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ABSTRACT
ANALYSIS OFLAMINATED ANISOTROPICPLATESAND SHELLSVIA A
MODIFIED COMPLEMENTARY ENERGYPRINCIPLEAPPROACH

Martin Claude Domfang, S.J., M.S.

Marquette University, 2013

The present work is concerned with the finite elethstructural analysis of
laminated anisotropic plates and shells. New elésnessed on a modified
complementary energy principle are proposed to avgthe analysis of such composite
structures. Third order deformation plate and simeltlels incorporating a convergence
parameter are developed to govern the generakdisplent field.

An eight-node isoparametric quadrilateral elemeitit two independent cross-
sectional rotations and three normal displacemienisilized to describe the
displacement field. The present modified complemgneénergy formulation
incorporates a number of in-plane strain functiohgarious orders. The corresponding
in-plane stresses for each lamina are derived fhentonstitutive relations. The
transverse stresses are then computed from thieatogh of equilibrium equations. The
element comprises an arbitrary number of lamin@lgdonded together.

The analysis technique employed, although usiniglaeh order formulation, does
not increase the number of variables associatddegith lamina. Moreover, the use of a
convergence parameter permits one to achieve erteéisults for very thin as well as
thick composite plates and shells. The static bepdnalysis of several example
problems for various geometries, transverse loadswaterial properties is analyzed via
a code written in MATLAB. The results are compavath those from technical theories,
other finite element models and three-dimensiolzgtieity solutions available in the
literature. It is demonstrated that marked improgets in the results for stress and
displacement can be achieved by the use of thenmahified complementary energy
elements incorporating a convergence parameter.
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CHAPTER 1
INTRODUCTION

The present dissertation deals with the structamalysis of laminated anisotropic
plates and shells via the use of the finite elemsthod. New elements based on the use
of a modified complementary energy principle argpoised to improve the analysis of
such composite structures. Third order plate aetl sfodels incorporating a
convergence parameter are obtained to govern tiergestress and displacement fields.

1.1. Introduction to Laminated Composite Materials

Laminated composite materials can be defined asbawations of material
elements which differ in composition or form on aaroscopic level with respect to each
other. The individual fibrous constituent elemerda be man-made, are generally
insoluble, retain their identities within the consfie, and may be continuous or
discontinuous” [1]. The fibers are the main loadrgiag members, while the matrix
material bonds them together. It is establishetfthar materials are stronger and stiffer
than their bulk-form counterpart, whereas matrimmponents retain their usual bulk-form
properties. The fiber materials are usually madeooimon metals like aluminum,
copper, iron, nickel, steel, and titanium or matksriike glass, boron and graphite. Matrix
materials are generally epoxy or resin. A full urstiending of the behavior of fiber and
matrix properties at the microscopic level requiresuse of the field of material science.
The present study is entirely devoted to a macmsdevel study as illustrated in Figure
1.1.

Laminated composite materials are often made lokistg many thin layers, each

generally called a lamina. A lamina is a macro ohinaterial whose properties are



determined through amppropriate experimeal test. A desiredtrength and stiffness fi
a particular structural application such ars, beams, plates and shéfigbtained by
stacking many lamintogethe resulting in a laminate constructiorac¢h lanina may

have a differenthickness, elastic properties or fiber orientat

composito
composite

t two leveis

consiaer tneir internail strucrure.

Orihotropic

Lamina

Figure 1. 1: lllustratiomf the two levels of characterizing composite lambéa structure

1.2. Statement of the Problem

Multilayer composite materials continue to be widely usetheform of plate
and shell-typestructures for variot industries such as pressure vessels and pi
transportation, construction, aerospace, nucleadrf@ssil power, chemical and pe-
chemical. In structures such as fuel tanks, oxidiaeks, motor cases, etc., compo

materials are replacing the titional metallic alloys. Their high strength, higtiffness,



light weight and high corrosion resistance givertban advantage over the traditional
isotropic materials. Moreover, they offer to theigeer a great deal of freedom in
tailoring mechanical properties that suit the logdionditions and the geometric and
environmental restrictions. Examples are helicalbund cylinders which are common
structures used in the pressure vessel and pipthgsiry. Since many of these vessels
work at high pressure, their safe design is of stnmmoportance. The regulatory
authorities require designers to prove that thenary structure will sustain all the
different failures modes that can cause extensiwpgrty damage, personal injury,
environmental pollution, and even loss of life.

Usually, as illustrated in Figure 1.2, there ave fimethods available for the
analysis of laminated composite plates and sh&disiely, various structural lamination
plate and shell theories, the numerical methodnitefelement analysis, failure theories
to predict modes of failure and determine failwads, and the experimental method.
Although the latter is very important for estabirghan assortment of data for acceptable
analytical and numerical results comparison, amgbfoof testing, it is often materials
and apparatus sensitive as well as being costlgrefbre, a variety of analytical methods

that can provide consistently accurate results haes developed.
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Figure 1. 2: Interconnection between the knowledge neededdtyze a laminated
composite structure.

