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We introduce a five-parameter continuous model, called the McDonald log-logistic distribution, to extend the
two-parameter log-logistic distribution. Some structural properties of this new distribution such as reliability
measures and entropies are obtained. The model parameters are estimated by the method of maximum like-
lihood using L-BFGS-B algorithm. A useful characterization of the distribution is proposed which does not
require explicit closed form of the cumulative distribution function and also connects the probability density
function with a solution of a first order differential equation. An application of the new model to real data set
shows that it can give consistently better fit than other important lifetime models.

Keywords: Log-logistic distribution; hazard function; reliability function, Rényi entropy.

2000 Mathematics Subject Classification: 60E05; 62E10; 62N05

1. Introduction

The Log-Logistic (”LL” for short) distribution is a very popular logistic distribution which was
initially developed to model population growth by Verhulst (1838). In income inequality literature,
LL distribution is well-known as Fisk distribution due to Fisk (1961), and has also been widely
used in many areas such as reliability, survival analysis, actuarial science, economics, engineering
and hydrology. In some cases, LL distribution is proved to be a good alterative to the log-normal
distribution since it characterize increasing hazard rate function. Further, its use is well appreciated
in case of censored data usually common in reliability and life-testing experiments.
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The paper involves the use of the following well-known functions and series expansion expres-
sions, including the beta function of type I is defined by

B(p,q) =
∫ 1

0
t p−1(1− t)q−1dt, (1.1)

the incomplete beta function is defined by

Bx(p,q) =
∫ x

0
t p−1(1− t)q−1dt, (1.2)

the incomplete beta function ratio of type I is defined by

Ix(p,q) =
1

B(p,q)

∫ x

0
t p−1(1− t)q−1dt =

Bx(p,q)
B(p,q)

, (1.3)

thecomplementary incompletebetafunction of type I is defined by

B(p,q;x) =
∫ 1

x
tq−1(1− t)q−1dt, (1.4)

the beta function of type II is defined by

B(p,q) =
∫ ∞

0
t p−1(1+ t)−(p+q) dt, (1.5)

the gamma function is defined by

Γ(p) =
∫ ∞

0
t p−1e−t dt, (1.6)

the incomplete gamma function is defined by

γ (p, x) =
∫ x

0
t p−1e−t dt, (1.7)

the binomialseries expansion is defined by

(1−Z)m =
∞

∑
j=0

(−1) j (m
j

)
Z j =

∞

∑
j=0

(−1) j Γ(m+1)
Γ(m− j +1)

zj

j!
. (1.8)

Theprobability densityfunction(pdf) and the cumulative distribution function (cdf) of LL dis-
tribution with shape parameterα and scale parameterβ are given by

g(x) =
(α

β
)( x

β

)α−1 [
1+

( x
β

)α]−2
, x > 0, α,β > 0 (1.9)

and

G(x) = 1−
[
1+

( x
β

)α ]−1
=

( x
β

)α [
1+

( x
β

)α ]−1
, x > 0, α,β > 0. (1.10)

There is an increasingtrend in the extension (or generalization) of the baseline distribution by
adding shape parameter(s) to the baseline distribution. In literature, three popular extended models
of LL exist Viz. Beta Log-Logistic (BLL), Kumaraswamy Log-Logistic (KwLL) and Zografos-
Balakrishnan (2009) Log-Logistic (ZBLL).
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McDonaldlog-logisticdistribution

We first consider the BLL distribution, which is generated from beta-generated (Beta-G) class
of distributions introduced by Eugeneet al. (2002), and further discussed by Jones (2004).

For any arbitrary baseline pdfg(x) and cdfG(x), the pdf f (x) and cdfF(x) of Beta-G class of
distributions are defined by

f (x) =
1

B(a,b)
g(x)

{
G(x)

}a−1 {
1−G(x)

}b−1
(1.11)

and

F(x) = IG(x)(a,b), (1.12)

wherea > 0, b > 0 and are both shape parameters.

Lemonte (2012) introduced the pdf and cdf of BLL distribution, which are given by

f (x) =
1

B(a,b)

(
α
β

) (
x
β

)aα−1[
1+

( x
β

)α
]−(a+b)

, x > 0 (1.13)

and

F(x) = I[
1−[1+(x/β )α ]−1

](a,b) x > 0, (1.14)

wherea,b,α,β > 0, anda, b andα are shape parameters whileβ is scale parameter.

Now, we consider the second extended model, the KwLL distribution, which is based on the
Kumaraswamy generalized (Kw-G) class of distributions.

