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ABSTRACT

COMPARISON OF THREE SPACE VECTOR PWM METHODS FOR A

THREE-LEVEL INVERTER WITH A PERMANENT

MAGNET MACHINE LOAD

Alia Rebecca Strandt

Marquette University, 2013

Much work exists on multilevel space vector pulse width modulation (PWM)
to drive induction machines, in which the rotor currents are induced by stator rotating
field effects. However, there are few investigations that analyze these modulation
methods applied to permanent magnet (PM) and wound-field synchronous machines,
in which the rotor induces a back emf in the stator. In this thesis, three different
three-level space vector PWM switching sequences are applied to a three-level neutral-
point-clamped (NPC) inverter driving an internal permanent magnet (IPM) machine
load. The inherent qualities of each of the switching sequences when under the
influence of a forcing function (the back emf) created by the permanent magnets of the
machine are investigated. In particular, output voltage quality, output current quality,
and dc bus neutral point balance are analyzed and compared. Two machine operating
conditions are considered: rated speed, rated load and half speed, rated load. By
considering these two different operating speeds, the three switching sequences may
be analyzed under both two-level operation and three-level operation of the inverter.
A circuit model based on the machine state space model in the abc current frame of
reference is used to model the IPM machine load.

First, a short introduction to two-level inverters and a theoretical development
of two-level space vector PWM are presented to introduce these basic principles. Then,
an overview of the three main multilevel inverter topologies including their associated
advantages and disadvantages is presented. A theoretical development of three-level
space vector PWM is built upon the concepts introduced in the two-level case, and
the three switching sequences under investigation are explained. The system model,
including the IPM machine load, the three-level NPC inverter, and the space vector
PWM algorithms, is implemented using MATLAB Simulink. All simulation results are
analyzed based on output voltage and current distortion and neutral point imbalance,
and a comparison between the three switching sequences is presented.
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Chapter 1

Introduction

1.1 Background of the Problem

Two-level voltage source inverters have been widely used in industry for dc to

ac power conversion since the early 1960s [1]. However, an increase in the number

of high power applications has led to the development of multilevel inverters [2]. In

addition to higher power ratings, multilevel inverters produce better quality output

voltages which thus improve drive efficiency [3]. Despite the improvements in output

quality and power ratings, multilevel inverters beyond the three-level inverter have

not been widely adopted due to the increase in design and control complexity as the

number of levels increases. Thus, the three-level inverter has received much attention

since it produces improved output waveforms over the two-level inverter with only a

minor increase in complexity [4].

In an attempt to make multilevel inverters, and in particular three-level in-

verters, more viable in industry, there has been much research into various control

schemes for these inverters. Many of the pulse width modulation (PWM) methods
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that have been developed for two-level inverters have been extended to multilevel in-

verters, including carrier-based PWM (CBPWM) and space vector PWM (SVPWM).

Many methods have also been developed that address some of the weaknesses of

the major multilevel inverter topologies, particularly the possibility of bus neutral

point imbalance. The following section outlines several of the major developments in

two-level PWM and multilevel PWM from the last few decades.

1.2 Review of Literature

1.2.1 Two-Level PWM

One of the most basic PWM methods is known as carrier-based PWM, which

generates the control pulses by comparing a high frequency carrier signal to a low

frequency reference signal. In the simplest version, a sinusoidal reference representing

the desired line-to-neutral voltage is compared to a triangular carrier signal. A popular

research area for carrier-based PWM is to develop different signals to add to the

reference signal. This is known as zero-sequence injection because the injected signal

disappears from the line-to-line signals. In [5], sinusoidal PWM with the injection

of a third harmonic is analyzed in terms of its voltage harmonic spectrum and its

associated harmonic losses. The more general case of non-sinusoidal zero-sequence

harmonic injection is also considered. The extension of the linear modulation region

of two-level sinusoidal PWM by injecting a rectangular zero-sequence component
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is presented in [6]. This method extends the dynamic range of the PWM control

and eliminates the need for the overmodulation region since six-step operation may

be achieved within the linear modulation region. Another interesting application of

carrier-based PWM is presented in [7]. Three-level voltage waveforms are produced

using two two-level voltage source inverters with phase-shifted two-level carrier-based

PWM.

Beyond carrier-based PWM, space vector PWM has been popular due to

its simple digital implementation and its naturally higher possible output voltage

in the linear modulation region. In [8], basic two-level space vector PWM theory

is explained in detail. The treatment of the switches of a two-level inverter as a

binary system is presented, and the concept of a space vector is provided. The

representation of a space vector reference signal in terms of the different combinations

of conducting switches is developed in detail, and several space vector PWM methods

based on these concepts are introduced. The MATLAB Simulink simulation of a

common two-level space vector PWM switching pattern for an inverter is presented

in [9]. A method for smooth transitions between the linear modulation range and

the overmodulation range up to six-step operation in two-level space vector PWM

was presented in [10]. In this application, three modes of operation are defined: the

linear modulation region, overmodulation mode I, and overmodulation mode II. The

linear modulation region corresponds to the reference voltage vector lying completely
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within the hexagon formed by the active voltage vectors. Overmodulation mode I

corresponds to the reference voltage vector lying within the active voltage vector

hexagon for part of the fundamental period and lying outside the active voltage

vector hexagon for the remainder of the fundamental period. Overmodulation mode II

corresponds to the reference voltage vector lying completely outside the active voltage

vector hexagon. The output pulses are generated in the usual fashion within the

linear modulation region, but for operation in the two overmodulation modes, the

output pulses are generated with the use of a Fourier series expansion. The applied

method was shown to reduce the total harmonic distortion of the output voltages

in the overmodulation regions compared to traditional methods. In [11], a Fourier

series-based analytical development of the harmonic spectra of space vector PWM

output voltages is presented. The analytically calculated voltage spectrum is shown

to closely match the experimental voltage spectrum found using the Discrete Fourier

Transform.

Although the implementation of the two methods is different, it has been shown

that carrier-based PWM can create identical switching patterns to those produced

from space vector PWM. In [12], carrier-based PWM and space vector PWM are

developed independent of load type. It is also shown that carrier-based PWM can

produce switching patterns, and thus output waveforms, identical to space vector

PWM using a sinusoidal reference with a properly selected zero-sequence signal. The
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relationships developed are applicable to space vector PWM methods beyond the

basic zero vector distribution. The relationship between carrier-based PWM and

space vector PWM is confirmed in [13], which derives the zero-sequence component

for carrier-based PWM and compares the output pulses to those from space vector

PWM. The results are verified through both simulation and experimentation.

Much work has been done that summarizes and analyzes the wide variety of

PWM methods for two-level inverters. In [14], basic PWM performance criteria are

introduced, and an analysis of several major PWM schemes including carrier-based

PWM, carrierless PWM, and feedback PWM control is provided. Guidelines for PWM

method selection based on application type are provided as well. An analysis of PWM

methods that minimize common mode voltage was performed in [15]. The cause of

common mode voltage at the output of two-level inverters is described, and various

space vector PWM techniques that minimize common mode voltage are compared.

Several techniques, both analytical and graphical, for the performance evaluation of

PWM methods are presented in [16]. Taking advantage of the equivalence between

space vector methods and carrier-based methods, ten of the most popular PWM

methods are presented in terms of a sinusoidal reference and a zero-sequence injected

signal. Using the proposed techniques, the PWM methods are compared based on

waveform quality, inverter input current harmonics, and switching losses. It is apparent

from the above discussion that two-level PWM is a very broad topic that has received
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much attention in the literature over the years.

1.2.2 Multilevel PWM

One of the first PWM methods to be adapted to multilevel inverters was

carrier-based PWM. This was achieved by using offset carrier signals to control the

different levels of switches. The reference signal remained the same. Three different

multilevel sinusoidal PWM methods based on the relative phases of the triangular

carriers were presented in [17]. In the first method, the phases of carrier signals of

different levels are alternately in opposition (APO disposition). In the second method,

the carrier signals above the zero reference are all in phase, which are 180◦ out of phase

with the carrier signals below the zero reference (PO disposition). In the third method,

all carrier signals are in phase (PH disposition). All three methods are analyzed

based on their output harmonic content and their operation in the overmodulation

region. In [18], a short analysis of the neutral point imbalance problem in multilevel

inverters is provided. A method for balancing the neutral point potential based on

injecting an analytically-calculated zero-sequence voltage into the reference is proposed

and verified in simulation. However, this method requires knowledge of the power

factor of the motor currents. Another method is proposed in [19] that attempts to

address this weakness and provide good results for all modes of operation. This

method uses measurements of the capacitor voltages and motor currents alone to
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generate the injected zero-sequence signal. The method was experimentally verified,

and its performance was comparable to space vector PWM. In [20], a carrier-based

PWM method for balancing the neutral point voltage was derived using the duality of

carrier-based PWM and space vector PWM. This method was shown via simulation

and experiment to balance the neutral point voltage while reducing switching power

losses compared to other carrier-based PWM methods.

Space vector PWM was also adapted for multilevel inverters. In [21], a multilevel

space vector PWM algorithm is developed based on the equations for a two-level space

vector PWM inverter. All of the small triangles that form the hexagon of active vectors

are classified based on their orientation. Based on their orientation, each triangle is

treated as a certain sector in a two-level inverter, and the calculation of dwell times

for the voltage vectors may be found. The algorithm is verified experimentally in a

five-level inverter. Another approach to implementing multilevel space vector PWM

is presented in [22]. In this method, a change of basis is performed to change from an

orthogonal coordinate system for the space vectors to a coordinate system that aligns

with the active vectors. By projecting the voltage vectors and reference vector into

the new coordinate system, the calculation of the dwell times for the voltage vectors

is simplified. In [23], a three-level space vector PWM method is proposed which

considers the three-level active vector hexagon as a combination of six two-level active

vector hexagons. The reference vector is projected into the nearest two-level active
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vector hexagon, which allows basic two-level space vector PWM methods to be applied.

This method may be extended to higher level inverters as well, though computational

complexity increases as the number of levels increases. A space vector PWM algorithm

that reduces computation time is presented in [24]. In this algorithm, the three

sinusoidal reference signals are not transformed into a reference space vector. Instead,

a lookup table based on the relative values of the references is used to determine the

sector, and the value of the dwell times of the voltage vectors are written in terms of

the values of the references. From experimental results, it was found that the time

taken to sample the three reference signals was longer than conventional algorithms,

but computation time was improved for sector identification and dwell time calculation.

In [25], general guidelines for selecting the switching sequence in a multilevel inverter

are provided, and both continuous and discontinuous PWM are discussed. In the

case of continuous PWM, it is shown that minimal current distortion occurs when

the redundant vector dwell time is split evenly between the redundant vectors. In

both [26] and [27], optimized multilevel PWM control strategies are proposed. The

creation of the switching sequence by minimizing a cost function representing the flux

error is proposed in [26], while in [27] a real-time algorithm is used to generate the

PWM sequence that minimizes current total harmonic distortion. Space vector PWM

algorithms based on the ability to subdivide sectors of the active vector hexagon

structure of a multilevel inverter into smaller triangles are proposed in both [28] and
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[29]. A space vector PWM switching pattern that minimizes switching losses for

an inverter is presented in [30]. In this switching pattern, the switch in the phase

leg that is operating near the maximum and minimum of the current waveform will

not change state. In [31], several multilevel space vector PWM switching sequences

are proposed. All of the proposed methods use some active vector other than the

redundant vector as the repeated vector in the sequence. Some of these sequences

produce improved current total harmonic distortion for an induction machine load than

the more common switching sequences. A space vector PWM algorithm is proposed in

[32] that takes advantage of the symmetry of the desired output waveforms to improve

inverter operation at low switching frequencies. In particular, the method was created

for a wide variety of ratios of the switching frequency to the fundamental frequency.

It was shown through experimentation that this method produces reduced distortion

at pulse ratios as low as ten pulses per period. In [33], [34], and [35], multilevel space

vector PWM operation was extended into the overmodulation region.

Space vector PWM in closed loop systems has also been heavily investigated. In

[36], feedback control is used to adjust the ratio between the redundant vectors in three-

level space vector PWM in order to balance the neutral point voltage. The authors

concluded that although control of the neutral point voltage is possible to a limited

extent on the inverter side of the drive, better control can be achieved through an

active rectifier. A hysteresis PWM controller based on space vector PWM is proposed
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in [37]. The proposed controller keeps many of the advantages of space vector PWM

and gains some of the advantages of hysteresis controllers including a quick dynamic

response and simple implementation. In [4], a closed loop multilevel space vector PWM

control scheme that stabilizes the neutral point potential is proposed. A switching

sequence is used that takes advantages of all redundant vectors, which allows for

more flexibility in controlling the neutral point. In the proposed method, the output

current polarities and the voltage vector are used to adjust the ratio of the redundant

vectors in each switching cycle to minimize neutral point drift. A PWM method is

proposed in [38] that combines aspects of space vector PWM and spread spectrum

modulation. In this method, a parallel is drawn between the approximation of the

reference signals using discrete switching states and oversampling analog to digital

conversion. Properties of analog to digital converters are applied to generate the

switching patterns of the inverter independent of the switching frequency. The output

voltage harmonics produced by this method are spread throughout the frequency

spectrum with few distinctive peaks. In [39], a controller using a space vector PWM

method generated using artificial neural networks is proposed. The neural network is

trained offline on data from a simulated digital signal processing based modulator.

Although the results were promising in simulation, as of the time of the authors’ work,

there was no controller commercially available that could be economically used to

implement the method. A method using only three switching states per sampling
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period is proposed in [40]. In this method, the output voltages are forced to balance

despite neutral point drift. This is achieved by adjusting the values of the active

vectors as they drift in the (α− β) plane due to neutral point imbalance. In [41], a

different neutral point balancing technique is presented. Linear combinations of the

active voltage vectors are produced that do not affect the neutral point balance, and

these new vectors, called virtual space vectors, are used to represent the reference

vector. Although with this method the neutral point remains balanced, it has several

weaknesses including complexity of implementation, higher switching frequency, and

higher harmonic distortion. The method proposed in [42] attempts to improve the

virtual space vector method. In this method, a controller is created that alternates

between the virtual space vector method and the typical space vector method, which

reduces the switching frequency. In [43] and [44], a circuit topology that produces

eighteen-sided polygonal voltage vectors as opposed to the usual hexagonal voltage

vectors is proposed. The eighteen-sided polygon more closely resembles a circle than

does the hexagon, which produces output voltages with lower harmonics with proper

switching. Two space vector PWM control algorithms for the topology are proposed

as well.

As was the case with two-level inverters, it has been shown that the multilevel

carrier-based PWM method known as phase disposition PWM (PD-PWM) and

multilevel space vector PWM can create the same switching patterns. In [45], the
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equivalence of space vector PWM and sinusoidal PWM in three-level inverters is

presented by deriving the space vector dwell times that produce pulses identical to

sinusoidal PWM. It is also shown that three-level carrier-based PWM can achieve

identical results to space vector PWM through proper zero-sequence injection. These

results are expanded in [46] to general multilevel inverters including the overmodulation

region. A PWM method using both space vector PWM and discontinuous PWM is

also proposed. The method was shown to improve the balance of the switching losses

among the IGBTs of the inverter. The relationship between space vector PWM and

carrier-based PWM for five-level inverters is further investigated in [47]. A PWM

method based on three-level space vector PWM and multilevel carrier-based PWM is

proposed which maintains many advantages of multilevel space vector PWM while

gaining the ease of implementation of multilevel carrier-based PWM. In [48], three

carrier-based PWM algorithms and two space vector PWM algorithms are compared

for a three-level five-phase inverter. The performance of each method is classified

based on voltage and current quality, common mode voltage, and algorithm complexity.

Of the five methods investigated, one space vector PWM method is shown to produce

identical results to one carrier-based PWM method. A quantitative comparison of

three PWM techniques for three-level inverters is presented in [49]. Included in the

analysis are phase disposition PWM, switching-loss minimization PWM, and selective

harmonic elimination PWM. Long cable effects are also investigated for each of the
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three methods. In [50], two PWM methods for active NPC inverters are analyzed

based on the distribution of the power losses among the IGBTs, and a third PWM

method called Adjustable Losses Distribution is proposed. The intent of this method

is to balance the power losses evenly among all of the IGBTs in the inverter. The

method, which was verified in simulation, was shown to balance the loss distribution

for many values of power factor and modulation index.

In an effort to increase the viability of higher level inverters through lower

hardware cost and complexity, the multilevel-clamped multilevel inverter has been

proposed in recent years [51]. In this multilevel inverter topology, dedicated switching

units are used to create the various output voltage levels. This arrangement reduces

the number of components in the inverter. Though the hardware complexity of this

topology is reduced, the control methods applied to other multilevel inverter topologies

are not directly applicable to multilevel-clamped multilevel inverters. This is because

the number of active voltage vectors of this topology is reduced as well. In [52], one

example of a space vector PWM algorithm for multilevel-clamped multilevel inverters

is presented. This method is similar to the virtual vector method discussed previously.

The missing active vectors are represented as linear combinations of existing active

vectors. The inverter is then controlled in the same manner as the multilevel NPC

inverter using these virtual vectors and the existing active vectors.
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1.3 Statement of the Problem

Although much work exists on space vector PWM methods, little investigation

exists for different switching sequences and inverters with permanent magnet (PM)

machine loads. In this thesis, three space vector PWM switching sequences found in

the literature for three-level NPC inverters ([4], [25], [31]) are simulated with a PM

machine load. To gain insight into the inherent qualities of each of the three switching

sequences, only open loop control is considered in this investigation. The use of a

PM machine load shows some of the effects of the presence of a fixed back emf on

the different space vector modulation methods. Simulation results are presented for

rated speed, rated load and half speed, rated load conditions. The three methods

are compared based on their output voltage quality, their output current quality, and

their neutral point current.
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Chapter 2

Theoretical Development of Two-Level Inverters and SVPWM

This chapter presents an introduction to several two-level inverter topologies

as well as a theoretical development of two-level space vector PWM (SVPWM), also

called space vector modulation (SVM). Section 2.1 introduces the basic two-level

inverter topologies. Section 2.2 presents the theoretical development of the basic

two-level SVPWM method.

2.1 Two-Level Inverters

A dc-ac converter, or inverter, is an electric circuit that converts dc voltages

and currents to ac voltages and currents through the use of semiconductor switches

[53]. The basic two-level, three-phase inverter, presented in Figure 2.1, consists of

three branches of two series-connected switches. Each branch produces a single phase

(A, B, or C) of the output signal. The input is a dc bus with a voltage of Vbus, with a

positive rail P and a negative rail N. The point O is the neutral point of the dc bus.

The three-phase output is generated through proper sequencing of conducting periods
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and open periods of the switches in each phase. It is important to note that only one

switch in each phase may conduct at any given moment to prevent short-circuiting

the dc bus. However, both switches may remain open at the same moment.

Figure 2.1: Generic two-level, three-phase inverter.

There are two primary classes of three-phase inverters: voltage source/stiff

inverters and current source/stiff inverters. If the dc side of an inverter is produced

from some type of source that does not change with load such as a battery, it is called

a voltage/current “source” inverter. Likewise, if the dc side of an inverter is produced

from some sort of temporary energy storage component such as a capacitor or inductor,

it is called a voltage/current “stiff” inverter [53]. The stiff designation indicates that

the component resists changes to the dc bus, but its value may be affected under

heavy load conditions [53].

A voltage source inverter converts the dc bus to ac by properly controlling the
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switches so that each phase is sequentially connected to the positive and negative rails

of the dc bus, which produces time-varying voltage pulses at the load independent

of the load current. The basic two-level voltage source inverter topology is shown

in Figure 2.2. There are a few differences between this topology and the generic

three-phase inverter presented in Figure 2.1 previously. The main difference is that the

ideal switches of the generic inverter have been replaced with the parallel combination

of an IGBT and an antiparallel diode. Unlike ideal switches, IGBTs have short, but

not instantaneous, switching speeds that may differ between the IGBT transitioning

from conducting to open or vice versa. To avoid short-circuiting the dc bus, a short

dead time that accounts for the switching speed of the IGBTs should be allowed

between switching the top and bottom IGBTs within a phase. The antiparallel diodes

behave similarly to the freewheeling diode of buck and boost converters, essentially

preventing an instantaneous change in the load current for inductive loads during the

dead time at the switching transitions within each phase [54].

