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ABSTRACT
THE DERIVATION OF EULER’S EQUATIONS OF MOTION IN CYLINDRICAL
VECTOR COMPONENTS TO AID IN ANALYZING SINGLE AXIS ROTATION

James J. Jennings, B.S.

Marquette University, 2014

The derivation of Euler’s equations of motion in using cylindrical vector com-
ponents is beneficial in more intuitively describing the parameters relating to the
balance of rotating machinery. Using the well established equation for Newton’s
equations in moment form and changing the position and angular velocity vectors
to cylindrical vector components results in a set of equations defined in radius-theta
space rather than X-Y space. This easily allows for the graphical representation of the
intuitive design parameters effect on the resulting balance force that can be used to
examine the robustness of a design. The sensitivity of these parameters and their in-
fluence on the dynamic balance of the machine can then be quantified and minimized
by adjusting the parameters in the design. This gives a theoretical design advantage
to machinery that requires high levels of precision such as a Computed Tomography

(CT) scanner.
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CHAPTER 1

Introduction

In dynamics, there are many different types of problems which each have their
own intricacies, uniqueness, and differences. Many times, each type of problem has
its own elegant way to define, set up, solve and analyze the results of that problem.
These differences has spawned over the years many different approaches to dynamics
with their own notation, rules, and usefulness. Like any tool in a carpenter’s toolbox,
each of these approaches have a certain application for which they were designed and
for which they excel at. As a carpenter would not use a handsaw when a router
would be appropriate, neither should a dynamist use a certain notation when another
is more appropriate. In either case that tool could get to the desired result, but it
might not be as elegant nor may it result in a useful or understandable solution.

A few specific examples of these can start out in even the most obvious of senses
such as the difference between classical (e.g., Newtonian) dynamics and analytical
(e.g., Lagrangian) dynamics. These two approaches have their own benefits depending
upon what is important to know in the solution and analysis of the problem. If an
expedient path to the equations of motion are the desired output, then the Lagrangian
method may be the best approach to the problem [13]. However, if there is a desire
to know the constraint forces between bodies in the system (possibly in the analysis
of the strength needed for a joint in a robotic system) then the Newtonian approach
may be the more appropriate choice of procedure.

All of these notations and tools are suited for a certain application and can all
provide the same answer when applied correctly. Most of these require a substantial
knowledge of complicated notation, formulas and application rules that most engi-
neers or even dynamists may not have the knowledge that they exist or how and when

it is appropriate to apply them. Many only use the standard Cartesian coordinate



system and a standard formulation of Euler’s equations of motion to set up and solve
a particular problem. Many times it is not convenient to use a Cartesian coordinate
system, such as in the case of a body or bodies rotating about a single axis, and it is
much more convenient and intuitive to apply a cylindrical coordinate system to the
problem. The issue with this approach is that Euler’s equations of motion are defined
in Cartesian coordinates and any system defined in a cylindrical coordinate system
needs to be converted before it can be analyzed using Euler’s equations. The conver-
sion often times adds an unnecessary disconnect between the important parameters
in an analysis and the results that are desired.

The goal of this thesis is to create another tool for an engineer or dynamist to
use to solve a very common yet specific problem: to analyze the dynamic balance of
a multi-body single axis rotational system. This type of problem is central to many
different applications and the analysis and study of dynamic balance of a multi-body
single axis rotational system can offer a great deal of benefit. Current methods and
notation used in analyzing single axis rotation problems seem to provide a very general
method and notation which is able to be applied to a wide variety of situations and
scenarios. The issue with applying those methods to a single axis rotation problem is
that it can overly complicate the problem and cloud the simplicity and intuitiveness
of the answer and analysis. A new tool, designed specifically for solving the dynamic
balance of a multi-body single axis rotational system, created to simplify the notation
and also give a route to an elegant solution and better understanding is going to be

derived and explained in the subsequent chapters.

1.1 Literature Review

One main area where there is a wide variety of notation and tools is in the
definition of a rotation in classic Cartesian space. Many specific formulations have

been developed to create an easy way to notate and calculate a rotation in space.



One of the most famous and earliest of these is the use of Euler angles [4]. Euler
angles represent any rotation in space by decomposing it into a composition of three
elemental rotations (precession, nutation, and intrinsic rotation or spin) starting from
a known standard orientation. The classic definition is a precession rotation («) from
and XYZ coordinate system about the Z axis to a temporary orientation denoted as
(X1,Y1, Z1), then a nutation rotation () about the new X axis (commonly called
the N axis) to a secondary position (Xs, Y2, Z5), and finally an intrinsic rotation or
spin () about the 7 axis again to a final (X3, Y3, Z3) orientation. This sequence
can provide a means to rotate a Cartesian coordinate system to any other possible
orientation without translation.

Along the same lines of the Euler angles is the rotation matrix approach [4].
This uses the same type of reasoning as the Euler angle approach by using a succession
of three rotations to get change from one orientation to another by use of matrix
multiplication. The matrices are generated by using simple rotations about a single
axis and three predetermined arrays of trigonometric functions. These three matrices
can be combined into a single matrix which is used to multiply the unit vectors to
create the new orientation of the coordinate system.

The Euler angle approach was further generalized to show that any rotation
in space can be expressed by a single rotation about some axis. This axis is called the
axis angle and greatly simplifies the conversion from one orientation of a coordinate
system to another. The main issue with this is that the combination of two successive
Euler axis angles is not straightforward and can be shown to not satisfy the law of
vector addition [7]. This angle-axis rotation equation is also called the Euler-Lexell-
Rodrigues formula in certain texts and presented as one of a few equations which
use the rotation angle and rotation axis as inputs to calculate the axis-angle rotation
matrix [8].

Many of these approaches to rotate a coordinate system deal with complex



matrices that are filled with a variety of sine and cosine terms which sometimes can
lead to some rounding errors, singularities or discontinuities. Another approach was
developed to alleviate some of those issues and are called quaternions. A quaternion
provides the same function as a rotation matrix but is a more compact representation
and does not require the use of trigonometric functions in the matrices. With quater-
nions, the round off error is generally less due to not using trigonometric functions
and also avoids discontinuous jumps and singularities [8]. Because of this, they have
become a popular way to calculate rotations in higher complex systems. These highly
complex systems make use of a computer algorithm which perform a high number of
calculations which is where these issues can occur.

To treat special cases where a rotation is about only a single axis, a formulation
based on vectors was developed by Olinde Rodrigues and is called the Rodrigues’
rotation formula. It is a specialized version of the angle-axis rotation equation and
uses a projection and cross product of a vector and a unit vector about which a
rotation occurs to quickly calculate the new vector’s position [8]. This calculation is
a very convenient and simple way to calculate a vector’s new position if the rotational
axis’ position is known with respect to the vector being rotated. It also does not
require the use of a rotation matrix and makes the math a little simpler.

The notations that are listed in this introduction are great and robust ways
of representing and calculating any number of complicated rotations. However, they
are too bulky and often confusing to simply apply to a simple problem and handle
single axis rotations in an elegant manner. The goal of this thesis is to re-evaluate
Euler’s equations of motion with a new notion that will create a direct link between
single axis rotation and the analysis of Euler’s equations of motion.

A major catalyst for this type of effort is from a real example of a problem
using single axis rotation in which it was difficult to access how the parameters directly

affect the balance of the system. In a thesis written by Lindsay Rogers, the balance of



a computed tomography (CT) scanner was analyzed using Euler’s equations of motion
[15]. A major conclusion from this thesis is that it would be greatly beneficial if Euler’s
equations of motion were defined in pure cylindrical coordinates. It was discovered
that a cylindrical coordinate system in its purest sense was not ideal for use in the
derivation of Euler’s equations of motion. However, by revamping the notation in the
derivation with cylindrical vector components, the main design parameters radius to
a part, R, and angle relative to a datum, #, can be present throughout the analysis,
from set up to solution and beyond.

The concept of analysis a systems’s dynamic balance using cylindrical coordi-
nates is not a new or novel idea. A literature search was performed to try to find some
research that was related to the problem that Rogers was trying to solve. The goals
of this search was to find applications that analyzed dynamic balance using a similar
approach that was focused on the resultant balance of the system. Finding the ways
that dynamic balance has been approached in the past would give a good indication
on where to focus the efforts in developing a new way at looking at dynamic balance
using Euler’s equations using cylindrical vector components.

There is an abundance of research relating to aerospace applications concerning
the dynamics of rotating artificial satellites. This research focuses on how the inertia
of these satellites affect their motion and how they can be controlled [10] [11]. It has
a great value for the study of angular momentum in a three dimensional and free
to translate and rotate environment that an artificial satellite would be in, but they
do not translate well into rotating machinery on earth. This research does not deal
with bearing forces that are required for rotating machinery on earth and also can
generally assume that inertias and designs are “perfect” because they are empirically
calculated. These factors make it difficult to apply the work done in the aerospace
field to problems of dynamic balance analysis for earthy rotating machinery.

Another area of related study is in the analysis and design of automatic bal-



ancers for rotating machinery. Automatic dynamic balancers, ADB, are generally
designed as a circular bearing race constraining two masses which can rotate about
the center of mass while submerged in a damping fluid. ADB’s work very well in
rotating systems that can have a variable loading response and need flexibility in the
design with respect to dynamic balance. Due to the nature of these systems requiring
the analysis of every possible loading case at once, most of the research regarding the
design and use of these systems has been based in the Lagrangian method [6] [2] or
using vibration analysis [14] [5] rather than the Newton-Euler method. Because of
the freedom of choice of the generalized coordinates, the natural use of the radius and
angles to describe the motion of the balancing masses is employed in these models
and is very beneficial to the analysis.

High speed spindle design was also seen to be focused on a Lagrangian ap-
proach to the system’s governing equations [12] [1]. These systems are intuitively
set up to be used with coordinates employing radius and angle components and the
Lagrangian method is extremely attractive when using these coordinates. The goal
of this thesis is to follow the same principle of using the natural radius and angle
coordinates in a rotating machinery dynamic balance application while also being

able to easily apply the Newton-Euler method.

1.2 Organization of Thesis

The creation of the link between the design parameters and the outcome of
the dynamic balance analysis is accomplished by using cylindrical vector components
to relate one coordinate system with another with the assumption that they would
only different by one rotation about one axis. It is performed by using a method
that is similar to the Rodrigues’ rotation formula by using vector projections but in a
much simpler and intuitive form. The next chapter (Chapter 2) will directly integrate

the new notation in a rederivation of Euler equations of motion to provide a direct



and simple link from the problem’s definition through it’s solution and subsequent
analysis.

After the derivation in Chapter 3, a few key differences and benefits will be
enumerated such as the differences in the calculation of the inertia matrix as well
as an alternative form of the parallel axis theorem will be discussed. In Chapter 4,
a couple of examples of the benefit of a consistent problem definition and analysis
will be presented with a look into how this new formulation could be useful in the
study of dynamic balance. A simple example of the full use of the Cylindrical Vector
Component (CVC) approach will then be presented with a discussion of its benefits
in Chapter 5. This is followed by a more detailed comparison of this new notation
with the notation listed above and where this specific notation could be especially
useful in Chapter 6. Finally, a look at some perspective avenue of future work on this

topic is discussed in the concluding Chapter 7.



CHAPTER 2

Derivation of Euler’s Equations Using Cylindrical Vector Components

The biggest problem that was discovered when looking at the different nota-
tions used in most rotational problems is that they generally perform the rotation
transformations, and then apply Euler’s equations which are set up for standard
Cartesian coordinates. With the rotation aspect more directly integrated into Eu-
ler’s equation the link between the problem setup and the analysis or outcome of the
problem are more directly linked. To create this link, the new notation development

will need to start with a rederivation of Euler’s equation.

