms 

are possible explanations as to why such high, sustainable OLRs were achieved when 

digester feed with a high municipal sludge:co-digestate volumetric ratio was used.  

Others have operated lab-scale digesters that were fed a mixture of synthetic 

industrial wastewater (non-fat dry milk and nutrients) (Venkiteshwaran, 2013).  The 

synthetic wastewater was highly degradable much like the co-digestates used in this co-
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digestion study.  Because the synthetic wastewater was highly degradable, it acidified 

quickly resulting in high VFA concentration.  The measured total VFA concentrations 

ranged from 0.4 to 7 g/L as acetic acid in the digesters when the digesters were only fed 

at an OLR of 3 g COD/L-day.  When the OLR was increased above 3 g COD/L-day, the 

VFA concentrations increase to levels that cause digester failure.  This failure may have 

been avoided if municipal wastewater sludge was added in addition to the synthetic 

wastewater. 

 

 

Figure 3.10: Organic Loading Rates of Bench-Scale Digesters 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Digester Set A Digester Set B Digester Set CO
rg

a
n

ic
 L

o
a

d
in

g
 R

a
te

, g
 C

O
D

/
L

 o
f 

d
ig

e
st

e
r-

d
a

y
 

Phase 1

Phase 2

Phase 3

Phase 4

Phase 1 n=238, Phase 2 n=182, Phase 3 n=86, Phase 4 n=38 
error bars = standard deviation 



48 

 

 

 

 

Figure 3.11: Solids Retention Times for Bench-Scale Digesters 

 

 

 

Table 3.8: Digester Operational Health Results 
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Phase 2

Phase 3

Phase 4

Phase 1 n=238, Phase 2 n=182, Phase 3 n=86, Phase 4 n=38 

Average Stdev Average Stdev Average Stdev Average Stdev

Phase 1

Digester Set A 7.17 6.90-7.30 1.51 0.19 66.9* 4.1 <50 --

Digester Set B 7.2 7.09-7.32 1.09 0.16 68.7 0.9 <50 --

Digester Set C 7.22 7.10-7.35 0.94 0.11 69.2 1.7 <50 --

Phase 2

Digester Set A 7.05 6.81-7.21 1.81 0.22 68.6 1.3 <50 --

Digester Set B 7.00 6.82-7.12 1.42 0.15 69.3 1.6 <50 --

Digester Set C 7.04 6.93-7.21 1.09 0.08 70.2 1.5 <50 --

Phase 3

Digester Set A 6.85 6.70-7.04 1.99 0.12 67.8 2.4 <50 --

Digester Set B 6.83 6.72-6.97 1.62 0.14 67.4 2.5 <50 --

Digester Set C 6.84 6.77-6.98 1.35 0.16 65.7* 1.6 <50 --

Phase 4

Digester Set A 6.75 6.50-6.99 1.9* 0.58 63.3 3.2 2,500          2,200          

Digester Set B 6.43 5.28-7.05 0.57 0.12 55.6 8 12,340        2,000          

Digester Set C 6.72 6.58-6.99 1.97* 0.24 64.7 1.7 1,700          1,200          

*Duplicate digesters were statistically different

High OLR Healthy Operation Criteria

VFA, Acetic Acid (mg/L)CH4 %Biogas Production, L/LpH



49 

 

 

 

 

Figure 3.12: Volatile Fatty Acids versus OLR 

 

 

 

Figure 3.13: pH versus OLR 
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3.5.2 Increased VSR with Co-Digestion  

 An increase in VSR was observed from Phase 1 to Phase 3, but a decrease was 

observed during Phase 4 (see Figure 3.14).  The addition of co-digestates often allows for 

higher VSR to be achieved due to the addition of highly degradable waste.  The VSR for 

all four phases can be seen in Table 3.9.  The average VSR increased from Phase 1 to 

Phase 2 and was statistically significant (P<0.05) for Digester Set A and Digester Set B, 

but was not statistically significant (P>0.05) for Digester Set C.    

 During Phase 3 the additional volume of co-digestate added to the bench-scale 

digesters resulted in an increase in VSR.  The increased VSR from Phase 2 to Phase 3 

was statistically significant (P<0.05) for all three sets of digesters.  During Phase 4, the 

bench-scale digesters received the largest volume of co-digestate to run the digesters at 

the maximum loading.  At the highest loading, the digesters operated at lower efficiency.  

The VSR decreased for all three sets of digesters from Phase 3 to Phase 4.  The decrease 

in VSR for Digester Set A and Digester Set B was statistically significant (P<0.05), while 

the decrease in VSR for Digester Set C was not statistically significant (P>0.05).   

 The addition of co-digestate during Phase 2 and Phase 3 proved to be beneficial in 

increasing the VSR.  The increased loading during Phase 4 was so high that digester 

health decreased, causing failure in all digester sets.  
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Table 3.9: Volatile Solids Reduction of Bench-Scale Digesters 

 

 

 

 

Figure 3.14: Volatile Solids Reduction for Bench-Scale Digesters 
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mixed results in Phase 4 (see Figure 3.4).  The co-digestates added to the bench-scale 

anaerobic digesters were predicted by BMP testing to increase CH4 production, because 

the co-digestates can easily be utilized and converted into CH4.  The CH4 production 

values for each phase can be seen in Table 3.10. 

Average Stdev Average Stdev Average Stdev Average Stdev

Digester Set A 42% 9% 45% 5% 51% 7% 42% 4%

Digester Set B 41% 9% 47% 7% 53% 8% 43% 2%
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 Phase 2 co-digestion demonstrated an increase in CH4 production over Phase 1.  

The increase in CH4 production was statistically significant (P<0.05).  The increase in 

CH4 production was due to the addition of the co-digestates added.  During Phase 3 the 

CH4 production increased, but was not statistically significant (P>0.05) for Digester Set 

A and Digester Set B, however, the CH4 production increase was statistically significant 

(P<0.05) for Digester Set C.  During Phase 4, the largest volume of co-digestate was 

added to achieve the maximum OLR.  The maximum OLR resulted in a decrease in CH4 

production for Digester Set A and Digester Set B, while Digester Set C saw a dramatic 

increase in CH4 production.  The change in CH4 production for each digester set was 

statistically significant (P<0.05).   