Beyond the basic voltage source inverter discussed here, there are several

variations on this basic topology as well as techniques to design these inverters for

specific design objectives [55]. Many of these variations simply include some sort of

circuitry which allows control of the value of the dc bus. A detailed discussion about

these variations is beyond the scope of this thesis.

Voltage source/stiff inverters are among the most commonly selected inverter
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Figure 2.2: Basic two-level voltage source inverter.

types for electric drives. However, it has a dual topology based on a current source

producing the dc component in the inverter. A short discussion about current

source/stiff inverters is provided for completeness, but only voltage source inverters

will be considered in detail in this thesis.

The current source inverter is similar to the voltage source inverter, except that

instead of producing time-varying voltage pulses at the load, it produces time-varying

current pulses through the load independent of load voltage. The basic two-level

current source inverter topology is shown in Figure 2.3. Again, there are a few major

differences between this topology and the generic three-phase inverter presented in
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Figure 2.1. Here, each ideal switch is replaced with a series-connected IGBT and

diode with a second diode antiparallel to the series combination. The additional series-

connected diode protects the IGBT from voltage spikes that occur at the switching

transitions caused by the high current transients, assuming a predominantly inductive

load such as a motor. If allowed to pass that diode, the voltage spikes could force

the IGBT to become reverse biased [56]. The antiparallel diode performs the same

function as in the voltage source inverter topology.

Figure 2.3: Basic two-level current source inverter.

Over the years, there have been many methods for controlling two-level inverters.

One of the earliest and most basic methods controlled the switches in each inverter

leg so that in each phase a rectangular wave with an amplitude of the dc bus voltage
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at the fundamental frequency was produced [57]. The six distinct switching intervals

led to inverters implementing this method being called six-step inverters. Since the

generated output voltage is essentially a rectangular wave, this method naturally

produces a large number of harmonics beyond the fundamental. For a machine load,

this results in poor output waveform quality and thus stresses the machine through

additional torque pulsations and increased ohmic and core losses [58]. Concerns about

this poor waveform quality led to the development of several methods for shortening

the lengths of the long pulses by using a series of shorter pulses with the same rms

value, such as in fixed width modulation. One class of methods that produces better

harmonic results is the set of pulse width modulation (PWM) methods. Some of these

methods include carrier-based PWM, selected harmonic elimination (SHE) PWM, and

random PWM (RPWM) [58]. Each of these types of PWM methods have their own

advantages and disadvantages. One of the most widely used type of PWM methods is

known as space vector PWM (SVPWM) (or more simply space vector modulation),

which offers many advantages in digital implementation. Space vector modulation is

developed more fully in the following section.

2.2 Two-Level Space Vector PWM

Recall the basic two-level voltage source inverter topology presented in Figure

2.2. Since both switches within a single phase may not conduct at the same time
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without short-circuiting the dc bus, the top and bottom switches within a phase may

be taken as complementary with a short dead time as discussed previously, similar

to 180◦ conduction in a six-step inverter. Thus, instead of having six independent

switches, there are only three independent switches. The state of each bottom switch

is determined by the state of the top switch in that phase. Each top switch has two

possible states, ON or OFF, which produces a total of eight different switching states,

S0 through S7, which are presented in Table 2.1. Here, the number “1” corresponds

to a switch in its ON state, and the number “0” corresponds to a switch in its OFF

state.

Qa Qb Qc

S0 0 0 0
S1 1 0 0
S2 1 1 0
S3 0 1 0
S4 0 1 1
S5 0 0 1
S6 1 0 1
S7 1 1 1

Table 2.1: State table representing all switching combinations.

Each switching state produces a set of line-to-line voltages that is independent

of the load type [12]. Thus, for ease of derivation, a balanced Y-connected load will be

assumed. The line-to-neutral voltages for each phase are found using voltage division

for each switching state. For example, in the case of the switching state S1 = (1 0 0),

the switches Qa, Qb′ , and Qc′ are conducting, and the switches Qa′ , Qb, and Qc are
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open. This produces an equivalent circuit such as in Figure 2.4, where Zphase is the

load impedance within each phase. In this case, the phase A load impedance is in

series with the parallel combination of the phase B and phase C load impedances.

Using this information, the line-to-neutral load voltages may be found as follows

vAn = Vbus ·
Zphase

Zphase + 1
2
Zphase

=
2

3
Vbus (2.1)

vBn = vCn = −Vbus ·
1
2
Zphase

1
2
Zphase + Zphase

= −1

3
Vbus (2.2)

Figure 2.4: The equivalent load circuit for a switching state of S1 = (1 0 0).

The remaining line-to-neutral voltages may be found in a similar fashion. The

line-to-line voltages are then found from the line-to-neutral voltages. For example,

the line-to-line voltage vAB maybe be found as vAB = vAn − vBn. The complete set of

voltages for each switching state are presented in Table 2.2.

The line-to-neutral voltages associated with each switching state may be
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vAn vBn vCn vAB vBC vCA
S0 0 0 0 0 0 0
S1

2
3
Vbus −1

3
Vbus −1

3
Vbus Vbus 0 −Vbus

S2
1
3
Vbus

1
3
Vbus −2

3
Vbus 0 Vbus −Vbus

S3 −1
3
Vbus

2
3
Vbus −1

3
Vbus −Vbus Vbus 0

S4 −2
3
Vbus

1
3
Vbus

1
3
Vbus −Vbus 0 Vbus

S5 −1
3
Vbus −1

3
Vbus

2
3
Vbus 0 −Vbus Vbus

S6
1
3
Vbus −2

3
Vbus

1
3
Vbus Vbus −Vbus 0

S7 0 0 0 0 0 0

Table 2.2: Voltages corresponding to the various switching states in Volts.

compactly represented using space vector notation. The space vector transform is

presented in Equation 2.3. Note that the space vector transform presented here

is equivalent to the (α − β) transform [59] presented in Equation 2.4 when the α

component is plotted along the real axis and the β component is plotted along the

imaginary axis. The space vector transform may be considered polar form while the

(α− β) transform may be considered rectangular form.

V =
2

3
(vAn + avBn + a2vCn), where a = ej

2π
3 (2.3)

Vα =
2

3
vA −

1

3
vB −

1

3
vC

Vβ =

√
3

3
vB −

√
3

3
vC

Vγ =
1

3
vA +

1

3
vB +

1

3
vC

(2.4)

The (α− β) transformation may be condensed in matrix form as follows:
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
Vα

Vβ

Vγ

 =
2

3


1 −1

2
−1

2

0
√
3
2
−
√
3
2

1
2

1
2

1
2



vA

vB

vC

 (2.5)

Applying the space vector transform to the line-to-neutral switching voltages

produces eight voltage vectors corresponding to the eight switching states. These

vectors are presented in both polar form and rectangular form in Table 2.3. The

nonzero vectors V 1 through V 6 are called active vectors because they correspond

to nonzero output phase voltages. Likewise, the two remaining vectors V 0 and V 7

are called zero vectors because they correspond to zero output voltage. The set of

voltage vectors compactly represents the possible output phase voltages the inverter

can produce.

Polar Form Rectangular Form

V 0 0 0
V 1

2
3
Vbuse

j0 2
3
Vbus

V 2
2
3
Vbuse

jπ/3 1
3
Vbus + j

√
3
3
Vbus

V 3
2
3
Vbuse

j2π/3 −1
3
Vbus + j

√
3
3
Vbus

V 4
2
3
Vbuse

jπ −2
3
Vbus

V 5
2
3
Vbuse

j4π/3 −1
3
Vbus − j

√
3
3
Vbus

V 6
2
3
Vbuse

j5π/3 1
3
Vbus − j

√
3
3
Vbus

V 7 0 0

Table 2.3: Switching voltages in space vector form.

By plotting the voltage vectors in the (α − β) plane as in Figure 2.5, the

relationship between the different voltage vectors may easily be seen. All six active

voltage vectors have the same magnitude, and adjacent vectors are spaced at an angle
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of 60◦ electrical. The two zero vectors have a magnitude of zero and lie at the origin.

A hexagon is formed by connecting the tips of the active vectors as seen in Figure 2.5.

Each adjacent pair of active vectors can be seen as the boundaries of an equilateral

triangle, which is called a sector. There are six sectors in all, labeled I through VI.

The area within each sector represents the set of average output voltages that can be

produced over some period of time by the inverter using a linear combination of the

two active vectors that form the sector boundary and the zero vectors.

Figure 2.5: The voltage vectors plotted in the (α− β) plane.

Create three balanced sinusoidal positive sequence 3-phase signals representing
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the desired fundamental output line-to-neutral voltage as defined in Equation 2.6.

The magnitude Vref of the three sinusoidal references is equal to the desired output

line-to-neutral voltage peak. The frequency of the reference signals ωe = 2πffundamental

is equal to the desired output frequency in electrical radians per second (e.rad/s), and

ffundamental is the desired output frequency in Hertz. The term φ is a general relative

phase shift in electrical radians that may be applied to the signals.

vA,ref = Vref cos(ωet+ φ)

vB,ref = Vref cos(ωet+ φ− 2π/3)

vC,ref = Vref cos(ωet+ φ− 4π/3)

(2.6)

Applying the space vector transform to the three reference signals produces a

reference space vector V ref rotating in the (α− β) plane with an angular speed of ωe

e.rad/s and an angular position of θ radians as defined in Equation 2.7.

V ref = Vrefe
jθ, where θ = ωet+ φ (2.7)

Figure 2.6 presents the reference vector in the (α − β) plane along with the

previously mentioned eight voltage vectors. To generate the desired fundamental

output voltage, a sufficiently small sampling period Ts is chosen over which the rotating

reference vector may be approximated as fixed in the (α− β) plane. Generally, the

sampling period is much smaller than the fundamental period of the reference vector;

some common values for the sampling period are one thirty-third or one thirty-ninth
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of the period of the fundamental frequency [53].

Figure 2.6: The reference space vector with the voltage vectors in the (α− β) plane.

As long as the reference vector lies within the hexagon formed by the voltage

vectors, it may be exactly represented as its sampled value using a linear combination

of the two nearest active vectors and the zero vectors over some period of time. This is

known as the linear modulation region, which is the focus of this thesis. For sinusoidal

references, the reference vector traces a circle in the (α− β) plane. Thus, the radius

of the largest circle that can be inscribed in the hexagon marks the upper limit of the

linear modulation region. Geometrically, this circle has a radius equal to the height

of the equilateral triangles that form the sectors as seen in Figure 2.7. From basic
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trigonometry, the maximum reference magnitude in the linear modulation region can

be calculated as 1√
3
Vbus.

Figure 2.7: The maximum reference vector magnitude for linear modulation in the
(α− β) plane.

If the reference vector extends beyond the hexagon, it cannot be represented

exactly within a single sampling period. In this case, the magnitude of the reference

vector is reduced until the reference lies on the hexagon boundary. When the reference

vector extends beyond the hexagon boundary in whole or in part, the inverter enters

the overmodulation region. The overmodulation region extends from a reference

vector magnitude of ( 1√
3
Vbus) to 2

3
Vbus. The upper limit of the overmodulation region
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produces output voltages identical to the 180◦e conduction in a six-step inverter,

and the reference vector traces the border of the hexagon. Inverter operation in the

overmodulation region has several advantages and disadvantages, but this is beyond

the scope of this thesis. For more information on overmodulation operation, see

references [10], [14], and [53].

As stated previously, in the linear modulation region, the reference vector at

each sampling point may be represented over a sampling period as a linear combination

of the two nearest active voltage vectors and the zero vectors. For instance, in Sector

I,

V ref =
T1
Ts
V 1 +

T2
Ts
V 2 +

T0
Ts
V 0 +

T7
Ts
V 7 (2.8)

where T1
Ts

is the fraction of the sampling period that the voltage vector V 1 is selected,

T2
Ts

is the fraction of the sampling period that the voltage vector V 2 is selected, T0
Ts

is the fraction of the sampling period that V 0 is selected, and T7
Ts

is the fraction of

the sampling period that V 7 is selected. The inverter stays in the switching states

corresponding to each of the voltage vectors according to the fractions of the sampling

period, which when averaged over the switching period, creates the desired output

voltage. However, the zero vectors V 0 and V 7 have no magnitude and thus do not

contribute to representing the reference vector. They simply fill any remaining portion
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of the sampling period not used by the two active vectors. Thus Equation 2.8 may be

rewritten as follows:

V ref =
T1
Ts
V 1 +

T2
Ts
V 2 (2.9)

Equation 2.9 is written in polar form with two unknowns T1 and T2. However,

by converting the equation to rectangular form and equating the real components and

equating the imaginary components, a system of two equations and two unknowns is

produced as in Equation 2.10 and Equation 2.11.

Vref cos (θ) =
T1
Ts
· 2

3
Vbus cos (0) +

T2
Ts
· 2

3
Vbus cos

(π
3

)
(2.10)

Vref sin (θ) =
T1
Ts
· 2

3
Vbus sin (0) +

T2
Ts
· 2

3
Vbus sin

(π
3

)
(2.11)

This system may be solved by first finding T2 from Equation 2.11 as follows:

Vref sin (θ) =
T1
Ts
· 2

3
Vbus sin (0) +

T2
Ts
· 2

3
Vbus sin

(π
3

)
(2.12)

Hence,

3TsVref sin (θ) = 2T2Vbus ·
√

3

2
(2.13)

Thus,

T2 =
√

3
Vref
Vbus

Ts sin (θ) (2.14)



31

By substituting T2 into Equation 2.10, T1 may also be found as follows:

Vref cos (θ) =
T1
Ts
· 2

3
Vbus cos (0) +

T2
Ts
· 2

3
Vbus cos

(π
3

)
(2.15)

Hence,

3TsVref cos (θ) = 2T1Vbus + 2T2Vbus ·
1

2
(2.16)

T1 =
3TsVref cos (θ)− T2Vbus

2Vbus
(2.17)

T1 =
3

2

Vref
Vbus

Ts cos (θ)− 1

2
T2 (2.18)

Thus, substituting Equation 2.14 into Equation 2.18 yields the following

T1 =

√
3

2

Vref
Vbus

Ts

(√
3 cos (θ)− sin (θ)

)
(2.19)

To further simplify T1, the following trigonometric identity must be applied:

a sinx+ b cosx =
√
a2 + b2 sin (x+ ψ) (2.20)

where

ψ =


arcsin

(
b√

a2 + b2

)
, if a ≥ 0

π − arcsin

(
b√

a2 + b2

)
, if a < 0

(2.21)
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Accordingly, T1 may be simplified as follows:

T1 =

√
3

2

Vref
Vbus

Ts

(√
3 cos (θ)− sin (θ)

)
(2.22)

=

√
3

2

Vref
Vbus

Ts ·
√

4 sin

(
θ + π − arcsin

(√
3√
4

))
(2.23)

Hence,

T1 =
√

3
Vref
Vbus

Ts sin
(
θ + π − π

3

)
(2.24)

or

T1 =
√

3
Vref
Vbus

Ts sin
(π

3
− θ
)

(2.25)

The times corresponding to the zero vectors is found by subtracting T1 and

T2 from Ts. The remaining time is divided between T0 and T7. The division of

the remaining time between V 0 and V 7 allows for different space vector modulation

methods to be produced by adjusting the ratio of T0 to T7, though one of the most

common divisions is to equate T0 and T7. Reference [8] provides a more detailed

description of several common zero vector divisions.

The linear combination of active vectors representing the reference vector may

be found in the same fashion for any of the remaining sectors as well. It is simple to

develop generalized equations for the two times associated with the selected voltage

vectors in each sector. Let u ∈ {1, 2, 3, 4, 5, 6} represent one of the six sectors, where

u = 1 represents sector I, u = 2 represents sector II, and so forth, up to u = 6
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representing sector VI. Also, let v represent the sector immediately following u when

rotating counterclockwise in the (α− β) plane. For example, if u = 1, then v = 2, and

if u = 6, then v loops back around so that v = 1. The equations for the times in the

active states may be generalized for a reference vector within any sector u as follows:

Tu =
√

3
Vref
Vbus

Ts sin
(
u
π

3
− θ
)

(2.26)

and

Tv =
√

3
Vref
Vbus

Ts sin
(

(u+ 2)
π

3
− θ
)

(2.27)

For clarity in writing these expressions, the terms Vref and Vbus are often

replaced by a term referred to as the modulation index m. The concept of a modulation

index was originally developed for sinusoidal PWM, in which the modulation index is

defined as the ratio between the magnitude of the reference signal and the magnitude of

the carrier signal. In the linear modulation region of sinusoidal PWM, the modulation

index is bounded between the values of 0 and 1. A similar definition may be used

in space vector modulation. Here, the space vector modulation index is defined as

follows:

m = 2
Vref
Vbus

(2.28)

Then Equation 2.26 and Equation 2.27 may be rewritten in terms of the
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modulation index as follows:

Tu =

√
3

2
mTs sin

(
u
π

3
− θ
)

(2.29)

and

Tv =

√
3

2
mTs sin

(
(u+ 2)

π

3
− θ
)

(2.30)

Recall that previously, it was stated that the maximum reference vector magni-

tude is Vref,max = 1√
3
Vbus. This may be used to find the maximum modulation index

mmax by substituting Vref,max into Equation 2.28:

mmax = 2
Vref,max
Vbus

(2.31)

= 2

1√
3
Vbus

Vbus
(2.32)

=
2√
3
≈ 1.155 (2.33)

Note that the maximum modulation index available in the linear modulation

region of space vector modulation is approximately 1.155, which is 15.5% larger than

the maximum modulation index in the linear region of sinusoidal PWM. This indicates

that space vector modulation is able to produce a larger fundamental output voltage

than sinusoidal PWM. This is one important advantage space vector modulation has
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over traditional sinusoidal PWM.

With Equation 2.29 and Equation 2.30, the general expression for the reference

vector in any sector u may be written as:

V ref =
Tu
Ts
V u +

Tv
Ts
V v +

T0
Ts
V 0 +

T7
Ts
V 7 (2.34)

However, this expression provides no information on the order in which the four

voltage vectors, and their corresponding switching states, should be selected. It is

well-known in the literature [8], [13], [53], that when selecting the order of the switching

states within a sampling period, the designer should avoid more than one inverter leg

changing between 0 and 1 during any transition between switching states. This helps

minimize switching losses by minimizing the output switching frequency. For instance,

in the transition from S1 = (1 0 0) to S2 = (1 1 0), only the switching state associated

with the phase B leg changes from 0 to 1 while the switching states associated with

the phase A and phase C legs remain the same. In contrast, in the transition from

S2 = (1 1 0) to S0 = (0 0 0), both switching states associated with phase A and

phase B change. The second case would have higher switching losses because more

switching actions in the IGBTs occur in this case than the first. Similarly, centering

the high pulses within a sampling period for each phase leg minimizes the harmonic

distortion of the inverter currents [12],[53]. To meet these conditions, the pattern of
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the switching states is often performed once in the first half of the sampling period

and then reversed for the second half of the sampling period, and T0 is set equal to

T7. For example, the switching state pattern in each sampling period of sector I is

S0 → S1 → S2 → S7 → S2 → S1 → S0, where S7 is centered in the sampling period.

Figure 2.8 through Figure 2.13 present the division of the switching states

within each sampling period for each of the six sectors as well as a representation of

the IGBT control signals for each phase leg of the inverter. In each sector, only one

leg changes state at a time, and the sampling period always begins in the switching

state S0 = (0 0 0) to ensure a smooth transition between sectors.