2.1 Angular Momentum Defined Using Vector Components

The derivation of Euler’s equations using cylindrical vector components will
follow the same structure as the standard X-Y derivation as described in [3]. The
starting point is the base equation for angular momentum of several particles which

is defined as
N

Hy= m[ia x (& x %4)]. (2.1)

j=1
The angular momentum, H A, of a collection of particles at point A is the summation
of the mass (m;) of particle j times the cross product of particle j’s position vector
from point A to the particle (7;,4) and the particle’s velocity which is written as the
cross product between its position and the angular velocity of the body (d; x 7j/4)
over the total particles N. It is critical to remember that this equation is only valid
under a number of special restrictions, namely, that the body is rigid, and that point
A fixed relative to the body.[3]

In Fig. 2.1, a rigid body in fixed the global coordinate system of indiscriminate

shape is broken down into a series of differential masses. A reference coordinate system



Figure 2.1: Differential element of mass m; relative to a body-fixed XY Z reference
frame

is attached to the body and each differential mass has a unique position vector defining
its position in the body. These vectors have classically been expressed in standard
Cartesian components (XY Z) and subsequently the results of the derivation would
be formatted in these standard Cartesian components. However, these vectors are
free to be expressed in any acceptable manner. This opens a possibility of deriving
Euler’s equations using a more convenient notation for single axis rotating systems.
For the purposes of this thesis, the position vector (7,4) is presented as a combination
of the components of the position vector that are projected onto the XY plane and
the relative angle from the X axis and the component of the position vector along the

7, axis. Specifically,
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F]'/A = Rj COS ijéx + Rj sin ijéy + ZjéZ (22)
(,D’:wXéX—I—wyéy—l—wZéZ (23)

It is important to note, for purposes of clarity, that the angle shown, ¢, is measured
from the éx vector to the éy vector and is in the XY plane. R; in Fig. 2.1 is the
projection of the position vector to the differential mass m; onto the XY plane. It is
then broken up into components along the éx and €y axis using the angle ¢. Z; is
the position of the particle along the é; axis.

This notation is a hybrid approach between a cylindrical coordinate system
and a Cartesian coordinate system. The main issue with trying to define the angular
momentum of a rigid body with a purely cylindrical coordinate system is that the
coordinate directions are not fixed in space relative to each other. This causes a
problem with trying to define an inertia in cylindrical coordinates. It is unclear
how the inertias of each differential mass can be combined with each other since the
coordinate axes have a different orientations for each individual differential mass.

The difficulty in many dynamic problems is relating two Cartesian coordinate
systems that are rotated. By introducing the cylindrical vector components into the
derivation, an easy way to relate coordinate systems to each other around an axis
is created. As long as all of the coordinate systems are referenced back to an main
fixed coordinate system using the angle ¢, the rigidness of the Cartesian system is
mitigated while keeping the constraint of having a body fixed coordinate system for
the inertia is satisfied. In essence, all of the bodies in the system have their own
coordinate systems which rotate with them yet when the kinematics are derived for
the bodies, they will be put in terms of a single chosen coordinate system. The
coordinate systems are easily communicated by the fixed angle that exists between
each coordinate system.

Substituting in the & and 7,4 from Eq. 2.2 and Eq. 2.3 into the inner cross
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product for Hy (Eq. 2.1) results in
WX T4 = [wxex + wyey +wzez] X [Rjcos p;ex + R;sinp,ey + Zjey] (2.4)

Performing the cross product of & and 77}/4 is straightforward. This is followed by a

rearranging to group each component of the vector by unit vector.

WX Tja =
lwy Z; —wzR;sin¢;lex + [wzRjcos ¢; —wx Zjley

+ [wxRjsin¢; — wy R;cos ¢;]ez (2.5)
The next step is to cross 77,4 into the equation above as shown below.

Tija X [& X Tja] =
[R; cos pjex + R;sin gjey + Zjez] x
[wij - (,UZR]' sin ¢j€}( + WZRJ' COS gbj - wXZjeAy

+ {wxRjsin¢; — wy Rjcos ¢;}ey] (2.6)

The cross product 7,4 and & X 7,4, after rearranging into different components and

then factoring out the angular velocities, results in the following.

Tija X (@ X Ta] =
[wx (R sin® ¢; + Z7) — wy (R cos ¢ sin ¢;) — wz(R; Z; cos ¢;)]€x
+ [wy(Z7 + R cos® ¢;) — wx (RS cos ¢ sin ¢;) — wz(R; Z; sin ¢;)|ey

+ [Wz(R?) — CUX(R]‘ZJ' COS gbj) — wy(Rij sin qf)])]GAZ (27)

Using the assumption that the masses m; are infinitesimally small, the sum-
mation of these changes to an integral over the differential mass dm. Also, since the
angular velocity is not dependent on the location of the different “masses” and is
a property of the entire body, the angular velocity components can be taken out of

the integrals. This leaves a set of nine separate (six unique) triple integrals (shown
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below) of body geometries over the differential mass. These integrals, known as mo-
ments and products of inertia, result in the same value as in the standard Cartesian
coordinates only now are defined using angular vector component notation. This is
important because the inertias that are listed in tables and in CAD programs are still
valid when using this approach. It would have been a huge hinderance to reformulat-
ing Euler’s equations if all of the inertias had to be recalculated. In contrast, these
actually give an alternate, yet equivalent, approach in calculating moments of inertia

that may become useful for difficult curvilinear shapes. Specifically they are

roe= [ [ [ (s o+ 22)am 2.
by = [ [ [(2 4 R eost 6)im 2.9
tre= [ [ [(Ryim (2.10)

Iy =Ivx = [ [ [(R cos sing)am (2.11)
Iz =tox = [ [ [(Rzcoso)m (212)
o =tvz = [ [ [(Rzsino)dm (213)

Substituting those inertias into Eq. 2.1 greatly simplifies the equation for an-

gular momentum (ﬁ 4) and also brings it into a form that is more recognizable.
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(IXXWX — Ixywy — [szz)éx
+ (Iyywy — Iyxwx — Iy zwz)éy

+ (Uzzwz — Izxwx — Izywy)éy (2.14)

2.2 The Change in Angular Momentum Using Cylindrical Vector Components

Under specific circumstances [3], the sum of the moments about a point is
equal to the change in angular momentum (> M = i 4) about that same point. The
certain condition that must be met for this to be true is that point A must be either
fixed, the center of mass of the system, or always accelerating towards the center of
mass. Most dynamic problems require these conditions in order to use this central
element in kinetics which is the companion to the sum of the forces is equal to the
change in linear momentum »  F = ﬁg where ]3G = mug. Similar to the derivation
of Euler’s equations in standard Cartesian coordinates, the angular momentum has
been solved for previously and all that remains is to take the derivative of this to get
the change in angular momentum.

Taking the derivative is accomplished by splitting the full derivative of the
angular momentum into the sum of the partial derivative with respect to time and
the angular velocity crossed with the angular momentum using the partial derivative
technique. This is a common and proven technique used when taking derivatives of
vectors [9] and is allowable because the coordinate system in Fig. 2.1 is attached to
the body. In other words,

d~ 8- ~ -
CHy = ZLHi+ O x Hy 9.1
gpAT AT Ha (2.15)

Splitting up the derivative allows for solving of the two parts separately. Start-

ing with the first half, the partial derivative with respect to time of angular momentum
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9

, 8tﬁ 4, and substituting in the equation for angular momentum from Eq.

equation

2.14 results in the following.

[E(IXXWX — Ixywy — Izzwz)]ex

+ [E(IYYWY — Iyxwyx — Iy zwz)ley
d A
+ [E(fzzwz — Izxwx — Izywy))ez (2.16)

At this point, a quick aside to reiterate the point of this derivation is appropri-
ate. Many problems in dynamics deal with a rotation about a single axis. To better
represent that type of motion in Euler’s equations, the main factors in a rotation
about a single axis, R (the radius of the rotating body from the rotational axis) and
0 (the angle of the rotating body from the coordinate axis) are directly inserted into
the equations. This substitution will better highlight the sensitivity of these variables
and allow for an easier simplification and solving of the system. The main aspect of
this type of problem is that the angular velocity vector will only be about a single
axis and thus only have one component in X, Y or Z. That means that Eq. 2.16
would be greatly simplified as only one of the angular velocity terms would stay in
the equation and would reduce down to three terms. However, to ensure that the
equation is general, those terms will remain in the derivation and carried out to the
end.

It is assumed that there is no deformation of the body ([/] # [I](t)) and the
coordinate system is attached to the body. With the inertia being independent of
time, it can be factored out of the derivative and reduces it to a very straightforward
derivative, Ccll—f = a. Also, it is worth stating that the angle between the position
vector and the X unit vector (¢) must not change with time (¢ # ¢(t)) due to the

rigid body assumption. As stated before, this is just another way to represent the

position vector to each differential mass. Since the body is not deforming, the vector,
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nor any of its components (i.e., ¢), may not change with respect to time. This results

in a clean and manageable equation.

9 .
ZH. =
ot A

((Ixxax — Ixyay — Ixzaz)lex
+ [(Uyyay — Iyxax — Iyzaz)ley

+ [(IZZaZ — [ZXaX — [Zyay)]GAZ (217)

For the second half of Eq. 2.15, the cross product, an assumption is required.
By forcing the XY Z coordinate system to be fixed to the body requires the angular
velocity of the coordinate system ) be the same as the coordinate system of the body
@. By doing this, the Q) can be replaced with @ and will allow for grouping of terms
later in the derivation. This also means that there is no relative motion between the
body and the coordinate system, which reduces unnecessary complexity. Thus,
Gx H =
(wxex + wyey + wzez) X
(Ixxwx — Ixywy — Izzwz)ex
+ (yywy — Iyxwx — Iyzwz)ey
+ (Izzwz — Izxwx — Izywy)ey] (2.18)
Performing this cross product and rearranging to group like terms together yields.
o x H 4 =

(Izz — Iyy)wzwy + IZY(W% — wf/) + Iy xwxwyz — Izxwxwylex

~

+ [(]XX — Iz7)wxwy + ]XZ(CU%( — w%) + Izywywx — IZYWYWZ]GY

+ [([Yy — [XX)WXWY + [Xy(w%/ — wgc) + [szywz — IYZwaZ]ez

(2.19)

Substituting Eq. 2.17 and Eq. 2.19 into Eq. 2.15 and again rearranging to combine

like terms yields.
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Uxxax + (Izz — Iyy)wzwy — Ixy(ay —wxwz)
—Ixz(ag +wxwy) + Iy (wy — wi)]éx
+ [Iyyay + (Irx — Izz7)wxwz — Iyz(az — wywx)
—Iyx(ax +wywyz) + Ixz(wy — w3)]éy
+ [zzaz + (Iyy — Ixx)wxwy — Izx(ax — wywz)
—Izy(ay +wxwy) + Ixy(Ws — wy)]|éz (2.20)
Many dynamic problems utilize rigid bodies that are symmetric around two
or more planes. This greatly simplifies the problem because Ixy = Ixz = Iyx =
Iyz = Izx = Izy = 0. This is what is known as having principal axes [3]. Applying
the principal axes as an assumption simplifies the equation to the familiar format of

Euler’s equations.

Ixxax + (Izz — Iyy)wzwyléx
+ [Iyvay + (Ixx — Izz)wxwz]éy
+ [[ZZaZ + (Iyy — IXX)WXWY]éZ~ (221)

2.3 Derivation Summary

This derivation results in a set of equations that are already set up for an
intuitive application to a single axis rotation problem. The new convention and
notation in assigning coordinate axes provides a very simple and accurate way to
describe a body’s location in space very naturally using a radius and angle which also
makes it very easy and convenient to add multiple bodies to the system. The inertias
for the problem are all described using a radius and angle and keeps everything in

the problem concise and consistent.
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The last step that needs to be completed before a problem can be solved using
these equations is to calculate the inertias of general shapes. It is taken for granted
when solving Euler’s equation in Cartesian coordinates that all of the triple integral
inertias have been already solved (and memorized) in many cases. This looks like a
large stumbling block for this new notation since one would have to now recalculate all
of the inertias and create another table to keep track of them. However, as long as the
coordinate system is orthogonal and centered at the same point, the inertias will come
out the same in this notation as in a standard Cartesian coordinate system. Because
inertia is merely the measure of an object’s resistance to any change in rotation about
an axis, the value of the inertia will be the same as long as the axes are coincident.
The route to get to the solution will be different but they will end up in the same
place. An example of the calculation of the inertia in this new notation is discussed
in Chapter 3.

Another issue that arises is that many times it is favorable to use the parallel
axis theorem to get inertias of bodies using non-standard coordinate centers. However,
like Euler’s equations, this can be derived using this notation and works in generally
the same manner as in the standard Cartesian coordinates. This new derivation will
allow for the application of the parallel axis theorem with the benefit of using the
cylindrical vector component notation. All of these tools together create a direct
and elegant link from the problem setup and input parameters to the final result
and analysis by preserving the important design parameters with respect to dynamic

balance.
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CHAPTER 3

Inertia of Rigid Bodies Using Cylindrical Vector Components

During the derivation of Euler’s equations of motion using cylindrical vector
components, the new notation for the position vectors made their way into the iner-
tia equations and changed their form. This seems problematic since the inertia needs
to be calculated for any rigid body that is going to be analyzed using this method.
While this is also true for Euler’s equations of motion using Cartesian coordinates,
the inertia values for most shapes are already calculated and listed in many engineer-
ing resources. If this new notation is going to create a whole separate list of inertias
and is going to require a recalculation of inertia then its value is somewhat lessened.
Fortunately, these new inertia equations will result in the exact same value for the in-
ertia as its Cartesian counterparts. This means that instead of being a large negative
for using this new notation, it actually adds a great benefit to this notation and to
dynamics in itself. These new formulations are an entire set of equivalent equations
to calculate inertia for any body. This is especially important and beneficial because
these equations involve triple integrals which can be extremely difficult or impossible
to solve depending upon the input variables. It is possible that this new formula-
tion could provide for an exact solution to an inertia when the standard Cartesian
formulation would have had to have been approximated due to being unsolvable.

