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ABSTRACT 

APPLYING AN IMPROVED MRPS-GMM METHOD TO DETECT TEMPORAL 

PATTERNS IN DYNAMIC DATA SYSTEM 

 

 

Shaobo Wang 

 

Marquette University, 2013 

 

 

The purpose of this thesis is to introduce an improved approach for the temporal 

pattern detection, which is based on the Multivariate Reconstructed Phase Space (MRPS) 

and the Gaussian Mixture Model (GMM), to overcome the disadvantage caused by the 

diversity of shapes among different temporal patterns in multiple nonlinear time series. 

Moreover, this thesis presents an applicable software program developed with MATLAB 

for users to utilize this approach. 

 

A major study involving dynamic data systems is to understand the 

correspondence between events of interest and predictive temporal patterns in the output 

observations, which can be used to develop a mechanism to predict the occurrence of 

events. The approach introduced in this thesis employs Expectation-Maximization (EM) 

algorithm to fit a more precise distribution for the data points embedded in the MRPS. 

Furthermore, it proposes an improved algorithm for the pattern classification process. As 

a result, the computational complexity will be reduced. 

 

A recently developed software program, MATPAD, is presented as a deliverable 

application of this approach. The GUI of this program contains specific functionalities so 

that users can directly implement the procedure of MRPS embedding and fit data 

distribution with GMM. Moreover, it allows users to customize the related parameters for 

specific problems so that users will be able to test their own data. 
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 INTRODUCTION CHAPTER 1

1.1 The Dynamic Data System 

The concept of Dynamic Data System (DDS) was proposed as a new modeling 

method by Professor S. M. Wu in 1970s [1]. Although the detailed definition varies 

among different research areas, a notable property of DDS is that the system observations 

are in a form of time series with dynamics, which is called dynamic data [2]. Here, 

“dynamics” is a term to describe the correlations between the current observations and 

the previous ones on the timeline. In general, the basic structure of DDS can be shown as: 

 

 

Figure 1.1 Basic structure of DDS 

DDS is common and widely used in the real world. However, it is impossible for 

people to understand every detailed part in the system in most cases. In other words, this 

kind of DDS has to be seen as a “black box”. For example, an integrated circuit (IC) chip 

can be considered as a typical DDS. However, due to the reason of patents, the inner 

structure of some important components in the chip is protected and can’t be examined. 

Sometimes, we have to measure the system observations of input and output signals in 
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multiple test process to understand the functionalities of those components. Meanwhile, 

lacking of applicable methods or facilities for measurement could be another problem 

that will make it difficult to study a DDS as well. 

So, finding a practical method for DDS research based on “black box” testing is 

very necessary to overcome the obstacles mentioned above that prevent people from 

analyzing DDS effectively. Although it may not provide accurate parameter estimations 

to model the inner system, the method will contribute to the qualitative analysis to the 

system structure which is unacquainted to people.  

1.2 Research Background 

A major research direction on DDS is the detection of temporal patterns [3]. A 

temporal pattern is defined as a segment of signals that recurs frequently in the whole 

time series data [4]. In other words, temporal patterns are some different segments of a 

sequence that share a similar time-ordered structure. To discuss the use of temporal 

patterns, let’s see the concept of “event of interest” first.  

Assume an output variable of a DDS can be expressed as a time series with N  

observations as: 

 

    1 2 t Nt x x x xx ,  (1.1) 

where tx is a single observation at time t . In this time sequence, some observations may 

have a special property that is different from the rest, such as their values could be above 

or below a certain threshold. This kind of observation is called “event of interest”, which 

implies about the change of state in the underlying DDS. Predicting the occurrence of 
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events is very important for many applications. For example, in financial prediction, there 

is a significant interest in determining the timings of positions of securities [5]. However, 

most DDSs in the real world, such as the stock market, are extremely complex and 

chaotic so that it is hard to establish an accurate mathematical model to simulate the 

dynamics that causes the events to occur.   

Despite the complexity of the DDS, these events can be related very closely to the 

temporal patterns which are lying in multivariate time sequences. If we can actually find 

there is a certain correspondence between events and temporal patterns, then it would be 

possible for us to use the detected temporal patterns to predict the occurrence of events. 

There are two major research directions in detecting temporal patterns: the 

univariate and multivariate approaches. The univariate approach focuses on discovering 

the correspondence between events and patterns within the same time sequence, such as 

the innovative time series data mining (TSDM) method introduced by Povinelli and Feng 

in [3], which laid the foundation for the subsequent research. The multivariate approaches 

proposed in [6] by Zhang and Feng can be considered as an extension of the univariate 

approaches to solve the problem of analyzing the dynamic relationship between events 

and temporal patterns in multiple data sequences. 

1.3 Statement of Problem 

 Assume that the observations of each output variable of a multivariate DDS can 

be expressed as: 
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where  

each element ( )tx  is a univariate time sequence representing one of the output variables 

of the system;  

m  is the total number of variables;  

t  is the time index; 

In practical multivariate applications, one of the output variables can be 

considered as target sequence in which the events of interest will be defined and 

discovered. For most problems in the area of data mining and pattern analysis, people are 

not only interested in detecting the events in the target sequence, but also in exploring the 

causal relationship between the underlying factors and variables represented by other 

related sequences. Therefore, the expression can be re-written as: 
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 (1.3) 

where ( )e tx  denotes the target sequence. If each output variable has N observations； 

( )tX  can be seen as an  1m N   matrix, where each column consists of the 

observations in each output variables at time t.  
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Several pattern identification approaches based on the Reconstructed Phase Space 

(RPS) [7] [8] have been proposed. These approaches proved that the RPS embedding is 

capable of representing temporal patterns in nonlinear dynamic data which is chaotic and 

irregular. The algorithm based on the RPS embedding typically involves selecting the 

embedding dimension [9] and time delay [10]. The following equation is an example of 

the embedding vectors with embedding dimension Q  and time delay   for a single time 

sequence ( )tx as (1.1): 
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  (1.4) 

Each row of the right side matrix can be considered as an embedding vector, 

which can be seen as the coordinates of a point. By this method, a time sequence can be 

described as a set of points embedded in a Q -dimensional RPS. To keep it consistent to 

the previous research, in this thesis, we will apply the backward RPS embedding where 

an embedding vector is defined as: 

 

  1t t tt Q
x x x  
 
 

x   (1.5) 

 Actually, these two kinds of expressions for the embedding vectors are equivalent 

where the only difference is the subscript. 
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As an extension of this univariate RPS embedding method, the multivariate RPS 

(MRPS) embedding method proposed by Zhang and Feng in [6] makes it possible to 

embed multiple time sequences simultaneously into the same RPS. The detailed 

procedure will be discussed in Chapter 2. 

According to the approach in [6], the embedding points will be categorized into 

three different states—event, normal and pattern by the event characterization function 

[11]. A Gaussian mixture model can be applied to fit the distribution of these points in 

the RPS. This MRPS-GMM approach has been tested to be efficient for detecting 

temporal patterns among multiple related time sequences. However, there are still several 

problems need to be solved. For example, the current method is not sufficiently accurate 

to handle the diversity of shapes among different temporal patterns. Meanwhile, the 

computational amount needs to be reduced for the classifier training process. Moreover, a 

deliverable application for temporal pattern detection is still missing.  

Therefore, the primary objective of this thesis is to propose some contributive 

improvements on the existing methods and make an applicable framework to overcome 

the obstacles mentioned above. The overview of the proposed work is:   

1) Propose a series of improvements on the Gaussian mixture model (GMM) 

applied in the existing MRPS-GMM approach to handle the situation when 

patterns with different shapes gather into separated regions in the RPS after 

the embedding process.  

2) Reduce the computational amount by reducing the number of unknown 

coefficients in the classifier.  
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3) Develop a deliverable software program with an applicable framework for 

wide utilization. 

This thesis will propose a series of discussion of these feasible solutions in the 

following chapters. 

1.4 Thesis Outline 

 This thesis includes six chapters: 

  Chapter 1 discusses the background of DDS, the problem statement, the current 

status and the preview of the proposed work. 

 Chapter 2 will present a literature review for the fundamental theory of temporal 

pattern detection and event identification. Meanwhile, several contributive approaches 

developed in previous research will be discussed in this chapter. 