 The volume of co-digestate added during Phase 2 and Phase 3 lead to an increase 

in CH4 production, because the co-digestates were highly degradable.  During Phase 4, 

the digesters received the largest volume of co-digestate, causing some of the digesters to 

operate under stressed conditions.  The stressed conditions ultimately lead to lower CH4 

production in Digester Set A and Digester Set B.  Digester Set B was run until failure, 

resulting in the largest decrease in CH4 production during digester operation.    

 

Table 3.10: Steady-State CH4 Production, L/L-day of digester 

 

 

Average STDEV Average STDEV Average STDEV Average STDEV

Digester Set A 1.0 0.06 1.2 0.02 1.4 0.04 1.2 0.38

Digester Set B 0.7 0.01 1.0 0.02 1.1 0.04 0.3 0.15

Digester Set C 0.6 0.02 0.8 0.02 0.9 0.02 1.3 0.15

Phase 3Phase 2Phase 1 Phase 4
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3.5.4 Synergistic Results from Co-digestion  

 The effect of co-digestion is often unknown until bench-scale studies are 

conducted.  Prior to bench-scale operation, a BMP was run to determine the potential 

outcomes of digesting different co-digestates.  

 Comparing the theoretical and observed BMP results, it was determined that the 

Milk Processing Wash Water resulted in a synergistic outcome, and the three co-

digestates and the co-digestate mixture resulted in a neutral outcome.  From the results it 

appears that co-digestion will result in a neutral outcome in terms of CH4 yield when the 

co-digestates are digested with municipal sludges.  No antagonistic outcomes were 

observed during BMP testing.   

  All CH4 production results were also considered to determine what outcomes 

were observed in the bench-scale study.  The CH4 production results stated in section 

3.4.3 demonstrated that adding co-digestates was statistically significant for all three 

digesters in Phase 2, Digester Set A and Digester Set B in Phase 3 and Digester Set A and 

Digester Set B in Phase 4.  CH4 production varied for each phase due to the volumes of 

co-digestates added. 

3.5.5 Co-Digestate OLR and Sustainable Digester Health  

 Municipal sludges consist of a high fraction of constituents such as cellulose 

which is slowly fermentable; therefore, it does not acidify extremely rapidly.  TPS also 

contains a significant amount of microorganisms that, when added to anaerobic digesters, 



54 

 

 

 

can have beneficial effects.  The co-digestates added during Phases 2, 3 and 4 consisted 

of constituents which can easily be degraded/acidified and utilized in the anaerobic 

digestion process.  Because the municipal sludges take longer to break down and be 

utilized, the readily degradable constituents from the co-digestates could be broken down 

and utilized more rapidly than the municipal sludge.  This combination of fast and slow 

degrading wastes allows acids to be used throughout the anaerobic digestion process 

rather than all of the wastes being acidified at once and causing digesters to go sour.    

 The ratio of co-digestate OLR to the total OLR is important because having a 

certain ratio can allow anaerobic digesters to run at lower SRTs and higher OLRs than 

attainable when co-digestates are treated alone. The ratio of co-digestate OLR to the total 

OLR versus digester parameters is shown in Figures 3.15-3.17. Once the ratio increased 

to a value higher than 0.45 under the conditions studied, the digesters failed.   

 During Phases 2, 3 and 4, the ratio of co-digestate OLR to the total OLR 

increased significantly from 0 co-digestate OLR/total OLR during Phase 1 up to 0.67 co-

digestate OLR/total OLR during Phase 4.  This increase degraded the digester health.  In 

Figure 3.15 as the ratio increased, the pH decreased until the values were below the 

acceptable limits for healthy operation.  The pH dropped so low for Digester Set B that 

the set finally failed at the end of the study.  Though no alkalinity data were taken during 

Phase 4, Figure 3.16 shows that the alkalinity dropped significantly from Phase 2 to 

Phase 3, approaching the acceptable lower limit of healthy operation.  The increase in the 

co-digestate OLR ratio produced no detectable VFAs until Phase 4 when the ratio 

increased above 0.45 co-digestate OLR/total OLR for all sets of digesters.  This increase 

caused large increases in VFA concentrations in all digester sets, two of which surpassed 
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the acceptable limit for healthy operation.  The increase in Digester Set B was so 

significant that the digester ultimately failed and all operation ceased.   

 

 
Figure 3.15: pH versus Co-Digestate OLR/Total OLR 
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Figure 3.16: Alkalinity versus Co-Digestate OLR/Total OLR 

 

 

 
Figure 3.17: VFAs versus Co-Digestate OLR/Total OLR 
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4 Conclusions 

Anaerobic digesters are sensitive to high OLRs.  When OLRs are too high 

digesters can often become stressed and fail.  Co-digestion has been proven to be 

beneficial when the co-digestates are added in adequate amounts, but large amounts can 

be toxic; therefore, the volumes of co-digestates added needs to be carefully monitored.  

During Phase 3 and Phase 4, higher volumes of co-digestate mix were added to the 

bench-scale digesters to determine how the volumes of municipal sludge and co-

digestates affect digester operation.  As hypothesized, wastewater sludge and high-

strength waste complimented each other allowing high OLRs to be reached at low solids 

retention times.  The volumes of co-digestate added during Phase 4 did cause the VFA 

concentrations to increase as well as lowering the pH.     

Studies have shown that co-digestion can increase VSR in anaerobic digesters.  

Co-digestates are often highly degradable compounds that when added to anaerobic 

digesters allows the VSR to increase.  Phase 2 co-digestion demonstrated an average 

overall increase in VSR as hypothesized.  The VSR increased during Phase 3, but 

decreased during Phase 4.  Co-digestion has the potential to increase VSR; however, to 

ensure VSR does not decrease, the volume of co-digestates added needs to be carefully 

controlled to ensure the maximum amount of each waste will be degraded.   