In the following sections, sample calculations of the inertia matrix for a cylinder
will be presented along with a derivation of the parallel axis theorem using cylindrical
vector notation. Because the premise of this thesis is that keeping the problem in
the same type of notation is extremely helpful to the understanding of the problem,
the parallel axis theorem needs to be derived to utilize cylindrical vector components.
Additionally, a few examples of the parallel axis theorem in cylindrical vector com-
ponents which will highlight some benefits and particularly interesting aspects of this

approach.
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3.1 Calculation of Inertia Matrix for a Cylinder Using Cylindrical Vector Com-
ponents

L]

/]
[T
N
/]

Figure 3.1: Inertia Calculation Example

Inertias are a measure of the distribution of the mass of a body. To calculate
the moments of inertia of a body, a triple integral of the mass over the body’s geo-
metric dimensions is calculated. The hardest part in many of these calculations is to
find the easiest way to describe the geometric dimensions to make the triple integral
easy and possible to solve. In a body such as a cylinder, it may be unclear using a
Cartesian system how to break up the geometry to easily calculate the inertia. How-
ever, using cylindrical vector components it is apparent to use R, ¢, Z. These vectors

easily describe the shape and have direct substitutions into the inertia calculations in

Chapter 2.
0< R <r
0< ¢ <27
e g L
2~ -2
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The differential mass term for a cylinder is described as [3]
dm = pRdRd¢pdZ

To solve the inertias in terms of mass the density of a cylinder can be defined as the
mass of the cylinder divided by the standard formulation for the volume of a cylinder
7.

m

= 3.1
P 73l (3.1)

These terms are substituted into the inertia integrals defined by equations 2.8 - 2.13.
For brevity, the solution to these triple integrals are detailed in Appendix A, but the

solutions are listed below.

1
]XX:IYY = Em[3r2+l2] (32)
1
IZZ = 57717"2

These are the same results that have classically been associated with a cylinder
which was calculated using the standard Cartesian formulation of the inertias. The
main point is that the new formulations could be very useful in calculating the inertia
for shapes that are more conveniently described using cylindrical vector components.
For example, a computer program using some iterative method for calculating defor-
mations or stresses might find these formulations useful in reducing calculation time
or getting around complicated or unsolvable integrals.

Similarly, calculating the products of inertia using the new formulation results

in the following. Again, the details of this calculation is presented in Appendix A.

Ixg =Izx =Ixy =Iyx =Izy =Iyz =0 (3.3)

These results are consistent with the inertia that is classically associated with

a cylinder. This makes sense because the inertia should be consistent if the coordinate
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system is attached at the same point in the body and the axis are in the same direction.

This is merely a new path to arrive at the same result.

3.2 Derivation of the Parallel Axis Theorem Using Cylindrical Vector Compo-
nents

A major constraint in using the change in angular momentum to solve dynamic
problems is the strict rules as to where the coordinate system of a body may be
located. This may serve as a problem in the case where the inertia of a body is
known at one coordinate axes location yet it does not allow for the formulation of the
equations for rotational motion [3]. Because of this problem, a way to translate the
aforementioned coordinate axes to the latter coordinate axes location was developed.
This is known as the parallel axis theorem and is an extremely useful tool in dynamic
analysis. This chapter will rederive the parallel axis theorem, just as Euler’s equations
were derived in Chapter 2, using the cylindrical vector components throughout the
derivation.

Fig. 3.2. shows the typical starting figure for the parallel axis theorem deriva-
tion with two coordinate systems attached to a rigid body. Coordinate system G is
attached at the body’s center of mass and coordinate system B is shown at a ran-
dom yet known vector rp,¢ from coordinate system G. This vector would be defined
simply as

TBIG = ToCXg T YobVs T Z0€Z¢ (3.4)

in the standard derivation. However, like before, the vector from B to G is split into
the components of the projected vector r, along with the angle ¢, from the X axis
on the XY plane and the vector z, along the Z axis shown in Fig. 3.3. This new

formulation of the vector rp/q is

FB/G = T COS ¢0€)}G ) sin Qboe{’c + Zoeég (35)
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Figure 3.2: Parallel Axis Theorem Diagram

In this example, it is assumed that angular momentum of the body is expressed in
coordinate system G and is known. It is desired that the angular momentum of
the body be expressed in coordinate system B. Normally, the vector from coordinate
system G to coordinate system B is expressed using standard Cartesian components
in the XY Z directions. However, in this example the cylindrical vector components
are used, as in the Chapter 2 derivation. This will change the final result for the
parallel axis theorem to be in cylindrical vector components, further allowing the
dynamist to keep the problem entirely in cylindrical vector component notation. The
angular momentum expressed expressed in coordinate system G can be transferred to
coordinate system B by adding on the vector between the coordinate systems crossed

with the cross product of the vector between the systems and the angular momentum
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Figure 3.3: Parallel Axis Theorem Diagram with Cylindrical Vector Components

of the body. Defining the angular momentum for coordinate system B with Hp and
the angular momentum of coordinate system G as ﬁg, this equation can be written

as

Hp = He +m(Fpja X [& X 756])- (3.6)

This equation, when solved, results in the new formulation of the Parallel Axis The-
orem using cylindrical vector components. The details of this derivation is presented

in Appendix B and the results are as follows.
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Ixx, = Ixx,+m(risin® ¢, + 22)

Iyy, = Iyy,+m(ricos®¢,+ z2)

Iz2, = Iggz, +mr?

Ixy, = Iyx, =Ixy, + mrg cOS @, sin ¢,

Ixz, = Izx, = Ixz, +mr,z,cos o,

Iy, = Iyz, = Ixy, +mr,2z,sing, (3.7)

These equations will allow for the calculation of inertia for any shape with
known inertias at a point other than the center of mass provided that the coordinate
systems have parallel unit vectors. This formulation of the equations will make it
much more convenient in a single rotationally biased problem to find these parallel

inertias because the values for r,, ¢, and z, will be obvious.

3.3 Examples of Parallel Axis Theorem Using Cylindrical Vector Components

3.3.1 Parallel Axis Theorem Transformation Along Two Axes

In this section, examples of the parallel axis theorem derived using cylindrical
vector components will be presented. These examples will exemplify a few interest-
ing points in this process and how this method is extremely simple for this type of
problem.

A cylinder as shown in Fig. 3.4 has known inertia consistent with a regular
cylinder with the coordinate system centered on the center of mass G. It is desired
that the inertia be expressed at a point on the edge of the radius of the cylinder
directly along the éy,, axis as shown with coordinate system B. This example is used
to both show the validity of this new derivation but also how it easily handles a

transformation that is generally associated with a cylindrical type problem or single
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Figure 3.4: Parallel Axis Theorem Example 1

axis rotational problem. The variables associated with the transformation are listed

below.

T = T
m

¢o - _5

Z = 0 (3.8)

It is important to note that even though the coordinate system was moved
along the éy vector, the value for ¢ is NOT 0 as it would be initially thought. The
point that the secondary coordinate system is at (X'Y’Z’) corresponds to ¢ = —7 for
the projected vector on the XY plane. Fig. 3.5 shows the position vector 7g/¢ and its
components r, and ¢, to illustrate this point. This is a major difference between the
Cartesian coordinate system way of thinking and how the cylindrical vector notion
needs to be used. All vectors and movements must be treated as a radius and angle,

even if the move is about one axis.
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Figure 3.5: Parallel Axis Theorem Example 1 with Position Vector Shown

) s
Ixx, = Ixx,+m(r? SIDQ(—§) +(0)?)

T
Iyy, = Iyy,+ m(r2 COSQ(—g) + (0)2)

2
IZZB = IZZG+m7".

(3.9)

The inertia for a cylinder with the coordinate system at the center of mass is listed

below.

Ixx,
[YYG
]ZZG

Combining 3.9 with 3.10 and simplifying the results leads to the following.

Ixx,
Iyy,

Izz,

1 2 | 2
Em[i’)r + 7]
1 2 | 2
12m[37’ + 17
L s

§mr .

1

Em[15r2 + 17]
1 2 2
Em[?ﬂ" + 17
3 2

—mrnr-.

2

(3.10)

(3.11)
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Again, the very beneficial aspect of this is that this is identical to the result
that would be obtained by using the parallel axis theorem in Cartesian coordinates.
The main point of this new notation and application for this parallel axis theorem is

that it keeps the problem in a consistent notation for cylindrical vector components.
3.3.2 Parallel Axis Theorem Transformation Along Three Axes

Making the example a little more complicated will show that even with the
added complexity this transformation is still easily performed. Moving the coordinate
system out to the end of the cylinder in both the X and Z directions and changing
the angle (¢) by —% as shown in Fig. 3.6 will exemplify this. Specifically, for this

example the parameters are:

€X =

. t‘.-f_\,-' G
€Yy M

€Yq

€zp B /‘

€Zg <

Figure 3.6: Parallel Axis Theorem Example 2
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(3.12)

Substituting the above variables into the cylindrical coordinate form of the parallel

axis theorem.

. s 12
Ixx, = ]XXG+m(r251n2(—g)+§ )
9 o, T 12
[YYB = IYYG —|—m(r COS (—6) + 5 )
[ZZB = [ZZG —|—77’L7“2

Substituting in the moments of inertia for a cylinder.

I = im[?ﬂ“2 + 1] + m(r? sin2(—ﬁ) + £2)
XXs 7 19 6’ "2

I = im[37“2 + 1]+ m(r® cosz(—z) + £2)
D 6’ " 2

IZZB = 57717"2 + mr2

Rearranging the terms and simplifying

1 1
]XXB = §mr2—|—§ml2
1
IYYB = mr2+§m12
3
]ZZB = §m7’2.

(3.13)

(3.14)

(3.15)

In the previous examples, the coordinate system was placed at a point where principal

axes were obtained. However, the placement of the coordinate system for this example

requires the calculation of the products of inertia. These equations are detailed below

Ivy, = Iyx, =0+mr? cos(—%) sin(—%)
[ 7r

Ixz, = Izx, = O+mr§ cos(—g)
[ .,

Izy, = Iyz, =0+mr-sin(——).

2 6

(3.16)
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Simplifying these equations results in the following

V3

IXYB = IYXB = —Tmr
Ixz, = Izx, = Tmrl
1
IZYB = [YZB = —Z—lmrl (317)

As it was for the simpler example, this result is exactly the same as it would
be from the Cartesian coordinates version of the parallel axis theorem. This example
shows how a system that is naturally set up using cylindrical vector notation can
be described at any point on the cylinder easily using this parallel axis theorem
formulation using cylindrical vector components. Since most single axis rotational
problems are described easily and most completely using a cylindrical type coordinate
system, this parallel axis formulation is a great tool that can be used to describe a

body at any location in the system.

3.4 Discussion on Cylindrical Vector Component Inertia

In the previous sections, the new formulation for inertia and the parallel axis
theorem were presented. These new formulations give a clear advantage to dynamists
studying single axis rotational motion in that the formulation of the inertia and
parallel axis theorem have direct connections to the main variables R and ¢. These
formulations also provide an additional means of calculating the inertias of bodies,
for any type of problem, that would otherwise be difficult to calculate using the
Cartesian coordinate formulation. Yet, because they will result in the exact same
value as the Cartesian coordinate formulation, it is not required to recalculate the
inertia for any body for which the inertia is already known. The parallel axis theorem
examples highlight the benefits to this new formulation. These problems show that
when dealing with a problem that is naturally described using cylindrical vector

components, this formulation has direct substitutes for the important and most often
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known variables. Even with a seemingly complicated coordinate axis transformation
in Example 2 requires only a direct substitution and relatively easy solving of an
equation. These formulations do not give the ability to solve an otherwise unsolvable
equation but gives a more elegant route to a solution which would generally lead
to a more comprehensive understanding of the equation and the roles in which each
variable has in the equation. This elegance can help in the understanding of variable
sensitivity for these types of problems since there are relatively few steps between the

substitution and useable results of these equations.
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CHAPTER 4

Example Particle Problems

This chapter takes a step back to illustrate the benefit of the cylindrical vector
notation in pure particle problems. It is much more natural to think of some problems
in cylindrical terms and when doing so, it is easier to take the problem to depths and
understand that are difficult to get to via the purely Cartesian coordinates model.
These problems are not meant to show that it is impossible to reach the level of depth
or understand using only Cartesian coordinates, but that it is sufficiently difficult to
warrant the need for a better more direct way. This more direct and elegant way is to
define the problem and to perform the calculations in cylindrical vector components
throughout the problem. This is basic premise of this thesis, not that it is impossible
to perform some problems without FEuler’s equations in cylindrical vector components,
but that it is easier and that will open the doors to more complex analysis and a deeper

understanding of single axis rotation.