 Chapter 3 will analyze the existing GMM-based approach and propose the 

improved GMM to overcome the misclassifying problem caused by the diversity of 

shapes among different patterns embedded in the MRPS. The improved approach can fit 

a more precise probability density function to describe the distribution of the embedded 

temporal patterns. As a result, it will help the classifier to enhance the accuracy rate. 

Meanwhile, improvements on the classification and optimization stages will be proposed 

to make the computational process more efficient. In addition, performance of the newly 

proposed approach will be evaluated with simulated data. 

 Chapter 4 will introduce a newly developed software program based on the 

improved MRPS-GMM approach to detect temporal patterns in multivariate DDS. This 

program applies a computational framework based on MATLAB development 

environment. Meanwhile, as a deliverable software program, it can be executed on 
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Windows platforms that do not have MATLAB installed. The graphic user interface 

(GUI) of this software program is designed for users to easily understand the basic 

process of temporal pattern detection. The detailed functions and the operation procedure 

will be discussed. 

 Chapter 5 will perform several experiments by applying datasets from real world 

problems to evaluate the performance of the improved MRPS-GMM method.  

Conclusions and suggestions of future work are included in Chapter 6.  
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 LITERATURE REVIEW CHAPTER 2

The fundamental theories applied in the thesis are based on the successive 

research from many scholars who have been dedicating themselves on this Temporal 

Pattern Detection subject for more than a decade of years. This chapter will take a review 

of conventional research related to time series analysis at first. Then, it will review those 

methods presented in previous research which are contributive to temporal pattern 

detection in the DDS.  

2.1 Review of Conventional Time Series Analysis 

The primary research objective for time series analysis is to develop mathematical 

models that reveal patterns in the underlying system and make prediction. An example of 

a conventional procedure for time series analysis is shown as the following flow chart: 

 



10 

 

Figure 2.1 Illustration of conventional procedure for time series analysis 

 This model-based procedure applies Box-Jenkins modeling approach [12] , such 

as Autoregressive–moving-average (ARMA) model and Autoregressive integrated 

moving average (ARIMA) [13], to analyze the behavior of a system. The focus of this 

approach is on a point-by-point “curve-fitting” strategy. However, not enough attention 

has been given to the explanation of dynamic relationships between the signal segments 

in the data sequences, e.g. temporal patterns, and critical occurrences of the events of 

interest. For reference, the basic structure of ARMA and ARIMA model is shown as: 

1) The ARMA model 
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Given a real number time series data tX where t  is the time index, then the 

ARMA(p, q) model can be expressed as:  

 

 
1 1

1 1
p q

i i

i t i t

i i

L X L  
 

   
     

   
  ,  (1.6) 

where 

t  is the error term, which is generally assumed to be white noise series following the 

distribution 
2(0, )N  ; 

L denotes a lag operator such that i

t t iL X X  and i

t t iL   ; 

i  and i  are parameters of the ARMA model, which can be estimated by a numerical 

optimization technique [14] or the Yule–Walker method [15]. 

In addition, the polynomial on the left side of the equal sign is the autoregressive 

model of order p, which can be denoted as AR(p); the right side is the moving average 

model of order q, denoted as MA(q). 

2) The ARIMA model 

The ARIMA model can be considered as an augmented model based on AMRA. 

As it for the non-stationary series, assume that the polynomial  
'

1

1
p

i

i

i

L


 
 

 
  has a unit 

root of multiplicity d [16]. Then it can be rewritten as: 

 

  
' '

1 1

1 1 1
p p d

di i

i i

i i

L L L 


 

   
      

   
  ,  (1.7) 

 If we set 'p p d  , so an ARIMA(p,d,q) model is given by: 
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  
1 1

1 1 1
p q

di i

i t i t

i i

L L X L  
 

   
      

   
  ,  (1.8) 

As an innovated framework which is unlike the model-based methods, the 

approaches based on the RPS embedding for the DDS analysis is generally motivated by 

the presumption that the system dynamics can be explained in terms of a dependence 

between observations in the past and ones in the current or future time. The RPS 

approach is not focusing on building models for numerical analysis and prediction. 

Instead, it offers another perspective to discover the dynamics in the underlying system.  

2.2 Review of the Contributive Research for Temporal Pattern Detection  

In this section, several innovative methods and approaches for temporal pattern 

detection will be briefly reviewed in chronological order. Furthermore, the fundamental 

methodology applied in this thesis will be concluded based on the previous research.  

2.2.1 Time Series Data Mining  

In 1998, the framework based on RPS embedding for Time Series Data Mining 

(TSDM) was proposed by R. Povinelli and X. Feng [3]. A series of important concepts 

and definitions were introduced as the basic components for the research. In order to 

understand this method which is inherited by many successive studies, some of those 

basic components will be reviewed in the following discussion. 

1. Embedding dimension Q  and time delay    

As it was shown in (1.4), these two parameters are important features for a RPS 

embedding process. The dimension Q  of the RPS can be determined by using a false 
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nearest-neighbors technique [9] [17]. For each embedding point Q

ix  in a Q -dimensional 

RPS, its nearest neighbor 
Q

jx  can be found by: 

 

 
,

arg min
Q
j

Q Q Q

j i j
i j

 
x

x x x ,  (1.9) 

where Q Q

j ix x  is the Euclidean distance between the two points. If the embedding 

dimension is increased to 1Q , the change rate of the distance is measured by: 

 

 

2 2
1 1

2

Q Q Q Q

j i j i

i
Q Q

j i

r

   




x x x x

x x
 , (1.10) 

 If ir  exceeds a given threshold  , Q

ix will be marked as having a false nearest 

neighbor. The criterion for an adequate value of Q is that the number of data points 

whose ir  >  is zero, or small enough, in a Q -dimensional RPS.  

  The time delay  can be calculated by finding the first zero point of the 

autocorrelation function [7]. The autocorrelation function was found to be effective in 

estimating the time delay. Meanwhile, it is an important reference for stationary test. 

Given a stochastic process tX and time delay , the autocorrelation is:  

 

  
  

2

t tE X X
R

 




      (1.11) 

where 

 and 
2  are the mean and the variance of the observations of tX respectively; 
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E denotes the expectation function. 

2. Event and event function 

In a certain DDS, an event is an important occurrence which reflects the state 

changing of the internal system. In [3], a Synthetic Seismic Time Series was used as an 

example to illustrate the events in a time sequence. The figure is shown as: 

 

 

Figure 2.2 Synthetic Seismic Time Series with Temporal Pattern and Events 

In order to discover the correspondence between temporal patterns and events, we 

can define an event function to characterize embedding vectors in the RPS and label each 

of them in different categories such as pattern and non-pattern. For example, if 

 1t t tt Q
x x x  
 
 

x  is an embedding vector, for a one-step-ahead prediction 

problem, the event function can be defined as: 

 

   1t tg x x ,  (1.12) 
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or a k-step-ahead event function: 

 

    1 2max , ,t t t t kg x x x  x   (1.13) 

 In some cases, the primary focus is on the percentage change rather than the 

actual values. An event function can be defined as the percentage change in the next step 

such as: 

 

 1( ) t t
t

t

x x
g

x

 
x   (1.14) 

As a common method to categorize the embedding vectors, if it is predefined that 

the value of ( )tg x beyond a threshold c  can be considered as an event, the embedding 

vector tx will be labeled as a potential pattern to predict it. The labeled vectors will be 

used for pattern identification process with clustering algorithms.   

3. Objective function for pattern identification 

The problem of searching predictive temporal patterns in the RPS can be 

transformed into an optimization problem to maximize or minimize the objective 

function with respect to the underlying parameters, such as the center v  and radius  of 

the clusters. The objective function can be defined in different forms depending on the 

goal of pattern identification. In [3], several objective functions are presented for 

different tasks. 

1) The Maximal event function 
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  






   


 
 



x v

v   (1.15) 

 where  

 0g  is the smallest event value in the cluster; 

M is the number of data points in the cluster; 

N  denotes the number of total data points; 

  is the rate of the minimum cluster size; 

1

1
( )

M

M i

i

g
M




  x  is the mean of the event function within the cluster. 

2) Maximal statistical significance between data points in the cluster and outside 

cluster. This is simply based on the statistical t-test  
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( , )

( ) ( )

c c

c c

M M

M M

c c

f

C M C M

 









v  , (1.16) 

 where 

 cM represents the set of data points within cluster; 

cM is the set of data points outside of the cluster; 

( )cC M  and ( )cC M are the number of data points in these two sets; 

cM and 
cM

 are the mean event function values of the two sets; 

2

cM  and 2

cM
 are the variances of cM  and 

cM respectively. 