For a baseline random variable having pdfg(x) and cdfG(x), Cordeiro and de Castro (2011)
defined the 2-parameter Kw-G pdf and cdf are defined by

f (x) = ab g(x) [G(x)]a−1 [1−G(x)a]b−1 , (1.15)

and

F(x) = 1− [1−G(x)a]b , (1.16)

whereg(x) = dG(x)/dxanda > 0 andb > 0 are two additional shape parameters whose role are to
govern skewness and tail weights.

de Santanaet al. (2012) introduced the pdf and cdf of KwLL distribution, which are given by

f (x) = ab

(
α
β

) (
x
β

)aα−1 [
1+

(
x
β

)α]−(a+1)

1−





1− 1

1+
(

x
β

)α





a


b−1

, x > 0 (1.17)

and

F(x) = 1−


1−





1− 1

1+
(

x
β

)α





a


b

, x > 0, (1.18)

wherea,b,α,β > 0 anda, b andα are shape parameters whileβ is scale parameter.
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Now, we consider the third extended model, the ZBLL distribution, which is based on the
Zografos and Balakrishnan (2009)’ gamma-generated (”ZB-GG” for short) class of distributions.

For a baseline random variable having pdfg(x) and cdfG(x), Zografos and Balakrishnan (2009)
defined the ZB-GG pdff (x) and cdfF(x) as

f (x) =
1

Γ(a)
{− log

[
1−G(x)

]}a−1
g(x) (1.19)

and

F(x) =
1

Γ(a)

∫ −log
[

1−G(x)
]

0
ta−1e−t dt, (1.20)

wherea > 0 andg(x) = dG(x)/dx.

Recently, Ramoset al.(2013) introduced the pdf and cdf of ZBLL distribution, which are given
by

f (x) =
α

β αΓ(a)
xα−1

[
1+

( x
β

)α
]−2[

log

{
1+

( x
β

)α
}]a−1

, x > 0 (1.21)

and

F(x) =
1

Γ(a)

∫ −log
[

1+
(

x
β

)α]−1

0
ta−1e−t dt, x > 0, (1.22)

wherea,α,β > 0.

The article is outlinedas follows. In Section 2, we define the McLL distribution. Section 3 pro-
vides some new structural properties such as quantile function and mode. In Section 4, the expres-
sions for mean residual life and mean time are obtained. In Section 5, the Rényi andq entropies
are derived. The maximum likelihood estimation of parameters is discussed in Section 6. A useful
characterization of the distribution is introduced in Section 7. An empirical application is presented
and discussed in Section 8. Finally, Section 9 offers some concluding remarks.

2. McDonald Log-Logistic (McLL) distribution

The generalized beta of first kind (GB1) or McDonald distribution was introduced by McDonald in
1984. The pdf and cdf of McDonald (”Mc” for short) distribution are given by

f (x) =
c

B(ac−1,b)
xa−1 (1−xc)b−1, 0 < x < 1 (2.1)

and

F(x) = Ixc(ac−1,b), (2.2)

wherea > 0, b > 0 andc > 0 are shape parameters.
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For any arbitrary baseline pdfg(x) and cdfG(x), Alexanderet al. (2012) defined the pdf and
cdf of McDonald-generalized (Mc-G) class of distribtions as

f (x) =
c

B(ac−1,b)
g(x) {G(x)}a−1 {1−G(x)c}b−1 (2.3)

and

F(x) = IG(x)c(ac−1,b). (2.4)

Now, inserting (1.9) and (1.10) in (2.3) and (2.4) to obtain the pdf and cdf of McLL distribution,
respectively, as

f (x) =
c

B(ac−1,b)
(α

β
)( x

β
)aα−1[

1+
( x

β
)α]−(a+1)

[
1−

{
1−[

1+
( x

β
)α]−1

}c]b−1
, x> 0 (2.5)

and

F(x) = Iw(ac−1,b), x > 0, (2.6)

with w=
{

1−[
1+

(
x
β
)α]−1

}c
anda,b,c,α,β > 0, wherea,b,c andα are shape parameters while

β is scale parameter.

We would like to point out the McLL is a special case of Mc-G whenG(x) ={
1− [

1+
(

x
β
)α]−1

}
. In the presentwork we discuss some further properties of McLL which have

not appeared in Alexanderet al. (2012) or anywhere else to our knowledge. Furthermore, we pro-
vide, among other new properties, a practical application of McLL in life-model case.

Plots of McLL density function for some parametric values are displayed in Figure 1.