4.1 Two Particle System in Plane Using Cylindrical Vector Components

The simplest problem that will exemplify the benefits of cylindrical vector
components is a two particle problem in a rotating system. Taking two point masses
and placing them at a radius away from an axis of rotation will demonstrate many
principles of dynamic balance, generally a major concern in a single axis rotational
problem. Using this system, it will show how far this can be taken to enhance the
understanding of single axis rotation. In these problems, there is no need to use the
full Euler’s equations because particles, by definition, do not have any inertia around
axes through them. However, these are presented to show that looking at a single
axis rotational problem using cylindrical vector components is beneficial. This idea
can then be expanded to more complex systems that require the use of rigid bodies

and the full Euler’s equation or motion.
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In these problems, a commonly analyzed aspect of rotating machinery and
single axis rotation systems, dynamic balance, is discussed. Dynamic balance in
critically important for rotating machinery design because it affects the system’s
structural integrity, its performance, allowable operating conditions, and even its
feasibility in many cases. These problems will take a look at the notion that a
generally set up problem can be used to find ways to design smarter and better
systems to create a more robust dynamic balance in a system. These problem will
try to see if the input parameters of a problem be used in such a way to create rotating
machinery that resists the trend to dynamic imbalance.

In Figure 4.1, the bodies, (body A and body B) have variable masses (m; and
ms) and are at variable radii (R; and Ry) from the rotational axes. These masses are
also at a variable angle from the other. The reason for keeping so many aspects of the
problem a variable (i.e., arbitrary, known constant parameter) is to keep the problem
as general as possible. During a real world design problem, many of these variables
may be predetermined, fixed or completely free to change so keeping the analysis as
general as possible is very important. A major concern for rotating systems is the
dynamic balance of the entire system. It is obvious that all of these variables have a
direct influence on dynamic balance. However, many times the effect on the dynamic
balance may not be clear when setting these parameters, or what steps should be
taken to reduce these effects on the balance of the system. Using these generalities,
and pushing the problem as far as is practical, the relationship between the system
parameters and their sensitivity with respect to the resultant force on the bases can
be quantified and analyzed.

A coordinate system (XY Z) is attached at the center of the rotating axis with
éx pointing to body A. Similarly, a coordinate system (X,Y;Z,) is attached at the
center of the rotating axes with éx, pointing to body B which is positioned at a

constant angle ¢ from coordinate system XY Z. These bodies rotate about an axis
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of rotation é; at a constant angular velocity w (i.e., « = 0) and are contained in the
same plane, i.e., plane XY is coincident with plane X4Y,;. Gravity in this problem

acts perpendicular to the starting reference of angle 8, the angle of coordinate system

XYZ.

o

F

Figure 4.1: Simple Two Particle System

Calculating the kinematics for this problem is simple because of the natural
use of cylindrical vector components. The coordinate system for body A (XY Z) will
be used as the main coordinate system and all of the parameters will be defined in

that coordinate system. Once the coordinate transformation is created, this becomes



a very easy task. Specifically

Riéx

Roéx, = Ra(cos péx + sin péy )
Riwéy

Row(—sin péx + cos péy)
—Riw’éy

— Ryw?(cos ¢éx + sin péy)

The axis that the forces are summed along do not necessarily have to be the

same about which moments are summed but in this case they will end up being the

same. Summing the forces along the main body fixed axes of éx,éy, and éy yields

the following results.

I

Fy + Fy — mygcos® — mag cos(0 + ¢) (4.1)

ZFY = Fy+ F5 4+ mygsind + mogsin(0 + ¢) (4.2)

Sr -

(4.3)

The moments are now summed about the same XY Z coordinate system as

above. Because the forces are aligned with these axes, the choice of this coordinate

system is logical.

()~ Fi(5) =0
Fy=F, (4.4)
F(2) -~ By(2) =0
F=F (4.5)

—magsin(f + ¢) — mygsind

Notice that because the masses are located in the center of the bar the sum of the

moment equations result in only requiring that F} = F, and F;, = F5. Also, the
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moment about Z does not cancel out unless ¢ = 7 and m; = msy in which case
the sign of the sine term would switch and cancel out. Since the moment does not
cancel out for all other ¢ the sum of the moments about the Z axis will result in a
torque about the shaft. This torque is what one would instinctively think of when
a nonsymmetric body is spinning about an axis (which this system would emulate

with ¢ # 7). Next, combining 4.1-4.5 and solving for the individual forces yields the

following:
= %(9 cos ) — Riw?) + %(g cos(0 + @) — Row? cos @) (4.6)
Fy = THgeost — Riw?) + 2 (geos(d + ) — Ruw’ cos 9) (4.7)
B o= 0 (4.8)
F, = —%g sinf — %(g sin(f + ¢) + Row? sin ¢) (4.9)
P o= _%gsme - %(g sin(f + ¢) + Row? sin ¢) (4.10)
41.1 Examining the Resultant Balance Force

Equations 4.6 to 4.10 are a general solution for the system in Figure 4.1 and
can be used to extensively examine the balance of the system. Any variable can be
singled out and studied to see its effects on a single final balance force. It is easier,
however, to simplify this further and combine these forces into one resultant force that
can be minimized to find the balance point. Then, examining how much the resultant
force changes with a change of a variable will show that variable’s sensitivity in the
system with respect to dynamic balance. This is done by taking these forces and
resolving them into one force thus combining the forces (F, Fy, Fy and F5).

F} and F5 both lie in the same plane and in the same direction and can be

added together directly. The same procedure of adding directly is true with F; and
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F5 since these forces both lie in the # plane and have the same direction.

Fr=FI+F

Fyp = Fy + F; (4.11)

Having two independent forces, they can be combined into one resultant force
by treating them as components of a vector. Taking the square root of the sum of

the squares of these vectors will result in the new resultant vector.

Fres = VFR* + Fy? (4.12)

Removing the problem from the gravitational field (i.e., setting g = 0) puts
the focus on the dynamic balance and removes the static balance forces from the
problem. Gravity is the main driver in the static balance of a problem and while
gravity does affect the dynamic balance of the system, the dynamic imbalance can be
seen and studied without the gravity directly acting on the system. Performing this

substitution and calculating the above equation results in the balance force below.

Fres = [(WQ Rymy + CU2 Ry mo COS(¢))2
(4.13)

+ wh Ry2my? sin()?)2

At this point, a set a system parameters will be applied to the equation above
and it will be graphed in three dimensional space. Without getting into advanced
means of depicting multi-dimensional graphs, traditional graphing is limited to only
three variables. Because of this, body A will be fixed and assigned parameters while
the radius of body B, Ry, from the axis of rotation and angle from body A to body B,
¢, will remain variables. To simplify the results, the masses will be set to be identical
and, like above, the masses will be taken out of a gravity field (i.e., g = 0). The figure
will show how the resulting balance F,..s varies with respect to Ry and ¢. Specifically,

for this problem the parameters will be set as the following. These values have been
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chosen based upon the general design of a CT scanner.

my = 40kg , mo = 40kg

Ri=1m , w=12rad/s

4 Phi and Hz vs. Fesultant Faorce

x 10

Ry (rm) ¢ (radians)

Figure 4.2: Simple Two Particle System Balance Force

This graph clearly shows two main aspects of this problem. The first is where
the system is balanced, (where F,.; = 0) which will give the values for Ry and ¢ that
balances the system. The second and possibly more interesting is how the change
in Ry and ¢ affects the balance force F,.;,. This is what has been referenced as the

sensitivity of the design parameters with respect to the output, the balance force.
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4.1.2 Manipulation of Design Parameters to Create a Zero Derivative at the
Balance Point

Using the theoretical model, it would be very easy to design a system that
was perfectly balanced. However, the model of any problem has assumptions and the
results are never exactly matched to reality. Achieving the exact point on Figure 4.2
where F,., = 0 is not practically feasible in many cases. Also, the more troubling part
of this graph is that the slope of the surface near the balance point is very severe,
entailing that any slight imperfection in radius or angle will cause a large affect on
the balance force. This also is assuming that the mass of the body is perfectly in line
with the mathematical model. It is easy to see how this can cause many problems in
the practical design of a rotating machine with respect to dynamic balance.

It is intuitive that this problem would have only one point where the resultant
force would be zero. The system itself is limited by degrees of freedom, since there
are only two masses. However, it is unclear whether the slope of the surface near the
balance point can be manipulated to be closer to zero. Having a smaller slope near
the balance point would give greater leeway in design decisions and would result in a
much more robust design.

To examine the derivative at the balance point, the balance point must first
be solved for. To keep the problem as general as possible, the balance point will be
solved for every case of Ry and ¢. Using MuPad, a symbolic mathematical solver in
Matlab, to solve Eq. 4.13 for Ry to make F,.; = 0 yields the following.

_ Rimy cod¢)+R1ma 4/ —sin(¢)? .
Ry = ma cos(¢)* +ma sin(¢)? it ¢¢€ {ﬂ- k| ke Z} (4.14)

empty set it oo{mklkeZ}

This seemingly complicated equation states a very obvious result when looked
at in detail. The first solution states that if ¢ is any multiple of 7, there is a solution

for which a value for Ry can cause the F,.; = 0. Otherwise, there is no solution (¢
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is the null set). Interestingly, ¢ = 27 is a solution because the “cos7” term in the
top equation will change the sign of R to negative which put it at the same point
as a positive radius and an odd multiple for k in ¢ = kxr. Stated plainly, if ¢ # k,
there is no way to make Fj..; = 0. The top option for Ry also seems very complicated,
however, when substituting ¢ = 7 into the equation (as is the requirement), it reduces

down to a very simple and intuitive equation.

R, = M (4.15)

ma

It is intuitive that for a two particle system to be dynamically balanced, the
configuration must be for the two masses to be perfectly opposed to each other and
at a distance away from the axis of rotation by a factor of the ratio of the masses.
This is consistent with Fig. 4.2 as the balance point falls on the intersection of ¢ = 7
and where Ry = Ry, the factor of the ratio of the masses being 1 (43).

The derivative of Eq. 4.13 in both directions at the balance point are the
equations that are the most telling in the sensitivity analysis. If these equations can

be manipulated to be 0, or close to 0, the design will be much more robust. These

derivatives are as follows.

%Fresbzw _ _wima (W By — W Ry ma) (4.16)
2 \/(w2 Rl my — w? R2 m2)2
0 P
a—¢Fres|R2:R}n77;1 — @ (417)

where

P = —2w?Rymy sin(¢) (w* Ry my + w? Rymy cos(¢)) — 2w* Ri?my? cos(¢) sin(¢)
(4.18)

Q= \/(w2 Rimy +w? Rymy cos(¢)) + wt Ry?my 2 sin(¢) (4.19)

On the surface, it is unclear in these equations if there is any possibility to

manipulate them to make them zero. As a starting point, these equations will be



40

graphed using the same parameters as in Section 3.1.2.

my = 40kg , mo = 40kyg

Ri=1m , w=12rad/s
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Figure 4.3: Derivative of Balance Force in R;

The unfortunate result in this graph is that the balance point in both of these
graphs is a discontinuity and that the derivatives are not easily changed around the
discontinuity. Fig. 4.3 shows that the derivative is constant approaching the balance
point from both sides only opposite in sign on either side. It can be seen that the value
that the derivative stays constant at is the product of the angular velocity squared
times the mass of the second particle. This implies that the only way to get a zero
derivative in this equation is to either have zero mass for particle 2 or to have zero
angular velocity. It does seem to suggest, however, that the speed has a much greater

effect on this derivative than the mass does because it is squared. Although, due to
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Figure 4.4: Derivative of Balance Force in ¢

the difference in units between the angular velocity and the mass, it is difficult to say
this is true. Reiterating, in Fig. 4.4, the derivative gets larger as it approaches the
balance point, implying that it is the most sensitive near the balance point. This is
the opposite of what is desired and this looks to be difficult to change as the whole
shape of the graph must change.

