
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Using Evolutionary Programming to Increase the
Accuracy of an Ensemble Model For Energy
Forecasting
James Gramz
Marquette University

Recommended Citation
Gramz, James, "Using Evolutionary Programming to Increase the Accuracy of an Ensemble Model For Energy Forecasting" (2014).
Master's Theses (2009 -). Paper 244.
http://epublications.marquette.edu/theses_open/244

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

USING EVOLUTIONARY PROGRAMMING TO INCREASE THE ACCURACY

OF AN ENSEMBLE MODEL FOR ENERGY FORECASTING

by

James Gramz, B.S.

A Thesis Submitted to the Faculty of the

Graduate School, Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

Milwaukee, Wisconsin

May 2014

ABSTRACT

USING EVOLUTIONARY PROGRAMMING TO INCREASE THE ACCURACY

OF AN ENSEMBLE MODEL FOR ENERGY FORECASTING

James Gramz, B.S.

Marquette University, 2014

Natural gas companies are always trying to increase the accuracy of their

forecasts. We introduce evolutionary programming as an approach to forecast

natural gas demand more accurately. The created Evolutionary Programming

Engine and Evolutionary Programming Ensemble Model use the current GasDay

models, along with weather and historical flow to create an overall forecast for the

amount of natural gas a company will need to supply to their customers on a given

day. The existing ensemble model uses the GasDay component models and then

tunes their individual forecasts and combines them to create an overall forecast.

The inputs into the Evolutionary Programming Engine and Evolutionary

Programming Ensemble Model were determined based on currently used inputs and

domain knowledge about what variables are important for natural gas forecasting.

The ensemble model design is based on if–statements that allow different equations

to be used on different days to create a more accurate forecast, given the expected

weather conditions.

This approach is compared to what GasDay currently uses based on a series

of error metrics and comparisons on different types of weather days and during

different months. Three different operating areas are evaluated, and the results

show that the created Evolutionary Programming Ensemble Model is capable of

creating improved forecasts compared to the existing ensemble model, as measured

by Root Mean Square Error (RMSE) and Standard Error (Std Error). However, the

if–statements in the ensemble models were not able to produce individually

reasonable forecasts, which could potentially cause errant forecasts if a different set

of if–statements are true on a given day.

i

ACKNOWLEDGMENTS

James Gramz, B.S.

The completion of this thesis would not have been possible if not for the

guidance and encouragement of my family, colleagues, and committee members, Dr.

Ronald Brown, Dr. George Corliss, and Dr. James Richie. I would specifically like

to thank Dr. Corliss for the many hours spent with me offering his guidance,

expertise, encouragement, and advice throughout my undergraduate and graduate

career. I would also like to thank Dr. Brown and the GasDay Lab for the financial

support that enabled me to fulfill my dream.

I would like to express my thanks to my colleagues and friends, Paul Kaefer,

James Lubow, Nick Winninger, Tian Gao, and Hermine Akouemo, for sharing ideas

and offering help and advice during my graduate studies. It was a pleasure working

with all of you in pursuing a common goal.

I dedicate this work to my parents, Ray and Sharon, and my sister Sandy, for

the love and support they have provided me throughout this process.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS i

LIST OF TABLES v

LIST OF FIGURES vi

CHAPTER 1 THESIS INTRODUCTION 1

1.1 Gas Industry . 1

1.2 Need for Accurate Forecasting of Natural Gas 5

1.3 GasDay Lab . 7

1.4 Problem with the Ensemble Model 8

1.5 Proposed Solution . 9

1.6 Thesis Outline . 10

CHAPTER 2 CURRENT PRACTICES FOR ENSEMBLE FORE-
CASTING 11

2.1 Ensemble Forecasting Introduction 11

2.2 Ensemble Techniques . 11

2.3 Error Modeling Techniques . 16

2.4 Genetic Algorithm . 19

2.5 Evolutionary Programming . 23

2.6 Current Ensemble Model . 26

2.7 Conclusion . 29

CHAPTER 3 EVOLUTIONARY PROGRAMMING APPLIED TO
NATURAL GAS FORECASTING 31

3.1 Rationale for this Work . 31

iii

3.2 Evolutionary Programming Engine and the Evolutionary Program-
ming Ensemble Model . 36

3.2.1 Inputs into the Evolutionary Programming Engine and Ensem-
ble Model . 36

3.2.2 Output of the Evolutionary Programming Engine 40

3.2.3 Evolutionary Programming Engine 45

3.3 Small Scale Test . 50

3.4 Advancements to Roebber’s Work with Evolutionary Programming . 53

3.5 Conclusion . 55

CHAPTER 4 QUALITY OF FORECASTS FROM THE EVOLU-
TIONARY PROGRAMMING ENSEMBLE MODEL 56

4.1 Determination of the Most Accurate Design 58

4.2 Evolutionary Programming Ensemble Model Design A 60

4.3 Comparing the Dynamic Post Processor and Evolutionary Program-
ming Ensemble Model Design A . 62

4.4 Operating Area Alpha . 63

4.5 Operating Area Bravo . 69

4.6 Operating Area Charlie . 74

4.7 More Reasonable Results . 78

4.8 Conclusion . 88

CHAPTER 5 ADDITIONAL EVOLUTIONARY PROGRAMMING
ENSEMBLE MODEL DESIGNS 89

5.1 Ensemble Model Design B (average) and C (sum) 89

5.1.1 Ensemble Model Design B . 89

5.1.2 Ensemble Model Design C . 91

5.2 Ensemble Model Design E . 92

iv

5.3 CPU Time . 93

5.4 Conclusion . 95

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 96

6.1 Conclusions . 96

6.2 Future Research . 97

Bibliography 102

v

LIST OF TABLES

3.1 Inputs in the evolutionary program and its output 38

3.2 RMSE by month for the Dynamic Post Processor and the evolutionary
programming ensemble model . 52

4.1 RMSE values for the Dynamic Post Processor and ensemble model
designs A, B, and C for four different operating areas from June 2012
– June 2013 . 58

4.2 “Unusual” day types, as considered by GasDay 64

vi

LIST OF FIGURES

1.1 Gas distribution network from the ground to the end user [11] 3

1.2 Gas usage for the five most common users of natural gas [6] 6

1.3 States where GasDay is used for forecasting (shaded blue) 8

1.4 Percent error from a Local Distribution Company operating area using
the current Dynamic Post Processor 10

2.1 Example of an ensemble model forecast 12

2.2 Neural network architectures [35, 45] 15

2.3 Neural network regularization techniques 15

2.4 How a genetic algorithm creates a new generation 21

2.5 3–D plot representation of evolutionary programming fitness [30] . . . 26

2.6 GasDay ensemble model for only two different component models . . 28

2.7 Component weights for time horizon 0 for two component models . . 29

3.1 Scaled gas flow for two different years 34

3.2 Percent error for the current Dynamic Post Processor and when the
Dynamic Post Processor is allowed to tune faster based on the calcu-
lated error . 35

3.3 Overview of the evolutionary programming engine 37

3.4 Day 0 error for 70 days with different forgetting factors 39

3.5 Timeline showing what days all of the raw data inputs are coming from 39

3.6 Proposed daily process at a Local Distribution Company 41

3.7 Time-series plot of the four individual component models and the re-
ported flow . 44

vii

3.8 Evolutionary programming training error of the population member
with the lowest error on the validation data 48

3.9 Evolutionary programming training and validation error of the best
member of the population . 49

4.1 Evolutionary programming ensemble model Design A using one un-
guarded statement and 10 if–statements 61

4.2 Scaled gas flow for two different years, operating area Alpha 65

4.3 Time-series of operating area Alpha from June 2012 - June 2013 . . . 66

4.4 Operating area Alpha error decomposed by months 68

4.5 Operating area Alpha error decomposed by type of days 69

4.6 Time-series of operating area Bravo from June 2012 - June 2013 . . . 71

4.7 Operating area Bravo error decomposed by months 72

4.8 Operating area Bravo error decomposed by type of days 73

4.9 Time-series of operating area Charlie from June 2012 - June 2013 . . 75

4.10 Operating area Charlie error decomposed by months 76

4.11 Operating area Charlie error decomposed by type of days 77

4.12 The individual if–statement estimates over the testing data from en-
semble model Design A for operating area Alpha 79

4.13 Evolutionary programming ensemble model Design D adding the av-
erage of the if-statements to the weighted linear combination of the 4
component models . 80

4.14 Time-series of operating area Alpha from June 2012 - June 2013 . . . 81

4.15 Operating area Alpha error decomposed by months 83

4.16 Operating area Alpha error decomposed by type of days 84

4.17 The individual if–statement estimates over the testing data from the
design that averaged all 10 if–statements and added the weighted linear
combination of the four base component models 85

viii

4.18 The individual if–statement evaluations for ensemble model Design D
for every day in the testing set . 86

5.1 Evolutionary programming ensemble model Design B using averages . 90

5.2 Evolutionary programming ensemble model Design C using summations 92

5.3 Evolutionary programming ensemble model Design E using the Dy-
namic Post Processor . 93

5.4 Operating area Alpha error decomposed by month for ensemble model
Design E . 94

1

CHAPTER 1

THESIS INTRODUCTION

This chapter presents an introduction to the natural gas industry, why

accurate gas forecasts are needed, and an explanation of the GasDay Lab where this

thesis is being completed. The final sections of this chapter will explain the problem

that is being addressed and the proposed solution.

This thesis will focus on the current ensemble model that is in use in the

GasDay Lab and how evolutionary programming can help improve the accuracy of

our natural gas demand forecasts. We will use this approach to create individual

ensemble models for different operating areas for which GasDay forecasts demand,

and these ensemble models will provide accurate forecasts for the amount of natural

gas that will be used in the given operating area.

1.1 Gas Industry

Natural gas is a fossil fuel made up of hydrocarbon gasses that include ethane,

propane, butane, pentane and methane, along with hydrogen sulfide, carbon

dioxide, oxygen, and nitrogen [24]. Methane is the most desired gas and is what is

assumed when talking about natural gas, unless otherwise specified. Natural gas is

produced by gas and oil companies, as they are commonly found together, and by

2

independent gas companies. The collected gas is traded in a competitive market and

transported across the United States through a series of underground pipes. Due to

federal regulations, the industry is broken up into three main sections: production,

transportation, and distribution. The production part includes the wellheads (both

on and off shore) that collect the natural gas and put the gas into lines that go to

their processing plants to remove any unwanted gases. The gas is then pushed into

gas lines that are owned by transportation companies. Transportation companies

make their money from Local Distribution Companies (LDC’s) by receiving a fee for

the amount of gas that they carry to the company. The gas is moved by pumping

stations that are located every 40 – 100 miles, depending on how much natural gas

is flowing through the pipe [25]. Compressor stations are used to increase the

pressure in the pipes to allow the gas to continue to move. Local Distribution

Companies take the gas they receive and sell it to the end users who actually burn

the gas. Local Distribution Companies can also act as a transport company to a

user if they bought the gas through a 3rd party vendor. A diagram of the entire

route from production to use is shown in Figure 1.1.

Natural gas consumption is decomposed into five categories of end users [36]:

• Industrial – Industrial customers are the biggest users of natural gas by

volume [12]. The gas that they use is relatively constant throughout the year,

as they are making a product year round. Usually the bulk of Base Load, or

3

Figure 1.1: Gas distribution network from the ground to the end user [11]

non–temperature sensitive load, comes from these customers. Their use often

has a weekly pattern since many production lines are shut down on weekends.

• Commercial – Commercial customers are also big users of natural gas and

fall in between Industrial and Residential customers. They use the gas for

heating, but are normally large buildings such as schools, hospitals, hotels,

and government buildings. Since they use natural gas for heating, their use is

referred to as Heat Load.

• Residential – Residential customers are by far the most common end user of

natural gas in the United States by total number. Residential customers’

usage of natural gas is the most dependent on the temperature. They use

more gas during the winter months and less during the summer months,

giving rise to a cyclical pattern year after year with peak loads typically

4

during January and February. Since the customers’ usage is so dependent on

the temperature, their use is referred to as Heat Load.

• Power Generation – Natural gas is very clean to burn, and it is easy to

control the amount of energy it produces. The amount of natural gas used for

electric power generation has been increasing rapidly over the past several

decades. Unlike coal, once a burner is turned on, it can immediately start

producing power. This use is something that GasDay does not take into

account when forecasting the amount of gas a given Local Distribution

Company is going to need to supply. This forecasting is normally done by the

electrical industry, and they tell the natural gas companies how much gas they

believe they are going to need each day.

• Vehicle Fuel – This has only started to account for a measurable amount of

natural gas in the past 15–20 years, as the popularity of natural gas vehicles

has been increasing. It is still only a very small amount compared to the other

uses.

Figure 1.2 represents different customers and their use of natural gas since

1950 [6]. The use of natural gas has been nearly constant over the past few decades

for commercial and residential customers, while its use for vehicle fuel and power

generation has been climbing, as a greater push to reduce emissions has been taking

place. Industrial use of natural gas had the opposite growth over the past two

5

decades, steadily decreasing as large users have moved outside of the United States

for financial reasons.

In Figure 1.2, the amount of gas used is measured in millions of cubic feet.

Another common unit for discussing gas quantities is a British Thermal Unit

(BTU). A BTU is the amount of energy required to heat one pound of water by 1◦F

at one standard atmosphere (14.69 psi) or approximately 1,055 joules [10]. A single

cubic foot of natural gas has approximately 1,030 BTU’s of energy or 1,086,650

joules [44]. A decatherm (Dth), which will be used throughout this thesis, is just less

than 1,000 cubic feet of natural gas. A Dth contains approximately 1,054,804,000

joules of energy [18]. This value is used because most of GasDay’s customers discuss

gas quantities in this unit or in Thousands of Dth’s (MDth’s), which is 1000 Dths.