When these switching patterns are implemented in an inverter with an R-L,

Y-connected load, the line-to-line voltages and the line-to-neutral voltages follow a

distinctive pattern. These patterns are shown in Figure 2.14 and Figure 2.15 which

demonstrate typical line-to-line and line-to-neutral voltages. In this example, the

modulation index is equal to 1.089, which corresponds to a reference magnitude of

0.5443Vbus. The voltages are scaled by the bus voltage, and time is scaled by the

fundamental period. The line-to-line voltage switches between −Vbus, 0, and Vbus,

while the line-to-neutral voltage assumes values of ±1
3
Vbus, ±2

3
Vbus, and 0.

Typical phase currents for an R-L load are shown in Figure 2.16. Again, time

has been scaled by the fundamental period of the signal, and the current magnitude

was scaled by the amplitude of the fundamental current. This figure shows that space
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Figure 2.8: The division of the switch-
ing states in Sector I.

Figure 2.9: The division of the switch-
ing states in Sector II.

Figure 2.10: The division of the switch-
ing states in Sector III.

Figure 2.11: The division of the switch-
ing states in Sector IV.

Figure 2.12: The division of the switch-
ing states in Sector V.

Figure 2.13: The division of the switch-
ing states in Sector VI.
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Figure 2.14: Time domain plot of the
line-to-line voltages for an RL load us-
ing Two-Level SVM.

Figure 2.15: Time domain plot of the
line-to-neutral voltages for an RL load
using Two-Level SVM.

vector modulation is capable of producing essentially sinusoidal output currents with

most of the distortion resulting from the fast switching of the IGBTs.

Figure 2.17 and Figure 2.18 present the line-to-neutral voltages and the phase

currents presented in Figure 2.15 and Figure 2.16 under the space vector transform and

plotted in the (α−β) plane. Note that the transform of the line-to-neutral voltage has

only 7 unique space vectors: the six active vectors and the zero vector (since V 0 and

V 7 are redundant). If the plot were to be viewed as the voltage vectors switch in time,

the vectors would appear to switch back and forth between the active vectors and the
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Figure 2.16: Time domain plot of the phase currents for an RL load using Two-Level
SVM.

zero vector. In contrast, the phase current space vector is nearly circular with short

deviations from the circle’s path due to the switching of the IGBTs. This provides

another indication that the phase currents produced by space vector modulation are

nearly sinusoidal.

The basic two-level inverter topologies were presented in Chapter 2, and a

short overview of a few PWM methods was provided. Space vector modulation

was developed in detail, and the basic output signals were presented for reference.
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In Chapter 3, three common three-level inverter topologies will be introduced, and

three-level space vector modulation will be developed in detail.

Figure 2.17: Space vector representa-
tion of the line-to-neutral voltage in
the (α− β) plane.

Figure 2.18: Space vector representa-
tion of the phase current in the (α−β)
plane.
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Chapter 3

Theoretical Development of Three-Level Inverters and SVPWM

The two-level voltage source inverter has been very popular in drives for many

years due to its ease of implementation and control. However, two-level inverters

can be limited by the voltage ratings of the semiconductor devices, particularly in

high power applications [58]. Multilevel inverters were developed to help address

this concern as well as other limitations of two-level inverters. In particular, three-

level inverters have been popular due to their improvement in output waveforms

without overly complicating the design and control of the inverter. In this chapter, an

introduction to the three main three-level inverter topologies as well as a theoretical

development of three-level space vector modulation (SVM) will be presented. Section

3.1 introduces the three basic three-level inverter topologies. The strengths and

weaknesses of the each of these topologies will be discussed. Section 3.2 presents the

theoretical development of three-level SVM and introduces the three different methods

that will be investigated in this thesis. All of the developments in this chapter may

be extended to higher-level inverters, which are beyond the scope of this work.
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3.1 Three-Level Inverter Topologies

The basic function of the three-level inverter is very similar to the two-level

inverter. While the two-level inverter switches the output phases between the positive

dc bus and the negative dc bus, the three-level inverter switches the output phases

between the positive dc bus, the negative dc bus, and the neutral point of the bus.

This arrangement has several advantages. First, the addition of the neutral point

connection reduces the output voltage distortion and lowers the voltage rise time at

the motor terminals [4], [21]. The improved output voltage also reduces common

mode voltage, which in turn reduces stresses on motor bearings [21], [60]. Finally, the

additional voltage level allows operation with a lower switching frequency [60], [61].

Although the three-level inverter has several advantages over the two-level inverter, it

also has a few disadvantages. Three-level inverters generally require more switches

than two-level inverters, which depending on the switch rating, can increase the cost

of the inverter. This disadvantage only grows as the number of levels in the inverter

increases. Likewise, the additional voltage levels increase modulation complexity, but

as memory and computation costs decrease through improved digital signal processors,

the modulation complexity will become more manageable. Overall, the three-level

inverter appears to be a viable alternative to the two-level inverter, particularly in

high power, medium voltage applications [60], [62].
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There are three main three-level inverter topologies: the neutral-point-clamped

(NPC) inverter [3], the flying capacitor inverter [2], and the cascaded H-bridge inverter

[63]. One early topology that is widely investigated is the NPC inverter, shown in

Figure 3.1. Compared to the two-level inverter, the three-level NPC inverter uses

two additional series-connected IGBTs within each phase leg. For each phase leg

x = {a, b, c}, the two middle IGBTs Qx2 and Qx3 are clamped to the neutral point of

the dc bus by the two diodes Dx5 and Dx6. Through different patterns of conducting

periods and open periods of the IGBTs within a phase leg, each output phase may be

switched between the positive rail P, the negative rail N, and the neutral point O of

the dc bus. Proper sequencing of the conducting periods and the open periods of the

IGBTs within each phase leg creates the three-phase output voltage.

Figure 3.1: Three-level neutral-point-clamped inverter.

In addition to the advantages over two-level inverters that most three-level
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inverter topologies share, the IGBTs of the NPC inverter have a reduced voltage

rating since they must only block half of the dc bus voltage [3], [58]. However, despite

the reduced IGBT rating, the reverse voltage rating of the clamping diodes must

be higher since these components must block a larger percentage of the bus voltage

[60]. This becomes more apparent as the number of voltage levels in the inverter

increases. Another weakness of this inverter topology is that the outer IGBTs are not

loaded as heavily as the inner IGBTs, resulting in unsymmetrical losses among the

devices [53], [62]. The final important weakness of this topology is that the voltage of

the two bus capacitances becomes imbalanced by connecting the individual output

phases to the bus neutral point [53]. If severe, this imbalance can negatively affect the

inverter control and cause additional voltage stresses to various components. Neutral

point balance is generally achieved through various control loops and constitutes its

own field of research [4], [34], [40]. However, it has been shown that most methods

cannot completely control neutral point imbalance for all load conditions [64]. Despite

its weaknesses, the neutral-point-clamped inverter remains one of the most widely

used multilevel inverter topologies [62] because it is easily built using standard IGBT

modules. This thesis focuses on three space vector modulation methods for a three-

level NPC inverter due to the design simplicity of the NPC inverter and its wide use

in multilevel inverter applications.

The three-level flying capacitor inverter topology presented in Figure 3.2 is
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similar in function to the NPC inverter topology and shares many of its advantages.

Like the NPC inverter, the flying capacitor inverter adds two IGBTs per phase leg.

However, the two diodes that clamp the inner IGBTs to the neutral point of the dc

bus in the NPC inverter are replaced by a capacitor charged to a certain voltage level,

often half of the dc bus voltage. Proper sequencing of the conducting periods and

the open periods of the IGBTs within each phase leg creates the three-phase output

voltage.

Figure 3.2: Three-level flying capacitor inverter.

The flying capacitor inverter’s primary advantage over the NPC inverter is

that it uses fewer diodes. This leads to lower drive cost and higher efficiency [58].

However, replacing the clamping diodes with capacitors creates several weaknesses

with this topology. Similar to the bus capacitors of the NPC inverter, the clamping

capacitors can become imbalanced during normal operation. The clamping capacitors
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must also have a high enough voltage rating to withstand large percentages of the

dc bus voltage [53]. This is especially important as the number of voltage levels

in the inverter increases. Finally, inverter initialization is difficult for this topology

because the clamping capacitors need to be precharged to the correct voltage level

before inverter modulation begins. This complicates the modulation method and can

negatively affect the drive’s ability to withstand source voltage dips and ride-through

conditions [53]. Capacitor sizing and initialization are the two main factors that have

limited the applications in which flying capacitor inverters are used [53].

The final three-level inverter topology to be considered is the cascaded H-bridge

inverter presented in Figure 3.3. This topology is significantly different than the two

previously presented topologies. Instead of adding two IGBTs to each leg of a two-level

inverter and clamping the voltage of the inner IGBTs, this topology cascades three

single-phase H-bridges to produce the phase legs. Each H-bridge has its own isolated

dc voltage source Vdc and can switch between −Vdc, 0, and Vdc. Proper control of the

three H-bridges produces the three-phase output voltage.

Figure 3.3: Three-level cascaded H-bridge inverter.
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One major advantage of this topology is that each H-bridge can be controlled

independently. This offers a large amount of flexibility in modulation as well as

a simpler control structure since the controller can be distributed [53], [58]. This

flexibility in modulation also allows the average power flow through each bridge to

be balanced through the modulation method [53], which is difficult to achieve in

the two previous inverter topologies. Another advantage is that the capacitors are

inherently balanced since each is supplied from an independent dc source [53]. However,

providing separate dc sources for each H-bridge might not be feasible depending on

the application.

Many of the modulation strategies that exist for two-level inverters also exist

for three-level inverters, though the additional voltage level complicates all of these

methods to some degree. Many PWM techniques such as sinusoidal PWM, selective

harmonic elimination PWM, and space vector modulation have been applied success-

fully to three-level inverters [60]. Three-level space vector modulation is developed in

the following section. Furthermore, the three methods under investigation, each of

which applies a different switching sequence, are explained.

3.2 Three-Level SVPWM

The basic theory of three-level space vector PWM is very similar to two-level

space vector PWM. Recall the three-level NPC inverter presented in Figure 3.1, which
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has four IGBTs Qx1, Qx2, Qx3, and Qx4 per phase leg x = {a, b, c}. Similar to the

two-level case where the top and bottom switches in each phase leg are complementary,

the two switches Qx1 and Qx3 are complementary, and the two switches Qx2 and Qx4

are complementary. With this arrangement, the phase output can be connected to

the positive dc bus P when Qx1 and Qx2 are conducting, to the negative dc bus N

when Qx1 and Qx2 are open, or to the neutral point of the dc bus O when Qx1 is open

and Qx2 is conducting. These relationships are shown in Table 3.1.

Qx1 Qx2 Qx3 Qx4

N OFF OFF ON ON
O OFF ON ON OFF
P ON ON OFF OFF

Table 3.1: Representation of switching states for a switching combination where
x = {a, b, c}.

Due to the three possible connections to the dc bus for each of the three phases,

the three-level inverter can produce a total of (3)3 = 27 switching states, as opposed

to the eight switching states in the two-level inverter. The three-level switching states

are represented based on the phase connections to the dc bus. The first letter in the

state name corresponds to the phase A leg connection to the dc bus, the second letter

corresponds to the phase B connection to the dc bus, and the third letter corresponds

to the phase C connection to the dc bus. For example, the switching state (PON)

represents the phase A leg connected to the positive dc bus, the phase B leg connected

to the neutral point of the dc bus, and the phase C leg connected to the negative dc
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bus. Line-to-line and line-to-neutral voltages corresponding to the different switching

states may be found using a method identical to the method presented in the two-level

space vector PWM development. The complete set of switching states and their

corresponding line-to-line and line-to-neutral voltages are presented in Table 3.2.

The space vector transform previously presented in Equation 2.3 is used to

create voltage vectors that compactly represent the output phase voltages for each

switching state. By examining the magnitudes of the voltage space vectors for each

switching state, it becomes apparent that the vectors may be grouped by length. The

three zero vectors have zero length, the twelve small vectors have a length of 1
3
Vbus,

the six medium vectors have a length of
√
3
3
Vbus, and the six large vectors have a length

of 2
3
Vbus. The complete set of switching states and their corresponding voltage vectors

is shown in Table 3.3.

It is shown in [64] that when one or two phases are connected to the neutral

point of the dc bus, a current flows between the neutral point of the bus and the

neutral point connections of the three phases. This causes the bus capacitors to charge

and discharge, creating an imbalance in the neutral point voltage. In the case of one

phase connected to the neutral point, the neutral point current is in the same direction

as the current in that phase. In the case of two phases connected to the neutral point,

the neutral point current is in the opposite direction of the current in the third phase.

Only in the cases of the small and medium vectors are one or two phases connected
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to the neutral point of the dc bus. Thus only these vectors affect the neutral point

balance. The effect of each switching state on the neutral point balance of the dc bus

is shown in Table 3.3.

The small vectors may be further subdivided based on the direction in which

they affect the neutral point balance. The small vectors that affect the neutral point

balance in the same direction as the phase current are called positive small vectors,

and the small vectors that affect the neutral point balance in the opposite direction of

the phase current are called negative small vectors. For each positive small vector,

there is a negative small vector of equal magnitude and angle. Thus all of the small

vectors are redundant.
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Switch State vAB vBC vCA vAn vBn vCn
(NNN) 0 0 0 0 0 0
(OOO) 0 0 0 0 0 0
(PPP ) 0 0 0 0 0 0

(ONN) 1
2
Vbus 0 −1

2
Vbus

1
3
Vbus −1

6
Vbus −1

6
Vbus

(PPO) 0 1
2
Vbus −1

2
Vbus

1
6
Vbus

1
6
Vbus −1

3
Vbus

(NON) −1
2
Vbus

1
2
Vbus 0 −1

6
Vbus

1
3
Vbus −1

6
Vbus

(OPP ) −1
2
Vbus 0 1

2
Vbus −1

3
Vbus

1
6
Vbus

1
6
Vbus

(NNO) 0 −1
2
Vbus

1
2
Vbus −1

6
Vbus −1

6
Vbus

1
3
Vbus

(POP ) 1
2
Vbus −1

2
Vbus 0 1

6
Vbus −1

3
Vbus

1
6
Vbus

(POO) 1
2
Vbus 0 −1

2
Vbus

1
3
Vbus −1

6
Vbus −1

6
Vbus

(OON) 0 1
2
Vbus −1

2
Vbus

1
6
Vbus

1
6
Vbus −1

3
Vbus

(OPO) −1
2
Vbus

1
2
Vbus 0 −1

6
Vbus

1
3
Vbus −1

6
Vbus

(NOO) −1
2
Vbus 0 1

2
Vbus −1

3
Vbus

1
6
Vbus

1
6
Vbus

(OOP ) 0 −1
2
Vbus

1
2
Vbus −1

6
Vbus −1

6
Vbus

1
3
Vbus

(ONO) 1
2
Vbus −1

2
Vbus 0 1

6
Vbus −1

3
Vbus

1
6
Vbus

(PON) 1
2
Vbus

1
2
Vbus −Vbus 1

2
Vbus 0 −1

2
Vbus

(OPN) −1
2
Vbus Vbus −1

2
Vbus 0 1

2
Vbus −1

2
Vbus

(NPO) −Vbus 1
2
Vbus

1
2
Vbus −1

2
Vbus

1
2
Vbus 0

(NOP ) −1
2
Vbus −1

2
Vbus Vbus −1

2
Vbus 0 1

2
Vbus

(ONP ) 1
2
Vbus −Vbus 1

2
Vbus 0 −1

2
Vbus

1
2
Vbus

(PNO) Vbus −1
2
Vbus −1

2
Vbus

1
2
Vbus −1

2
Vbus 0

(PNN) Vbus 0 −Vbus 2
3
Vbus −1

3
Vbus −1

3
Vbus

(PPN) 0 Vbus −Vbus 1
3
Vbus

1
3
Vbus −2

3
Vbus

(NPN) −Vbus Vbus 0 −1
3
Vbus

2
3
Vbus −1

3
Vbus

(NPP ) −Vbus 0 Vbus −2
3
Vbus

1
3
Vbus

1
3
Vbus

(NNP ) 0 −Vbus Vbus −1
3
Vbus −1

3
Vbus

2
3
Vbus

(PNP ) Vbus −Vbus 0 1
3
Vbus −2

3
Vbus

1
3
Vbus

Table 3.2: Line-to-line and line-to-neutral voltages in Volts corresponding to the 27
switching states.
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Switching State Type Voltage Space Vector iNP
(NNN) Zero 0 0
(OOO) Zero 0 0
(PPP ) Zero 0 0

(ONN) Small+ 1
3
Vbuse

j0 ia
(PPO) Small+ 1

3
Vbuse

jπ/3 ic
(NON) Small+ 1

3
Vbuse

j2π/3 ib
(OPP ) Small+ 1

3
Vbuse

jπ ia
(NNO) Small+ 1

3
Vbuse

j4π/3 ic
(POP ) Small+ 1

3
Vbuse

j5π/3 ib

(POO) Small- 1
3
Vbuse

j0 −ia
(OON) Small- 1

3
Vbuse

jπ/3 −ic
(OPO) Small- 1

3
Vbuse

j2π/3 −ib
(NOO) Small- 1

3
Vbuse

jπ −ia
(OOP ) Small- 1

3
Vbuse

j4π/3 −ic
(ONO) Small- 1

3
Vbuse

j5π/3 −ib
(PON) Medium

√
3
3
Vbuse

jπ/6 ib

(OPN) Medium
√
3
3
Vbuse

jπ/2 ia

(NPO) Medium
√
3
3
Vbuse

j5π/6 ic

(NPO) Medium
√
3
3
Vbuse

j7π/6 ib

(ONP ) Medium
√
3
3
Vbuse

j3π/2 ia

(PNO) Medium
√
3
3
Vbuse

j11π/6 ic

(PNN) Large 2
3
Vbuse

j0 0

(PPN) Large 2
3
Vbuse

jπ/3 0

(NPN) Large 2
3
Vbuse

j2π/3 0
(NPP ) Large 2

3
Vbuse

jπ 0

(NNP ) Large 2
3
Vbuse

j4π/3 0

(PNP ) Large 2
3
Vbuse

j5π/3 0

Table 3.3: Three-level switching voltages in space vector form.
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By plotting the set of 27 voltage vectors in the (α− β) plane as in Figure 3.4,

the relationship between the voltage vectors may be established. The six positive

small vectors and their corresponding negative small vectors form the vertices of a

small inner hexagon. The six large vectors form the vertices of a large outer hexagon

aligned with the inner hexagon. The medium vectors bisect the sides of the outer

hexagon. By connecting the tips of the vectors closest to each other, a pattern of

equilateral triangles within the hexagon is formed.

Figure 3.4: The three-level voltage vectors plotted in the (α− β) plane.
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The basic strategy of three-level space vector PWM is identical to that of

two-level space vector PWM. A rotating reference vector formed from three sinusoidal

sources is approximated over a sampling period Ts using linear combinations of voltage

vectors. The reference vector is written in Equation 3.1. The magnitude of the

reference vector Vref represents the desired peak of the fundamental line-to-neutral

output voltage. The angular position in e.rad of the reference vector in the (α− β)

plane is represented by θ, and the desired output fundamental frequency in e.rad/s is

represented by ωe. The term φ represents the initial angular position of the reference

vector in e.rad.

V ref = Vrefe
jθ, where θ = ωet+ φ (3.1)

As in two-level space vector PWM, as long as the reference vector lies within

the hexagon formed by the large voltage vectors, it may be exactly represented as its

sampled value over a sampling period using a linear combination of voltage vectors.

When the trajectory of the reference vector lies completely within the large hexagon

over the fundamental period, the inverter is operating in the linear modulation region.

For sinusoidal references, the trajectory of the reference vector is a circle in the (α−β)

plane. The radius of the largest circle that can be inscribed in the outer hexagon

marks the upper limit of the linear modulation region. In the three-level case, this
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corresponds to the magnitude of the medium vectors. Thus, the upper boundary of

the linear modulation region for three-level space vector PWM is Vref,max =
√
3
3
Vbus,

which is identical to the boundary of the linear modulation region in two-level space

vector PWM.