For a lifetime random variablet, the survival function,S(t), hazard rate function,h(t), reversed
hazard rate function,r(t), and the cumulative hazard rate function,H(t), of McLL distribution are
given by

S(t) = 1−F(t) = 1− Iw(ac−1,b), (2.7)

h(t) =
f (t)
S(t)

=
c
(α

β
)(

t
β
)aα−1

[
1−

{
1− [

1+
(

t
β
)α]−1

}c]b−1

B(ac−1,b)
[
1+

(
t
β
)α](a+1) [

1− Iw(ac−1,b)
] , (2.8)

r(t) =
f (t)
F(t)

=
c
(α

β
)(

t
β
)aα−1

[
1−

{
1− [

1+
(

t
β
)α]−1

}c]b−1

B(ac−1,b)
[
1+

(
t
β
)α](a+1) [

Iw(ac−1,b)
] (2.9)

and

H(t) =
∫ t

0
h(t)dt =−lnS(t) =− ln

[
1− Iw(ac−1,b)

]
. (2.10)

Plots of hazard and reversed hazard rate functions for McLL density function for some paramet-
ric values are given in Figure 2.
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Fig. 1.Plotsof McLL density for some parameter values
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Fig. 2.Plotsof (e) hazard and (f) reversed hazard rate for McLL model
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2.1. Special sub-models

The McLL distribution is very flexible and has the following distributions as special sub-models.

2.1.1. Beta Log-Logistic distribution

If c = 1, the McLL distribution reduces to the BLL distribution with parametersa, b, α andβ .

f (x) =
1

B(a,b)

(
α
β

) (
x
β

)aα−1[
1+

(
x
β

)α]−(a+b)

, x > 0,

2.1.2. Kumaraswamy Log-Logistic distribution

If c = a, the McLL distribution reduces to the KwLL distribution with parametersa, b, α andβ .

f (x) = ab

(
α
β

) (
x
β

)aα−1[
1+

(
x
β

)α]−(a+1)
[

1−
{

1−
[
1+

(
x
β

)α]−1
}a]b−1

, x > 0.

2.1.3. Exponentiated Log-Logistic(Lehmann type I) or Dagum distribution

If b = c = 1, the McLL distribution reduces to the Exponentiated LL (Lehmann type I) distribution
with parametersa, α andβ .

f (x) = a

(
α
β

) (
x
β

)aα−1[
1+

(
x
β

)α]−(a+1)

, x > 0.

2.1.4. Exponentiated Log-LogisticLehmann type II) or Singh-Maddala distribution

If a = c = 1, the McLL distribution reduces to the exponentiated LL (or Lehmann type II) distribu-
tion with parametersb, α andβ .

f (x) = b

(
α
β

) (
x
β

)α−1[
1+

(
x
β

)α]−(b+1)

, x > 0.

2.1.5. Log-logistic distribution

If a = b = c = 1, the McLL distribution reduces to the LL distribution with parametersα andβ .

f (x) =
(

α
β

) (
x
β

)α−1[
1+

(
x
β

)α]−2

, x > 0.

2.1.6. Standard log-logistic distribution

If a = b = c = α = β = 1, the McLL distribution reduces to the standard LL distribution.

f (x) = [1+x]−2 , x > 0.
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2.2. Expansion of the McLL density

Re-calling the general form of McLL density, we have

f (x) =
c

B(ac−1,b)
g(x)

[
G(x)

]a−1 [
1−G(x)c]b−1

︸ ︷︷ ︸
A

(2.11)

Usingthe binomialexpansion (1.8) to result A in (2.11) whenb is real non-integer and|Z|< 1, the
(2.11) now can be expressed as

f (x) =
c

B(ac−1,b)
g(x)

[
G(x)

]a−1
∞

∑
i=0

(−1)i
(b−1

i

)[
G(x)

]ic
. (2.12)

Simplifying further to(2.12),we have

f (x) = g(x)
∞

∑
i=0

c
B(ac−1,b)

(−1)i
(b−1

i

)

︸ ︷︷ ︸
Wi

[
G(x)

]ic+a−1
, (2.13)

wherea is real non-integer.

Using binomial expansion (1.8) to the term
[
G(x)

]ic+a−1
in (2.13), we have

[
G(x)

]ic+a−1 =
[
1− [

1−G(x)
]]ic+a−1

=
∞

∑
k= j

(−1) j+k(ic+a−1
j

)( j
k

)

︸ ︷︷ ︸
Sk

[
G(x)

]k

= Sk

[
G(x)

]k

Now, (2.12)becomes

f (x) = g(x)
∞

∑
k=0

Wi Sk︸ ︷︷ ︸
Pk

[
G(x)

]k
. (2.14)

Finally, wecanwrite the McLL density as

f (x) = g(x)︸︷︷︸
density of LL

∞

∑
k=0

Pk

︸ ︷︷ ︸
sumof weights

[
G(x)

]k

︸ ︷︷ ︸
(cdf of LL)k

. (2.15)

3. BasicProperties

In this section we deal with the basic statistical properties of McLL distribution. Some basic proper-
ties such as rth moment, mean, variance, generating function and characteristic function have been
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given by Alexanderet al. (2012), some of which are as under:

µ ′r =
∞

∑
k=0

Pk β r B
(
1+ r

α +k,1− r
α
)

r = 1,2, . .. , (3.1)

µ = E(x) =
∞

∑
k=0

Pk β B
(
1+ 1

α +k,1− 1
α
)

(3.2)

and

Variance=
∞

∑
k=0

Pk β 2
[
B

(
1+ 2

α +k,1− 2
α
)−B2(

1+ 1
α +k,1− 1

α
)]

. (3.3)

So, the otherimportantbasic properties such as quantile function and mode of the McLL distribution
are mathematically obtained below.

