





Matrix Component

Figure 5.8: Resulting a12, aos Components for Varying Aspect Ratio for Stake Peg
Assembly. The values of the results approach zero due to part symmetry for some of
them but present significant variation.

5.2.2

Figure 5.8 presents the value of the aj2 and as3 components as a function of aspect
ratio. It can be observed that the value for a12 and as3 does not behave exactly like those
in the previous section. While the values of a15 and as3 do approach zero for a significant
amount of aspect ratios, several other cases present values much larger than anticipated.

Once again this is a result of the increase in the difficulty of the optimization routine for
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an extremely constrained task which contains several local minima.
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Figure 5.9: Resulting y.. Location for Stake Peg Assemblies. The location of the com-
pliant center seems to be arbitrary.

5.2.3 a13, az3 Components

The ratio of a3 and ass determines the location of the compliant center along the y
direction, expressed as y... Several values of a13 and ass result in the same y.., hence
it is not unique resulting in a solution space with multiple local minima. Figure 5.9
presents the location of the compliant center in the y direction as the aspect ratio of
the geometry is increased. In previous sections the location of the y.. moved downward
with relation to the change in aspect ratio, this pattern is not present for the stake peg
assembly. While the location of y.c does move downward it does not follow a discernible
pattern. The discontinuity that exists at an aspect ratio of 3 cause by the inclusion of
new two point contacts has a significant effect. The investigation in [25] for stake shaped

pegs also presented similarly varying compliant center locations.
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Figure 5.10: Dominating Contact States for Stake Peg Assembly. These contact state
configurations correspond to transition into a different contact state.

5.2.4 Dominating Contact States

The following contact states are identified as those whose extremal configurations are
considered the worst-case scenario for the Stake Peg Assembly. These contact state are
the E3-V3 and E8-V3 contact states.

These contact states refer to configurations shown in Figure 5.10 where the peg is
located at the bottom of the chamfer on the fixed part and is about to transition into
another contact state. This can be explained by the motion of the contact point being
constrained to the direction of the edge of the chamfer, and the ideal motion being almost
directly down into the hole, hence limiting how close the the resulting and ideal motions

can be to each other.

5.2.5 V,, Values for Optimization

Figure 5.11 presents the obtained motion quality for the worst-case scenario for dif-
ferent aspect ratios and friction coefficients. The results for the value of the objective
function V,,, seem to follow a particular pattern, albeit a noisy one. The solutions behave
similarly to that identified for a triangular peg, seemingly limited by the part geometry.
It seems that the coefficient of friction does not significantly affect the results, which is
consistent with the results for a triangular peg. However unlike the triangular peg, there

does seem to be slightly better motion quality at lower coefficients of friction. For aspect
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Figure 5.11: Velocity Quality Results for Stake Peg Assembly. The change in the coeffi-
cient of friction does not seem to have significant impact on the results.

ratios lower than 3, the behavior is consistent and corresponds to the optimization being
easier to perform due to the lower number of contact states evaluated. However as more
contact states become possible, the optimization becomes numerically more difficult to
perform resulting in the noise present. However it is important to note that the motions
still possess satisfactory motion quality.

Looking at the resulting motions shown in Figure 5.12 for the worst-case scenario
configurations the motion of the configuration is still close to ideal, and would be consid-
ered satisfactory, regardless of the noise present in the optimization. As the part length
increases, the motion quality becomes less than for the shorter aspect ratios, however

the change is not significant.
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Figure 5.12: Resulting Velocities for Dominating Contact State Configuration in Stake
Peg Assembly. Friction coefficients do not alter the behavior of the results significantly.



72

0.5 T T T T T T T T
+  Double Point Constraints
0.45 O  Single Point Constraints |
0.4 +4 +++ +
I +++++ 7
T 00500, 000
0.35f +T+4 00 Op g 050 i
L+t 0© o
€ + 0000 ++
> | ++ + O§E+++ |
= 0.3 +OOOOOEB+
= ®H000
& 025f i
2
8
< 0.2 |
>
0.15F |
0.1 |
0.05F i
O Il Il Il Il Il Il Il $
1 2 3 4 5 6 7 8 9 10

Aspect Ratio

Figure 5.13: Objective Function Results for 4 = 0.3 with Varying Constraints. The
effect of the inclusion of two point constraints is not significant.

5.2.6 TFriction Coefficient

Figures 5.13 and 5.14 show the obtained results for the quality of motion with and
without two point constraints, demonstrating that two point contacts do not have a
significant effect on the obtained results. This is important as two point constraints are
the ones that most affect the optimization routine. Since removing them does not have
a significant effect, it can be determined that the optimization routine is being limited
by the geometry of the assembled part more than by the static friction.

Figure 5.15 presents the resulting admittance components for the maximized friction
components. Comparing them to those of the velocity metric for a high coefficient of
friction such as shown in Figure 5.6, it can be observed that while the lower aspect ratio
results differ, for longer aspect ratios the results are closer together, due to the space of

available admittances satisfying the error-reducing constraints being reduced.
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Figure 5.14: Objective Function Results for u = 0.5 with Varying Constraints for Stake
Peg. The effect of the inclusion of two point constraints is not significant.
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Figure 5.15: Admittance Characteristics for Triangular Assembly Using a Maximized
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Figure 5.16: Resulting Motion Quality for Stake Peg Assembly for u = 0.3. The velocity
metric outperforms the friction based optimization.

5.3 Comparison between Optimization Routines

Figure 5.16 presents a comparison of the performance of different admittances, which
were optimized for a certain coefficient of friction, applied to assembly tasks with a
different coefficient of friction.

As it was expected, the optimization routine based on ideal velocity generates mo-
tion for the extremals that is considered higher quality when the selected coefficient is
close to that for which the admittance was obtained, as observed by 0.5 optimized used
on an assembly with pu = 0.3. Applying the optimized results to other lower friction
coefficients obtains better results than those of the maximum friction optimization all
cases investigated. This provides evidence suggesting the use of the velocity metric as
opposed to the maximized friction as the objective function of the optimization. Once
again the discontinuity at an aspect ratio of 3 can be explained by the inclusion of two
point contact states that greatly increase the complexity of the optimization routine

resulting in noisier results.
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5.4 Discussion of Results

From the comparisons presented it becomes obvious that the velocity metric performs
better when applied to different friction values, especially when optimized for a given
friction value, than the maximum friction based optimization. However as opposed to the
previously investigated geometries, there is significant noise in the data presented. The
increase in the number of contact states and configurations greatly increases the number
of constraints needing to be satisfied. In most optimizations the constraint closer to be
violated is caused by two point contact states that occur inside the hole.

The optimization is, regardless of the noise present, successful in identifying admit-
tance behavior resulting in high quality motion for its extremals. It is also, as will be
shown in Chapter 6, capable of generating high quality motion for intermediate config-
urations not contained in the set of optimized extremals.

However there is still a possibility that for a given configuration the result of the
velocity metric could perform worse than that of the friction based approach. This can
be undesirable, however the velocity will still be error reducing, and will always result
in successful assembly even if it accomplished in a longer time frame due to constrain

satisfaction.

5.5 Summary of Chapter 5

In this chapter the results for a stake peg assembly where discussed. It is demon-
strated that the use of a velocity metric as the objective of a minimax optimization
results in a satisfactory compliant system that both has a relatively high quality motion
at the extremals and error reduction motion for all possible configurations.

The resulting admittance matrix performs better than the previous friction based
program. This holds assembly tasks with with a coefficient of friction for which the
admittance was designed for, as well as for lower coefficients of friction.

When examining the admittance, the resulting motion for the extremals is closer to
the intended nominal velocity using the velocity metric than the friction approach. As
a result, the admittance presents a more controllable motion, which possess a motion

closer than that intended. This finding allows admittance generated by this procedure
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to be applied to assembly task in an industrial setting with more ease. However there
seems to be more noise present in the optimization of stake peg assemblies, and further
investigation should be performed.

The following chapter presents further investigation into the results obtained for the

quality of motion for configurations not contained in the optimized set.
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6 MOTION QUALITY FOR INTERMEDIATE
CONFIGURATIONS

As shown in the previous chapters the velocity metric based admittance selection
procedure is capable of generating admittance behavior resulting in close to optimal
motion for a selected set of extremals. This section will present results obtained from an
additional numerical investigation investigations into the quality of the resulting motion
for configurations not present in the optimized set. The numerical investigation was
performed for all the geometries considered in previous sections (rectangular, triangular
and stake pegs), providing evidence to support the use of the velocity metric based

admittance selection procedure.

6.1 Motion Quality for Selected Configurations

This section presents the resulting motion quality for configurations not contained
within the set of configurations for which the constrained minimax optimization was
performed. This is done to support the use of the developed velocity metric based
process for admittance selection. The first figures present the motion quality results for
intermediate configurations bounded for the extremals of the contact state identified as
dominating in Chapters 3, 4, and 5 . These configurations are those which the movable
part is located at the bottom of the chamfer of the fixed part and has rotated pasts its
proper assembled position. The resulting motion quality of another contact state located
inside the hole of the fixtured part will also be presented. The first section presents the

results obtained for the rectangular peg assembly.