If the trajectory of the reference vector extends beyond the hexagon in whole

or in part, the reference vector cannot be represented exactly within a single sampling

period, and the inverter enters the overmodulation region. The three-level overmodula-

tion region is very similar to the two-level overmodulation region. However, a detailed

description of overmodulation operation is beyond the scope of this thesis. For more

information on overmodulation operation in multilevel inverters, references [34] and

[35] should be consulted.

The primary challenge in the development of algorithms for multilevel space

vector PWM is the selection of voltage vectors for each sampling period. The increased

vector redundancy over two-level space vector PWM allows for much flexibility in

the creation of a PWM method, but it also increases implementation complexity.

Representing the reference vector using the three nearest voltage vectors has been

shown to produce minimal distortion [22]. However, determining the three nearest

voltage vectors can be computationally difficult. There are several algorithms in the

literature [22], [24] for selecting the three nearest voltage vectors to the reference

vector, but most of these algorithms are capable of producing the same switching
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signals. One method of determining the three nearest voltage vectors and calculating

the dwell times of the corresponding vectors is presented in [23] and [53], which is

the method used in this thesis. In this method, the three-level space vector PWM

problem is reduced to a two-level space vector PWM problem. This method may be

extended to higher level inverters, but complexity increases as the number of levels

increases.

To simplify the three-level space vector PWM logic, the three-level hexagon of

voltage vectors is divided into six smaller hexagons. Three of these smaller hexagons

are shown in Figure 3.5. Each of these smaller hexagons is centered at the tips of the

small vectors and consists of six equilateral triangles corresponding to the six sectors

of a two-level inverter. When the reference vector lies within a specific small hexagon,

that hexagon may be controlled in the same manner as a two-level space vector PWM

inverter. The small vectors are treated as the zero vectors of the small hexagons.

Since these hexagons overlap, an additional condition is needed to select the

proper hexagon when constructing the reference vector. In particular, a smooth

transition between hexagons that does not introduce excessive changes in switching

states is necessary for reducing current distortion [25]. To achieve a smooth transition

between hexagons, the three-level voltage vector hexagon may be divided along the

medium vectors into six sectors [53]. These sectors are shown in Figure 3.6. The small

hexagon whose center is located within a specific three-level sector is associated with
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Figure 3.5: Two-level hexagons within the three-level hexagon.

that sector. In Figure 3.7, the hexagon corresponding to sector I is shown.

When the reference vector lies within a specific three-level sector, it is mapped

to the corresponding two-level hexagon. This is achieved by subtracting the small

voltage vector at the center of the two-level hexagon from the reference vector as seen

in Figure 3.8 and Figure 3.9 for sector I. This new reference vector V ref,2 is used in the

two-level space vector PWM algorithm corresponding to the hexagon. In the example

provided, the reference vector V ref is mapped to V ref,2 which lies in the two-level
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Figure 3.6: The division of the three-
level hexagon into sectors.

Figure 3.7: Sector I with its correspond-
ing hexagon.

sector I of the three-level sector I.

Since each of the small hexagons may be controlled in the same manner as a

two-level space vector modulated inverter, all of the equations introduced for two-level

space vector PWM also apply here with some minor modifications. In particular, the

basic form of the dwell time equations for the two-level sector u presented previously

in Equation 2.26 and Equation 2.27 remains the same. The only differences lie in the

scaling of the equations. As seen in Equation 3.2 and Equation 3.3, the dc bus voltage

is divided by two. This is necessary because the origin is shifted when controlling

a small hexagon as a two-level inverter. In relation to the shifted origin, all of the

voltage vectors appear as though they have a length of 1
3
Vbus instead of 2

3
Vbus as in

the true two-level case. The definition of T0 remains the same as shown in Equation

3.4, but instead of corresponding to the dwell time of the zero vector, it corresponds
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Figure 3.8: Mapping of the three-level
voltage reference into the sector I two-
level hexagon.

Figure 3.9: Mapping of the three-level
voltage reference into the sector I two-
level hexagon (enlarged).

to the dwell time of the redundant vector V center at the center of the hexagon.

Tu =
√

3
2Vref,2
Vbus

Ts sin
(
u
π

3
− θ
)

(3.2)

Tv =
√

3
2Vref,2
Vbus

Ts sin
(

(u+ 2)
π

3
− θ
)

(3.3)

T0 = Ts − Tu − Tv (3.4)

Once the dwell times for the three voltage vectors are found, the general

expression for the three-level reference vector in a two-level sector u may be written

as in Equation 3.5.
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V ref =
Tu
Ts
V u +

Tv
Ts
V v +

T0
Ts
V center (3.5)

As in the two-level case, this equation provides no information on the order

in which the three voltage vectors, and their corresponding switching states, should

be applied. By applying the voltage vectors in different orders, different space vector

PWM methods are created. The large number of redundant vectors allows for a wide

variety of switching patterns and thus much flexibility in the creation of space vector

PWM methods. However, the large number of possibilities for switching patterns

also increases the complexity of algorithms. The three space vector PWM methods

investigated in this thesis, each of which varies the order of applying the voltage

vectors, are described in detail in the remainder of this chapter.

3.2.1 SVPWM Method 1

The first three-level space vector PWM switching sequence investigated in this

thesis is found in [25]. This sequence is intended to minimize the total number of

switching transitions within each sampling period as well as maintain low harmonic

distortion in the output voltages. It is based on the basic (0− 1− 2− 7) two-level

switching sequence, where the first half of the sampling period in sector I has the

switching sequence V 0 → V 1 → V 2 → V 7. In the three-level case, each sampling

period begins and ends in the redundant vector. The switching state sequence over the
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first half of the switching period transitions around the sector so that no more than one

pair of complementary switches changes state at one time. The reverse of the switching

sequence is performed in the second half of the switching period. Two representative

switching tables are shown in Figure 3.10 and Figure 3.11, while the complete set of

36 switching tables is included in the appendix. In the case of sector I, two-level sector

I shown in Figure 3.10, the first half sampling period begins with the positive small

vector (ONN) and then transitions to the large vector (PNN) followed by the medium

vector (PON) and the negative small vector (POO). The second half of the sampling

period applies that sequence in reverse: (POO) → (PON) → (PNN) → (ONN).

The dwell time T0 is split evenly between the four instances of the small vectors in

the sequence, the dwell time Tu is split evenly between the two instances of the large

vector, and the dwell time Tv is split evenly between the two instances of the medium

vector. Due to its relatively high quality waveforms and its simplicity, it is a commonly

used sequence.

3.2.2 SVPWM Method 2

The second three-level space vector PWM switching sequence investigated in

this thesis is proposed in [31]. This sequence is based on the (7− 2− 1− 2) two-level

switching sequence, where the first half of the sampling period in sector I has the

switching sequence V 7 → V 2 → V 1 → V 2. In this case, a vector other than the
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Figure 3.10: Method 1 switching pat-
tern in Sector I, two-level sector I.

Figure 3.11: Method 1 switching pat-
tern in Sector I, two-level sector II.

redundant vector is repeated within the half sampling period. This switching sequence

was found to reduce the output current distortion for certain modulation indices in

the case of an induction machine load. However, the reduced use of the redundant

small vectors can lead to a larger dc bus neutral point imbalance. Two representative

switching tables are shown in Figure 3.12 and Figure 3.13, while the complete set of

36 switching tables is included in the appendix. In the case of sector I, two-level sector

I shown in Figure 3.12, the first half sampling period begins with the negative small

vector (POO) and then transitions to the medium vector (PON) followed by the

large vector (PNN) and the medium vector (PON). The second half of the sampling

period applies that sequence in reverse: (PON) → (PNN) → (PON) → (POO).

The dwell time T0 is split evenly between the two instances of the negative small

vector in the sequence, the dwell time Tu is split evenly between the two instances of
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the large vector, and the dwell time Tv is split evenly between the four instances of

the medium vector. Since this method does not use balanced positive and negative

small vectors within each sampling period, the neutral point imbalance is expected to

be worse for Method 2 than for Method 1 or Method 3.

Figure 3.12: Method 2 switching pat-
tern in Sector I, two-level sector I.

Figure 3.13: Method 2 switching pat-
tern in Sector I, two-level sector II.

3.2.3 SVPWM Method 3

The final three-level space vector PWM switching sequence investigated in

this thesis is found in [4]. In this method, the number of switching states per half

sampling period increases as the magnitude of the reference vector decreases, allowing

the inverter to take advantage of all available redundancies in the voltage vectors.

This method is particularly useful in closed-loop applications that attempt to control

the neutral point imbalance through the ratios of the dwell times of the positive and



64

negative small vectors due to its use of all available redundancies. However, the use of

all redundant vectors also leads to higher switching losses for lower output voltages.

In this method, the three-level voltage vector hexagon may be seen as three

layers of triangles: the innermost layer where the vertices of the triangle are two small

vectors and the zero vector, the middle layer where the vertices of the triangle are two

small vectors and a medium vector, and the outermost layer where the vertices of the

triangle are a small vector, a medium vector, and a large vector. For the innermost

triangles such as sector I, two-level sector III, the switching period always begins in the

switching state (NNN), and each half sampling period uses each of the seven available

switching states corresponding to the three nearest voltage vectors. For the middle

triangles such as sector I, two-level sector II, the switching period always begins in a

positive small vector adjacent to (NNN), and each half sampling period uses each of

the five available switching states corresponding to the three nearest voltage vectors.

The switching periods within the outermost triangles such as sector I, two-level sector

I use the standard (0− 1− 2− 7) switching sequence defined in Method 1, and each

half sampling period uses each of the four available switching states corresponding to

the three nearest voltage vectors. Two representative switching tables for an inner

triangle and a middle triangle are shown in Figure 3.14 and Figure 3.15. The form

of the switching table for the outer triangles is similar to that of Figure 3.10. For

brevity, it is not shown here. The complete set of 36 switching tables is included in
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the appendix.

Figure 3.14: Method 3 switching pattern in Sector I, two-level sector II.

Figure 3.15: Method 3 switching pattern in Sector I, two-level sector III.

In Chapter 3, the three main three-level inverter topologies were introduced,
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and three-level space vector PWM theory was presented in terms of two-level space

vector PWM. The three space vector PWM switching sequences under investigation

were also explained. The system model, including the IPM machine model, the

three-level NPC inverter model, and the space vector PWM pulse generator, will be

presented in Chapter 4.
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Chapter 4

Development of System Models and Simulations

In this chapter, the simulation model developed for the three-level inverter

system is presented. MATLAB Simulink was used in the simulation of this system

because a wide variety of controls and expressions are easily implemented in the

Simulink environment. The system model consists of three modules: the IPM machine

load, the three-level NPC inverter, and the space vector PWM pulse generator. The

state space model for a PM machine is presented in the first section, and the specific

model for the IPM machine under investigation is developed in the following section.

Since all three space vector PWM models apply the same logic and only differ in

the generated switching patterns, the generic space vector PWM pulse generator is

explained in Section 4.3. The differences between the pulse generator blocks for the

three methods are also explained. The development of the three-level NPC inverter

model and the overall system model is presented in the final section.
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4.1 Introduction to Machine State Space Models

The state space modeling technique is a method of reducing a kth order

differential equation to a set of k coupled first order differential equations. As applied

to electric machines, state space models are a convenient way to compactly represent

the defining differential equations of the machine. Several different forms of state space

models for PM machines have been used over the years. In particular, the machine

phase currents have been used as the state variables in some work, and the machine

flux linkages have been used as the state variables in other studies. Likewise, two

different frames of reference have been applied: the abc frame of reference in which

the real phase values are the state variables, and the dqo frame of reference in which

the state variables are transformed into the rotating dqo reference frame. An excellent

development of the technique is presented in [65].

In this thesis, the abc current frame of reference will be considered because this

model can include most of the characteristics of the machine. Since this is a lightly

saturated machine, the effects of the space harmonics in the PM-induced emfs and

the effects of the higher order harmonic components of the winding inductances may

be included [66]. The basic state space representation of a PM machine in the abc

current frame of reference is presented in [66] and is reproduced in Equation 4.1:
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
va

vb

vc

 =


ra 0 0

0 rb 0

0 0 rc



ia

ib

ic

+
d

dt



Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc



ia

ib

ic


+


ea

eb

ec

 (4.1)

In this model, va, vb, and vc represent the time domain terminal phase voltages

of the machine, and ia, ib, and ic represent the time domain phase currents of the

machine. Also, ra, rb, and rc represent the winding resistances, and ea, eb, and ec

represent the PM-induced back emfs. The various terms of the form Lxy, where

x = {a, b, c} and y = {a, b, c}, represent the time-varying self and mutual inductances

of the phase windings. The terms for the inductances and back emfs can be calculated

using Finite Element Analysis (FEA) [67].

4.2 The Machine to be Used in Simulation

4.2.1 Machine Specifications

The machine used in this investigation is an internal permanent magnet syn-

chronous machine donated to Marquette University by A.O. Smith Corporation. The

machine ratings are presented in Table 4.1. This machine was designed with a trape-

zoidal back emf, which is expected to have an interesting effect on the space vector

PWM methods under investigation. Normally, a machine such as this one is not driven

by a multilevel inverter. However, this machine was used in the investigation because
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all of its design information was available. With this design information, an accurate

circuit model could be created for this machine.

Rated Power 3.5 hp
Rated Speed 3450 r/min
Rated Torque 7.25 N·m
Rated Current 10 A

Rated Line-to-Line Voltage 240 V

Table 4.1: Ratings of the IPM machine under investigation.

Expressions for the back emf and the time-varying inductances were found

previously using the Finite Element Analysis tool ANSYS Maxwell. The expressions

for the back emfs of the machine are of the following form:

ea(σ) = ωm

13∑
h=1

Ah cos [h(σ)− ψh] V (4.2)

eb(σ) = ωm

13∑
h=1

Ah cos

[
h

(
σ − 2π

3

)
− ψh

]
V (4.3)

ec(σ) = ωm

13∑
h=1

Ah cos

[
h

(
σ − 4π

3

)
− ψh

]
V (4.4)

Here, ωm is the speed of the machine in m.rad/s, Ah represents the different

magnitudes of the harmonic components in V/m.rad/s, ψh represents the phase angle

of the different harmonics in e.rad, and σ is the position of the rotor in e.rad. In

steady state, σ may be rewritten as follows:

σ = ωet+ σ0 (4.5)
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where ωe is the electrical speed of the machine in e.rad/s, t is time in seconds, and

σ0 is the initial position of the rotor in e.rad. The values of Ah and ψh for the first

thirteen harmonics are given in Table 4.2.

Harmonic Order h Ah (V/m.rad/s) ψh (e.rad)
1 4.464 · 10−1 1.5702
3 1.013 · 10−1 1.5717
5 1.889 · 10−2 1.5854
7 1.081 · 10−2 -1.5765
9 1.380 · 10−2 -1.5583
11 1.899 · 10−2 1.5667
13 8.873 · 10−3 1.5787

Table 4.2: Harmonic components of the back emf for the IPM machine under investi-
gation found using FEA.

The values of the winding resistances, the self inductances, and the mutual

inductances were also found from FEA. These machine parameters are found in Table

4.3.

Parameter Expression
ra = rb = rc 0.49Ω

Laa 6.008607 + 1.981518 cos(2σ) + 0.274595 cos(4σ) mH

Lbb 6.008607 + 1.981518 cos

(
2σ − 4π

3

)
+ 0.274595 cos

(
4σ − 2π

3

)
mH

Lcc 6.008607 + 1.981518 cos

(
2σ − 2π

3

)
+ 0.274595 cos

(
4σ − 4π

3

)
mH

Lab = Lba −1.940512− 1.529431 sin
(

2σ − π

3

)
− 0.08451 sin

(
4σ − 2π

3

)
mH

Lbc = Lcb −1.940512− 1.529431 sin

(
2σ − 5π

3

)
− 0.08451 sin

(
4σ − 4π

3

)
mH

Lca = Lac −1.940512− 1.529431 sin (2σ − π)− 0.08451 sin (4σ) mH

Table 4.3: Phase resistance and inductances of the IPM machine under investigation
found using FEA.
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The machine state space representation will be implemented in the follow-

ing section using a circuit model based on the FEA-calculated back emfs, the self

inductances, and the mutual inductances.

4.2.2 Machine Model

Based on Equation 4.1, a circuit model that can be implemented using MATLAB

Simulink can be created. By examining this equation, it is apparent that the terminal

voltage of the machine consists of three voltage terms: the ohmic voltage drop, the

inductive voltage drop, and the PM-induced back emf. The ohmic voltage drop can

be modeled simply as a three-phase resistance as in Figure 4.1. The two remaining

terms are slightly more complicated because they vary with rotor position (or, in the

steady state case, time). Thus, these two terms are implemented using two controlled

(or dependent) voltage sources. The back emf of the machine is simple to implement

using a MATLAB function block, which allows the user to write a MATLAB script

that couples with a Simulink model. In this case, the MATLAB function block

calculates the values of ea, eb, and ec at each time step, which determine the values of

the dependent voltage sources corresponding to the back emfs. Thus, Equation 4.2

through Equation 4.4 may be implemented directly. The inductive voltage drop is

slightly more complicated to implement due to the derivative associated with the term.

The product of the inductance matrix and the current vector is calculated at each time
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step using another MATLAB function block. A derivative block is used to differentiate

the elements of the resulting vector with respect to time, and the result is used to

control the second set of dependent voltage sources. The inclusion of the derivative

block can cause simulation non-convergence if the time step is not sufficiently small,

or if the derivative changes too quickly. Thus, care must be taken in the selection of

the simulation time step. In this investigation, a variable step discrete solver was used

with a maximum time step of 1 microsecond, which provided satisfactory results.

Figure 4.1: Circuit representation of the state space equations for the given IPM
machine.

The simulation model was verified by running an open circuit simulation at

rated speed and measuring the terminal voltages of the machine, the results of which

are provided in Figure 4.2. These results agree with the results previously found using
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an FEA model.

Figure 4.2: Simulated open circuit back emf of the IPM machine.

The circuit model of the IPM machine used in this investigation was developed

in this section, and the model was verified using the results from an open circuit

simulation at rated speed operation. The space vector PWM simulation models are
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developed in the following section.

4.3 Space Vector PWM Simulation Models

The space vector PWM generator block is based on the theory developed in

Chapter 2 and Chapter 3. The generic Simulink model that implements all three PWM

methods under investigation is shown in Figure 4.3. The three sinusoidal reference

generators are found at the far left of the model. These references are each sampled

using a zero order hold operating at the sampling frequency. The sampled values

of the reference are passed into a MATLAB function block (called the Alpha Beta

Transform in the model) that transforms the three sampled sinusoids into the (α− β)

plane using the space vector transformation previously presented in Equation 2.3.

Once the reference vector is found, the angle of the reference vector is calculated. The

sector in which the reference vector is located can be found based solely on the angle of

the reference vector using simple conditional statements. Once the three-level sector is

determined, this information is used to find the magnitude and phase of the equivalent

two-level reference vector V ref,2. The magnitude and phase of the equivalent two-level

reference as well as the equivalent two-level sector are passed to the MATLAB function

block “Calculate State Times” which calculates the values of the dwell times using

Equation 3.2, Equation 3.3, and Equation 3.4. The dwell times are passed to the

“State Implementation” block along with the three-level sector information and the
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equivalent two-level sector information. In order to keep track of the beginning of a

sampling period, the simulation time is sampled using a zero order hold and is then

passed to the State Implementation block along with the current simulation time. The

switching tables presented in Chapter 3 are then implemented using a combination

of switch statements and conditionals within the State Implementation block. The

only component that varies between the different space vector PWM methods under

investigation is the State Implementation block since the switching tables, which are

unique to each method, are implemented within this block. Once the desired switching

state is found in the State Implementation block, this information is passed to the

“Conversion to Switch States” block. The signals for the individual IGBTs within each

phase leg are generated within this block.

Figure 4.3: The generic space vector PWM pulse generator model.

