
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Applying an Improved MRPS-GMM Method to
Detect Temporal Patterns in Dynamic Data System
Shaobo Wang
Marquette University

Recommended Citation
Wang, Shaobo, "Applying an Improved MRPS-GMM Method to Detect Temporal Patterns in Dynamic Data System" (2013). Master's
Theses (2009 -). Paper 238.
http://epublications.marquette.edu/theses_open/238

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

APPLYING AN IMPROVED MRPS-GMM METHOD TO DETECT TEMPORAL

PATTERNS IN DYNAMIC DATA SYSTEM

by

Shaobo Wang, B.S.

A Thesis submitted to the Faculty of the

Graduate School, Marquette University,

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Milwaukee, Wisconsin

December 2013

ABSTRACT

APPLYING AN IMPROVED MRPS-GMM METHOD TO DETECT TEMPORAL

PATTERNS IN DYNAMIC DATA SYSTEM

Shaobo Wang

Marquette University, 2013

The purpose of this thesis is to introduce an improved approach for the temporal

pattern detection, which is based on the Multivariate Reconstructed Phase Space (MRPS)

and the Gaussian Mixture Model (GMM), to overcome the disadvantage caused by the

diversity of shapes among different temporal patterns in multiple nonlinear time series.

Moreover, this thesis presents an applicable software program developed with MATLAB

for users to utilize this approach.

A major study involving dynamic data systems is to understand the

correspondence between events of interest and predictive temporal patterns in the output

observations, which can be used to develop a mechanism to predict the occurrence of

events. The approach introduced in this thesis employs Expectation-Maximization (EM)

algorithm to fit a more precise distribution for the data points embedded in the MRPS.

Furthermore, it proposes an improved algorithm for the pattern classification process. As

a result, the computational complexity will be reduced.

A recently developed software program, MATPAD, is presented as a deliverable

application of this approach. The GUI of this program contains specific functionalities so

that users can directly implement the procedure of MRPS embedding and fit data

distribution with GMM. Moreover, it allows users to customize the related parameters for

specific problems so that users will be able to test their own data.

i

ACKNOWLEDGMENTS

Shaobo Wang, B.S.

 I would like to give my deep gratitude to my academic advisor, Professor Xin

Feng. This thesis won’t be completed without his support, guidance and encouragement. I

have learned not only his insightful vision of academic research, but also the wisdom of

life through my study at Marquette University.

In addition, this research has benefited from Dr. Povinelli’s and Dr. Wenjing

Zhang’s work in this field. Their kind help and inspirations are gratefully acknowledged.

I would also like to thank the committee members, Professor Edwin Yaz and Professor

Naveen Bansal, for their assistance on my research. Special thanks to Professor George

Corliss for his kind support, patience, and encouragement during the past two years.

I am grateful to the EECE Department at Marquette University for its financial

support and to the members of GasDay lab for many interesting discussions and

friendships.

Last, I want to give my sincere thanks to my girlfriend, Miss Ying Zhang, for her

consistent support, love and sacrifice. I would also like to thank my parents for their

support and encouragement.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... i

TABLE OF CONTENTS .. ii

LIST OF TABLES ... iv

LIST OF FIGURES ... vi

 INTRODUCTION .. 1 CHAPTER 1

1.1 The Dynamic Data System ... 1

1.2 Research Background ... 2

1.3 Statement of Problem .. 3

1.4 Thesis Outline ... 7

 LITERATURE REVIEW ... 9 CHAPTER 2

2.1 Review of Conventional Time Series Analysis .. 9

2.2 Review of the Contributive Research for Temporal Pattern Detection 12

2.2.1 Time Series Data Mining ... 12

2.2.2 Fuzzy Set Based Clustering ... 17

2.2.3 The Existing MRPS-GMM Method ... 19

2.3 Summary of the Research Developments ... 21

 AN IMPROVED MRPS-GMM APPROACH ... 22 CHAPTER 3

3.1 Background of GMM .. 22

3.2 Basic Theories of the EM Algorithm .. 26

3.3 Proposed Improvements to the Existing MRPS-GMM Approach 30

3.4 Experiments with Simulated Data .. 38

iii

 A SOFTWARE PROGRAM FOR TEMPORAL PATTERN DETECTIONCHAPTER 4

... 54

4.1 Initial Problem Statement ... 54

4.1.1 Software Requirements Specification (SRS) ... 55

4.1.2 Use Case Model ... 56

4.2 Function Structure ... 60

4.3 Operation Procedure ... 64

4.3.1 Install and Uninstall ... 64

4.3.2 Data Preprocess .. 65

4.3.3 Flow Chart of the Operation Procedure ... 67

 TEMPORAL PATTERN ANALYSIS FOR REAL WORLD PROBLEMSCHAPTER 5

... 69

5.1 Detect Temporal Patterns in Hydrology Time Series ... 69

5.2 Detect Temporal Patterns in Finance Time Series .. 75

 CONCLUSIONS .. 84 CHAPTER 6

6.1 Contributions .. 84

6.2 Problems for Future Work .. 84

BIBLIOGRAPHY ... 86

Appendix ... 89

A.1 Reusable source code for RPS embedding .. 89

A.2 Reusable source code for similarity measurement ... 90

iv

LIST OF TABLES

Table 3.1 List of the initialized parameters for Example 1 ... 42

Table 3.2 Parameter list for example 2 ... 46

Table 3.3 Confusion matrix for training data validation ... 49

Table 3.4 Accuracy of the validation result .. 49

Table 3.5 Confusion matrix for testing data ... 51

Table 3.6 Accuracy of the testing result ... 51

Table 3.7 Validation result for single Gaussian distribution method 51

Table 3.8 Accuracy of the validation result for single Gaussian distribution method 51

Table 3.9 Testing result for single Gaussian distribution method 52

Table 3.10 Accuracy of the testing result for single Gaussian distribution method 52

Table 3.11 Comparison of the success rate of prediction ... 52

Table 4.1 Description for the use case Initialization... 57

Table 4.2 Description for the use case Training ... 58

Table 4.3 Description for the use case Testing ... 59

Table 4.4 Pseudo code for the Load Training Data control .. 62

Table 4.5 Pseudo code for the Training control .. 62

Table 4.6 Pseudo code for the Save Classifier control ... 62

Table 4.7 Pseudo code for the Load Testing Data control .. 63

Table 4.8 Pseudo code for the Testing control ... 63

Table 4.9 Pseudo code for the Clear control ... 63

Table 5.1Parameters for training data of Saugeen River Flows 71

Table 5.2 Confusion matrix for the validation result of Saugeen River Flows data 73

v

Table 5.3 Confusion matrix for the testing result of Saugeen River Flows data 75

Table 5.4 Parameters for DJ Index data .. 78

Table 5.5 Confusion matrix for the validation result of DJ Index data 80

Table 5.6 Confusion matrix for test result of DJ Index data ... 82

vi

LIST OF FIGURES

Figure 1.1 Basic structure of DDS .. 1

Figure 2.1 Illustration of conventional procedure for time series analysis 10

Figure 2.2 Synthetic Seismic Time Series with Temporal Pattern and Events 14

Figure 3.1 Example of a 2-dimentional normal distribution ... 24

Figure 3.2 The scatter-histogram plot of a set of 2-dimensional data 24

Figure 3.3 Distribution of the dataset by a 2-component GMM....................................... 25

Figure 3.4 Contours for the 2-component mixture distribution .. 26

Figure 3.5 Flow chart of the EM algorithm for GMM ... 30

Figure 3.6 Framework for temporal pattern detection based on the previous research 32

Figure 3.7 Embedding vectors in a 2-D RPS .. 33

Figure 3.8 Misclassification issue caused by single Gaussian distribution function 34

Figure 3.9 Block diagram of the improved GMM approach .. 36

Figure 3.10 The probability distribution with the improved GMM approach 37

Figure 3.11 The artificial data with created patterns (200 data points) 39

Figure 3.12 Embedding vectors in a 3D RPS ... 41

Figure 3.13 Validation result with training data ... 43

Figure 3.14 Testing result of the artificial data set ... 44

Figure 3.15 Henon map attractor when a=1.4, b=0.3 ... 45

Figure 3.16 Part of the Henon map data ... 46

Figure 3.17 Validation with training data in example 2 ... 48

Figure 3.18 Testing Result of example 2 .. 50

Figure 4.1 Software GUI prototype .. 55

vii

Figure 4.2 Use case diagram ... 57

Figure 4.3 Activity Diagram for the use case Initialization .. 58

Figure 4.4 Activity Diagram for the use case Training .. 59

Figure 4.5 Activity diagram for the use case Testing ... 60

Figure 4.6 Controls in three categories ... 61

Figure 4.7 Data sequence with marked events .. 66

Figure 4.8 A data sequence with its corresponding indicator sequence 67

Figure 4.9 Flow chart of the operation procedure... 68

Figure 5.1 Time series of Saugeen River Flows ... 69

Figure 5.2 Indicator sequence for the Saugeen River Flows data 70

Figure 5.3 Validation result for the Saugeen River Flows data .. 72

Figure 5.4 Testing result of Saugeen River Flows data .. 74

Figure 5.5 Dow Jones Index for 251 trading days .. 76

Figure 5.6 The difference sequence of DJ Index data .. 77

Figure 5.7 The indicator sequence for the difference sequence .. 78

Figure 5.8 Validation result for the difference sequence of the DJ Index data 79

Figure 5.9 Test result of DJ Index data ... 81

Figure 5.10 Patterns in the original test data sequence ... 82

1

 INTRODUCTION CHAPTER 1

1.1 The Dynamic Data System

The concept of Dynamic Data System (DDS) was proposed as a new modeling

method by Professor S. M. Wu in 1970s [1]. Although the detailed definition varies

among different research areas, a notable property of DDS is that the system observations

are in a form of time series with dynamics, which is called dynamic data [2]. Here,

“dynamics” is a term to describe the correlations between the current observations and

the previous ones on the timeline. In general, the basic structure of DDS can be shown as:

Figure 1.1 Basic structure of DDS

DDS is common and widely used in the real world. However, it is impossible for

people to understand every detailed part in the system in most cases. In other words, this

kind of DDS has to be seen as a “black box”. For example, an integrated circuit (IC) chip

can be considered as a typical DDS. However, due to the reason of patents, the inner

structure of some important components in the chip is protected and can’t be examined.

Sometimes, we have to measure the system observations of input and output signals in

Input Data

Functional

Blocks of

DDS

Output Data

Observations are

dynamic data

2

multiple test process to understand the functionalities of those components. Meanwhile,

lacking of applicable methods or facilities for measurement could be another problem

that will make it difficult to study a DDS as well.

So, finding a practical method for DDS research based on “black box” testing is

very necessary to overcome the obstacles mentioned above that prevent people from

analyzing DDS effectively. Although it may not provide accurate parameter estimations

to model the inner system, the method will contribute to the qualitative analysis to the

system structure which is unacquainted to people.

