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Membrane Properties of NMDA-Activated Lamprey 
Spinal Neurons 

C. R. Murphey 
Department of Physiology and Biophysics, University of Texas Medical Bmnch, 
Galveston, TX 77555-0641 USA 

L. E. Moore 
Department of Physiology aHd Biophysics, University of Texas Medical Branch, 
Galveston, TX 77555-0641 USA and 
Departmellt of Neurobiology, CNRS, University of Remles 1, 
35042 Rennes Cedex France 

J. T. Buchanan 
Departmwt of Biology, Marquette University, Milwaukee, WI53233 USA 

Parameter optimization methods were used to quantitatively analyze 
frequency-domain-voltage-clamp data of NMDA-activated lamprey 
spinal neurons simultaneously over a wide range of membrane poten
tials. A neuronal cable model was used to explicitly take into account 
receptors located on the dendritic trees. The driving point membrane 
admittance was measured from the cell soma in response to a Fourier 
synthesized point voltage clamp stimulus, The data were fitted to an 
equivalent cable model consisting of a single lumped soma compart
ment coupled resistively to a series of equal dendritic compartments. 
The model contains voltage-dependent NMDA sensitive (I"MDA), slow 
potassium Ud, and leakage (Ie) currents. Both the passive cable proper
ties and the voltage dependence of ion channel kinetics were estimated, 
including the electrotonic structure of the cell, the steady-state gating 
characteristics, and the time constants for particular voltage- and time
dependent ionic conductances. An alternate kinetic fonnulation was 
developed that consisted of steady-state values for the gating parame
ters and their time constants at half-activation values as well as slopes 
of these parameters at half-activation. This procedure allowed inde
pendent restrictions on the magnitude and slope of both the steady
state gating variable and its associated time constant. Quantitative 
estimates of the voltage-dependent membrane ion conductances and 
their kinetic parameters were used to solve the nonlinear equations 
describing dynamic responses. The model accurately predicts current 
clamp responses and is consistent with experimentally measured TTX-
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Analysis of NMDA-Activated Lamprey Spinal Neurons 487 

resistant NMDA-induced patterned activity. In summary, an analysis 
method is developed that provides a pragmatic approach to quantita
tively describe a nonlinear neuronal system. 

1 Introduction ~~~~~~~ 

An understanding of the locomotion neural network is critically depen
dent on the biophysical properties of individual neurons. Although quan
titative methods have been used on a variety of different neurons, it 
continues to be difficult to obtain sufficient data to completely charac
terize intact neurons with their complex dendritic trees (Jonas et al. 1993; 
Rapp et al. 1994). Previous studies using frequency domain techniques 
have demonstrated a way to explicitly take into account the dendritic 
cable properties (Moore and Buchanan 1993), This approach provides 
a substantial improvement over conventional techniques and provides a 
partial solution to the space clamp problems of highly branched neu
rons. This paper presents a detailed quantitative kinetic analysis of 
voltage-dependent conductances using the above combination voltage
clamp-frequency-domain technique. The analysis provides quantitatively 
determined parameters from frequency domain data for a previously pro
posed nonlinear model of N-methyl-D-aspartate (NMDA)-activated con
ductances (Moore and Buchanan 1993). 

The goal of this analysis is to obtain a minimal nonlinear kinetic model 
of individual intact neurons having a dendritic cable. Fundamentally, 
our approach is analogous to that used by Hodgkin and Huxley (HH) 
who measured linear kinetic parameters at different voltage clamp po
tentials to obtain the voltage dependence of the rate constants (Hodgkin 
and Huxley 1952). In the HH analysis the voltage dependence of the 
rate constants was empirically described by combinations of exponen
tial functions that provided the principal nonlinear behavior of the basic 
membrane equations. The quantitative analysis of neurons is more dif
ficult since the ionic conductances are distributed over cable structures. 
Nevertheless, a comparable formalism can be used, namely the determi
nation of linear kinetic parameters at fixed membrane potentials using 
small-signal linear analysis methods rather than relaxation responses to 
step potential functions. We obtain the whole cell driving point charac
teristic by measuring the soma membrane current in response to a small
signal soma voltage clamp stimulus composed of a sum of sinusoids 
superimposed on a steady clamp potential. The response and stimulus 
are transformed to the frequency domain by a fast Fourier method and 
at each given frequency the ratio of the measured current to the stimulus 
voltage gives the driving point admittance of the cell. Similar to real time 
analyses (Jonas et al. 1993; Rapp et al. 1994) this measurement character
izes the passive input impedance of the soma and dendritic cable. In 
addition, our frequency-domain approach characterizes the kinetic com-
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A: Cable Model 