Co-digestates are often in the liquid form and consist mostly of readily degradable 

constituents which are quickly consumed by microorganisms and converted to biogas.  

The extra carbon added from co-digestates can often increase biogas production as well 

as CH4 production.  During Phase 2 and Phase 3 with the addition of co-digestates, higher 
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CH4 production values were achieved as hypothesized.  However, during Phase 4, 

because the digesters were fed such high volumes of co-digestates, mixed CH4 

production values were observed.  Some of the duplicate digesters had increases in CH4 

production while others saw significant decreases in CH4 production.  Running anaerobic 

digesters at lower than 5 day SRTs and greater than 9 g/L of digester is not 

recommended.   

 High strength industrial wastes can contain different toxins or high metal 

concentrations that can be inhibitory when added to anaerobic digesters.  Prior to running 

the bench-scale anaerobic digesters, two sets of BMP tests were conducted to determine 

if any synergistic, neutral or antagonistic outcomes could be expected.  The Milk 

Processing Wash Water proved to have a synergistic effect when digested with municipal 

sludge, while the other three co-digestates and co-digestate mix resulted in neutral 

outcomes, opposite of what was hypothesized. Although the BMPs did not all result in 

synergistic outcomes, the combination of co-digestates when digested with municipal 

sludge and fed to the bench-scale digesters did prove to have beneficial outcomes during 

the three phases of co-digestion.      

During each phase of co-digestion, the ratio of co-digestate OLR to the total OLR 

increased until reaching its maximum during Phase 4.  A ratio of <0.45 co-digestate 

OLR/total OLR was beneficial for operating the anaerobic digesters under the conditions 

studied, but when the ratio was >0.45 co-digestate OLR/total OLR the bench-scale 

anaerobic digesters were stressed or sour.  Phase 4 was run at the highest OLRs, which is 

also a cause of digester failure, but the ratio of co-digestate OLR to total OLR is believed 

to be the root cause of failure, however; the ratio needs to be investigated further.  
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Though some digesters failed in Phase 4, Phase 3 proved that the bench-scale digesters 

could still be operated successfully at higher than normal OLRs and lower than normal 

SRTs due to the fact that a large volume of the feed consisted of the municipal sludge.    

Co-digestion of four high strength industrial wastes was successful in lab-scale.  

The combination of industrial waste and municipal sludges proved to be the major factor 

to the successful operation of anaerobic bench-scale digesters at low SRTs and high 

OLRs.  
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Table A1: Comprehensive Industrial Waste Survey Results 

 

 

 

Amount Unit

Filter cake solids 2,000,000 -- -- 10 8.1 6.5 N/A 140 46,000 9,600

High acid solids 1,400,000 -- -- 9.9 9.1 6.5 N/A 780 31,000 4,200

Anaerobic contact WAS 240,000 9.3 wet tons 19 15 4.7 N/A 4,900 71,000 10,000

Paunch manure 240,000 33 wet tons 29 26 4.7 N/A 450 11,000 3,100

Primary wastewater sludge 160,000 -- -- 11 9.4 6.5 5.9 11,000 50,000 3,200

Beer 110,000 64 gal 3.0 2.2 0.4 6.8 380 25,000 4,700

Cheese Production DAF Tank Sludge 110,000 5,500 gal 10 8.0 21 3.9 630 14,000 4,600

Somat Sludge 90,000 -- -- 7.6 6.7 6.5 N/A 8,400 130,000 11,000

Vegetable Blancher Water 66,000 5,000 gal 5.7 4.8 19 6.6 400 13,000 3,700

Cheese Production DAF Tank Sludge and Float 38,000 11,000 gal 2.8 2.2 25 6.2 1,100 43,000 14,000

Pepper/pickle solids 38,000 -- -- 5.8 3.4 2.8 4.1 1,200 23,000 2,700

Milk processing sour cream: Sample 2 30,000 13,000 gal 1.1 0.78 8.7 12 TBD TBD TBD

Milk Processing Wash Water 26,000 13,000 gal 1.2 0.94 8.7 12 TBD TBD TBD

Irrigation field corn 21,000 5,000 gal 0.98 0.83 19 4.5 700 82,000 7,900

Wastewater hole 15,000 8,500 gal 12 1 27 6.8 3,200 22,000 8,500

Cheese Wash Water 7,900 100,000 gal 0.69 0.52 10 9.7 4,000 19,000 8,100

Holding cell 7,400 8,500 gal 0.60 0.32 27 6.1 13,000 45,000 14,000

Cheese water (high chlorides) 6,800 19,000 gal 2.4 0.33 10 5.8 TBD TBD TBD

Primary wastewater water 5,700 -- -- 2.3 0.26 6.5 6.7 29,000 42,000 1,300

Ridge and furrow 1,800 8,500 gal 0.37 0.13 27 7.9 7,700 ND 18,000

*TP is Total Phosphorus

Average 

NH3-N 
Co-digestate description

Average 

TKN 

Average 

TP* 
Average COD (mg/L)

Daily Production Average 

%TS

Haul Distance 

to GBMSD 

Average 

%VS
pH
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Table A2: Five Industrial Wastes Chosen 

 

 

 

 

 