1.2 Research Background

A major research direction on DDS is the detection of temporal patterns [3]. A

temporal pattern is defined as a segment of signals that recurs frequently in the whole

time series data [4]. In other words, temporal patterns are some different segments of a

sequence that share a similar time-ordered structure. To discuss the use of temporal

patterns, let’s see the concept of “event of interest” first.

Assume an output variable of a DDS can be expressed as a time series with N

observations as:

    1 2 t Nt x x x xx , (1.1)

where tx is a single observation at time t . In this time sequence, some observations may

have a special property that is different from the rest, such as their values could be above

or below a certain threshold. This kind of observation is called “event of interest”, which

implies about the change of state in the underlying DDS. Predicting the occurrence of

3

events is very important for many applications. For example, in financial prediction, there

is a significant interest in determining the timings of positions of securities [5]. However,

most DDSs in the real world, such as the stock market, are extremely complex and

chaotic so that it is hard to establish an accurate mathematical model to simulate the

dynamics that causes the events to occur.

Despite the complexity of the DDS, these events can be related very closely to the

temporal patterns which are lying in multivariate time sequences. If we can actually find

there is a certain correspondence between events and temporal patterns, then it would be

possible for us to use the detected temporal patterns to predict the occurrence of events.

There are two major research directions in detecting temporal patterns: the

univariate and multivariate approaches. The univariate approach focuses on discovering

the correspondence between events and patterns within the same time sequence, such as

the innovative time series data mining (TSDM) method introduced by Povinelli and Feng

in [3], which laid the foundation for the subsequent research. The multivariate approaches

proposed in [6] by Zhang and Feng can be considered as an extension of the univariate

approaches to solve the problem of analyzing the dynamic relationship between events

and temporal patterns in multiple data sequences.

1.3 Statement of Problem

 Assume that the observations of each output variable of a multivariate DDS can

be expressed as:

4

1

2

()

()
() ,

()m

t

t
t

t

 
 
 
 
 
 

x

x
X

x

 (1.2)

where

each element ()tx is a univariate time sequence representing one of the output variables

of the system;

m is the total number of variables;

t is the time index;

In practical multivariate applications, one of the output variables can be

considered as target sequence in which the events of interest will be defined and

discovered. For most problems in the area of data mining and pattern analysis, people are

not only interested in detecting the events in the target sequence, but also in exploring the

causal relationship between the underlying factors and variables represented by other

related sequences. Therefore, the expression can be re-written as:

1()

() ,
()

()

m

e

t

t
t

t

 
 
 
 
 
 

x

X
x

x

 (1.3)

where ()e tx denotes the target sequence. If each output variable has N observations；

()tX can be seen as an  1m N  matrix, where each column consists of the

observations in each output variables at time t.

5

Several pattern identification approaches based on the Reconstructed Phase Space

(RPS) [7] [8] have been proposed. These approaches proved that the RPS embedding is

capable of representing temporal patterns in nonlinear dynamic data which is chaotic and

irregular. The algorithm based on the RPS embedding typically involves selecting the

embedding dimension [9] and time delay [10]. The following equation is an example of

the embedding vectors with embedding dimension Q and time delay  for a single time

sequence ()tx as (1.1):

 

 

 

 

   

1 1 1 1
1

2 2 2 12

1

1
1 2

Q

Q

t t t t Q

N Q
NN Q N Q

x x x

x x x

x x x

x x x

 

 

 


 

  

  

  

 
   

  
  
  
  
  
  
  
  
      







x

x

x

x

 (1.4)

Each row of the right side matrix can be considered as an embedding vector,

which can be seen as the coordinates of a point. By this method, a time sequence can be

described as a set of points embedded in a Q -dimensional RPS. To keep it consistent to

the previous research, in this thesis, we will apply the backward RPS embedding where

an embedding vector is defined as:

  1t t tt Q
x x x  
 
 

x (1.5)

 Actually, these two kinds of expressions for the embedding vectors are equivalent

where the only difference is the subscript.

6

As an extension of this univariate RPS embedding method, the multivariate RPS

(MRPS) embedding method proposed by Zhang and Feng in [6] makes it possible to

embed multiple time sequences simultaneously into the same RPS. The detailed

procedure will be discussed in Chapter 2.

According to the approach in [6], the embedding points will be categorized into

three different states—event, normal and pattern by the event characterization function

[11]. A Gaussian mixture model can be applied to fit the distribution of these points in

the RPS. This MRPS-GMM approach has been tested to be efficient for detecting

temporal patterns among multiple related time sequences. However, there are still several

problems need to be solved. For example, the current method is not sufficiently accurate

to handle the diversity of shapes among different temporal patterns. Meanwhile, the

computational amount needs to be reduced for the classifier training process. Moreover, a

deliverable application for temporal pattern detection is still missing.

Therefore, the primary objective of this thesis is to propose some contributive

improvements on the existing methods and make an applicable framework to overcome

the obstacles mentioned above. The overview of the proposed work is:

1) Propose a series of improvements on the Gaussian mixture model (GMM)

applied in the existing MRPS-GMM approach to handle the situation when

patterns with different shapes gather into separated regions in the RPS after

the embedding process.

2) Reduce the computational amount by reducing the number of unknown

coefficients in the classifier.

7

3) Develop a deliverable software program with an applicable framework for

wide utilization.

This thesis will propose a series of discussion of these feasible solutions in the

following chapters.

1.4 Thesis Outline

 This thesis includes six chapters:

 Chapter 1 discusses the background of DDS, the problem statement, the current

status and the preview of the proposed work.

 Chapter 2 will present a literature review for the fundamental theory of temporal

pattern detection and event identification. Meanwhile, several contributive approaches

developed in previous research will be discussed in this chapter.

 Chapter 3 will analyze the existing GMM-based approach and propose the

improved GMM to overcome the misclassifying problem caused by the diversity of

shapes among different patterns embedded in the MRPS. The improved approach can fit

a more precise probability density function to describe the distribution of the embedded

temporal patterns. As a result, it will help the classifier to enhance the accuracy rate.

Meanwhile, improvements on the classification and optimization stages will be proposed

to make the computational process more efficient. In addition, performance of the newly

proposed approach will be evaluated with simulated data.

 Chapter 4 will introduce a newly developed software program based on the

improved MRPS-GMM approach to detect temporal patterns in multivariate DDS. This

program applies a computational framework based on MATLAB development

environment. Meanwhile, as a deliverable software program, it can be executed on

8

Windows platforms that do not have MATLAB installed. The graphic user interface

(GUI) of this software program is designed for users to easily understand the basic

process of temporal pattern detection. The detailed functions and the operation procedure

will be discussed.

 Chapter 5 will perform several experiments by applying datasets from real world

problems to evaluate the performance of the improved MRPS-GMM method.

Conclusions and suggestions of future work are included in Chapter 6.

9

 LITERATURE REVIEW CHAPTER 2

The fundamental theories applied in the thesis are based on the successive

research from many scholars who have been dedicating themselves on this Temporal

Pattern Detection subject for more than a decade of years. This chapter will take a review

of conventional research related to time series analysis at first. Then, it will review those

methods presented in previous research which are contributive to temporal pattern

detection in the DDS.

2.1 Review of Conventional Time Series Analysis

The primary research objective for time series analysis is to develop mathematical

models that reveal patterns in the underlying system and make prediction. An example of

a conventional procedure for time series analysis is shown as the following flow chart:

10

Figure 2.1 Illustration of conventional procedure for time series analysis

 This model-based procedure applies Box-Jenkins modeling approach [12] , such

as Autoregressive–moving-average (ARMA) model and Autoregressive integrated

moving average (ARIMA) [13], to analyze the behavior of a system. The focus of this

approach is on a point-by-point “curve-fitting” strategy. However, not enough attention

has been given to the explanation of dynamic relationships between the signal segments

in the data sequences, e.g. temporal patterns, and critical occurrences of the events of

interest. For reference, the basic structure of ARMA and ARIMA model is shown as:

1) The ARMA model

Time series

Stationary

time series

White

noise--Pure

stochastic

series

Non-

stationary

time series

Non-white

noise

stationary

series

Stationary test

Pure stochastic test
Deterministic and

stochastic analysis

No underlying patterns

and meaningless for

prediction

ARIMA

model

ARMA

model

11

Given a real number time series data tX where t is the time index, then the

ARMA(p, q) model can be expressed as:

1 1

1 1
p q

i i

i t i t

i i

L X L  
 

   
     

   
  , (1.6)

where

t is the error term, which is generally assumed to be white noise series following the

distribution
2(0,)N  ;

L denotes a lag operator such that i

t t iL X X  and i

t t iL   ;

i and i are parameters of the ARMA model, which can be estimated by a numerical

optimization technique [14] or the Yule–Walker method [15].

In addition, the polynomial on the left side of the equal sign is the autoregressive

model of order p, which can be denoted as AR(p); the right side is the moving average

model of order q, denoted as MA(q).

2) The ARIMA model

The ARIMA model can be considered as an augmented model based on AMRA.

As it for the non-stationary series, assume that the polynomial
'

1

1
p

i

i

i

L


 
 

 
 has a unit

root of multiplicity d [16]. Then it can be rewritten as:

  
' '

1 1

1 1 1
p p d

di i

i i

i i

L L L 


 

   
      

   
  , (1.7)

 If we set 'p p d  , so an ARIMA(p,d,q) model is given by:

12

  
1 1

1 1 1
p q

di i

i t i t

i i

L L X L  
 

   
      

   
  , (1.8)

As an innovated framework which is unlike the model-based methods, the

approaches based on the RPS embedding for the DDS analysis is generally motivated by

the presumption that the system dynamics can be explained in terms of a dependence

between observations in the past and ones in the current or future time. The RPS

approach is not focusing on building models for numerical analysis and prediction.

Instead, it offers another perspective to discover the dynamics in the underlying system.

2.2 Review of the Contributive Research for Temporal Pattern Detection

In this section, several innovative methods and approaches for temporal pattern

detection will be briefly reviewed in chronological order. Furthermore, the fundamental

methodology applied in this thesis will be concluded based on the previous research.

2.2.1 Time Series Data Mining

In 1998, the framework based on RPS embedding for Time Series Data Mining

(TSDM) was proposed by R. Povinelli and X. Feng [3]. A series of important concepts

and definitions were introduced as the basic components for the research. In order to

understand this method which is inherited by many successive studies, some of those

basic components will be reviewed in the following discussion.