3) Maximal event characterization accuracy 
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 ( , )
tp tn

f
tp tn fp fn





  

v ,  (1.17) 

 where 

 tp represents the number of true positives; 

tn represents the number of true negatives; 

fp represents the number of false positives; 

fn represents the number of false negatives. 

2.2.2 Fuzzy Set Based Clustering 

This new method was proposed by Huang and Feng in 2005 [18]. It utilizes a 

fuzzy set based objective function with a Gaussian-shaped membership function to 

cluster temporal patterns in the time-delay embedding RPS. As it is proposed in [18], the 

fuzzy set objective function is defined as: 

 

 

2

2
1

( , ) exp ( )
2

N
i

i

i

f g


 
  

 
 


v x

v x ，  (1.18) 

where 

ix is a vector embedded in RPS; 

v  represents the center of a fuzzy cluster; 

 represents the radius of the fuzzy cluster; 

N denotes the number of total data points; 

  is the rate of the minimum cluster size. 
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This objective function represents the summation of the weighted event functions. 

The weight tells how much an embedding vector contributes to the temporal pattern 

cluster. It takes the pattern density into consideration and will be robust to noisy points.  

The objective function is continuously differentiable so the gradient descent 

optimization such as quasi-Newton methods can be applied to search the optimal clusters 

with a faster speed of convergence. The computational stability is significantly improved 

over the genetic algorithm which is originally used in the early developed TSDM 

mentioned above. The Broyden–Fletcher–Goldfarb–Shanno algorithm [19] [20] [21] [22] 

is applied as one efficient approach from the class of quasi-Newton methods to solve 

unconstrained nonlinear optimization problems. If ( )f x  is an objective function to be 

minimized, meanwhile, from an initial guess 0x  and an approximate Hessian matrix 

0 x B I ( x  is a scalar), the following steps are iterated as kx converges to the solution:  

1. Obtain a direction kp by solving: ( )k k kf B p x  where   is the gradient 

operator;   

2. Perform a line search to find an acceptable step size k in the direction found 

in the first step, then update 1k k k k  x x p ; 

3. Set k k ks p ; 

4. 1( ) ( )k k kf f y x x ; 

5. 1

( )T T

k k k k k k
k k T T

k k k k k

   
y y B s B s

B B
y s s B s

.  

Convergence can be checked by observing if the norm of the gradient ( )kf x is 

less than a predefined threshold. The first step of the algorithm is carried out using the 
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inverse of the matrix kB , which is usually obtained efficiently by applying the Sherman–

Morrison formula [23] to the fifth line of the algorithm, which is 

 

 
  

 

1 1 1
1 1

1 2

T T T T T
k k k k k k k k k k k k k

k k TT
k kk k

  
 



 
  

s y y B y s s B y s s y B
B B

s ys y
  (1.19) 

2.2.3 The Existing MRPS-GMM Method 

This approach was presented by W. Zhang and X. Feng in 2012 [6] to identify 

predictive temporal patterns in a multivariate dynamic data system. The new Multivariate 

Reconstructed Phase Space (MPRS) method is based on the multivariate RPS 

transformation, data categorization and nonlinear optimization.  

One of the major limitations of the univariate RPS approach is that temporal 

patterns are typically assumed to exist only in the event sequence so it is impossible for 

the method to discover the correspondence between patterns and events lying in different, 

but correlated, sequences. This method can be widely applied on multivariate data 

sequences and can result in a better performance as well. For example, to monitor a 

patient’s cardiovascular conditions, besides measuring the electrocardiography (ECG) 

signals, the other measurements, such as blood pressure and body temperature, are also 

monitored constantly as the related factors to track the patient’s overall conditions. As an 

augmented method derived from univariate RPS embedding, the MRPS method is 

elaborated in the following discussion: 

For instance, based on the equation (1.3), the observations of a DDS can be 

expressed as: 
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(1) (2) ( )

( ) , 1

(1) (2) ( )

(1) (2) ( )
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e e e m N
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x x x N

t t N

x x x N

x x x N
 

 
 
 
  
 
 
  

X   (1.20) 

The embedding vector at time t of the sequence on the j
th

 row is: 

 

 ( ) ( ( 1) ) ( ) ( ) , 1 1j j j j j j jt x t Q x t x t j m        x   (1.21) 

where 
jQ  and 

j  are the embedding dimension and time delay for the j
th

 sequence 

respectively. In addition, when 1j m  , it means the embedding sequence is the target 

sequence in the observations. So the embedding vector at time t  in the multivariate RPS 

can be constructed as: 

 

  1 2(t) (t) (t) (t) (t)m ex x x x x  (1.22) 

Apparently, the dimension Q  for the multivariate embedding is the summation of all 

embedding dimension jQ , which means 
1

1

m

j

j

Q Q




 .  

 Another contribution of this method is the concept of pattern similarity. It was 

proposed to solve the problem that vectors which should be categorized as the same type 

of temporal patterns may fall into different regions when embedding a data sequence with 

an outstanding trend into the RPS. Furthermore, inspired by the fuzzy-set method 

mentioned above, Gaussian mixture model (GMM) is applied to describe the distributions 
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of the data points in different categories with a sloped boundary instead of a crisp one. 

The detailed applications for these two methods will be discussed in Chapter 3. 

2.3 Summary of the Research Developments 

   From the reviews in the above sections, the relationship of inheritance and 

extension between different approaches is an important factor that keeps improving the 

methodology of temporal pattern detection theoretically and practically. The study of 

TSDM proposed the original problem statement and established the framework for the 

future study. The Fuzzy-set based method offers an innovative idea which is different 

from the conventional algorithms that search clusters with crisp boundary. This method 

inspires the study of applying GMM to define the objective function. The newly 

developed method based on GMM and multivariate RPS embedding greatly extends the 

applicable scope. It is possible to detect patterns in multiple related sequences 

simultaneously. Besides, there are many approaches of temporal pattern detection have 

been proposed based on other mathematical models and algorithms, such as the logistic 

regression based approach by Feng, Senyana [24], the Gaussian mixture model-Support 

Vector Machine (GMM-SVM) hybrid approach by Zhang, Feng and Bansal [25] and the 

Hidden Markov Model (HMM) based approach by Bansal, Feng, Zhang et al [26]. 
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 AN IMPROVED MRPS-GMM APPROACH CHAPTER 3

 Gaussian Mixture Model (GMM) is a probabilistic model which can be used to 

represent the presence of subpopulations within an overall population by assuming that 

the distribution for the overall population can be described as a mixture of multiple 

Gaussian distributions. In a recent research of temporal pattern detection, a GMM based 

approach has been proposed by W. Zhang and X. Feng in [6], which enhance the 

performance of the classifier by an innovative method. However, there is still work to do 

to improve it. In this chapter, we will review the background of GMM and EM algorithm 

at first. Then we will discuss the disadvantage of the existing GMM approach and present 

the newly improved method. Meanwhile, we will test the performance of the improved 

method on a series of simulated data. 

3.1 Background of GMM 

A Gaussian Mixture Model (GMM) can be defined as a parametric probability 

density function which is represented as a weighted sum of Gaussian-distributed 

component densities. GMM parameters can be estimated from the training data using the 

iterative Expectation-Maximization (EM) algorithm. In the section, we only discuss the 

GMM based on multivariate normal distribution which is more applicable to fit 

probability density functions in a multidimensional phase space.  

 The multivariate normal distribution of a Q-dimensional random vector 

1 2X X XQ
   x  can be written as: 

 

 ( , )Nx μ Σ ,  (1.23) 
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where 

 

μ  is a Q -dimensional mean vector; 

Σ  is an m m  positive definite covariance matrix.  