6.1.1 Rectangular Peg Assembly Motion Quality

Figures 6.1 and 6.4 presents the obtained results obtained for the quality of motion
of an intermediate configuration whose motion is the result of the application of the

planar control law 1.2 using an admittance generated from the proposed velocity metric

! All investigations use a friction coefficient of 0.3 and an aspect ratio of 6.
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optimization routine. Figure 6.1 presents the obtained results for intermediate config-
urations of what is considered the dominating extremal for a rectangular peg assembly
task (E7-V4). The z axis presents the obtained quality of motion, while the x and y axis
present the values of the two variables used to determine the configuration of the contact
state. Figure 6.2 presents a graphical representation of the corners of x and y space for

Figure 6.1. The corners are the extremals of the contact state considered.

»_Dominé'fi'r'ié——C)onta_{é,t__.-——--""""‘,
- State E7-V4-— | Ny

-0.1 0
Angle Value,0 Translation Value,d

Figure 6.1: Surface Plot for Rectangular Peg Dominating Contact State E7-V4. The
maximum value for V;, is obtained at the dominating (sampled) configuration. Extremal
configurations correspond to corners of the rectangular surface.

As can be seen the intermediate configurations, meaning those not located on the
corners of the area are found to have higher quality than what is identified as the worst-
case scenario (at Opmin, Omaz)- This points to the value of the quality of motion for an
assembly task being bounded by the value identified as the worst extremal.

This can be further corroborated by looking at another contact state, in this case
one located within the hole of the fixtured part (E6-V4). The results are presented in
Figure 6.4, as with other figures in this chapter negative values are assigned to config-
urations that result in penetration of the parts. The maximum value obtained for the
configurations in this extremal is considerable smaller than the value identified by the

optimization routine for the worst-case scenario.
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Figure 6.2: Representation of Configurations Located on the Corners of the Evaluated
Configuration Space for Rectangular Pegs. Fach configuration corresponds to an ex-
tremal of the contact state E7-V4.

Figure 6.3: Graphical Representation of Contact State E6-V4.

The following sections present similar results for both the triangular and stake peg

assemblies.
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Figure 6.4: Surface Plot for Rectangular Peg Contact State E6-V4. The maximum value
for V,,, is not higher than that of the dominating (sampled) configuration.
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6.1.2 Triangular Peg Assembly Motion Quality

As done in the previous section, Figures 6.5 and 6.8 present the obtained results
for the quality of motion of an intermediate configuration whose motion is the result
of the application of the planar control law 1.2 using an admittance generated from
the proposed velocity metric optimization routine. Figure 6.5 presents the obtained
results for intermediate configurations of what is considered the dominating extremal for
a triangular peg assembly task (E6-V3). The extremals of the space presented are shown

in Figure 6.6.

_Qp__miinaﬁr’i'gm;—
026 1 Extrémal E6V3 |

Angle Value,0

Translation Value,d

Figure 6.5: Surface Plot for Triangular Peg Dominating Contact State E6-V3. The
maximum value for V, is obtained at the dominating (sampled) configuration. Extremal
configurations correspond to corners of the rectangular surface.

As with the results for the rectangular peg assembly the intermediate configurations,
found to have higher quality motions than the configurations identified as the worst-case
scenario (at dmin, Omaz). As with the rectangular peg assembly investigation this point
to the validity of using the velocity metric based process for admittance selection.

Looking at a contact state (E5-V3) located inside the hole of the fixed part, similar
results are obtained. As seen in Figure 6.8The maximum value for the motion discrepancy
is still considerably lower than tat identified for the worst-case scenario. The negative

values for the V,,, value correspond to configurations resulting in part penetration, the
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Figure 6.6: Representation of Configurations Located on the Corners of the Evaluated

Configuration Space for Triangular Pegs. Fach configuration corresponds to an extremal
of the contact state E6-V3.

"spikes" seen in the plot correspond to values close to the limit for identifying successful
assembly.

The following section presents the same investigation for the stake peg assembly.
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Figure 6.7: Graphical Representation of Contact State E6-V4.
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Figure 6.8: Surface Plot for Triangular Peg Contact State E5-V3. The maximum value

for V,,, is not higher than that of the Dominating Configuration.
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Figure 6.9: Representation of Configurations Located on the Corners of the Evaluated
Configuration Space for Stake Pegs. Fach configuration corresponds to an extremal of
the contact state E8-V3.

6.1.3 Stake Peg Assembly Motion Quality

Figures 6.10 and 6.12 present the obtained results for the quality of motion of an
intermediate configuration for the stake peg assembly. Figure 6.10 presents the obtained
results for intermediate configurations of what is considered the dominating contact state
for a stake peg assembly task (E8-V3). The extremals of the space presented are shown
in Figure 6.9.

The intermediate configurations of the contact state are found to have higher quality
motions than the configuration identified as the worst-case scenario (at dpin, Omaz)- AS
with the rectangular peg assembly investigation this points to the validity of using the
velocity metric based process for admittance selection. This result is especially important
for the stake peg assembly, whose optimized result contained significant amount of noise.
The resulting admittances, even though though noisy, still result in high quality motion
not only for the evaluated configurations but also for intermediate ones.

Looking at a contact state (E4-V2) located inside the hole of the fixed part, similar
results are obtained. As seen in Figure 6.12 the maximum value for the motion dis-
crepancy is still considerably lower than tat identified for the worst-case scenario. The

negative values for the V,, value correspond to configurations resulting in part penetra-



85

qu_rji_nat—iﬁ'g"taﬁtact
03 () State E8-V3; .
;3\_\_-"

Angle Value,0 Translation Value,d

Figure 6.10: Surface Plot for Stake Peg Dominating Contact State E8-V3. The max-
imum value for V;,, is obtained at the dominating (sampled) configuration. Extremal
configurations correspond to corners of the rectangular surface.

tion. Once again this demonstrates the validity of the use of the velocity metric based

admittance selection procedure.

Figure 6.11: Graphical Representation of Contact State E4-V2.

The results obtained for rectangular, triangular, and rectangular peg assemblies are
satisfactory. However, it is important to note that even though these results provide sig-
nificant support for the statement that if the admittance is optimized for the extremals in
the configuration the quality of the motion of all intermediate configurations is bounded,
it does not guarantee that this will be the case. This is only a numerical investigation

and analytic constraints need to be developed.
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Figure 6.12: Surface Plot for Triangular Peg Contact State E4-V2. The maximum value
for V,,, is not higher than that of the dominating (sampled) configuration.

6.2 Summary of Chapter 6

This chapter presented additional numerical investigation supporting the use of a
velocity metric based optimization for admittance selection. It showed significant evi-
dence demonstrating that the quality of configurations not evaluated in the optimization
routine better than the extremals evaluated. For the cases investigated the maximum
discrepancy from the ideal motion is obtained at the dominating extremal.

The following section will highlight the contribution of the project as well as sug-
gesting future work to be undertaken to improve upon the procedure for identifying

compliant behavior resulting in close to optimal motion.
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7 CONTRIBUTION AND FUTURE WORK

There are currently significant difficulties in the implementation of automatic as-
sembly systems due to the lack of precise relative positioning in conventional robotic
systems. Suggested solutions are either expensive and complex (active compliance and
vision systems) or are only limited to certain geometries (RCC). Previous work done at
Marquette University generated a process by which passive compliant systems could be
designed yet the quality of the motions obtained was not optimal.

The contribution of this project was generating a process by which passive compliant
systems can be designed for a variety of geometries which result in close to optimal
motion. This allows for compliant systems to be designed which are optimal for a
specified geometry, friction coefficient and target translational velocity magnitude. This
presents an improvement over other admittance design processes which do not take
into account the quality of the motion of the resulting corrective motion. This will
allow for the design of relatively inexpensive passive compliant mechanisms for use in
an industrial setting. Furthermore the tool created for the selection of the admittance
behavior provides a solid foundation for further investigation into the qualities of ideal
admittance matrices. The program handling the admittance selection has also been
simplified enough that it could be used by individuals that are not necessarily experts in
force-guided assembly. The project also showed that the use of a velocity based metric
is useful for motion comparison tasks.

Further work on this area should be directed towards identifying the cause for the
variation in the results for the stake shaped peg assembly. It is believed that the cause
for these variations is the increase in the number of constraints for the optimization
cause by an increase in the number of contact states identified. It is also believed that
the manner by which contact states are decomposed for extremal identifications needs
to be modified. Investigation into the cause for this discrepancy can provide further
insight for more complex parts. More complex geometries should also be investigated
to test the robustness of the process. Development of a process for designing compliant

behavior for concave and three dimensional assemblies still remains to be done. Finally,
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the development of conditions to limit the magnitude of the contact forces for all possible
configurations is necessary to guarantee that the assembled parts will not be damaged

during assembly the process.
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A OPTIMIZATION RESULTS FOR RECTANGULAR PEG
ASSEMBLY

This section presents the obtained data for the selection of an admittance providing

passive force-guidance with optimal motion for rectangular peg assemblies.
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Figure A.1: Resulting ase Values for Varying Aspect Ratio and p = 0.3 Rectangular
Peg. No pattern is apparent.
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B OPTIMIZATION RESULTS FOR TRIANGULAR PEG
ASSEMBLY

This section presents the obtained data for the selection of an admittance providing

passive force-guidance with optimal motion for triangular peg assemblies.
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Figure B.10: Resulting y.. Location in Relation to Peg for y = 0.3 for Triangular Peg

Yee location

Figure B.11: Resulting y.. Location in Relation to Peg for p = 0.5 for Triangular Peg
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C OPTIMIZATION RESULTS FOR STAKE PEG ASSEMBLY

This section presents the obtained data for the selection of an admittance providing

passive force-guidance with optimal motion for stake peg assemblies.
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No pattern is apparent.