1.2 Need for Accurate Forecasting of Natural Gas

Natural gas accounts for about 22% [36] of the energy used by the United States.

As a nation, we use about 25.46 trillion cubic feet of natural gas per year [37] in

residential, commercial, and industrial locations. This makes accurate estimates of

the amount of gas a Local Distribution Company is going to use a crucial part of

their operations. As discussed earlier, to get the gas to the end user from the point

of capture, transportation companies are used. Every day, gas companies buy and

sell natural gas on the open market, similar to every other commodity. If a Local

6

Figure 1.2: Gas usage for the five most common users of natural gas [6]

Distribution Company does not have enough natural gas to meet its demands, it

must buy more, turn off certain interruptible customers, or pull some from their

stored reserves. Interruptible customers are special customers that sign an

agreement indicating that the Local Distribution Company may turn off their gas if

they need to, in exchange for a lower charge for the gas they consume. If a Local

Distribution Company has more supply than is demanded, they must sell their

excess supply, put it into storage, or pay a fine to the transportation company, since

they did not allow the transportation company to sell the gas to another company

and make a profit.

7

Due to the small margin of error between what a Local Distribution

Company is allowed to use based on what they originally nominated, which is set

between the individual Local Distribution Companies and the transportation

companies, there is a great demand for a service like GasDay to assist companies in

accurately forecasting natural gas demand.

1.3 GasDay Lab

Dr. Ronald Brown, a professor in the Department of Electrical and Computer

Engineering at Marquette University, founded GasDay in the summer of 1993, when

Wisconsin Gas (now part of WE Energies) approached him about helping them

forecast the amount of natural gas they would need for the coming day. GasDay uses

weather data, actual usage, domain knowledge, and a series of mathematical models

and algorithms to develop a fairly accurate forecast for how much natural gas a

Local Distribution Company is going to need to supply to their customers. GasDay

currently is being used at utilities in 24 states and includes over 170 different

operating areas accounting for over 20% of the natural gas used by residential,

commercial, and industrial customers in the United States. A graph of every state

in which GasDay helps forecast natural gas demand is shown in Figure 1.3.

8

Figure 1.3: States where GasDay is used for forecasting (shaded blue)

In the past 20 years, over 200 students have been part of the GasDay project

and have worked on the different mathematical models and algorithms that are used

to forecast the natural gas usage of the various Local Distribution Companies.

1.4 Problem with the Ensemble Model

GasDay would like to improve the accuracy of its gas forecasts to allow Local

Distribution Companies to forecast more accurately the gas that their customers

will consume. The ensemble model, also known as the Dynamic Post Processor or

DPP in the GasDay Lab, currently helps adjust the forecasts of the two or four

different models GasDay uses to forecast natural gas demand. A diagram of this is

shown in Figure 2.6, where the ensemble model is combining a Linear Regression

9

(LR) model and an Artificial Neural Network (ANN) model. More detail on how

the GasDay Dynamic Post Processor combines two of the component model

forecasts is given in Chapter 2. Instead of continuing to improve upon the approach

of an ensemble model of the two or four different component models, a new

ensemble model is proposed.

1.5 Proposed Solution

To address inaccuracies in the current ensemble model, a new ensemble model has

been created based on the idea of a genetic algorithm. The genetic algorithm takes

many different inputs based on GasDay’s domain knowledge. The genetic algorithm

determines the function of inputs that provides a better forecast of the actual flow

than what GasDay currently has, by changing the function to find the combination

that minimizes overall error. The function of inputs is expected to change

depending on which data is used for training, because each part of the country

should have a slightly different function, and the genetic algorithm allows for these

variations. As an example, Figure 1.4 shows the percent error for a single operating

area; the genetic algorithm will try to reduce this error. By increasing the accuracy

of the GasDay forecasts, Local Distribution Companies will be able to forecast more

accurately the amount of gas they need to have available to meet their customers’

demand.

10

Figure 1.4: Percent error from a Local Distribution Company operating area using

the current Dynamic Post Processor

1.6 Thesis Outline

This thesis consists of six chapters. The first chapter introduces the natural gas

industry, customer types, need for accurate forecasts, background of the GasDay

Lab, the problem for this thesis, and the proposed solution. Chapter 2 will give a

detailed account of previous work completed in the area of ensemble forecasting,

evolutionary programming, and describe how the GasDay process handles ensemble

forecasting now. Chapter 3 offers motivations for this work and our contributions to

the area, especially our process for creating new ensemble models. Chapter 4 and 5

will present the results of this work. In these chapters, all of the actual flow values

have been scaled to protect the identity of the Local Distribution Company whose

data is being used. The last chapter will summarize the findings and offer insights

on how others can build on this work.

11

CHAPTER 2

CURRENT PRACTICES FOR ENSEMBLE FORECASTING

This chapter introduces current practices in ensemble forecasting, presents a

detailed description of evolutionary programming, and what is currently used by

GasDay for our ensemble model. This chapter also gives a description of the error

metrics that will be used to evaluate the evolutionary programming approach.

2.1 Ensemble Forecasting Introduction

Ensemble forecasting is the art of forecasting with multiple forecasts, where each

carries a certain weight towards the overall forecast [34, 50], as suggested in Figure

2.1. In the diagram, the overall forecast is generated by weighting each forecast.

However, there are multiple ways that ensemble forecasting can be done, some of

which are explained in the following sections.

2.2 Ensemble Techniques

Based on the current literature, there are multiple ways in which the current

GasDay ensemble model, referred to as the Dynamic Post Processor, could be

altered to improve upon the forecasts’ it generates. We could add more ensemble

12

Figure 2.1: Example of an ensemble model forecast

members into the ensemble model. A similar approach was used by

[26, 27, 34, 41, 47, 50] to take multiple models and combine them to increase the

accuracy of the item that they were trying to forecast. A similar strategy will be

implemented in this work by combining estimates from linear regression models and

artificial neural network models with some weather data, past performance

numbers, and past flow to produce a more accurate ensemble model forecast, as

described in Chapter 3.

Another common way to improve the accuracy of an ensemble model is to

improve the accuracy of the individual component models for time–series forecasting

by an artificial neural network with slight variations. Wang and Wu [41]

complement a neural network with a wavelet support vector machine. A wavelet

13

support vector machine is a specialized form of the support vector machine that was

first introduced by Vapnik [39]. It can be used for pattern recognition, classification,

and regression. The support vector machine maps the data from an input space to a

high-dimensional feature space. The problem then becomes finding the equation to

define a separating hyper-plane [42, 49]. The main differentiating feature of support

vector machines is the kernel that is used. A kernel is simply a class of algorithms

used for pattern recognition and analysis. The kernel can be Gaussian, polynomials,

or Marr Wavelet, to name a few. The main advantages the support vector machine

has over a neural network is that support vector machines automatically select the

underlying network structure, have a faster convergence speed, are not prone to

over-fitting, and do not get stuck in local minima [42]. As will be discussed in

Section 2.6, GasDay uses an artificial neural network as one of the base component

models used by the current Dynamic Post Processor. Changing the way one of the

components is calculated would allow a better estimate to go into the Dynamic Post

Processor and would help produce a better forecast estimate for the amount of gas

that will be used in a given area.

A third common way to combine multiple forecasts is through a Bayesian

approach with partial least squares. The method used by Pan and Wu [27] to help

meteorologists predict rainfall used artificial neural networks with a Bayesian

alteration to limit the complexity of the model. Pan and Wu assert that the

14

complexity of the neural network in terms of hidden layers and the multiplying

constants should match the complexity of the problem that is being solved. This

can be accomplished by architecture selection or regularization techniques.

Architecture selection is how the different layers of the neural network are

connected and how many layers there are between the input layer and the output

layer. A diagram showing two different architectures is shown in Figure 2.2.

Regularization techniques encourage the network to favor smaller weights, which

prevents the neural network from over-fitting to the data [27]. Figure 2.3 shows two

different neural network nodes with coefficients. The node on the right is preferred

over the one on the left, assuming the outputs are very close, because the coefficient

values are smaller. The equation for a regularization technique is

Total Error = Error from Output +
n∑

i=1

Coefficients2i , (2.1)

where the 2nd term is the sum of the squared coefficient values. By adding in the

sum of the squared coefficient values, regularization is adding another term to the

cost function to help prevent the neural network from being over-trained. Other

work in this area includes [9] and [47].

15

Figure 2.2: Neural network architectures [35, 45]

Figure 2.3: Neural network regularization techniques

Others approach time–series forecasting with an emphasis on the stationarity

of the time–series data; e.g., [5, 48]. Unreliable results can be obtained if

stationarity does not hold. A time–series data set is non-stationary if the mean and

variance vary more than some percent as the time–series data set increases in time

[5]. If the mean and variance are static, they are nearly constant throughout the

entire time–series and do not follow a trend. Another time–series forecasting

16

technique uses ARIMA models [26, 50], which often are used to make time–series

data sets stationary.

2.3 Error Modeling Techniques

We describe five of the many different error metrics:

• Mean Absolute Percent Error (MAPE),

• Mean Absolute Error (MAE),

• Mean Percent Error (MPE),

• Root Mean Square Error (RMSE), and

• Standard Error (Std Error).

Each of these metrics is preferred in different circumstances. We discuss each

in turn. They are all listed here for completeness and will be used to evaluate the

evolutionary programming approach presented in Chapter 3 to show how it

compares to the currently implemented method. For a full description of these, as

well as many others, refer to “25 Years of Time–Series Forecasting” [15].

17

Mean Absolute Percent Error,

MAPE =
100%

n

n∑
t=1

∣∣∣∣actualt − expectedt

actualt

∣∣∣∣ , (2.2)

which has results in percentages, is a method for determining average error over

multiple data points. Mean Absolute Percent Error has a problem that if the actual

value is “0,” a Mean Absolute Percent Error cannot be calculated.

Mean Absolute Error,

MAE =
1

n

n∑
t=1

| actualt − expectedt | , (2.3)

measured in units associated with the actual and expected values, is a metric used

to discuss how close an estimate is to the observed outcome. This metric, similar to

Mean Absolute Percent Error, is expressed as an average for all of the data points

analyzed, but does not take into account the magnitude of the values. If the values

are small, this metric is very susceptible to outliers that drastically increase the

error.

18

Mean Percent Error,

MPE =
100%

n

n∑
t=1

actualt − expectedt

actualt
, (2.4)

measured in percentages, is the average of the percent errors for a given data set.

Mean Percent Error is ideal for determining which way the estimates are biasing,

because the errors are allowed to cancel each other out since the absolute value of

the errors are not taken. However, if the goal is to determine the overall accuracy of

the estimates, there are better metrics to use.

Root Mean Square Error,

RMSE =

√√√√ 1

n

n∑
t=1

(actualt − expectedt)
2 , (2.5)

measured in units associated with the actual and expected values, is an error metric

commonly used to measure how well a model does compared to the actual value. It

is a good measure of how accurate an estimated series is to the actual values, but

also suffers from the same problem as Mean Absolute Error; it is dependent on the

magnitude of the values for comparison.

19

Standard Error,

Std Error =

√√√√ 1

n

n∑
t=1

((actualt − expectedt)− µ)2 , (2.6)

where µ = mean(actual− expected), is measured in units associated with the actual

and expected values. Standard error is an error metric that is commonly used by

GasDay to compare forecast and actual values. This value is similar to Root Mean

Square Error, except the mean of the differences for all t is subtracted before the

values are squared.

Although all five of the error metrics are preferred in different circumstances,

if a model is better than another in one of the metrics, it is often better in every

metric.

2.4 Genetic Algorithm

An introduction to genetic algorithms is helpful to understand evolutionary

programming. A genetic algorithm starts with a random set of possible solutions,

and through different generations, improves on the initial guesses to get to a better

solution. Each of the possible solutions is called a population member, and the

collection of population members is known as the population or as a generation. A

population member is made up of individual elements known as chromosomes [16].

20

Chromosomes are the elements that help to distinguish one population member

from another. In a binary population member, a “0” means the value to which that

chromosome is mapped is not used, while a “1” indicates the value is used.

Once the initial population is created by randomly selecting all of the

chromosomes of every population member, all of the population members are

evaluated based on some measure of fitness. This fitness calculation is used to rank

the population members and is used to help create the next generation. In

discussions about genetic algorithms, the opposite of fitness: error, is usually

mentioned. As the error of a population member increases, the fitness of the

population member decreases. The error of the genetic algorithm is also referred to

as the cost function. The cost function computes the error that the population

member has, and can include any of the error metrics discussed in Section 2.3, or

another error metric the user decides to use. The cost function can also include

additional terms to help guide the search space towards an area that satisfies

additional criteria, similar to regularization techniques and Equation 2.1. The next

generation is created by a combination of elitism, crossover, and mutation [16].

Figure 2.4 suggests two different generations and how the second is produced from

the first. A general description of elitism, crossover, and mutation follows, while a

detailed description of how our genetic algorithm implements each one can be found

in Chapter 3. For more information on genetic algorithms, refer to [14].

21

Figure 2.4: How a genetic algorithm creates a new generation

Elitism is the action of taking the best performing population members of the

previous generation and allowing those same population members to be evaluated

again in the new generation. The second type of action is crossover. Crossover takes

two different population members and at a random chromosome switches the two

different population members. The third type of action is mutation. Mutation takes

a population member and randomly switches a chromosome. In a binary population

member, a “0” is changed to a “1,” and a “1” is changed to a “0.”