Another similar method that could be used to analyze this system would be to
use bifurcation. Bifurcation would discover how the independent variables Ry and ¢
affect the balance point solution in Eq. 4.13. These solutions are then analyzed to see
if they are stable or not and how any slight variations in the input parameters may
affect the total solution. This bifurcation method is used in other dynamic balance
applications such as the ADB’s and can help find optimal designs for balance [6].

This analysis was deemed to be out of scope for this thesis and is work that can be
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examined in the future.

4.2 Three Particle System in Plane Using Cylindrical Vector Components

Adding another mass to the system is an easy step to add a bit more complexity
and reality to the problem. Most engineering problems deal with many bodies and
cannot be simplified to a problem with only few variables to be studied in detail.
Adding one mass exemplifies how even minor additions to a problem can significantly
increase the problem’s difficulty. However, this will give an extra degree of freedom
to the system that can be an avenue to a more flexible resultant balance force. A
flexible balance force could allow for a reduction in the slope around the balance point
or possibly multiple balance points in the system.

This problem, shown in Fig. 4.5 is basically the same as in Section 4.1 except
with a mass C that is placed at a variable position (Rg,y) from the reference mass A
but within the same plane as A and B. This will add another coordinate system at
mass C that can be used to calculate the kinematics. All of the forces and parameters
for body B and body A will remain the same as well as the w and the a of the system.
The kinetics for this system are again easily calculated because of the natural use of
cylindrical coordinates. Again using the cylindrical coordinate system at body A (
éx,€y,éz ) as the reference coordinate system and solving for all of the kinematic

parameters is a simple task once the coordinate transformation is calculated. These
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Figure 4.5: Simple Three Particle System

are the same equations as above just adding in the parameters for the added particle.

7 = Riéx
Ty = Roéx, = Ry(cospéx + sinpéy)
7, = Rséx = Rs(cosvyéx +sin~éy)
U = Rweéy
Uy = Row(—singéx + cos péy)
U, = Rsw(—sinyéx + cosvyéy)
i = —Rw’éx
dy = —Ryw?(cos@éx + sinpéy)

@, = —Rzw?*(cosyéx + sin~yéy)
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Like in Section 4.1 the forces will be summed along the main body fixed axes
of XY and Z. These are also very similar to the equations listed above with the added

term for the weight of the added third particle.

Z Fx = F+ Fy,—mygcost —maygcos(d + ¢) — mzgcos(6 +7)  (4.20)
Z Fy = Fy+ F5+mygsin€ + mogsin(0 + ¢) + mggsin(0 + )  (4.21)

Y F; = F (4.22)

When summing the moments, the only change is again the added weight of
the third particle in the sum of moments about the Z axis. From intuition, the way

to have the terms in the moment about the Z axis to equal zero is if they are evenly

spaced (i.e., ¢ = 5 and v = %’r) and for the masses to be equal. This will put each

mass at 60 degrees from each other and this symmetry will eliminate the imbalance

when the system is rotating.

S Mx = R(5)-F(5) =0
L L
> My = Fi(5) = F(5) =0
Z My; = —mggsin(y + ¢) — magsin(d + ¢) — mygsinf

Combining 4.20-4.24 and solving for the individual forces yields the following

set of equations for the individual forces. These equations have the same terms as
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the two body problem except with an additional term for the third body.

F o= @(g cosf — Riw?) + %(g cos(f + @) — Row? cos @)
+ %(g cos(f + ) — Ryw® cos ) (4.25)

F, = %(g cosf — Ryw?) + %(9 cos(0 + ¢) — Ryw” cos ¢)

+ %(g cos(f + ) — Raw? cos ) (4.26)
Fy = 0 (4.27)
F, = —%g sin f — %(g sin(f + @) + Row”sin¢) — %(9 sin(0 + )
+  Rsw’sinn) (4.28)
Fy = —%g sin 6 — %(g sin(6 + ¢) + Row” sin ¢) — %(g sin(6 + )
+  Rsw’sinn) (4.29)
4.2.1 Examination the Resultant Balance Force

Taking the same approach as in the two body case, the forces can be combined

into a single resultant balance force F;., that is in the same form. Specifically,
Fres = V Fr* + Fy*. (4.30)
Combining F; and F3 to be Fr and Fy and Fj5 to be Fy results in the following.

FT’ES

[(w? Rymy sin(y) + w? Rymy sin(¢))?

D=

+  (w? Rimy 4 w? Rsmy cos(y) + w® Ry my COS(¢))2] (4.31)

In order to depict this equation in a similar fashion to the three-dimensional
graph provided in Section 4.1.1, a set of parameters must be chosen to limit the
variables to two independent variables (R3 and ) and one dependent variable (Fs).
The radius and angle for mass A and mass B, along with all three particles’ mass

and angular velocity, need to be established in this system in order to fully define
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the system. With this in mind, it must be understood that this is a representation
of one configuration among an infinite number. However, this does not undermine
the results as a good deal of understanding can still be attained with the analysis of
this single case. This also shows the challenge of many if not all design processes, it
is generally not possible to know how a design will work or perform until after the
design parameters are established and chosen. In most cases the mass of the particles
are given and known, but their placement may have more freedom. But a choice must
be made for their placement and analyzed before the performance can be evaluated.
The point of this exercise is to put this decision as far as possible into the analysis and
to keep as much as possible a variable to a notably better degree than the standard
method of Cartesian coordinate system based analysis. Listed below are the chosen

parameters for this example.

my =me =mg =40kg , w=12rad/s

2
Ry =Ry =1m | ¢:§md

Figure 4.6 shows a similar result as in the two body case with similar pa-
rameters. There is a single point at which the system has a zero resultant balance
force and occurs when the masses are arranged in a perfectly symmetrical pattern,
each 120 degrees apart from one another, and at an equal distance from the axis of
rotation. Again this result is not a surprise because of the simplicity of the problem.

It is expected that there only be one configuration for mass C to cause the system to

be balanced.

4.2.2 Manipulation of Design Parameters to Create a Zero Derivative at the
Balance Point

Using the same method as in Sec. 4.1.2, the values for R3 and ~ at the zero

point can be found to be

4
Ry =Ry =40kg , ~= %rad. (4.32)



47

%10

R (my) ¥ (radians)

Figure 4.6: Simple Three Particle System Balance Force

Evaluating the resultant balance force at this point and taking the derivative will
give an indication if the sensitivity of the balance point can be manipulated. First,
substituting in v = %’rrad and taking the partial derivative of the resultant balance
force F..s with respect to Rz will give the equation for the slope of the line intersecting

the balance point in the R3 direction.

0 P
—Fres|—an = — 4.33
o Pty = (4.3
where
2
R
P = —wmz(w?Rimy — % + w? Ry my coq9))

—V3w?ms (w — w? Rymy sin(¢)) (4.34)
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2
Q = 2 [M — w? Ry my sin(¢)?
2
+(w? Rymy — w” Ry ma + w? Rymy coq¢)?]2 (4.35)

2

Similarly, substituting R3 = R and taking the partial derivative of the resul-
tant balance force F.., with respect to v gives the slope of the line intersecting the

balance point in the ~ direction.

0 M
%Fres‘Rngg = W (436)
where
M = 2w?* Ryms cos(y) (w2 Romg sin(7y) + w? Ry my sin(¢)) (4.37)
2w? Rymg sin(y) (w? Rymy 4 w® Romg cos(7y) + w® Ry my cos(¢))
and

N= 2w Rymgsin(y) +w? Ryms sin(g))’

+  (w? Rymi + w® Rymg cos(7y) + w” Rymy cos(qb))Q}% (4.38)

Like in Section 4.1.2, the equations are very complicated and it is hard to see if
these can be manipulated in any advantageous way. An easy way to get more insight
is to graph them and try to deduce any information from these graphs. They are
shown in Figure 4.7 and Figure 4.8.

The results from Figure 4.7 are the same as in the two body case. The balance
point for this system has a very unstable solution with regards to sensitivity and it
does not appear that the derivative can be changed at that point. The discrete nature
of these particle problems is the main contributing factor in the balance point being so
unstable and singular. With all of the mass being distributed in exact particles about

the axis of rotation, it leaves only a single arrangement to balance the system and
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Figure 4.7: Derivative of Balance Force in Rj

any variation, however small, causes the system to be out of balance in a relatively
large way.

It should be noted that there are an infinite number of different cases which
will yield a different solution for R3 and . The other cases have been found to only
have a single solution and with a similar if not exact derivative. The only case which
results in a different type of solution is where ¢ = 7. In this scenario, if R3 or 7 are
non-zero, then the system is out of balance and the balance force varies linearly with
Rs.

4.2.3 General Form of Individual Forces for Multiple Particle Problems

If it is necessary or beneficial to expand this problem to a higher number
of discrete particles, a method of expanding the equation to an infinite number of

particles can be obtained. From the individual force equations from Section 4.1, Eq’s
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Figure 4.8: Derivative of Balance Force in ~

4.25-4.29, it can be deduced that any subsequent masses will merely be added onto
the end of the equation. FEach of the particles adds a specifically formatted term
in the force equation and can be easily formulated into a sum. By rewriting the
individual force equations as a sum, this problem can theoretically be looked at with
any number of particles (n) for a more complex and deeper look into the problem.

Below are the forces written as a general sum.

n

F=F = Z %[g cos(f + ©;) — Rw? cos(0;)] (4.39)
i=1

B o= 0 (4.40)

Fi=F =Y —%[g sin(0 + ©;) + Riw?*sin(6;)] (4.41)
i=1

The variable ©; is the corresponding angle from the reference coordinate sys-

tem to that particles coordinate system. To better present this variable for clarity, it
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is written below in a vector format for the three particle problem.

© =10,9,7] (4.42)

This form of equation could be useful as the governing equation in a computer
simulation. Possibly adding an increasing number of discrete particles can result in
some unforseen results in terms of balance. Essentially, when enough particles are
added to the system, it should begin to behave like any rigid body the particles are
arranged to resemble. This opens a door to the study of the grey area between a
system with a large number of discrete particles and a system composed of a single
rigid body. When approaching an infinite number of discrete particles, at what point
or number of particles can the system be regarded as a single rigid body? It can be

a door to some new and interesting research.

4.3 Summary of Results from Particle Problems

These particle problems in Chapter 4 show important aspects relating to the
goal of this research. First of all it shows an example of a purely cylindrical vector
component problem being solved. While this is not a proof in the purest sense, it is
still a good validation of the use of this type of formulation. Second, it details how
the formulation of this type of problem will be more convenient to use in problem
with single axis rotation. These problems show that even using the particle version
of the Euler’s equations, using the more intuitive and appropriate cylindrical vector
component notation can lead to a more elegant solution. Lastly, while it does not yet
achieve the goal of finding a way to decrease the slope of the resultant balance force
around the single balance point, it does give an avenue to use on similar problems.
These are just two problems used as an example of this method. There may be
different applications or another strategy to use on the method described here to

achieve the desired result.
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CHAPTER 5

Rigid Body Problem Using Cylindrical Vector Components

In this chapter an example problem will be solved using Euler’s equations of
motion derived in cylindrical vector components. The problem presented will include
the inertias of the rotating bodies and not merely treat them as point particles with
only mass. By including the inertias, the problem will show how the shape and
size of the rotating body affects the dynamic balance or torque requirements. All
of the major points used in the previous chapters will be utilized in this problem
making it the generalization of the previous work. The problem itself is also a great
representation of many different types of real-world applications in engineering and
industry. Like the particle problems in Chapter 4, this can be thought of as a CT

scanner with more fidelity in the model.

5.1 Rigid Body Problem Example

Two rigid bodies, body A and body B, in the form of identical cylinders are
placed at distance (R; and R») from a rotating axis and are situated at an angle ¢
apart from each other similar to the two particle problem in Chapter 4. Each cylinder
has a mass m, length of [, and a radius of r and are positioned so that the I;; axis is
always parallel to the rotating axis. Each has a coordinate system attached to them
that rotates with the cylinders. The bodies are rotating about the axis at an angular
velocity of w and angular acceleration o and the angle between the bodies does not
change, i.e., they are both rotating at the same angular velocity.

It is important to note that in this example, the R, and R, vectors only go to
the outside edge of the cylinder and not to the center of mass as depicted in Fig. 5.2.

This decision was made to keep the more generality in the problem. If the shape of
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Figure 5.1: Rigid Body Single Axis Motion Example

the cylinder changes, it is easy to quantify the effect by preserving the r value in the

problem.