Parameters Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV

pH 6.2 0.34 9.3 1.1 6.3 0.42 4.4 0.2 6.8 --

TS (%) 26 16 1.5 0.29 29 17 47 27 1.4 0.2

VS (%) 17 10 1.3 0.32 23 15 32 24 1.4 0.2

Percent VS (%) 65.0 65 87 -- 78 -- 67 -- 94.0 --

TSS (mg/L) 4.6 6.2 5.4 3.4 25 15 14 13 0.1 0.03

VSS (mg/L) 2.6 3 4.4 2.8 22 14 13 12 0.1 0.03

COD (mg/L) 23,000 13,000 27,000 6,300 27,000 12,000 60,000 38,000 84,000 1,600

sCOD (mg/L) 18,000 9,500 8,800 1,400 1,500 1,300 20,000 15,000 80,000 1,200

Total Phosphorus (mg/L) 160 -- 51 -- 350 -- 310 -- 72 --

NH3-N (mg/L) 100 -- 8 -- 59 -- 20 -- 60 --

TKN (mg/L) 770 -- 750 -- 3,100 -- 1,300 -- 360 --

Oil and Grease (mg/L) 9 -- 1,400 -- 12 -- 96 -- 11 --

Alkalinity (mg/L as CaCO3) 810 -- 1,100 -- 900 -- 160 -- 0 --

BMP (ml CH4/gCOD) 310 3.6 210 6.2 200 36 280 16 -- --

ATA IC50>8% -- IC50>8% -- IC50>8% -- IC50=4% -- -- --

Beryllium (µg/L) 19 -- 2 -- 5 -- 1 -- 3 --

Sodium (µg/L) 61 -- 620 -- 1,600 -- 6,400 -- 99 --

Magnesium (µg/L) 300 -- 24 -- 33 -- 88 -- 53 --

Aluminum (µg/L) 17,000 -- 14,000 -- 110,000 -- 23,000 -- 16,000 --

Potassium (mg/L) 1,700 -- 140 -- 170 -- 400 -- 210 --

Calcium (mg/L) 120 -- 140 -- 380 -- 800 -- 63 --

Chromium (µg/L) 120 -- 130 -- 58 -- 190 -- 310 --

Mangenese (µg/L) 470 -- 36 -- 110 -- 140 -- 99 --

Iron (mg/L) 7 -- 2 -- 7 -- 19 -- 3 --

Cobalt (µg/L) 41 -- 10 -- 55 -- 41 -- 21 --

Nickel (µg/L) 530 -- 58 -- 38 -- 73 -- 140 --

Copper (µg/L) 730 -- 430 -- 560 -- 900 -- 1,200 --

Zinc (µg/L) 5,200 -- 3,200 -- 980 -- 1,300 -- 550 --

Arsenic (µg/L) 16 -- 3 -- 3 -- 3 -- 4 --

Selenium (µg/L) 34 -- 70 -- 11 -- 10 -- 18 --

Molybdenum (µg/L) 45 -- 8 -- 12 -- 16 -- 9 --

Silver (µg/L) 34 -- 14 -- 33 -- 21 -- 33 --

Cadmium (µg/L) 40 -- 51 -- 7 -- 22 -- 11 --

Mercury (µg/L) 93 -- 15 -- 21 -- 34 -- 17 --

Lead (µg/L) 200 -- 240 -- 220 -- 240 -- 140 --

Quantity (gal/day) 5,000 -- 13,000 -- 11,000 -- 5,500 -- 64 --

Distance (miles) 19 -- 9 -- 25 -- 21 -- 0 --

1 2 3 4 5

Vegetable Blancher 

Water

Milk Processing Wash 

Water

Cheese Production 

DAF Tank Sludge and 

Float

Cheese Production 

DAF Tank Sludge
Beer Waste
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Table A3: Phase 1 Steady-State Nutrient and Biogas Quality Results 

 

 

Table A4: Phase 2 Steady-State Nutrient and Biogas Quality Results 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

NH-N (mg/L) 813 23 821 46 878 16 1007 38 1033 29 1053 23

TKN (mg/L) 2113 242 1569 368 2691 247 2878 410 2975 567 2477 193

Total Phosphorus(mg/L) 735 30 671 42 789 39 784 79 756 28 728 1

Soluble Phosphorus (mg/L) 81 3 79 6 147 56 165 18 181 23 144 8

H2S (mg/L) 283 26 283 93 495 146 492 143 350 32 396 25

Tests
(1 A) (2 A) (1 B) (2 B) (1 C) (2 C)

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

NH-N (mg/L) 820 25 800 13 870 7.6 870 13 930 5.0 1000 12

TKN (mg/L) 2200 18 2200 8.7 2300 42 2200 13 2200 35 2400 38

Total Phosphorus(mg/L) 510 15 550 61 510 20 570 22 570 17 560 8.7

Organic Phosphorus (mg/L) 510 15 520 55 490 22 560 24 540 17 540 18

H2S (mg/L) 520 29 400 50 420 29 450 87 450 130 470 100

NH (mg/L) 9.0 2.6 8.3 2.9 8.7 3.2 8.0 3.5 7.7 3.2 7.7 2.5

Chlorine (mg/L) ND* -- ND* -- ND* -- ND* -- ND* -- ND* --

Tests
(1 A) (2 A) (1 B) (2 B) (1 C) (2 C)
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Table A5: Phase 1 Steady-State Metals Results 

 

 

 

 

 

 

 

 

Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV

Beryllium (µg/L) 33             40.2    15             100     28             33       20             52       29             52       22             32       31             42       36             62       

Sodium (µg/L) 610           4.7      580           5.2      800           6.3      840           5.7      930           6.5      960           6.7      1,000        4.1      1,100        11       

Magnesium (µg/L) 800           4.3      910           5.0      780           5.9      820           6.0      860           7.1      920           6.3      890           4.1      930           11       

Aluminum (µg/L) 2,700,000 3.9      730,000    5.0      2,300,000 6.1      2,300,000 5.4      1,800,000 6.8      2,400,000 13       1,700,000 3.7      1,800,000 11       

Potassium (mg/L) 180           4.8      1,100        5.0      750           5.9      780           5.5      800           6.2      830           6.1      850           4.0      930           11       

Calcium (mg/L) 2,200        4.2      1,200        5.8      1,500        6.3      1,600        6.0      1,800        6.4      1,900        6.9      1,800        4.0      2,000        11       

Chromium (µg/L) 4,400        3.3      3,300        4.9      3,800        6.0      5,200        6.3      4,700        6.6      4,600        6.2      5,600        4.6      6,000        11       

Mangenese (µg/L) 10,000      5.2      63,000      5.8      24,000      6.3      25,000      5.4      27,000      6.3      29,000      6.6      28,000      4.2      30,000      11       

Iron (mg/L) 1,300        3.8      870           4.7      1,100        6.1      1,200        5.4      1,200        6.2      1,300        6.5      1,300        4.0      1,300        11       

Cobalt (µg/L) 500           6.3      930           13       880           6.2      920           10       1,000        10       1,100        7.8      1,100        9.7      1,500        6.1      