After many generations, the most fit population members and chromosomes

are spread through the entire population, and the genetic algorithm has determined

a good solution to the problem. A genetic algorithm stops when the threshold for

generations is reached, or the best fitness of the population does not change after a

set number of generations [1, 8, 43].

A genetic algorithm has a few advantages over a normal search algorithm. A

genetic algorithm does not have to know the exact problem that it is trying to solve.

22

The genetic algorithm is only searching for a population member that maximizes

the fitness value, so it does not need to know any of the inner workings of the

problem or even of the fitness calculations [16]. A genetic algorithm is also good at

performing global searches without having to compute the fitness of every possible

combination of chromosomes to find a well performing population member. A

genetic algorithm accomplishes this by using generations to alter the search space

and mostly looking in areas that have been determined to produce good results.

A genetic algorithm also has some disadvantages. A genetic algorithm takes

a lot of computing power and time to converge to the globally optimal solution. The

best performing population members are constantly being evaluated even though

their fitness might not change [33], as they are constantly being passed from one

generation to the next through elitism. To be effective, a genetic algorithm normally

needs a population size in the hundreds and to be allowed to run for thousands of

generations. A genetic algorithm also struggles to find good solutions for

constrained problems [1, 16]. However, if the disadvantages mentioned can be

addressed, the evolutionary programming approach discussed next may be able to

produce an ensemble model that is more accurate than GasDay’s current Dynamic

Post Processor.

23

A genetic algorithm with some alterations will be explained in Chapter 3. In

the next section, an introduction of evolutionary programming will be presented

that is based on the general genetic algorithm presented here.

2.5 Evolutionary Programming

Another way to produce an ensemble forecast is to use an evolutionary

programming approach, which was first used by Fogel in 1960 [13]. Evolutionary

programming is a coding strategy by which an evolutionary programming engine,

through a genetic algorithm, creates an evolutionary programming output, a

computer program that answers the desired problem instead of the person writing

the code. A more advanced approach is discussed in [21], where Koza et al. discuss

the achievements of evolutionary programming and what classifies as true

evolutionary programming. In their view, the evolutionary program has to be able

to reuse and alter self-created sub-functions, iterations, loops, recursions, and

executable code. Our evolutionary programming engine discussed in Chapter 3,

takes a more limited, more targeted approach. Its’ target program is confined to a

template. Koza et al. state that the evolutionary program has to produce

human-competitive results with minimum human intervention. They discuss this as

a ratio of the knowledge of the program divided by the knowledge of the human

coders. In a program with little human interaction, the program is only given the

24

basic elements of what it is trying to solve, along with a fitness calculation. This

code also has to be robust and be able to work in multiple disciplines and on

different projects with little human altering of the code.

In [21] they talked about evolutionary programming for circuit design. They

discuss how the evolutionary program should be given only basic elements of

resistance, inductance, and capacitance, and the evolutionary program should

determine automatically the topology and the component values based on the given

fitness calculation. The more automated the process is, the better it is at producing

results, as it will not be influenced by well–known beliefs and practices of how

something should be done. With this approach, the final output of the evolutionary

programming engine has been able to produce results that are competitive with

human results and duplicate results of 20th and 21st century patented inventions

along with patentable new inventions it has created itself.

A specific implementation of evolutionary programming was used by

Roebber [29] to help forecast temperature and electrical demand. The process

selects randomly from an input set: variables and comparisons, to produce and

evaluate an if–statement. An example of this is

IF (var1 Or var2) then

δ = (c1× var3) O (c2× var4) O (c3× var5). (2.7)

25

The same number of terms was also used by Sathyanarayan, Birru, and Chellapilla

[31] but they did not use an if–statement condition. The elements of the

if–statement are

• Or, a relation operator,

• var1, . . . , var5, all of the inputs,

• O, a mathematical operator (either addition or multiplication), and

• c1, . . . , c3, constants.

Once all of the programming statements are evaluated and averaged based

on the number of statements that were true, a fitness calculation is used to evaluate

how well each member of the population performed in forecasting the desired value

or values if used on time–series data. Roebber used as his fitness calculation Mean

Absolute Error. By allowing the well–performing population members to continue

to be evaluated in a future generation, and altering bad population members, the

genetic algorithm is providing a mechanism that allows the population members not

to get stuck in a local minimum [31]. A 3–D representation of this optimization is

shown in Figure 2.5. As the error metric used to determine fit decreases to an

eventual minimum, the fitness of the algorithms approaches a maximum peak.

Next, we will discuss the ensemble model that is currently implemented in GasDay.

26

Figure 2.5: 3–D plot representation of evolutionary programming fitness [30]

2.6 Current Ensemble Model

The GasDay ensemble model, known as the Dynamic Post Processor, is used to take

individual component models and combine them to create a single forecast for the

amount of gas a Local Distribution Company is going to use on a given day. This

forecast is a combination of either two or four individual component models, and

represents the best estimate that GasDay is able to produce. The parameters inside

of the Dynamic Post Processor are allowed to vary daily, and these variations allow

the Dynamic Post Processor to respond to changing conditions in an operating area

to track the gas demand of a nonstationary customer base. The produced value

ultimately is used by a Local Distribution Company to assist them in determining

how much gas they need to nominate.

27

The ensemble model was first created in 1995. Since then, the ensemble

model has gone through numerous changes to allow it to create a more accurate

estimate. The ensemble model currently uses the forecasts of the two or four

different models GasDay uses. GasDay forecasts for time horizons of up to eight

days, with each time horizon forecast being independent from the rest. For this

thesis, focus will be limited to time horizon 0, but the process described could be

extended to the other seven days for which GasDay forecasts. To simplify the

explanations in this section, only two input models are considered for the rest of

this section. However, the ideas presented are expanded to all two or four of the

base component models that GasDay uses in the application that is sent to

GasDay’s licensed customers. Figure 2.6 shows the ensemble model combining a

Linear Regression (LR) model and an Artificial Neural Network (ANN) model.

When GasDay is run, both the Linear Regression model and the Artificial Neural

Network model independently produce a forecast for the desired day.

The Dynamic Post Processor can be broken up into two different sections, a

tuner and a combiner. The tuner works to improve the individual component

estimates, while the combiner determines the percentage that each base component

model contributes to the overall estimate.

The tuner adjusts the individual forecasts based on how well they did at

forecasting the natural gas demand from two days ago. Values from two days ago

28

Figure 2.6: GasDay ensemble model for only two different component models

are used because GasDay is normally run at about 6 A.M. Central time. The

national gas day starts at 9 A.M. Central time, so distribution companies do not

have data for yesterday, as there is still about three hours left in yesterday’s gas day.

The combiner takes the tuned individual component estimates and combines

them based on how well they have been doing recently. If an individual component

model becomes very good at forecasting the actual flow, that component model will

contribute more to the overall estimate than if the component model recently has

not been performing well. A graph of how the component weights changed over

time from September 2010 through May 2013 for time horizon 0, is shown in Figure

2.7 for two component models.

The combination of the tuning of the individual component models and

altering how the individual component models are combined, allows the Dynamic

Post Processor to respond to changing characteristics in a Local Distribution

Company’s customer’s usage. This section will be useful in Chapters 4 and 5, as the

29

Figure 2.7: Component weights for time horizon 0 for two component models

created evolutionary programming ensemble model forecasts will be compared to

the forecasts that were produced by the Dynamic Post Processor.

2.7 Conclusion

This chapter gave an introduction to different ensemble forecasting techniques and

genetic algorithms. The error metrics presented here will reappear in Chapters 4 and

5 when the results of the evolutionary program are presented and compared to the

current Dynamic Post Processor. Evolutionary programming was also introduced

and will be further explained in the following chapter. This chapter also described

the Dynamic Post Processor ensemble forecaster that is currently used in GasDay.

Evolutionary programming has been used in a wide range of applications

that include weather forecasting, circuit designs, and other patentable inventions.

One area where no research could be found is in natural gas forecasting. This area

is what this thesis will try to fill, by showing how evolutionary programming

30

potentially can be helpful, not only in forecasting natural gas demand, but also in

improving the accuracy of GasDay’s estimates for our licensed Local Distribution

Companies.

31

CHAPTER 3

EVOLUTIONARY PROGRAMMING APPLIED TO NATURAL GAS

FORECASTING

This chapter gives a detailed description of the specific contributions of this

thesis. It discusses both the genetic algorithm that is used by the evolutionary

program engine to find the best combination of constants, as well as inputs for the

evolutionary programming ensemble model design. This chapter also gives a

description of the different inputs that could be used by the evolutionary

programming engine and the evolutionary programming ensemble model design.

3.1 Rationale for this Work

As stated in Chapter 1, there is a need for accurate natural gas forecasts due to the

margin of errors that Local Distribution Companies are allowed by the

transportation companies and the repercussions that are possible if they do not

have enough supply to meet demand. With these ideas in mind, there is always a

need for a better forecast.

32

In Chapter 1, we also outlined a few requirements that a new ensemble

model must meet. There are also additional requirements for GasDay and the

students who will be working with the created ensemble model and MATLAB code.

• The ensemble model produces a forecast that is close to the actual flow used

by the Local Distribution Company’s customers,

• responds quickly to changes in natural gas load, and

• the MATLAB code must be understandable and maintainable to GasDay

students, personnel, and Local Distribution Companies.

We discuss each in turn.

A new model must produce reasonably accurate and reliable forecasts. This

is the reason Local Distribution Companies rely on GasDay to help supplement

their in–house forecasters, due to the margin of errors that Local Distribution

Companies are allowed by the transportation companies and the repercussions that

are possible if they do not have enough supply to meet demand. With this idea in

mind, Local Distribution Companies are always trying to be as accurate as possible

with their gas forecasts.

A new ensemble model must be able to respond to changing loads without

external assistance. GasDay would like to train the model for each of our Local

33

Distribution Companies only once a year and ship it to our customers, so the

individual models have to be able to track changes. Every winter is different from

previous ones, so there has to be capability in the created model to account for

these changes, without intervention from a person. In at least one Local

Distribution Company operating area, the Fall 2012 – Spring 2013 heating season

had a 5% increase in customer use from the previous heating season given the same

temperature. Figure 3.1 compares the flows from one operating area from December

of 2011 to December of 2012, given a specific heating degree value. Not only is there

an increase in the base load for this operating area shown by the shift in the

y–intercept, but there is also a slight increase in the use per heating degree–day

with the trend lines having slightly different slopes.

This does have some limitations, however. GasDay wants the ensemble

model to be able to respond to changes in loads, but GasDay also wants to make it

resistant to bad data, which is a common occurrence with flow data being entered

daily. If the ensemble model were allowed to track changing conditions too fast, a

single bad data point would have great consequences, while allowing the ensemble

model to track changes too slowly means it would fail to adapt adequately to

changing conditions. Figure 3.2 shows the errors of the Dynamic Post Processor if it

were allowed to respond faster to changing conditions by comparing the percent

error between the result of the current Dynamic Post Processor, and the results the

34

Figure 3.1: Scaled gas flow for two different years

Dynamic Post Processor would have produced if it were allowed to respond faster to

changing conditions for a given operating area.

The implementation of the evolutionary programming engine and ensemble

model in MATLAB must be able to be easily understood. GasDay is a research lab

in a university, so the turnover of students is very high. Having well–written code

limits the training required for new students, and they are more quickly able to

contribute meaningful changes to new and existing code. Well–written code is also

able to be reused by different functions and allows a compiler to optimize the

execution of the code based on the ability of the machine on which the code is

running [7]. Local Distribution Companies also have to present their gas forecasting

35

Figure 3.2: Percent error for the current Dynamic Post Processor and when the

Dynamic Post Processor is allowed to tune faster based on the calculated error

techniques to the state to make sure their approach is acceptable [2]. If the created

ensemble model cannot be explained to state regulators, there is a problem, as they

have to approve the approach in the interest of the general public.

With these requirements in mind, work was begun on the evolutionary

program engine and ensemble model to replace the current Dynamic Post Processor.

An explanation of the code for both the evolutionary program engine, as well as the

evolutionary programming ensemble model that is formed by the evolutionary

program engine, can be found in the following section.

36

3.2 Evolutionary Programming Engine and the Evolutionary

Programming Ensemble Model

The evolutionary program can be broken into three main categories: inputs into the

evolutionary programming engine and ensemble model, output of the evolutionary

programming engine, and the evolutionary programming engine itself. A diagram

showing the evolutionary programming engine is shown in Figure 3.3. Each piece is

discussed in the following sections.

3.2.1 Inputs into the Evolutionary Programming Engine and Ensemble

Model

The inputs into the evolutionary program engine as well as the evolutionary

programming ensemble model were determined by what would be important for an

ensemble model that could be used for natural gas forecasting. The type of variables

into both the evolutionary programming engine and the ensemble model are the

same, except that the inputs into the evolutionary programming engine are

year–long time–series values, while the data entered into the evolutionary

programming ensemble model are the values for only 10 days. Not all of the inputs

into the evolutionary programming engine or ensemble model are going to be used,

but based on domain knowledge and past experience, a reasonable set of inputs were

determined that had a chance to be important. Due to the uncertainty of what

values are the best at forecasting the natural gas demand, all of the possible values

37

Figure 3.3: Overview of the evolutionary programming engine

used by the evolutionary programming engine also have to be given as inputs into

the evolutionary programming ensemble model. Table 3.1 lists the possible inputs.