The model for the generic space vector PWM pulse generator was presented in

this section. The overall system model will be presented in the following section.
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4.4 Three-Level NPC Inverter System Model

The overall system model is built from a three-level NPC voltage source

inverter consisting of standard Simulink components, the IPM machine model, and

the space vector PWM pulse generator developed earlier in this chapter. The complete

system model is shown in Figure 4.4. The standard three-level bridge found in the

SimPowerSystems toolbox of Simulink is used to model the three-level NPC inverter.

By using this block instead of creating a new block to model the inverter, simulation

speed is increased, and the simulation convergence is somewhat improved. However,

the three-level bridge model does not include the turn-on time nor the turn-off time

of the IGBTs. For this thesis, these times do not need to be modeled since this

investigation is focused on examining the inherent properties of the space vector

PWM methods. The additional non-ideality of the inverter is not necessary in this

case. The dc bus consists of two series-connected capacitors, a small source resistance

to meet simulation logic requirements, and two dc sources in series with a ground

connection between them. The ground connection at this location improves simulation

stability without influencing the inverter operation. The dc bus voltage is selected to

be Vbus = 360V . This value was chosen because at the rated operation of the IPM

machine, the output voltage is relatively close to its maximum value but does not

exceed it. For the majority of the simulations, the total bus capacitance is fixed at
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Cbus = 4 mF. The IPM machine model and the space vector PWM generator model

are connected to the inverter as shown in Figure 4.4.

Figure 4.4: System model including inverter, space vector PWM generator, and PM
machine.

Two machine loading conditions were simulated: rated speed, rated load and

half rated speed, rated load. These two operating conditions were chosen so that

the output current would remain constant between the simulations while forcing the

inverter into two different modes of operation. At rated speed, the inverter operates

in three-level mode, while at half speed, the inverter operates in two-level mode. This

difference is due to the different magnitudes of the desired output voltages in each

case. The number of sampling periods per fundamental cycle is fixed at 36 samples

for both machine operating conditions. This implies that the sampling period varies

with the output frequency, and thus varies with the motor speed. By maintaining a

constant 36 samples per cycle, the relative sampling of the reference signals is not

changed from one operating point to another operating point. As stated previously, a
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variable step discrete solver with a maximum time step of 1 microsecond is used for

the simulation.

The simulation models for the drive system were presented in Chapter 4. In

particular, a circuit model for the IPM machine based on its state space representation,

the generic form of the space vector PWM pulse generator, and the overall system

model were presented. The results of the simulations for each of the three PWM

methods are presented in Chapter 5, and the three methods are compared based on

these results.
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Chapter 5

Simulation Results and Analysis

In this chapter, the simulation results for each of the three space vector PWM

methods with the IPM machine load are presented. First, the tools used in the analysis

of the PWM methods are explained. Then the results for Method 1, Method 2, and

Method 3, each operating at rated speed, rated load and operating at half rated speed,

rated load, are discussed in Section 5.2, Section 5.3, and Section 5.4. Finally, the three

methods are compared based on several aspects of the results.

5.1 Space Vector PWM Analysis Tools

Each three-level space vector PWM method under investigation is evaluated

using several analysis tools. In this investigation four signals of interest are considered:

the line-to-neutral voltage, the line-to-line voltage, the phase current, and the neutral

point current. The first analysis tool is the time domain plots of these signals. Although

a time domain plot cannot be used to make conclusions on its own, a good overall

understanding about the nature of the signal can be gained from it. If severe distortion
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is present in a signal, it is often visible in the time domain plot. Thus time domain

plots are useful as an initial check for signal correctness and quality. The root mean

square (rms) value of the neutral point current is also included to help create a more

meaningful comparison between the different methods. For a generic discrete signal

x = {x1, x2, · · · , xk} with k samples, the rms value of the signal is defined as follows:

xrms =

√√√√1

k

k∑
i=1

x2i (5.1)

The second analysis tool is the space vector transform of the line-to-neutral

voltages and the phase currents, which reflects the trajectory of the quantity within

the (α − β) plane. In the case of a balanced purely sinusoidal phase current, the

current space vector would trace a circle centered at the origin of the (α− β) plane.

Thus, any deviations of the current space vector from the path of a circle correspond

to distortion in the output phase currents. In contrast, the switching pattern of the

inverter is traced by the line-to-neutral voltage space vector. Thus, the corners formed

by the voltage space vector should align with the active vectors in the (α− β) plane.

Differences between the voltage space vector corners and the corresponding active

vectors can be used to quantify imbalances in the dc bus neutral point caused by the

space vector PWM method. In this thesis, the 2-norm of the difference between the

output voltage space vector and the corresponding active vector is used for comparing
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neutral point imbalance between space vector PWM methods. For a generic vector

V = x+ jy in the (α− β) plane, the 2-norm is defined as in Equation 5.2.

∥∥V ∥∥ =
√
x2 + y2 (5.2)

The final analysis tool is the application of the Fast Fourier Transform (FFT)

to the line-to-neutral voltage, the line-to-line voltage, and the phase current to obtain

the harmonic spectra of these signals. The harmonic spectrum of a signal provides

insight into the frequency components present in that signal. In this investigation, a

Bohman window is applied to the data instead of the common rectangular window.

Although it is beyond the scope of this thesis to provide a detailed explanation on

applying windows to data before applying the FFT, it is sufficient to note that the

Bohman window has a faster sidelobe fall off than the rectangular window [68]. This

prevents smaller harmonic components from being hidden by nearby larger harmonic

components. The total harmonic distortion (THD) of each of these signals is also

calculated. The definition of the THD of a voltage including all harmonics up to

the nth harmonic is given in Equation 5.3. The current total harmonic distortion is

defined similarly.

VTHD =

√∑n
h=2 V

2
h

V1
(5.3)
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Several other analysis tools for PWM strategies exist beyond those presented

here [53]. The analysis in this thesis is limited to these three tools to allow for a wider

investigation of space vector PWM methods as well as inverter operating conditions.

5.2 Results and Analysis for Method 1

5.2.1 Rated Speed, Rated Load Results and Analysis

In this section, the results from Method 1 with the machine operating at rated

speed and rated load are examined. The time domain plots of the line-to-neutral

voltages vAn, vBn, and vCn as well as their corresponding harmonic spectra in per unit

(p.u.) are shown in Figure 5.1 through Figure 5.6. It is clear from the time domain

plots that the line-to-neutral voltages are heavily distorted by the back emf of the

machine. By examining the frequency plots, it can be seen that this distortion is

caused by a significant third harmonic, which is over 40% of the fundamental, and a

smaller ninth harmonic. The remainder of the harmonic content is visible in the side

bands around harmonics of the sampling frequency fs = 6210 Hz.

The time domain plots of the line-to-line voltages vAB, vBC , and vCA as well

as their corresponding harmonic spectra are shown in Figure 5.7 through Figure 5.12.

As opposed to the line-to-neutral voltages, the line-to-line voltages have the typical

three-level output voltage shape. When inspecting the frequency plots, it can be

seen that the large third harmonic components and the ninth harmonic components
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Figure 5.1: Line-to-neutral voltage vAn
for Method 1 rated speed, rated load.

Figure 5.2: FFT of line-to-neutral volt-
age vAn for Method 1 rated speed, rated
load.

Figure 5.3: Line-to-neutral voltage vBn
for Method 1 rated speed, rated load.

Figure 5.4: FFT of line-to-neutral volt-
age vBn for Method 1 rated speed,
rated load.

Figure 5.5: Line-to-neutral voltage vCn
for Method 1 rated speed, rated load.

Figure 5.6: FFT of line-to-neutral volt-
age vCn for Method 1 rated speed,
rated load.
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from the line-to-neutral voltages were eliminated from the line-to-line voltages. The

remainder of the harmonic content is caused by the PWM switching pattern and is

present in the side bands of the harmonics of the sampling frequency.

The time domain plots of the phase currents iA, iB, and iC as well as their

corresponding harmonic spectra are shown in Figure 5.13 through Figure 5.18. From

the time domain plots, the currents appear to be nearly sinusoidal. This is confirmed

in the frequency plots of the currents, which are scaled in decibels (dB) as opposed

to per unit because the harmonic components are very small in relation to the

fundamental. For reference, 0.1% of the fundamental corresponds to -60 dB, so

it is reasonable to assume all harmonics below -60 dB are simply artifacts of the

FFT. As in the case of the voltage, much of the harmonic content is located in

the side bands of the harmonics of the sampling frequency. However, a relatively

significant fifth harmonic, seventh harmonic, and eleventh harmonic also exist. As a

percentage of the fundamental, the fifth harmonic component is approximately 1.73%,

the seventh harmonic is approximately 0.35%, and the eleventh harmonic component

is approximately 0.55%. These additional harmonics are most likely caused by the

back emf of the IPM machine, which also contains these harmonics.

The space vector plot of the line-to-neutral voltages is presented in Figure 5.19.

For this PWM method, the voltage space vector appears hexagonal with equilateral

triangles lining the edge. The line segments connecting the vertices of the triangles are
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Figure 5.7: Line-to-line voltage vAB for
Method 1 rated speed, rated load.

Figure 5.8: FFT of line-to-line voltage
vAB for Method 1 rated speed, rated
load.

Figure 5.9: Line-to-line voltage vBC for
Method 1 rated speed, rated load.

Figure 5.10: FFT of line-to-line voltage
vBC for Method 1 rated speed, rated
load.

Figure 5.11: Line-to-line voltage vCA
for Method 1 rated speed, rated load.

Figure 5.12: FFT of line-to-line voltage
vCA for Method 1 rated speed, rated
load.



87

Figure 5.13: Phase current iA for
Method 1 rated speed, rated load.

Figure 5.14: FFT of phase current iA
for Method 1 rated speed, rated load.

Figure 5.15: Phase current iB for
Method 1 rated speed, rated load.

Figure 5.16: FFT of phase current iB
for Method 1 rated speed, rated load.

Figure 5.17: Phase current iC for
Method 1 rated speed, rated load.

Figure 5.18: FFT of phase current iC
for Method 1 rated speed, rated load.
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added by MATLAB and give an indirect indication of the switching pattern. When

two vertices are connected by a line segment, then the PWM method consecutively

switches between those two voltage vectors at some point during the fundamental

cycle. Since triangles are formed by the switching pattern in this space vector plot,

this PWM method is shown to cycle completely through the three nearest voltage

vectors during each sampling period. Vertices appear every 60◦e. beginning at 0◦e.

in the cases of the small vectors and the large vectors. Vertices appear every 60◦e.

beginning at 30◦e. in the case of the medium vectors. The vertices appear to align

fairly well with these angles, so the imbalance in the neutral point of the dc bus is

not significant. The calculated values of the 2-norm of the differences between the

vertices and the corresponding voltage vectors are presented in Section 5.5.1.

The space vector plot of the phase currents and the time domain plot of the

neutral point current are presented in Figure 5.20 and Figure 5.21. The current space

vector is circular in general, but it has six flattened sides approximately every 60◦e.

This is most likely an effect of the fifth harmonic, the seventh harmonic, and the

eleventh harmonic previously seen in the frequency plots of the current. The slightly

jagged deviations in the trajectory are due to the sampling frequency of the PWM

method. In Figure 5.21, the neutral point current is plotted in the time domain. The

jagged appearance of the waveform is due to the sampling frequency of the inverter.

The most important aspect about this figure is that the neutral point current seems
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to be split fairly evenly between the positive half of the cycle and the negative half of

the cycle. When the neutral point current is balanced in this way, it has a lesser effect

on the neutral point voltage balance.

Figure 5.19: Space vector of line-to-
neutral voltages for Method 1 rated
speed, rated load.

Figure 5.20: Space vector of phase cur-
rents for Method 1 rated speed, rated
load.

Figure 5.21: Neutral point current iNP for Method 1 rated speed, rated load.



90

5.2.2 Half Rated Speed, Rated Load Results and Analysis

In this section, the results from Method 1 with the machine operating at half

speed and rated load are examined. The time domain plots of the line-to-neutral

voltages vAn, vBn, and vCn as well as their corresponding harmonic spectra in per

unit are shown in Figure 5.22 through Figure 5.27. It is clear from the time domain

plots that the line-to-neutral voltages are heavily distorted by the back emf of the

machine. By examining the frequency plots, it can be seen that these line-to-neutral

voltages have a significant third harmonic slightly less than 40% of the fundamental

and a smaller ninth harmonic just as in the rated speed case. The remainder of

the harmonic content is visible in the side bands around harmonics of the sampling

frequency fs = 3105 Hz, though in this case, the harmonics in the side bands of (2fs)

are more significant than those in the side bands of fs.

The time domain plots of the line-to-line voltages vAB, vBC , and vCA as well as

their corresponding harmonic spectra are shown in Figure 5.28 through Figure 5.33.

From the time domain plots, it is clear that the inverter is operating in two-level mode

as expected for the half rated speed case. Again, the large third harmonic components

and the ninth harmonic components from the line-to-neutral voltages were eliminated

from the line-to-line voltages due to the Y-connection of the machine winding. The

remainder of the harmonic content is caused by the PWM switching pattern and is

present in the side bands of the harmonics of the sampling frequency, particularly
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Figure 5.22: Line-to-neutral voltage
vAn for Method 1 half rated speed,
rated load.

Figure 5.23: FFT of line-to-neutral
voltage vAn for Method 1 half rated
speed, rated load.

Figure 5.24: Line-to-neutral voltage
vBn for Method 1 half rated speed,
rated load.

Figure 5.25: FFT of line-to-neutral
voltage vBn for Method 1 half rated
speed, rated load.

Figure 5.26: Line-to-neutral voltage
vCn for Method 1 half rated speed,
rated load.

Figure 5.27: FFT of line-to-neutral
voltage vCn for Method 1 half rated
speed, rated load.
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(2fs).

The time domain plots of the phase currents iA, iB, and iC as well as their

corresponding harmonic spectra are shown in Figure 5.34 through Figure 5.39. From

the time domain plots, the currents appear to be nearly sinusoidal. This is confirmed

in the frequency plots of the currents, which are scaled in decibels once again as

opposed to per unit because the harmonic components are very small in relation to

the fundamental. Again, all frequency content below -60 dB is taken to be artifacts

of the FFT. Similar to the voltage, much of the harmonic content is located in the

side bands of the second harmonic of the sampling frequency. However, a relatively

significant fifth harmonic, seventh harmonic, and eleventh harmonic also exist. As a

percentage of the fundamental, the fifth harmonic component is approximately 1.65%,

the seventh harmonic is approximately 0.35%, and the eleventh harmonic component

is approximately 0.55%. The fifth harmonic decreases slightly at half rated speed, but

the seventh and eleventh harmonics remain constant.

The space vector plot of the line-to-neutral voltages is presented in Figure 5.40.

For this PWM method with the machine operating at half speed, full load, the voltage

space vector has the appearance of the hexagon that is normally associated with a

two-level inverter. The line segments connecting the vertices of the triangles within

the hexagon are added by MATLAB and give an indirect indication of the switching

pattern. From this space vector plot, it becomes apparent that only zero vectors
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Figure 5.28: Line-to-line voltage vAB
for Method 1 half rated speed, rated
load.

Figure 5.29: FFT of line-to-line volt-
age vAB for Method 1 half rated speed,
rated load.

Figure 5.30: Line-to-line voltage vBC
for Method 1 half rated speed, rated
load.

Figure 5.31: FFT of line-to-line volt-
age vBC for Method 1 half rated speed,
rated load.

Figure 5.32: Line-to-line voltage vCA
for Method 1 half rated speed, rated
load.

Figure 5.33: FFT of line-to-line volt-
age vCA for Method 1 half rated speed,
rated load.
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Figure 5.34: Phase current iA for
Method 1 half rated speed, rated load.

Figure 5.35: FFT of phase current iA
for Method 1 half rated speed, rated
load.

Figure 5.36: Phase current iB for
Method 1 half rated speed, rated load.

Figure 5.37: FFT of phase current iB
for Method 1 half rated speed, rated
load.

Figure 5.38: Phase current iC for
Method 1 half rated speed, rated load.

Figure 5.39: FFT of phase current iC
for Method 1 half rated speed, rated
load.
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and small vectors are used at this operating point, hence its operation as a two-level

inverter. Since triangles are formed by the switching pattern, this PWM method is

shown to cycle completely through the three nearest voltage vectors each sampling

period as in its operation at full speed. The vertices of the triangles appear to align

fairly well with the locations of the small vectors, which indicates the imbalance in

the neutral point of the dc bus is not significant. The calculated values of the 2-norm

of the differences between the vertices and the corresponding voltage vectors are

presented in Section 5.5.2.

The space vector plot of the phase currents and the time domain plot of the

neutral point current are presented in Figure 5.41 and Figure 5.42. The current space

vector is circular in general, but it has six flattened sides as in the case of full speed

operation. This is most likely an effect of the fifth harmonic, the seventh harmonic,

and the eleventh harmonic previously seen in the frequency plots of the current. The

slightly jagged deviations in the trajectory are due to the sampling frequency of the

PWM method. In Figure 5.42, the neutral point current is plotted in the time domain.

The high frequency component of the waveform is due to the sampling frequency of

the inverter. Once again, the neutral point current seems to be split fairly evenly

between the positive half of the cycle and the negative half of the cycle, indicating

that it has a lesser effect on the neutral point voltage balance.
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Figure 5.40: Space vector of line-to-
neutral voltages for Method 1 half
rated speed, rated load.

Figure 5.41: Space vector of phase cur-
rents for Method 1 half rated speed,
rated load.

Figure 5.42: Neutral point current iNP for Method 1 half rated speed, rated load.
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5.3 Results and Analysis for Method 2

5.3.1 Rated Speed, Rated Load Results and Analysis

In this section, the results from Method 2 with the machine operating at rated

speed and rated load are examined. The time domain plots of the line-to-neutral

voltages vAn, vBn, and vCn as well as their corresponding harmonic spectra in per unit

are shown in Figure 5.43 through Figure 5.48. In this case, the time domain plots

appear to be relatively similar to those of PWM Method 1 in the case of operation at

rated speed and rated load. However, by examining the frequency plots, it is clear that

these line-to-neutral voltages are significantly more distorted than those of Method

1. In addition to the harmonics caused by the sampling frequency fs = 6210 Hz, the

second harmonic through the ninth harmonic are present as well. The presence of

the even harmonics explains the lack of symmetry between the positive and negative

halves of the voltages. These additional harmonics are caused by a severe dc bus

neutral point imbalance that will be demonstrated in the voltage space vector.

The time domain plots of the line-to-line voltages vAB, vBC , and vCA as well as

their corresponding harmonic spectra are shown in Figure 5.49 through Figure 5.54.

Unlike the Method 1 line-to-line voltages, the Method 2 line-to-line voltages are visibly

distorted in the time domain plots. When comparing the frequency plots to those of

the line-to-neutral voltages, many of the same harmonics appear. In particular, the
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Figure 5.43: Line-to-neutral voltage
vAn for Method 2 rated speed, rated
load.

Figure 5.44: FFT of line-to-neutral
voltage vAn for Method 2 rated speed,
rated load.

Figure 5.45: Line-to-neutral voltage
vBn for Method 2 rated speed, rated
load.

Figure 5.46: FFT of line-to-neutral
voltage vBn for Method 2 rated speed,
rated load.

Figure 5.47: Line-to-neutral voltage
vCn for Method 2 rated speed, rated
load.

Figure 5.48: FFT of line-to-neutral
voltage vCn for Method 2 rated speed,
rated load.
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second harmonic, the fourth harmonic, the fifth harmonic, and the eighth harmonic

are present in the line-to-line voltages. The third harmonic, the sixth harmonic, and

the ninth harmonic that were also in the line-to-neutral voltages are not present in

the line-to-line voltages. This is another indicator that a significant imbalance in the

neutral point of the dc bus exists for this method.