3.1. Quantile function and mode

Let Qα,β (p) be the quantilefunctionof the LL distribution with parametersα andβ , the quantile
function of theMcLL(a,b,c,α,β ) distribution, say,x = Q(p) caneasily be obtained as

x = Q(p) =
Qα,β (p)

[
Q(ac−1,b)(p)

]1
c

1−Qα,β (p)
[
Q(ac−1,b)(p)

]1
c

, o < p < 1.

TheBowley skewness measure and Moors kurtosis (based on octiles) of the McLL distribution can
be calculated using the formulae given below:

Sk=
Q(3/4)+Q(1/4)−2Q(2/4)

Q(3/4)−Q(1/4)

and

M =
Q(3/8)+Q(1/8)+Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

whereQ(.) denotesthe quantilefunction.
Thefirst derivative of logf (x) for the McLL distribution is

d log f (x)
dx

=
aα−1

x
− (a+1)

[(α
β
)(

x
β
)α−1

1+
(

x
β
)α

]

−c(b−1)

[(α
β
)(

x
β
)α−1

{
1− [

1+
(

x
β
)α]−1

}c−1[
1+

(
x
β
)α]−2

1−
{

1− [
1+

(
x
β
)α]−1

}c

]
.
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So, the modes of the McLL distribution are the roots of the following equation

aα−1
x

− (a+1)

[(α
β
)(

x
β
)α−1

1+
(

x
β
)α

]

= c(b−1)

[(α
β
)(

x
β
)α−1

{
1− [

1+
(

x
β
)α]−1

}c−1[
1+

(
x
β
)α]−2

1−
{

1− [
1+

(
x
β
)α]−1

}c

]
.

There may bemorethan one root to the above equation. Ifx= x0 is a root of the above equation,
then it corresponds to a local maximum or local minimum or a point of inflexion depending on

whetherd2 log f (x)
(dx)2 < or > or = 0, respectively.

If a = b = c = 1 in the above, we get the mode of the LL distribution.

4. Mean Residual life and mean waiting time

In this section, the reliability properties mean residual life function (MRL) and mean waiting time
(MWT) are mathematically obtained for the McLL distribution.

The MRL at a given timet measures the expected remaining lifetime of an individual of aget.
It is denoted bym(t). The MRL or life expectancy is defined as

m(t) =
1

S(t)

[
E(t)−

∫ t

0
t f (t)dt

]
− t. (4.1)

Solvingtheintegral in (4.1), we obtain
∫ t

0
t f (t)dt = β

∞

∑
k=0

Pk Bw
(
1+ 1

α +k,1− 1
α
)

(4.2)

Inserting (4.2), (3.2)and(2.7) in (4.1), the MRL of the McLL distribution will be

m(t) =

[
β ∑∞

k=0 Pk

{
B
(
1+ 1

α +k,1− 1
α
)−Bw

(
1+ 1

α +k,1− 1
α
)}

1− Iw(ac−1,b)

]
− t. (4.3)

TheMWT of anitem failed in a interval [0,t] is defined as

µ(t,θ) = t−
{ 1

F(t)

∫ t

0
t f (t)dt

}
. (4.4)

Using(4.2)and (2.6) in (4.4), the MWT of the McLL distribution obtained is

µ(t,θ) = t−
[

∑∞
k=0 Pk β Bw

(
1+ 1

α +k,1− 1
α
)

Iw(ac−1,b)

]
. (4.5)

5. Entropies

Entropy has wide application in science, engineering and probability theory, and has been used
in various situations as a measure of variation of the uncertainty. Simply, an entropy of a random
variableX is a measure of uncertain amount of information in a distribution. Numerous measures
of entropy have been studied and compared in the literature. Here, we derive explicit expressions
for two important entropies for McLL distribution Viz. Ŕenyi entropy andq-entropy.
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5.1. Rényi entropy

We first consider the Ŕenyi entropy which plays a similar role as the kurtosis measure in comparing
the shapes of various densities, and also measuring heaviness of tails. Rényi introduced an entropy
in 1961, which is defined by

IR(γ) =
1

1− γ
log

{∫
f γ(x)dx

}
(5.1)

whereγ > 0,γ 6= 1 andγ is a real non-integer.
Now takingγth power of McLL density given in (2.5) as

f γ(x) =

{
c

B(ac−1,b)
(α

β
)( x

β
)aα−1[

1+
( x

β
)α]−(a+1)