The Recently Tuned Error is computed using

Recently Tuned Error = Previous Error× λ+ e2 days ago × (1− λ), (3.1)

where e2 days ago is the error that was computed using values from two days ago,

and λ is equal to 0.99 [22, 38]. This value results in a daily error having a half–life

of about two months as shown in Figure 3.4. This calculation weights the errors

more heavily for recent days than days further back.

38

Table 3.1: Inputs in the evolutionary program and its output

Input Description

Linear Regression There are 10 days of Linear Regression estimates. The

10 estimates include the estimate for today as well as

the estimates for the previous 9 days.

Artificial Neural Net-

work

There are 10 days of Artificial Neural Network estimates.

The 10 estimates include the estimate for today as well

as the estimates for the previous 9 days.

Actual Flows There are 8 days of actual flow because at 6:00 A.M.

Central time when most utilities run GasDay, they have

not completed the previous gas day that runs from 9:00

A.M. to 9:00 A.M. Central time.

Temperature There are two days of forecast temperatures and 8 days

of actual temperatures. The two days of forecast tem-

peratures occur because at 6:00 A.M. when most utilities

run GasDay, they have not completed the previous gas

day that runs from 9:00 A.M. to 9:00 A.M. Central time.

Wind There are two days of forecast wind speeds and 8 days

of actual wind speeds. The two days of forecast wind

speeds occur because at 6:00 A.M. when most utilities

run GasDay, they have not completed the previous gas

day that runs from 9:00 A.M. to 9:00 A.M. Central time.

Date code The date code for the day, which is also used to compute

the Day of the Week and Day of the Year.

Recently Tuned Error This value is computed in the ensemble model by using

the forecast estimate from two days ago and the actual

flow from two days ago.

Moving Average of

Previous Flow

Average of the 8 days of previous flow values that are

available.

Additional Weather

Input–Linear Regres-

sion

There are 10 days of Additional Weather Input–Linear

Regression estimates. The 10 estimates include the esti-

mate for today as well as the estimates for the previous

9 days.

Additional Weather

Input–Artificial Neu-

ral Network

There are 10 days of Additional Weather Input–

Artificial Neural Network estimates. The 10 estimates

include the estimate for today as well as the estimates

for the previous 9 days.

39

Figure 3.4: Day 0 error for 70 days with different forgetting factors

A visual representation of all of the raw inputs is shown in Figure 3.5. The

diagram shows what inputs come from which specific day. All of the actual values

that are used, are coming from at least two days ago because when GasDay is run,

actual data for today and yesterday is not yet available.

Figure 3.5: Timeline showing what days all of the raw data inputs are coming from

40

These inputs are aligned into a vector array every day in which the

evolutionary programming ensemble model is expected to produce an estimate so all

of the inputs can be referenced simply by changing a number in a chromosome of a

population member to something else. This allows crossover and mutation to occur

easily, as the chromosomes do not have to reference the individual input arrays,

which would greatly increase the complexity of the code and the ensemble model.

Figure 3.6 shows how the evolutionary programming ensemble model would operate

every day for time horizon 0, but the same process applies to the other time

horizons that GasDay forecasts. For the other time horizons, the inputs shown in

Figure 3.5 would change, as different values would be used depending on the time

horizon that is being forecast.

3.2.2 Output of the Evolutionary Programming Engine

The evolutionary programming engine ultimately must produce MATLAB code for

an ensemble model. We refer to this ensemble model as our evolutionary

programming ensemble model to distinguish it from the evolutionary programming

engine itself and from the current Dynamic Post Processor. This evolutionary

programming ensemble model has to adhere to the limitations and specifications

that were discussed in Section 3.1. The created ensemble model eventually may be

41

Figure 3.6: Proposed daily process at a Local Distribution Company

coded into C++ and shipped to Local Distribution Companies to run as part of

GasDay and will use the inputs shown in Table 3.1.

Due to the process used to determine the best combination of the possible

inputs, which is explained more in the next section, all of the values have to be

given to the evolutionary programming ensemble model because the GasDay

application will not know ahead of time which inputs were deemed important by the

evolutionary programming engine.

The evolutionary programming ensemble model will have a few lines of code

making sure certain variables are set to the appropriate values and are in the correct

form for the evolutionary programming ensemble model. The evolutionary

programming ensemble model itself will have two different types of statements. One

statement is there to make sure the application is always able to produce an

42

estimate, regardless of how extreme the weather is or if the weather combination

has never been seen before, i.e., design day conditions. The other statements will be

designed as if–statements. The if–statements are similar to those used by Roebber

[30], but there were some modifications based on testing different if–statement

designs. An example of the if–statement that was used in Chapters 4 and 5 is

IF (var1 < c1× var2) then

δ = (c2× var3) O (c3× var4) O (c4× var5) O (c5× var6). (3.2)

The elements of the if–statement are

• var1, . . . , var6, all of the inputs,

• O, a mathematical operator (either addition or multiplication), and

• c1, . . . , c5, constants.

A few lines of the actual code from an ensemble model are shown in Listing 3.1.

ŝ = c(1) * v(10) + c(2) * v(20) + c(3) * v(63) + c(4) * v(73) + c(5);

if (v(01) < c(6) * v(52))

ŝ = ŝ + ((c(07) * v(58)) + (c(08) * v(42)) * (c(09) * v(02)) + (c(10) * v(01)));

count = count + 1;

end;

if (v(24) < c(11) * v(65))

ŝ = ŝ + ((c(12) * v(56)) + (c(13) * v(57)) * (c(14) * v(07)) * (c(15) * v(23)));

count = count + 1;

end;

Listing 3.1: Example of evolutionary programming ensemble model if–statements

43

In Listing 3.1,

• v()’s correspond to one of the possible inputs and are adjusted by the genetic

algorithm,

• c()’s are the constants that are learned during the execution of the

evolutionary programming engine on the specified training data. The values

can be positive or negative to reduce the complexity of the problem compared

to [32],

• ŝ is the total sum of all of the executed if–statements and the one unguarded

statement, and

• count is the total number of if–statements executed.

The four component models, Linear Regression (LR), Artificial Neural

Network (ANN), Additional Weather Inputs–Linear Regression (AWI–LR), and

Additional Weather Inputs–Artificial Neural Network (AWI–ANN) that the current

Dynamic Post Processor uses to produce the GasDay estimate, offer the best

estimates of what the flow will be if all of the if–statements are false. The

probability of this happening is low, but there is a chance, so precautions have to be

taken to ensure a value is always produced. The four component models also are

very good estimators in their own right. A graph showing the four individual

component models plotted against the actual flow for an operating area for one year

44

is shown in Figure 3.7. The current Dynamic Post Processor takes these four models

and improves upon their individual results, while the evolutionary programming

ensemble model takes a weighted linear combination of these four component

models and combines them with the bodies of the if–statements that were true to

assemble the estimate for the given day.

Figure 3.7: Time-series plot of the four individual component models and the reported

flow

In Section 2.4, we discussed a binary genetic algorithm. Each chromosome in

the array corresponds to specific inputs and lets the program know if it should or

should not use that specific input. In this genetic algorithm, each chromosome is

used by a specific location inside the final output design. Each chromosome can be

a reference to any of the possible inputs. Each input is not unique, so there is no

45

limit to the number of times that a specific input can be used. In Listing 3.1, all of

the numbers inside of the v()’s are a chromosome of the population member.

3.2.3 Evolutionary Programming Engine

The process to pick the ensemble model that will ultimately be working at a Local

Distribution Company is a two–part process: training and validation of the

constants of the different possible ensemble models and a genetic algorithm to

choose possible ensemble models for training and validation.

Training is the process of determining the right values for the constants to be

used with the inputs selected by the genetic algorithm. The procedure involves

using MATLAB’s fminunc command by the evolutionary programming engine to

determine the optimal constants. This command uses initial values of the constants

and estimates the derivative of the cost function [23]. Once this derivative is

determined, fminunc changes the constants to reduce the cost function and

estimates the derivative again. This process continues until fminunc reaches a point

where the derivative is nearly zero, indicating that the cost function has reached a

minimum, or that fminunc has reached the maximum number of iterations. The

data used by the evolutionary programming engine is from previous years of data

that were specified for training from the specific Local Distribution Company’s

database. In this thesis, three years of data, June 2008 – June 2011, were used to

46

estimate the optimal constants. To reduce the execution time of the evolutionary

program, fminunc is limited to make only 1000 iterations of the optimization

algorithm in a given generation per population member.

If the population member makes it through to the next generation, the

evolutionary programming engine uses the previously determined constants to

further fine–tune the constants to create a more accurate forecast. During elitism,

all of the constants are used as the starting points for the next generation. If two

population members are selected for crossover, the constants associated with the

individual inputs or chromosomes are also crossed over and used in the next

generation as the starting point for the evolutionary programming engine. By

switching the constants with the variable chromosomes, we allow the evolutionary

programming engine to have a better starting position than the default constants.

It is possible that the constants are no longer that good when combined with the

rest of the constants in the newly created population member, but they are better

than having the constants start at the initial value. If an if–statement is selected for

mutation, all of the constants associated with the chromosomes that were replaced

are set back to their initial values. In this thesis, the constants were initialized to

0.1. The way the MATLAB code is written to determine the optimal constants,

fminunc does not have to use all 1000 possible iterations. If MATLAB’s fminunc

47

attempts various combinations, and it cannot find a lower error, the constants stay

the same as the previous generation.

Validation data is used to help determine which population member is the

best at forecasting the natural gas demand of a certain operating area, and which is

just good at forecasting past natural gas demand. Validation data is not used in the

training of the constants. The results of the validation data are used to adjust

which population members the genetic algorithm uses to help determine which

combination of inputs are the best at forecasting natural gas demand.

This is demonstrated in Figure 3.8, where the training error from the current

generation is actually higher than the training error for the previous generation for

the best performing population member. This is based on the population member

with the lowest RMSE value on the training data, even though the evolutionary

programming engine is supposed to improve the output at each generation. To

demonstrate this, a trial run was conducted with a population size of 12, and the

evolutionary programming engine was allowed to run for only 15 generations. In

Figure 3.8, the error went up in generation 12 because the best performing

population member, based on the lowest cost function value on the training data

set, determined by RMSE, was not one of the best members at actually forecasting

natural gas demand. A graph of the RMSE error of the population member that

performed the best on the validation data and the corresponding training RMSE

48

value is shown in Figure 3.9. Unlike what occurred to the testing error, the

validation error never went up across the generations as the best population

member was always allowed to be passed to the next generation through elitism.

Figure 3.8: Evolutionary programming training error of the population member with

the lowest error on the validation data

Testing data was used for analysis purposes only. The data used for testing

was from June 2012–June 2013. To determine how well the evolutionary

programming ensemble model was working, it was compared to the current

Dynamic Post Processor. The results presented in the rest of this section were done

only as a proof of concept. In Chapters 4 and 5, the number of generations and the

size of the population were drastically increased to get the results that are analyzed

against the Dynamic Post Processor. In Chapters 4 and 5, the evolutionary

49

Figure 3.9: Evolutionary programming training and validation error of the best mem-

ber of the population

programming engine was allowed to run for 100 generations with a population size

of 800 members. The data was taken directly from a Local Distribution Company’s

database, so the data was unprocessed by GasDay and had all of the erroneous flow

values that the current Dynamic Post Processor had to forecast with at the Local

Distribution Company. This heating season also saw an increase in flow values from

previous years, so it was a great season to compare how robust the evolutionary

program engine was in producing a reliable ensemble model.

As stated previously, the genetic algorithm uses the validation error to help

determine what inputs are important for forecasting. The genetic algorithm allows

50

the top 10% of the best members of the current generation to move on to the next

generation and continue to be evaluated.

For this thesis, 40% of the best validation members are used for crossover,

where the values and constants from two different population members are switched

at a random point to create two different population members to be evaluated in

the next generation. The point where the crossover occurs is random and constantly

changes from one pair to another.

To create another generation of the same size, the genetic algorithm takes

50% of the most fit population members to create the same number of population

members as the previous generations [30], and each if–statement has the possibility

to be selected for mutation. Mutation occurs when one of the if–statements is

replaced with another random set of chromosomes to try to find a combination that

has a lower error and can guide the genetic algorithm to search in the space around

that member of the population. Normally, only a single chromosome is selected and

changed for mutation [16].

3.3 Small Scale Test

To demonstrate that the evolutionary program ensemble model produced a forecast

that was more accurate than the current Dynamic Post Processor, a test was

51

conducted using the actual data from a Local Distribution Company as well as the

estimates for the Dynamic Post Processor. The test consisted of an initial

population size of 12 members and the evolutionary programming engine was

allowed to run for 15 generations. The same data that GasDay had access to in the

Fall of 2011 was used to train and validate the evolutionary programming

population members. The evolutionary programming ensemble model that

preformed the best on the validation data was then used to forecast the natural gas

demand using the same uncleaned data that GasDay had access to during the

heating season from the Local Distribution Company. Table 3.2 shows the difference

between the current Dynamic Post Processor error and the error produced by the

evolutionary programming ensemble model from the same example shown in Figures

3.8 and 3.9. The values in the table represent the month-long Root Mean Square

Errors, RMSE, between the current Dynamic Post Processor and the evolutionary

programming ensemble model estimates compared to the actual flow values from

April 2012 – March 2013. Even using a small sample size of 12 population members

and 15 generations, the evolutionary programming ensemble model was able to

produce time horizon 0 forecasts that were better that the current Dynamic Post

Processor in 8 of the 12 months.