~.~ 
9core 

Figure 1: The lumped soma-dendritic cable model of the whole cell (A) is 
composed of transverse admittances Ys and Yd for the cell membranes of the 
soma and dendritic compartments, respectively. The series of uniform dendritic 
compartments are linked by equal core conductances gcure. (8) The Hodgkin
Huxley type equivalent circuit for the cell membrane of each compartment. 

ponents contributed by the active, voltage-dependent membrane conduc
tances. 

We have chosen to use a simple exponential functional relationship 
for the voltage dependence of the rate constants and have applied opti
mization techniques to the small-signal measurements made throughout 
an entire range of clamp potentials rather than at an individual voltage 
clamp step. Thus, the data obtained across a range of clamp potentials 
are used not only to optimize individual rate constants, but also to quan
titatively determine their potential dependency. 

The neuronal model is represented in the schematic (Fig. lA) as an 
equivalent cable consisting of parallel elements for the cell membrane 
and transverse resistances representing the axial resistance to current 
flow through the neuroplasm. The membrane equivalent circuit (Fig. 1 B) 
includes parallel elements representing the membrane capacitance and 
ionic conductances: (1) a passive leakage (gL) conductance, (2) a slowly 
activated K conductance (gK), and (3) an NMDA-sensitive (gNMDA) con
ductance. Boxed resistors in the figure indicate time-variant nonlinearly 
voltage-dependent conductances that arise from the nonlinear voltage
dependent kinetics of ion channel activation. Since the admittances, like 
conductances, add in parallel in the cell membrane, analysis of admit
tance permits graphic or algebraic separation of the total admittance into 
component parts. At the low frequency extreme this reduction of ad-
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mittance into its component parts is analogous to the study of net and 
component membrane conductances under the steady-state conditions of 
a voltage-clamp step because the steady-state conductance is the value 
of the membrane admittance at zero frequency. 

In this model NMDA activates a time-variant, voltage-dependent uni
formly distributed conductance (Fig. 1B). The net driving-point admit
tance measured from the cell soma is a function of both the passive elec
trotonic properties of the cell and the time-variant, voltage-dependent 
active conductances distributed throughout (Ali-Hassan et al. 1992). The 
parameter estimation method was used to obtain quantitative estimates 
of the voltage-dependent ionic channel activation kinetics as well as the 
spatial distribution of channels located both on the soma and highly 
branched dendritic membranes. 

The voltage-dependent parameters were estimated under soma volt
age clamp conditions using cable models that explicitly incorporated the 
consequences of variations in effective electrotonic length with depolar
ization depending on the degree of channel activation. The experimen
tally determined membrane parameters were incorporated into nonlinear 
differential equations describing the properties of a single neuron with 
its dendritic structure. 

2 Methods _____________________ _ 

Measurements were made on adult silver lampreys (Ichthyomyzon uni
clIspis) from 25 to 35 em in length. A spinal cord-notochord prepara
tion (Rovainen 1974; Rovainen 1979) as previously described (Moore and 
Buchanan 1993) was used. NMDA was bath applied at 0.1 mM in normal 
lamprey Ringer's solution (Moore and Buchanan 1993). The intracellular 
microelectrodes were filled with 4 M potassium acetate having resistances 
of 50-70 MD. 

A combination voltage-clamp-frequency-domain method that we have 
previously described (Moore etal. 1993) was used for all experiments. In 
this method the cell soma is voltage clamped and the membrane current 
is measured in response to a small-signal stimulus composed of a sum 
of sinusoids superimposed on the clamp potential. The use of a voltage 
clamp rather than current clamp is important in these measurements be
cause of the instability of neurons in the presence of NMDA. The ratio 
of the measured current to the stimulus voltage is the net driving-point 
admittance (inverse of impedance) of the parallel contribution of the cell 
soma and the dendritic tree. The admittance spectrum (Mauro et al. 1970) 
was obtained by taking the ratio of the fast Fourier transform (FFT) of 
the measured membrane current over the FFT of the voltage clamp stim
ulus of 2-3 mV root mean square dynamic amplitude (Moore etal. 1993). 
The Fourier synthesized stimulus has several advantages (Fishman 1992) 
including (1) low stimulus amplitude, (2) measurement at many frequen-
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cies simultaneously during a single period of the stimulus, and (3) rela
tive ease in achieving synchronization. 