The value of μ  andΣ  can be calculated by 

 

 1 2E(X ) E(X ) E(X )Q
   μ ,   (1.24) 

 

  , Cov X ,X , 1,2, , ; 1,2, ,i j i j i Q j Q         
Σ ,  (1.25) 

The probability density function is defined as: 

 

 
11 1

( ) exp ( ) ( )
2(2 )

T

Q
p



 
    

 
x x μ Σ x μ

Σ
,  (1.26) 

where Σ  is the determinant of the covariance matrix [27]. In order to guarantee that the 

exponential part in (3.4) is multipliable, x  and μ  must be row vectors. As long as both of 

the mean vector and covariance matrix are known, it will be able to fit a probability 

density function for the data. The following picture is showing a 2-dimentional normal 

distribution with the predefined mean vector [0 0]μ and covariance matrix

1.5 0.3

0.3 0.25

 
  
 

Σ : 
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Figure 3.1 Example of a 2-dimentional normal distribution 

 However, in some cases, it will be more sufficiently accurate to describe the 

probabilistic distribution of the observed data by the GMM instead of using just one 

Gaussian probability density function. For example, we can apply a 2-component GMM 

to fit the probability density function of the 2-dimesional data shown as: 

 

 

Figure 3.2 The scatter-histogram plot of a set of 2-dimensional data 
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 The figure shows the scatter plot and margin distributions of 300 observations of 

a simulated dataset which can be generated by the following commands in MATLAB: 

m1 = [1 2]; 

s1 = [3 0; 0 2]; 

m2 = [-1 -2]; 

s2 = [2 0; 0 1]; 

X = [mvnrnd(m1,s1,200);mvnrnd(m2,s2,100)];  

 

The 2-component GMM to fit the distribution for the dataset is shown as: 

 

 
Figure 3.3 Distribution of the dataset by a 2-component GMM 

 Also, we can use contour map to display the GMM in a 2-D plot: 
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Figure 3.4 Contours for the 2-component mixture distribution 

As we can see from the figures above, the two Gaussian distributed components 

have different mean vectors, covariance matrices and mixing proportions. These three 

parameters are fundamental to the GMM and can be estimated by the EM algorithm. 

3.2 Basic Theories of the EM Algorithm 

The Expectation–Maximization (EM) algorithm [28] is an iterative algorithm to 

find maximum likelihood or maximum a posteriori (MAP) estimates of parameters in 

statistical models, when the observations can be viewed as incomplete data [29].  

The EM algorithm iteratively performs two steps:  expectation (E) step and 

maximization (M) step. In E step, it creates a function for the expectation of the log-

likelihood evaluated using the current estimate for the parameters. In M step, it computes 

parameters maximizing the expected log-likelihood found on the E step. These 
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parameter-estimates are then used to determine the distribution of the latent variables in 

the next E step unless the results satisfy the condition to terminate.  

The EM algorithm has been widely used in many statistical problems. To make it 

simple to understand, we will only discuss its procedure to estimate the parameters of a 

K-component GMM in this section. 

Assume that 
1 2

Q

i N x x x x  are N  observations of a dataset and each one 

is a Q dimensional vector. In order to build a K-component GMM to describe the 

distribution of the dataset, first we need to initialize the mean vector
jμ  , covariance 

matrix 
jΣ  and mixing proportion 

j  for each component. Especially, it is necessary to 

emphasize that the sum of the mixing proportion of each component is one, which means: 

 

 

1

1
K

j

j




  , (1.27) 

If we define

1 2

1 2

1 2

j K

j K

j K   

 
 

  
 
 

μ μ μ μ

θ Σ Σ Σ Σ  to represent the set of all current 

parameters, we can evaluate the log-likelihood function as: 

 

 1 2 1 2ln ( | , , , ) ln ( , , , | )N NL pθ x x x x x x θ ,  (1.28) 

If the observations are mutually independent, the log-likelihood can be written in: 

 

 1 2

1 1 1

ln ( | , , , ) ln ( | ) ln( ( | , ))
N N K

N i j i j j

i i j

L p p
  

   θ x x x x θ x μ Σ ,  (1.29) 



28 

 

where 

L denotes the likelihood function; 

p, in this case, denotes the probability density function of multivariate normal 

distribution , as it shown in (3.4), given the current parameters in θ . 

 The iteration will begin in the E step with the initialized parameters. One of the 

most important variables in the algorithm is the probability that the i
th

 observation 

belongs to the j
th

 Gaussian distributed component of the GMM. It can be computed by the 

following expression: 

 

 
,

1

( | , )

( | , )

j i j j

i j K

j i j j

j

p

p











x μ Σ

x μ Σ

 , (1.30) 

 This is a membership variable called “responsibility” which can be seen as an 

assignment score to indicate how much the j
th

 Gaussian component is responsible for ix . 

 In M step, the current membership variables can be used to estimate jμ , jΣ  and

j for each component. The new estimations can be iteratively computed as: 
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1 N
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 Still, the observations and mean vectors must be row vectors so that the 

dimensions of the results are matched on both sides of the above equations. With the 

newly estimated parameters, the new log-likelihood function can be computed as: 

 

 1 2

1 1

ln ( | , , , ) ln( ( | , ))
N K

new new new new

N j i j j

i j

L p
 

 θ x x x x μ Σ ,  (1.34) 

 Then, we can compare the new log-likelihood with the previous one computed in 

(3.7) to see if the increment is less than a preset threshold . If so, the iteration can be 

terminated. Otherwise, we can substitute the current θ by the newly estimated 
newθ  to 

start over the whole process from the E step until the log-likelihood is convergent.  

The iteration can be illustrated by the following flow chart: 
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Figure 3.5 Flow chart of the EM algorithm for GMM 
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GMM based approach for signal classification has been introduced by R. J. 

Povinelli, M. T. Johnson et al. in [30], which inspires the original idea that applying 

GMM for temporal pattern detection. Unlike the unsupervised learning approach in [30] 

which is focusing on clustering, the MRPS-GMM hybrid method proposed by Zhang and 

Feng in [6] separated the embedding vectors into three states--pattern, normal and event--

by the event function. The multivariate GMM is utilized to fit the probability distribution 

by applying the training dataset to gain the initial values of the mean vector, covariance 

matrix and mixing proportion for each state respectively to ensure convergence. Then we 

can acquire the log-odds of an embedding vector tx as following which can be used in a 

classifier to categorize tx into different states: 

 

 
( | )

( ) log
( | )

p t

t

n t

p

p







x
x

x
,  (1.35) 

where p  and n  denote the states of pattern and normal [6]. As a conclusion and 

modification, the detailed procedure of the temporal pattern detection subject applied in 

this thesis is shown as the following figure: 
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Figure 3.6 Framework for temporal pattern detection based on the previous research 

Although it is efficient for classifying, this method is still not sufficiently accurate 

to handle the diversity of shapes among the embedding vectors. For example, we can 

create a simulated dataset by the following commands in MATLAB: 

mu1 = [1 2]; 
sigma1 = [3 .2; .2 2]; 
mu2 = [-1 -2]; 
sigma2 = [0.5 0; 0 0.6]; 
mu3 = [4 -1]; 
sigma3 = [0.6 0.3; 0.3 0.4]; 
X1 = [mvnrnd(mu1,sigma1,200)]; 

Training Data 

MRPS 

Embedding 

with 

predefined 

parameters Q 

and τ 

GMM 

Testing Data 

Categorize 

points by event 

function 

Multiple GMM 

to fit distribution 

functions for 

each category 

Optimization 

Optimize the 

loss function 

to train the 

classifier 

MRPS 

Embedding 

with 

predefined 

parameters Q 

and τ 

Classification 

Detect 

patterns by 

the classifier 

Performance 

Evaluation 

Result 

evaluation 

and display 

Testing Stage Training Stage 



33 

 

figure 
scatter(X1(:,1),X1(:,2)) 
hold on 
X2 = [mvnrnd(mu2,sigma2,50);mvnrnd(mu3,sigma3,50)]; 
scatter(X2(:,1),X2(:,2)) 
hold on 
legend('normal','pattern'); 

 

This dataset consists of a set of vectors embedded in a 2-D RPS illustrated as: 

 

Figure 3.7 Embedding vectors in a 2-D RPS 

 There are 200 normal vectors and 100 pattern vectors in the RPS. Apparently, the 

pattern vectors are gathering into two separated regions. In this case, the existing 

approach will cause a large amount of misclassifications by fitting the distribution for 

pattern vectors with a single Gaussian distribution function. This misclassification issue 

is illustrated by the following figure: 
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Figure 3.8 Misclassification issue caused by single Gaussian distribution function 

To overcome this obstacle, we can apply the improved GMM approach. Before 

we start the process, the vectors standing for the event states have already been 

eliminated from the RPS. The reason is simple: because the embedding vectors belonging 

to event state are signal segments with the appearance of events, which means this state 

won’t be helpful to predict the event in testing data. The improvements can be concluded 

in the following two aspects: 

1. Unlike the existing method which acquires the initial parameters’ values from 

the training data, the improved method applies a specific unsupervised 

learning algorithm that randomly samples the initial values from the dataset 
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log-likelihood converge in the least iterations. Moreover, this algorithm can 

initially assign a data point into one of the components by finding out which 

mean vector is closer to the point. It can prevent the circumstance that 

multiple components converge to the same area from happening.  