[
1−

{
1− [

1+
( x

β
)α]−1

}c]b−1
}γ

. (5.2)

Integrating (5.2),andthen using (1.8), we get

∫ ∞

0
f γ(x)dx=

∞

∑
j,k=0

Vj Vk

(α
β

)γ ( x
β

)γ(aα−1)[
1+

( x
β

)α]−γ(a+1)−k
dx. (5.3)

Using transformationκ =
(

x/β
)α

and then using(1.1),the (5.3) reduces to

∫ ∞

0
f γ(x) =

∞

∑
j,k=0

Vj Vk

(α
β

)γ−1
B

( γ(α−1)+1
α ,γ(a+1)+k− γ(α−1)+1

α
)

(5.4)

whereVj =
[

c
B(ac−1,b)

]γ
(−1) j

(γ(b−1)
j

)
andVk = (−1)k

(c j
k

)
.

Now, inserting (5.4) in (5.1), the Ŕenyi entropy expression for McLL distribution obtained is

IR(γ) =
1

1− γ
log

{ ∞

∑
j,k=0

Vj Vk

(α
β

)γ−1
B

( γ(α−1)+1
α ,γ(a+1)+k− γ(α−1)+1

α
)}

. (5.5)

5.2. q-entropy

The q- (or β̃ -entropy) was originally introduced by Havrda and Charvat (1967) and later applied
to physicalproblems by Tsallis (1988). Tsallis exploited its non-extensive features and placed it
in a physical setting (hence it is also known as Tsallis entropy). Moreover,q-entropy is a one-
parameter generalization of the Shannon entropy which can lead to models or statistical results
that are different from those obtained by using the Shannon entropy. It is to be noted here that the
q-entropy is a monotonic function of the Rényi entropy (Ullah, 1996).

For a continuous random variableX having pdf f (x), theq-entropy is defined by

Iq(γ) =
1

q−1

[
1−

∫ ∞

0
f q(x)dx

]
(5.6)

whereq > 0, q 6= 1 andq is a real non-integer.
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Now, takingqth power of McLL density given in (27) as

f q
γ (x) =

{
c

B(ac−1,b)
(α

β
)( x

β
)aα−1[

1+
( x

β
)α]−(a+1)

[
1−

{
1− [

1+
( x

β
)α]−1

}c]b−1
}q

(5.7)

Using (5.3) in (5.6),the expression ofq-entropy for McLL distribution will be

Iq(γ) =
1

q−1

[
1−

{ ∞

∑
j,k=0

Vj Vk

(α
β

)q−1
B

(q(α−1)+1
α ,q(a+1)+k− q(α−1)+1

α
)}]

. (5.8)

6. Maximum lik elihoodestimation

Here, we consider estimation of the model parameters for McLL(a,b,c,α,β ) distribution by the
method of maximumlikelihood. We assume thatX ∼McLL(a,b,c,α,β ) and letΘ = (a,b,c,α,β )
be the parameter vector of interest. The log-likelihood functioǹ= `(Θ) for a random sample
x1,x2, . . . ,xn is given by

` = nlog
[
cα β−1 [B(a

c ,b)]−1]+(aα−1)
n

∑
i=1

log
(xi

β
)− (a+1)

n

∑
i=1

log
[
1+

(xi

β

)α]

+(b−1)
n

∑
i=1

log

{
1−

[
1−

{
1+

(xi

β

)α}−1]c
}

.

Taking partial derivatives of` with respect toa, b, c, α andβ , we obtain five equations as

∂`

∂a
=
−n
c

ψ(ac−1)+
n
c

ψ(ac−1 +b)+α
n

∑
i=1

log
(xi

β

)
−

n

∑
i=1

log
[
1+

(xi

β

)α]

∂`

∂b
= −nψ(b)+nψ(ac−1 +b)+

n

∑
i=1

log

{
1−

[
1−

{
1+

(xi

β

)α}−1]c
}

∂`

∂c
=

n
c
− na

c2 ψ(ac−1)+
na
c2 ψ(ac−1 +b)

−(b−1)
n

∑
i=1

{[
1−

{
1+

(
xi
β

)α}−1]c
log

[
1−

{
1+

(
xi
β

)α}−1]

1−
[
1−

{
1+

(
xi
β

)α}−1]c

}

∂`

∂ α
=

n
α

+
n

∑
i=1

log
(xi

β

)
− (a+1)

n

∑
i=1

[(
xi
β

)α
log

(
xi
β

)

1+
(

xi
β

)α

]

−c(b−1)
n

∑
i=1

[[
1−

{
1+

(
xi
β

)α}−1]c−1{
1+

(
xi
β

)α}−2(
xi
β

)α
log

(
xi
β

)

1−
[
1−

{
1+

(
xi
β

)α}−1]c

]
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∂`

∂β
=

n
β
− n

β
(aα−1)+(a+1)

n

∑
i=1

[(
α
β

)(
xi
β

)α

1+
(

xi
β

)α

]

+(b−1)
n

∑
i=1

[
c
[
1−

{
1+

(
xi
β

)α}−1]c−1{
1+

(
xi
β

)α}−2(
α
β

)(
xi
β

)α

1−
[
1−

{
1+

(
xi
β

)α}−1]c

]
,

whereψ(.) = Γ(.)
′
/Γ(.) is the digamma function.