Nickel (µg/L) 14,000      5.1      24,000      9.6      27,000      5.4      27,000      10       24,000      10       25,000      7.1      30,000      10       28,000      7.0      

Copper (µg/L) 130,000    4.9      170,000    10       190,000    5.5      180,000    11       210,000    10       210,000    6.8      240,000    11       210,000    6.8      

Zinc (µg/L) 73,000      5.7      56,000      9.4      81,000      5.7      81,000      11       91,000      10       94,000      6.5      110,000    11       100,000    7.0      

Arsenic (µg/L) 1,600        3.8      2,700        11       2,600        5.3      2,600        9.4      3,100        10       3,500        6.4      3,300        13       3,300        6.1      

Selenium (µg/L) <0.000 N/A 1,100        79       <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A

Molybdenum (µg/L) 240           8.9      230           7.9      240           2.5      260           5.5      240           4.8      290           4.9      280           5.6      290           4.0      

Silver (µg/L) 5,100        7.8      160           5.8      180           3.1      210           5.7      250           5.1      300           5.7      250           2.8      260           2.6      

Cadmium (µg/L) <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A

Mercury (µg/L) 150           1.3      <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A

Lead (µg/L) <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A <0.000 N/A

(2 C)(1 C)(2 B)(1 B)(2 A)(1 A)WASPrimary
Metals
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Table A6: Phase 2 Steady-State Metals Results 

 

 

 

Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV

Beryllium (µg/L) 2.5         85       2.9         36       2.9         94       2.1         119     3.0         84       1.3         186     

Sodium (µg/L) 400        0.7      420        0.7      420        0.8      420        0.8      420        0.6      430        0.3      

Magnesium (µg/L) 230        0.6      200        0.7      210        0.6      230        0.7      230        0.5      250        0.6      

Aluminum (µg/L) 340,000 0.7      340,000 0.6      350,000 0.7      310,000 0.7      350,000 0.3      370,000 0.5      

Potassium (mg/L) 370        0.3      400        0.7      370        0.5      370        0.8      430        0.4      420        0.6      

Calcium (mg/L) 680        0.5      690        1.0      700        0.6      770        1.0      740        0.3      750        0.5      

Chromium (µg/L) 2,500     0.6      2,600     0.8      2,400     0.9      2,100     0.4      2,500     0.7      3,100     0.6      

Mangenese (µg/L) 7,200     0.3      6,900     0.5      7,500     0.6      8,400     0.6      7,000     0.5      7,800     0.2      

Iron (mg/L) 260        0.6      260        0.4      260        0.4      210        0.6      290        0.5      310        0.3      

Cobalt (µg/L) 2,800     1.0      1,900     0.7      3,200     0.7      3,200     0.3      4,600     0.7      3,600     0.4      

Nickel (µg/L) 5,100     1.3      4,600     0.4      5,200     0.6      5,600     0.5      6,500     0.6      4,600     0.6      

Copper (µg/L) 11,000   1.2      11,000   0.8      11,000   0.6      12,000   0.5      11,000   0.7      16,000   0.5      

Zinc (µg/L) 8,400     0.8      8,300     0.7      8,800     0.7      10,000   0.5      8,900     0.8      10,000   0.4      

Arsenic (µg/L) 100        2.6      100        2.7      110        1.7      120        2.1      100        1.5      110        2.3      

Selenium (µg/L) 130        11       120        8.8      130        3.3      160        5.3      110        7.0      130        6.4      

Molybdenum (µg/L) 260        1.0      250        1.8      230        1.7      230        2.0      230        1.8      270        1.2      

Silver (µg/L) 270        1.3      140        1.9      150        1.7      130        1.5      120        1.2      160        1.0      

Cadmium (µg/L) 40          6.7      40          8.7      39          6.1      52          3.6      40          7.6      51          5.1      

Mercury (µg/L) 44          3.9      1.4         45       3            8.8      <0.000 N/A 1            63       35          2.1      

Lead (µg/L) 450        0.6      400        1.3      390        1.8      330        2.6      430        1.0      520        0.7      

(1 A) (2 A) (1 B) (2 B) (1 C) (2 C)
Metals
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Table A7: Phase 1 Steady-State, Digester Set A and Feed Data 

 

 

Table A8: Phase 1 Steady-State, Digester Set B and Feed Data 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev

pH 7.18 6.91-7.28 7.17 7.09-7.31 5.86 5.54-6.37

TS, g/L 29.7 4.2 29.8 4.2 45.1 2.4

VS, g/L 20.6 2.8 20.5 2.8 35.4 1.6

VSR, % 42 9.2 42 8.8

COD, g/L 31 4.1 32 7.4 58 2.2

sCOD, g/L 0.63 0.1 0.95 0.2 3 0.22

Alkalinity, mg/L as CaCO3 3500 260 3500 370

Methane, % 66.1 5.4 67.8 1.5

Biogas Production, L/L-day 1.54 0.18 1.49 0.2

VFAs**, mg/L 0 - 200 70 2900 610

*Duplicate digesters were statistically different

**Total VFAs as Acetic Acid

(1 A) Feed(2 A)

Average Stdev Average Stdev Average Stdev

pH 7.2 7.09-7.31 7.2 7.10-7.32 5.79 5.54-6.21

TS, g/L 31.1 4.1 30.3 4 45.5 2.7

VS, g/L 21.1 2.9 20.5 2.6 35.4 1.8

VSR, % 40 6.9 42 9

COD, g/L 35 5.4 32 4.7 60 3.6

sCOD, g/L 0.58 0.02 0.6 0.028 2.7 0.44

Alkalinity, mg/L as CaCO3 3800 110 3900 190

Methane, % 68.5 1.1 68.8 0.7

Biogas Production, L/L-day 1.04 0.12 1.14 0.18

VFAs**, mg/L 0 - 0 - 3100 620

*Duplicate digesters were statistically different

**Total VFAs as Acetic Acid

(1 B) (2 B) Feed
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Table A9: Phase 1 Steady-State, Digester Set C and Feed Data 