The stimulus signal used here was constructed from a frequency do
main specification having a uniform stimulus amplitude spectrum and 
randomized phase spectrum over a range from 0.5 to 200 Hz. The con
stant magnitude spectrum drives the system uniformly at all frequencies 
of interest and a random phase spectrum was chosen to minimize the 
peak-to-peak dynamic amplitude of the stimulus waveform. A nonlin
ear least-squares parameter estimation method (Dennis et al. 1981) was 
used to determine model parameters for a 500 compartment dendritic 
cable that best fit the measured admittance spectrum. Depending on the 
length constant obtained from these cells the number of compartments 
can be greatly reduced for simulations of dynamic temporal response to 
low frequency stimuli. 

The spatial step size of the dendritic compartments and thus the num
ber of compartments was chosen to ensure accuracy of the parameter es
timates. The step size was determined by increasing the number of com
partments until variations in parameter estimates converged to within 
0.1 %. These parameters (Appendix B) were in turn used to predict the 
model's dynamic response to current clamp protocols. A variable step 
size, variable order backward differentiation integration method (Byrne 
and Hindmarsh 1975) was used to solve for the dynamic response. This 
electrically equivalent cable is an empirical model of the multicompart
mental dendritic structure of the cell. Jonas e/ al. (1993) and Rapp eI al. 
(1994) have made detailed analysis of passive models of pyramidal cells 
using time domain methods of estimating total membrane resistance and 
capacitance. The small-signal frequency-domain analysis presented here 
differs from these methods in its ability to explicitly fit parameters as
sociated with the time- and voltage-dependent membrane ionic conduc
tances. Although the results presented here consider only uniform, se
quential compartments, the frequency-domain approach could be used 
with histologically determined multicompartrnental models if receptor 
distributions could be assumed, or better still experimentally determined. 

2.1 Membrane Model and Input Admittance. Our membrane model 
for an individual compartment is composed of four parts: the membrane 
capacitance, a passive leakage (gt) conductance, an NMDA-sensitive 
(g"MDA) conductance (Appendix A), and a slowly activating potassium 
conductance (gK) with kinetics on a time scale similar to that of the 
calcium-activated potassium conductance (Koch and Segev 1989). The 
total membrane current for an individual compartment in our model is 
the sum of the capacitive displacement current and the individual ionic 
currents. 
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The NMDA and potassium conductance are gated by activation variables 
m and n, respectively, and driven by reversal potentials VNMDA and VK , 

respectively. 
The total membrane admittance of an individual compartment is in 

turn defined in terms of the conductances and rate constants as previ
ously described (Mauro e/ al. 1970; Moore and Buchanan 1993). 

M(s) 
Yes) = W(s) 

= sC + gL 

(2.2) 

{
(V V 1 (iJnm/iJV1-mx[(iJam/iJV1+(iJiJ,,fiJV1]} 

+gK rn-:x.;+ - NMDA tin 57
111

+1 

{
(V ) (D""/iJV1-nx[(iJQ,/DV)+(D(3,,/iJV1]} 

+g\lMLJA nx+ - VK Tn 5T
11 

+ 1 

The electrical equivalent for the lumped soma-dendritic cable circuit is 
shown in Figure lA. The input admittance, Yo, of the six compartment 
model as seen at the soma can be derived by reducing the network to 
an equivalent driving point admittance. If we number the soma com
partment 0 and the most distal dendritic compartment 5 then we can 
derive the input admittance by beginning at the distal end of the cable 
and working toward the soma. 