1. Embedding dimension Q and time delay 

As it was shown in (1.4), these two parameters are important features for a RPS

embedding process. The dimension Q of the RPS can be determined by using a false

13

nearest-neighbors technique [9] [17]. For each embedding point Q

ix in a Q -dimensional

RPS, its nearest neighbor
Q

jx can be found by:

,

arg min
Q
j

Q Q Q

j i j
i j

 
x

x x x , (1.9)

where Q Q

j ix x is the Euclidean distance between the two points. If the embedding

dimension is increased to 1Q , the change rate of the distance is measured by:

2 2
1 1

2

Q Q Q Q

j i j i

i
Q Q

j i

r

   




x x x x

x x
 , (1.10)

 If ir exceeds a given threshold  , Q

ix will be marked as having a false nearest

neighbor. The criterion for an adequate value of Q is that the number of data points

whose ir >  is zero, or small enough, in a Q -dimensional RPS.

 The time delay  can be calculated by finding the first zero point of the

autocorrelation function [7]. The autocorrelation function was found to be effective in

estimating the time delay. Meanwhile, it is an important reference for stationary test.

Given a stochastic process tX and time delay , the autocorrelation is:

  
  

2

t tE X X
R

 




    (1.11)

where

 and
2 are the mean and the variance of the observations of tX respectively;

14

E denotes the expectation function.

2. Event and event function

In a certain DDS, an event is an important occurrence which reflects the state

changing of the internal system. In [3], a Synthetic Seismic Time Series was used as an

example to illustrate the events in a time sequence. The figure is shown as:

Figure 2.2 Synthetic Seismic Time Series with Temporal Pattern and Events

In order to discover the correspondence between temporal patterns and events, we

can define an event function to characterize embedding vectors in the RPS and label each

of them in different categories such as pattern and non-pattern. For example, if

 1t t tt Q
x x x  
 
 

x is an embedding vector, for a one-step-ahead prediction

problem, the event function can be defined as:

   1t tg x x , (1.12)

15

or a k-step-ahead event function:

    1 2max , ,t t t t kg x x x  x (1.13)

 In some cases, the primary focus is on the percentage change rather than the

actual values. An event function can be defined as the percentage change in the next step

such as:

 1() t t
t

t

x x
g

x

 
x (1.14)

As a common method to categorize the embedding vectors, if it is predefined that

the value of ()tg x beyond a threshold c can be considered as an event, the embedding

vector tx will be labeled as a potential pattern to predict it. The labeled vectors will be

used for pattern identification process with clustering algorithms.

3. Objective function for pattern identification

The problem of searching predictive temporal patterns in the RPS can be

transformed into an optimization problem to maximize or minimize the objective

function with respect to the underlying parameters, such as the center v and radius  of

the clusters. The objective function can be defined in different forms depending on the

goal of pattern identification. In [3], several objective functions are presented for

different tasks.

1) The Maximal event function

16

0 0

,

(,)
() ,

M i

M

if M N

f M
g g otherwise

N

  






   


 
 



x v

v (1.15)

 where

 0g is the smallest event value in the cluster;

M is the number of data points in the cluster;

N denotes the number of total data points;

 is the rate of the minimum cluster size;

1

1
()

M

M i

i

g
M




  x is the mean of the event function within the cluster.

2) Maximal statistical significance between data points in the cluster and outside

cluster. This is simply based on the statistical t-test

22

(,)

() ()

c c

c c

M M

M M

c c

f

C M C M

 









v , (1.16)

 where

 cM represents the set of data points within cluster;

cM is the set of data points outside of the cluster;

()cC M and ()cC M are the number of data points in these two sets;

cM and
cM

 are the mean event function values of the two sets;

2

cM and 2

cM
 are the variances of cM and

cM respectively.

3) Maximal event characterization accuracy

17

 (,)
tp tn

f
tp tn fp fn





  

v , (1.17)

 where

 tp represents the number of true positives;

tn represents the number of true negatives;

fp represents the number of false positives;

fn represents the number of false negatives.

2.2.2 Fuzzy Set Based Clustering

This new method was proposed by Huang and Feng in 2005 [18]. It utilizes a

fuzzy set based objective function with a Gaussian-shaped membership function to

cluster temporal patterns in the time-delay embedding RPS. As it is proposed in [18], the

fuzzy set objective function is defined as:

2

2
1

(,) exp ()
2

N
i

i

i

f g


 
  

 
 


v x

v x ， (1.18)

where

ix is a vector embedded in RPS;

v represents the center of a fuzzy cluster;

 represents the radius of the fuzzy cluster;

N denotes the number of total data points;

 is the rate of the minimum cluster size.

18

This objective function represents the summation of the weighted event functions.

The weight tells how much an embedding vector contributes to the temporal pattern

cluster. It takes the pattern density into consideration and will be robust to noisy points.

The objective function is continuously differentiable so the gradient descent

optimization such as quasi-Newton methods can be applied to search the optimal clusters

with a faster speed of convergence. The computational stability is significantly improved

over the genetic algorithm which is originally used in the early developed TSDM

mentioned above. The Broyden–Fletcher–Goldfarb–Shanno algorithm [19] [20] [21] [22]

is applied as one efficient approach from the class of quasi-Newton methods to solve

unconstrained nonlinear optimization problems. If ()f x is an objective function to be

minimized, meanwhile, from an initial guess 0x and an approximate Hessian matrix

0 x B I (x is a scalar), the following steps are iterated as kx converges to the solution:

1. Obtain a direction kp by solving: ()k k kf B p x where  is the gradient

operator;

2. Perform a line search to find an acceptable step size k in the direction found

in the first step, then update 1k k k k  x x p ;

3. Set k k ks p ;

4. 1() ()k k kf f y x x ;

5. 1

()T T

k k k k k k
k k T T

k k k k k

   
y y B s B s

B B
y s s B s

.

Convergence can be checked by observing if the norm of the gradient ()kf x is

less than a predefined threshold. The first step of the algorithm is carried out using the

19

inverse of the matrix kB , which is usually obtained efficiently by applying the Sherman–

Morrison formula [23] to the fifth line of the algorithm, which is

  

 

1 1 1
1 1

1 2

T T T T T
k k k k k k k k k k k k k

k k TT
k kk k

  
 



 
  

s y y B y s s B y s s y B
B B

s ys y
 (1.19)

2.2.3 The Existing MRPS-GMM Method

This approach was presented by W. Zhang and X. Feng in 2012 [6] to identify

predictive temporal patterns in a multivariate dynamic data system. The new Multivariate

Reconstructed Phase Space (MPRS) method is based on the multivariate RPS

transformation, data categorization and nonlinear optimization.

One of the major limitations of the univariate RPS approach is that temporal

patterns are typically assumed to exist only in the event sequence so it is impossible for

the method to discover the correspondence between patterns and events lying in different,

but correlated, sequences. This method can be widely applied on multivariate data

sequences and can result in a better performance as well. For example, to monitor a

patient’s cardiovascular conditions, besides measuring the electrocardiography (ECG)

signals, the other measurements, such as blood pressure and body temperature, are also

monitored constantly as the related factors to track the patient’s overall conditions. As an

augmented method derived from univariate RPS embedding, the MRPS method is

elaborated in the following discussion:

For instance, based on the equation (1.3), the observations of a DDS can be

expressed as:

20

1 1 1

2 2 2

(1)

(1) (2) ()

(1) (2) ()

() , 1

(1) (2) ()

(1) (2) ()

m m m

e e e m N

x x x N

x x x N

t t N

x x x N

x x x N
 

 
 
 
  
 
 
  

X (1.20)

The embedding vector at time t of the sequence on the j
th

 row is:

 () ((1)) () () , 1 1j j j j j j jt x t Q x t x t j m        x (1.21)

where
jQ and

j are the embedding dimension and time delay for the j
th

 sequence

respectively. In addition, when 1j m  , it means the embedding sequence is the target

sequence in the observations. So the embedding vector at time t in the multivariate RPS

can be constructed as:

  1 2(t) (t) (t) (t) (t)m ex x x x x (1.22)

Apparently, the dimension Q for the multivariate embedding is the summation of all

embedding dimension jQ , which means
1

1

m

j

j

Q Q




 .

 Another contribution of this method is the concept of pattern similarity. It was

proposed to solve the problem that vectors which should be categorized as the same type

of temporal patterns may fall into different regions when embedding a data sequence with

an outstanding trend into the RPS. Furthermore, inspired by the fuzzy-set method

mentioned above, Gaussian mixture model (GMM) is applied to describe the distributions

21

of the data points in different categories with a sloped boundary instead of a crisp one.

The detailed applications for these two methods will be discussed in Chapter 3.

2.3 Summary of the Research Developments

 From the reviews in the above sections, the relationship of inheritance and

extension between different approaches is an important factor that keeps improving the

methodology of temporal pattern detection theoretically and practically. The study of

TSDM proposed the original problem statement and established the framework for the

future study. The Fuzzy-set based method offers an innovative idea which is different

from the conventional algorithms that search clusters with crisp boundary. This method

inspires the study of applying GMM to define the objective function. The newly

developed method based on GMM and multivariate RPS embedding greatly extends the

applicable scope. It is possible to detect patterns in multiple related sequences

simultaneously. Besides, there are many approaches of temporal pattern detection have

been proposed based on other mathematical models and algorithms, such as the logistic

regression based approach by Feng, Senyana [24], the Gaussian mixture model-Support

Vector Machine (GMM-SVM) hybrid approach by Zhang, Feng and Bansal [25] and the

Hidden Markov Model (HMM) based approach by Bansal, Feng, Zhang et al [26].

22

 AN IMPROVED MRPS-GMM APPROACH CHAPTER 3

 Gaussian Mixture Model (GMM) is a probabilistic model which can be used to

represent the presence of subpopulations within an overall population by assuming that

the distribution for the overall population can be described as a mixture of multiple

Gaussian distributions. In a recent research of temporal pattern detection, a GMM based

approach has been proposed by W. Zhang and X. Feng in [6], which enhance the

performance of the classifier by an innovative method. However, there is still work to do

to improve it. In this chapter, we will review the background of GMM and EM algorithm

at first. Then we will discuss the disadvantage of the existing GMM approach and present

the newly improved method. Meanwhile, we will test the performance of the improved

method on a series of simulated data.

3.1 Background of GMM

A Gaussian Mixture Model (GMM) can be defined as a parametric probability

density function which is represented as a weighted sum of Gaussian-distributed

component densities. GMM parameters can be estimated from the training data using the

iterative Expectation-Maximization (EM) algorithm. In the section, we only discuss the

GMM based on multivariate normal distribution which is more applicable to fit

probability density functions in a multidimensional phase space.

 The multivariate normal distribution of a Q-dimensional random vector

1 2X X XQ
   x can be written as:

 (,)Nx μ Σ , (1.23)

23

where

μ is a Q -dimensional mean vector;

Σ is an m m positive definite covariance matrix.