By equating the above equations to zero, we can get MLEs ofa, b, c, α andβ by solving them
simultaneously using iterative methods, such as Newton-Raphson, BFGS, SANN, BHHH, NM and
L-BFGS-B.

7. A useful characterization

In practice, an investigator will be usually interested to know if the model under study fits the
requirements of the proposed distribution. To this end, the investigator relies on the characterizations
of the distribution which provide conditions under which the underlying distribution is indeed the
proposed distribution.

Our characterization will employ an interesting result due to Glänzel (1987) (Theorem 1 below).
The advantage of this characterization is that it does not require the explicit closed form of the cumu-
lative distribution function. It also connects the probability density function with a solution of a first
order differential equation.

Theorem 1.Let (Ω,F,P) be a given probability space and letH = [a,b] be an interval for some
a < b (a = −∞,b = ∞ might as well be allowed). Let X : Ω→ H be a continuous random variable
with distribution functionF and letq andh be two real functions defined onH such that

E [q(X) | X ≥ x] = E [h(X) | X ≥ x] η (x) , x∈ H,

is defined for somereal function η . Assume thatq, h∈C1(H), η ∈C2(H) andF is twice continu-
ously differentiable and strictly monotone function on the setH. Further, assume that the equation
hη = q has no real solution in the interior ofH. Then,F is uniquelydetermined by the functionsq,
h andη , particularly

F (x) = C
∫ x

a

∣∣∣∣
η ′ (u)

η (u)h(u)−q(u)

∣∣∣∣ exp[−s(u)] du,

wheres= s(x) is a solution of the differential equations′(x) = [η ′(x)h(x)]/[η(x)h(x)−q(x)] andC
is a constant chosensuch that

∫
H dF = 1.

We mention that this kind of characterization based on the ratio of truncated moments is stable in
the sense of weak convergence, in particular, let us assume that there is a sequence{Xn} of random
variables with distribution functions{Fn} such that the functionsqn, hn andηn (n∈ N) satisfy the
conditions of Theorem1 and letqn→ q,hn→ h for some continuously differentiable real functions
q andh. LetX be a random variable with distributionF . Under the condition thatqn(X) andhn(X)
are uniformly integrable and that the family is relatively compact, the sequenceXn converges toX

Published by Atlantis Press 
Copyright: the authors 

77



M.H. Tahir, M. Mansoor, M. Zubair and G.G. Hamedani

in distribution if and only ifηn converges weakly toη , where

η (x) =
E [q(X) | X ≥ x]
E [h(X) | X ≥ x]

.

This stability theorem makes sure that the convergence of distribution functions is reflected by
corresponding convergence of the functionsq, h andη , respectively. It guarantees, for instance, the
“convergence” of characterization of the Wald distribution to that of the Lévy-Smirnov distribution
if α → ∞.

A further consequence ofthe stability property of Theorem 1 is the application of this theorem
to special tasks in statistical practice such as the estimation of the parameters of discrete distribu-
tions. For such purpose, the functionsq, h and, specially,η should be as simple as possible. Since
the function tripletis not uniquely determined it is often possible to chooseη as a linear func-
tion. Therefore, itis worth analyzing some special cases which helps to find new characterizations
reflecting the relationship between individual continuous univariate distributions in other areas of
statistics. In Theorem 1, the intervalH need not be closed. The goal is to have the functionη as
simple as possible. For a more detailed discussion on the choice ofη , we refer the reader to Glänzel
and Hamedani (2001),and Hamedani (2006).

Proposition 1. Let X : Ω→ (0,∞) be a continuous random variable and let

h(x) =
(

x
β

)α(1−a) [
1−{

1− [1+(x/β )α ]−1
}c]1−b

and

q(x) =
(

x
β

)α(2−a) [
1−{

1− [1+(x/β )α ]−1
}c]1−b

for x∈ (0,∞).

The pdf ofX for a > 1 is (2.5) if and only if the functionη defined in Theorem 1 has the form

η (x) =
1

(a−1)

[
1+a

(
x
β

)α]
, x > 0.