107

25
+
+
2 o
++
N
oV 151 4
) +
=
(g
> +
x + 7
= | 4
s 1 n
+
+
05+ ++ + ++ + N i
+ ot .
+
4y A
+ +*
0 1 + 1 +++Jr ++<\F+ 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Aspect Ratio

Figure C.2: Resulting ags Values for Varying Aspect Ratio and p = 0.5 for Stake Peg.
No pattern is apparent.

15 T
+ +
1, .
N
o
)
=}
®
>
é +
g "
+
0.5 + 1
1+
+
+ +
L oy +
+ + + I + +
+ + + 4
+ ++ +
0 L \+ + ‘*’ + ‘f’+ + L L L + L
1 2 3 4 5 6 7 8 9 10

Aspect Ratio

Figure C.3: Resulting age Values for Varying Aspect Ratio and p = 0.7 for Stake Peg.
No pattern in apparent.



108

0.5
0.45f P

0.4F ++ ++ +

0.351 ++

m
+
+
+
+
+
+

0.3F + ++

0.25F b

Velocity Quality, V

0.15f 4

0.1 b

0.05 i

O | | | | | | | |
1 2 3 4 5 6 7 8 9 10

Aspect Ratio

Figure C.4: Resulting V;, Values for Varying Aspect Ratio and p = 0.3 for Stake Peg.

0.5
0.45 + 4
+
0.4f + + +
T

035 T ++

m

+
+

+

0.3f +

0.25F b

0.2 b

Velocity Quality, V.

0.05f b

O | | | | | | | |
1 2 3 4 5 6 7 8 9 10

Aspect Ratio

Figure C.5: Resulting V;,, Values for Varying Aspect Ratio and p = 0.5 for Stake Peg.



109

0.5

0.45

0.4

0.35 LT

m

0.3

0.25

0.2

Velocity Quality, V.

0.15

0.1

0.05

0 I I I I I I I I
5 6

Aspect Ratio

10

Figure C.6: Resulting V;, Values for Varying Aspect Ratio and pu = 0.7 for Stake Peg.

4 ‘
* Y
3’ (@) o + al37
o)
o O 85
o 2 o i
5
o o)
= 1 i
.E ”e) o 5
g *x % %t s
L 00000°
8 0 *++9+++9++++; 9 9+99+9+9999999+99
£ ¥% * X * * * % * %
@ _q1L * * * |
S * *
g *
S *
S ot * * ** 7
o *
£ * *
3 % * *
S -3r % % *
* %
* *
s * i
*
_5 Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10

Aspect Ratio

Figure C.7: Resulting y.. Location for Varying Aspect Ratio and p = 0.3 for Stake Peg.

Downward trend is not observed.



110

O O

OOOOO
0

+ o+

T 4 th+e+

Foxk ok ok gk

O,

@)

OO OOOOO

0 ~O o
0000 0970900~ 000000450

O + * [

cc
a3
8331

O

742

O

+9 @

*

++*+++

*

Matrix Component, Compliant Center

++;+++++++++++++++++++

*

*
* *
* ¥

5

6

Aspect Ratio

Figure C.8: Resulting y.. Location Values for Varying Aspect Ratio and p = 0.5 for

Stake Peg. Downward trend is not observed.

1.5F 00O

o

il +++

+ O
%%***
B *O O
+*O*®

T+

%

%
o
+0%5 0000%50

+ +
*

Matrix Component, Compliant Center

*
*

*

¥+t +$++*

QQ 0%00

*++++

* %

13

O + *

%37

*++

*
*

*
*

*
* %

99+++99+

&

-3 I I I
5

6

10

Aspect Ratio

Figure C.9: Resulting y.. Location for Varying Aspect Ratio and p = 0.7 for Stake Peg.
Downward trend is not observed.



Yoo location

Figure C.10: Resulting y.. Location in Relation to Peg for u = 0.3 for Stake Peg.
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Figure C.11: Resulting y.. Location in Relation to Peg for p = 0.5 for Stake Peg.
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D MATLAB CODE VALIDATION

This chapter presents data supporting the results obtained by the new MATLAB
program. The development of the MATLAB code to identify the best admittance matrix
was based on work previously done by Weimer [25]. Wiemer developed a program that
used a genetic algorithm to identify contact state extremals. This program also identified
the best admittance guaranteeing successful assembly with the highest coefficient of
friction.

Issues arose with said program. It was originally written in C++ and had become
deprecated, not complying with modern C compilers. Furthermore it did not take ad-
vantage of modern multi-core microprocessors. Finally, the code being written in C++
did not posses high readability, especially when being used by mechanical engineers not
used to large C++ files.

In order to fix these issues the program was rewritten in MATLAB, this resulted in
a program is easier to understand and can take advantage of parallel processing while
using MATALB’s robust genetic and optimization routines. This also makes the program
easier to build on and to understand.

Figure D.1 presents the process the program uses to obtain the highest admittance.
The first part of the process requires the identification of the possible contact states
that can occur within the given bounds of misalignment of the robot. The program
first identifies one point contacts and then two point contacts using the possible simpler
contact states. Second, the program identifies the extremals of the identified contact
states. These extremals generate a rectangular space (+Ad and +A60) which contains all
the possible configurations that occur within each contact states. Finally these extremals
are used to generate a set of constraints that guarantee the assembled part will be
successfully assembled and moving toward the appropriate position. These constraints
are used for a constrained optimization whose objective function is the maximum friction
coefficient.

The following figures present the results for rectangular, triangular and stake shaped

pegs in force guided assembly tasks. This process was used to guarantee that the program
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Figure D.1: MATLAB flowchart for Friction Based Optimization.

behaved in the same manner as its C++ equivalent (which no longer worked). The
program was shown to be successful in obtaining the same results as those obtained by
Wiemer. Given these results, the base of the MATLAB program was taken to be robust

and used for the velocity based optimization.
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E GENETIC ALGORITHMS

This chapter is meant to introduce the basic concepts of genetic algorithms as well
as its implementation in the research project. First, a brief introduction to genetic
algorithms (GA’s) will be presented. Next, the basic concepts will be introduced. Finally,

a discussion of the MATLAB implementation in the project is discussed.

E.1 Introduction

Genetic Algorithms have become in the last couple of years an increasing popular
tool for solving complex optimization problems. This type of algorithm is based on evo-
lutionary processes. The desired optimization is reached by simulating an evolutionary
process on a starting population. This is accomplished by simulating a "real world" evo-
lutionary process, complete with recombination, mutation and selection. The GA then
allows certain individuals (solutions) to die or reproduce depending on their fitness (a
value associated with the objective of the optimization) then allows these individuals to
reproduce. GA’s posses an advantage over other non-heuristic methods, they can cover
a wider range of starting solutions, and they can also deal with non-linear problems with
relative ease |21]. However there are some limitations to genetic algorithms. One of
most important is that it does not have a clear end of the function, the result being the

relatively better solution not the best solution.

E.2 Basic Concepts

As mentioned before most of the theory behind GAs is the attempt to replicate the
evolutionary process of natural selection in the "real world". As a results, most of the

fundamental principles mirror those found in evolution.
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E.2.1 Individual

An individual is thought of as a group of parameters from which the objective function
value is calculated. Each individual can be generated manually or in most cases, selected
from an #nital population which covers the range of the possible values for each variable.
A diverse population allows for coverage of a relatively large search space. Once each
individual is selected it is transformed into a chromosome. This chromosome is then
converted into a phenotype from which genes are transformed to values for the diverse
alleles, meaning gene types of the same family that result in different values. This
function also serves to transform the values of the objective to only positive values,
becoming what is known a fitness value.

This fitness value is a measure that is directly correlated to the objective function.
It proves how "healthy" a given individual and determines its reproduction success rate,

with the fitter individuals reproducing more successfully.

E.2.2 Crossover and Selection

As mentioned out of the initial population the fittest individuals are selected to
reproduce at a higher rate. While there are several methods by which to accomplish
this, they will not be discussed here. Sufficient to say that the healthier individuals
reproduce the most.

A new generation is created using crossover meaning that the selected individuals
have their chromosomes combined to create new individuals. This allows for the cre-
ation of individuals whose individual allele values contributed to the success towards the
optimization. In most modern approaches, elitisim is used, a process by which the most
succesful individuals from one generation is carried over to the new generation.

The process is repeated until a certain number of generations are achieved, the change
in the best individuals fitness is less than a given value or the change in fitness becomes

stalled.
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E.2.3 Mutation

In order to maintain a diverse population and prevent the optimization from con-
verging to local minima, a mutation is used. This is a relatively simple process, by
which some of the individuals have the values of their alleles changed, resulting in new
individuals which might perform better than the offspring of fit individuals.

Diverse methods exist for how to accomplish both selection, crossover and mutation,

however the discussion of that theory is much more complex and hence not done here.

E.3 Implementation

When using GA’s for the optimizations in the research project, MATLAB was chosen
due to its widespread adoption and robust routines. This GA is part of the global
optimization toolbox for which a license is required. Other alternatives include MIT
C-++ GAlib which was used in the previous program and University of Sheffield’s Genetic
Algorithms Toolbox which used in alternative versions of the code for which a global
optimization toolbox is not available.