The time domain plots of the phase currents iA, iB, and iC as well as their

corresponding harmonic spectra are shown in Figure 5.55 through Figure 5.60. In the

time domain plots, the currents appear reasonably sinusoidal, but they are slightly

pointed near the peaks. This is confirmed in the frequency plots of the currents. Unlike

the currents found using PWM Method 1, the Method 2 currents contain a second

harmonic (8.37% of the fundamental), a fourth harmonic (2.41% of the fundamental),

a fifth harmonic (1.15% of the fundamental), a seventh harmonic (0.37% of the

fundamental), an eighth harmonic (0.36% of the fundamental), an eleventh harmonic

(0.55% of the fundamental), and a thirteenth harmonic (0.20% of the fundamental).

These additional harmonics are caused by the additional distortion in the voltages.

The space vector plot of the line-to-neutral voltages is presented in Figure

5.61. In this case, the voltage space vector takes the form of two concentric hexagons

with line segments radiating out from the vertices of the inner hexagon to the outer

hexagon. This is an excellent example of the imbalance in the neutral point caused by

the switching pattern of Method 2. The vertices corresponding to the large vectors



100

Figure 5.49: Line-to-line voltage vAB
for Method 2 rated speed, rated load.

Figure 5.50: FFT of line-to-line voltage
vAB for Method 2 rated speed, rated
load.

Figure 5.51: Line-to-line voltage vBC
for Method 2 rated speed, rated load.

Figure 5.52: FFT of line-to-line voltage
vBC for Method 2 rated speed, rated
load.

Figure 5.53: Line-to-line voltage vCA
for Method 2 rated speed, rated load.

Figure 5.54: FFT of line-to-line voltage
vCA for Method 2 rated speed, rated
load.
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Figure 5.55: Phase current iA for
Method 2 rated speed, rated load.

Figure 5.56: FFT of phase current iA
for Method 2 rated speed, rated load.

Figure 5.57: Phase current iB for
Method 2 rated speed, rated load.

Figure 5.58: FFT of phase current iB
for Method 2 rated speed, rated load.

Figure 5.59: Phase current iC for
Method 2 rated speed, rated load.

Figure 5.60: FFT of phase current iC
for Method 2 rated speed, rated load.
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are correct because those vectors do not affect, and so are not affected by, the neutral

point imbalance. However, the medium vectors have shifted, and both their length and

angle have changed. The small vectors have changed solely in length. The calculated

values of the 2-norm of the differences between the vertices and the corresponding

voltage vectors are presented in Section 5.5.1.

The space vector plot of the phase currents and the time domain plot of the

neutral point current are presented in Figure 5.62 and Figure 5.63. Although the

currents had appeared reasonably sinusoidal in the time domain, the current space

vector is more triangular with rounded corners. This distortion of the trajectory of the

current space vector indicates that the neutral point voltage imbalance also degrades

the output current quality. This is a particular concern for inverters driving a motor

because distorted phase current can produce significant developed torque pulsations.

In Figure 5.63, the neutral point current is plotted in the time domain. For the

switching pattern of Method 2, the negative portion of the waveform is much more

pronounced than the positive portion as a result of using only a positive small vector

or only a negative small vector within each sampling period. This weight associated

with one half of the neutral point current waveform has a much more significant effect

on the neutral point balance than the neutral point current of Method 1.

As expected, the switching pattern of Method 2 severely affected the balance of

the neutral point of the dc bus. In an attempt to evaluate Method 2 when functioning
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Figure 5.61: Space vector of line-to-
neutral voltages for Method 2 rated
speed, rated load.

Figure 5.62: Space vector of phase cur-
rents for Method 2 rated speed, rated
load.

Figure 5.63: Neutral point current iNP for Method 2 rated speed, rated load.

as intended, the bus capacitance in the simulation was increased from 4 mF to 400 mF.

The increase in bus capacitance makes the dc bus stiffer and more resilient to neutral

point imbalance. Although this bus capacitance is very unrealistic for an inverter, this

change will provide more insight into the qualities of this switching pattern.

The time domain plots of the line-to-neutral voltages vAn, vBn, and vCn for
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Method 2 with increased bus capacitance as well as their corresponding harmonic

spectra in per unit are shown in Figure 5.64 through Figure 5.69. The time domain

plots of these voltages are much more similar to the line-to-neutral voltages of Method

1 at rated speed, rated load than those produced by the smaller bus capacitance.

However, differences can be seen in the frequency plots of the line-to-neutral voltages

between Method 1 and Method 2 with increased bus capacitance. In Method 1,

the sampling frequency side bands were balanced, while in this case the lower side

band harmonics are slightly more prominent than the upper side band harmonics.

Regardless, it seems that the increase in bus capacitance improved the line-to-neutral

voltages produced by the switching pattern of Method 2.

The time domain plots of the line-to-line voltages vAB, vBC , and vCA for Method

2 with increased bus capacitance as well as their corresponding harmonic spectra

are shown in Figure 5.70 through Figure 5.75. As opposed to the line-to-neutral

voltages, the line-to-line voltages have the typical three-level output voltage shape.

When inspecting the frequency plots, it can be seen that the large third harmonic

components present in the line-to-neutral voltages were eliminated from the line-to-

line voltages as expected. The remaining harmonic content is caused by the PWM

switching pattern and mostly appears in the side bands of higher harmonics of the

sampling frequency.

The time domain plots of the phase currents iA, iB, and iC for Method 2 with
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Figure 5.64: Line-to-neutral voltage
vAn for Method 2 rated speed, rated
load and Cbus = 400mF .

Figure 5.65: FFT of line-to-neutral
voltage vAn for Method 2 rated speed,
rated load and Cbus = 400mF .

Figure 5.66: Line-to-neutral voltage
vBn for Method 2 rated speed, rated
load and Cbus = 400mF .

Figure 5.67: FFT of line-to-neutral
voltage vBn for Method 2 rated speed,
rated load and Cbus = 400mF .

Figure 5.68: Line-to-neutral voltage
vCn for Method 2 rated speed, rated
load and Cbus = 400mF .

Figure 5.69: FFT of line-to-neutral
voltage vCn for Method 2 rated speed,
rated load and Cbus = 400mF .



106

Figure 5.70: Line-to-line voltage vAB
for Method 2 rated speed, rated load
and Cbus = 400mF .

Figure 5.71: FFT of line-to-line voltage
vAB for Method 2 rated speed, rated
load and Cbus = 400mF .

Figure 5.72: Line-to-line voltage vBC
for Method 2 rated speed, rated load
and Cbus = 400mF .

Figure 5.73: FFT of line-to-line voltage
vBC for Method 2 rated speed, rated
load and Cbus = 400mF .

Figure 5.74: Line-to-line voltage vCA
for Method 2 rated speed, rated load
and Cbus = 400mF .

Figure 5.75: FFT of line-to-line voltage
vCA for Method 2 rated speed, rated
load and Cbus = 400mF .
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increased bus capacitance as well as their corresponding harmonic spectra are shown

in Figure 5.76 through Figure 5.81. From the time domain plots, the currents appear

to be nearly sinusoidal. This is confirmed in the frequency plots of the currents,

which are scaled in decibels. As in the currents produced by Method 1, much of

the harmonic content is located in the side bands of the harmonics of the sampling

frequency. The fifth harmonic (1.73% of the fundamental), the seventh harmonic

(0.37% of the fundamental), and the eleventh harmonic (0.55% of the fundamental)

are also relatively significant. Overall, these results are similar to the results from

Method 1 operating at rated speed.

The space vector plot of the line-to-neutral voltages for Method 2 with increased

bus capacitance is presented in Figure 5.82. For this PWM method, the voltage space

vector appears hexagonal with rhombi lining the edges. Since rhombi are formed by

this switching pattern as opposed to the triangles formed in the space vector plot

from Method 1, the switching pattern of Method 2 is shown to use three out of the

four available switching states when applying the three nearest voltage vectors during

each sampling period. Unlike the previous case, the voltage vectors of Method 2 with

increased bus capacitance seem to have little drift, indicating that the imbalance

in the neutral point of the dc bus is not significant. The calculated values of the

2-norm of the differences between the vertices and the corresponding voltage vectors

are presented in Section 5.5.1.
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Figure 5.76: Phase current iA for
Method 2 rated speed, rated load and
Cbus = 400mF .

Figure 5.77: FFT of phase current iA
for Method 2 rated speed, rated load
and Cbus = 400mF .

Figure 5.78: Phase current iB for
Method 2 rated speed, rated load and
Cbus = 400mF .

Figure 5.79: FFT of phase current iB
for Method 2 rated speed, rated load
and Cbus = 400mF .

Figure 5.80: Phase current iC for
Method 2 rated speed, rated load and
Cbus = 400mF .

Figure 5.81: FFT of phase current iC
for Method 2 rated speed, rated load
and Cbus = 400mF .
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The space vector plot of the phase currents and the time domain plot of the

neutral point current for Method 2 with increased bus capacitance are presented in

Figure 5.83 and Figure 5.84. The current space vector is mostly circular, and the

six flattened sides are not as prominent as in the current vector from Method 1. In

Figure 5.21, the neutral point current is plotted in the time domain. Although the

neutral point of the dc bus does not vary as much with the larger bus capacitance,

the shape of the neutral point current did not change, which implies that the same

unbalanced current flows through the neutral point. The only reason the balance

of the dc bus voltage does not change significantly is because the larger capacitance

increases the bus stiffness, preventing drastic voltage swings despite the presence of

the same neutral point current.

Figure 5.82: Space vector of line-to-
neutral voltages for Method 2 rated
speed, rated load and Cbus = 400mF .

Figure 5.83: Space vector of phase cur-
rents for Method 2 rated speed, rated
load and Cbus = 400mF .
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Figure 5.84: Neutral point current iNP for Method 2 rated speed, rated load and
Cbus = 400mF .
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5.3.2 Half Rated Speed, Rated Load Results and Analysis

In this section, the results from Method 2 with the machine operating at half

speed and rated load are examined. First, the results using a bus capacitance of 4

mF, which was used in the Method 1 simulation and the Method 3 simulation, are

presented. Then, the results using a bus capacitance of 400 mF are presented.

The time domain plots of the line-to-neutral voltages vAn, vBn, and vCn for

Method 2 with a bus capacitance of 4 mF as well as their corresponding harmonic

spectra in per unit are shown in Figure 5.85 through Figure 5.90. It is clear from the

time domain plots that the neutral point imbalance is so severe in this case that only

the third harmonic component of the voltage is recognizable. The frequency plots also

indicate the severe distortion of the line-to-neutral voltages. Clearly, this method is

not feasible at lower output voltages unless the dc bus capacitance is increased.

The time domain plots of the line-to-line voltages vAB, vBC , and vCA for Method

2 with a bus capacitance of 4 mF as well as their corresponding harmonic spectra

are shown in Figure 5.91 through Figure 5.96. From the time domain plots, part of

the expected two-level operation waveform is visible, but the magnitude of the pulses

is generally much lower than expected. Likewise, some pulses appear that are much

larger than expected. The frequency plots also indicate this severe distortion of the

line-to-line voltages. As stated previously, the quality of these waveforms indicate

that this method would not be practical at this operating point unless the dc bus
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Figure 5.85: Line-to-neutral voltage
vAn for Method 2 half rated speed,
rated load.

Figure 5.86: FFT of line-to-neutral
voltage vAn for Method 2 half rated
speed, rated load.

Figure 5.87: Line-to-neutral voltage
vBn for Method 2 half rated speed,
rated load.

Figure 5.88: FFT of line-to-neutral
voltage vBn for Method 2 half rated
speed, rated load.

Figure 5.89: Line-to-neutral voltage
vCn for Method 2 half rated speed,
rated load.

Figure 5.90: FFT of line-to-neutral
voltage vCn for Method 2 half rated
speed, rated load.
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capacitance is increased.

The time domain plots of the phase currents iA, iB, and iC for Method 2 with a

bus capacitance of 4 mF as well as their corresponding harmonic spectra are shown in

Figure 5.97 through Figure 5.102. From the time domain plots, it is apparent that the

phase currents are heavily distorted though some aspects of the fundamental sinusoid

are still visible. This is confirmed in the frequency plots of the currents. The harmonic

content of the currents is much larger than the harmonic content of the currents from

Method 1, but these harmonics are still relatively small. The largest harmonic above

the fundamental is the fourth harmonic, which is 8.45% of the fundamental.

The space vector plot of the line-to-neutral voltages for Method 2 with a bus

capacitance of 4 mF is presented in Figure 5.103. This voltage space vector clearly

demonstrates the severity of the neutral point imbalance. The small voltage vectors

are badly distorted and have a magnitude significantly larger than the expected

1
3
Vbus = 120V . The calculated values of the 2-norm of the differences between the

vertices and the corresponding voltage vectors are presented in Section 5.5.2.

The space vector plot of the phase currents and the time domain plot of the

neutral point current for Method 2 with a bus capacitance of 4 mF are presented

in Figure 5.104 and Figure 5.105. The trace of the current space vector is a highly

distorted circle with severe deviations between 30◦e. and 60◦e., between 150◦e. and

180◦e., and between 270◦e. and 300◦e. Between these periods of severe distortion,
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Figure 5.91: Line-to-line voltage vAB
for Method 2 half rated speed, rated
load.

Figure 5.92: FFT of line-to-line volt-
age vAB for Method 2 half rated speed,
rated load.

Figure 5.93: Line-to-line voltage vBC
for Method 2 half rated speed, rated
load.

Figure 5.94: FFT of line-to-line volt-
age vBC for Method 2 half rated speed,
rated load.

Figure 5.95: Line-to-line voltage vCA
for Method 2 half rated speed, rated
load.

Figure 5.96: FFT of line-to-line volt-
age vCA for Method 2 half rated speed,
rated load.
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Figure 5.97: Phase current iA for
Method 2 half rated speed, rated load.

Figure 5.98: FFT of phase current iA
for Method 2 half rated speed, rated
load.

Figure 5.99: Phase current iB for
Method 2 half rated speed, rated load.

Figure 5.100: FFT of phase current iB
for Method 2 half rated speed, rated
load.

Figure 5.101: Phase current iC for
Method 2 half rated speed, rated load.

Figure 5.102: FFT of phase current iC
for Method 2 half rated speed, rated
load.
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the trajectory of the current space vector seems to follow an arc with a smoothly

decreasing radius. Since the machine winding is highly inductive, this may be seen

as the decay of the currents in an inductive circuit when the voltage source (in this

case, the active voltage vector) is removed. Likewise, when the active voltage vectors

are applied at 60◦e., 180◦e., and 300◦e., the magnitude of the current space vector

increases. In Figure 5.105, the neutral point current is plotted in the time domain.

Similar to the neutral point current from the rated speed case, the negative portion of

the waveform is more pronounced than the positive portion. Thus, the neutral point

has a significant effect on the neutral point balance.

Figure 5.103: Space vector of line-
to-neutral voltages for Method 2 half
rated speed, rated load.

Figure 5.104: Space vector of phase
currents for Method 2 half rated speed,
rated load.

Again, it was shown that the switching pattern of Method 2 severely affected

the balance of the neutral point of the dc bus. The simulation of the inverter with

PWM Method 2 was repeated with an increased bus capacitance of 400 mF, and the
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Figure 5.105: Neutral point current iNP for Method 2 half rated speed, rated load.

results are provided in the remainder of this section.

The time domain plots of the line-to-neutral voltages vAn, vBn, and vCn as

well as their corresponding harmonic spectra in per unit are shown in Figure 5.106

through Figure 5.111. It is clear from the time domain plots that the line-to-neutral

voltages are heavily distorted by the back emf of the machine. However, these results

are similar to those of Method 1 operating at half speed, rated load. By examining

the frequency plots, it can be seen that these line-to-neutral voltages have a significant

third harmonic slightly less than 40% of the fundamental. The main portion of the

harmonics caused by the switching of the IGBTs appear in the side bands of the

sampling frequency fs = 3105 Hz. Overall, the increase in bus capacitance, though

impractical, greatly improves the quality of the waveforms over half speed operation

with lower bus capacitance.
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Figure 5.106: Line-to-neutral voltage
vAn for Method 2 half rated speed,
rated load and Cbus = 400mF .

Figure 5.107: FFT of line-to-neutral
voltage vAn for Method 2 half rated
speed, rated load and Cbus = 400mF .

Figure 5.108: Line-to-neutral voltage
vBn for Method 2 half rated speed,
rated load and Cbus = 400mF .

Figure 5.109: FFT of line-to-neutral
voltage vBn for Method 2 half rated
speed, rated load and Cbus = 400mF .

Figure 5.110: Line-to-neutral voltage
vCn for Method 2 half rated speed,
rated load and Cbus = 400mF .

Figure 5.111: FFT of line-to-neutral
voltage vCn for Method 2 half rated
speed, rated load and Cbus = 400mF .
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The time domain plots of the line-to-line voltages vAB, vBC , and vCA for Method

2 with a bus capacitance of 400 mF as well as their corresponding harmonic spectra

are shown in Figure 5.112 through Figure 5.117. From the time domain plots, it is

clear that the inverter is operating in two-level mode as expected for the half rated

speed case. By examining the frequency plots, it is seen that the harmonic content is

spread throughout the entire spectrum, though the largest harmonics appear in the

side bands of the sampling frequency.

The time domain plots of the phase currents iA, iB, and iC and their corre-

sponding harmonic spectra for Method 2 with a bus capacitance of 400 mF are shown

in Figure 5.118 through Figure 5.123. From the time domain plots, the currents appear

to be nearly sinusoidal, though a small ripple is seen in the current that is caused by

the switching of the IGBTs. This is confirmed in the frequency plots of the currents.

Much of the harmonic content is located in the side bands of the first harmonic

of the sampling frequency. However, a relatively significant fifth harmonic (1.40%

of the fundamental), seventh harmonic (0.43% of the fundamental), and eleventh

harmonic (0.60% of the fundamental) also exist. It is clear that the increase in the

bus capacitance greatly improved the output quality of the phase currents, though

the result does not show improvement over Method 1.

The space vector plot of the line-to-neutral voltages for Method 2 with a bus

capacitance of 400 mF is presented in Figure 5.124. As expected, the plot of the
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Figure 5.112: Line-to-line voltage vAB
for Method 2 half rated speed, rated
load and Cbus = 400mF .

Figure 5.113: FFT of line-to-line volt-
age vAB for Method 2 half rated speed,
rated load and Cbus = 400mF .

Figure 5.114: Line-to-line voltage vBC
for Method 2 half rated speed, rated
load and Cbus = 400mF .

Figure 5.115: FFT of line-to-line volt-
age vBC for Method 2 half rated speed,
rated load and Cbus = 400mF .

Figure 5.116: Line-to-line voltage vCA
for Method 2 half rated speed, rated
load and Cbus = 400mF .

Figure 5.117: FFT of line-to-line volt-
age vCA for Method 2 half rated speed,
rated load and Cbus = 400mF .
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Figure 5.118: Phase current iA for
Method 2 half rated speed, rated load
and Cbus = 400mF .

Figure 5.119: FFT of phase current iA
for Method 2 half rated speed, rated
load and Cbus = 400mF .

Figure 5.120: Phase current iB for
Method 2 half rated speed, rated load
and Cbus = 400mF .

Figure 5.121: FFT of phase current iB
for Method 2 half rated speed, rated
load and Cbus = 400mF .

Figure 5.122: Phase current iC for
Method 2 half rated speed, rated load
and Cbus = 400mF .

Figure 5.123: FFT of phase current iC
for Method 2 half rated speed, rated
load and Cbus = 400mF .
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space vector is similar to the hexagon that is normally associated with a two-level

inverter. From this space vector plot, it becomes apparent that only zero vectors and

small vectors are used at this operating point. The vertices of the triangles appear to

align fairly well with the locations of the small vectors, which indicates the imbalance

in the neutral point of the dc bus is not significant. The calculated values of the

2-norm of the differences between the vertices and the corresponding voltage vectors

are presented in Section 5.5.2.