Proof. Let X has pdf(2.5), then

[1−F (x)] E [h(X) | X ≥ x] =
c

a B(ac−1,b)

[
1+

(
x
β

)α]−a

, x > 0,

and

[1−F (x)] E [q(X) | X ≥ x] =
c

a(a−1) B(ac−1,b)

[
1+

(
x
β

)α]−a[
1+a

(
x
β

)α]
, x > 0.

Finally,

η (x)h(x)−q(x) =
h(x)
a−1

[
1+

(
x
β

)α]
> 0 , a > 1 , x > 0.

Conversely, if η is given as above, then

s′(x) = a
(

α
β

) (
x
β

)α−1[
1+

(
x
β

)α]−1
,

and hence
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s(x) = log
{[

1+
(

x
s

)α
]a}

,x > 0.

Now, in view of Theorem 1,X has pdf (2.5).

Remark 1. Clearly, there are other triplets(h,q,η) satisfying the conditions ofProposition 1.

Corollary 1. Let X : Ω→ (0,∞) be a continuous random variable and leth(x) be as in Proposition
1. The pdf ofX for a > 1 is (1.9) if and only if there exist functionsq andη defined in Theorem 1
satisfying the differential equation

η ′ (x)h(x)
η (x)h(x)−q(x)

=
αa xα−1

β α

[
1+

(
x
β

)α]−1

, x > 0. (7.1)

Remark 2. The generalsolutionof the differential equation given in Corollary 1 is

η(x)=
[
1+

( x
β

)α]a[− αa
β

∫
q(x)

( x
β

)αa−1[
1+

( x
β

)α]−(a+1)[
1−{

1−[
1+

( x
β

)α]−1}c]b−1
dx+D

]
,

for x > 0, whereD is aconstant. To see this note that (7.1) can be written as

η ′ (x)−η (x)
αa xα−1

β α

[
1+

(
x
β

)α]−1

=−q(x)(h(x))−1 αa xα−1

β α

[
1+

(
x
β

)α]−1

. (7.2)

Now, replacingh(x) from Proposition 1 and then multiplying both sides of (7.2) by
[
1+

(
x
β
)α]−a

,
we obtain

d
dx

{
η(x)

[
1+

( x
β

)α]−a} =−αa
β

q(x)
( x

β
)αa−1[

1+
( x

β
)α]−(a+1)[

1−{
1− [

1+
( x

β
)α]−1}c]b−1

,

from which theexpression forη(x) given above will follow. One set of appropriate functions is
givenin Proposition 1 withD = 0.

8. An application

In this section, we present an application of McLL to breast cancer data to illustrate its potentiality.
The MLEs of real data set are computed, and goodness-of-fit of McLL is compared with the other
competing models.

The real data set represent the survival times of 121 patients with breast cancer obtained from a
large hospital in a period from 1929 to 1938 (Lee, 1992). This data set has recently been studied by
Ramoset al. (2013). The data are: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,
11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5,
17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0,
31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0,
41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0,
54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0,
78.0, 80.0,83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,
126.0, 127.0, 129.0, 129.0, 139.0, 154.0.

In the following, we compare McLL distribution with other seven lifetime models Viz. McDon-
ald Weibull (McW), ZBLL, BLL, KwLL, LL, Gamma (Ga) and Log-Normal (LN). The pdf of McW
is given Cordeiroet al. (2012).
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We estimate the unknown parameters of each model by the maximum likelihood. There exists
many maximization methods in R Packages like NR (Newton-Raphson), BFGS (Broyden-Fletcher-
Goldfarb-Shanno), BHHH (Berndt-Hall-Hall-Hausman), SANN (Simulated-Annealing) and NM
(Nelder-Mead). But here the maximum likelihood estimates (MLEs) are computed using Limited-
Memory quasi-Newton code for Bound-constrained optimization (L-BFGS-B) and the measures of
goodness of fit AIC, CAIC, BIC, Anderson-Darling (A∗) and Craḿer–von Mises (W∗) are used to
compare the eight models. The statisticsW∗ andA∗ are described in details in Chen and Balakr-
ishnan (1995). In general, the smaller the values of goodness-of-fit measure suggest the better the
fit to the data. The required computations are carried out using R-packageAdequacyModel which
is recently introduced by Pedro Rafael Diniz Marinho and Cícero Rafael Barros Dias and is freely
available from
http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf.