This small sample was only used for testing the code to make sure that the

values that it was calculating for errors were correct and there were no errors in the

52

Table 3.2: RMSE by month for the Dynamic Post Processor and the evolutionary

programming ensemble model

Month Dynamic Post Processor Evolutionary Programming

Ensemble Model

April 20.63 20.30

May 14.25 13.72

June 5.30 5.23

July 4.35 4.37

August 3.10 3.08

September 9.49 9.72

October 7.60 7.51

November 26.97 27.94

December 25.75 25.13

January 36.29 33.32

February 34.66 35.24

March 24.28 22.79

code. When this small sample experiment was finished, the estimates for every day

in the testing set were copied and manually compared to the actual estimates to

make sure that the values were the same. It was also used to see if there was any

hope in having the evolutionary programming ensemble model compete with the

current Dynamic Post Processor. These results are from the beginning of the process

to determine if a completely different approach should have been pursued so in the

end, the work of this thesis provided results that were better than what GasDay

currently has implemented. In Chapter 4 and 5, results will be presented showing

how well the evolutionary programming approach worked when it was allowed to

have an initial population of 800 members and allowed to run for 100 generations.

53

3.4 Advancements to Roebber’s Work with Evolutionary Programming

As mentioned in Chapter 2, our evolutionary programming engine and evolutionary

programming ensemble model were inspired by research done by Roebber [30].

Roebber’s research was used in a slightly different strategy from what was proposed

in Chapter 2. His work used evolutionary programming to create many good

ensemble models, which were then used to create an overall forecast, while GasDay

wants to use the evolutionary programming approach to create a single ensemble

model that can be shipped to our customers. After reading Roebber’s work [30], it

was determined that there was a possibility to expand on his work and use it in the

forecasting of natural gas. Some of the advancements are

• what if no if–statements are executed, and

• duplicate population members.

We discuss each in turn.

A major item is how the evolutionary program handles no if–statements

being executed. This would be a problem for Local Distribution Companies that

rely on GasDay to help forecast the amount of natural gas needed for a certain day.

If none of the if–statements were true, the forecast natural gas demand would be 0,

which is never the case for an entire operating area. Dr. Roebber handled this by

54

making the if–statements opposites of each other to ensure some of them execute

[30]. An example of this is shown in Listing 3.2.

IF (V (12) ≤ 4MOS) then...

IF (V (12) >4MOS) then...

Listing 3.2: Example of Roebber’s code

Roebber uses both ‘>’ and ‘<’ comparators, but only one is needed as

Var1 > Var2 is the same as Var2 < Var1. This method does solve the problem of

not having any statements being true, but it can be made more efficient as every

combination of variables in the if–statement need to have the opposite as well,

resulting in twice as many statements overall than what will actually be executed on

a single day. By limiting the number of possible comparators, the total number of

different combinations that have to be compared is drastically reduced. Reducing

the total number of combinations will reduce the complexity of the problem for the

genetic algorithm and help it locate the best combination of chromosomes faster.

Roebber’s work also does nothing to guard against duplicate population

members. With many statements in each member of the population, there is the

possibility that all of the statements are the same as another population member,

but in a different order. While this will not affect the final answer determined by

55

the genetic algorithm, it drastically increases the total number of possible solutions

and can make it harder for the genetic algorithm to converge.

3.5 Conclusion

This chapter described the evolutionary programming engine, and the code that was

generated and used to produce the ensemble model that forecasts gas demand on a

given day. The process presented here was only for Day 0, but can be repeated for

the other time horizons that GasDay forecasts. It also discusses improvements that

were completed compared to Roebber’s work [29] on which this thesis was built.

Chapter 4 will present the results for a number of different operating areas using

two different evolutionary programming ensemble model designs. Chapter 5 will

present some ensemble model designs that did not work well, while providing some

insights into why they were not good at forecasting natural gas demand.

56

CHAPTER 4

QUALITY OF FORECASTS FROM THE EVOLUTIONARY

PROGRAMMING ENSEMBLE MODEL

While working on the evolutionary programming ensemble model, different

designs were tried and evaluated to see which produced the most accurate forecast

results. While conducting these tests, different numbers of constants, variables,

if–statements, comparators, and operating areas were used. Some were allowed to

be varied by the genetic algorithm, and some were set based on domain knowledge.

The majority of this chapter will focus on the evolutionary programming

ensemble model design that produced the most accurate forecast results in a

three–way comparison of different ensemble model designs. These designs will be

referred to as Design A, Design B, and Design C.

• Design A uses the average of a weighted linear combination of the four base

component models and 10 if–statements.

• Design B uses a weighted linear combination of the four base component

models, where the coefficients are determined by the average of five

if–statements.

• Design C uses a weighted linear combination of the four base component

models, where the coefficients are determined by the sum of five if–statements.

57

Ensemble model Design A was used to generate the results in the first half of

this chapter, and its generated forecasts were more accurate than the current

Dynamic Post Processor in our tests. The second half of this chapter will focus on

ensemble model Design D, which produced results that were not as accurate as

ensemble model Design A, but produced results that were more reasonable from a

domain knowledge point of view. Ensemble model Design D is a weighted linear

combination of the four base component models added to the average of 10

if–statements. Neither ensemble model Design A nor Design D were able to produce

results that were statistically significant or reasonable to a level that would suggest

that the current Dynamic Post Processor be replaced by the evolutionary

programming ensemble model, but ensemble model Design A was able to perform

better than the Dynamic Post Processor in our tests. The ensemble models also

took 3–4 days of computing time to train on a 20–core cluster. The cluster is a

heterogeneous collection of Intel Xeon and Intel i7 processors. Additional

information on the cluster configuration can be found in Section 5.3. This amount

of time is not reasonable if GasDay would have to create eight ensemble models for

the eight different time horizons for all 170 operating areas that GasDay forecasts

natural gas demand.

58

Table 4.1: RMSE values for the Dynamic Post Processor and ensemble model designs

A, B, and C for four different operating areas from June 2012 – June 2013

Evolutionary Programming Ensemble Model

Area Dynamic Post

Processor

Design B

(average)

Design C

(sum)

Design A

1 18.69 80.21 31.21 17.95

2 22.57 75.28 24.71 X

3 31.66 95.08 41.68 X

4 23.85 48.69 28.74 24.58

4.1 Determination of the Most Accurate Design

Ensemble model Designs A, B, and C were compared to see which model produced

the most accurate forecasts. The results of this comparison are in Table 4.1. This

test was conducted with a population size of 200 members for 70 generations. Two

of the model designs, Design B and Design C, use the generated if–statements to

produce the coefficient values on a linear combination of the four base component

models that GasDay uses:

ŝ = β1 + β2 × LR + β3 × ANN + β4 × AWI-LR + β5 × AWI-ANN. (4.1)

By using an average, ensemble model Design B put more pressure on each

statement to give an accurate result of what the coefficient should be, whereas using

a summation with ensemble model Design C allowed more freedom. These two

designs will be discussed in the following chapter due to their performance.

59

Ensemble model Design A, which will be discussed in the first half of this

chapter, averages a weighted linear combination of the four base component models

along with the generated if–statements:

ŝ =

(β1 + β2 × LR + β3 × ANN + β4 × AWI-LR + β5 × AWI-ANN)

+
∑

true if-statement bodies

1 +
∑

true if-statements
. (4.2)

Ensemble model Design A used data from three different operating areas from

three different Local Distribution Companies to generate a daily forecast. These

forecasts were compared to the forecasts that were generated by the Dynamic Post

Processor. The three operating areas will be referred to as Alpha, Bravo, and

Charlie, respectively, and all of the data has been scaled to protect the identity of

the Local Distribution Company. These operating areas are not the same areas that

were presented in Table 4.1.

The equation used to scale the data was

Scaled Value =
950

max value over the series
× Value. (4.3)

This equation allowed the data to appear on a graph that had values from 0–1000

to create a clean graph when the flow values are graphed across the entire data set.

This equation also hides the identity of the Local Distribution Company whose data

60

is being used in conjunction with our signed license agreements. If this work could

be redone, this scaling would have taken place before the values were used by the

evolutionary programming engine and ensemble model instead of altering all of the

daily forecasts.

4.2 Evolutionary Programming Ensemble Model Design A

Ensemble model Design A, shown in Figure 4.1, was used to generate the results in

the beginning part of this chapter and was a combination of 10 if–statements and

one unguarded statement that was a weighted linear combination of the four base

component models with a constant offset. The results for the comparison in

operating areas Alpha, Bravo, and Charlie were obtained using a population size of

800 members, and the evolutionary programming engine was allowed to run for 100

generations. As will be discussed further in Section 5.3, a single ensemble model

takes 3–4 days on a 20-core cluster for the correct combination of chromosomes to

be determined and have all of the constants optimized. Ensemble model Design A

requires 45 constants to be determined. All of the constants were determined by the

evolutionary programming engine and fminunc. For a full description of how

fminunc works, refer to Section 3.2.3. On any given day, the forecast value from

evolutionary program ensemble model Design A could be the average of as many as

11 statements or as few as one. The statement that was a weighted linear

61

combination of the four component models makes sure that no matter what inputs

are given to the evolutionary programming ensemble model, an estimate will always

be produced, assuming there are not any problems in the rest of the process, either

in GasDay or at the Local Distribution Company. Some common problems include

network problems and incomplete data files.

Figure 4.1: Evolutionary programming ensemble model Design A using one unguarded

statement and 10 if–statements

Ensemble model Design A allows freedom in the constant values of the

if–statement bodies to produce a wide range of possible results. For a detailed

description of the if–statement bodies, see Section 3.2.2.

62

4.3 Comparing the Dynamic Post Processor and Evolutionary

Programming Ensemble Model Design A

Once the genetic algorithm determined the chromosomes that resulted in the lowest

error on the validation data, and the evolutionary programming engine had finished

fine-tuning the optimized values for the constants throughout all of the generations,

ensemble model Design A was evaluated on previously unseen test data from June

2012–June 2013. This type of testing is also referred to as out-of-sample testing or

ex-ante testing [17]. This testing took place in the same manner in which the

population members were evaluated during the training and validation process, but

on data that the population member had never seen before. The evaluation of the

model took place on a day–by–day basis. The forecast for each day was recorded,

and at the end of the testing data, the RMSE value for the year was calculated. The

RMSE value was also calculated for different combinations of days to provide a

detailed view of how the evolutionary programming ensemble model performed. A

few of these combinations include individual months and types of days. GasDay

studies different types of days to determine how well GasDay performs on days that

are unusual or days that have special characteristics that make producing a good

forecast difficult. For additional discussions on the unusual days that GasDay

considers, see [28, 40]. Table 4.2 shows the different types of days that GasDay

focuses on and a description of each type of day. The “First Warm Days” and

63

“First Cold Days” are harder to forecast due to the uncertainty of how many people

will use their furnaces and how many will open their windows. For a full description

of how the training and validation was performed, see Section 3.2.3. In addition to

the RMSE value, additional statistics were calculated to aid us in making an

informed decision about the quality of ensemble model Design A’s forecasts.

Most of the graphs presented in this chapter are in one of three different

forms. One is a time–series graph that shows different values for the Dynamic Post

Processor and the ensemble model design for the testing set. Another is a graph

showing the errors (forecast - actual flows) decomposed by month, along with the

total error for the entire period analyzed. The other type of graph shows the error

decomposed based on the type of day that it is, along with the total error across all

days. All three types of graphs are commonly used by GasDay to measure the

performance of its models, and these are commonly included in reports that GasDay

sends to Local Distribution Companies that license GasDay, to provide a detailed

description of how GasDay performed for each of their operating areas.

4.4 Operating Area Alpha

The first operating area that was chosen for a comparison between the Dynamic

Post Processor and ensemble model Design A was from a Local Distribution

Company that had a very high year–over–year growth from the Fall 2011-Spring

64

Table 4.2: “Unusual” day types, as considered by GasDay

Label on graphs Description of the type of day

All Days All of the days in the testing set. Here, the days of

comparison are from June 9, 2012, through June 8, 2013.

Coldest The 5% coldest days in the testing set.

Colder than Normal The 5% of the days in the testing set that were the

coldest compared to the normal temperature on that

day.

Warmer than Normal The 5% of the heating days in the testing set that were

the warmest compared the normal temperature on that

day.

Windiest Heating Days The 5% of the heating days in the testing set that were

the windiest.

Colder Today than Yester-

day

The 5% of the days in the testing set that have the

largest drop in temperature from yesterday to today.

Warmer Today than Yester-

day

The 5% of the days in the testing set that have the

largest increase in temperature from yesterday to today.

First Cold Days The first few days that have temperatures below 65◦F

after the summer months.

First Warm Days The first few days that have temperatures above 65◦F

after the winter months.

High Humidity Heating

Days

The 5% of heating days in the testing set that have the

highest humidity.

Low Humidity Heating

Days

The 5% of heating days in the testing set that have the

lowest humidity.

2012 compared to the Fall 2012–Spring 2013 heating seasons. In Figure 4.2, the use

per heating degree–day for the 2012-2013 heating season is much higher than the

use per heating degree-day in the 2011–2012 heating season. For a given

temperature, the flow for December 2012 is higher than the flow for December 2011,

indicating that there was an increase in usage per heating degree-day.

65

Figure 4.2: Scaled gas flow for two different years, operating area Alpha

In Figure 4.3, there are three graphs comparing the flow for the Local

Distribution Company’s database, the flow estimated from the Dynamic Post

Processor, and the flow estimated from ensemble model Design A. The other two

graphs in Figure 4.3 show a time–series plot of the errors of each forecasting

approach compared to the flow values that were in the database for the Local

Distribution Company. These values had all of the erroneous flows that might have

been entered into GasDay on site, and GasDay did not clean the data before the

comparisons were done. The graphs show that ensemble model Design A tracks the

actual flow quite well, as there are no large errors present during the testing year

compared to the Dynamic Post Processor.