 

 

Table A10: Phase 1 Steady-State, Digester Set D and Feed Data 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev

pH 7.22 7.11-7.35 7.21 7.10-7.32 5.79 5.54-6.21

TS, g/L 27.9 1.1 26.6 0.7 45.2 3.2

VS, g/L 18.7 0.9 17.9 0.5 35.4 2

VSR, % 47 5 49 3.4

COD, g/L 32 1.7 30 1.9 57 4.8

sCOD, g/L 0.61 0.02 0.6 0.055 3 0.36

Alkalinity, mg/L as CaCO3 4000 77 4000 170

Methane, % 69.2 1.3 69.3 2.1

Biogas Production, L/L-day 0.94 0.11 0.94 0.1

VFAs**, mg/L 0 - 0 - 2800 580

*Duplicate digesters were statistically different

**Total VFAs as Acetic Acid

(1 C) (2 C) Feed

Average Stdev Average Stdev

pH 7.07 6.95-7.19 5.79 5.54-6.21

TS, g/L 31.5 0.7 45.5 2.7

VS, g/L 21.5 0.5 35.4 1.8

VSR, %

COD, g/L

sCOD, g/L

Alkalinity, mg/L as CaCO3 3500 130

Methane, %

Biogas Production, L/L-day

VFAs**, mg/L

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

(1 D) Feed
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Table A11: Phase 2 Steady-State, Digester Set A and Feed Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 7.08 6.81-7.21 7.02 6.86-7.16 5.82 5.42-6.28 5.99 5.45-6.65

TS, g/L 26.9 1.2 26.1 1.4 45.9 4 27.4 2.8 42.4 2.4

VS, g/L 18.8 1 18.3 1.2 37.6 3.2 21.3 2.7 34.5 1.9

VSR, % 45 5.5 46 5.3

COD, g/L 32.6 1.7 32.3 0.78 55.2 2

sCOD, g/L 0.45 0.033 0.44 0.022 3.2 0.44

Alkalinity, mg/L as CaCO3 3700 420 3700 440

Methane, % 68.5 1.3 68.7 1.2

Biogas Production, L/L-day 1.82 0.23 1.8 0.21

VFAs**, mg/L 0 - 0 - 2000 470

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Co-Digestate Feed + Co-Di(1 A) (2 A) Feed
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Table A12: Phase 2 Steady-State, Digester Set B and Feed Data 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 7 6.92-7.12 7 6.82-7.11 5.74 5.42-6.27 5.98 5.45-6.65

TS, g/L 27 1.5 25.9 2.1 46 4.7 26.8 2.9 42.6 2.6

VS, g/L 18.6 1.4 17.9 1.6 37.9 3.6 20.7 2.8 34.3 2.2

VSR, % 45 5.2 48 7.4

COD, g/L 28.1 6.8 31.4 3.2 56 2.9

sCOD, g/L 0.46 0.034 0.45 0.024 4.5 1

Alkalinity, mg/L as CaCO3 4000 230 4100 350

Methane, % 69.1 1.6 69.5 1.6

Biogas Production, L/L-day 1.43 0.15 1.4 0.15

VFAs**, mg/L 0 - 0 - 3200 720

**Total VFAs as Acetic Acid

Feed

*Duplicate digesters were statistically different

Co-Digestate Feed + Co-Di(1 B) (2 B)
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Table A13: Phase 2 Steady-State, Digester Set C and Feed Data 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 7.03 6.93-7.15 7.06 6.96-7.21 5.68 5.42-6.00 5.96 5.45-6.65

TS, g/L 25.6 2.1 25.8 2.4 48.6 3.1 25.8 2.8 43.9 2.1

VS, g/L 17.5 1.8 17.6 2 39.7 2.3 19.8 2.6 35.6 1.7

VSR, % 50 5.4 50 5.9

COD, g/L 29.7 3.5 30.9 2.4 60.7 3.5

sCOD, g/L 0.48 0.04 0.48 0.04 6.2 0.28

Alkalinity, mg/L as CaCO3 4400 200 4500 260

Methane, % 70.2 1.6 70.2 1.4

Biogas Production, L/L-day 1.09 0.08 1.09 0.08

VFAs**, mg/L 0 - 0 - 4100 790

*Duplicate digesters were statistically different

**Total VFAs as Acetic Acid

(1 C) (2 C) Feed Co-Digestate Feed + Co-Di
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Table A14: Phase 2 Steady-State, Digester Set D and Feed Data 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev

pH 6.99 6.86-7.10 5.74 5.42-6.27 5.98 5.45-6.65

TS, g/L 26 1.3 46 4.7 26.8 2.9 42.6 2.6

VS, g/L 18.4 0.8 37.9 3.6 20.7 2.8 34.3 2.2

VSR, % 46 2.4

COD, g/L

sCOD, g/L

Alkalinity, mg/L as CaCO3 3800 420

Methane, %

Biogas Production, L/L-day

VFAs**, mg/L

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Feed(1 D) Co-Digestate Feed + Co-Di
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Table A15: Phase 3 Steady-State, Digester Set A and Feed Data 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 6.88 6.77-7.04 6.83 6.70-6.99 5.83 5.68-6.02 5.71 5.41-5.89

TS, g/L 21.8 2.4 21.3 3.2 49.9 2.4 20.9 1.2 37.3 1.9

VS, g/L 14.9 1.8 14.5 2.4 40.9 2.5 16.7 1.4 30.3 1.6

VSR, % 51 5.4 52 6.5

COD, g/L 29.2 1.6 29 2.4 55.2 3.2

sCOD, g/L 0.6 0.05 0.71 0.05 4.5 0.23

Alkalinity, mg/L as CaCO3 3000 250 2900 250

Methane, % 68.2 2.3 67.4 2.5

Biogas Production, L/L-day 1.96 0.1 2.03 0.13

VFAs**, mg/L 0 - 150 70 3600 900

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Co-Digestate Feed + Co-Di(1 A) (2 A) Feed
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Table A16: Phase 3 Steady-State, Digester Set B and Feed Data 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 6.82 6.72-6.93 6.85 6.75-6.97 5.79 5.68-5.90 5.72 5.62-5.85