The value of μ andΣ can be calculated by

 1 2E(X) E(X) E(X)Q
   μ , (1.24)

  , Cov X ,X , 1,2, , ; 1,2, ,i j i j i Q j Q         
Σ , (1.25)

The probability density function is defined as:

11 1

() exp () ()
2(2)

T

Q
p



 
    

 
x x μ Σ x μ

Σ
, (1.26)

where Σ is the determinant of the covariance matrix [27]. In order to guarantee that the

exponential part in (3.4) is multipliable, x and μ must be row vectors. As long as both of

the mean vector and covariance matrix are known, it will be able to fit a probability

density function for the data. The following picture is showing a 2-dimentional normal

distribution with the predefined mean vector [0 0]μ and covariance matrix

1.5 0.3

0.3 0.25

 
  
 

Σ :

24

Figure 3.1 Example of a 2-dimentional normal distribution

 However, in some cases, it will be more sufficiently accurate to describe the

probabilistic distribution of the observed data by the GMM instead of using just one

Gaussian probability density function. For example, we can apply a 2-component GMM

to fit the probability density function of the 2-dimesional data shown as:

Figure 3.2 The scatter-histogram plot of a set of 2-dimensional data

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3

0

0.1

0.2

0.3

0.4

x1
x2

P
ro

ba
bi

lit
y

D
en

si
ty

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

x

y

-6

-4

-2

0

2

4

6

0 10 20 30 40 50 60

-6 -4 -2 0 2 4 6 8
0

20

40

60

80

25

 The figure shows the scatter plot and margin distributions of 300 observations of

a simulated dataset which can be generated by the following commands in MATLAB:

m1 = [1 2];

s1 = [3 0; 0 2];

m2 = [-1 -2];

s2 = [2 0; 0 1];

X = [mvnrnd(m1,s1,200);mvnrnd(m2,s2,100)];

The 2-component GMM to fit the distribution for the dataset is shown as:

Figure 3.3 Distribution of the dataset by a 2-component GMM

 Also, we can use contour map to display the GMM in a 2-D plot:

-10
-5

0
5

10

-10

-5

0

5

10

0

0.01

0.02

0.03

0.04

0.05

x

y

pr
ob

ab
ili

ty
 d

en
si

ty

26

Figure 3.4 Contours for the 2-component mixture distribution

As we can see from the figures above, the two Gaussian distributed components

have different mean vectors, covariance matrices and mixing proportions. These three

parameters are fundamental to the GMM and can be estimated by the EM algorithm.

3.2 Basic Theories of the EM Algorithm

The Expectation–Maximization (EM) algorithm [28] is an iterative algorithm to

find maximum likelihood or maximum a posteriori (MAP) estimates of parameters in

statistical models, when the observations can be viewed as incomplete data [29].

The EM algorithm iteratively performs two steps: expectation (E) step and

maximization (M) step. In E step, it creates a function for the expectation of the log-

likelihood evaluated using the current estimate for the parameters. In M step, it computes

parameters maximizing the expected log-likelihood found on the E step. These

0
.0

0
5

0
.0

0
5

0.005

0.
00

5

0.
00

5

0.005

0
.0

1

0
.0

1

0.01

0
.0

1

0.01

0
.0

1
5

0
.0

1
5

0.015

0
.0

1
5

0.015

0
.0

2

0.02

0.02

0.
02

0.0
2

0
.0

2
5

0.025

0.025

0.025

0
.0

3

0
.0

3

0.03

0
.0

3
5

0.035

0.035

0
.0

4

x

y

-6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

27

parameter-estimates are then used to determine the distribution of the latent variables in

the next E step unless the results satisfy the condition to terminate.

The EM algorithm has been widely used in many statistical problems. To make it

simple to understand, we will only discuss its procedure to estimate the parameters of a

K-component GMM in this section.

Assume that
1 2

Q

i N x x x x are N observations of a dataset and each one

is a Q dimensional vector. In order to build a K-component GMM to describe the

distribution of the dataset, first we need to initialize the mean vector
jμ , covariance

matrix
jΣ and mixing proportion

j for each component. Especially, it is necessary to

emphasize that the sum of the mixing proportion of each component is one, which means:

1

1
K

j

j




 , (1.27)

If we define

1 2

1 2

1 2

j K

j K

j K   

 
 

  
 
 

μ μ μ μ

θ Σ Σ Σ Σ to represent the set of all current

parameters, we can evaluate the log-likelihood function as:

 1 2 1 2ln (| , , ,) ln (, , , |)N NL pθ x x x x x x θ , (1.28)

If the observations are mutually independent, the log-likelihood can be written in:

 1 2

1 1 1

ln (| , , ,) ln (|) ln((| ,))
N N K

N i j i j j

i i j

L p p
  

   θ x x x x θ x μ Σ , (1.29)

28

where

L denotes the likelihood function;

p, in this case, denotes the probability density function of multivariate normal

distribution , as it shown in (3.4), given the current parameters in θ .

 The iteration will begin in the E step with the initialized parameters. One of the

most important variables in the algorithm is the probability that the i
th

 observation

belongs to the j
th

 Gaussian distributed component of the GMM. It can be computed by the

following expression:

,

1

(| ,)

(| ,)

j i j j

i j K

j i j j

j

p

p











x μ Σ

x μ Σ

 , (1.30)

 This is a membership variable called “responsibility” which can be seen as an

assignment score to indicate how much the j
th

 Gaussian component is responsible for ix .

 In M step, the current membership variables can be used to estimate jμ , jΣ and

j for each component. The new estimations can be iteratively computed as:

 ,

1

1 N
new

j i j

iN
 



  , (1.31)

,

1

, j

1

N

i j i
new i
j N

i

i














x

μ , (1.32)

,

1

,

1

() ()
N

T

j i i j i j
new i
j N

j i

i









 






x μ x μ

Σ , (1.33)

29

 Still, the observations and mean vectors must be row vectors so that the

dimensions of the results are matched on both sides of the above equations. With the

newly estimated parameters, the new log-likelihood function can be computed as:

 1 2

1 1

ln (| , , ,) ln((| ,))
N K

new new new new

N j i j j

i j

L p
 

 θ x x x x μ Σ , (1.34)

 Then, we can compare the new log-likelihood with the previous one computed in

(3.7) to see if the increment is less than a preset threshold . If so, the iteration can be

terminated. Otherwise, we can substitute the current θ by the newly estimated
newθ to

start over the whole process from the E step until the log-likelihood is convergent.

The iteration can be illustrated by the following flow chart:

30

Figure 3.5 Flow chart of the EM algorithm for GMM

3.3 Proposed Improvements to the Existing MRPS-GMM Approach

Initialize the parameter

set

Compute the log-

likelihood with current

Compute the

membership variable

for each component

Compute the new

estimation with

Load the observation data

and determine the

number of components

Compute the new log-

likelihood

Is the log-

likelihood

convergent?

Update and log-

likelihood with the newly

computed values

Terminate iteration

Start

End

No

Yes

31

GMM based approach for signal classification has been introduced by R. J.

Povinelli, M. T. Johnson et al. in [30], which inspires the original idea that applying

GMM for temporal pattern detection. Unlike the unsupervised learning approach in [30]

which is focusing on clustering, the MRPS-GMM hybrid method proposed by Zhang and

Feng in [6] separated the embedding vectors into three states--pattern, normal and event--

by the event function. The multivariate GMM is utilized to fit the probability distribution

by applying the training dataset to gain the initial values of the mean vector, covariance

matrix and mixing proportion for each state respectively to ensure convergence. Then we

can acquire the log-odds of an embedding vector tx as following which can be used in a

classifier to categorize tx into different states:

(|)

() log
(|)

p t

t

n t

p

p







x
x

x
, (1.35)

where p and n denote the states of pattern and normal [6]. As a conclusion and

modification, the detailed procedure of the temporal pattern detection subject applied in

this thesis is shown as the following figure:

32

Figure 3.6 Framework for temporal pattern detection based on the previous research

Although it is efficient for classifying, this method is still not sufficiently accurate

to handle the diversity of shapes among the embedding vectors. For example, we can

create a simulated dataset by the following commands in MATLAB:

mu1 = [1 2];
sigma1 = [3 .2; .2 2];
mu2 = [-1 -2];
sigma2 = [0.5 0; 0 0.6];
mu3 = [4 -1];
sigma3 = [0.6 0.3; 0.3 0.4];
X1 = [mvnrnd(mu1,sigma1,200)];

Training Data

MRPS

Embedding

with

predefined

parameters Q

and τ

GMM

Testing Data

Categorize

points by event

function

Multiple GMM

to fit distribution

functions for

each category

Optimization

Optimize the

loss function

to train the

classifier

MRPS

Embedding

with

predefined

parameters Q

and τ

Classification

Detect

patterns by

the classifier

Performance

Evaluation

Result

evaluation

and display

Testing Stage Training Stage

33

figure
scatter(X1(:,1),X1(:,2))
hold on
X2 = [mvnrnd(mu2,sigma2,50);mvnrnd(mu3,sigma3,50)];
scatter(X2(:,1),X2(:,2))
hold on
legend('normal','pattern');

This dataset consists of a set of vectors embedded in a 2-D RPS illustrated as:

Figure 3.7 Embedding vectors in a 2-D RPS

 There are 200 normal vectors and 100 pattern vectors in the RPS. Apparently, the

pattern vectors are gathering into two separated regions. In this case, the existing

approach will cause a large amount of misclassifications by fitting the distribution for

pattern vectors with a single Gaussian distribution function. This misclassification issue

is illustrated by the following figure:

-4 -3 -2 -1 0 1 2 3 4 5 6 7
-4

-3

-2

-1

0

1

2

3

4

5

x
t

x
t+

1

pattern

normal

34

Figure 3.8 Misclassification issue caused by single Gaussian distribution function

To overcome this obstacle, we can apply the improved GMM approach. Before

we start the process, the vectors standing for the event states have already been

eliminated from the RPS. The reason is simple: because the embedding vectors belonging

to event state are signal segments with the appearance of events, which means this state

won’t be helpful to predict the event in testing data. The improvements can be concluded

in the following two aspects:

1. Unlike the existing method which acquires the initial parameters’ values from

the training data, the improved method applies a specific unsupervised

learning algorithm that randomly samples the initial values from the dataset

according to the predefined number of components in pattern and normal

states. This algorithm allows users to try different numbers of Gaussian

distributed components for a specific problem to see which one will make the

-4 -3 -2 -1 0 1 2 3 4 5 6 7
-4

-3

-2

-1

0

1

2

3

4

5

x
t

x
t+

1

pattern

normal

35

log-likelihood converge in the least iterations. Moreover, this algorithm can

initially assign a data point into one of the components by finding out which

mean vector is closer to the point. It can prevent the circumstance that

multiple components converge to the same area from happening.

2. Instead of using loop statement, the algorithm of the improved method applies

matrix multiplication to rapidly compute the estimations for each parameter in

the iteration process. In MATLAB development environment, the computing

speed of matrix multiplication is much faster than using loop statement. With

this convenient feature, it will be more efficient to compute the polynomial

summations in each step of iteration and finish the whole process with less

running time. Besides, the algorithm will have a better performance for

classification and optimization process by using matrix multiplication instead

of loop statement.