The space vector plot of the phase currents and the time domain plot of the

neutral point current for Method 2 with a bus capacitance of 400 mF are presented

in Figure 5.125 and Figure 5.126. The current space vector is nearly circular but

has six slightly flattened sides as in the case of full speed operation. However, the

flattening of the trajectory is not as severe as in some of the previous results. The

slightly jagged deviations in the trajectory are due to the sampling frequency of the

PWM method and seem to be slightly larger than those of the current trajectory from

Method 1. In Figure 5.126, the neutral point current is plotted in the time domain.

At this operating speed, the negative half of the time domain signal is significantly

more prominent than the positive half. Again, this is an indication that this method

inherently affects the balance of the dc bus neutral point more than the switching

pattern of Method 1.
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Figure 5.124: Space vector of line-
to-neutral voltages for Method 2 half
rated speed, rated load and Cbus =
400mF .

Figure 5.125: Space vector of phase
currents for Method 2 half rated speed,
rated load and Cbus = 400mF .

Figure 5.126: Neutral point current iNP for Method 2 half rated speed, rated load
and Cbus = 400mF .
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5.4 Results and Analysis for Method 3

5.4.1 Rated Speed, Rated Load Results and Analysis

In this section, the results from Method 3 with the machine operating at rated

speed and rated load are examined. Only a bus capacitance of 4 mF is considered

for this switching pattern because the imbalance in the neutral point voltage is not

severe in this case.

The time domain plots of the line-to-neutral voltages vAn, vBn, and vCn as well

as their corresponding harmonic spectra in per unit are shown in Figure 5.127 through

Figure 5.132. As with the two previous PWM methods, it is clear from the time

domain plots that the line-to-neutral voltages are heavily distorted by the back emf of

the machine. By examining the frequency plots, it can be seen that this distortion

is caused by a significant third harmonic, which is about 40% of the fundamental.

A smaller ninth harmonic also exists, but with a magnitude of about 2.9% of the

fundamental, its effect is relatively small. The remainder of the harmonic content is

visible in the side bands around harmonics of the sampling frequency fs = 6210 Hz.

Overall, these results are very similar to the line-to-neutral voltages of Method 1.

The time domain plots of the line-to-line voltages vAB, vBC , and vCA as well

as their corresponding harmonic spectra are shown in Figure 5.133 through Figure

5.138. As opposed to the line-to-neutral voltages, the line-to-line voltages have the
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Figure 5.127: Line-to-neutral voltage
vAn for Method 3 rated speed, rated
load.

Figure 5.128: FFT of line-to-neutral
voltage vAn for Method 3 rated speed,
rated load.

Figure 5.129: Line-to-neutral voltage
vBn for Method 3 rated speed, rated
load.

Figure 5.130: FFT of line-to-neutral
voltage vBn for Method 3 rated speed,
rated load.

Figure 5.131: Line-to-neutral voltage
vCn for Method 3 rated speed, rated
load.

Figure 5.132: FFT of line-to-neutral
voltage vCn for Method 3 rated speed,
rated load.
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typical three-level output voltage shape. When inspecting the frequency plots, it can

be seen that the third harmonic components and the ninth harmonic components from

the line-to-neutral voltages were eliminated from the line-to-line voltages as expected.

The remainder of the harmonic content is found in the side bands of the harmonics

of the sampling frequency. Again, these results are very similar to the line-to-line

voltages produced by Method 1.

The time domain plots of the phase currents iA, iB, and iC as well as their

corresponding harmonic spectra are shown in Figure 5.139 through Figure 5.144. From

the time domain plots, the currents appear to be nearly sinusoidal. This is again

confirmed in the frequency plots of the currents. The majority of the harmonic content

is located in the side bands of the harmonics of the sampling frequency. However, a

relatively significant fifth harmonic (1.73% of the fundamental), seventh harmonic

(0.35% of the fundamental), and eleventh harmonic (0.55% of the fundamental) also

exist. Again, the phase currents produced by Method 3 under rated speed, rated load

are very similar to the phase currents produced by Method 1.

The space vector plot of the line-to-neutral voltages is presented in Figure

5.145. For this PWM method, the voltage space vector appears hexagonal with

equilateral triangles lining the edges, which is very similar to the voltage space vector

plot from Method 1. The main difference between the two plots is the slightly larger

number of transitions between voltage vectors in Method 3. This difference is not
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Figure 5.133: Line-to-line voltage vAB
for Method 3 rated speed, rated load.

Figure 5.134: FFT of line-to-line volt-
age vAB for Method 3 rated speed,
rated load.

Figure 5.135: Line-to-line voltage vBC
for Method 3 rated speed, rated load.

Figure 5.136: FFT of line-to-line volt-
age vBC for Method 3 rated speed,
rated load.

Figure 5.137: Line-to-line voltage vCA
for Method 3 rated speed, rated load.

Figure 5.138: FFT of line-to-line volt-
age vCA for Method 3 rated speed,
rated load.
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Figure 5.139: Phase current iA for
Method 3 rated speed, rated load.

Figure 5.140: FFT of phase current iA
for Method 3 rated speed, rated load.

Figure 5.141: Phase current iB for
Method 3 rated speed, rated load.

Figure 5.142: FFT of phase current iB
for Method 3 rated speed, rated load.

Figure 5.143: Phase current iC for
Method 3 rated speed, rated load.

Figure 5.144: FFT of phase current iC
for Method 3 rated speed, rated load.
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easily seen without plotting the voltage space vector as it changes over time. Based

on visual inspection, the vertices of the triangles appear to align fairly well with the

voltage vectors, implying that the imbalance in the neutral point of the dc bus is

small. The calculated values of the 2-norm of the differences between the vertices and

the corresponding voltage vectors are presented in Section 5.5.1.

The space vector plot of the phase currents and the time domain plot of the

neutral point current are presented in Figure 5.146 and Figure 5.147. The current

space vector is almost circular, but it has six flattened sides similar to those of the

current space vector produced by Method 1 operating under rated speed and rated

load. In Figure 5.147, the neutral point current is plotted in the time domain. Similar

to the neutral point current generated by Method 1 operating under rated speed and

rated load, the neutral point current is split fairly evenly between the positive half of

the cycle and the negative half of the cycle. This is because in this method, both the

positive small vectors and the negative small vectors are applied.
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Figure 5.145: Space vector of line-to-
neutral voltages for Method 3 rated
speed, rated load.

Figure 5.146: Space vector of phase cur-
rents for Method 3 rated speed, rated
load.

Figure 5.147: Neutral point current iNP for Method 3 rated speed, rated load.
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5.4.2 Half Rated Speed, Rated Load Results and Analysis

In this section, the results from Method 3 with the machine operating at half

speed and rated load are examined. The time domain plots of the line-to-neutral

voltages vAn, vBn, and vCn as well as their corresponding harmonic spectra in per unit

are shown in Figure 5.148 through Figure 5.153. It is clear from the time domain

plots that the line-to-neutral voltages are distorted by the back emf of the machine.

It is also clear that the switching frequency of the output has increased although the

sampling frequency remained at fs = 3105 Hz. This is due to the increase in the

number of switching state transitions within each sampling period for lower output

voltage magnitudes. By examining the frequency plots, it can be seen that these

line-to-neutral voltages have a significant third harmonic slightly less than 40% of

the fundamental and a smaller ninth harmonic just as in the rated speed case. The

remainder of the harmonic content is visible in the side bands around the harmonics

of the sampling frequency.

The time domain plots of the line-to-line voltages vAB, vBC , and vCA as well as

their corresponding harmonic spectra are shown in Figure 5.154 through Figure 5.159.

From the time domain plots, it is clear that the inverter is operating in two-level mode

for the half speed case as expected. As in the line-to-neutral voltages, the switching

frequency of the line-to-line voltages has increased compared to the line-to-line voltages

when operating at rated speed. From the frequency plots, the large third harmonic
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Figure 5.148: Line-to-neutral voltage
vAn for Method 3 half rated speed,
rated load.

Figure 5.149: FFT of line-to-neutral
voltage vAn for Method 3 half rated
speed, rated load.

Figure 5.150: Line-to-neutral voltage
vBn for Method 3 half rated speed,
rated load.

Figure 5.151: FFT of line-to-neutral
voltage vBn for Method 3 half rated
speed, rated load.

Figure 5.152: Line-to-neutral voltage
vCn for Method 3 half rated speed,
rated load.

Figure 5.153: FFT of line-to-neutral
voltage vCn for Method 3 half rated
speed, rated load.
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components and the ninth harmonic components from the line-to-neutral voltages

were eliminated from the line-to-line voltages. The remainder of the harmonic content

is present in the side bands of the harmonics of the sampling frequency, particularly

(3fs), (4fs), and (5fs).

The time domain plots of the phase currents iA, iB, and iC as well as their

corresponding harmonic spectra are shown in Figure 5.160 through Figure 5.165. From

the time domain plots, the currents appear to be nearly sinusoidal. This is confirmed

in the frequency plots of the currents. Much of the harmonic content is located in the

side bands of the harmonics of the sampling frequency, though more side bands appear

in this case than in the phase currents of Method 1 operating at half speed, rated

load. As in the other methods, a relatively significant fifth harmonic (1.71% of the

fundamental), seventh harmonic (0.34% of the fundamental), and eleventh harmonic

(0.53% of the fundamental) also exist.

The space vector plot of the line-to-neutral voltages is presented in Figure

5.166. As was the case with the previous two methods operating correctly at half

speed, rated load, the voltage space vector has the appearance of the hexagon that

is normally associated with a two-level inverter. Once again, the primary difference

between this space vector plot and those of the previous methods is in the number of

switching state transitions within each sampling period. Based on visual inspection,

the vertices of the triangles appear to align fairly well with the locations of the small
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Figure 5.154: Line-to-line voltage vAB
for Method 3 half rated speed, rated
load.

Figure 5.155: FFT of line-to-line volt-
age vAB for Method 3 half rated speed,
rated load.

Figure 5.156: Line-to-line voltage vBC
for Method 3 half rated speed, rated
load.

Figure 5.157: FFT of line-to-line volt-
age vBC for Method 3 half rated speed,
rated load.

Figure 5.158: Line-to-line voltage vCA
for Method 3 half rated speed, rated
load.

Figure 5.159: FFT of line-to-line volt-
age vCA for Method 3 half rated speed,
rated load.
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Figure 5.160: Phase current iA for
Method 3 half rated speed, rated load.

Figure 5.161: FFT of phase current iA
for Method 3 half rated speed, rated
load.

Figure 5.162: Phase current iB for
Method 3 half rated speed, rated load.

Figure 5.163: FFT of phase current iB
for Method 3 half rated speed, rated
load.

Figure 5.164: Phase current iC for
Method 3 half rated speed, rated load.

Figure 5.165: FFT of phase current iC
for Method 3 half rated speed, rated
load.
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vectors, indicating that neutral point imbalance is not significant. The calculated

values of the 2-norm of the differences between the vertices and the corresponding

voltage vectors are presented in Section 5.5.2.

The space vector plot of the phase currents and the time domain plot of the

neutral point current are presented in Figure 5.167 and Figure 5.168. The current space

vector is mostly circular, but it has six flattened sides as in the case of rated speed

operation. The jagged deviations from the trajectory that are due to the switching of

the IGBTs seem to be smaller in this case than in previous cases. This is due to the

higher switching frequency of the IGBTs. In Figure 5.168, the neutral point current is

plotted in the time domain. The neutral point current seems to be split fairly evenly

between the positive half of the cycle and the negative half of the cycle, indicating its

effect on the neutral point balance is relatively small. The switching frequency seen in

the neutral point current also increased in this case.
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Figure 5.166: Space vector of line-
to-neutral voltages for Method 3 half
rated speed, rated load.

Figure 5.167: Space vector of phase
currents for Method 3 half rated speed,
rated load.

Figure 5.168: Neutral point current iNP for Method 3 half rated speed, rated load.
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5.5 Comparison of the Three Methods

5.5.1 Operation at Rated Speed, Rated Load

In this section, the three space vector PWM methods are compared when each

is operating at rated speed and rated load. This comparison is based on the change in

the small and medium voltage vectors during operation, the neutral point rms and

mean values, and the total harmonic distortion of the line-to-neutral voltages, the

line-to-line voltages, and the phase currents.

The total harmonic distortion of each of the line-to-neutral voltages for space

vector PWM Method 1, Method 2, Method 3, and Method 2 with increased bus

capacitance is presented in Table 5.1. The line-to-neutral voltage THD is nearly

identical for both Method 1 and Method 3. The line-to-neutral voltage THD for

Method 2 is significantly higher for the base case of Cbus = 4 mF and slightly higher

for the second case of Cbus = 400 mF.

Rated Speed Method 1 Method 2 Method 3 Method 2 (Cbus
of 400mF)

vAn THD 50.89% 57.97% 50.89% 51.00%
vBn THD 50.90% 57.94% 50.90% 51.00%
vCn THD 50.90% 57.96% 50.90% 51.00%

Average THD 50.90% 57.96% 50.90% 51.00%

Table 5.1: Summary of line-to-neutral voltage THD for all three methods at rated
speed, rated load.

The total harmonic distortion of each of the line-to-line voltages for space
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vector PWM Method 1, Method 2, Method 3, and Method 2 with increased bus

capacitance is presented in Table 5.2. The line-to-line voltage THD is nearly identical

for both Method 1 and Method 3. The line-to-line voltage THD for Method 2 is

significantly higher for the base case of Cbus = 4 mF and approximately the same for

the second case of Cbus = 400 mF.

Rated Speed Method 1 Method 2 Method 3 Method 2 (Cbus
of 400mF)

vAB THD 29.62% 40.30% 29.62% 29.82%
vBC THD 29.64% 40.34% 29.64% 29.84%
vCA THD 29.60% 40.33% 29.60% 29.84%

Average THD 29.62% 40.32% 29.62% 29.83%

Table 5.2: Summary of line-to-line voltage THD for all three methods at rated speed,
rated load.

The total harmonic distortion of each of the phase currents for space vector

PWM Method 1, Method 2, Method 3, and Method 2 with increased bus capacitance

is presented in Table 5.3. The phase current THD is nearly identical for both Method

1 and Method 3. The phase current THD for Method 2 is approximately four and

a half times higher for the base case of Cbus = 4 mF, though it is nearly the same

compared to Method 1 and Method 3 for the second case of Cbus = 400 mF. The

mean neutral point current is also very close to zero in both Method 1 and Method 3,

indicating a small net current flowing through the bus neutral. Since there is little net

current through the neutral point of the dc bus, the bus capacitors are not significantly

charged or discharged. This indicates that both of these switching patterns have little
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effect on the neutral point voltage balance. The sign of the mean neutral point current

simply indicates the direction of net current flow through the neutral point, which

indicates which of the bus capacitors is charging and which is discharging. In the

case of Method 2, the absolute value of the mean neutral point current is much larger.

Thus, the net neutral point current is larger, and the bus capacitors become overly

charged or discharged, creating an imbalance in the neutral point voltage.

Rated Speed Method 1 Method 2 Method 3 Method 2 (Cbus
of 400mF)

iA THD 1.67% 7.76% 1.67% 1.72%
iB THD 1.68% 7.68% 1.68% 1.73%
iC THD 1.68% 7.67% 1.68% 1.72%

Average THD 1.68% 7.71% 1.68% 1.72%
INP,rms (Arms) 7.248 6.883 7.248 7.235
mean(iNP ) (A) −6.710E − 3 −2.414 −6.712E − 3 −2.426

Table 5.3: Summary of phase current THD and RMS value of neutral point current
for all three methods at rated speed, rated load.

The values of the 2-norm of the change in the small and medium voltage

vectors during operation of the inverter for space vector PWM Method 1, Method 2,

Method 3, and Method 2 with increased bus capacitance are presented in Table 5.4.

In most cases, Method 1 and Method 3 both have relatively little drift in the small

voltage vectors and the medium voltage vectors. For Method 2, in the base case of

Cbus = 4 mF, the deviation of the small and medium vectors from their correct values

is very large, thus indicating significant neutral point voltage imbalance. When the

bus capacitance is increased to Cbus = 400 mF, however, the deviation of the small
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and medium vectors is greatly reduced. The drift in the small vectors tends to be

slightly smaller than the drift in the medium vectors for Method 1 and Method 3

since the small vectors are always applied in redundant pairs in these two switching

patterns. In contrast, the drift is relatively constant between the small and medium

vectors in Method 2 because only one of the redundant small vectors is applied within

a sampling period.

Rated Speed Method 1 Method 2 Method 3 Method 2 (Cbus
of 400mF)

sm. vector 1 deviation (V) 0.0081 50.41 0.0081 0.5559
sm. vector 2 deviation (V) 0.0320 50.01 0.0319 0.5558
sm. vector 3 deviation (V) 0.0078 50.02 0.0078 0.5519
sm. vector 4 deviation (V) 0.0329 50.17 0.0328 0.5530
sm. vector 5 deviation (V) 0.0076 50.22 0.0077 0.5536
sm. vector 6 deviation (V) 0.0314 50.36 0.0314 0.5551

med. vector 1 deviation (V) 0.1105 49.96 0.1103 0.5086
med. vector 2 deviation (V) 0.0997 49.96 0.0996 0.4851
med. vector 3 deviation (V) 0.1099 50.03 0.1097 0.5106
med. vector 4 deviation (V) 0.1005 50.15 0.1005 0.4872
med. vector 5 deviation (V) 0.1119 50.22 0.1118 0.5121
med. vector 6 deviation (V) 0.1004 50.34 0.1002 0.4892

Table 5.4: Summary of the 2-norm of the drift of the voltage vectors for all three
methods at rated speed, rated load.

Overall, both Method 1 and Method 3 seem to produce similar results when

operating at rated speed and rated load. This is because when operating at rated

speed and rated load, the reference vector rotating in the (α − β) plane is near its

maximum value. In this case, the reference vector only briefly passes through the

middle ring of triangles and does not pass through the inner ring of triangles described
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previously in the development of Method 3. Thus, for the majority of the fundamental

cycle, the switching pattern for Method 3 is identical to that of Method 1.

Method 2 did not perform as well as Method 1 or Method 3, but for the most

part, the waveforms were reasonable at this speed even when operating in the base

case of Cbus = 4 mF despite the significant neutral point voltage imbalance. This

is again related to the magnitude of the reference vector in the (α − β) plane. As

stated previously, the majority of the fundamental cycle is spent within the outer

ring of triangles. Within the outer triangles, most of the dwell time of the active

vectors is assigned to the large vectors, and the medium vectors and small vectors are

applied for a shorter portion of the sampling period. Since only the medium and small

vectors affect the neutral point balance, there is a significant imbalance in the neutral

point voltage, but it is not large enough that the inverter operation fails. Although

increasing the bus capacitance greatly improved the results from Method 2, this is

generally not practical since cost increases significantly as capacitance increases.

5.5.2 Operation at Half Speed, Rated Load

In this section, the three space vector PWM methods are compared when each

is operating at half speed, rated load. This comparison is based on the changes in the

small voltage vectors during operation, the neutral point rms and mean values, and

the total harmonic distortion of the line-to-neutral voltages, the line-to-line voltages,
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and the phase currents.

The total harmonic distortion of each of the line-to-neutral voltages for space

vector PWM Method 1, Method 2, Method 3, and Method 2 with increased bus

capacitance is presented in Table 5.5. For this operating condition, the line-to-neutral

voltage THD of Method 3 is slightly less than that of Method 1. Likewise, the increase

in the bus capacitance improved the voltage THD of Method 2, which is comparable

to that of Method 3. However, the voltage THD is very high for the base case of

Cbus = 4 mF for Method 2. This is because the neutral point voltage imbalance was

large enough that the inverter performed extremely poorly.

Half Speed Method 1 Method 2 Method 3 Method 2 (Cbus
of 400mF)

vAn THD 71.41% 382.76% 69.35% 69.74%
vBn THD 71.41% 382.52% 69.34% 69.73%
vCn THD 71.41% 383.14% 69.32% 69.75%

Average THD 71.41% 382.80% 69.34% 69.74%

Table 5.5: Summary of line-to-neutral voltage THD for all three methods at half speed,
rated load.