Ys Yd (2.3) 

YN 
Y , Y N+l g(ore 
d~ 

'YN-fl+gcore 
1 SNS4 (2.4) 

Yo Y
s 

+ YJ geore 

Y1 +geore 
(2.5) 

2.2 Kinetic Formulation. The dynamic behavior of Hodgkin-Huxley 
type ionic currents is in part determined by rate equations describing 
ion channel gating. In this formulation the usual kinetic variables are 
redefined in terms of the standard rate constants ()' and ,3. Each time
variant, voltage-dependent conductance in the model is gated by a single 
activation variable (e.g., m) that is described by a first order differential 
equation (equation 2.61 in which "m and (3m are the opening and closing 
rate constants, respectively. 

dm 
dt = om(1 - m1 - iJmm (2.6) 

A common approach to characterizing the voltage dependence of gating 
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kinetics is to express them in terms of their steady-state value, m'XI and 
time constant, Tm' 

dm 
(mx - m)/T", (2.7) dt 

0'1/1 
(2.8) m= 

(tm + 3m 

Tm 1/("", + (I",) (2.9) 

We have chosen a specific formulation for the voltage dependent rate 
constants" and il (equations 2.10 and 2.11), which are parameterized by 
the magnitude and slope of the steady-state and time constant curves at 
half-activation as follows: 

v'" is the half-activation (m= = 1/2) voltage; 

Sill is the slope of mx at half-activation; 

till is the time constant (Tm) at half-activation; and 

rm is the normalized slope of Tm at half-activation. 

The four parameters chosen are orthogonal in their influence on the 
slope and magnitude of the steady-state and time constant curves. Us
ing this formulation one can directly manipulate the steady-state or time 
constant curves and the magnitude independently of each curve's shape. 
This in turn enables one to constrain parameter estimates based on lim
its of the shapes and magnitudes of these curves, which has been of 
significant practical value in this study. 

The dependence of the shape and magnitude of the steady-state m~ 
and time constant Tm curves on each of the parameters is shown in fig
ure 2. Each row of plots shows variations in one of the four parameters. 
Variations in steady-state mx curves are shown on the left and time con
stant Tm curves are shown on the right. 

~_c(v-( n)(2S"I- f ,,,) 

2tm 
(2.10) 

(2.]]) 

(2.12) 

(2.13) 

The half-activation voltage Vrn is defined as the membrane potential at 
which half the channels are open (mx = 1/2) at steady state. Hyperpo
larizing the half-activation voltage v" from 0 to -50 mV shifts both the 
m x and Tm curves to the left without affecting the height or shape of the 
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Steady State 
Gating Variable moo Time Constant 'tm 

.:;6&s: 
-1 - -

c 

E Eo F 

~o 
-100 -60 -ll~ -
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.£:.1.0.1 
-100 -60 mV 

Figure 2: The influences of variations in the half-activation voltage Dm (A and 
B), the activation slope Srn (e, D), the half-activation time constant tm (E, F), 
and the normalized time constant slope rm (G, H) on the steady-state gating 
variable mx (A, C, E, G) and the time constant Tm (B, D, F, H). For each c.~_·ve, 
unless stated otherwise, the parameter values are Vrn = 0 mV, Sm = 0.05 mV-1

, 

till = 1 msec, and rm = 0 mV-I. 

curves (Fig. 2A and B). Reducing the half-activation slope Sm from 0.05 to 
0.025 mV-1 broadens the voltage dependence of both moo and Tm without 
affecting their magnitude or their center along the voltage axis (Fig. 2C 
and D). Increasing the half-activation time constant tm from 1 to 10 msec 
increases the magnitude of Tm without any shift along the voltage axis 
or any effect on the steady-state gating variable moo (Fig. 2E and F). The 
time constant Tm is symmetrical about the half-activation voltage Vm at 
rm = O. Changing the time constant slope rm to 0.1 or -0.1 mV-1 skews 
the time constant curve toward voltages below or above V m, respectively, 
without affecting the value of Tm at V = Vrn and without affecting the 
steady-state gating variable m= (Fig. 2G and H). The slope rm is nor
malized with respect to the half-activation time constant tm so that the 
shape of the time constant curve can be specified independently of the 
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magnitude scale. Since the steady-state curve is already normalized, the 
steady-state slope Sm does not require normalization. Thus, if experimen
tal data consisting of time constants and steady-state values as a function 
of voltage are given, the four parameters Vnll Snll tnll and Ym can be varied 
to obtain initial estimates of the rate parameters. We have developed 
interactive software to efficiently achieve this on a Unix-based system. 