66

Figure 4.3: Time-series of operating area Alpha from June 2012 - June 2013

67

In Figure 4.4, there are again three graphs showing different error values, but

they are decomposed by month for the same time–frame as shown in Figure 4.3.

June is not included because it was split over two years, but the data for the partial

months is included in the “All Days” section. Comparing both the Standard Error

values (top graph) and the RMSE values (bottom graph) for the entire data set,

ensemble model Design A forecasts were more accurate than the Dynamic Post

Processor overall. For a description of these error metrics, see Section 2.3. Ensemble

model Design A was not more accurate for every month, however. When looking at

the Standard Error values, October and May had very similar results between the

two models, while ensemble model Design A performed better in December, March,

and April. When looking at the RMSE values, evolutionary program model Design

A again had a lower error for “All Days,” but it performed worse than the Dynamic

Post Processor in the months of July, August, and November.

Figure 4.5 shows the same three error metrics as in Figure 4.4, but the values

are decomposed into the types of days described in Table 4.2. The graph of the

Standard Error values shows ensemble model Design A performed better than the

Dynamic Post Processor on days that were “Warmer than Normal,” “Warmer

Today than Yesterday,” and the “First Warm Days,” but the evolutionary

programming ensemble model was out-performed on the “Colder than Normal” days

and on the days that were “Colder Today than Yesterday.” However, when looking

68

Figure 4.4: Operating area Alpha error decomposed by months

at the RMSE values, ensemble model Design A performed better compared to the

Dynamic Post Processor on “All Days,” along with every other type of day except

for the “Colder than Normal” days and the “Windiest Heating Days.”

Based on Figures 4.4 and 4.5, ensemble model Design A performed better

than the current Dynamic Post Processor. However, as explained in Section 2.4 and

Section 5.3 in the next chapter, the increase in accuracy is not enough to overcome

the obvious problem of the amount of time that was needed to produce these

results. The lack of a significant increase also can be shown by running a T-test on

the data. Ensemble model Design A’s results for “All Days” were not found to be

statistically significant at conventional levels (5%).

69

Figure 4.5: Operating area Alpha error decomposed by type of days

4.5 Operating Area Bravo

The second operating area that was considered was from a Local Distribution

Company located in the northern part of the United States to see how well

ensemble model Design A performs in an operating area whose consumption is very

temperature dependent. Again, ensemble model Design A was determined by the

evolutionary programming engine running for 100 generations with a population size

of 800 members and took about three days on a 20-core cluster for the evolutionary

programming engine to reach 100 generations.

In Figure 4.6, there are three graphs comparing the flow estimates from the

Dynamic Post Processor, the flow estimates from ensemble model Design A, and the

70

flow values that were entered into the database by the Local Distribution Company.

At the end of October, there is a huge spike by the Dynamic Post Processor

compared to the flow value in the database. When we went back and looked at the

data, the error came from the fact that both the Artificial Neural Network and the

Additional Weather Inputs - Artificial Neural Network models had estimated that

the flow would be twice what it actually was. This error is also present in the other

two graphs. By looking at the bottom graph, percent error, it can be seen that the

Dynamic Post Processor overestimated the actual flow by about 130%. Due to this

percent error being above 100%, we know that the percent of these two models was

more than 50% when combined by the Dynamic Post Processor, compared to the

Linear Regression and Additional Weather Inputs - Linear Regression models. This

is known because by doubling two of the estimates, the error should have only been

100% when all four of the models are combined equally as described in Section 2.6.

When the models were re-evaluated at GasDay, this spike did not occur. Because

the spike could not be duplicated, it was determined that this Local Distribution

Company changed some data in the database but never re-fired the models. For this

reason, the specific day with the exceptionally large Artificial Neural Network and

the Additional Weather Inputs - Artificial Neural Network forecasts was removed

from the testing set.

71

Figure 4.6: Time-series of operating area Bravo from June 2012 - June 2013

72

The graphs in Figure 4.7 compare the Dynamic Post Processor and ensemble

model Design A errors decomposed by months. When looking at the months for the

Standard Error values in the top graph, ensemble model Design A produced results

that were a little worse than the Dynamic Post Processor. Ensemble model Design

A performed better in November and January, while the Dynamic Post Processor

performed better in almost every other month except for a few where the results

were almost identical. These same observations hold true for the RMSE values,

except that ensemble model Design A was greatly out–performed during the

summer months.

Figure 4.7: Operating area Bravo error decomposed by months

In Figure 4.8, the three graphs show the errors of both the Dynamic Post

Processor and ensemble model Design A for all of the days in the testing set, as well

73

as the 10 different types of unusual days explained in Table 4.2. For the Standard

Error values in the first graph, ensemble model Design A produced estimates that

were just as good as or better than the Dynamic Post Processor on the “Coldest”

days as well as on the days that were “Colder than Normal” and “Colder Today

than Yesterday.”

Figure 4.8: Operating area Bravo error decomposed by type of days

Unlike the results that are presented in Section 4.4, this comparison could go

either way when looking only at the calculated errors. The Dynamic Post Processor

performed better than ensemble model Design A overall, but ensemble model

Design A performed better in some months and some types of days, specifically the

“Coldest” days, where GasDay is expected to perform the best. However, the

estimates are not accurate enough to warrant replacing the current Dynamic Post

74

Processor. This can also be shown by computing the T-statistic for the testing year

of data. The computed T-value for ensemble model Design A’s forecasts for “All

Days” was not found to be statistically significant at conventional levels (5%).

4.6 Operating Area Charlie

A third operating area was chosen for comparing how well ensemble model Design A

preformed compared to the Dynamic Post Processor because this operating area has

typically had larger percent errors in the summer, instead of during the winter

months. This operating area provides yet another type of area to show how robust

the evolutionary programming engine is at producing ensemble models that are able

to perform well in many different situations. The forecasts for ensemble model

Design A were generated after the evolutionary programming engine ran for 100

generations for 800 different population members and took about three and a half

days on a 20-core cluster to be determined.

In Figure 4.9, there are three time–series plots. The top plot shows the

forecasts from the Dynamic Post Processor, ensemble model Design A, and the flow

values from the Local Distribution Company’s database. The bottom graph shows

the percent error between both approaches; the percent errors are actually smaller

during the winter months compared to the summer months, despite this utility

being located in the northern part of the United States of America.

75

Figure 4.9: Time-series of operating area Charlie from June 2012 - June 2013

76

Figure 4.10 displays the errors for both the Dynamic Post Processor and

ensemble model Design A decomposed by months. If we look at the Standard Error

values (top graph), the errors appear almost identical. When comparing the

individual months, there are months that the Dynamic Post Processor performs

better, but there are also months that ensemble model Design A performs better.

When looking at the RMSE values in the bottom graphs, we can see that the

Dynamic Post Processor performed better in September and January, while

ensemble model Design A performed better in March and April. The rest of the

months were very similar in performance between the two models.

Figure 4.10: Operating area Charlie error decomposed by months

The third group of graphs presented for this operating area are shown in

Figure 4.11 and shows the errors for both the Dynamic Post Processor and ensemble

77

model Design A for the unusual days specified in Table 4.2. As in the other

operating areas, there are types of days where the Dynamic Post Processor

performed better, but there are also types of days where ensemble model Design A

performed better. In the third graph, the Dynamic Post Processor performs better

on the “Coldest” days, while ensemble model Design A performed better on days

that were “Colder than Normal,” “Colder Today than Yesterday,” and “Warmer

Today than Yesterday.”

Figure 4.11: Operating area Charlie error decomposed by type of days

For this operating area, ensemble model Design A was able to produce

forecasts that were more accurate than the Dynamic Post Processor, but when a

T-test was performed on the results, the results were not found to be statistically

significant at conventional levels (5%). This significance level, along with the

78

amount of computer time needed, makes ensemble model Design A the poorer

choice of the two models to send to companies that license GasDay.

The fact that forecasts could be produced for three distinct operating areas

that were either as good as or better than the Dynamic Post Processor suggests

that this approach could be used on all 170 operating areas for which GasDay

forecasts natural gas demand. To have evolutionary programming replace the

current Dynamic Post Processor, testing would have to be done on all of the

operating areas GasDay works with. However, by randomly picking three different

operating areas that all had different characteristics, it shows that there is a chance

that evolutionary programming could replace the Dynamic Post Processor, but

additional testing is needed.

4.7 More Reasonable Results

The results presented in the rest of this chapter represent not the best results in

terms of accurate forecasts, but in terms of explainable forecasts. Figure 4.12

shows the forecast flow from all 10 of the if–statements bodies regardless if the

if–statement is true or false, the weighted linear combination of the four base

component models and the overall estimate produced by ensemble model Design A

for operating area Alpha. The weighted linear combination of the four component

models is dominating the overall estimate, while some of the if–statement bodies

79

Figure 4.12: The individual if–statement estimates over the testing data from ensem-

ble model Design A for operating area Alpha

produce negative results. The combination of these two facts makes explaining the

actual ensemble model extremely difficult, because normally an ensemble model

wants all of the individual components to be good estimates in their own right [46].

To address this concern, changes were made in the evolutionary

programming ensemble model design to add the average of the if–statements to the

weighted linear combination of the four base component models. Changes were also

made to insure that all of the coefficients were positive. This change also drove the

component estimates closer together. A visual representation of this is shown in

Figure 4.13 and is further referred to as ensemble model Design D. This change also

made sure that if none of the if–statements were true, an estimate would still be

80

produced that is reasonable, unlike what is possible based on the design discussed in

the three operating-areas in the beginning of this chapter and shown in Figure 4.12

for operating area Alpha. The results produced by this change were not as accurate

as previously discussed, so there is a trade-off between reasonability and results,

which might benefit from further study. For the comparison, operating area Alpha

was re-evaluated using this change in the code and compared to the results from the

Dynamic Post Processor.

Figure 4.13: Evolutionary programming ensemble model Design D adding the average

of the if-statements to the weighted linear combination of the 4 component models

In Figure 4.14, there are three time–series plots. The top plot shows the

forecasts from the Dynamic Post Processor, ensemble model Design D and the flow

values from the database. The bottom graph shows the percent error between both

approaches; the percent errors are close during the middle of winter, but there is a

huge difference in June, July, and August.

81

Figure 4.14: Time-series of operating area Alpha from June 2012 - June 2013

82

Figure 4.15 displays the errors for both the Dynamic Post Processor and

ensemble model Design D decomposed by months. If we look at the Standard Error

values, the errors for the Dynamic Post Processor are lower for every month, with

November having the biggest difference between the Dynamic Post Processor and

ensemble model Design D. The RMSE values in the bottom graph tell the same

story. The Dynamic Post Processor performed better in every month. When we

look at the Mean Error values in the middle graph, overall, ensemble model Design

D did not perform much worse than the current Dynamic Post Processor, but the

individual months tell a different story. There are months where ensemble model

Design D had values that were better than the Dynamic Post Processor, September

and February, but overall, it had Mean Errors that were larger than the Dynamic

Post Processor.

The third group of graphs presented for this operating area are shown in

Figure 4.16. This figure shows the errors for both the Dynamic Post Processor and

ensemble model Design D for the unusual days specified in Table 4.2. Again, the

Dynamic Post Processor performed better overall and on almost every type of

unusual day except for “Low Humidity Heating Days.”

As stated previously, the accuracy of this approach is not as good when

compared with ensemble model Design A that was discussed in the beginning of this

chapter, but the reasonability of the weighted linear combination of the four

83

Figure 4.15: Operating area Alpha error decomposed by months

component models and 10 if–statements is higher. The results were not as accurate

because by excluding part of the search space of the evolutionary programming

engine, it excluded the area that was the most accurate, this can be further

explained by Koza et al. They discuss a ratio between the knowledge the

evolutionary program determines on its own divided by the knowledge that is

supplied by the user [21]. By restricting the search space, we are adjusting this ratio

away from pure evolutionary programming.

The increase in reasonability can be seen in Figure 4.17, where the estimate

for the weighted linear combination of the four component models is very close to

the overall estimate generated by ensemble model Design D with only small changes

made based on the average of the if–statements that were true. All but a couple of

84

Figure 4.16: Operating area Alpha error decomposed by type of days

the if–statements are grouped together, with one of them, If–Statement 8, being a

very good estimate in its own right. Most of the other if–statements are grouped

together and their forecasts are quite a bit lower than the overall estimate generated

by ensemble model Design D. This makes ensemble model Design D undesirable

according to [46], but this design was the closest any of the experimented designs

could come to quality forecasts across all models.

Figure 4.17 graphs the estimates for every day in the testing set regardless if

the if–statement contributed to the overall forecast value or not. In Figure 4.18, the

time–series chart shows a green dot every time that the conditional part of the

if–statement is true and a red dot every time the conditional part of the

85

Figure 4.17: The individual if–statement estimates over the testing data from the

design that averaged all 10 if–statements and added the weighted linear combination

of the four base component models

if–statement is false. There are only two if–statements that switch for the entire

year, If–Statements 1 and 2. Therefore, all 10 of the if–statements along with the

weighted linear combination of the four component models are true 4% of the time,

while 9 of the if–statements and the weighted linear combination of the four

component models are true 96% of the time. Khan et al., did research related to the

topology of an artificial neural network using a neuro-evolutionary technique and

discovered that the best performing designs statically used 5% – 10% of the input

nodes that were initially available [19]. This is about the same results that ensemble

model Design D demonstrated where the if-statements were switched about 4% of

the time. The work done by Khan et al. is not a direct link to this specific case but

86

there is a parallel between the two bodies of work. This parallel is a relationship

between what is expected and what the evolutionary program determines is the

optimal solution. The if–statements should allow the ensemble model to make

adjustments to the overall forecast while the addition of nodes in the artificial

neural network should allow more complex relationships to be determined. Since the

actual usage of the predetermined solutions was minimal, it shows that the

evolutionary program will make any changes required to produce the lowest cost

function, even if it uses a simpler design.