In order to set up GA in MATLAB first an objective function needs to be created
(for our application the fitness function and the objective function are the same). The

function prototype is as follows.

function (y)=ftn_fcn(x,a,b)

y= end value;

end
The optimization is then started by running the command
X=ga(@(x)ftn_fcn(x,a,b),nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)

This function returns a vector X, with the optimized results. The other parameters are

defined as follows:

e nvars, which defines the number of decision variables which create the chromosome.

Meaning how many parameters contribute to the optimization.
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e A,b define a set of linear constraints of the form Ax < b. Where A is a matrix,

and b a vector. These where not used in most cases and can be entered as [|.

e Aeq, beg, same as A,b, defining equality constraints. Substituted by [] in most

situations.
e LB,UB define the upper and lower bounds of the variables used in the optimization.

e nonlcon defines the non linear constraints and is generally and exterior function in
the case of this project these constraints are the ones that guarantee the succesful

assembly of the parts.

e options MATLAB structure which defines the optimization parameters such as

crossover, mutation, selection and initial population.

The options structure needs to be modified for the given application for the project

the following structure was used.

options=gaoptimset(’PopInitRange’, [1b; ubl,’CrossoverFraction’,0.6,
’EliteCount’,3,’Display’,’final’,’FitnessLimit’,thresh,
’FitnessScalingFcn’ ,@fitscalingrank, ’Generations’, 300,
’PopulationSize’,300,’StallGenlimit?,50,’TolFun’,le-12,

’UseParallel’,’always’);

Each of these parameters tailors the optimization to work efficiently for the given task
of identifying extremals. It is important to note that most of these parameters require a

certain amount of trial and error.

e PopInitRange this matrix defines the range of the initial population over which an
even distribution of individuals will be generate. If this parameters is not defined
MATLAB generates an initial population that fills a 1 by 1 area, not covering the

entire space.

e CrossoverFraction the percentage of the new generation which is generated using

simple crossover, for this project 0.7 of the new population is the result of crossover.
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e EliteCount, defines teh number of individuals which are guaranteed to survive for
the next generation. For this case the 3 healthiest individuals of each generation

are saved.

e Display decides how much information is presented to the user.

e FitnessLimit defines what value determines the value at which if a an individual

achieves halts the algorithm and is presented as the best result.

e FitnessScalingFcn defines the scaling routine that transforms the fitness to make
sure that significant difference exists between individuals, for example the difference
between 20 to 30 as opposed to 1020 to 1030. An exterior function is selected in
this case a simple ranking of individuals is performed, other options can be found

in MATLAB’s documentation.

e Generations defines the number of generations after that which the optimization

is halted.

e PopulationSize defines the number of individuals for each generation

e StallGenLimit sets the number of generations after which if no progress is made

the optimization halts.

e TolFun is the value that defines the minimum improvement that has to be made
by the fitness of each best individual with regards to the previous generation. If

this is not accomplished the optimization is assumed to have reached a minimum.
e UseParallel enables parallelization for the optimization.

Once all these parameters the optimization is started, results for this project on a quad

core computer generally take about 1 minute.
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F PARALLEL AND DISTRIBUTED COMPUTATION

The code used to perform the optimization was altered from the previously used to
function both in parallel and distributed computing. Both of these concepts are related,
they are computing techniques that can be used to take advantage of new multiprocessors
architecture. Parallelization requires the code to be written in such manner that it can
be computed by separate computer cores. Distributed computing requires the code to
deployed on a separate computing grid, similar to batch processing, making it ideal for

parameter sweep processes.

F.1 Parallel Computing

Previously all code had to be computed serially, meaning that all lines are evaluated
one after another. This means that a multicore processor could not be utilized to its
full potential as it becomes bottle necked at certain point, only once core is being used,
reducing the computational speed. The process of parallellization is to identify opportu-
nities on which computations can be computed at the same time. A clear example that
benefits from parallelization is that of parameter speeds in design optimizations. Where
the output of one function call does not depend on it being executed one after another.
The execution of this parallel program however is still undertaken by the memory of a

single computer, not several ones. The memory is split between the cores as necessary

F.1.1 Implementation

In the computer program design the process of parallelization was relatively straight
forward, taking advantage of the different functions that MATLAB has available to
achieve a given result. The first step in achieving this is to declare the number of

workers (cores) which matlab is available to use, this is declared as follows.

matlabpool open local 4
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This command tells MATLAB to open up 4 local cores, and use them for the calculations.
Most optimization routines have parameters that can be set to allow them to run in

parallel. These can be achieved as follows
optimset(’UseParallel’,’always’)

Which orders the optimization routine to try to run the code in parallel for its function
evaluations. This increased the speed of the program significantly. Due to the significant
speed change going from a compiled language (C-++) to an interpreted one (MATLAB),
the increase in speed for the code in a 4 core computer was not as significant as expected.
However this does allow for the speed of the code to significantly increase following trends

in increase of cores per processor in computers.

F.2 Distributed Computing

Distributed computing is in similar to parallel computing. For the purposes of this
project it is defined as the generation of a code whose concurrent execution is performed
on multiple nodes (processors) in a network. As opposed to parallel software these nodes
do not share a common pool of memory and can function independently. These types of

distributed networks can range from a few nodes, to thousands on bigger national grids.

F.2.1 Implementation

The program created to identify a suitable admittance matrix for a variety of geome-
tries was perfectly suitable to have an implementation on a distributed network. This
is accomplished by using the PERE grid at Marquette University a 1024 core network.
This allows for obtaining admittance matrices for a large number of geometries in a short
period of time. This is accomplished by making use of University of Wisconsin Madison’s
CONDOR software which handles the submission.

It is important to note that CONDOR and most distributed networks cannot process
MATLAB programs natively, as this requires a high number of licenses to be purchases.
A workaround for this issue is to use MATLAB’s C++ compiler. This allows the creation
of a executable that does not require an existing MATLAB license and can be run on a

variety of platforms.
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The process of submitting the program to the CONDOR system requires the folowing

process
1. Login into the PERE cluster, using ssh (secure shell)

2. Loading of the appropriate module, which defines the correct paths for the MAT-

LAB programs

module load matlab/2011la

other modules for different MATLAB distributions can be found using

module load avail

3. Creation of a makefile as follows (makefile)

main_code: main_code.m

mcc -m -R -nodisplay -R -nojvm main_code.m
clean:

rm -f main_code.m

rm -f *_main.c *_data.c *.prj readme.txt *.log run_*.sh

4. Creation of the executable with the make command

5. Creation of sh (BASH script) to be run by CONDOR (main_ code.sh)

#!/bin/bash

source /etc/bashrc && source /etc/profile

# Source the modules script

#source /cluster/Modules/3.2.7/init/bash

# More Error Checking

chmod +x main_code

export LD_LIBRARY_PATH=/group/hpc-share/MATLAB. ..
/R2011a/bin/glnxaé4:$LD_LIBRARY_PATH

module load matlab/201la

./main_code $1
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This code makes sure that the program can be executed, using chmod for privilege
handling and defines the global path to the MATLAB compiler as well as removing

unnecessary files.

6. Submission of the file to CONDOR, this requires a submission file to be created

(main_ code.sub)

Universe = vanilla

Executable = main_code.sh

Arguments = $(PROCESS)

Output = main_code_$(PROCESS) .out

Error = main_code_$(PROCESS) .err

Log = main_code.log

initialdir = Results_Run

Requirements = ( OpSys == "LINUX" && Arch == "X86_64" )

transfer_input_files = ../main_code, ../X_INIT_NORM.mat...
../normal_b.csv, ../normal_a.csv, ../vertices_b.csv,...

../vertices_a.csv, ../mxlpsolve.mexa64, ../liblpsolveb5.so
should_transfer_files = TRUE
when_to_transfer_output = ON_EXIT

Queue 100

This defines arguments the program takes, in this case aspect ratio. The require-
ments on the computers that run it (LINUX with with X86 64 architecture). The
number of subjobs to submit (Queue), which correspond to Aspect Ratio in tenths.
Transfers the necessary files, and tells the code to transfer the output files to the

Results_ Run directory. This code is then submitted to condor using

condor_submit main_code.sub

The status of the submitted jobs can be check by using

condor_q

The resulting files have the following extensions
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.err these files contain CONDOR error reports, if code is succesful they will be

empty

.log this file contains all the information of the overall CONDOR job

.out contain the MATLAB console output of each individual submission inside a

job

.mat contain the variables used in the MATLAB program

The use of this distributed programming approach has significantly reduced the amount
of time required per geometry family (rectangle, triangle, stake) from weeks to approxi-

mately 6 to 20 hours depending on geometry, with stake taking the longest.
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G MAIN CODE.M

This chapter presents the main function to perform an optimization, it is important
to note that this function was used for batch processing in the distributed network so
some of parameters have to be hard coded into it. Mostly functions dealing with object
decomposition and vertex transformation. The hard coded parameters can be generated

by some of the provided values.

function main code(num_run, fric)
%% Admittance Matriz Generator for Force Guided Assembly Despite Friction

% _Fernando Rodriguez Anton_

%

% Marquette University

%

% This code generates an admittance Matriz for force guided assembly such
% that it follows the control law

%

% $8 v=v_o + AW\phi $8

%

% Where $v§ represents a twist (motion) in a 2D space with components

% $v_z8, $v_y$, $\theta$, $A$ represents the admittance matriz $W$

% represents a contact wrench and $\phi§ represents the magnitude of the

% contact.

friction=str2double (fric);

num_r=str2double (num run);

str=datestr (clock);

tr=(clock) ;

cts=2x((num_r) /10);

File name=sprintf(’ACSG %d %d %d %.1f F %.1f.txt’, tr(l),tr(2),tr(3),cts,
friction);

disp (File_name)

S name=sprintf(’Var F %.1f AR %.1f %d %d %d.mat’, friction ,cts, tr(1l),tr(2),
tr(3));

disp (S_name)

%% Constant Definitions
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% The first step in the code is to define the wvariables that are necessary
% for the program to run. Most of the wariables are user defined.