2. Instead of using loop statement, the algorithm of the improved method applies 

matrix multiplication to rapidly compute the estimations for each parameter in 

the iteration process. In MATLAB development environment, the computing 

speed of matrix multiplication is much faster than using loop statement. With 

this convenient feature, it will be more efficient to compute the polynomial 

summations in each step of iteration and finish the whole process with less 

running time. Besides, the algorithm will have a better performance for 

classification and optimization process by using matrix multiplication instead 

of loop statement.  

 We can explain the detailed procedure of the improved GMM approach by the 

following block diagram: 
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Figure 3.9 Block diagram of the improved GMM approach 

The following figure shows the distribution of the dataset on the previous figure 

created by the improved GMM approach. Obviously, the probability distribution can 

precisely reflect that pattern points gather into separated regions in the space. 
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Figure 3.10 The probability distribution with the improved GMM approach 

 In addition, based on the concept of “pattern similarity” proposed by Zhang in 

[31], we can build a simplified and efficient linear classifier as: 
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where 

pN  is the total number of vectors in pattern state p ; 

p

ix  is the i th vector in pattern state; 

  is a predefined parameter for similarity measure; 

( )t x  is the log odds denoting the Gaussian mixture log likelihood score of tx ; 
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(.)  is a mapping from Q -dimensional space to ( 1)Q -dimensional space. 

 Actually, it has been proved in [31] that if we denote the similarity of two 

different Q -dimensional vectors as 1 2( , )d x x , there exists a mapping
1(.) : Q Q  , 

such that
2

1 2 1 2( , ) ( ) ( )d   x x x x . By a series of mathematical derivation, (.)  can be 

given as: 

 

 (.) (.)  L   (1.37) 

where 

L is the Cholesky decomposition of matrix 

1 2 1

2 2 1

1

1 1 1 1
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 

 
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 

P  such that 

TP L L ;  

  is the backward difference operator. 

 For the optimization process, we can apply the exponential loss function proposed 

in [31], which has been proved to be robust and stable. The function is shown as: 
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where 

N is the total number of vectors in the RPS; 

  is the penalty coefficient; 

 1 2 3  β in ( )tf x .   

3.4 Experiments with Simulated Data 
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In this section, we will apply the improved approach to predict the event 

occurrences in a set of simulated data sequences:  

In the first example, we will artificially create several data observations by 

inserting two different types of patterns in the pattern sequence on purpose to test if the 

improved approach is able to detect them.  

The second example will apply Henon map, which is a dynamical discrete-time 

chaotic system, to test the performance on a data system which is strictly defined 

according to its state equations. In addition, it will make a comparison between the 

existing MRPS-GMM approach and the improved one to show that the latter has a better 

performance. 

Example 1: Detect two types of temporal patterns in white noise series 

The following figure shows part of the data applied in this example: 

 

 

Figure 3.11 The artificial data with created patterns (200 data points) 
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 This simulated data is generated by the following commands: 

x = 0.4*randn(200,1); 

y = 0.1*randn(200,1); 

  
for i=1:20 

x(6+10*(i-1)) = x(6+10*(i-1))+2; 

x(6+10*(i-1)-2) = 0.1+0.4*randn(1); 
end 
target_sequence = x; 

 

for i=1:20 
y(6+10*(i-1)) = y(6+10*(i-1))+4; 

y(6+10*(i-1)-2) = 1.5+0.1*randn(1); 

end 
rs = randsample(20,13); 
for i=1:13 
    y(10*(rs(i)-1)+6-1) = 2+0.1*randn(1); 
    y(10*(rs(i)-1)+6-2) = 1+0.1*randn(1); 
end 
pattern_sequence =y; 

 

Both target and pattern sequences are synchronized and correlated by time. The 

target sequence is interfered by a high power white noise series. In result, it will be 

difficult to detect the patterns directly. Oppositely, the noise interference in the pattern 

sequence is less than 10%, which is more acceptable. Also, we have inserted two 

different types of 3-dimensional temporal patterns in the sequence for 1 step-ahead 

prediction, which means each pattern can predict the occurrence of an event after 1k 

time-point. These patterns can be embedded in a 3D RPS as: 
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Figure 3.12 Embedding vectors in a 3D RPS 

However, the event we want to predict is in the target sequence, which is the point 

whose value is above 1.5. In this situation, to apply multivariate embedding method, we 

can denote the combined embedding vector tx  as: 

 

 (Q 1) (Q 1) ,
x x x y y yt t t t t t tx x x y y y        

 
 

x   (1.39) 

where tx  and ty  are observations at time t  in target sequence and pattern sequence 

respectively. Also, we can predefine the embedding dimension and time delay for both 

sequences: 1, 3 , 1x y x yQ Q      .   

 Therefore, the event characterization function can be defined as: 
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where 1.5c   is the event threshold. 

 We can simply set the number of components in the GMMs for pattern state 

(
pNC ) and normal state ( nNC ) to 2 and 1respectively. Technically, in this case, the 

distribution of the normal state is not a GMM. However, we can still treat single 

Gaussian distribution as a special case of GMM. The following table shows all the 

parameters that need to be initialized: 

 

Process Parameters 

MRPS 1, 1, 3, 1, 1x x y yQ Q k       

GMM 1.5, 2, 1p nc NC NC    

Optimization  0.5, 1, 0.1 0.1 0.1   β  

 

Table 3.1 List of the initialized parameters for Example 1 

 Generally, it might take a long time for the optimization process to find optimal 

values of  and  because of the computational amount. Besides, the initial value of β

also plays an important role in the optimization process because quasi-Newton method, 

the optimization method applied in this thesis, converges to local minima, which means 

this method depends on the initial values significantly. So the initial values for the 

optimization process are reference values in both examples. They only ensure the result’s 

accuracy is acceptable, not optimal.    

 There are 400 observations in both sequences. We apply the first 250 data 

observations for training and use the remaining 150 observations for testing. The 

following figure shows the validation result on training data: 
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Figure 3.13 Validation result with training data 

 Since the patterns are inserted on purpose, the over-fitting problem can be ignored 

in this example. The red marks for “Pattern state” denote the data segments are classified 

in the pattern state by the event function.  

 The following figure shows the testing result with the remaining data observations: 
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Figure 3.14 Testing result of the artificial data set 

 We can conclude from the above figures that the improved approach can 

accurately detect the inserted patterns of two different types, although the error, 

especially the false positive error, is inevitable. However, this experiment does prove that 

this improved approach can be applied as expected to overcome the obstacle that patterns 

gather into separated regions.   