R,

O

TAg

Figure 5.2: Profile View of Cylinder
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Calculating the kinematics of the problem is very similar to how it was done
in Chapter 3. All of the values are expressed in terms of a main coordinate system

that is attached to body A.

ThAeg = (Rl + T’)éX
B, = (R2+r)éx, = (Ry+7)(cospéx + singeéy)
VA = (Rl + T)wéy

Upy, = (R2+ r)w(—singéx + cos péy)

s, = —(Ry+r)wéx

ap, = —(Ry+1r)w?(cosgéx + singéy)
0 = weéy
a = weéz =0

Next, summing the forces along the XY Z coordinate system that is attached to body
A.

ZFX = Fi+ Fy —myjgcosf —mygcos(0 + ¢)

ZFy = F;+ F5 — mygsinf — magsin(f + ¢)
> Fr = B

The goal is to create a scenario where the sum of the moments can be taken
for both bodies at one time. To accomplish this, the bodies have to be expressed at a
mutual point that satisfies the conditions for the change in angular momentum. The
point that makes the most sense is the center of the axis of rotation where the bodies
are connected, point G.

To express the inertia of body A at G, the parallel axis theorem, Eq. 3.7,

derived in Chapter 3 will be used. Below, in the same format they are listed in
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Chapter 3, are the parameters that will transfer the inertia of body A to point G.

Again, it is important to note that ¢ is 7 in this example and not 0 and that the shift

along the X axis is the summation of » and R; based on how the problem is set up.

T Ao
Pa,

ZAO

—(7’ —+ Rl)

Taking these values and substituting them into the parallel axis theorem described

in Chapter 3 results in a new inertia matrix defined as [/]’; with components shown

below.
1
Ivixr = Ixx +m[(r+ Ry)*sin’(r)] = Em[3r2 + 7]
1
Lyyr = Iyy +m[(r + Ry)*cos®(m)] = Em[3r2 + Pl +m(r+ Ry)?

Ipg = Izz+m(r+ Rp)? 1mr2—Fm(r—i-Rl)Q
Ixyr = Ixy +m|[(r+ Ry)*sin(r) cos(m)] =0
Ixizr = Ixz+m(—r— Ry)(0)cosm =0

Iyizr = Iyz+m(—r— Ry)(0)sinTt =0

Taking these results and expressing them in an inertia matrix shows the effect

of moving the coordinate system to G. There are extra terms on the Iyy and [

values which are due to the radius between the center of mass of the cylinder and the

axis of rotation.

Lm[3r? + 1]

0 0

1]y = 0 Lm[3r2 + 3] + m(r + Ry)? 0

0

0 %mr2 +m(r + Ry)?
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Now, the exact same calculation for body B to bring it to the center of rotation
needs to be performed. The values listed below are consistent with the form from

Chapter 3 and are very similar to that of Body A.

rp, = —<7’ —+ RQ)
¢p, = T
ZB, — 0

The calculation of the parallel axis theorem for body B is carried out in the

same fashion as body A. Specifically:

1
Ixix, = Ixx,+m[(r+ Ry)?sin*(m)] = Em[3r2 112
1
Ly, = Iyy, +m[(r+ Ry)? cos®(m)] = Em[STQ 12+ m(r + Ry)?
1
Ipzy = lzzy +m(r+ R2)2 = §mr2 +m(r + 32)2

Tuwy = Txyy +m(r+ Ro)? sin(r) cos(r)] = 0
Ixig, = Ixz,+m(—r—Ry)(0)cosm =0

Iyizi, = Iyz, +m(—r— Ry)(0)sinm =0

At this point, both cylinders are expressed at the center of rotation, G. How-
ever, body B is still rotated by the angle ¢. This prevents the inertias being summed
together so that the sum of the moments can be expressed for both bodies in one
calculation. To fix this issue, body B needs to be rotated by the negative angle of
¢ to align its axes with the axes of body A. This is accomplished by the use of a

similarity transformation about the Z axis of an angle of —¢ [3].
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Substituting in the standard rotation transformation of —¢ about the Z axis in for

[R] results in the following.

cos(—¢) sin(—¢) 0 cos(—¢) —sin(—¢) 0
U5 = | —sin(—@) cos(—¢) 0| ] |sin(—¢) cos(—¢) 0
0 0 1 0 0 1

Multiplying the three matrices and performing some simplification results in the fol-

lowing inertia matrix for body B.

/.
g = (5.1)
IX”X”B ]X”Y”B ]X”Z”B
‘[YNX”B IY//Y//B IY”Z”B

_[Z//X//B IZ//Y//B IZ//Z//B

Lxnxry = 1—12m[37“2 + ]+ m(r + Ry)*sin®*(—9)
Lenyrs = 1—127”[37“2 + ]+ m(r + Ry)* cos’(—¢)
Izngn, = %mrQ +m(r + Ry)?

Lxryny = =Iyrxn, = %m(r + R»)?sin(—2¢)
Ixngng = = Ignxng =0

Iyngny = =lIgnyny =0

This matrix defines the inertia for the cylinder that was rotated an angle ¢
and at a distance Ry+7r away from the center of rotation at the point G. The rotation
transformation that was performed aligns the axes for body A and body B and allows
for the summation of inertias of both bodies. This step greatly simplifies the problem
because only one summation of moments and application of Euler’s equations needs
to be performed. Also, with this result, all of the parameters for both cylinders and

the problem are still visible during any analysis. Performing any sensitivity analysis
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should be straightforward since each parameters has clear (and direct) influence on
the inertia or moment equations. The individual elements in the inertia matrix for
body A are added to the corresponding element in the inertia matrix for body B.
This addition is allowable since the bodies are not moving with respect to each other

and can be considered one object.

Ttotar = [Ty + ()3

Ixx,pm = ém[37’2 + ] 4+ m(r + Ry)*sin’(¢)
Lyy,,, = ém[3r2 + ] + m(r + Ry)? cos?(¢)
Izz,.,., = mr+m(r+ R)*>+m(r+ Ry)?
IxYioa = AV X = —gm(r + Ry)?sin(2¢)

(5.2)

Performing the analysis for dynamic stability now only requires one application
of Euler’s equations. Summing the moments about the X Y and Z axes of body A
results in the following. To see the many quantities that were omitted because they

were zero, refer to Chapter 2.

L L
ZMX = Fs(g) - F4(§> = —Ixz0z + Izvwy

N
=
|
~
e~

Fl(E) — FQ(E) = —IyzOéZ + [sz%
Y My =0

There are no moments about the X or Y axes and the inertia components Ix
and Izy are both zero. This results in the forces in the X and Y planes being equal
to each other similar to the particle problems in Chapter 4. The main focus for the

moment equations is on the torque component about the Z axes. The summation of
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moments shows that, as expected, the greater the radius of the cylinders and their
distance from the axis of rotation the more torque is required for a given angular

acceleration wy.

0 = BG)- ()
0 = R(3)-FG)

T =0

Combining these equations with the summation of the forces equations be-
low fully define the system and any sensitivity analysis can be performed similar to

Chapter 3.

Fi = Zlgeost — (Ry+ 1)) + 22 (geos(d + 9) — (e + 1) cos )

Fy = "(geosh— (Ry+ 1)) + 2 (geos(t + 6) — (Ra + )i cos )

2
F3 — 0
Fyo= Mgsing - "2 (gsin(0+ ) + (R + ) sing)
Fy = _%gsmg_%(QSin(eﬂLﬁb)+(R2+T)wzsin¢)

The above results mirror nearly identically to the results shown in Eq. 4.6 to
4.10 from the two particle problem. The only difference is that the radius of the
cylinder, r, is added into the problem. If the problem was set up so that the R; was
from the axis of rotation to the center of mass for the cylinder, the above equations
would be exactly identical to the equations for the rigid body cylinders.

These equations show an interesting conclusion. When studying the dynamic
balance of a system rotating about a single axis, if the rotating bodies can be
assumed to be identical in shape and principal axes can be applied, the bodies can be

treated as point masses and will result in the same equations as if they were treated
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as rigid bodies. This greatly simplifies the problem in that the extra calculations of

inertia need not be performed.

5.2 Examination of the Balance Force

Taking the same approach as in Sec. 4.1.1, the forces can be combined into a

single resultant balance force F;.; that is in the same form. Specifically,

Fres = V Fr* + Fy*. (5.3)

Combining F} and Fy to be Fr and Fy and Fj to be Fy results in the following.

Fres = \/(ml w? (Ry + 1) +myw? cos(¢) (Ry +7))° + mo2wisin(¢)” (Ry +1)°
(5.4)

As was mentioned in the previous section, the only difference between this
form of the equation and Eq. 4.13 in Sec. 4.1.1 is the difference in the definition of
the radii. In this formulation the radii is presented as the summation of the radius
from the axis of rotation to the edge of the cylinder (R; and R») and the radius of
the cylinders themselves (r). If this summation was substituted for the radius from
the axis of rotation to the center of gravity for the cylinder, the formulation would be
exactly the same. This formulation was chosen to show how the radius of the cylinder
itself can directly affect the dynamic balance of the problem.

At this point, it is easy to see the the results following this step will be consis-
tent with the results in Chapter 4. If similar parameters are chosen and substituted
into Eq 5.4 the 3-D plot for the resultant balance force can be plotted. One differ-
ence is that the radius value of 2 will be equal to Ry + r instead of just R;. This is

consistent with the particle version because it is the distance to the center of gravity.

my = 40kg , mo = 40kg

(Ri+7)=1m , w=12rad/s
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Fig. 5.3 is identical to the version from Chapter 4 with two particles, Fig 4.2. This
is a consistent result and is expected since the equations for the balance force are
identical.

Fhi and (R2+r]| vs. Resultant Force

(R +] () ¢ (radians]

Figure 5.3: Simple Two Rigid Body System Balance Force

Further analysis of the derivatives for this would be redundant due to the
similarity between this equation and the particle case. As stated in the previous
section, if a problem has the unique set of parameters as in this rigid body problem
it can be assumed to only contain particles. This will be a great benefit to reduce

unnecessary calculations and allow for a more in depth analysis of dynamic balance.
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5.3 General Form of Individual Forces and Moments for Rigid Body Problem
with n Cylinders

Similar to Sec. 4.2.3, there is a pattern in the equations that can be utilized
to create a general form for the inertia matrix, individual forces and sum of moments
for this type of problem. The assumptions for this problem are that each of the
rigid bodies must be cylinders of equal radius, length and mass and that they are
not rotating with respect to each other. Any number of bodies can be added to this
problem at any given angle or radius and the following equations will be valid.

As with in Sec. 4.2.3, this is a great tool for a computer simulation or even
utilizing hand calculations by eliminating most of the setup of the problem. This
gives a quick shortcut to the analysis of the problem which will allow for a large
number of parameters to be simply explored. Using the same convention as in Sec.
4.2.3, variable ©; is the corresponding angle from the reference coordinate system to
that body’s coordinate system. To better present this variable for clarity, it is written

below in a vector format for the three body problem.

©=10,¢,7] (5.5)

Substituting that angle variable into the sum of the forces equations from Sec.

5.1 results in the following equations.

Y Fx = Fi+F+» —mgcos(f+6)

=1

ZFY = F4+F5 +Z—TTLQSIH(0+@Z)

=1
ZFZ = I

The inertia matrix is where the multiple bodies are captured in the problem.
Instead of adding two inertia matrices together, there will be a summation of n inertia

matrices. One body must be the reference body so the first inertia matrix, i = 1,
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will not have the similarity transform for a rotated angle. This will be called matrix
A. This also means that the summation will begin at body 2 so i = 2. The rest of
the matrices will have a similar format and only differ by the angle rotated from the

coordinate system and the radius from the axis of rotation.

[Niotar = 14+ ) 11}
i=2
The above equation can be expanded into the individual non-zero components
of the inertia matrix. In the XX, YY and XY components, the reference body
will have only the regular cylinder inertia value and has no angle. This causes the
summation to again begin at ¢ = 2 for these values. In the ZZ component each of the

bodies adds an additional term to the component so the summation begins at i = 1.

n

IXXtotal = %m[?ﬂ“Q + ZQ] + Z m(?“ + Rz)2 SiHZ(@Z‘)
=2

Py = eml3r? + 2]+ 3 e + R cos(©)
=2

[ZZtotcLl = ngQ -+ Xn: m(r + R,L)Z

=1
[XYtotal = [YXtotal = i —%m(r + Rz)2 sm(2@z)
1=2

(5.6)

Using the above terms for the inertia matrix, the sum of the moments for the

problem can be quickly and easily calculated using the equations below.