TS, g/L 20.4 3 20.7 3 49.9 2.4 20.9 1.2 36 1.9

VS, g/L 13.5 2.1 13.8 2.1 40.9 2.5 16.7 1.4 29.2 1.9

VSR, % 53 11 53 12

COD, g/L 24.3 3 25.4 1.8 47.4 2.5

sCOD, g/L 0.43 0.04 0.45 0.03 3.4 0.79

Alkalinity, mg/L as CaCO3 3200 160 3200 200

Methane, % 67.5 2.6 67.3 2.6

Biogas Production, L/L-day 1.62 0.15 1.61 0.15

VFAs**, mg/L 0 - 0 - 2700 610

**Total VFAs as Acetic Acid

Feed

*Duplicate digesters were statistically different

Co-Digestate Feed + Co-Di(1 B) (2 B)
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Table A17: Phase 3 Steady-State, Digester Set C and Feed Data 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 6.83 6.77-6.92 6.86 6.80-6.98 5.82 5.71-5.90 5.71 5.63-5.75

TS, g/L 21.2 0.8 22.2 0.6 49.9 2.4 20.9 1.2 37 1.7

VS, g/L 14.1 0.6 14.5 0.5 40.9 2.5 16.7 1.4 30.3 1.5

VSR, % 53 3 52 4

COD, g/L 25.1 0.61 26 1.2 48.7 2

sCOD, g/L 0.46 0.025 0.47 0.04 3.4 0.3

Alkalinity, mg/L as CaCO3 3100 40 3200 40

Methane, % 66.9 0.9 64.5 1.3

Biogas Production, L/L-day 1.29 0.15 1.4 0.17

VFAs**, mg/L 56 50 0 - 2200 500

*Duplicate digesters were statistically different

**Total VFAs as Acetic Acid

(1 C) (2 C) Feed Co-Digestate Feed + Co-Di
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Table A18: Phase 3 Steady-State, Digester Set D and Feed Data 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev

pH 6.82 6.72-6.95 5.79 5.68-5.90 5.72 5.62-5.85

TS, g/L 21.2 1.2 49.9 2.4 20.9 1.2 36 1.9

VS, g/L 14.6 1 40.9 2.5 16.7 1.4 29.2 1.9

VSR, %

COD, g/L

sCOD, g/L

Alkalinity, mg/L as CaCO3 2800 250

Methane, %

Biogas Production, L/L-day

VFAs**, mg/L

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Feed(1 D) Co-Digestate Feed + Co-Di



81 

 

 

 

Table A19: Phase 4, Digester Set A and Feed Data 

 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 6.79 6.50-6.95 6.71 6.56-6.99 6.22 6.02-6.50 5.39 4.32-6.13

TS, g/L 23.3 0.39 25.3 0.78 47.3 0.6 28.2 0.4 37.8 0.42

VS, g/L 15.3 0.4 17 1 38.4 0.5 17.6 0.9 28 0.61

VSR, % 45 5 39 7

COD, g/L

Biogas Production, L/L-day 2.4 0.03 1.4 0.06

VFAs**, mg/L 55 30 5200 1500 2500 480 1400 470

**Total VFAs as Acetic Acid

*Duplicate digesters were statistically different

Co-Digestate Feed + Co-Di(1 A) (2 A) Feed
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Table A20: Phase 4, Digester Set B and Feed Data 

 

 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 6.46 5.42-7.05 6.39 5.28-7.04 6.22 6.02-6.50 5.39 4.32-6.13

TS, g/L 22.3 0.76 22.1 1.21 47.3 0.6 28.2 0.4 35.3 0.39

VS, g/L 14.5 0.5 14.6 0.6 38.4 0.5 17.6 0.9 25.3 0.67

VSR, % 43 5 43 4

COD, g/L

Biogas Production, L/L-day 0.59 0.16 0.54 0.14

VFAs**, mg/L 11000 2500 14000 3200 2500 480 1400 470

*Duplicate digesters were statistically different

**Total VFAs as Acetic Acid

Co-DigestateFeed Feed + Co-Di(1 B) (2 B)
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Table A21: Phase 4, Digester Set C and Feed Data 

 

 

 

 

 

 

 

 

 

Average Stdev Average Stdev Average Stdev Average Stdev Average Stdev

pH 6.71 6.58-7.05 6.73 6.61-6.92 6.22 6.02-6.50 5.39 4.32-6.13

TS, g/L 18.9 0.93 19.4 0.7 47.3 0.6 28.2 0.4 34.5 0.38

VS, g/L 11.5 0.3 11.9 0.4 38.4 0.5 17.6 0.9 24.5 0.69

VSR, % 53 5 51 6

COD, g/L

Biogas Production, L/L-day 2.17 0.01 1.76 0.08

VFAs**, mg/L 670 260 2700 1000 2500 480 1400 470

*Duplicate digesters were statistically different

**Total VFAs as Acetic Acid

(1 C) (2 C) Feed Feed + Co-DiCo-Digestate
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Table A22: Phase 1, Dewatering Test Results 

 

 

Table A23: Phase 2, Dewatering Test Results 

 

Technology Polymer Type
Polymer Dose, 

active lb/dry ton

Maximum Achievable 

Cake Solids 

Concentration, % TS

Piston Press
1 BASF 7557 18.5 28

J-Vap Praestol K290FLX 16.5 25

Centrifuge SNF Polydyne C6267 28.5 22.6

Centrifuge Ashland K-290FLX 25.6 21

Centrifuge 290FLX 21.6 20
1
Dehydris Twist Piston Press

Technology Polymer Type
Polymer Dose, 

active lb/dry ton

Maximum 

Achievable Cake 

Solids 

Concentration, % 

TS

Polymer Dose, active 

lb/dry ton

Maximum 

Achievable 

Cake Solids 

Concentration, 

% TS

Centrifuge K290 FLX 23-27 21.5 23-30 21.7 
c

Centrifuge C6287 24-26 21 37 21 ± 2 
a

Centrifuge BASF Z8848FS 16.8 20 19.2 21.7 ± 2 
b

Unheated Sample Heated Sample

b
Test temperature: 55-70ºC

a
Test temperature: 60ºC

c
Test temperature: 60ºC
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Table A24: Calorimetry Results for Total Solids 