Example 2: Detect temporal patterns in Henon map sequences 

The Henon map [32] is a typical dynamical chaotic system. This discrete-time 

system can be defined as the following equations with two output variables x  and y : 
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where 

 t  is the time index; 

a  and b are the parameters to determine whether the system state is chaotic. 
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 To make sure the system is chaotic, we can set the parameters to the classical 

values: 1.4, 0.3a b  . The following figure illustrates the Henon attractor when 

1.4, 0.3a b  : 

 

 

Figure 3.15 Henon map attractor when a=1.4, b=0.3 
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 Moreover, the initial values of x  and y can be defined as: 0 00.5, 0.5x y  . We 

can generate a dataset containing 1000 time points by the equations with the predefined 

parameters. Part of the data is shown as: 

 

 

Figure 3.16 Part of the Henon map data 

 In this example, we choose the variables x and as the target sequence and pattern 

sequence respectively. Similar as the procedure in the example 1, we can initialize the 

parameters as the following list: 

 

Process Parameters 

MRPS 1, 1, 3, 1, 1x x y yQ Q k       

GMM 1.1, 3, 1p nc NC NC    

Optimization  0.5, 1, 0.3 0.1 0.1   β  

 

Table 3.2 Parameter list for example 2 

 The event function can be defined as: 
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 We can apply the first half of all 1000 observations for training, the remaining 

half for testing. The following figure illustrates the validation result with training dataset: 
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Figure 3.17 Validation with training data in example 2 
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 The total number of embedding vectors from the training dataset is 438, 57 of 

which are pattern vectors. The following confusion matrix gives the accuracy of the result: 

 

Estimation 

Observation 
Pattern Normal 

Pattern 57 0 

Normal 6 375 

 

Table 3.3 Confusion matrix for training data validation 

 The total accuracy is shown as: 

 

True positive False positive True negative False negative Total accuracy 

57 6 375 0 98.6% 
  

Table 3.4 Accuracy of the validation result 

 The following figure illustrates the result on testing data: 
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Figure 3.18 Testing Result of example 2 
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 The total number of embedding vectors from the testing dataset is 438. The 

following confusion matrix gives the accuracy of the result: 

 

Estimation 

Observation 
Pattern Normal 

Pattern 53 5 

Normal 7 373 

 

Table 3.5 Confusion matrix for testing data 

 The total accuracy is shown as: 

 

True positive False positive True negative False negative Total accuracy 

53 7 373 5 97.2% 
  

Table 3.6 Accuracy of the testing result 

To make a comparison, we can apply a single Gaussian distribution to model the 

distribution of pattern points. With the same parameter values, the validation and testing 

results for the single Gaussian distribution method are shown in the following tables:  

 

Validation results: 

 

Estimation 

Observation 
Pattern Normal 

Pattern 50 6 

Normal 7 375 

 

Table 3.7 Validation result for single Gaussian distribution method 

True positive False positive True negative False negative Total accuracy 

50 7 375 6 97.0% 
  

Table 3.8 Accuracy of the validation result for single Gaussian distribution method 

Testing results: 
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Estimation 

Observation 
Pattern Normal 

Pattern 41 17 

Normal 5 375 

 

Table 3.9 Testing result for single Gaussian distribution method 

True positive False positive True negative False negative Total accuracy 

41 5 375 17 95.0% 
  

Table 3.10 Accuracy of the testing result for single Gaussian distribution method 

 Meanwhile, we can compare the success rate of prediction between these two 

methods. The success rate of prediction can be defined as: 

 

 
TruePositive

TruePositive FalsePositive FalseNegative
 

 
  (1.43) 

 The success rate of prediction represents the reliability of the method. The 

comparison is shown as: 

 

Method 

Process 
Single Gaussian distribution 3-component GMM 

Validation 79.4% 90.5% 

Testing 65.0% 81.5% 

 

Table 3.11 Comparison of the success rate of prediction 

Apparently, the performance of the method with 3-component GMM is superior 

to the single component method in the same situation. The experiment not only proves 

that the newly improved approach can give a satisfactory result of classification, but also 

confirms that this approach is able to precisely detect multiple types of temporal patterns 
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in multivariate data system. So this approach does contribute to reduce the error of miss 

classification caused by the diversity of shapes among different patterns.     
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 A SOFTWARE PROGRAM FOR TEMPORAL CHAPTER 4

PATTERN DETECTION 
 

 

One of the major objectives of the research in this thesis is to establish an 

applicable framework, based on which it is possible to create a deliverable software 

product so that users can understand the basic procedure of the temporal pattern detection 

approach and test any data they are interested in. To achieve this requirement, a 

MATLAB-based software program, MATPAD, has been developed. In this chapter, we 

will follow the procedure of objected-oriented software development to elaborate basic 

structure and detailed functionality step by step.  

4.1 Initial Problem Statement 

Currently, the approach for temporal pattern detection based on multivariate 

reconstructed phase space (MRPS) embedding and Gaussian mixture model (GMM) has 

been proposed in [6] and improved in this thesis. However, there is still not a software 

application can be used to conduct the pattern detection process on individual computing 

platform.  

With the support of MATLAB complier and graphic user interface (GUI) layout 

editor, we can create an applicable GUI system and convert it to a deliverable program so 

that users are able to install and use it conveniently. 

The following picture shows the prototype of the MATPAD GUI:  
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Figure 4.1 Software GUI prototype 

4.1.1 Software Requirements Specification (SRS) 

 Eliciting the software requirements and specifying the details plays an important 

role during the development procedure. In this section, we will discuss the functional 

requirements and nonfunctional requirements of the software respectively. 

Functional requirement:  

1. This software allows users to load a “.mat” data file stored in the local 

computing device and will plot the data in a new figure. The data has to be an 

m n  matrix. 

2. Users can customize the initial parameter values for multivariate RPS 

embedding on the GUI. 

3. With the preset parameters, users can apply the improved MRPS-GMM 

method to do the training and testing process. 
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4. Users should be able to see the classifier’s coefficients, the validation and 

testing results on the GUI. Meanwhile, the software will plot the detected 

patterns in a new figure. 

5. Users can terminate the process and start over at any time.  

Nonfunctional requirements: 

1. This software should be compatible with Windows operating system. Users 

don’t have to preinstall MATLAB to use the software.  

2. This software won’t cause external system error. 

3. The software’s code must be reusable and extendable for modification. 

Since the software “MATPAD” is the original version, the SRS is basically 

focusing on implementing the temporal pattern detection process. It can be improved for 

future development.  

4.1.2 Use Case Model 

In this section, we will use diagram and textual descriptions to discuss the use 

cases. The use case diagram is shown as: 

 



57 

 

Figure 4.2 Use case diagram 

 Each use case can be described as the following activity diagrams and lists: 

 

Use case 1: 

Use case name Initialization 

Participating actor User and Local Data Files 

Flow of events 1. User pushes the Load Data button on the GUI. A selection 

window will be opened. 

2. User selects the data from the selection window by double 

clicking the file.  

3. User selects appropriate values for the embedding dimension, 

time delay and k-step ahead from the popup menus. 

4. User types in the threshold value in the test edit box. 

Entry condition The GUI is deployed and visualized. 

Exit condition 1. The message box shows “Load data succeed!” and each 

parameter is assigned with an initial value. 

2. The message box shows “Load data fail! Please try again” or 

the initial value of at least one of the parameters is null. 
 

Table 4.1 Description for the use case Initialization 
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Figure 4.3 Activity Diagram for the use case Initialization 

Use case 2: 

Use case name Training 

Participating actor User  

Flow of events 1. User clicks the Training Data button on the GUI 

2. User examines the result displayed on the GUI 

3. User clicks the Save Classifier button on the GUI if the result 

is satisfactory. Otherwise the user can start over the process.   

Entry condition User clicks the Training Data button 

Exit condition User clicks the Save Classifier button 
 

Table 4.2 Description for the use case Training 
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Figure 4.4 Activity Diagram for the use case Training 

Use case 3: 

Use case name Testing 

Participating actor User  

Flow of events 1. User clicks the Load Testing Data button on the GUI 

2. User selects the testing data in the selection window 

3. User click the Testing button on the GUI to see the testing 

result 

Entry condition User clicks the Load Testing Data button 

Exit condition User can see the testing result on the GUI 
 

Table 4.3 Description for the use case Testing 
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Figure 4.5 Activity diagram for the use case Testing 

4.2 Function Structure 

The controls on the GUI can be categorized into three different sets as the 

functionality: Input, Executable and Output.  
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Figure 4.6 Controls in three categories 

 The input controls can be used to get the initial values and assign them to each 

corresponding parameter’s handle so it can be called by external objects or functions. 

Each value can be changed during the process at any time. 

 The output controls are created to display the computing results of each step for 

users to examine the performance. Besides the three tables deployed on the GUI, the 

program will pop up a new figure window to illustrate the detected temporal patterns in 

the sequence after training and testing stage. Users can determine if it is necessary to re-

train the model. 

 The executable controls are indispensable to the software. User can start the 

computing process by clicking the pushbutton for a certain stage. The following tables 

will explain the callback function of each control by pseudo code. 