It is of interest to consider that the value of 1m that alters the magni
tude of Tm has no effect on the steady-state curve. Similarly, the value 
of the slope, Ylnl determines whether Tm increases or decreases with volt
age and is independent of the steady-state curve. For a value of Ym = 0 
the curve is symmetrical above and below the half-activation voltage 
VIII. Values of rm above and below 0 skew the curve toward increases or 
decreases of Tn! with membrane depolarization, respectively. The three 
conditions represented by rill = -0.1, +0.1, and 0 cover markedly differ
ent data sets, notably kinetic processes whose rate increases, decreases, 
or does both over a range of potentials from resting or hyperpolarized 
values to increasing depolarizations. Although this analysis is largely 
empirical, it may be possible with molecular biological methods to ob
tain physical mechanisms for these opposite kinetic behaviors. The other 
two parameters, Vm and Sm, alter both mx and Till. 

Our formulation for (} and ,/1 is equivalent to the following commonly 
used exponential form (Ascher and Nowak 1988). 

(2.14) 

(2.15) 

The conversion from this parameter set to the modified formulation is 
shown below. 

Sill 

1m 

rm ~ 

bd log(e/a) 
b+d 

1 1 ___ --l- __ 

4b 4d 

[a md

/

d

+

b +c(~tl>+r 
-1 1 
2b + 2d 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

These kinetics can also be formulated in terms of the physical param
eters that describe channels with bistable gating particles (Borg-Graham 
1991). In the Borg-Graham notation (l and d are defined in terms of a 
half-activation voltage V1 i2, a rate constant Co, an electrical distance of the 
transition state from the ~uter edge of the membrane " (Hille 1975), and 
an effective particle palence z; 

(2.20) 

(2.2]) 
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where V I!2 ~ V" is the half-activation voltage as before, 1m ~ 1/(2co), 

r" ~ (-1/2+1)zF/RT, and Sm ~ -zF/4RT. Although the influences of 

V 1j2 and Co are orthogonal as before, the dependence of the shape of my:; 

and Tm on the particle valence z and the electrical distance ~, are not. 

3 Results ______________________ _ 

It has been proposed <Brodin et al. 1991) that the shape of the TTX

resistant membrane potential oscillations (Sigvardt el al. 1985; Wallen 

and Grillner 1987) in lamprey spinal motorneurons is determined by 

the dynamic interaction of active inward and outward membrane ionic 

currents, however, the influences of passive properties and electrotonic 

current flow are less certain (Moore and Buchanan 1993). Traditional 

step voltage clamp methods in general require spatial homogeneity at the 

clamped voltage and thus prevent analysis of electrotonic current flow in 

nonhomogeneous structures such as a soma coupled to a dendritic tree 

(RaIl 1959; RaIl 1969). 
In the frequency domain the Hodgkin-Huxley type formulation of 