 We can explain the detailed procedure of the improved GMM approach by the

following block diagram:

36

Figure 3.9 Block diagram of the improved GMM approach

The following figure shows the distribution of the dataset on the previous figure

created by the improved GMM approach. Obviously, the probability distribution can

precisely reflect that pattern points gather into separated regions in the space.

RPS

Embedding

function

Event function

Iteration with

EM algorithm

Parameter

Initialization

Log odds

Data

Embedding vectors

Pattern Vectors Normal Vectors

Parameter

Initialization

Improved GMM

Number of

component
Number of

component

Training classifier

37

Figure 3.10 The probability distribution with the improved GMM approach

 In addition, based on the concept of “pattern similarity” proposed by Zhang in

[31], we can build a simplified and efficient linear classifier as:

   

2

1 2 32
1

() exp () ,
p

pN
t i

t t

i

f
 

   


 
    
 
 
 


x x

x x (1.36)

where

pN is the total number of vectors in pattern state p ;

p

ix is the i th vector in pattern state;

 is a predefined parameter for similarity measure;

()t x is the log odds denoting the Gaussian mixture log likelihood score of tx ;

-4
-2

0
2

4
6

8

-4
-2

0
2

4
6

8
0

0.01

0.02

0.03

0.04

0.05

xy

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

38

(.) is a mapping from Q -dimensional space to (1)Q -dimensional space.

 Actually, it has been proved in [31] that if we denote the similarity of two

different Q -dimensional vectors as 1 2(,)d x x , there exists a mapping
1(.) : Q Q  ,

such that
2

1 2 1 2(,) () ()d   x x x x . By a series of mathematical derivation, (.) can be

given as:

 (.) (.)  L (1.37)

where

L is the Cholesky decomposition of matrix

1 2 1

2 2 1

1

1 1 1 1

Q Q

Q Q

  
 

 
 
 
 
 

P such that

TP L L ;

 is the backward difference operator.

 For the optimization process, we can apply the exponential loss function proposed

in [31], which has been proved to be robust and stable. The function is shown as:

  
2

1

min ((.), (.)) min exp(() ()) ,
2

N

t t

t

L g f g f




  
β β

x x β (1.38)

where

N is the total number of vectors in the RPS;

 is the penalty coefficient;

 1 2 3  β in ()tf x .

3.4 Experiments with Simulated Data

39

In this section, we will apply the improved approach to predict the event

occurrences in a set of simulated data sequences:

In the first example, we will artificially create several data observations by

inserting two different types of patterns in the pattern sequence on purpose to test if the

improved approach is able to detect them.

The second example will apply Henon map, which is a dynamical discrete-time

chaotic system, to test the performance on a data system which is strictly defined

according to its state equations. In addition, it will make a comparison between the

existing MRPS-GMM approach and the improved one to show that the latter has a better

performance.

Example 1: Detect two types of temporal patterns in white noise series

The following figure shows part of the data applied in this example:

Figure 3.11 The artificial data with created patterns (200 data points)

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

2

3

Time

V
a
lu

e

Target sequence

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

4

6

Time

V
a
lu

e

Pattern sequence

40

 This simulated data is generated by the following commands:

x = 0.4*randn(200,1);

y = 0.1*randn(200,1);

for i=1:20

x(6+10*(i-1)) = x(6+10*(i-1))+2;

x(6+10*(i-1)-2) = 0.1+0.4*randn(1);
end
target_sequence = x;

for i=1:20
y(6+10*(i-1)) = y(6+10*(i-1))+4;

y(6+10*(i-1)-2) = 1.5+0.1*randn(1);

end
rs = randsample(20,13);
for i=1:13
 y(10*(rs(i)-1)+6-1) = 2+0.1*randn(1);
 y(10*(rs(i)-1)+6-2) = 1+0.1*randn(1);
end
pattern_sequence =y;

Both target and pattern sequences are synchronized and correlated by time. The

target sequence is interfered by a high power white noise series. In result, it will be

difficult to detect the patterns directly. Oppositely, the noise interference in the pattern

sequence is less than 10%, which is more acceptable. Also, we have inserted two

different types of 3-dimensional temporal patterns in the sequence for 1 step-ahead

prediction, which means each pattern can predict the occurrence of an event after 1k 

time-point. These patterns can be embedded in a 3D RPS as:

41

Figure 3.12 Embedding vectors in a 3D RPS

However, the event we want to predict is in the target sequence, which is the point

whose value is above 1.5. In this situation, to apply multivariate embedding method, we

can denote the combined embedding vector tx as:

 (Q 1) (Q 1) ,
x x x y y yt t t t t t tx x x y y y        

 
 

x (1.39)

where tx and ty are observations at time t in target sequence and pattern sequence

respectively. Also, we can predefine the embedding dimension and time delay for both

sequences: 1, 3 , 1x y x yQ Q      .

 Therefore, the event characterization function can be defined as:

1

1

1,
() ,

1,

t

t

t

x c
g

x c






 

 
x (1.40)

-1
0

1
2

3
4

5

-1
0

1
2

3
4

5
-1

0

1

2

3

4

5

x
t-2x

t-1

x t

pattern

normal

42

where 1.5c  is the event threshold.

 We can simply set the number of components in the GMMs for pattern state

(
pNC) and normal state (nNC) to 2 and 1respectively. Technically, in this case, the

distribution of the normal state is not a GMM. However, we can still treat single

Gaussian distribution as a special case of GMM. The following table shows all the

parameters that need to be initialized:

Process Parameters

MRPS 1, 1, 3, 1, 1x x y yQ Q k     

GMM 1.5, 2, 1p nc NC NC  

Optimization  0.5, 1, 0.1 0.1 0.1   β

Table 3.1 List of the initialized parameters for Example 1

 Generally, it might take a long time for the optimization process to find optimal

values of  and  because of the computational amount. Besides, the initial value of β

also plays an important role in the optimization process because quasi-Newton method,

the optimization method applied in this thesis, converges to local minima, which means

this method depends on the initial values significantly. So the initial values for the

optimization process are reference values in both examples. They only ensure the result’s

accuracy is acceptable, not optimal.

 There are 400 observations in both sequences. We apply the first 250 data

observations for training and use the remaining 150 observations for testing. The

following figure shows the validation result on training data:

43

Figure 3.13 Validation result with training data

 Since the patterns are inserted on purpose, the over-fitting problem can be ignored

in this example. The red marks for “Pattern state” denote the data segments are classified

in the pattern state by the event function.

 The following figure shows the testing result with the remaining data observations:

0 50 100 150 200 250
-1

0

1

2

3

TIme
V

a
lu

e

Training

Target sequence

Threshold

0 50 100 150 200 250
-2

0

2

4

6

Time

V
a
lu

e

Pattern sequence

Pattern state

0 50 100 150 200 250
-2

0

2

4

6

Time

V
a
lu

e

Pattern sequence

Detected pattern

44

Figure 3.14 Testing result of the artificial data set

 We can conclude from the above figures that the improved approach can

accurately detect the inserted patterns of two different types, although the error,

especially the false positive error, is inevitable. However, this experiment does prove that

this improved approach can be applied as expected to overcome the obstacle that patterns

gather into separated regions.

Example 2: Detect temporal patterns in Henon map sequences

The Henon map [32] is a typical dynamical chaotic system. This discrete-time

system can be defined as the following equations with two output variables x and y :

2

1

1

1t t t

t t

x ax y

y bx





    



 , (1.41)

where

 t is the time index;

a and b are the parameters to determine whether the system state is chaotic.

0 50 100 150
-1

0

1

2

3

Time

V
al

ue

Testing

Target sequence

Threshold

0 50 100 150
-2

0

2

4

6

Time

V
al

ue

Pattern sequence

Pattern state

0 50 100 150
-2

0

2

4

6

Time

V
al

ue

Pattern sequence

Detected pattern

45

 To make sure the system is chaotic, we can set the parameters to the classical

values: 1.4, 0.3a b  . The following figure illustrates the Henon attractor when

1.4, 0.3a b  :

Figure 3.15 Henon map attractor when a=1.4, b=0.3

46

 Moreover, the initial values of x and y can be defined as: 0 00.5, 0.5x y  . We

can generate a dataset containing 1000 time points by the equations with the predefined

parameters. Part of the data is shown as:

Figure 3.16 Part of the Henon map data

 In this example, we choose the variables x and as the target sequence and pattern

sequence respectively. Similar as the procedure in the example 1, we can initialize the

parameters as the following list:

Process Parameters

MRPS 1, 1, 3, 1, 1x x y yQ Q k     

GMM 1.1, 3, 1p nc NC NC  

Optimization  0.5, 1, 0.3 0.1 0.1   β

Table 3.2 Parameter list for example 2

 The event function can be defined as:

0 20 40 60 80 100 120 140 160 180 200
-1.5

-1

-0.5

0

0.5

1

1.5

Time

V
a
lu

e
 o

f
x

Target sequence

0 20 40 60 80 100 120 140 160 180 200
-0.4

-0.2

0

0.2

0.4

Time

V
a
lu

e
 o

f
y

Pattern sequence

47

1

1

1, 1.1
() ,

1, 1.1

t

t

t

x
g

x






 

 
x (1.42)

 We can apply the first half of all 1000 observations for training, the remaining

half for testing. The following figure illustrates the validation result with training dataset:

48

Figure 3.17 Validation with training data in example 2

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

-2-1012

Ti
m

e

x

Ta

rg
et

 s
eq

ue
nc

e

Th
re

sh
ol

d

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

-0
.4

-0
.20

0.
2

0.
4

Ti
m

e

y

P

at
te

rn
 s

eq
ue

nc
e

P
at

te
rn

 s
ta

te

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

-0
.4

-0
.20

0.
2

0.
4

Ti
m

e

y

P

at
te

rn
 s

eq
ue

nc
e

D
et

ec
te

d
pa

tt
er

n

49

 The total number of embedding vectors from the training dataset is 438, 57 of

which are pattern vectors. The following confusion matrix gives the accuracy of the result:

Estimation

Observation
Pattern Normal

Pattern 57 0

Normal 6 375

Table 3.3 Confusion matrix for training data validation

 The total accuracy is shown as:

True positive False positive True negative False negative Total accuracy

57 6 375 0 98.6%

Table 3.4 Accuracy of the validation result

 The following figure illustrates the result on testing data:

50

Figure 3.18 Testing Result of example 2

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

-2-1012

Ti
m

e

x

Ta

rg
et

 s
eq

ue
nc

e

Th
re

sh
ol

d

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

-0
.4

-0
.20

0.
2

0.
4

Ti
m

e

y

P

at
te

rn
 s

eq
ue

nc
e

P
at

te
rn

 s
ta

te

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

-0
.4

-0
.20

0.
2

0.
4

Ti
m

e

y

P

at
te

rn
 s

eq
ue

nc
e

D
et

ec
te

d
pa

tt
er

n

51

 The total number of embedding vectors from the testing dataset is 438. The

following confusion matrix gives the accuracy of the result:

Estimation

Observation
Pattern Normal

Pattern 53 5

Normal 7 373

Table 3.5 Confusion matrix for testing data

 The total accuracy is shown as:

True positive False positive True negative False negative Total accuracy

53 7 373 5 97.2%

Table 3.6 Accuracy of the testing result

To make a comparison, we can apply a single Gaussian distribution to model the

distribution of pattern points. With the same parameter values, the validation and testing

results for the single Gaussian distribution method are shown in the following tables:

Validation results:

Estimation

Observation
Pattern Normal

Pattern 50 6

Normal 7 375

Table 3.7 Validation result for single Gaussian distribution method

True positive False positive True negative False negative Total accuracy

50 7 375 6 97.0%

Table 3.8 Accuracy of the validation result for single Gaussian distribution method

Testing results:

52

Estimation

Observation
Pattern Normal

Pattern 41 17

Normal 5 375

Table 3.9 Testing result for single Gaussian distribution method

True positive False positive True negative False negative Total accuracy

41 5 375 17 95.0%

Table 3.10 Accuracy of the testing result for single Gaussian distribution method

 Meanwhile, we can compare the success rate of prediction between these two

methods. The success rate of prediction can be defined as:

TruePositive

TruePositive FalsePositive FalseNegative
 

 
 (1.43)

 The success rate of prediction represents the reliability of the method. The

comparison is shown as:

Method

Process
Single Gaussian distribution 3-component GMM

Validation 79.4% 90.5%

Testing 65.0% 81.5%

Table 3.11 Comparison of the success rate of prediction

Apparently, the performance of the method with 3-component GMM is superior

to the single component method in the same situation. The experiment not only proves

that the newly improved approach can give a satisfactory result of classification, but also

confirms that this approach is able to precisely detect multiple types of temporal patterns

53

in multivariate data system. So this approach does contribute to reduce the error of miss

classification caused by the diversity of shapes among different patterns.

54

 A SOFTWARE PROGRAM FOR TEMPORAL CHAPTER 4

PATTERN DETECTION

One of the major objectives of the research in this thesis is to establish an

applicable framework, based on which it is possible to create a deliverable software

product so that users can understand the basic procedure of the temporal pattern detection

approach and test any data they are interested in. To achieve this requirement, a

MATLAB-based software program, MATPAD, has been developed. In this chapter, we

will follow the procedure of objected-oriented software development to elaborate basic

structure and detailed functionality step by step.

4.1 Initial Problem Statement

Currently, the approach for temporal pattern detection based on multivariate

reconstructed phase space (MRPS) embedding and Gaussian mixture model (GMM) has

been proposed in [6] and improved in this thesis. However, there is still not a software

application can be used to conduct the pattern detection process on individual computing

platform.

With the support of MATLAB complier and graphic user interface (GUI) layout

editor, we can create an applicable GUI system and convert it to a deliverable program so

that users are able to install and use it conveniently.

The following picture shows the prototype of the MATPAD GUI:

55

Figure 4.1 Software GUI prototype

4.1.1 Software Requirements Specification (SRS)

 Eliciting the software requirements and specifying the details plays an important

role during the development procedure. In this section, we will discuss the functional

requirements and nonfunctional requirements of the software respectively.

Functional requirement:

1. This software allows users to load a “.mat” data file stored in the local

computing device and will plot the data in a new figure. The data has to be an

m n matrix.

2. Users can customize the initial parameter values for multivariate RPS

embedding on the GUI.

3. With the preset parameters, users can apply the improved MRPS-GMM

method to do the training and testing process.

56

4. Users should be able to see the classifier’s coefficients, the validation and

testing results on the GUI. Meanwhile, the software will plot the detected

patterns in a new figure.

5. Users can terminate the process and start over at any time.

Nonfunctional requirements:

1. This software should be compatible with Windows operating system. Users

don’t have to preinstall MATLAB to use the software.

2. This software won’t cause external system error.

3. The software’s code must be reusable and extendable for modification.

Since the software “MATPAD” is the original version, the SRS is basically

focusing on implementing the temporal pattern detection process. It can be improved for

future development.

4.1.2 Use Case Model

In this section, we will use diagram and textual descriptions to discuss the use

cases. The use case diagram is shown as:

57

Figure 4.2 Use case diagram

 Each use case can be described as the following activity diagrams and lists:

Use case 1:

Use case name Initialization

Participating actor User and Local Data Files

Flow of events 1. User pushes the Load Data button on the GUI. A selection

window will be opened.

2. User selects the data from the selection window by double

clicking the file.

3. User selects appropriate values for the embedding dimension,

time delay and k-step ahead from the popup menus.

4. User types in the threshold value in the test edit box.

Entry condition The GUI is deployed and visualized.

Exit condition 1. The message box shows “Load data succeed!” and each

parameter is assigned with an initial value.

2. The message box shows “Load data fail! Please try again” or

the initial value of at least one of the parameters is null.

Table 4.1 Description for the use case Initialization

58

Figure 4.3 Activity Diagram for the use case Initialization

Use case 2:

Use case name Training

Participating actor User

Flow of events 1. User clicks the Training Data button on the GUI

2. User examines the result displayed on the GUI

3. User clicks the Save Classifier button on the GUI if the result

is satisfactory. Otherwise the user can start over the process.

Entry condition User clicks the Training Data button

Exit condition User clicks the Save Classifier button

Table 4.2 Description for the use case Training

59

Figure 4.4 Activity Diagram for the use case Training

Use case 3:

Use case name Testing

Participating actor User

Flow of events 1. User clicks the Load Testing Data button on the GUI

2. User selects the testing data in the selection window

3. User click the Testing button on the GUI to see the testing

result

Entry condition User clicks the Load Testing Data button

Exit condition User can see the testing result on the GUI

Table 4.3 Description for the use case Testing

60

Figure 4.5 Activity diagram for the use case Testing

4.2 Function Structure

The controls on the GUI can be categorized into three different sets as the

functionality: Input, Executable and Output.

61

Figure 4.6 Controls in three categories

 The input controls can be used to get the initial values and assign them to each

corresponding parameter’s handle so it can be called by external objects or functions.

Each value can be changed during the process at any time.

 The output controls are created to display the computing results of each step for

users to examine the performance. Besides the three tables deployed on the GUI, the

program will pop up a new figure window to illustrate the detected temporal patterns in

the sequence after training and testing stage. Users can determine if it is necessary to re-

train the model.

 The executable controls are indispensable to the software. User can start the

computing process by clicking the pushbutton for a certain stage. The following tables

will explain the callback function of each control by pseudo code.

Load Training Data:

Input

Output

Executable

62

open the selection window for user to select Data;
if Data format is not correct
 pop up an error message box
else
 plot(Data);
 TrainingData = Data;
 update handles;
 pop up success message box;
end

Table 4.4 Pseudo code for the Load Training Data control

Start Training:

get values from the parameters’ handles;

get the TrainingData;
if TrainingData is empty
 pop up an error message box
else

get EmbeddingVector by MRPSEmbedding;

get PatternPoint and NormalPoint by Eventfunction;
Fit GMM by the EM algorithm;

Calculate pattern similarity;

Calculate log odds;

Establish the classifier;

Establish the loss function;

Minimize the loss function;

get the classifier’s coefficients beta;

Validation by training data and beta;

Display confusion matrix;

Pop up a figure to plot validation result;

 update handles;
 pop up success message box;

end

Table 4.5 Pseudo code for the Training control

Save Classifier:

if beta is empty
 pop up an error message box
else

CurrentBeta = beta;

Display CurrentBeta;

Pop up success message box;
end

Table 4.6 Pseudo code for the Save Classifier control

63

Load Testing Data:

open the selection window for user to select Data;
if Data format is not correct
 pop up an error message box
else
 plot(Data);
 TestingData = Data;
 update handles;
 pop up success message box;
end

Table 4.7 Pseudo code for the Load Testing Data control

Start Testing:

get values from the parameters’ handles;

get the TestingData;

get GMM fitted in Training process;
if TestingData is empty
 pop up an error message box
else

get EmbeddingVector by MRPSEmbedding;

get PatternPoint and NormalPoint by Eventfunction;
Calculate pattern similarity;

Calculate the log odds;

Establish the classifier with CurrentBeta;

get the classification result;

Display confusion matrix;

Pop up a figure to plot testing result;

 update handles;
 pop up success message box;

end

Table 4.8 Pseudo code for the Testing control

Clear:

clear every handle generated by the previous process

pop up a success message box;

Table 4.9 Pseudo code for the Clear control

 Each control’s callback function has a communicating mechanism to help user

when the input variables or the output results are not acceptable.

64

 Besides the three categories of controls mentioned above, user may notice that

there are several functional buttons on the tool bar at the top of the GUI window. These

buttons are built-in functional objects which can be used to modify the plots in the axes

area and perform some basic file operations such as new, open, save and print. User can

use these buttons as needed.

4.3 Operation Procedure

In this section, the detailed operation procedure will be demonstrated from users’

view. In addition, some precautions for actual use will be pointed out as well.

4.3.1 Install and Uninstall

As it was mentioned in the previous chapters, the software was developed with

MATLAB. To ensure the success of implementation, the MATLAB Compiler Runtime

(MCR) is prerequisite for the software deployment. By using the MATLAB compiler, all

the related functions, GUI files and the MCR can be compressed into a single Windows

standalone executable package file. In this case, the package file name is

MATPAD_pkg.exe.

To start installing, users need to put the package file in a new folder on the local

device. To guarantee successful installation, there must be at least 1GB storage space left.

Users can simply double click the package file and the installation will begin

automatically. Before decompressing the executable file of the GUI, the MCR has to be

installed first. This step will be skipped if the MCR has been pre-installed in the device.

When the installation is done, users can see the GUI file MATPAD.exe, a readme.txt file

65

and a MCRInstaller.exe file in the same folder with the package file MATPAD_pkg.exe.

The GUI will be displayed after users double clicking the MATPAD.exe file.

To uninstall the software, users can simply delete the folder with all

decompressed files.

4.3.2 Data Preprocess

Because of the functional limitation, the software can only process data files in

“.mat” format. The data containing one target sequence and one pattern sequence can be

saved in a “.mat” file as a 2 by N dimensional matrix where N is the total number of

observations on timeline. In default setting, the first row will be seen as the target

sequence. Meanwhile, it is prerequisite that the time sequences are the observations from

a certain dynamic data system. Otherwise, the result will be meaningless.