Figure 4.18: The individual if–statement evaluations for ensemble model Design D

for every day in the testing set

87

The conditional part of If–Statements 1 and 2 are shown in Listing 4.1.

IF LR6 days ago< C × Recently Tuned Error, and

IF ANN3 days ago< C × Recently Tuned Error.

Listing 4.1: If–Statements 1 and 2 from ensemble model Design D

The if–statements were false most of the time because the estimates from the base

component models were greater than the scaled Recently Tuned Error. For a

description of the Recently Tuned Error variable, refer to Section 3.2.1. This held

true until the beginning of summer when the base component models were

estimating lower gas consumption than the scaled Recently Tuned Error, which

grew over the winter months. If ensemble model Design D would have continued to

be evaluated on data, eventually the if–statements would turn off again as the

Recently Tuned Error would become smaller than the base component estimates.

While changes from ensemble model Design A were able to be made to

increase the reasonability of the results, work still needs to be done to create an

evolutionary programming ensemble model design that might eventually replace the

Dynamic Post Processor. This work includes making sure that a different number of

if-statements are evaluating true on different type of days and have all of the

individual components producing a reasonable estimate.

88

4.8 Conclusion

This chapter presented results using ensemble model Design A, the most accurate

during testing, and the results from ensemble model Design D, the most reasonable

during testing. The results in this chapter were generated for Day 0, but the process

can be developed for the other seven days that GasDay forecasts. To determine how

well the evolutionary programming ensemble model design performs for the other

seven days, the same types of graphs would be generated and analyzed to see the

overall results from the evolutionary programming engine for the eight different time

horizons.

The next chapter will also focus on different ensemble model designs that

were used while working on this thesis. The designs did not perform as accurately

or produce forecasts that were as reasonable as the designs that were discussed in

this chapter. They are included to provide additional assistance to others who

would like to expand and build upon the work that is presented in this thesis so

time is not wasted copying work that was already completed.

89

CHAPTER 5

ADDITIONAL EVOLUTIONARY PROGRAMMING ENSEMBLE

MODEL DESIGNS

This chapter will discuss additional ensemble model designs that were

evaluated throughout this thesis. The chapter is broken up into sections based on

the design of the evolutionary programming ensemble model. This chapter also

gives a description of the time and computing power that was needed to complete

the work for this thesis.

5.1 Ensemble Model Design B (average) and C (sum)

Table 4.1 presents the RMSE values from the three best performing ensemble model

designs we considered in Chapter 4. Diagrams of the other two evolutionary

programming ensemble model designs that were not used to produce the results in

the first half of Chapter 4 are shown in Figures 5.1 and 5.2.

5.1.1 Ensemble Model Design B

The second ensemble model design that was considered is a linear combination of

the four current GasDay models. The coefficients for the four base component

90

Figure 5.1: Evolutionary programming ensemble model Design B using averages

models are determined by the average of up to five if–statement bodies, as

suggested by Figure 5.1.

As shown in Table 4.1, ensemble model Design B did not perform very well.

There were only five if–statements assigned to each coefficient, and those five

if–statements had to account for a wide range of inputs and produce a wide range of

values. Even though there were only five if–statements assigned to each model

coefficient, there were still 20 if–statements for the entire population member, and

fminunc had to determine 81 constants for each member of the population.

91

5.1.2 Ensemble Model Design C

The third ensemble model design that was considered was identical to ensemble

model Design B, except that the coefficients of the four base component models

were a summation of all of the executed if–statement bodies, instead of the

average. The summation of the if–statement bodies did make for a more accurate

design as discussed earlier but the design is less resistant to bad data. It is less

resistant to bad data because the average limited the error generated by one

if–statements by the number of if–statements that were true. The summation of the

if–statements allowed each statement to not have to generate an estimate of the

ideal coefficient value, but if an if–statement was not very good at producing an

estimate of the coefficient, the evolutionary programming engine could adjust the

if–statement constants to provide an offset to the other four statements. As with

ensemble model Design B that was tried, ensemble model Design C resulted in each

population member having 20 if–statements and a total of 81 constants. All of the

constants were determined by fminunc to minimize the error on the training data.

A diagram of ensemble model Design C is shown in Figure 5.2.

The next section of this chapter covers a variation of ensemble model Design

D that was presented in Section 4.7. Though this design was not tested thoroughly,

it was run at the end of the thesis to see if a better design could be found based on

increased knowledge and using a model that was known to be accurate.

92

Figure 5.2: Evolutionary programming ensemble model Design C using summations

5.2 Ensemble Model Design E

A variation of the design that was discussed in Section 4.7 was to remove the linear

combination of the four base component models, and replace it with the estimate

that was generated by the Dynamic Post Processor. Ensemble model Design E

should have produced forecasts no worse than the forecasts that were generated by

the Dynamic Post Processor because there was more freedom to adjust the

estimates in addition to what the Dynamic Post Processor already does. A diagram

showing this design is in Figure 5.3.

This ensemble model design was generated by the evolutionary programming

engine using a population size of 800 members for 100 generations for operating

93

Figure 5.3: Evolutionary programming ensemble model Design E using the Dynamic

Post Processor

area Alpha, and Figure 5.4 shows the error of ensemble model Design E decomposed

by months. The design was able to perform better than just the Dynamic Post

Processor across “All Days,” as the if–statements allowed another mechanism to

further model the errors for this specific operating area. Ensemble model Design E

performed worse than the current Dynamic Post Processor during the first few

months of comparison, but once the weather turned colder, ensemble model Design

E performed the same or better for every month.

5.3 CPU Time

As mentioned previously in Section 2.4 and throughout this thesis, all of the results

presented in this thesis were obtained by allowing the evolutionary programming

engine to run for 100 generations on a population size of 800 members, and the

94

Figure 5.4: Operating area Alpha error decomposed by month for ensemble model

Design E

constants were allowed to be optimized up to 1000 times per generation using

fminunc. This size of a run took a lot of CPU time to complete. On a two–core

machine, it took 6.5–7.5 hours per generation. This amount of time is too long for

multiple runs. This is why the GasDay 20–core cluster was used. The head node of

the cluster was running Windows XP, while all 20 of the worker nodes were running

Windows 7. 16 of the workers were Intel Xeon processors running at 2.40 GHz and

four of the workers were Intel i7 processors running at 3.40GHz. Using the cluster, a

single generation of 800 members could be completed in about 55 minutes.

For this thesis, five different runs were completed for a total of 500

generations. The code for this thesis was structured so that after every generation,

the population members and constants were saved to a *.mat file which allowed the

95

different runs to be completed on multiple computers simply by moving the *.mat

files from one machine to another. This also provided a backup in case the cluster

or MATLAB crashed. This is also known as checkpointing [4]. This implementation

allowed normally idle computers to be used until the cluster was finished on the

previously assigned run and then move the *.mat files and start at the generation at

which the other computer left off. This saved some time because multiple runs were

being completed at the same time, even though the throughput on the individual

computers was 6–7 times slower than the cluster.

5.4 Conclusion

This chapter discussed the evolutionary programming ensemble model designs that

produced results that were not as accurate as ensemble model Design A or as

reasonable as ensemble model Design D that were discussed in Chapter 4. This

chapter also discussed the computer power that was needed to generate the results

presented in this chapter and in Chapter 4. The next chapter will conclude this

thesis with overall observations of the work presented, and discuss how this thesis

can be used as a foundation for future work in the area of natural gas forecasting

using evolutionary programming.

96

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The goal of this thesis was to create individual ensemble models for different

operating areas using evolutionary programming that would produce accurate gas

demand forecasts for time horizon 0. By using work presented by Koza et al. [21]

and Roebber [30], an evolutionary programming engine and an evolutionary

programming ensemble model design were created that were able to produce results

that were more accurate than the current Dynamic Post Processor. These results

however, were not statistically more accurate than the current Dynamic Post

Processor as shown in Chapter 4. The produced results also were not reasonable

when we looked past the raw error values, and the ensemble models took days of

computing power on a cluster to be determined.

This work also expanded the technique of evolutionary programming into a

previously unexplored area of natural gas forecasting. This thesis also demonstrated

how an evolutionary program responds to using inputs that are already good

solutions to the problem that is trying to be solved. As discussed in Section 4.7, this

thesis also worked to apply ensemble model forecasting theory to evolutionary

97

programming by trying to make all of the individual if–statements reasonable

estimators in their own right [46].

Evolutionary Programming was first introduced in Chapter 2; its extension

to natural gas demand forecasting was presented in Chapter 3. Chapter 3 gave the

details of how the evolutionary programming engine functions as well as the design

of the evolutionary programming ensemble model that was used to produce the

results in the first part of Chapter 4. The second half of Chapter 4 along with

Chapter 5 showed ensemble model designs that were not able to produce results

that were as accurate as the Dynamic Post Processor. The results in the first half of

Chapter 4 showed through both Standard Error (Std Error) as well as Root Mean

Square Error (RMSE) that ensemble model Design A was able to forecast daily

natural gas demand through the different if–statements that were created and

evolved by the genetic algorithm. However, these results were not statistically

significant, required too much computer power to be done for all approximately 170

operating areas where GasDay forecasts natural gas demand, and did not have

individually reasonable component model estimates.

6.2 Future Research

Although the work presented in this thesis was able to produce forecasts that were

more accurate than the Dynamic Post Processor based on pure error calculations for

98

three operating areas that each had a unique characteristic, this work still

represents the first approach of using evolutionary programming to forecast natural

gas demand; there are many improvements that can be considered. We list several

possible future research areas below.

A full exploration of the potential of different ensemble model designs and

evolutionary programming requires more computing power than was available for

this work. We would like to explore more generations and larger populations.

As mentioned in Chapter 4, ensemble model Design A was chosen because it

performed the best of ensemble model Designs A, B, and C in an experiment using

a small population size and a small number of generations. Additional testing was

done with other designs, which may yet offer further accuracy and speed

performance improvements. These designs may also build on the explainable results

that were presented in Section 4.7, whose overall accuracy, individual model

forecasts, and activity of the if–statements were not as good as desired. One

approach to increase the number of if–statements that are actively switching is to

add to the cost function a term that reflects the number of if–statement

combinations that are present during testing and validation. This is similar to the

regularization technique discussed in Section 2.2, where the squared values of the

coefficients are added to the cost function to help reduce the magnitude of the

coefficients.

99

Additional research can be done to determine the optimal number of years

for training of the constants and for validation. In Chapters 3, 4, and 5, it was

mentioned that three years of data was used for training the constants, and one year

was used for validation. Many of the Local Distribution Company’s databases have

data going back over a decade. Should more years of data be used to help increase

the accuracy of the evolutionary programming ensemble model, as it would have

been exposed to more years of data for both training as well as validation? A

variant might be to use bootstrapping [20] to determine the values of the constants.

If the constants are close, the model is more likely to move to the next generation,

compared to a model whose constants are vastly different from one training data set

to another.

Work can also be done to incorporate surrogate data. Surrogate data

transforms data from one operating area to another by changing the characteristics

of the data to match the current operating area [3]. This allows a richer set of data

to be used. This is especially true for unusual days. Normally, a database only has a

few unusual days, so increasing the number of unusual days on which the ensemble

models can be trained increases the accuracy of the ensemble models in the future

since it will have been trained on more of the days.

As mentioned in Section 3.2.1, specific inputs were chosen because they have

been known to be important for forecasting natural gas demand, but the Local

100

Distribution Company’s databases have additional data sets that can be used. An

additional possible input is the 30-year expected average temperature. This

temperature is used for determining unusual day types, but is not used as an input

to the ensemble model. Other possible inputs are the component model forecasts

that were made for the specific day at different time horizons. If we are trying to

forecast the demand for today, we could also use the base component estimates from

the previous seven time-horizon forecasts for the specific day as inputs.

Throughout this thesis, work was done on both the type of if–statement

bodies, as well as the total number of if–statements. In Chapter 5, it was discussed

that only using five if–statements seemed insufficient, but is 10 the ideal number to

use? Work can also be done to allow the evolutionary programming engine to

determine the number of statements that are present in each ensemble model, in

addition to determining the variables that are used and how they are combined. An

example of this is in Section 5.2, where ensemble model Design D used the forecasts

of the Dynamic Post Processor in place of the linear combination of the four base

component models to produced forecasts that were more accurate than just the

Dynamic Post Processor.

In conclusion, the goal of this thesis was to use the concept of evolutionary

programming to develop an ensemble model that was able to produce accurate

forecasts for different operating areas where GasDay forecasts demand. The results

101

presented in Chapter 4 showed that the chosen evolutionary programming ensemble

model design did perform better than the current Dynamic Post Processor when

looking at the error values. However, the amount of time required to produce the

results and the reasonability of the individual if–statement forecasts were not

enough to support the claim that an evolutionary programming approach is ready

for prime time.