%

% *Robot Bound Definitionsx

% We define the bounds of the error in the robot
% We define them as global wvariables since they are accessed by several
% functions therefore reducing the need to pass these values everywhere

% clearvars —ezcept cts counter matriz_optimized File name tr S _name, close

all

counter=cts;

%%

%cle %clear and close all figures and variables

global INIT MAX THETA INIT MIN THETA INIT MAX X INIT MAX Y INIT MIN X
INIT _MIN_Y PENALTYFACTOR

PENALTYFACTOR=75;

INIT MAX THETA=pi/36;

INIT MIN THETA—pi/36;

INIT MAX X=1.87;

INIT MAX Y=24.5; % Can be scalled depending on part geometry

INIT MIN X=-1.87;

INIT _MIN_Y=0;

DP_INIT=13;

%DP_constant=13;

xPAPos—2e —1;

xPANeg=—2e —1;

yPAPos=le —1;

yPANeg=1e —1;

thetaPAPo0s=0.0872664626;

thetaPANeg=—-0.0872664626;

%%

vO=[0 -1 O0];

%%

% We also define the wvalue of the threshold for contact, this is so the

% equations dont have to equal a certain value given some leeway of what is

% possible

global thresh
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thresh=1.0e-3;

%% Object Loading

% We now need to import the mecessary information that describes the

% objects that are going to be in contact. This is done by reading a dzf

% file

% The _dzf read_ function is used which requires the input of the file to be

% read and returns it as a structure. For easier batch processing
csv_loader is wused as it can modify

[Obj A, Obj B]=csv_loader(20—cts);

%%

%0bj B. Vertices (2,3:4)=0bj B. Vertices (2,3:4)+0.01;

Obj_B. Vertices (2,3)=0bj_B.Vertices (2,3)+0.01;

figure2 handle=gca;

%%

% The code then decomposes these objects into conver subobjects that are

% suitable to be used in our feasability and extremal identification

% This section 1is to be removed, however the subobject decomposition

% function has some issues that have to be addressed hence they are

% hardcoded .

SubObjectA{1}=[[Obj_A. Vertices (:,1:5)],[0;0bj_A.Vertices(2,1)]];
SubObjectA{2}=[[Obj_A. Vertices (:,5:9)],[0;0bj_A.Vertices(2,1)]];
SubObjectB{1}=0bj B. Vertices;

Obj B. Vertices=Obj_ B. Vertices;

)

SubObjectA 1C=SubObj20bj (SubObjectA {1}, cw’
SubObjectA 2C=SubObj20bj (SubObjectA {2}, 'cw’

)

)
)
SubObjectB_1C=SubObj20bj (SubObjectB {1}, ccw’);

subObjA{1}=SubObjectA 1C;
subObjA{2}=SubObjectA 2C;
subObjB=SubObjectB_1C;

%% Simple Geometrical Evaluation of Single Point Contacts

% We now use a simple geometric evaluation of the possible single point
% (_V-E_, BV ) contact states.

% First we iterate throught all the possible _V-E contact states and

% eliminate those that are not feasabile due to the require angle change
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% that would be mnecessary to produce. We also do not evaluate those that

% correspond to a concave vertex

%V—E Combinations

k=1;

for i=1:1:size(Obj_A.Vertices ,2);

for j=1:1:size(Obj_B.Vertices,2);
if ismember (i,0Obj A.Concave List) =true %check if its a concave

vertex
[Ea,Eb]=edge vertex(Obj A i);
temp=Obj B.Normal (:,j);
Angle a=vector angle (Ea,—temp) ;

Angle b=vector angle(Eb,—temp) ;

[feasability ,mina,maxa]=VE_feasability Angle(Angle a,Angle b);
else
feasability=false;
end
if feasability=—true
ID=strcat (’V’ ,num2str(i),’—E’ ,;num2str(j));
Type="V-E’;
precheck VE(1,1)=i;
precheck VE(1,2)=j;
precheck EA=Obj A.Vertices (:,1);
precheck EB=Obj B.Edges(j);
% We end up obtaining a list of all the geometrically
admissible
% contact states by simple geometrical evaluation
geo feasable csP_VE{k}=struct ( Type’ ,Type, ’ID’ ,ID, Index’,
precheck VE, 'Element A’  precheck EA, 'Element B’ precheck EB
, ’Min_Angle’ ;mina, ’Max_Angle’ ;maxa) ;
k=k+1;
end

end

end

%%
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%% Comple Geometrical Evaluation of Single Point Contacts V—FE

disp (’Number of Possible Single Point Contacts after Single Point
Evauluation’)
disp (size (geo_feasable csP_VE , 2))
disp (’Begin Complete Geo Evaluation’)
k=1;
for i=1:1:size(geo_feasable csP_VE 2) %Only evaluate those that are
possible
cs=geo feasable csP_VE{i};
disp (cs.ID)
[feas , conf]=checkCsM(cs ,subObjA subObjB); %This function does a lot,
like seriously alot
if feas=—true
feasable csP_ VEtemp{k}=cs;

disp(strcat(cs.ID,’ is feasable’))

k=k+1;
end
end
%% Phase Ib
% Idenfitying E-V combinations (E is object A, V is object B)
k=1;
for i=1:1:size(Obj_A.Vertices ,2);
for j=1:1:size(Obj_B. Vertices ,2);
try
Convex_ Exist=0Obj B.Concave List;
catch err
Convex Exist=false;

end

if Convex Exist—false || ismember(j,Obj B.Concave List) =true %
check if its a concave vertez
[Ea,Eb]=edge vertex(Obj B,j); % obtain the edges that connect
at vertex to be examined In this case object B
temp=Obj A.Normal (:,1); %Now we obtain the normal of the edge
being tnvestigated
Angle a=vector_angle (Ea,—temp); %Obtain angles for each

Angle b=vector angle (Eb,—temp); %Obtain second angle
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[feasability ,minf max]=EV feasability Angle(Angle a,Angle b); %
Check feasability of EV combination
else
feasability=false;

end

if feasability=—true
ID=strcat ('E’ ,num?2str(i),’—V’ ,num2str(j));
Type="E-V’;
precheck EV(1,1)=i;
precheck EV(1,2)=j;
precheck  EA=Obj A.Edges(i);
precheck EB=Obj B. Vertices (:,j);
% We end up obtaining a list of all the geometrically
admissible
% contact states by simple geometrical evaluation
geo feasable csP_ EV{k}=struct ( Type’ ,Type, ’ID’ ID, Index’,
precheck EV , 'Element A’  precheck EA, ’Element B’ precheck EB
, "Min_Angle’ ;minf, ’Max_Angle’ ;max); %#ok<SAGROW>
k=k+1;
end

end

end
%% COMPLETE CHECK E-V
% Check all geometrically possible ones
% completely , ie check the bounds etc.
disp ( 'Number of Possible Single Point Contacts after Single Point
Evauluation’)
disp (size (geo_feasable csP_EV ,2))
disp (’Begin Complete Geo Evaluation’)
k=1;
for i=1:1:size(geo feasable csP EV ,2)
%Only evaluate those that are possible
cs=geo feasable csP_ EV{i};
disp(cs.ID)
[feas , conf|=checkCsM(cs ,subObjA ,subObjB) ;
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%This function does a lot, like seriously alot
% disp (feas)
if feas=true

feasable csP_EVtemp{k}=cs; %#ok<SAGROW>

disp(strcat(cs.ID,’ is feasable’))

k=k+1;
end
end
%% Exztremals for Single Point Contact
% This is done at this point to reduce the number of unnecessary
% calculations further along the program, why waste time evaluating the

% contact states that are already considered properly assembled

for i=1:1:1ength(feasable csP_VEtemp)
feasable c¢sP_VEtemp{i }.ID
[temp]=get bounds csPM(feasable csP_VEtemp{i},Obj A,Obj B,subObjA,
subObjB) ;
feasable csP_VEtemp{i}=set ex(temp); %#ok<SAGROW>

end

%%
for i=1:1:1length(feasable csP_EVtemp)
feasable _csP_EVtemp{i }.ID
temp=get bounds_csPM (feasable csP_EVtemp{i},Obj A, Obj B,subObjA, subObjB
)
feasable c¢sP_EVtemp{i}=set ex(temp); %#ok<SAGROW>

end

%%

% Set proper bounds for single point contacts, meaning succesful assemblies

feasable c¢sP_VE=set proper (feasable c¢sP_VEtemp ,xPAPos,xPANeg,yPAPos,yPANeg,
thetaPAPos , thetaPANeg) ;