In addition, the software currently is designed to detect temporal patterns to

predict the occurrence of the events whose values are beyond a user-defined threshold.

Users are responsible for selecting an appropriate value for the threshold. For now, the

threshold based event function is the only one available in this software program, which

means that users cannot customize the event function for specific problems. As a

temporary solution, we can create an indicator sequence to mark the events in the original

data sequence. The indicator sequence is based on a white noise series. First, users can

mark the time points of the events according to the event function. Then, a predefined

value will be assigned to the corresponding points on time line in the white noise series.

For example, assume there is a 100-point data sequence ()S t with events marked as:

66

Figure 4.7 Data sequence with marked events

 The indicator sequence has the same number of time point with data sequence and

can be defined as:

 () ()A t a N t  , (1.44)

where

a is a coefficient to control the amplitude of the sequence;

()N t is a white noise series whose distribution follows (0,1)N .

 To label the events on the indicator sequence, we can simply add a number d to

the point’s value. For example, if we set 0.1a  , 3d  in this case, the indicator sequence

will be modified as:

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

4

Time

V
a
lu

e

Data sequence

Event

67

Figure 4.8 A data sequence with its corresponding indicator sequence

 By adding the indicator sequence, users can easily recognize the events. Besides,

even though this software program is not created for the univariate problems, the

indicator sequence makes it possible to solve both univariate problems and multivariate

ones with the same framework.

4.3.3 Flow Chart of the Operation Procedure

In conclusion, the whole operation procedure can be illustrated as the following

flow chart:

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3

4

Time

V
a
lu

e

Artificial target sequence

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

4

Time

V
a
lu

e

Data sequence

Event

Indicator sequence

68

Figure 4.9 Flow chart of the operation procedure

Software

Installation

Run GUI

file

Set

parameters

Data

preprocess

Load

training

data

Training

and

Validation

Display

validation

result

Acceptable?

Testing

Load

testing data

Save

Classifier

for testing

Display

testing

result

Yes

No

Data

69

 TEMPORAL PATTERN ANALYSIS FOR REAL CHAPTER 5

WORLD PROBLEMS

In this chapter, we will utilize the improved MRPS-GMM approach and the

MATPAD framework to analyze data in different study areas for real world problems.

5.1 Detect Temporal Patterns in Hydrology Time Series

In this section, we will conduct an experiment to demonstrate the procedure to

detect temporal patterns in a hydrology time series data to predict when the river flow

will beyond a threshold. The time series applied in this experiment is the monthly mean

value of Saugeen River Flows from 1915 to1976, which is an available material of [33].

The time sequence is illustrated as:

Figure 5.1 Time series of Saugeen River Flows

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

Time

V
a
lu

e

70

 The total number of observations is 744. The unit of measurement is cubic meters

per second
3(m / s) . We use 500 points for training and the rest for testing. The event can

be defined as: tx is an event if 80tx  . Although the event is already threshold-based, an

indicator sequence still can be used to label the events as well. The parameters can be set

to 1a  , 20d  , the artificial sequence is as:

Figure 5.2 Indicator sequence for the Saugeen River Flows data

 In this experiment, we choose 15c  as the threshold to categorize the embedding

vectors in the RPS. This threshold is an arbitrary value as long as it can separate all the

events from the other points in the indicator sequence. In addition, it is noteworthy that

the threshold in the original data sequence is not the one used in the MRPS-GMM

approach.

 The initialized parameters for training are:

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

15

20

25

Time

V
a
lu

e

71

Process Parameters

MRPS 1, 1, 3, 1, 1x x y yQ Q k     

GMM 15, 2, 1p nc NC NC  

Optimization  1, 1, 1 0.1 2    β

Table 5.1Parameters for training data of Saugeen River Flows

 The subscripts x and y denote the indicator sequence and the original data

sequence respectively. The training data will be re-used for validation. The experiment

result is:

72

Figure 5.3 Validation result for the Saugeen River Flows data

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

-1
00102030

Ti
m

e

Value

V
al

id
at

io
n

R
es

ul
t

Ta
rg

et
 s

eq
ue

nc
e

Th
re

sh
ol

d

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

0

10
0

20
0

30
0

Ti
m

e

Value

P
at

te
rn

 s
eq

ue
nc

e

P
at

te
rn

 s
ta

te

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

0

10
0

20
0

30
0

Ti
m

e

Value

P
at

te
rn

 s
eq

ue
nc

e

D
et

ec
te

d
pa

tt
er

n

73

 Meanwhile, the confusion matrix for the validation result is given as:

Estimation

Observation
Pattern Normal

Pattern 37 0

Normal 0 417

Table 5.2 Confusion matrix for the validation result of Saugeen River Flows data

 The testing result is illustrated as:

74

Figure 5.4 Testing result of Saugeen River Flows data

0
50

10
0

15
0

20
0

25
0

-1
00102030

Ti
m

e

Value

Te
st

 r
es

ul
t

Ta
rg

et
 s

eq
ue

nc
e

Th
re

sh
ol

d

0
50

10
0

15
0

20
0

25
0

05010
0

15
0

Ti
m

e

Value

P
at

te
rn

 s
eq

ue
nc

e

P
at

te
rn

 s
ta

te

0
50

10
0

15
0

20
0

25
0

05010
0

15
0

Ti
m

e

Value

P
at

te
rn

 s
eq

ue
nc

e

D
et

ec
te

d
pa

tt
er

n

75

 The confusion matrix is:

Estimation

Observation
Pattern Normal

Pattern 12 0

Normal 0 216

Table 5.3 Confusion matrix for the testing result of Saugeen River Flows data

 Both of validation and testing have the 100% success rate, so it can prove that

there is no over-fitting problem in the approach. Also, this experiment data proves that

the improved MRPS-GMM approach and the MATPAD framework are applicable to

handle real problems in hydrology. The detected patterns can predict that the mean river

flow speed will beyond 80
3m / s in the next month, which can be considered as a sign of

flood jeopardy. So this approach will be contributive to flood prediction so that the

prevention mechanism can be started to avoid property loss.

5.2 Detect Temporal Patterns in Finance Time Series

In this section, we will apply a dataset of Dow Jones Index at closing on 251

trading days ending on 26 August, 1994 to demonstrate how to discover the patterns to

predict inflection points in a finance time series. This dataset is one of the available

materials for [13].

The time series ()tx for this example is illustrated as:

76

Figure 5.5 Dow Jones Index for 251 trading days

 In stock market, one of the significant events is the inflection point, which is

important to stock holders to analyze the market timing. In this example, the inflection

point is defined as: tx is an event if 2 1t t tx x x   and 1t tx x  . The point’s value is less

than both of its adjacent points’, as known as “rebound off the bottom”.

 To avoid the effect by the sequence’s trend, we take difference to the original data

sequence. Each point in the difference sequence is 1t t ty x x  . Meanwhile, the event for

the difference sequence can be defined as: ty is an event if 2 0ty   and 1 0ty   and

0ty  . It is not difficult to understand that the two descriptions of the event are

equivalent. The difference sequence is shown as:

0 50 100 150 200 250
3500

3550

3600

3650

3700

3750

3800

3850

3900

3950

4000

Time

V
a
lu

e

DJ Index

77

Figure 5.6 The difference sequence of DJ Index data

 The first 200 points will be used for training and validation. The rest will be used

for testing.

 If we set the parameters 0.1a  , 1d  for the indicator sequence, it can be created

to describe the events in the difference sequence as:

0 50 100 150 200 250
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time

V
a
lu

e

78

Figure 5.7 The indicator sequence for the difference sequence

 The blue line on the figure is the threshold 0.6c  for the threshold-based event

function to categorize the embedding vectors. Each spike represents that there is an event

in the difference sequence at the same time point.

 The initialized parameters for reference are given in the following table:

Process Parameters

MRPS 1, 1, 2, 1, 1x x y yQ Q k     

GMM 0.6, 2, 1p nc NC NC  

Optimization  1, 1, 1 0.1 2    β

Table 5.4 Parameters for DJ Index data

 The subscripts x and y denote the indicator sequence and the difference

sequence respectively. The total number of embedding vectors is 178, 19 of which are

categorized in pattern state. The validation result is given as:

0 20 40 60 80 100 120 140 160 180 200
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

V
a
lu

e

79

Figure 5.8 Validation result for the difference sequence of the DJ Index data

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0
-0

.50

0.
51

1.
5

Ti
m

e

Value

V
al

id
at

io
n

R
es

ul
t

Ta

rg
et

 s
eq

ue
nc

e

Th
re

sh
ol

d

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0
-1

00-5
005010
0

Ti
m

e

Value

P

at
te

rn
 s

eq
ue

nc
e

P
at

te
rn

 s
ta

te

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0
-1

00-5
005010
0

Ti
m

e

Value

P

at
te

rn
 s

eq
ue

nc
e

D
et

ec
te

d
pa

tt
er

n

80

 The confusion matrix for the validation result is:

Estimation

Observation
Pattern Normal

Pattern 18 1

Normal 1 158

Table 5.5 Confusion matrix for the validation result of DJ Index data

 The result can be considered as acceptable. The classifier can be used in testing

process. In the testing data, there are 39 embedding vectors in total. The final test result is

as:

81

Figure 5.9 Test result of DJ Index data

0
5

10
15

20
25

30
35

40
45

50
-0

.50

0.
51

1.
5

Ti
m

e

Value

Te
st

 r
es

ul
t

Ta
rg

et
 s

eq
ue

nc
e

Th
re

sh
ol

d

0
5

10
15

20
25

30
35

40
45

50
-1

00-5
005010
0

Ti
m

e

Value

P
at

te
rn

 s
eq

ue
nc

e

P
at

te
rn

 s
ta

te

0
5

10
15

20
25

30
35

40
45

50
-1

00-5
005010
0

Ti
m

e

Value

P
at

te
rn

 s
eq

ue
nc

e

D
et

ec
te

d
pa

tt
er

n

82

 The confusion matrix is:

Estimation

Observation
Pattern Normal

Pattern 4 4

Normal 0 31

Table 5.6 Confusion matrix for test result of DJ Index data

 We can map the patterns in the difference sequence back to the original data

sequence as:

Figure 5.10 Patterns in the original test data sequence

 From the figure, we can see that the detected four patterns can predict that the

index will rise on the next trading day, although not all the eight events are predicted in

the test data. As we know that there is an extremely complicated mechanism behind the

stock index, which makes it difficult for the approach to predict every event in the

sequence. However, the patterns detected in the sequence do predict the price’s

0 10 20 30 40 50 60
3600

3650

3700

3750

3800

3850

3900

Time

V
a
lu

e

Data

Pattern

83

rebounding. Therefore, this approach is helpful and reliable indeed to be applied for

finance time series analysis.

84

 CONCLUSIONS CHAPTER 6

6.1 Contributions

The major contributions of this thesis are:

1. The improved approach applies Gaussian mixture model on both normal state

vectors and pattern state ones in the MRPS to fit a more precise distribution.