The total harmonic distortion of each of the line-to-line voltages for space

vector PWM Method 1, Method 2, Method 3, and Method 2 with increased bus

capacitance is presented in Table 5.6. For this operating condition, the line-to-line

voltage THD of Method 3 is less than that of Method 1. Likewise, the increase in the

bus capacitance improved the voltage THD of Method 2, which is comparable to that

of Method 3. However, the voltage THD of Method 2 is once again very high for the
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base case of Cbus = 4 mF. Again, this is because the neutral point voltage imbalance

was large enough that the inverter performed extremely poorly.

Half Speed Method 1 Method 2 Method 3 Method 2 (Cbus
of 400mF)

vAB THD 58.59% 341.82% 56.02% 56.51%
vBC THD 58.60% 342.25% 56.00% 56.54%
vCA THD 58.60% 342.31% 56.01% 56.54%

Average THD 58.60% 342.13% 56.01% 56.53%

Table 5.6: Summary of line-to-line voltage THD for all three methods at half speed,
rated load.

The total harmonic distortion of each of the phase currents for space vector

PWM Method 1, Method 2, Method 3, and Method 2 with increased bus capacitance

is presented in Table 5.7. The phase current THD is slightly lower in the case of

Method 3 than in the case of Method 1. The phase current THD of Method 2 is nearly

six times higher for the base case of Cbus = 4 mF and slightly higher for the second

case of Cbus = 400 mF. The mean neutral point current is also very close to zero in

both Method 1 and Method 3. Thus, even at lower output voltages, the switching

patterns of Method 1 and Method 3 have relatively little effect on the neutral point

voltage balance. In the base case of Method 2, the mean neutral point current is

also very small. However, this is not caused by an improvement of the neutral point

balance. This is a result of the neutral point becoming so imbalanced that the inverter

essentially fails. When the bus capacitance is increased for Method 2, the absolute

value of the mean neutral point current is very large, creating an imbalance in the
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neutral point voltage.

Half Speed Method 1 Method 2 Method 3 Method 2 (Cbus
of 400mF)

iA THD 1.78% 10.63% 1.70% 2.23%
iB THD 1.78% 10.63% 1.70% 2.23%
iC THD 1.78% 10.63% 1.71% 2.23%

Average THD 1.78% 10.63% 1.70% 2.23%
INP,rms (Arms) 11.585 7.577 11.592 11.556
mean(iNP ) (A) −1.430E − 2 2.441E − 4 −1.126E − 2 −8.294

Table 5.7: Summary of phase current THD and RMS value of neutral point current
for all three methods at half speed, rated load.

The values of the 2-norm of the change in the small voltage vectors during

operation of the inverter for space vector PWM Method 1, Method 2, Method 3, and

Method 2 with increased bus capacitance are presented in Table 5.8. Only small

vectors are included because at half speed operation, no medium vectors are applied.

In most cases, both Method 1 and Method 3 have relatively little drift in the small

vectors. For Method 2, in the base case of Cbus = 4 mF, the deviation of the small

vectors from their correct values is very large, thus indicating significant neutral point

voltage imbalance. When the bus capacitance is increased to Cbus = 400 mF, however,

the deviation of the small vectors is greatly reduced. Even after applying the larger

bus capacitance, the deviation in the small vectors of Method 2 is still very large.

When operating at half speed, Method 3 seems to produce slightly improved

results over Method 1. However, switching losses are larger at low speed operation

in Method 3 due to the increase in the IGBT switching frequency associated with
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Half Speed Method 1 Method 2 Method 3 Method 2 (Cbus
of 400mF)

sm. vector 1 deviation (V) 0.1121 119.9 0.1428 1.734
sm. vector 2 deviation (V) 0.1142 119.8 0.1415 1.658
sm. vector 3 deviation (V) 0.1140 119.9 0.1441 1.725
sm. vector 4 deviation (V) 0.1155 119.8 0.1440 1.671
sm. vector 5 deviation (V) 0.1166 119.9 0.1485 1.738
sm. vector 6 deviation (V) 0.1184 119.8 0.1463 1.651

Table 5.8: Summary of the 2-norm of the drift of the voltage vectors for all three
methods at half speed, rated load.

increasing the number of switching state transitions within each sampling period.

Overall, Method 1 and Method 3 produce similar results in the open loop case.

However, the inclusion of all redundant vectors in the switching patterns of Method 3

improves the ability of this method to reduce neutral point imbalance in a closed loop

system through the dwell times of the redundant vectors.

Method 2 did not perform as well as Method 1 or Method 3 at this operating

condition. In particular, with a dc bus capacitance of Cbus = 4 mF, the drive

was essentially inoperable based on the quality of the output waveforms. The poor

performance of this method at low output voltages is a result of the application of

only one of the redundant small vectors within a sampling period. Without applying

both redundant vectors, the neutral point voltage imbalance was able to increase to

the point where the output waveforms were unacceptably distorted. Even increasing

the bus capacitance to Cbus = 400 mF did not reduce the neutral point imbalance to

the point where it was comparable to the low imbalance seen in both Method 1 and
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Method 3. Overall, the switching pattern of Method 2 does not perform well when

phase connections to the neutral point of the dc bus are made often as in the case of

low speed operation.
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Chapter 6

Conclusions and Recommendations for Future Work

6.1 Conclusions

In this thesis, an introduction to both two-level space vector PWM and three-

level space vector PWM was provided, and three different switching patterns for

three-level space vector PWM that are found in the literature were reviewed. The

first method is the simplest method and is based on the (0 − 1 − 2 − 7) two-level

switching sequence. The second method, which is based on the (7−2−1−2) two-level

switching sequence, is relatively simple and has the potential to reduce output current

distortion in certain circumstances. However, the nature of the switching pattern can

severely affect the neutral point voltage balance of the dc bus. The final method is

similar to the first method for large modulation indices. However, as the modulation

index decreases, the number of switching states per sampling period increases. By

increasing the number of switching states per sampling period, this method can take

advantage of all redundant switching states at the cost of a higher IGBT switching

frequency.
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A three-level NPC inverter model using MATLAB Simulink was created to

simulate these three switching patterns when driving a case study IPM machine in a

steady state configuration. The IPM machine circuit model was based on the state

space representation of the synchronous machine, and all machine parameters were

previously found using Finite Element Analysis. The line-to-neutral voltage, the

line-to-line voltages, the phase currents, and the neutral point current were examined

for each PWM method at two different machine operating conditions. By using two

different operating conditions (rated speed, rated load and half speed, rated load),

the three-level inverter was forced to operate in both three-level mode and two-level

mode. The three space vector PWM methods were compared based on their simulation

results.

From this work, some insight into the effects of a PM-induced back emf

waveform from an IPM machine is gained. It was found for this particular case study

machine that the harmonic content in the back emf distorted the line-to-neutral

voltages for all three space vector PWM methods which led to distortion in the phase

currents as well. The application of the switching states in Method 2 was found to

affect the dc bus neutral point balance the most, which generally led to the worst

inverter performance. The performance of Method 2 was improved by increasing the

stiffness of the dc bus through a significantly larger bus capacitance. However, even

with the increased bus capacitance, it did not perform as well as Method 1 and Method
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3. In contrast, neither Method 1 nor Method 3 had a significant effect on the neutral

point balance. The results from Method 1 and Method 3 were very similar except

at low modulation indices, in which case the performance of the Method 3 inverter

was slightly better than that of the Method 1 inverter. In general, each of these

switching patterns has its own strengths and weaknesses. The first switching pattern

has good all-around performance and is simple to implement. The second switching

pattern may have some advantages in harmonic content if the neutral point balancing

problem is addressed. This might be achieved by applying this switching pattern in

an inverter topology that does not have a capacitor voltage balancing problem such as

the cascaded H-bridge. The third switching pattern takes advantage of all redundant

switching states, which can allow for more flexibility in the sharing of the dwell times

among the switching states in a closed loop system.

6.2 Recommendations for Future Work

Although some basic insight into the inherent properties of three space vector

PWM methods is presented in this thesis, much more information about the relation-

ship between space vector modulation methods and PM machines has yet to be found.

This investigation could easily be expanded in several ways to provide a much wider

view of multilevel space vector PWM in relation to PM and wound-field synchronous

machines. First, this investigation should examine other PWM performance criteria
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such as the balancing of power dissipation among switching devices. This is an

important consideration with the constant push to improve system efficiency. Real

effects of the drive, such as IGBT turn-on and turn-off times, should also be included

in future work. This is very important because without a small dead time to account

for the turn-on and turn-off time of the IGBTs, the phase legs could short-circuit the

dc bus. The simulation of the three-level inverter should also be implemented using

ANSYS Simplorer. Although controls are easily implemented in MATLAB Simulink,

certain aspects of the drive operation, including the switching losses of the IGBTs,

are not easily modeled. Unlike in Simulink, very detailed models of IGBTs may be

built in Simplorer, which would simplify calculation of the switching losses and power

dissipation imbalances in the inverter. As system efficiency requirements continue to

increase, a calculation of the switching losses for each of the three switching patterns

would be desirable.

This investigation could also be expanded to a much wider variety of PWM

methods, both space vector methods and other methods including carrier-based PWM,

selective harmonic elimination PWM, and various discontinous PWM methods. This

would provide a useful tool for comparing different PWM methods. The inherent

differences between different synchronous machines might have a significant effect on

the PWM methods applied to their drives as well. Thus, other synchronous machines

beyond the case study in this work should be investigated with these PWM methods.
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In particular, several replaceable rotors for the case study machine exist, including a

rotor which induces a sinusoidal back emf. By repeating the simulations using this

rotor, the effects of harmonics in the back emf may be isolated from the inherent

qualities of these three switching sequences. Comparisons of these PWM methods in

closed loop systems should also be investigated since modern drives generally do not

operate in an open loop control configuration. This investigation might provide some

insight for those who wish to choose a PWM method that is particularly effective for a

specific closed loop application. Finally, these PWM methods should be implemented

in a drive and compared based on the experimental results as well as the simulation

results.
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Appendix A

Space Vector PWM Switching Tables

A.1 Switching Tables for Method 1
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Figure A.1: Method 1 switching table Sector I, equivalent two-level sector I.
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Figure A.2: Method 1 switching table Sector I, equivalent two-level sector II.
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Figure A.3: Method 1 switching table Sector I, equivalent two-level sector III.
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Figure A.4: Method 1 switching table Sector I, equivalent two-level sector IV.
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Figure A.5: Method 1 switching table Sector I, equivalent two-level sector V.
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Figure A.6: Method 1 switching table Sector I, equivalent two-level sector VI.
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Figure A.7: Method 1 switching table Sector II, equivalent two-level sector I.
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Figure A.8: Method 1 switching table Sector II, equivalent two-level sector II.
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Figure A.9: Method 1 switching table Sector II, equivalent two-level sector III.
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Figure A.10: Method 1 switching table Sector II, equivalent two-level sector IV.
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Figure A.11: Method 1 switching table Sector II, equivalent two-level sector V.
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Figure A.12: Method 1 switching table Sector II, equivalent two-level sector VI.
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Figure A.13: Method 1 switching table Sector III, equivalent two-level sector I.
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Figure A.14: Method 1 switching table Sector III, equivalent two-level sector II.
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Figure A.15: Method 1 switching table Sector III, equivalent two-level sector III.
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Figure A.16: Method 1 switching table Sector III, equivalent two-level sector IV.
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Figure A.17: Method 1 switching table Sector III, equivalent two-level sector V.
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Figure A.18: Method 1 switching table Sector III, equivalent two-level sector VI.
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Figure A.19: Method 1 switching table Sector IV, equivalent two-level sector I.
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Figure A.20: Method 1 switching table Sector IV, equivalent two-level sector II.
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Figure A.21: Method 1 switching table Sector IV, equivalent two-level sector III.
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Figure A.22: Method 1 switching table Sector IV, equivalent two-level sector IV.
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Figure A.23: Method 1 switching table Sector IV, equivalent two-level sector V.
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Figure A.24: Method 1 switching table Sector IV, equivalent two-level sector VI.
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Figure A.25: Method 1 switching table Sector V, equivalent two-level sector I.
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Figure A.26: Method 1 switching table Sector V, equivalent two-level sector II.
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Figure A.27: Method 1 switching table Sector V, equivalent two-level sector III.
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Figure A.28: Method 1 switching table Sector V, equivalent two-level sector IV.
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Figure A.29: Method 1 switching table Sector V, equivalent two-level sector V.
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Figure A.30: Method 1 switching table Sector V, equivalent two-level sector VI.
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Figure A.31: Method 1 switching table Sector VI, equivalent two-level sector I.
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Figure A.32: Method 1 switching table Sector VI, equivalent two-level sector II.
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Figure A.33: Method 1 switching table Sector VI, equivalent two-level sector III.
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Figure A.34: Method 1 switching table Sector VI, equivalent two-level sector IV.
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Figure A.35: Method 1 switching table Sector VI, equivalent two-level sector V.
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Figure A.36: Method 1 switching table Sector VI, equivalent two-level sector VI.
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A.2 Switching Tables for Method 2
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Figure A.37: Method 2 switching table Sector I, equivalent two-level sector I.
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Figure A.38: Method 2 switching table Sector I, equivalent two-level sector II.

Sa

Sb

Sc

(POO) (OOO) (OON) (OOO) (OOO) (OON) (OOO) (POO)

T0
2

Tv
4

Tu
2

Tv
4

Tv
4

Tu
2

Tv
4

T0
2

Figure A.39: Method 2 switching table Sector I, equivalent two-level sector III.
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Figure A.40: Method 2 switching table Sector I, equivalent two-level sector IV.
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Figure A.41: Method 2 switching table Sector I, equivalent two-level sector V.
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Figure A.42: Method 2 switching table Sector I, equivalent two-level sector VI.
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Figure A.43: Method 2 switching table Sector II, equivalent two-level sector I.
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Figure A.44: Method 2 switching table Sector II, equivalent two-level sector II.
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Figure A.45: Method 2 switching table Sector II, equivalent two-level sector III.
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Figure A.46: Method 2 switching table Sector II, equivalent two-level sector IV.
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Figure A.47: Method 2 switching table Sector II, equivalent two-level sector V.
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Figure A.48: Method 2 switching table Sector II, equivalent two-level sector VI.
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Figure A.49: Method 2 switching table Sector III, equivalent two-level sector I.
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Figure A.50: Method 2 switching table Sector III, equivalent two-level sector II.
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Figure A.51: Method 2 switching table Sector III, equivalent two-level sector III.
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Figure A.52: Method 2 switching table Sector III, equivalent two-level sector IV.
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Figure A.53: Method 2 switching table Sector III, equivalent two-level sector V.
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Figure A.54: Method 2 switching table Sector III, equivalent two-level sector VI.
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Figure A.55: Method 2 switching table Sector IV, equivalent two-level sector I.
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Figure A.56: Method 2 switching table Sector IV, equivalent two-level sector II.
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Figure A.57: Method 2 switching table Sector IV, equivalent two-level sector III.
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Figure A.58: Method 2 switching table Sector IV, equivalent two-level sector IV.
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Figure A.59: Method 2 switching table Sector IV, equivalent two-level sector V.
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Figure A.60: Method 2 switching table Sector IV, equivalent two-level sector VI.
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Figure A.61: Method 2 switching table Sector V, equivalent two-level sector I.
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Figure A.62: Method 2 switching table Sector V, equivalent two-level sector II.
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Figure A.63: Method 2 switching table Sector V, equivalent two-level sector III.
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Figure A.64: Method 2 switching table Sector V, equivalent two-level sector IV.
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Figure A.65: Method 2 switching table Sector V, equivalent two-level sector V.
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Figure A.66: Method 2 switching table Sector V, equivalent two-level sector VI.
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Figure A.67: Method 2 switching table Sector VI, equivalent two-level sector I.
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Figure A.68: Method 2 switching table Sector VI, equivalent two-level sector II.
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Figure A.69: Method 2 switching table Sector VI, equivalent two-level sector III.



185

Sa

Sb

Sc

(POP) (OOP) (ONP) (OOP) (OOP) (ONP) (OOP) (POP)

T0
2

Tu
4

Tv
2

Tu
4

Tu
4

Tv
2

Tu
4

T0
2

Figure A.70: Method 2 switching table Sector VI, equivalent two-level sector IV.
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Figure A.71: Method 2 switching table Sector VI, equivalent two-level sector V.
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Figure A.72: Method 2 switching table Sector VI, equivalent two-level sector VI.
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A.3 Switching Tables for Method 3
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Figure A.73: Method 3 switching table Sector I, equivalent two-level sector I.
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Figure A.74: Method 3 switching table Sector I, equivalent two-level sector II.
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Figure A.75: Method 3 switching table Sector I, equivalent two-level sector III.
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Figure A.76: Method 3 switching table Sector I, equivalent two-level sector IV.
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Figure A.77: Method 3 switching table Sector I, equivalent two-level sector V.
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Figure A.78: Method 3 switching table Sector I, equivalent two-level sector VI.
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Figure A.79: Method 3 switching table Sector II, equivalent two-level sector I.
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Figure A.80: Method 3 switching table Sector II, equivalent two-level sector II.
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Figure A.81: Method 3 switching table Sector II, equivalent two-level sector III.
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Figure A.82: Method 3 switching table Sector II, equivalent two-level sector IV.
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Figure A.83: Method 3 switching table Sector II, equivalent two-level sector V.
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Figure A.84: Method 3 switching table Sector II, equivalent two-level sector VI.
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Figure A.85: Method 3 switching table Sector III, equivalent two-level sector I.
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Figure A.86: Method 3 switching table Sector III, equivalent two-level sector II.

Sa

Sb

Sc

(NON) (NPN) (NPO) (OPO) (OPO) (NPO) (NPN) (NON)

T0
4

Tu
2

Tv
2

T0
4

T0
4

Tv
2

Tu
2

T0
4

Figure A.87: Method 3 switching table Sector III, equivalent two-level sector III.
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Figure A.88: Method 3 switching table Sector III, equivalent two-level sector IV.
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Figure A.89: Method 3 switching table Sector III, equivalent two-level sector V.
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Figure A.90: Method 3 switching table Sector III, equivalent two-level sector VI.
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Figure A.91: Method 3 switching table Sector IV, equivalent two-level sector I.
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Figure A.92: Method 3 switching table Sector IV, equivalent two-level sector II.
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Figure A.93: Method 3 switching table Sector IV, equivalent two-level sector III.
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Figure A.94: Method 3 switching table Sector IV, equivalent two-level sector IV.
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Figure A.95: Method 3 switching table Sector IV, equivalent two-level sector V.
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Figure A.96: Method 3 switching table Sector IV, equivalent two-level sector VI.
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Figure A.97: Method 3 switching table Sector V, equivalent two-level sector I.

Sa

Sb

Sc

(NNN) (NNO) (NOO) (OOO) (OOP) (OPP) (PPP) (PPP) (OPP) (OOP) (OOO) (NOO) (NNO) (NNN)

Tu
6

T0
4

Tv
4

Tu
6

T0
4

Tv
4

Tu
6

Tu
6

Tv
4

T0
4

Tu
6

Tv
4

T0
4

Tu
6

Figure A.98: Method 3 switching table Sector V, equivalent two-level sector II.
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Figure A.99: Method 3 switching table Sector V, equivalent two-level sector III.
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Figure A.100: Method 3 switching table Sector V, equivalent two-level sector IV.
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Figure A.101: Method 3 switching table Sector V, equivalent two-level sector V.
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Figure A.102: Method 3 switching table Sector V, equivalent two-level sector VI.
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Figure A.103: Method 3 switching table Sector VI, equivalent two-level sector I.
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Figure A.104: Method 3 switching table Sector VI, equivalent two-level sector II.
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Figure A.105: Method 3 switching table Sector VI, equivalent two-level sector III.
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Figure A.106: Method 3 switching table Sector VI, equivalent two-level sector IV.
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Figure A.107: Method 3 switching table Sector VI, equivalent two-level sector V.
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Figure A.108: Method 3 switching table Sector VI, equivalent two-level sector VI.
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