%%

feasable csP_EV=set proper (feasable csP_EVtemp ,xPAPos,xPANeg,yPAPos,yPANeg,
thetaPAPos , thetaPANeg) ;

clearvars temp

%% Summary Phase I

% The following just diplays the CS that have been found feasabile
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% (Primitives)
disp (% %)

disp(’Feasable Single Point Contact States’)

for i=1:1:size(feasable csP_VE ,62)
disp (feasable csP_VE{i}.ID)

end

for i=1:1:size(feasable csP_EV,2)
disp (feasable csP_ EV{i}.ID)
end

disp (% %)

%%
% Reorganize the obtained contact states
k—1;
feasable csP=cell (1,length(feasable csP_VE)+length (feasable csP_VE));
for i=1:1:size(feasable csP_VE,2)
feasable csP{k}=feasable csP VE({i};
k=k+1;

end

for i=1:1:size(feasable csP_EV ,2)
feasable csP{k}=feasable csP_EV{i};
k=k+1;
end
%% Phase II
% Face Two identifies the contact states that are possible for a two point
% contact such as <V-E, E-V> or wice wversa
k=1;
s=1;
for i=1:1:size(feasable csP_VE ,62)
for j=1:1:size(feasable csP_VE ,62)
%Iterate through every possible combination of primitive PC’s
csl=feasable csP_VE{i};
%Assign cs
cs2=feasable csP_VE{j};
Type="V-E V-E’; %Assign type
ID=strcat (cs1.ID,32,¢cs2.ID); % Create ID
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Element 1=csl.Element A;
Element 2=csl.Element B;
Element 3=cs2.Element A;

Element 4=cs2.Element B;

if(i"=j)%Get rid of repeated ones <VI-E1><VI-E1>
if (s==1) %Special case for first combo possible
list {s}=strcat (num2str(i) ,32,strcat (num2str(j)));
s=s+1;
[feasable]=feasability VE VE(csl,h cs2,0bj A,0bj B);%Check if
it can be done
%Create the contact state
if feasable
precheck feasable cs{k}=struct (' Type’,Type,’ID’ |ID,’
Index’,strcat (num2str(i) ,32,strcat (num2str(j))),’
CS_17,¢s1,’CS_27 ,¢s2, ’Element 3’ Element 3’
Element 4’ ,Element 4);
k=k+1;

end

elseif(false—any(strecmp(strcat (num2str(j) ,32,strcat (num2str(i)
), list)))
%Check that this concact state hasn’t been created before
list {s}=strcat (num2str(i) ,32,strcat (num2str(j)));
s=s+1;
[feasable]=feasability VE VE(csl,h cs2,0bj A ,0Obj B);
%Check if it can be done
if feasable
precheck feasable cs{k}=struct(’'Type’,Type, ’ID’,ID,’
Index’,strcat (num2str(i) ,32,strcat (num2str(j))),’
CS_17,¢s1,’CS_27,¢s2, ’Element 3’ ,Element_3,’
Element 4’ Element 4);
k=k+1;
end
end
end
end

end
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% %Display found contact states precheck
% for i=1:1:size(precheck_feasable cs,2)
% disp(precheck_feasable cs{i}.ID)
% end
%% <E-V, E-V>
s=1;
clear list
for i=1:1:size(feasable csP_EV ,2)
for j=1:1:size(feasable csP_ EV,2)
%Iterate through every possible combination of primitive PC’s
csl=feasable csP EV{i}; %Assign cs
cs2=feasable csP_ EV{j};
Type="E-V E-V’; Z%Assign type
ID=strcat (cs1.ID,32,¢cs2.ID); % Create ID
Element 1=csl.Element A;
Element 2—csl.Element B;
Element 3—=cs2.Element A;

Element 4=cs2.Element_ B;

if(i7™=j)%Get rid of repeated omes ie(<VI-EI1><VI-E1>)
disp (ID)
if (s==1) %Special case for first combo possible
list {s}=strcat (num2str(i) ,32,strcat (num2str(j)));
s=s+1;
[feasable|=feasability EV_EV (csl, cs2,0bj A,Obj B)
%Check if it can be done
%Create the contact state
if feasable
precheck feasable cs{k}=struct(’'Type’,Type, ’ID’,ID,’
Index’,strcat (num2str(i) ,32,strcat (num2str(j))),’
CS_17,¢s1,’CS_27,¢s2, ’Element 3’ ,Element_3,’
Element 4’ Element 4);
k=k+1;

end

elseif(false—any(strcmp(strcat (num2str(j) ,32,strcat (num2str(i)

), list)))

%Check that this concact state hasn’t been created before
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list {s}=strcat (num2str(i) ,32,strcat (num2str(j)));
s=s+1;
[feasable]=feasability EV _EV (csl, cs2,0bj A,Obj B)
if feasable
precheck feasable cs{k}=struct (' Type’,Type,’ID’,|ID,’
Index’,strcat (num2str(i) ,32,strcat (num2str(j))),’
CS_17,¢s1,’CS_27 ,¢s2, ’Element 3’ ,Element 3,’
Element 4’ Element 4);
k=k+1;
end
end
end
end
end
%
% %Display found contact states precheck
% for i=1:1:size(precheck_ feasable cs,2)
% disp (precheck feasable cs{i}.ID)
% end
%% <V-E, E-V> == <E-V, V-E>
s=1;
k=1;
clearvars list
for i=1:1:size(feasable csP_VE ,62)
for j=1:1:size(feasable csP_EV ,2)
%Iterate through every possible combination of primitive PC’s
csl=feasable csP_ VE{i}; %Assign cs
cs2=feasable csP_ EV{j};
Type='V-E E-V’: %Assign type
ID=strcat (cs1.ID,32,¢s2.ID); % Create ID
Element 1=csl.Element A;
Element 2—csl.Element B;
Element 3—=cs2.Element_A;

Element 4=cs2.Element_ B;

if(s==1) %Special case for first combo possible

list {s}=strcat (num2str(i) ,32,strcat (num2str(j)));
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s=s+1;
[feasable]=feasability VE EV (csl,hcs2,0bj A Obj B);
%Check if it can be dome
%Create the contact state
if feasable
precheck feasable cs{k}=struct (' Type’,Type,’ID’ ID, Index’,
strcat (num2str (i) ,32,strcat (num2str(j))),’CS_1’,csl,”’
CS_2’ ,c¢s2, ’Element 3’ ,Element 3, Element 4’ Element 4);
k=k+1;

end

elseif(false=—any(strcmp(strcat (num2str(j) ,32,strcat (num2str(i))),
list)))
%Check that this concact state hasn’t been created before
list {s}=strcat (num2str(i) ,32,strcat (num2str(j)));
s=s+1;
[feasable]=feasability VE EV (csl,hcs2,0bj A Obj B);
%Check if it can be done
if feasable
precheck feasable cs{k}=struct (' Type’,Type,’ID’ ID, Index’,
strcat (num2str (i) ,32,strcat (num2str(j))),’CS_1’,csl,”’
CS_ 27 ,cs2);
k=k+1;
end
end
end

end

% %Display found contact states precheck
% for i=1:1:size(precheck_feasable cs,2)

% disp (precheck_feasable cs{i}.ID)
% end

%%
k=1;

for i=1:1:size(precheck feasable cs,2) %Only evaluate those that are

possible
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cs=precheck feasable cs{i};

disp (cs.ID)

[feas , conf]=checkCsM(cs ,subObjA subObjB); %This function does a lot,
like seriously alot

% disp (feas)

if feas=—true
feasable cs{k}=cs;
disp(strcat(cs.ID,’ is feasable’))

conf sel cs{k}=conf;

k=k+1;
end
end
%%
no_2P=false;
try
feasable c¢s;
catch
no_2P=true;
disp ('% %)
disp(’'No Two Point Contacts Possible’)
disp ("% %)
end
%%
if no 2P—false
disp ('% %)
disp(’'Feasable Two Point Contact States’)
for i=1:1:size(feasable cs,2)
disp (feasable cs{i}.ID)
end
disp ("% %)
end

% In this face we will identify the eztremals

% clear feasable csP_EVx

% clear feasable csP_ VEx

% clearvars —ezcept subObjA subObjB Obj A Obj B thresh INITx figurel handle
feasablex PENALTYFACTOR DP x zPAx yPAx thetaPAx

%%
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if no_ 2P—false
% Eztremals of two point contact
cs2P=cell (1,length(feasable c¢s));
for i=1:1:length(feasable cs)
feasable cs{i}.ID
%Get the actall bounds
cs2Ptemp{i}=get bounds_cs2PM (feasable cs{i},Obj A,Obj B,subObjA,
subObjB ,INIT_MAX_X, INIT_MAX_Y, INIT MIN X, INIT MIN_Y,
INIT MAX_THETA,INIT MIN THETA);

end

%%

csP=feasable c¢sP;