102

BIBLIOGRAPHY

[1] J. Ai-ping and H. Feng-wen, “Methods for Optimizing Weights of Wavelet

Neural Network Based on Adaptive Annealing Genetic Algorithm,” Industrial

Engineering and Engineering Management, pp. 1744–1748, 2009.

[2] ANGA.org, “Ratemaking for Energy Pipelines,”

http://www.aga.org/our-issues/RatesRegulatoryIssues/Documents/

Ratemaking%20for%20Energy%20Pipelines.pdf, 2013, accessed: 4/2/2014.

[3] J. Armstrong, Principles of Forecasting - A Handbook for Researchers and

Practitioners. Boston, MA: Kluwer Academic, 2001.

[4] M. Bouguerra, A. Gainaru, L. Gomez, F. Cappello, S. Matsuoka, and

N. Maruyama, “Improving the Computing Efficiency of HPC Systems using a

Combination of Proactive and Preventive Checkpointing,” IEEE 27 th

International Symposium on Parallel & Distributed Processing, pp. 501–512,

2013.

[5] M. Butler and D. Kazakov, “The Effects of Variable Stationarity in a Financial

Time-Series on Artificial Neural Networks,” Computational Intelligence for

Financial Engineering and Economics, pp. 1–8, 2011.

[6] A. Ceballos, “Natural Gas & Shale Gas Drilling [Hydraulic Fracturing],”

http://tnsuniversitycenter.com/2012spring/?p=760, 2012, accessed:

6/19/2013.

[7] M. Chu-Carroll, “Science Blogs,” http://scienceblogs.com/goodmath/2006/

11/02/the-c-is-efficient-language-fa/, 2006, accessed: 1/15/2014.

[8] E. Contreras-Hernandez and J. Cedeno-Maldonado, “A Sequential

Evolutionary Programming Approach to Profit-Based Unit Commitment,”

Transmission & Distribution Conference and Exposition, pp. 1–8, 2006.

[9] L. Dalton and E. Dougherty, “Bayesian Minimum Mean-Square Error

Estimation for Classification Error Part I: Definition and the Bayesian MMSE

Error Estimator for Discrete Classification,” IEEE Transactions, vol. 59, no. 1,

pp. 115–129, 2011.

[10] Dictionary.com, “BTU—define BTU at dictionary.com,”

http://www.aga.org/our-issues/RatesRegulatoryIssues/Documents/Ratemaking%20for%20Energy%20Pipelines.pdf
http://www.aga.org/our-issues/RatesRegulatoryIssues/Documents/Ratemaking%20for%20Energy%20Pipelines.pdf
http://tnsuniversitycenter.com/2012spring/?p=760
http://scienceblogs.com/goodmath/2006/11/02/the-c-is-efficient-language-fa/
http://scienceblogs.com/goodmath/2006/11/02/the-c-is-efficient-language-fa/

103

http://dictionary.reference.com/browse/btu, 2013, accessed: 6/25/2013.

[11] DTEEnergy.com, “Natural Gas Processing, Delivery and Storage,”

http://www.dteenergy.com/residentialCustomers/productsPrograms/

gas/gasDelivery.html, 2013, accessed: 6/19/2013.

[12] Eia.gov, “Industrial Sector Natural Gas Use Rising,”

http://www.eia.gov/-todayinenergy/detail.cfm?id=11771, 2013,

accessed: 8/20/2013.

[13] L. J. Fogel, P. J. Angeline, and T. Back, Evolutionary Programming V:

Proceedings of the Fifth Annual Conference on Evolutionary Programming

(Complex Adaptive Systems). San Diego, CA: The MIT Press, October 1996.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning. Boston, MA: Addison-Wesley Publication, 1989.

[15] J. G. D. Gooijer and R. J. Hyndman, “25 Years of Time Series Forecasting,”

International Journal of Forecasting, vol. 22, pp. 443–473, 2006.

[16] P. Guo, X. Wang, and Y. Han, “The Enhanced Genetic Algorithms for the

Optimization Design,” Biomedical Engineering and Informatics, vol. 7, pp.

2990–2994, 2010.

[17] J. Heaton, Introduction to Neural Networks with Java. Chesterfield, MO:

Heaton Research, 2005.

[18] Justjoules.org, “Just Joules – Dedicated to Unifying Our Energy Terminology,”

http://www.http://www.justjoules.org/conversions.html, 2007,

accessed: 2/13/2014.

[19] G. Khan, S. Khan, and F. Ullah, “Short-Term Daily Peak Load Forecasting

using Fast Learning Neural Network,” Intelligent Systems Design and

Applications, pp. 843–848, 2011.

[20] J. P. Kleijnen, A. J. Feelders, and R. C. Cheng, “Bootstrapping and Validation

of Metamodels in Simulation,” Simulation Conference Proceedings, vol. 1, pp.

701–706, 1998.

[21] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza,

http://dictionary.reference.com/browse/btu
http://www.dteenergy.com/residentialCustomers/productsPrograms/gas/gasDelivery.html
http://www.dteenergy.com/residentialCustomers/productsPrograms/gas/gasDelivery.html
http://www.eia.gov/-todayinenergy/detail.cfm?id=11771
http://www.http://www.justjoules.org/conversions.html

104

Genetic Programming IV: Routine Human-Competitive Machine Intelligence.

Springer, March 2005.

[22] L. Ljung, System Identification: Theory for the User. Upper Saddle River, NJ:

Prentice Hall, 1999.

[23] Mathworks.com, “Unconstrained Nonlinear Optimization Algorithms,”

http://www.mathworks.com/help/optim/ug/

unconstrained-nonlinear-optimization-algorithms.html#brnoxxo,

accessed: 11/22/2013.

[24] NaturalGas.org, “Background,”

http://www.naturalgas.org/overview/background.asp, 2013, accessed:

7/3/2013.

[25] ——, “The Transportation of Natural Gas,”

http://www.naturalgas.org/naturalgas/transport.asp, 2013, accessed:

7/3/2013.

[26] B. Otok, D. A. Lusia, Suhartono, R. Faulina, Sutikno, and H. Kuswanto,

“Ensemble Method Based on ARIMA-FFNN for Climate Forecasting,”

Statistics in Science, Business and Engineering, pp. 10–12, 2012.

[27] X. Pan and J. Wu, “Bayesian Neural Network Ensemble Model Based on

Partial Least Squares Regression and its Application in Rainfall Forecasting,”

Computational Sciences and Optimization, vol. 2, pp. 49–52, 2009.

[28] B. Pang, “The Impact of Additional Weather Inputs on Gas Load

Forecasting,” Master’s thesis, Marquette University, Department of Electrical

and Computer Engineering, Milwaukee, WI, August 2012.

[29] P. J. Roebber, “Seeking Consensus: A New Approach,” Monthly Weather

Review, vol. 138, pp. 4402–4415, 2010.

[30] ——, “Using Evolutionary Programming to Generate Skillful Extreme Value

Probabilistic Forecasts,” Presentation to GasDay, June 2013.

[31] R. Sathyanarayan, H. Birru, and K. Chellapilla, “Evolving Nonlinear

Time-Series Models using Evolutionary Programming,” Evolutionary

Computation, vol. 1, pp. 243–250, 1999.

http://www.mathworks.com/help/optim/ug/unconstrained-nonlinear-optimization-algorithms.html#brnoxxo
http://www.mathworks.com/help/optim/ug/unconstrained-nonlinear-optimization-algorithms.html#brnoxxo
http://www.naturalgas.org/overview/background.asp
http://www.naturalgas.org/naturalgas/transport.asp

105

[32] A. Sheta and A. Mahmoud, “Forecasting using Genetic Programming,” System

Theory, 2001. Proceedings of the 33rd Southeastern Symposium, pp. 343–347,

2001.

[33] Y. Tai-shan, “An Improved Genetic Algorithm and Its Blending Application

with Neural Network,” Intelligent Systems and Applications, pp. 1–4, 2010.

[34] J. Taylor and R. Buizza, “Neural Network Load Forecasting with Weather

Ensemble Predictions,” IEEE Transactions, vol. 17, no. 3, pp. 626–632, 2002.

[35] TeXample.net, “Neural Network,”

http://www.texample.net/tikz/examples/neural-network/, accessed:

6/10/2013.

[36] Tribal Energy and Environmental Information, “Oil and Gas Resources and

Their Uses,” http://teeic.anl.gov/er/oilgas/restech/uses/index.cfm,

2013, accessed: 6/25/2013.

[37] U.S. Energy Information Administration (EIA), “How Much Natural Gas is

Consumed (used) in the U.S.?”

http://www.eia.gov/tools/faqs/faq.cfm?id=50&t=8, 2013, accessed:

6/17/2013.

[38] A. Vahidi, A. Stefanopoulou, and H. Peng, “Recursive Least Squares with

Forgetting for Online Estimation of Vehicle Mass and Road Grade: Theory

and Experiments,” Vehicle System Dynamics, vol. 43, no. 1, pp. 31–55, 2005.

[39] V. Vapnik and C. Cortes, “Support - Vector Networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.

[40] S. R. Vitullo, “Disaggregating Time Series Data for Energy Consumption by

Aggregate and Individual Customer,” Ph.D. dissertation, Marquette University,

Department of Electrical and Computer Engineering, Milwaukee, WI, March

2011.

[41] L. Wang and J. Wu, “Application of Hybrid RBF Neural Network Ensemble

Model Based on Wavelet Support Vector Machine Regression in Rainfall Time

Series Forecasting,” Computational Sciences and Optimization, pp. 867–871,

2012.

http://www.texample.net/tikz/examples/neural-network/
http://teeic.anl.gov/er/oilgas/restech/uses/index.cfm
http://www.eia.gov/tools/faqs/faq.cfm?id=50&t=8

106

[42] S. Wang, B. Meng, and H. Tian, “A Modeling Method Based on Wavelet

Support Vector Machine,” Control and Decision Conference (CCDC), pp. 26 –

28, 2010.

[43] G. Wei, “Study on Genetic Algorithm and Evolutionary Programming,”

Parallel Distributed and Grid Computing (PDGC), pp. 762–766, 2012.

[44] C. R. Wilkes, M. D. Koontz, and I. H. Billick, “Analysis of Sampling Strategies

for Estimating Annual Average Indoor NO2 Concentrations in Residences with

Gas Ranges,” Journal of the Air and Waste Management Association, vol. 46,

no. 9, pp. 853 – 860, 1996.

[45] C. Woodford, “How Neural Networks Work - A Simple Introduction,” http:

//www.explainthatstuff.com/introduction-to-neural-networks.htm,

2013, accessed: 6/10/2013.

[46] World Meteorological Organization, Guidelines on Ensemble Prediction

Systems and Forecasting. Geneva, Switzerland, 2012.

[47] J. Wu, L. Huang, and X. Pan, “A Novel Bayesian Additive Regression Trees

Ensemble Model Based on Linear Regression and Nonlinear Regression for

Torrential Rain Forecasting,” Computational Science and Optimization, vol. 2,

pp. 466–470, 2010.

[48] K. Yang and C. Shahabi, “On the Stationarity of Multivariate Time Series for

Correlation-Based Data Analysis,” Data Mining, pp. 27–30, 2005.

[49] L. Zhang, W. Zhou, and L. Jiao, “Wavelet Support Vector Machine,” Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 34 – 39, 2004.

[50] F. Zheng and S. Zhong, “Time Series Forecasting using an Ensemble Model

Incorporating ARIMA and ANN based on Combined Objectives,” Artificial

Intelligence, Management Science and Electronic Commerce, pp. 2671–2674,

2011.

http://www.explainthatstuff.com/introduction-to-neural-networks.htm
http://www.explainthatstuff.com/introduction-to-neural-networks.htm

	Marquette University
	e-Publications@Marquette
	Using Evolutionary Programming to Increase the Accuracy of an Ensemble Model For Energy Forecasting
	James Gramz
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER THESIS INTRODUCTION
	Gas Industry
	Need for Accurate Forecasting of Natural Gas
	GasDay Lab
	Problem with the Ensemble Model
	Proposed Solution
	Thesis Outline

	CHAPTER CURRENT PRACTICES FOR ENSEMBLE FORECASTING
	Ensemble Forecasting Introduction
	Ensemble Techniques
	Error Modeling Techniques
	Genetic Algorithm
	Evolutionary Programming
	Current Ensemble Model
	Conclusion

	CHAPTER EVOLUTIONARY PROGRAMMING APPLIED TO NATURAL GAS FORECASTING
	Rationale for this Work
	Evolutionary Programming Engine and the Evolutionary Programming Ensemble Model
	Inputs into the Evolutionary Programming Engine and Ensemble Model
	Output of the Evolutionary Programming Engine
	Evolutionary Programming Engine

	Small Scale Test
	Advancements to Roebber's Work with Evolutionary Programming
	Conclusion

	CHAPTER QUALITY OF FORECASTS FROM THE EVOLUTIONARY PROGRAMMING ENSEMBLE MODEL
	Determination of the Most Accurate Design
	Evolutionary Programming Ensemble Model Design A
	Comparing the Dynamic Post Processor and Evolutionary Programming Ensemble Model Design A
	Operating Area Alpha
	Operating Area Bravo
	Operating Area Charlie
	More Reasonable Results
	Conclusion

	CHAPTER ADDITIONAL EVOLUTIONARY PROGRAMMING ENSEMBLE MODEL DESIGNS
	Ensemble Model Design B (average) and C (sum)
	Ensemble Model Design B
	Ensemble Model Design C

	Ensemble Model Design E
	CPU Time
	Conclusion

	CHAPTER CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Research

	Bibliography