Meanwhile, the approach applies a simplified classifier to reduce the

computational amount.

2. A MATLAB based software is developed as a deliverable application for

temporal pattern detection. This original software has a clear GUI so users can

easily understand the whole process step by step. Moreover, this software is

standalone executable, which means it can be used without MATLAB

development environment. So it will be convenient to users to test the data on

different computing devices.

6.2 Problems for Future Work

Although the newly improved approach and the MATLAB-based software have

been tested to be applicable, there are still some problems cannot be ignored and need to

be solved in the future.

1. The EM algorithm can only find the local minimal, which means the result

depends on the initial values significantly. It is necessary to create a self-

checking mechanism to tell if the final iteration result of the GMM is accurate

enough and prevent the over-fitting problem from happening at the same time.

85

2. Currently, the software MATPAD can only perform the basic training and

testing functions to detect temporal patterns in time series. Meanwhile, there

is only one type of event functions can be defined and utilized. To improve

the applicability, some extended functions, such as customizing event function,

can be added and embedded in the GUI system. Moreover, other effective

methods proposed in the previous research, such as Artificial neural network

[34] , Fuzzy set [18] , can be implemented by the software as comparisons so

users can choose the most appropriate method for specific problems.

86

BIBLIOGRAPHY

[1] S. M. Wu, "Dynamic Data System: A New Modeling Approach," ASME Journal of

Engineering for Industry, vol. 99, no. 3, pp. 708-714, 1977.

[2] H. J. Steudel and S. M. Wu, "Dynamic Data System Modeling-Revisited,"

Management Science. Jul., vol. 24, no. 11, pp. 1200-1202, 1978.

[3] R. J. Povinelli and X. Feng, "Temporal Pattern Identification of Time Series Data

using Pattern Wavelets and Genetic Algorithms," in Artificial Neural Networks in

Engineering, pp. 691-696, St. Louis, Missouri, 1998.

[4] P. Hong and T. Huang, "Automatic temporal pattern extraction and association," in

Acoustics, Speech, and Signal Processing (ICASSP), pp. II-2005 - II-2008, 2002

IEEE International Conference on, Orlando, 2002.

[5] C.-h. L. Lee, A. L. Liu and W.-s. Chen, "Pattern discovery of fuzzy time series for

financial prediction," IEEE Transactions on Knowledge and Data Engineering, vol.

18, no. 5, pp. 613-625, 2006.

[6] W. Zhang and X. Feng, "Predictive temporal patterns detection in multivariate

dynamic data system," in 2012 10th World Congress on Intelligent Control and

Automation (WCICA), pp. 803 - 808, Beijing, 2012.

[7] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University

Press, 1997.

[8] F. Takens, "Detecting strange attractors in turbulence," Lecture Notes in

Mathematics, vol. 898, pp. 366-381, 1981.

[9] M. B. Kennel, R. Brown and H. D. I. Abarbanel, "Determining embedding

dimension for phase-space reconstruction using a geometrical construction," Phys.

Rev. A, vol. 45, no. 6, pp. 3403-3411, 1992.

[10] A. M. Fraser and H. L. Swinney, "Independent coordinates for strange attractors

from mutual information," Phys. Rev. A , vol. 33, no. 2, pp. 1134-1146, 1986.

[11] R. J. Povinelli, Time Series Data Mining: Identifying Temporal Patterns for

Characterization and Prediction of Time Series Events, Ph.D. Dissertation,

Marquette University, Milwaukee, 1999.

[12] G. Box and J. Gwilym, Time Series Analysis: Forecasting and Control, San

Francisco: Holden-Day, 1976.

87

[13] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting-

Second Edition, New York: Springer-Verlag, 2002.

[14] J. Nocedal and S. J. Wright,, Numerical Optimization, New York: Springer, 2006.

[15] R. Paredes and E. Vidal, "Learning weighted metrics to minimize nearest neighbor

classification error," IEEE Transactions on Pattern Analysis and Machine, vol. 28,

no. 7, pp. 1100–1111, 2006.

[16] D. A. Dickey and W. A. Fuller, "Distribution of the Estimators for Autoregressive

Time Series with a Unit Root," Journal of the American Statistical Association, vol.

74, no. 366, pp. 427-431, 1979.

[17] J. Pearl, Probabilistic Reasoning in Intelligent Systems, San Francisco: Morgan

Kaufmann, 1988.

[18] H. Huang and X. Feng, "A fuzzy-set-based Reconstructed Phase Space method for

identification of temporal patterns in complex time series," IEEE Transactions on

Knowledge and Data Engineering, vol. 17, no. 5, pp. 601-613, 2005.

[19] C. G. Broyden, "The convergence of a class of double-rank minimization

algorithms," Journal of the Institute of Mathematics and Its Applications, vol. 6, pp.

79-90, 1970.

[20] R. Fletcher, "A New Approach to Variable Metric Algorithms," Computer Journal,

vol. 13, no. 3, pp. 317-322, 1970.

[21] D. Goldfarb, "A Family of Variable Metric Updates Derived by Variational Means,"

Mathematics of Computation, vol. 24, no. 109, pp. 23-26, 1970.

[22] D. F. Shanno, "Conditioning of quasi-Newton methods for function minimization,"

Math. Comput., vol. 24, no. 111, pp. 647-656, 1970.

[23] J. Sherman and W. J. Morrison, "Adjustment of an Inverse Matrix Corresponding to

a Change in One Element of a Given Matrix," Annals of Mathematical Statistics,

vol. 21, no. 1, pp. 124-127, 1950.

[24] X. Feng and O. Senyana, "Mining multiple temporal patterns of complex dynamic

data systems," in Proceedings IEEE Symposium on Computational Intelligence and

Data Mining, pp. 411 - 417, Nashville, TN, 2009.

[25] W. Zhang, X. Feng and N. Bansal, "Detecting temporal patterns using RPS and

88

SVM in the dynamic data systems," in Proceedings IEEE Int’l Conf. Information

and Automation, pp. 209 - 214, Shenzhen, 2011.

[26] N. Bansal, X. Feng, W. Zhang, W. Wei and Y. Zhao, "Modeling temporal pattern

and event detection using hidden Markov model with application to a sludge bulking

data," Procedia Computer Science, vol. 12, pp. 218-223, 2012.

[27] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification 2nd ed, New York:

John Wiley & Sons, Inc, 2001.

[28] T. Moon, "The Expectation-Maximization Algorithm," IEEE Signal Processing

Mag. , vol. 13, pp. 47-59, 1996..

[29] A. P. DEMPSTER, N. M. LAIRD and D. B. RUBIN, "Maximum Likelihood from

Incomplete Data via the EM Algorithm," Journal of the Royal Statistical Society.

Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977.

[30] R. J. Povinelli, M. T. Johnson, A. C. Lindgren and J. Ye, "Time Series Classification

Using Gaussian Mixture Models of Reconstructed Phase Spaces," IEEE

Transactions On Knowledge And Data Engineering, vol. 16, no. 6, pp. 779-783,

2004.

[31] W. Zhang, Predictive Pattern Discovery in Dynamic Data System, Ph.D.

Dissertation, Marquette University, Milwaukee, 2013.

[32] M. Henon, "A two-dimensional mapping with a strange attractor," Communications

in Mathematical Physics, vol. 50, no. 1, pp. 69-77, 1976.

[33] K. Hipel and A. McLeod, Time Series Modelling of Water Resources and

Environmental Systems, Amsterdam: Elsevier Science B.V., 1994.

[34] C. M. Bishop, Pattern Recognition and Machine Learning,, New York: Springer,

2007.

89

Appendix

A.1 Reusable source code for RPS embedding

function [ev,kv] = embedding(Ts,Ps,Q,tau,k)
%EMBEDDING A data mining function to get embedding vectors
% This function returns embedding_vector (ev) and k_step_ahead_vector

(kv)
% as the outputs of the embedding result. "ev" is where patterns lie

in
% and "kv" is the same for events. Each row in ev is corresponding to

the
% row in kv that has the same number of row (ev(n,:)~kv(n,:)). Each

pair of
% rows shows an embedding vector and the k points after it.
%
% TS (target_sequence): the sequence that contains events.
%
% Ps (pattern_sequence): the sequence that is correlated with

target_sequence.
% pattern_sequence is used to find potential

patterns.
%
% Q: embedding dimension.
%
% tau: time delay.
%
% k: k step ahead.
%
% ev (embedding_vector): generated from pattern_sequence, which

contains
% potential patterns.
%
% kv (k_step_ahead_vector): k-column matrix to be used to find events.

M = length(Ts);
N = length(Ps);

if M<N
 disp('Length of target sequence must be no less than the one of

pattern sequence'); % check the pattern-sequence won't be oversized
else
 ev = zeros(N-(Q-1)*tau,Q); % Initialization
 kv = zeros(M-k-(Q-1)*tau-1,k);

 if ~iscolumn(Ts) % check and convert row vectors into column

vectors
 Ts = Ts';
 end
 if ~iscolumn(Ps)

90

 Ps = Ps';
 end

 j = 1; % build embedding vectors to search patterns
 l = N-(Q-1)*tau-1;
 for i=1:Q
 ev(:,i) = Ps(j:l+j);
 j = j+tau;
 end

 j = 1; % build k-step-late vectors to define events
 for i=1:k
 kv(:,i) = Ts((Q-1)*tau+1+j:M-k-1+j);
 j = j+1;
 end

 L = length(kv);
 ev = ev(1:L,:); % delete those redundant vectors in ev(no

corresponding vectors in kv)

end

end

A.2 Reusable source code for similarity measurement

function output_vector = phi(input_vector)
%Linear transformation to get the new lower-dimensional embedding

vector
% input_vector is the original vector for transformation
%
% output_vector is the new embedding vector
%
% the relationship between the "similarity" and this transformation

is:
% d(x1,x2) == ||phi(x1)-phi(x2)||^2

x = input_vector;
global Q

P = zeros(Q-1,Q-1); % initialization
a = Q-1;
for i=1:Q-1
 P(i,:) = a;
 P(:,i) = a;
 a = a-1;
end % Create P: a symmetric positive definite matrix
L = chol(P); % Cholesky decomposition of matrix P. L'*L==P

x = x(end:-1:1); % reverse-ordered for easy computing
Delta_x = zeros(Q-1,1);
for j=1:Q-1
 Delta_x(j) = x(j)-x(j+1); % differenced embedding vector

91

end
Delta_x = Delta_x(end:-1:1);
output_vector = L*Delta_x;

end

	Marquette University
	e-Publications@Marquette
	Applying an Improved MRPS-GMM Method to Detect Temporal Patterns in Dynamic Data System
	Shaobo Wang
	Recommended Citation

	tmp.1392837515.pdf.X58zP