a time-varying active membrane ionic conductance yields a frequency

dependent response (Mauro et al. 1970) to sinusoidal voltage clamp stim

uli (Fishman 1992; Koch 1984). Figure 3 illustrates a part of a data set 

fitted over a range of membrane potentials from -92 to -47 mY. In this 

potential range the magnitude of the impedance at low frequencies is ini

tially enhanced by NMDA activation and at the more depolarized poten

tials is decreased. This behavior occurs because the algebraic addition of 

admittances and slope conductances is such that the individual positive 

and negative conductance can cancel each other to cause a net decrease, 

and thus a resistance increase. In Figure 3 the reversal of this effect is 

observed at -57 mV where the impedance magnitude with NMDA is 

decreased at V ~ -72 m V compared to -82 mY. A pronounced phase 

change indicative of a net negative conductance is clearly demonstrated 

at all the potentials shown in Figure 3. All of the NMDA-induced effects 

are abolished at potentials more negative than -90 mY. As the NMDA

induced negative conductance increases with depolarization, it first acts 

to counterbalance positive conductances until a null point is reached at 

which the net positive and negative conductances are nearly equal. This 

is shown at -82 m V with NMDA where at low frequencies the admit

tance locus approaches the origin in the complex plane (Fig. 3C) and the 

corresponding impedance magnitude function reaches a maximal value 

at 0.5 Hz (Fig. 3A). With further depolarization the negative conductance 

continues to increase until the system becomes potentially unstable un

der current clamp conditions because the total conductance has a net 

negative value. However, this can be measured under voltage clamp 

conditions and is indicated by phase functions more negative than 1f /2 
radians (-90'). At the most depolarized potentials the phase function 
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Figure 3: The voltage and NMDA dependence of the somatic input impedance 
magnitude and phase are shown in columns A and B, respectively. Mea
surements (symbols) and model-generated fits (solid lines) are shown at four 
clamp potentials, -82, -72, -57, and -47 mV. Column C shows the real ver
sus the imaginary parts of the admittance (algebraic inverse of impedance) 
in the complex plane with real and imaginary axes plotted horizontally and 
vertically, respectively. Fixed values for the NMDA kinetics and reversal poten
tials were assumed at Vm = -19.9 mY, Sm = 0.02 my-I, tm = 0.00014 sec; 
rm = 0.0187 my-I, VK = -85 mY, VNMDA = 0 mY, and the number of 
compartments was fixed at 500. The remaining best-fit parameter estimates 
were em ~ 0.845 nF, gK ~ 0.0239 /6 for control and 0.0296 11$ for NMDA, 
gL ~ 0.0112 115, gNMDA ~ 0.242 "S, L ~ 0.505, a ~ 0.933, v" ~ -47.9 mV, 
Sn = 0.167 my-I, tn = 9.97 sec, and rn = -0.05 my-I. See text for parameter 
definitions. 
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shows a systematic voltage-dependent shift with respect to the control 

values even at the high frequencies. The high frequency effects are more 

dramatically illustrated by plots of the real versus imaginary parts of the 

admittance shown in Figure 3 where the uppermost points in column 

C represent high frequencies. These plots clearly show that there is a 

voltage-dependent shift at all frequencies of the admittance that is rea

sonably well approximated by a neuronal model with NMDA receptors 

uniformly distributed over the entire dendritic tree. The shift in the ad

mittance plots at high frequencies was observed in five analyzed lamprey 

neurons. 
Figure 4 is a comparison of the admittance of several neuronal struc

tures and receptor distributions to better illustrate an interpretation of 

admittance plots in the complex plane. Although the effects of dendritic 

cables are relatively easy to observe in frequency domain data plotted as 

magnitude and phase, their influence is even more dramatic in the admit

tance plots. A resistance alone would appear as a single point on the real 

(horizontal) axis. A passive isopotential compartment (simple RC circuit) 

with no dendritic cable in Figure 4A would plot as a straight line extend

ing upward with increasing frequency from the dc conductance lying on 

the real axis. However, the addition of a cable to the soma shows an 

inflection between the low and high frequency portions of the curve. In 

general an increase in a positive membrane conductance that is uniformly 

distributed over the cable will shift the curve to the right, i.e., in the di

rection of an increased real part of the admittance. On the other hand 

the activation of a negative conductance will shift the curve to the left. 

Figure 4B illustrates that if there are only peripheral NMDA receptors 

in the model, then only the low frequency (bottom) portion of the curve 

shifts. By contrast if there are only central (somatic) NMDA receptors 

the curve shifts uniformly to the left with negligible change in shape. 

Superimposed plots of the admittance functions are shown in Fig

ure 5 illustrating a shift to the right for the control curves where only 

a positive conductance was activated and a pronounced shift to the left 

for activation of NMDA receptors. Despite the scatter in the data, the 

optimization method provided a clearly improved fit using a model with 

uniformly distributed conductances compared to one containing only pe

ripheral receptors. An alternative complex impedance plane plot of this 

data is also given in Figure 5 illustrating that the activation of the negative 

conductance reaches a null point at near -77 m V. At more depolarized 

potentials the real part of the admittance is negative under these experi

mental conditions, where the potential at which a shift from positive to 

negative values occurs between -87 and -77 mY. In contrast, the control 

curves shift in the opposite direction with depolarization. To some extent 

the activation of the positive versus the negative conductances produces 

mirror images in the complex-plane impedance plots. 