L L
ZMX = F5(5)— Fu(z) = —Ixzaz + IZYW%

)
N NN

ZMY = FI(E) — Fg(—) = —IyzOéZ + IXZw%

ZMZ:0
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As in Sec. 4.2.3 these equations can be used by computer simulation models
as the governing equation for a highly complex system involving a theoretical infinite
number of cylinders rotating about a single axis. The equation’s flexibility in the
number of bodies, size of and orientation of those bodies with respect to each other
is extremely beneficial in a design scenario. A number of iterative approaches can be
solved quickly and the ideal design produced with a small amount of effort and time.
This can lead to a thorough optimization analysis and mathematically prove that a
certain set of parameters creates the best possible design with respect to the system’s

dynamic balance.

5.4 Summary of Results from Rigid Body Problem

This chapter was an example of the application of the Euler’s equations of
motion derived using cylindrical vector components. The example problem presented
in this chapter shows the ease of use for this formulation when applied to systems
involving single axis rotation. It provides a much more intuitive means of analysis
by preserving the natural use of cylindrical coordinates throughout the problem and
presents the final results in terms of design parameters such as angles, radii, and
rigid body dimensions. Although the solution does not reveal any concrete answers
for optimizing dynamic balance for this problem, it does give a new avenue to begin

exploring different systems and problems for that type of output.
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CHAPTER 6

Comparison and Discussion

This chapter explores the similarities and differences between the cylindrical
vector component notation and other rotational focused notations. The previous
chapters have illustrated the derivation and use of the cylindrical vector notation used
in conjunction with Euler’s equations. All of the previous problems could have been
solved with any other number of methods or equations but the point of this particular
notation is to create a more expedient and elegant way to get to the result while trying
to preserve the connection between the solution and the problem parameters or inputs.
The following sections are going to explore the advantages and disadvantages of this

approach as compared with some of the approaches mentioned in the introduction.

6.1 Comparison Between Standard Cartesian Notation Euler’s Equations and
Cylindrical Vector Component Notation

For a classically trained engineer, the standard notation Euler’s equations
would be the obvious, and perhaps only, choice for evaluating the example prob-
lems presented. In standard Cartesian notation approach, all parameters would be
expressed in an allowable body fixed or a space fixed %,j’,l% coordinate system and
would have to be related together by some transformation equation(s). This transfor-
mation equation would most likely be in some form of a rotation transformation that
was applied at some point in the analysis. The major advantage that the Cylindrical
Vector Components (CVC) approach is that the problem definition and parameters
are explicitly identified and that definition flows very easily into the Euler’s equation
notation and subsequently the analysis.

In CVC, the link from the problem definition and input parameters to the
result is very clear and this opens doors to find deeper ways to evaluate how these

input parameters affect some of the outcomes of the problem. This can be seen in
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the resultant balance force analysis that is done in Sec. 4.1.1. With dynamic balance
being of such critical importance to many rotational problems, this type of notation
easily flows into and facilitates a very deep and complex look into dynamic balance.
The further understanding of the relationship between the inputs and the outputs are
the major benefit of the CVC approach.

One aspect that could be either an advantage or disadvantage depending upon
the problem is that it works very well with problems whose parameters are naturally
consistent with cylindrical coordinates. Generally for single axis rotation this would
be an advantage since most problems will be defined using classic parameters such
as angles and radii. However, in the case where the parameters are not already set
up into these variables, some kind of trigonometry or other mathematical operations
need to be performed to get it in the correct form.

One major drawback that of the CVC notation compared with the standard
Cartesian notation is its applicability is limited to single axis rotation. While this
give it the added advantage of being very easy and straightforward for single axis
rotation problems, it is unable, or at least unclear, as to how it could be applied to
additional axes of rotation. Perhaps it can be expanded to facilitate the multiple axis
of rotation, however, this added functionally might take away from the beauty of this

notation being simple and concise.

6.2 Comparison Between Euler Angles and Cylindrical Vector Component No-
tation.

The use of Euler angles and subsequent is one of the base lessons taught in
dynamics. It is so powerful and widely known for a couple reasons. One of the main
reasons is that they are so easily associated with a physical gimbal. Also, since most
dynamics problems require the transformation from a body fixed coordinate system
to a fixed space coordinate system, Euler angles are a great way to easily capture

every transformation and are relatively easily applied and understood. The wide use
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of Euler angles along with its own strict guidelines has led it to become a standardized
method in performing coordinate transformation.

However, the power and the robustness of Euler angles can also have some
negative side effects. One side effect is that to completely apply the Euler angles
correctly, a lot of information is needed. The angles of rotation, which convention of
elemental rotation is being used, and the orientation of the fixed coordinate system
all need to be known for the transformation to work properly. Also, there is a special
case in which the Euler angles will lead to a phenomenon called “gimbal lock” or
cause a singularity. This occurs when a special case of generally orthogonal angles
cause a loss of degree of freedom where a change in either of two Euler angles results
in the same change in orientation about a certain axis.

This problem occurs because of the trigonometric functions that are used in
the Euler angle matrices which can cause a matrix to become an identity matrix,
effectively removing an intermediate rotation. The following equations shows a how

this situation can occur.

cosae —sina 0| |1 O 0 cosy —siny 0
[R] = |sina  cosae 0| |0 cosf —sinf| |siny cosy 0O (6.1)
0 0 1] |0 sinf cosf 0 0 1

Assuming that the above equation is a series of rotations and that each variable
(e, B,7) is an angle of rotation. Next, assume that 5 = 0 which will cause the cosine
terms to be 1 and the sine terms to be 0 in the middle matrix. By inspection it
can be seen that the middle matrix becomes the identity matrix. If the matrices are

multiplied out and simplified they can be presented in the following equation.

cos(a +7) —sin(a+7) 0
[R] = [sin(a+7) cos(a+7) 0 (6.2)
0 0 1

This rotation matrix has lost a degree of freedom because the last row and
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last column cannot be changed thus the rotation axis will always be around the Z
axis. An advantage to using the CVC notation is that it does not require the use of
matrices to multiply the coordinates by to transform them into the fixed coordinate
system. The main coordinate system is attached to a single entity and all others are
related back by the use of a known positional angle. Mainly, this advantage is due to
the fact that no accommodations are made in this notation to facilitate multiple axis

rotation.

6.3 Comparison Between Axis-Angle and Cylindrical Vector Component Nota-
tion.

The main advantage to the axis-angle approach to transforming a coordinate
system is to reduce some of the calculations needed. Instead of having to multiply
three different matrices to get to the final matrix used to perform the transformation,
a few inputs into an equation which generates the full rotation matrix is done in one
step. It is always very useful in real world applications because most objects in the
real world do not rotate about three fixed axes but rather about random axes. If that
random axis has a known orientation and the angle to be rotated is known, it is very
easy to enter into an axis-angle equation and calculate the new orientation quickly.

However, the axis-angle approach has many of the same pitfalls as the Euler
angle and rotation matrix approach. These can fall victim to singularities and round-
ing errors due to the fact that there are still sine and cosine terms involved. Also,
while obvious, it is necessary to know the rotation vector orientation to employ this
method. The axis-angle approach is generally a more robust version of the cylindrical
vector component notation in that they both deal with rotations about a single axis;
however, the CVC notation is better suited for rotation about an axis coincident with

a coordinate axis.
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6.4 Comparison Between Rodrigues’ Rotation Formula and Cylindrical Vector
Component Notation

Perhaps the most similar of the other notations to the CVC notation is the
Rodrigues’ rotation formula. The Rodrigues’ rotation formula uses the same basic
concept of a vector being broken into two components, one being a projection onto
the orthogonal plane to the Z axis and a vector that is parallel or coincident with the
Z axis [8]. Rodrigues’ formula is as follows, where ¥/ is a vector which is being rotated

6 about the unit vector .
Tror = Tcos 0 + (kx¥) sin 0 + k(k-7)(1 — cosf) (6.3)
It specializes in the calculation of orientation for a vector after a single axis rotation.

The beauty of the formula is that it can calculate the new orientation independently
from the orientation in space of the reference frame in which the new vector and
rotation are about. Basically, with this formula, any vector can be easily rotated
about any unit vector in space regardless of its orientation.

The issue with Rodrigues’ formula is that for each rotation about an axis a new
calculation needs to be performed. It is not obvious how this notation could easily
show how several particles rotating about a single axis could be easily described in
reference to one another. Also, once the transformation is complete and the formula
calculated, the information of where the particle came from is lost. In the CVC
notation, the particles location in space relative to the main coordinate system is still
preserved by the fact that those parameters are easily discerned from the position
vector. This keeps the clarity in the link between the results and the input parameters

and leads to a greater understanding of the effect on the results that each have.

6.5 Comparison Between Quaternion Rotations and Cylindrical Vector Compo-
nent Notation

Quaternion rotations are basically a way to neatly package a axis-angle rota-
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tion, which utilizes a vector unit axis and a scalar angle. The format for a quaternion
would be as follows.

z=a+bi+cj+dk (6.4)

The formulation eliminates the need for sines and cosines to be used in the trans-
formation which leads to removing the round off error as well as the issue of gimbal
lock. Also, the representation of a quaternion is much more compact than any rota-
tion matrix and is easily transferred to an axis-angle representation. A benefit to the
more compact representation is directly applicable to computer systems as it takes
much less memory to store a quaternion versus a rotation matrix.

The major downfall for quaternions is really not the fault of quaternions at
all and that is that they just are not well known or used by the common engineer.
It is very difficult to find a classically trained engineer with the working knowledge
of a quaternion to be able to apply it to a problem they are working on. That being
said, a quaternion is really only a way to represent a rotation transformation ele-
gantly, but still requires some math to actually carry out the transformation. Again,
with the simplicity of the CVC notation, it is able to handle a simple rotation in a
straightforward easy to understand way which any classically trained engineer would

understand.

6.6 Summary of Comparisons

The main point that is being made is echoing what was stated in the intro-
duction chapter. The CVC notation does not allow for any problems to be solved
that previously could not, it merely is a simplified version of some very robust meth-
ods of performing rotation transformations that can be easily integrated into Euler’s
equations of motion to elegantly describe a system with single axis rotation. The
alternative methods add unnecessary complication when it comes to a very specific

type of problem like single axis rotation. This notation could not be used on any
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where near the number of problems that any of the other methods described here
could; however, seeing as there are so many applications which only deal with a sin-
gle axis of rotation, it would still have a wide appeal in practical problems and can

make a big difference.
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CHAPTER 7

Conclusions

7.1 General Discussion

This thesis sought to provide a more elegant way for the engineer or dynamist
evaluating a system with a single rotational axis. This tool would be a revamping
of the notation used in the derivation of Euler’s equations of motion to provide a
direct link from the setup and definition of a problem to the solution and analysis.
The benefit of this idea of unification of notion from definition through analysis
was highlighted using some simple particle problems, and the full use of this new
formulation of Euler’s equations of motion was shown using a rigid body example.
This is not the only notation that is used for performing rotations about a single
or multiple axes and a few other methods were compared and contrasted with the
method defined in this thesis. It is believed that the approach presented in this thesis
provides a justifiable advantage in evaluating problems with a single axis of rotation

and can be greatly beneficial to the engineer or dynamist when applied appropriately.

7.2 Summary of Contributions

This research presented a way to fully define and analyze a system in cylindrical
vector components that had not existed before. The basis of nearly all dynamic
models, Euler’s equations of motion, was re-derived in a purely cylindrical component
vector system. This gives a system designer another tool in the design process where
a problem can be maintained in the more intuitive cylindrical vector components used
to describe most rotational systems.

It was shown how this approach was a more elegant way to describe a single

axis rotation system. This elegance can lead to more advanced methods of system
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design where the robustness of a system can be quantified and studied in-depth. A
more complex system with higher degrees of freedom opens the possibility for smarter
design decisions that will lead to a more robust design and understanding.

In a simple particle problem, the derivative of the resultant balance force with
respect to the location of the particle in space around the balance force cannot be
manipulated without fundamentally chancing the problem. A more interesting result
is that the derivative is actually discontinuous at the balance point.

A simple rigid body problem was analyzed to show the benefit of the cylindrical
vector component method. This notation is another beneficial tool for the dynamist
or engineer looking at a problem or design with single axis rotation. The more elegant
solution can provide a greater understanding of the relationship between the design
parameters and the resultant reaction forces and dynamic balance of the system.

It was shown that under a certain set of parameters, rigid bodies in a single
axis rotational problem can be treated as particles. This greatly reduces the number
of calculations, variables and time it takes to perform a full analysis. With the greater
simplicity, a more detailed approach can be conducted.