 

Load Training Data: 

 

Input 

 

Output 

 

Executable 
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open the selection window for user to select Data; 
if Data format is not correct 
    pop up an error message box 
else 
    plot(Data); 
    TrainingData = Data; 
    update handles; 
    pop up success message box; 
end 

 

Table 4.4 Pseudo code for the Load Training Data control 

Start Training: 

get values from the parameters’ handles; 

get the TrainingData; 
if TrainingData is empty 
    pop up an error message box 
else 

get EmbeddingVector by MRPSEmbedding; 

get PatternPoint and NormalPoint by Eventfunction; 
Fit GMM by the EM algorithm; 

Calculate pattern similarity; 

Calculate log odds; 

Establish the classifier; 

Establish the loss function; 

Minimize the loss function; 

get the classifier’s coefficients beta; 

Validation by training data and beta; 

Display confusion matrix; 

Pop up a figure to plot validation result; 

    update handles; 
    pop up success message box; 

end 

 

Table 4.5 Pseudo code for the Training control 

Save Classifier: 

if beta is empty 
    pop up an error message box 
else 

CurrentBeta = beta; 

Display CurrentBeta; 

Pop up success message box; 
end 

 

Table 4.6 Pseudo code for the Save Classifier control 
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Load Testing Data: 

open the selection window for user to select Data; 
if Data format is not correct 
    pop up an error message box 
else 
    plot(Data); 
    TestingData = Data; 
    update handles; 
    pop up success message box; 
end 

 

Table 4.7 Pseudo code for the Load Testing Data control 

Start Testing: 

get values from the parameters’ handles; 

get the TestingData; 

get GMM fitted in Training process; 
if TestingData is empty 
    pop up an error message box 
else 

get EmbeddingVector by MRPSEmbedding; 

get PatternPoint and NormalPoint by Eventfunction; 
Calculate pattern similarity; 

Calculate the log odds;  

Establish the classifier with CurrentBeta; 

get the classification result; 

Display confusion matrix; 

Pop up a figure to plot testing result; 

    update handles; 
    pop up success message box; 

end 

 

Table 4.8 Pseudo code for the Testing control 

Clear: 

clear every handle generated by the previous process 

pop up a success message box; 

 

Table 4.9 Pseudo code for the Clear control 

 Each control’s callback function has a communicating mechanism to help user 

when the input variables or the output results are not acceptable.  
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 Besides the three categories of controls mentioned above, user may notice that 

there are several functional buttons on the tool bar at the top of the GUI window. These 

buttons are built-in functional objects which can be used to modify the plots in the axes 

area and perform some basic file operations such as new, open, save and print. User can 

use these buttons as needed.  

4.3 Operation Procedure 

In this section, the detailed operation procedure will be demonstrated from users’ 

view. In addition, some precautions for actual use will be pointed out as well.  

4.3.1 Install and Uninstall 

As it was mentioned in the previous chapters, the software was developed with 

MATLAB. To ensure the success of implementation, the MATLAB Compiler Runtime 

(MCR) is prerequisite for the software deployment. By using the MATLAB compiler, all 

the related functions, GUI files and the MCR can be compressed into a single Windows 

standalone executable package file. In this case, the package file name is 

MATPAD_pkg.exe.  

To start installing, users need to put the package file in a new folder on the local 

device. To guarantee successful installation, there must be at least 1GB storage space left. 

Users can simply double click the package file and the installation will begin 

automatically. Before decompressing the executable file of the GUI, the MCR has to be 

installed first. This step will be skipped if the MCR has been pre-installed in the device. 

When the installation is done, users can see the GUI file MATPAD.exe, a readme.txt file 
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and a MCRInstaller.exe file in the same folder with the package file MATPAD_pkg.exe. 

The GUI will be displayed after users double clicking the MATPAD.exe file. 

To uninstall the software, users can simply delete the folder with all 

decompressed files.     

4.3.2 Data Preprocess 

Because of the functional limitation, the software can only process data files in 

“.mat” format. The data containing one target sequence and one pattern sequence can be 

saved in a “.mat” file as a 2 by N dimensional matrix where N is the total number of 

observations on timeline. In default setting, the first row will be seen as the target 

sequence. Meanwhile, it is prerequisite that the time sequences are the observations from 

a certain dynamic data system. Otherwise, the result will be meaningless. 

In addition, the software currently is designed to detect temporal patterns to 

predict the occurrence of the events whose values are beyond a user-defined threshold. 

Users are responsible for selecting an appropriate value for the threshold. For now, the 

threshold based event function is the only one available in this software program, which 

means that users cannot customize the event function for specific problems. As a 

temporary solution, we can create an indicator sequence to mark the events in the original 

data sequence. The indicator sequence is based on a white noise series. First, users can 

mark the time points of the events according to the event function. Then, a predefined 

value will be assigned to the corresponding points on time line in the white noise series. 

For example, assume there is a 100-point data sequence ( )S t  with events marked as: 
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Figure 4.7 Data sequence with marked events 

 The indicator sequence has the same number of time point with data sequence and 

can be defined as: 

 

 ( ) ( )A t a N t  ,  (1.44) 

where 

a is a coefficient to control the amplitude of the sequence; 

( )N t is a white noise series whose distribution follows (0,1)N . 

 To label the events on the indicator sequence, we can simply add a number d to 

the point’s value. For example, if we set 0.1a  , 3d  in this case, the indicator sequence 

will be modified as:  
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Figure 4.8 A data sequence with its corresponding indicator sequence 

 By adding the indicator sequence, users can easily recognize the events. Besides, 

even though this software program is not created for the univariate problems, the 

indicator sequence makes it possible to solve both univariate problems and multivariate 

ones with the same framework.   

4.3.3 Flow Chart of the Operation Procedure 

In conclusion, the whole operation procedure can be illustrated as the following 

flow chart: 
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Figure 4.9 Flow chart of the operation procedure  
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 TEMPORAL PATTERN ANALYSIS FOR REAL CHAPTER 5

WORLD PROBLEMS 
 

 

In this chapter, we will utilize the improved MRPS-GMM approach and the 

MATPAD framework to analyze data in different study areas for real world problems.  

5.1 Detect Temporal Patterns in Hydrology Time Series 

In this section, we will conduct an experiment to demonstrate the procedure to 

detect temporal patterns in a hydrology time series data to predict when the river flow 

will beyond a threshold. The time series applied in this experiment is the monthly mean 

value of Saugeen River Flows from 1915 to1976, which is an available material of [33].  

The time sequence is illustrated as: 

 

Figure 5.1 Time series of Saugeen River Flows 
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 The total number of observations is 744. The unit of measurement is cubic meters 

per second 
3(m / s) . We use 500 points for training and the rest for testing. The event can 

be defined as: tx is an event if 80tx  . Although the event is already threshold-based, an 

indicator sequence still can be used to label the events as well. The parameters can be set 

to 1a  , 20d  , the artificial sequence is as: 

 

Figure 5.2 Indicator sequence for the Saugeen River Flows data 

 In this experiment, we choose 15c  as the threshold to categorize the embedding 

vectors in the RPS. This threshold is an arbitrary value as long as it can separate all the 

events from the other points in the indicator sequence. In addition, it is noteworthy that 

the threshold in the original data sequence is not the one used in the MRPS-GMM 

approach.  

 The initialized parameters for training are: 
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Process Parameters 

MRPS 1, 1, 3, 1, 1x x y yQ Q k       

GMM 15, 2, 1p nc NC NC    

Optimization  1, 1, 1 0.1 2    β  

 

Table 5.1Parameters for training data of Saugeen River Flows 

 The subscripts x  and y  denote the indicator sequence and the original data 

sequence respectively. The training data will be re-used for validation. The experiment 

result is: 
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Figure 5.3 Validation result for the Saugeen River Flows data 
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 Meanwhile, the confusion matrix for the validation result is given as: 

 

Estimation 

Observation 
Pattern Normal 

Pattern 37 0 

Normal 0 417 

 

Table 5.2 Confusion matrix for the validation result of Saugeen River Flows data 

 The testing result is illustrated as: 
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Figure 5.4 Testing result of Saugeen River Flows data 
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 The confusion matrix is: 

 

Estimation 

Observation 
Pattern Normal 

Pattern 12 0 

Normal 0 216 

 

Table 5.3 Confusion matrix for the testing result of Saugeen River Flows data 

 Both of validation and testing have the 100% success rate, so it can prove that 

there is no over-fitting problem in the approach. Also, this experiment data proves that 

the improved MRPS-GMM approach and the MATPAD framework are applicable to 

handle real problems in hydrology. The detected patterns can predict that the mean river 

flow speed will beyond 80
3m / s in the next month, which can be considered as a sign of 

flood jeopardy. So this approach will be contributive to flood prediction so that the 

prevention mechanism can be started to avoid property loss.  