%%

%Identify the eztremals

for i=1:1:length(cs2P)
cs2P{i}=set ex2(cs2Ptemp{i});

end

end

csP=feasable c¢sP;
%%
% clearvars —except subObjA subObjB Obj A Obj B thresh INITx figurel handle
PENALTYFACTOR DP_x zPAx yPAx thetaPAx csP cs2P
%%V—E Decomposition phase
%Phase III+ V-E Decomposition (also anything that ahs a V-E contact in it
%aka, everything is a waste of time pretty much unless the V-E was an BV
%or an E-V E-V
%%
V_E no=0;
for i=1:1:length(csP)
cs=csP{i};
if strcmp(cs.Type, ’V-E’)
V_E_no=1+V_E_no;
end
end
%Calculate the decomposition constant
DP constant=getdecomp (feasable csP_EV ,v0,DP_INIT);
if no 2P—false
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extremal list c¢sP _ size=length(csP)—V_E notV_E noxDP _constant+length (
cs2P)«DP _constant;
%%We want to know how big to make our list

else

extremal list csP _size=length(csP)—V_E not+V_E no«DP_constant;
%%We want to know how big to make our list

end

extremal list csP=cell (1,extremal list csP _size);

k=1;
for i=1:1:1length(csP)
cs=csP{i};
if stremp(cs.Type, 'V-E)
temp=bounds_VE decompose(cs ,DP _constant ,subObjA ,subObjB,0Obj B);
for cl=1:1:length(temp)
extremal list csP{k}=temp{cl };
k=k+1;
end
else
extremal list csP{k}=cs;
k=k+1;
end

end

%% If two point contat occurs also decompose the two point contacts that

contain V-FE
if no_ 2P—false
for i=1:1:length(cs2P)
cs=cs2P{i};
if strcmp(cs.Type, ’V-E V-E’) || strcmp(cs.Type, '"V-E E-V’)
temp=bounds_ VE2_ decompose(cs ,DP_constant ,subObjA ,subObjB,Obj B)
for cl=1:1:length(temp)
extremal list csP{k}=temp{cl};
k=k+1;
end
else
extremal list csP{k}=cs;

k=k+1;



end
end
end
%%
v0=[0 -1 0];
%%

% Kind of a hack to resize the vertices to their actual

size
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so we dont

% get strange values, needs to be changed for different geometries, can be

% taken as an input but its hardcoded for batch work

%0bj B. Vertices (2,8:4)=0bj B. Vertices (2,3:4)—0.01;
Obj B. Vertices (2,3)=0bj_B. Vertices(2,3) —0.01;

%%

% Adjust the home position as explained in literature
E=adjust _home(v0,Obj B, INIT MAX THETA);

%%

home=transfer N (Obj B. Vertices ,[0 E 0]’);

%%

print  ACSG (extremal list csP ,File name)

%%
%%

[opt _matrix|=id matrix(extremal list csP ,v0, home, Obj A, Obj B);
%%

%This performs the friction based optimization
disp(’Friction Optimization’)
matrix_optimized friction—opt_matrix;

%Save the wvariablse

save (S_name)

%%

% This all prepares the exztremals for the welocity optimization

if no 2P—false
P2 No—=length (cs2P);

Tot Ex=length(extremal list csP);

ks=1;
for count=1:1:P2 Nox2
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if count=—=

No(ks)=Tot Ex—P2 NoxDP constant+1;

else
if mod(count ,2)==0 %even

ks=ks+1;

No(ks)=No(ks—1)+DP _constant —1;
else

ks=ks+1;

No(ks)=No(ks—1)+1;
end
end

end

No=reshape (No,[] ,2) ’;

% if two point contat occurs, generate nmew extremals with appropirate
% bounds
for i=1:1:P2 No
extremals 2P Vel{i}=extremal list csP{No(i,1) };
extremals 2P _ Vel{i}=rmfield (extremals 2P _ Vel{i}, ’lower bounds’);
extremals 2P _ Vel{i}=rmfield (extremals 2P _ Vel{i}, upper bounds’);
extremals 2P _ Vel{i}.Extl=extremal list_ csP{No(i,1) };
extremals 2P Vel{i}.Ext2=extremal list csP{No(i,2) };
end
extremal list=[feasable csP ,extremals 2P Vel];
else
extremal list=feasable csP;
end
%%
% Generate the exztremal list for the wvelocity optimizations
for i=1:length(extremal list)
extremal list{i}=possible extremals csP(extremal list{i},Obj A Obj B,
subODbjA ;subObjB ,INIT MAX THETA,INIT MIN THETA, thresh);
end
%%

% This deals with the minimaz optimization wusing matlabs fminimaz, this is
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% only used for comparison and can be commented out

disp (’Fminimax Vm’)

[matrix velocity ,Vm min, gmin]=id vm matrix(extremal list ,extremal list csP ,
v0 ,home,Obj A ,Obj B, friction);
matrix optimized velocity=matrix_ velocity;

save (S_name) ;

%% This section deals with the Vm Optimization using the genetic algorithm

disp (’Genetic Vm’)

%define the bounds of the optimization, this are selected through trial and
%error and observing results for friction
lb=[-1,-1,-2.5,-2.5,-2.5];

ub=[7,7,2.5,2.5,2.5];

%load our inital guesses

X _init_dat;

%Get the length of the part

L=getpartlength (Obj B,v0);

%transform the inital points into the compliant matriz
XINIT=compliant trans(X INIT NORM,L);

%inser initial guesses into population

sample temp=reshape(cell2mat (XINIT) ,6,length(cell2mat (XINIT)) /6) ’;
sample=[sample temp (:,2:end) |;

%Create option structure for the genetic algorithm

)

opga—gaoptimset (’Initialpopulation’ sample, PopInitRange’ ,[1b;ub],”’

CrossoverFraction’ 0.3,  EliteCount’,3,’Display’,’ ’iter’,’FitnessScaling’
,@fitscalingrank ,’Generations’,300,  PopulationSize’ ,30,’StallGenLimit’
, 15, ’TolFun’ ,1e—8,’ UseParallel >, ’always’, "TolCon’ ,1e—8, MutationFcn’,
@Qmutationadaptfeasible);
%loop through several iterations
for ij=1:1:4
[mvgt{ij },Vm min ga t(ij),eft(ij)]=ga(@(x)Overal Vm ga(x,extremal list,
Obj_A,0bj_B,0, friction) ,5 ,[],[],[],[],[],[],@(x)AdConstraints_vel(x,
extremal list c¢sP ;v0 ,home,Obj A Obj B, friction),opga);
end
%%
% Record important values and save all wariables

clearvars min
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[Vm_min ga,itera]=min(Vm_ min ga t);
mvg=mvgt{itera };

save (S_name) ;
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H GET VM _VE

The following presents the code used to calculate the V,,, of a given admittance for a
V-E contact. This function is presented as an example of how the process is performed

for all contact states.

function [Vm]=get Vm VE(cs,Obj A,Obj B,v0,l,ex,A mu,pl)

%% This function takes as input the contact state, object descriptions,
nominal twists, length of the moving part, extremal number, admittance
and friction wvalue. pl is used for printing purposes

switch ex
case 1 %min %min

preconf=cs.Pos_EX{1};
trans=preconf(2);
rot=preconf(1);
conf=confVE (cs, trans ,rot);
case 2 %min %maz
preconf=cs .Pos EX{2};
trans=preconf(2);
rot=preconf(1);

conf=confVE (cs, trans ,rot);

case 3 %maz %min
preconf=cs .Pos EX{3};
trans=preconf(2);
rot=preconf(1);

conf=confVE (cs, trans ,rot);

case 4 %maz %maz
preconf=cs.Pos_EX{4};
trans=preconf (2);
rot=preconf(1);

conf=confVE (cs, trans ,rot);
end

%Grab all the Vertices and transform (For debugging)



147

for i=1:1:length(Obj_B. Vertices)
V=0Obj_ B. Vertices (:,1);
Vertices _world (:,i)=transfer (V, conf);
Vector _w(:,i)=Vertices _world (:,1)+Obj_B. Vertices (:,1); %Vector from
part to zero
Vector body (:,i)=transfer (Vector w(:,1i),[0,0,—conf(3)]’); %Vector from
part to zero in body frame

end

%%Necessary to calculate the Centroid of the Body
Verts=[Obj B.Vertices ,Obj B.Vertices (:,1)];
n=length(Verts);

x=Verts (1,:);

y=Verts (2,:) ;

%%

for i=1:1:n-1
Cx(i)=(x(i)+x(i+1))*(x(i)*y(i+1)—x(i+1)*y(i));
Cy(1)=(y(1)+y (1+1)) #(x(1)*y (1+1)—x(i+1)*y(i));
Ar(i)==x(i)*y(i+1)—x(i+1)*y(i);

end

At=(1/2)+sum(Ar) ;
Cxt=(1/(6%At))+sum(Cx) ;
Cyt=(1/(6%At))*sum(Cy) ;
G=[Cxt;Cyt];

%Transfer to world frame

G _world=transfer (G, conf);

G_Vector_ w=G_world+G; %Vector from part to zero

G_Vector _body=transfer (G_Vector_w,[0,0,—conf(3)]’); %Vector from part to

zero in body frame

%vector from current to desired

G_prime=G_world+G_ Vector_w;

% Identify the best motion
r_i=G_Vector_body;
if (conf(3)7=0)
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theta=conf(3);

%7 CHANGED

omega_i=(sin(theta)/theta)*theta;
else

omega_i=0;

t=1;

t_i=[r_i/t;omega i/t ];

%Coordinate Auzis
t=[0,0]";

f world=transfer (f,conf);

ro_world=Obj A.Vertices (:,cs.Index(1))—f world;
ro_body=transfer (ro_world,[0 0 —conf(3)]’);