The results shown in Figures 3 and 5 were from a cell that did not 

show any indication of resonance behavior. Resonance in the impedance 
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Figure 4: (A) The admittance of reduced models including (1) a passive leakage 
resistance, (2) a leakage resistance and capacitance in parallel, (3) a passive 
cable, and (4) an active cable containing a potassium conductance. (B) The 
admittance of the whole cell model for peripheral versus central variations 
in the spatial distribution of NMDA-activated conductance. See Figure 3 for 
parameter values. 
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Figure 5: Experimentally measured (x) and model-generated (solid lines) input 
admittance is shown in A at clamp potentials of -87, -77, -67, and -47 mV 
in the presence of bath-applied NMDA and at -87, -52, and -47 mV without 
NMDA. The data are shown again as real versus imaginary parts of the input 
impedance in B. Measurements and parameter estimates here are taken from 
the same cell as in Figure 3. 

magnitude is clearly observed in some neurons and also can occur with 
the model system. Figure 6 illustrates a neuron showing clear resonance 
behavior. The ability of a negative conductance system to show resonance 
is a consequence of a balance between the passive electrotonic structure 
and the relative values of the positive and negative conductance systems. 
Both the resonating and nonresonating neurons show oscillatory behavior 
under current clamp conditions and have regions of instability in their 
impedance functions. Figure 6 also illustrates that resonance manifests 
itself in the complex-plane admittance plot as an admittance function that 
passes through the origin at relatively low frequencies. 
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Figure 6: Measured (x) and model-fitted (solid lines) input impedance mag
nitude are shown in A at clamp potentials of -60, -52, and -47 m V in 
the presence of bath-applied NMDA and at -60 ill V without NMDA. The 
data are shown again as real versus imaginary parts of the input admittance 
in B. The estimated parameter values were c'n = 0.05 nF, gL = 0.00236 1-15, 
gNMDA ~ 0.0218 1,5, gK ~ 0, gKNMDA ~ 0.0045 liS, L ~ 1.08, a ~ 101.5, 
V/1 = -52.2 mY, 511 = 0.175 my-I, tn = 1.08 sec, and rn = -0.2 mV-1. The 
remaining parameter values are identical to those in Figure 3. 

The final test of this analysis is the ability of the complete set of non
linear equations to produce the constant current behavior observed in 
these neurons. Figure 7 shows the solution for a hyperpolarizing current 
of -0.634 nA of the whole cell model equations (Appendix A), which 
consist of a soma plus a series of five identical dendritic comparhnents 
forming a ladder network. As is typical of NMDA-sensitive neurons in 
the presence of 10 11M TTX, the model neuron shows pacemaker oscil
lations from 0.1-5 Hz (Morris and Lecar 1981; Wang and Rinzel 1993). 
The plateau potential is sustained by the NMDA-induced inward cur
rent, which is followed by a repolarizing outward current. The period of 
the oscillation is principally determined by the slower outward current 
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Figure 7: Model-generated current clamp response to a steady hyperpolarizing 
stimulus of -0.643 nA and application of NMDA. The membrane potential 
oscillation (A), somatic membrane currents (B), their gating variables (C), and 
their steady-state gating variables (D) are shown. The parameter values here 
are identical to those in Figure 3 where N = 5 and Vr. = -65 mY. 

whose gating variable also has a relatively steep voltage dependence. 
Such a steep voltage dependence is probably necessary to achieve rapid 
repolarization of the plateau potential. 
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4 Discussion 

Neurons are nonlinear dynamic systemt; consisting of complex cable 
structures that are generally not accessible. Conventional voltage clamp 
methods requiring spatial and time control of the membrane potential 
cannot be rigorously applied to a determination of the biophysical prop
erties of these branching structures. The quantitative analysis using fre
quency domain techniques presented here takes into account some of 
the difficulties with space clamp problems, however, there remain certain 
fundamental problems for dendrites possessing long electrotonic lengths. 
The number of compartments used in simulating the current clamp re
sponse was selected to ensure that the spatial resolution, or length of each 
compartment, was less than two-tenths of the passive space constant A 
(Koch and Segev 1989). Furthermore, the presence of a negative conduc
tance will enhance the dc space constant if stability conditions are met. 
Therefore, the experimental conditions used in the measurements pre
sented generally allowed for relatively uniform dc membrane potentials 
and a compartmental size that was acceptable for computing nonlinear 
behavior (Koch and Segev 1989; Rail 1969). Dendritic structures that do 
not meet these criteria will require a consideration of the potential profile 
along the cable as well as a determination of the minimum number of 
compartments required for adequate spatial resolution. 