 

 

Table A25: Calorimetry Results for Volatile Solids 

 

 

Table A26: BMP Results for Individual Wastes 

 

 

 

Average STDEV Average STDEV

Vendor 1 17.2 3.5 16.5 0.92

Vendor 2 17.2 2.8 16.5 0.05

Vendor 3

Vendor 4 15.6 1.2

BTU/g total solids

Phase 1 Phase 2

Average STDEV Average STDEV

Vendor 1 24.6 5 21.8 1.2

Vendor 2 24.5 4.1 21.8 0.07

Vendor 3 19.5 0.44

Vendor 4 24.5 0.12 20.9 1.6

Phase 1 Phase 2

BTU/g volatile solids

Waste Average (mL CH4/g COD) Stdev

Co-digestate Mix 350 15

Co 1-Vegetable Blancher Water 310 3.6

Co 4-Cheese Production DAF Tank Sludge 280 16

TPS 250 32

TPS 240 19

Municipal Feed 220 3

Co 2-Milk Processing Wash Water 210 6.2

Co 3-Cheese Production DAF Tank Sludge and Float 200 36

TWAS 130 4.9

TWAS 120 68
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Table A27: BMP, Theoretical and Observed Results 

 

 

 

Table A28: Phase 1 Siloxane Concentrations 

 

 

Table A29: Phase 2 Siloxane Concentrations 

 

 

 

Average (mL CH4/g COD) Stdev Average (mL CH4/g COD) Stdev

Co 2-Milk Processing Wash Water 210 4.3 270 2.3

Co 3-Cheese Production DAF Tank Sludge and Float 210 19 230 2.0

Co 4-Cheese Production DAF Tank Sludge 250 12 260 7.3

Co 1-Vegetable Blancher Water 270 11 270 19

Co-digestate Mix 280 11 280 7.3

Theoretical Observed

Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV

Total (Si, mg/m
3
) 1.6 0.32 1.3 1.1 0.91 1.3 0.10 0.03 1.0 0.10 1.8 1.0

(2 C)(1 A) (2 A) (1 B) (2 B) (1 C)

Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV Average STDEV

Total (Si, mg/m
3
) 1.7 0.27 1.2 0.03 1.5 0.14 1.0 0.29 2.3 0.93 1.3 0.21

(1 A) (2 A) (1 B) (2 B) (1 C) (2 C)
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Figure A1: Phase 2 Serum Bottle Biogas and Digester Biogas Production Relationship 
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Figure A2: Phase 3 Serum Bottle Biogas and Digester Biogas Production Relationship 
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Gas Quality and Measurement of Landfill Gas and Bio-gas – Application No 1.  

 

SILOXANES AND MEASUREMENT  
 

TOTAL AND SPECIATION OF VOLATILE ORGANIC SILICON IN FUEL GASES BY GAS 

CHROMATOGRAPHY-ATOMIC EMISSION DETECTOR  

 

The presence of volatile organosilicon compounds in landfill gas was known to cause catastrophic 

combustion engine failure due to the formation of abrasive microcrystalline silica. A sensitive and ready 

method is required to quantitate the total silicon content and individual species. The total silicon 

measurement provides one of the most critical fuel-gas quality parameter. Speciation provides 

information on the type, the amount and the distribution of various organosilicon compounds present in 

landfill gas. This information is of a great value to the utilization of landfill gas and other biogases for 

energy production and to the development and evaluation of clean-up processes.  

 

A direct measurement method was developed and extensively utilized for last six years. The volatile 

organic silicon-containing compounds in biogas are separated by gas chromatography (GC) techniques 

and subsequently detected by an atomic emission detector (AED) using a microwave-induced He plasma 

(HIP). The characteristic emissions from silicon (Si-252 nm) and carbon (C-248 nm) of each component 

are simultaneously monitored for compound confirmation and measurement. The gas sample is collected 

in inert container and directly injected onto GC-AED using a fixed sampling loop for qualitative and 

quantitative measurement. The detection limit of each silicon compound is approximately 0.1-0.01 ppmv 

as silicon. Target organic silicon species include tetramethyl silane, trimethyl silanol, linear (L2-L5) and 

cyclic siloxanes (D3-D6). Other organic silicon species are detected together and reported as “others” or 

“unidentified”. The total volatile organic silicon is measured by the total Si emission or the sum of all 

organic silicon species.  

 

The GC-AED technique has noted advantages of sensitivity, selectivity and compound-independent 

calibration technique over GC-MS. The sensitivity of GC-AED is better than most quadruple GC-MS’. 

The selectivity allows easy identification of all organic silicon compounds. The compound-independent 

calibration (CIC) technique enables accurate measurement of target or unidentified organic silicon 

compounds using only one stable organic silicon compound as the standard. The CIC technique can be 

employed for calibration at C-248 nm, simultaneously. This allows measurements of NMHC (Non-

Methane Hydrocarbon) and hydrocarbon (boiling point) distribution.  

 

Sound siloxane sampling is critical to the accurate measurement. Grab sampling can be done easily and 

quickly with stainless steel cylinder, silica-coated steel cylinder or Tedlar bag. The entire sampling 

system must be conditioned well and good sampling technique must be followed for representative grab 

sampling. Normally, only a small amount of LFG (0.5-1 liter) is required, but a larger volume can 

improve overall sampling and measurement reliability. On-site methanol impinger method has the 

advantages of time-weight-average (TWA) sampling, but it is a tedious process and the fate of siloxanes 

in methanol is unknown and may vary from LFG to LFG. Carbon trap can also be used instead of 

methanol to collect siloxanes for subsequent thermal desorption and GC analysis. GC-AED method can 

be employed for both grab gas or trap samples using methanol or carbon.  
 

A n a l y t i c a l S o l u t i o n , I n c .  
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