%Calculate Contact Wrenches
t=cs.trans_bound. direction
if dot([t;0],v0)>=0

=t;
end

n=—[Obj_B.Normal (:,(cs.Index(2)));0];

r01 = ro_body(1);
r02 = ro_body(2);
nl = n(1)
n2 = n(2)
tl = t(1);
t2 = t(2)

t_ n = [nl; n2; r01 * n2 — r02 % nl];
t t = [tl; t2; r01 % t2 — r02 * t1];

%Calculate twist t
B =t n’«Asxt_n + t_n’xAxt_t*mu;

phi = —inv(B)*t_n’xv0;

t0_C=vO0+Ax*(t_n+t t+mu)xphi;



%Transform to centroid, currently ezpressed from top
p_cross=—[0 0 G(2);0,0,-G(1);-G(2),G(1) ,0];

s t _g=—|eye(3),p_crosskxeye(3);zeros(3),eye(3)];
t0_C_R6=[t0_C(1);t0_C(2);0;0;0;t0_C(3)];
t_0==s_t_gxt0_C_R6;

disregard —=0;

%Structure the ideal twist

Vist i(1:2);

Vo=t 0(1:2);

Pi=Vi;

%Time Constant Calculation

ti=sqrt (Vi(1)"24+Vi(2)"~2)/sqrt(v0(1l)"2+v0(2)"2);
VieVi/ ti;

%%This is to guard againts abberant contact states
if abs(Pi(1))<0.51 && abs(Pi(2)) <0.05
disregard=1;

end

%Calculate differences
omegai=t_1(3);
omegai—omegai/ ti;
omegal=t_0(6) ;

delta  V=V(0-Vi;

delta omega=omegal0—omegai;

checks=1;

%Is delta_omega is zero the use one ezrpression

if delta_omega==0 || abs(delta_ omega) <0.01

Vin=sqrt (delta_ V(1)~2+delta_V(2) ~2);
checks=0;

end

of frame

%Calculate the location of the difference rotation center

omega_cross=—[0,delta_omega;—delta_omega ,0];

149
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rgo=inv (omega cross)=delta V;

rgo_world=transfer (rgo,[0 0 conf(3)]’);

% DEBUG %

%Locate C to the edge of the rectange (For debugging only
C=0Obj_B. Vertices (:,2)-G;
C_world=transfer (C,[0 0 conf(3)]’);

rco=C-rgo;

rco_world=transfer (rco,[0 0 conf(3)]’);

11=1;%Change Depending on Part
12=1;

a=rco (1);

b=a+l11;

c=rco (2);

d=c+12;

% %
%%Routine of Triangle Parts

%Decompose part into triangles
[Body Tri, FlagsTri|=Rbar Decomp(Obj B. Vertices ,0);
size_BodyTri=size (Body_Tri);

rtAr=[];
rtAr _neg=|]|;
Area=[];
Area neg=[];

%For each triangle calculate rbar and area, determine if its a whole or not
for i=1:1:size_BodyTri(2)
BTri=Body Tri(:,i);
Flag=FlagsTri(i);
W=BTri(3);
H-BTri(4);
if Flag™=—-1
Area t=WxH) /2;
Area=[Area,Area t];
if (H=0 && W =0)
[rt]=rbartri(BTri,rgo,G);

rtAr=[rtAr rtxArea t];



151

else
rtAr=[rtAr ,0];
end
elseif Flag=—1
Area t=WxH) /2;
Area_neg=[Area_neg,Area t];
if (H =0 && W =0)
[rt]=rbartri(BTri,rgo,G);
rtAr neg=[rtAr neg,rtxArea t];
else
rtAr _neg=[rtAr neg,0];
end
end
end
%O0btain Total r
rbar _t=(sum(rtAr)—sum(rtAr neg)/(sum(Area)-sum(Area neg)));

r=rbar_t;

% -DEBUG %

rssl1=(1/(6x11%12));

rss2=2xaxcxsqrt(a~2+c"2)+a"3xlog(c+sqrt(a~2+c~2))—2«bxcxsqrt (b 2+c~2);

rss3=b"3xlog (ct+sqrt (b"2+c"~2))—2xaxdxsqrt (a"2+d"~2)—a"3xlog(d+sqrt(a~2+d"2))

rss4=2«bxd*sqrt (b"2+d"2)+b"3xlog(d+sqrt (b"2+d"2))—d"3xlog(at+sqrt(a~2+d"2));

rssb=c”3xlog (atsqrt(a"2+c"2))+d"3xlog(b+sqrt (b~2+d"2))—c"3xlog (b+sqrt (b 2+c
"2));

rsss=rssl*(rss24rss3+rssd+rsss);

% %

if checks==l1
Vm=abs (delta_omega)x*r;

end

%If its already assembled then the Value is zero so it doesnt affect the
Yoptimization
if disregard==

Vm=0;

end
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% -DEBUG PRINT %

if pl—
figure (1)

axis equal

plot (Obj_B.Vertices (1,:) ,0bj B.Vertices(2,:))

hold all

plot (Obj_A.Vertices (1,:),0bj_A.Vertices(2,:))

plot (G_world(1) ,G_world(2),’or’)

plot (G(1) ,G(2), 0ob")

plot ([G_world(1) ,G_prime(1)],[G_world(2) ,G_prime(2)], —+k’)

plot ([ Vertices world(1,:),Vertices world(1,1)],[ Vertices world(2,:),
Vertices _world(2,1)], ’—m’)

plot (G_world(1)4rgo_world(1) ,G_world (2)+rgo_world(2),’0k’);

plot (f world (1) ,f world(2),’r+’, MarkerSize’ ,14)

plot ([f_world (1) ,f world(1)+ro_world(1)],[f_world(2),f world(2)+ro_world(2)
|, 'm”)

plot (G_world(1)4+C_world (1) ,G_world (2)+C_world(2) , %)

plot (conf(1),conf(2),’or’)

axis equal

end
end

%Obtain the configuration (z,y,theta) from two wvariables (delta, theta)
function conf=confVE (cs,trans ,rot)
preconf=[trans ,rot |;
delta=preconf (1) ;
theta=preconf(2);
rA=cs.Element A;
dirB=((cs.Element B (:,1)—cs.Element B(:,2))/norm(cs.Element B(:,1)—cs.
Element B(:,2))); %%% Changed
bdl=cs.Element B (:,1);
bd2=cs . Element B (:,2);
norms—norm( cs . Element B (:,1)—cs.Element B(:,2));
if bdl+dirBs*norms=—bd2
cPt=bd1;
else
cPt=bd?2;

end
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rB=deltaxdirB+cPt;
rAB=rA—transfer Ns(rB,[0;0; theta]);
conf=[rAB; theta];

end

% Calculation of rbar for a given triange
function [rt]=rbartri(Rtri,Pt,G)

% locate the pivot point, its width and height and rotation angle
xh=Rtri(1);

yh=Rtri(2);

W=Rtri(3);

H=Rtri(4);

alpha=Rtri(5);

% IC location

P=Pt;

C=[xh;yh|-G;

rcot=C-P;

rco=transfer (rcot ,[0;0;alpha]);
x_co=rco(1);

y_co=rco (2);

a=x_co;

b=x_co{W;

c=y _co;

d=y co+H;

m—(b-a) /(c—d) ;

g= a-mxd;

u = sqrt(l+m~2);
v= sqrt (c"24+c " 2xn" 242k cxgt+g " 2) ;
w= sqrt(d~2+d"2xm"2+2xm«dxg+g " 2) ;

%Components of Rbar equation
rt1=(1/(3sWxH*u"3));

rt2=u*m"2xd " 3*xlog (m+d+g+w) ;

rt3=2xaxcxuxsqrt (a~2+c"2)—2+axdxuxsqrt(a~2+d"2);
rt4=mxuxv*c 2+g 3xlog ((d+d+m 2+mxgtwxu) /u) ;
rt5=—g " 3xlog ((ctcxn 2-Hnxg+vsu) /u) —2xg*c*viusm” 2;
rt6=—uxm"2xc "~ 3xlog (mkct+g+tv)—mruxv*g 2-Hmsuswxg "~ 2;

rt7=2xdxgxusw—2xcxgrurvtuxd " 3xlog (mrd+g+w) ;
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rt8=—uxc ~3xlog (mxct+g+v)+uxc " 3xlog (at+sqrt(a~2+c"2));
rt9=uxa~3xlog (ct+sqrt (a~2+c"2))—uxd"3xlog (atsqrt(a~2+d"2));
rt10=—u*a~3xlog (d+sqrt (a~2+d"2))+2*xd*g+uswm" 2;
rt1l1=2%a*c*uxmn”2xsqrt(a~2+c"2)—2*axd+xuxmn”~2xsqrt (a~2+d"2);
rt12=uxm"~2xa"3xlog (d+sqrt (a~2+d"2));
rt13=—uxm"~2xd"~3xlog (atsqrt(a~2+d"2));
)
)

’

rt14=uxm"2+c~3xlog (at+sqrt (a~2+c"2)

)

rtl15=uxm”2+a~3xlog (c+sqrt (a"2+c"2)

rt16=—uxvkc " 2xm 3+uxwxd "~ 2xm" 3+mxuxwxd ~ 2;

%Rbar calculated
rt=rtl*(rt24rt34+rtd4+rt5+rt64+rt74+rt84+rt94+rt104+rt1l4+rt124+rt13+rt1d+rtl15+rt16)

end