The investigation of nonlinear neuronal systems by piecewise linear 
analysis is proposed in this paper as a method that can provide kinetic 
information needed to model complex neurons. It will be useful to im
plement other nonlinear analytical methods such as kernel analysis (Mar
marelis and Marmarelis 1978; Victor e/ al. 1977) to compare different ki
netic models and further verify the validity of the different approaches. 
It is remarkable that the analytical approach proposed by Hodgkin and 
Huxley over 40 years ago continues to be among the most pragmatic to 
obtain kinetic information for neuronal models. It is noteworthy that the 
HH analysis is not exactly a piecewise linearization since large signal 
voltage clamp steps are used, however, their analysis of the kinetic re
sponse was made with a hybrid system using a linear kinetic model that 
was incorporated in a power function to give a delay in the conductance 
response to a step voltage clamp. Thus, the principal nonlinearity due to 
the potential dependence of the rate constants was essentially linearized 
by the voltage clamp. As K. C. Cole stated, the voltage clamp tamed the 
axon (Cole 1968). 

The use of piecewise linear analysis to obtain voltage-dependent rate 
constants for the simulation of a nonlinear kinetic system of equations is 
unusual in at least two respects: (1) as discussed above, this approach 
provides a verifiable description of the nonlinear system, and (2) if the 
system is unstable it still may be possible to obtain a steady-state small
signal response by applying the voltage clamp to control the membrane 
and prevent oscillations. This approach is questionable if the electrotonic 
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length of the dendritic cable is much larger than one. Although the 
analysis shown in Figure 6 gives a passive electrotonic length (L) of l.08, 
in the presence of NMDA the effective electrotonic length at dc is either 
considerably less than one or undefined, depending on the magnitude 
of the negative conductance component. In the case where L is defined, 
the < 0.2,\ criteria are easily met. If the total membrane conductance 
is net negative then L would have an imaginary value using standard 
definitions of the space constant. This condition is clearly oscillatory, 
however, it does appear to be controlled by the point voltage clamp in 
the soma. We have not observed oscillations in the currents during a 
voltage clamp of the soma in these cells, which would not have been the 
case if the electrotonic length of the dendritic cable was much larger than 
one. Thus, the methodology used in these experiments relies on specific 
aspects of the neuronal system that must always be verified. 

As a case in point, if a positive conductance were being activated in a 
neuron whose electrotonic length is well above one and increasing with 
depolarizations, then the potential profile along the cable must be consid
ered. Our analysis of a positive conductance for the cell of Figure 3 gives 
values of an effective electrotonic length from 0.3 to 1.8 for a membrane 
potential range of -87 to -47 m V. 

The choice of simple exponential functions for the voltage dependence 
of the rate constants was principally based on earlier descriptions of 
NMDA and voltage induced channel kinetics (Ascher and Nowak 1988; 
Borg-Graham 1991; Holmes and Levy 1990). There are many variants 
of combinations of exponential functions used for channel descriptions 
and it is not clear if any of these descriptions have a fundamental basis. 
It would be useful to rigorously analyze different channel kinetics of 
space clamped cells to quantitatively determine the best description for 
the voltage dependency of rate constants. Unfortunately, this has not 
been done and our view is that the simpler formalism is adequate until 
more quantitative analyses are done. As was shown above, the use of 
exponential functions allows the development of an efficient method to 
obtain initial estimates of kinetic parameters. This is an essential practical 
point if parameter optimization methods are to be successfully used. 

Appendix A: Whole Cell Model Equations ________ _ 

All values in the following tables are in units of s, m V, nA, lIS, Mn, and 
nF unless otherwise specified. The real and imaginary parts of complex 
frequency, s ~ (T + j27r[, where f is in Hz. 

iL gdV - Vel (A.l) 

iNMDA gNMDA m (V - V,'MDA) (A.2) 

iK gK n(V - VK ) (A.3) 

icon.' gcore (VI - Vi+J) (A.4) 
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Appendix B: Somatic Input Admittance Model ________ _ 

Y, 

Yd 

Y N 

Y" 

Yo 

(-Yin + 25 m ) e(- rm-l-2s",){V-vm) 

2 tm 

(-Ym - 25 m) e(-rm 2s",) (V-Vm) 

2 1m 

8I(s) 
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NY' 

Yd 

Y
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YII+l + gcore 
n = 1. 
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,N-l (B,7) 
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