This notation was compared with a variety of other alternative way of describ-
ing a rotating system. In certain scenarios where the rotation is about a single axis,
this notation was shown as a very useful tool that was easily integrated in the analysis

of the system by the integration of the notation into Euler’s equations of motion.

7.3 Prospect of Future Work

Some of the possibilities for future work in the field of designing for dynamic
balance robustness include the following topics.

Explore the particle problems from Chapter 4 with some out of plane particles.
Every example that has been presented has dealt with particles that all rotate in the

same plane. Some out of plane interactions could provide some excellent insight into
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the real world dynamic balance of rotating machinery where everything may not be
spinning in one plane.

Employ the use of bifurcation analysis in the simple particle problems. The
current method of plotting the derivative of the resultant balance for is similar to
bifurcation but this field is growing rapidly and new methods are being developed.
Examining the sensitivity of the input parameters with this method may give some
new insight into the balance of the system.

Consider trying to expand the CVC model to multi axis rotation and see if it
can be integrated into Euler’s equations of motion. The multiple axis version of the
CVC could be extremely powerful in analysis rotational motion because of its ability
to simplify complex problems and to provide a link between the system parameters
and the output of the equations.

Consider higher order systems that have more particles or more rigid bodies.
The problem that occurred with the simple particle or rigid body problems was a
lack of design freedom. With there being only a few design parameters there is less
of an opportunity to getting a robust design. These results showed a propensity for
the design to be very unstable when it came to dynamic balance. Experience says
that there should be more flexibility in a real life design that a simple particle or rigid
body problem fails to capture.

Examine in a computer model the general form of the particle problem with
more and more discrete particles. These models can try to discover behavior of a
system that is in the grey area between a large number of particles and a rigid body
and determine how this transition affects the dynamic balance of a system. A more
continuous type system which may more closely represent the physical CT scanner
model could result in a modified approach to solving and accounting for dynamic
imbalance.

Re-evaluate the CT scanner problem with a larger focus on the upfront design.
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Using this approach after a design is set to be dynamically and statically balanced
gives very little if any opportunity to find what contributes the most to the dynamic
balance without getting into the variation approach used by Rogers. The choice of
certain design parameters in the beginning of the design process can rigidly determine
the system’s dynamic balance and leave little room for adjustment. With the ability
to create a general equation using CVC, the design parameters might be more easily
chosen to create a robustly design system with respect to dynamic balance.
Completely duplicate Rogers” approach using a purely CVC approach and see
if the sensitivity analysis is clearer as predicted. This research was focused primarily
on the dynamics and mathematical model of a system and the variation analysis was
deemed out of scope. However, the variation analysis done completely in cylindrical
coordinates may be give the biggest gain in understanding from this work because

the direct design parameters will be present in the variation analysis equations.
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APPENDIX A

Detailed Calculation of Inertia Matrix for a Cylinder Using Cylindrical Vector
Components

The calculation of the inertia matrix using CVC is performed by evaluating
the triple integrals from Eq. 2.8 to Eq. 2.13. An example of these calculations is
presented in this appendix. As stated in Chapter 3, the inertia matrix calculated using
CVC will come out identically to the inertia matrix calculated by the conventional
Cartesian coordinates if the coordinate systems are attached to the body in the same
standard orientation. The standard orientation for a cylinder is for the coordinate
to be centered at the mass center of the cylinder G, and for the Z axis to be aligned
with the center of the cross-sectional circle of the cylinder.

A simple cylinder of radius R and length [ is shown below in Fig. A.1 with
a coordinate system XY Z attached in the manner described above. Any standard
example of inertia calculations for a cylinder will use this general model for its calcu-
lations.

The differential mass term at the end of Eq. 2.8 to Eq. 2.13 is defined using
the variables needed to be integrated over. Since each equation uses the variables
R, ¢ and Z, the differential mass term is defined in terms of those variables and a

density term as shown.

dm = pRdRd¢dZ

p=—o (A1)

2l
Notice that the differential mass term, when calculated, has the correct units
of mass. This is the reason for the extra R term in the beginning since the differential
of ¢ has units of radians. To balance the units, the extra R needs to be added.
For the calculations to be performed, the equations require bounds to be set

up for each integral based on the variables they are being integrated over in the
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Figure A.1: Inertia Calculation Example

differential mass term. These are obtained by finding the two extremes for the body

about each variable. The R and Z axes are simple with the R term going from 0 to

r and the Z going from —% to % The ¢ term is treated like and angle and since the

body is round, the bounds on that variable is from 0 to 2.

0< R <r
0< ¢ <27
-
2 = =2

The next step is to take the first moment of inertia, Ixx, and substitute in
the value for dm and the bounds on the integrals as defined above. Pulling out the
constant density of the cylinder and performing each integration and evaluating it

between the bounds is shown below.
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r 21 %
Ixx = / / / (R*sin* ¢ + Z*)pRd Rdp dZ (A.2)
0 0 —

L
2

r 27 3 %
Ixx = p / / [ZR3 sin? ¢ + %} dR do
0 0

_L
2

r 27 ZSR
Ixx =p / / {133 sin? ¢ + E} dR d¢
0 0

"[IR3¢ IR®singcos¢ BRG]
Ivx = - dR
= /0 [ 2 2 e }

T l3 T
Iyx = p / [ZR37r+ ?W dR
0 J

7 {ZRZLW N BR2n|"
XX =p
1 12 |,
Irtn 1B3r2m
box=p=+r=

Once all of the integrations are complete, p is substituted in from Eq. A.1 and the

equation can be simplified.

1
IXX = Em[3r2 -+ l2] (A3)

As expected, this equation is exactly the same as the inertia for [yxy when
calculated using the conventional Cartesian coordinate version of the triple integral.
As stated in Chapter 3, this new means of calculating the inertia is very beneficial.
It is never guaranteed that a triple integral will be easy or even possible to be calcu-
lated and having another formulation of the integral gives an additional route to the
solution. Of course, it is always possible to create an approximation to an integral,

but an analytical solution is always preferable.
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The Ixx is only the first of six of these triple integrals. Therefore, the exact
same procedure for the Iyy must be performed and will also lead to the same end

equation.

r 2T L
Iyy = / / / ’ (Z? + R?cos®* ¢)pRdAR dp dZ (A.4)
0o Jo -1
T 21 l3R
Iyy = p/ / [ZR3 cos? o+ —] dR d¢ (A.5)
T 3
IYY:p/ [ZR3W+ZRW]dR
0 6
T Irim n Brim
YY = P—4 P 12
1 2 2

This result is expected because the cylinder is symmetrical around the Z axis.
This means that the X and Y axis inertias should be exactly the same and would be
the same for any orientation of the coordinate system if the Z axis is aligned with
the center of the cylinder.

Again, performing the triple integral for the remaining moment of inertia term,
I;7. This also follows the exact same procedure as with Ixx and Iyy only this time

it will result in a different equation.

IZZZ/OT /027r /é (R)pRdARd¢ dZ (A.7)

i
2

r 2
Iyz = p /O /O (RS1)dR do (A3)

Izz=p / (2rRP1)dR (A.9)
0
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il

2z =p—— (A.10)
Lo

IZZ = §mr (All)

As with the I'xx and Iyy, this is identical to the equation for the I;; moment
of inertia when calculated using the conventional Cartesian coordinates.

The final pieces of the inertia matrix that needs to be calculated for this to
be complete are the products of inertia. For a cylinder having a coordinate system
aligned with its center, the products of inertia should be all zero because it is symmet-
rical about two axes. However, as an exercise, a product of inertia will be calculated
to show that it does result in a zero. The equation is again set up using the bounds
that were established above and is shown below. Each integral is performed and

evaluated at those bounds and the density term can be substituted in at the end.

Ixz = / / / (R%*Z cos ¢)pRARdpdZ (A.12)
1

r 2T R2l2
Ixz = /)/ / [
0 0 4

2712 27
]XZ:p/ [Rl 51114 dR
0

] dRdo

0

IXZ:IZXZO (AlS)

As expected, the product of inertia term [y results in a 0. By inspection
it can be seen that Ixy, Iy x,Izy and Iy will also be zero since fo%(cos ¢)d¢ and

fo%(cos ¢ sin ¢)d¢ will be zero. Therefore:
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Iny=1Izx =Ixy =Iyx =17y =Iyz =0 (A.14)

To summarize, this appendix showed example calculations of the inertia matrix
for a standard cylinder using CVC. These equations resulted in the same matrix as
the standard Cartesian coordinate formulations of the triple integrals, but this is
inherently a good thing. Had these formulations resulted in a different inertia matrix,
the inertias for all of the standard bodies used in a CVC dynamic analysis would have
to be recalculated and tabulated. The new triple integral formulations using CVC
instead give a new means of calculating the inertia matrix for rigid bodies that are
unknown, yet allows for the simple substitution of standard rigid body inertias into

dynamic analysis.
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APPENDIX B

Detailed Derivation of the Parallel Axis Theorem Using Cylindrical Vector
Components

In this appendix, the parallel axis theorem will be derived using CVC. The
main theme of using CVC is to preserve the link between the design parameters and
the dynamic balance analysis, therefore each step in the analysis of a system must
be performed using CVC. A major step in many dynamics problems is to employ the

use of the parallel axis theorem and it is crucial that it is able to be performed using

CVC.

Figure B.1: Parallel Axis Theorem Diagram

Fig. B.1 shows the typical starting figure for the parallel axis theorem deriva-

tion with two coordinate systems attached to a rigid body. Coordinate system G is
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attached at the body’s center of mass and coordinate system B is shown at a ran-
dom yet known vector rp/g from coordinate system G. In the standard Cartesian

coordinate derivation this vector would be defined simply as follows

However, like before, the vector from B to G is split into the components of the
projected vector r, along with the angle ¢, from the X axis on the XY plane and

the vector z, along the 7 axis shown in Fig. B.2. This new formulation of the vector

TB/G is

TB/G = To COS QX + ToSIN Qolyy, + 207, (B.2)

The angular momentum of coordinate system G can be transferred to coordi-

nate system B by adding on the vector between the coordinate systems crossed with
the cross product of the vector between the systems and the angular momentum of
the body. Defining the angular momentum for coordinate system B with Hp and the

angular momentum of coordinate system G as ﬁg, this equation can be written as

Hp = He +m(Fpje X [& X 756]) (B.3)

Substituting the vector from Eq. B.2 and splitting the angular velocity w into com-

ponents wy, wy, wz will result in the following.

FB/G X [(Ij X FB/G] =
[wX(rg sin? ¢, + zg) - wy(rg COS (o SIN () — Wz (T2, COS Py)|Ex

+ [wy (22 +1r2cos® ¢,) — wx (12 cos ¢, sin @y ) — Wz (T2, i @))€y

+ [wz(r?) — wr(reze cos o) — Wy (Tozesin By )] €7 (B.4)

Using this equation and also changing the notation for the angular momentum from

Hp and Hg to [Ip]{w} and [Ig]{w} results in the following equation.
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Figure B.2: Parallel Axis Theorem Diagram with Cylindrical Vector Components

I {w} =
r2sin® ¢, + 22 —r2cos ¢, sin g, — (102, COS P,)

Hol{w} +m | —r2cosg,sing, 22412cos’>d,  —To2,5in ¢, | (@)

2
o

—T'0Zo COS @, —7T'0Z0 SIN @, r
Splitting up the inertia matrices and witting out the result explicitly will result in
the following equations. These equations provide an easy way to employ the parallel

axis theorem using terms that are consistent with CVC.



Ixx,
Iyy,

Iz7,

Ixy,
Ixz,

Izy,
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Ixxg +m(r)sin® ¢, + 22)
Iyy, + m(r? cos® ¢, + 22)

2
IZZG—i—mro

2 .
Iy x, = Ixy, + mr, cos ¢, sin ¢,
]ZXB = ]XZG +mr,z, COS¢0

Iy z, = Ixy, + mroz,sin ¢, (B.6)

Summarizing, this appendix fills a gap in the analysis of a dynamic problem

using CVC by deriving the parallel axis theorem in CVC. To ensure that the entire

problem can be defined using CVC and stays in CVC throughout the problem is

a major goal of this thesis. Many applications require the use of the parallel axis

theorem to comply with rules of dynamic analysis and where coordinate systems are

allowed to be placed, such as at the center of mass or a point that is not accelerating.

If this portion of the analysis was not in CVC, it could possibly compromise the

benefit of using CVC which is to keep the problem input parameters intact all the

way through the analysis to create a link between the two. The parallel axis theorem

in CVC is a small yet important link in that process.
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