5.2 Detect Temporal Patterns in Finance Time Series 

In this section, we will apply a dataset of Dow Jones Index at closing on 251 

trading days ending on 26 August, 1994 to demonstrate how to discover the patterns to 

predict inflection points in a finance time series. This dataset is one of the available 

materials for [13].  

The time series ( )tx  for this example is illustrated as: 
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Figure 5.5 Dow Jones Index for 251 trading days 

 In stock market, one of the significant events is the inflection point, which is 

important to stock holders to analyze the market timing. In this example, the inflection 

point is defined as: tx is an event if 2 1t t tx x x    and 1t tx x  . The point’s value is less 

than both of its adjacent points’, as known as “rebound off the bottom”.  

 To avoid the effect by the sequence’s trend, we take difference to the original data 

sequence. Each point in the difference sequence is 1t t ty x x  . Meanwhile, the event for 

the difference sequence can be defined as: ty is an event if 2 0ty    and 1 0ty   and

0ty  . It is not difficult to understand that the two descriptions of the event are 

equivalent. The difference sequence is shown as: 
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Figure 5.6 The difference sequence of DJ Index data 

 The first 200 points will be used for training and validation. The rest will be used 

for testing. 

 If we set the parameters 0.1a  , 1d  for the indicator sequence, it can be created 

to describe the events in the difference sequence as: 
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Figure 5.7 The indicator sequence for the difference sequence 

 The blue line on the figure is the threshold 0.6c  for the threshold-based event 

function to categorize the embedding vectors. Each spike represents that there is an event 

in the difference sequence at the same time point.  

 The initialized parameters for reference are given in the following table: 

 

Process Parameters 

MRPS 1, 1, 2, 1, 1x x y yQ Q k       

GMM 0.6, 2, 1p nc NC NC    

Optimization  1, 1, 1 0.1 2    β  

 

Table 5.4 Parameters for DJ Index data 

 The subscripts x  and y  denote the indicator sequence and the difference 

sequence respectively. The total number of embedding vectors is 178, 19 of which are 

categorized in pattern state. The validation result is given as: 
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Figure 5.8 Validation result for the difference sequence of the DJ Index data 
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 The confusion matrix for the validation result is: 

 

Estimation 

Observation 
Pattern Normal 

Pattern 18 1 

Normal 1 158 

 

Table 5.5 Confusion matrix for the validation result of DJ Index data 

 The result can be considered as acceptable. The classifier can be used in testing 

process. In the testing data, there are 39 embedding vectors in total. The final test result is 

as:  
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Figure 5.9 Test result of DJ Index data 
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 The confusion matrix is: 

 

Estimation 

Observation 
Pattern Normal 

Pattern 4 4 

Normal 0 31 

 

Table 5.6 Confusion matrix for test result of DJ Index data 

 We can map the patterns in the difference sequence back to the original data 

sequence as: 

 

Figure 5.10 Patterns in the original test data sequence 

 From the figure, we can see that the detected four patterns can predict that the 

index will rise on the next trading day, although not all the eight events are predicted in 

the test data. As we know that there is an extremely complicated mechanism behind the 
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0 10 20 30 40 50 60
3600

3650

3700

3750

3800

3850

3900

Time

V
a
lu

e

 

 

Data

Pattern



83 

 

rebounding. Therefore, this approach is helpful and reliable indeed to be applied for 

finance time series analysis.  
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 CONCLUSIONS CHAPTER 6

6.1 Contributions 

The major contributions of this thesis are: 

1. The improved approach applies Gaussian mixture model on both normal state 

vectors and pattern state ones in the MRPS to fit a more precise distribution. 

Meanwhile, the approach applies a simplified classifier to reduce the 

computational amount.  

2. A MATLAB based software is developed as a deliverable application for 

temporal pattern detection. This original software has a clear GUI so users can 

easily understand the whole process step by step. Moreover, this software is 

standalone executable, which means it can be used without MATLAB 

development environment. So it will be convenient to users to test the data on 

different computing devices. 

6.2 Problems for Future Work 

Although the newly improved approach and the MATLAB-based software have 

been tested to be applicable, there are still some problems cannot be ignored and need to 

be solved in the future.  

1. The EM algorithm can only find the local minimal, which means the result 

depends on the initial values significantly. It is necessary to create a self-

checking mechanism to tell if the final iteration result of the GMM is accurate 

enough and prevent the over-fitting problem from happening at the same time.  
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2. Currently, the software MATPAD can only perform the basic training and 

testing functions to detect temporal patterns in time series. Meanwhile, there 

is only one type of event functions can be defined and utilized. To improve 

the applicability, some extended functions, such as customizing event function, 

can be added and embedded in the GUI system. Moreover, other effective 

methods proposed in the previous research, such as Artificial neural network 

[34] , Fuzzy set [18] , can be implemented by the software as comparisons so 

users can choose the most appropriate method for specific problems.   
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Appendix 

A.1 Reusable source code for RPS embedding  

function [ev,kv] = embedding(Ts,Ps,Q,tau,k) 
%EMBEDDING A data mining function to get embedding vectors 
%   This function returns embedding_vector (ev) and k_step_ahead_vector 

(kv) 
%   as the outputs of the embedding result. "ev" is where patterns lie 

in 
%   and "kv" is the same for events. Each row in ev is corresponding to 

the 
%   row in kv that has the same number of row (ev(n,:)~kv(n,:)). Each 

pair of 
%   rows shows an embedding vector and the k points after it. 
% 
%   TS (target_sequence): the sequence that contains events. 
% 
%   Ps (pattern_sequence): the sequence that is correlated with 

target_sequence. 
%                     pattern_sequence is used to find potential 

patterns. 
% 
%   Q: embedding dimension. 
% 
%   tau: time delay. 
% 
%   k: k step ahead. 
% 
%   ev (embedding_vector): generated from pattern_sequence, which 

contains 
%   potential patterns. 
% 
%   kv (k_step_ahead_vector): k-column matrix to be used to find events. 

  
M = length(Ts); 
N = length(Ps); 

  
if M<N 
    disp('Length of target sequence must be no less than the one of 

pattern sequence'); % check the pattern-sequence won't be oversized 
else 
    ev = zeros(N-(Q-1)*tau,Q);  % Initialization 
    kv = zeros(M-k-(Q-1)*tau-1,k); 

     
    if ~iscolumn(Ts) % check and convert row vectors into column 

vectors 
        Ts = Ts'; 
    end 
    if ~iscolumn(Ps) 
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        Ps = Ps'; 
    end 

  
    j = 1;  % build embedding vectors to search patterns 
    l = N-(Q-1)*tau-1; 
    for i=1:Q 
        ev(:,i) = Ps(j:l+j); 
        j = j+tau; 
    end 

  
    j = 1;  %  build k-step-late vectors to define events 
    for i=1:k 
        kv(:,i) = Ts((Q-1)*tau+1+j:M-k-1+j); 
        j = j+1; 
    end 

     
    L = length(kv); 
    ev = ev(1:L,:); % delete those redundant vectors in ev(no 

corresponding vectors in kv) 

         
end 

     
end 

 

A.2 Reusable source code for similarity measurement 

function output_vector = phi(input_vector) 
%Linear transformation to get the new lower-dimensional embedding 

vector 
%   input_vector is the original vector for transformation 
% 
%   output_vector is the new embedding vector 
%    
%   the relationship between the "similarity" and this transformation 

is:  
%   d(x1,x2) == ||phi(x1)-phi(x2)||^2 

  
x = input_vector; 
global Q 

  
P = zeros(Q-1,Q-1); % initialization 
a = Q-1; 
for i=1:Q-1 
    P(i,:) = a; 
    P(:,i) = a; 
    a = a-1; 
end     % Create P: a symmetric positive definite matrix 
L = chol(P);    % Cholesky decomposition of matrix P. L'*L==P 

  
x = x(end:-1:1);  % reverse-ordered for easy computing 
Delta_x = zeros(Q-1,1); 
for j=1:Q-1 
    Delta_x(j) = x(j)-x(j+1); % differenced embedding vector 
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end 
Delta_x = Delta_x(end:-1:1); 
output_vector = L*Delta_x; 

  
end 
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