Table 1. MLEs and their standard errors (in parentheses) for Breast Cancer Data

Distribution a b c α β µ σ

McW(a,b,c,α,β ) 0.961 2.926 38.441 1.250 0.018 - -
(0.483) (3.953) (36.188) (0.429) (0.0.006) - -

ZBLL(a,α,β ) 0.353 77.856 3.098 - - - -
(0.103) (12.562) (0.579) - - - -

BLL(a,b,α,β ) 0.364 0.732 53.251 3.368 - - -
(0.230) (0.482) (9.731) (1.176) - - -

McLL(a,b,c,α,β ) 0.519 48.676 30.988 2.272 65.025 - -
(0.216) (78.698) (19.283) (0.680) (13.841) - -

LL (α,β ) - - - 1.856 35.177 - -
- - - (0.141) (2.978) - -

KwLL( a,b,α,β ) 33.968 23.048 0.336 0.044 - - -
(4.804) (13.979) (0.043) (0.020) - - -

Ga (α,β ) - - - 1.495 30.984 - -
- - - (0.175) (4.290) - -

LN (µ,σ ) - - - - - 3.46 1.033
- - - - - (0.094) (0.066)

Table1 lists the MLEs and their corresponding standard errors (in parentheses) of the model
parameters. The model selection is carried out using the following statistics: AIC (Akaike infor-
mation criterion), CAIC (consistent Akaike information criterion) and BIC (Bayesian information
criterion): AIC = −2`(.) + 2p, CAIC = −2`(.) + 2pn

n−p−1 and BIC = −2`(.) + plogn, where`(.)
denotesthe log-likelihood function evaluated at the maximum likelihood estimates,p is the number
of parameters, andn is the sample size. The numerical values of statistics AIC, CAIC, BIC,W∗ and
A∗ are listed in Table 2.

We noted from Table 2 that McLL model shows lowest values of AIC and CAIC among the
fitted models: McW, ZBLL, BLL, LL, KwLL, Ga and LN, suggesting that the McLL distribution
shows the best fit, and therefore could be chosen as the best model. Further, the value ofA∗–statistic
for McLL model is also smaller as compared to the other models especially to the ZBLL, suggesting
that McLL distribution seems to be a competitive model for the cancer data. The histogram of McLL
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estimated pdf and plot of McLL estimated cdf are displayed in Figure 3. It is clear from Table 2 and
Figure 3 that McLL distribution provided a better fit and therefore be one of the best models for
cancer data.

Table 2. The AIC, CAIC , BIC,A∗ andW∗values for Breast Cancer data

Distribution AIC CAIC BIC A∗ W∗

McLL 1164.661 1165.183 1178.640 0.401 0.058
McW 1166.474 1166.996 1180.453 0.513 0.074
ZBLL 1167.063 1167.268 1175.450 0.454 0.053
BLL 1171.861 1172.206 1183.045 0.494 0.066
LL 1179.199 1184.791 1179.301 1.258 0.209
KwLL 1189.937 1190.282 1201.120 1.511 0.232
Ga 1166.474 1166.996 1180.453 0.513 0.074
LN 1194.067 1194.168 1199.658 2.043 0.318

(a)Estimated pdfs (b) Estimatedcdfs
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Fig. 3. Plots oftheestimated pdfs and cdfs McLL, McW and LL models

9. Concluding remarks

In this paper, we propose a new five parameter McLL distribution which generalizes LL distribution,
and we also obtained some of its structural properties. We provide for the new distribution: the
expression for mean residual life, mean waiting time, Rényi entropy andq-entropy. The model
parameters are estimated by the maximum likelihood. The usefulness of the new model is illustrated
in an application to real data set on breast cancer by using five goodness of fit measures. The new
model provides consistently better fit than the other seven models selected from the literature. We
hope that the proposed model may attract wider application in many areas such as engineering,
survival data, hydrology, economics (income inequality), and others.

Addendum.After the completion of the present work we came across a paper by Cordeiroet al.(to

appear in 2014) in which the authors have employedG(x) =
{

1− [
1+

(
x
β
)α]−k

}
. The properties

discussed inthat paper, however, are different from ours.
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[17] Rényi, A. (1961). On measures of entropy and information. University of California Press, Berkeley,
California, pp. 547–561.

[18] de Santana, T.V.F., Ortega, E.M.M., Cordeiro, G.M. and Silva, G.O. (2012). The Kumaraswamy-log-
Logistic distribution.Journal of Statistical Theory and Applications,11, 265–291.

[19] Tsallis, C. (1988). Possible generalization of Boltzmann–Gibbs statistics.Journal of Statistical Physics,
52, 479–487.

[20] Ullah, A. (1996). Entropy, divergence and distance measures with econometric applications.Journal of
Statistical Planning and Inference,49, 137–162.

[21] Verhulst, P.F. (1838). Notice sur la loi que la population suit dans son accroissement.Correspondence
math m atrique et physique, 10, 113–121.

[22] Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated dis-
tributions and associated inference.Statistical Methodology,6, 344–362.

Published by Atlantis Press 
Copyright: the authors 

82


	McDonald Log-Logistic Distribution with an Application to Breast Cancer Data
	Recommended Citation

	tmp.1424186927.pdf.EgGcK