Many previous studies have been carried out osttless and displacement
analysis of composite plates and shells. Theseehenvyielded unsatisfactory results as
far as the stress state (especially the transgémseses) and failure predictions were
concerned. This is mainly due to how the transvehgar deformation (TSD) was
incorporated in the analysis. An important distimetoetween a composite structure and
its isotropic counterpart is that transverse sde&wrmation plays a significant role in the
structural behavior of the composite plate or sheil isotropic thin plates and shells, the
effect of TSD can often be neglected. Howeverannot be ignored for laminated
composite structures, even for very thin ones. Atilse difference in material properties
and geometry of each layer causes many coupliregtsfsuch as extension-bending,
twisting-extension and twisting-bending, which cdicgte the analysis. That explains

why there are many sophisticated approaches fdyzang composites plates and shells.



In this dissertation a finite element formulaticasbd on a modified
complementary energy principle is developed. Onth@funique contributions of this
study is the use of higher order strain functionthe variational principle to accomplish
the finite element implementation. Examined alseh®ther the present formulation
developed for laminated plates can also be apphiedrved shell structures.

1.3. Review of Relevant Literature

1.3.1 Composite Laminated Plates

a) Exact Elasticity Solutions

The first publication on anisotropic plates mayaltteibuted to Kaczkowski [2],
followed by that of Ambartsumyan [3]. The lattetgtished a book, “Theory of
Anisotropic Plates”, which included an analysigh# transverse shear effect. The early
papers on exact elasticity solutions for laminatechposites structures are often credited
to Pagano [4-6]. His first paper, published in 196@vided exact elasticity solutions for
semi-infinite cross-ply laminated strips. The ngsar, he studied the exact solution of
rectangular bi-directional composite layered plaséesl found out that the curvature of
the transverse shear stresses at any point isntiisgous in its first derivative at the
inter-layer boundary. He also demonstrated thas#imee curvature is a function of the
thickness coordinate. Many other researchers ssi@riaivas et al. [7-10], Jones [11],
Lee [12,13], Whitney [14], Pagano and Hatfield [18por [16], and Fan and Ye [17]
have made a significant contribution in solving gasite laminated plates by using the
theory of elasticity. Recent studies include Kardle[18, 19], who proposed an elasticity

solution for a cross-ply composite and sandwichihate, and Teo and Liew [20] who



studied the three-dimensional elasticity behavf@ame orthotropic structures. The
paper by Civalek and Baltacioglu [21], investigatethree-dimensional elasticity
solution for rectangular composite plates. The aagh is based on the discrete singular
convolution method. Their results show good agregméh the ones obtained by
Srinivas, Kant and Teo. However, the smallest nurobelements they used to obtain a
1% error is 343 (7x7x7). Also, the method appealseta finite element type of
approximation since they used meshed elementsr GibBeelasticity studies can be
found in [22-23].

b) Analytical Approaches

Very often, in-plane laminated composite structaesused in applications that
entail both membrane and bending strengths. Mairlyesfe composite laminates can be
studied by the use of plate theories. The textlmidkeddy [24] provides many details
about the different theories that can be used atyaa laminated composite plates.

The common mode of failure of composite laminatesnaatrix or fiber cracking
and delamination which are essentially three dinogad in nature, due primarily to
transverse stresses. While classical plate lanoimatieory (CLT) is commonly used for
simple analysis, it cannot handle the problem ebslieformation. Many alternate
theories have therefore been proposed, such disgherder shear deformation theory
(FSDT). Two other theories, namely the higher osexar deformation theory (HSDT)
and the layerwise theories are also in use masibwércome the problem of the
assumption of linear shear strain variation posethe FSDT [25]. More details on this
will be given in the next chapter. Considerableraibn has been given to CLT (see

Wang et al. [26] and [27-30]) which is derived frédinchhoff plate theory as an



extension of Euler- Lagrange beam theory. The FB&also been extensively studied
[31-34]. Some of the FSDT theories require shearection factors [35-37] which are
difficult to determine for any given laminated coosfie plate application. According to
Reddy [2004], “the shear correction factor depemutsonly on the lamination and
geometric parameters, but also on the loading anddary conditions.” Higher-order
plate theories (HSDT) used higher order polynomrathe expansion of the
displacement components through the thicknesseofatininate [38-41]. These higher
order formulations introduce additional unknownatthre often difficult to interpret in
physical terms. Complete derivations of the govegraquations of the theories and some
of their solutions are presented in the next Chiapte

c) Finite Element Methods

Solutions by use of analytical methods are avaslallly for problems with
simplified geometries, loads, boundary conditiond mnaterial orientation. Therefore,
numerical methods like finite element analysisgectical substitute formulations to
treat the more complicated problems. Consideratelature has been devoted to the
finite element analysis of laminated compositegddé2-60]. However, their
formulations differ widely from one another. Zhaargd Yang [61] provide an extensive
review on recent developments in this area. Felgenent analysis methods are usually
formulated using one of the three variational pptes: namely, the minimum potential
energy principle, the minimum complementary engnggciple, and the modified
complementary energy principle or mixed and hybosighulations (see, for example,

[62-64]). More details on each principle will beopided in Chapter 2.



The assumed displacement method based on the MimiRatential Energy
Principle has been the most studied of the vanatiprinciples and is the easiest to
develop. There exists a vast amount of literataretis method (see, for example, [65]).
As for the hybrid formulation that is the concefritee present study, there have also
been a number of authors who have contributedtdavelopment. Pian [66] pioneered
the studies of the hybrid stress finite elementties. They are derived from the
modified complementary energy statement, in whinghrequirements of inter-element
traction compatibility and boundary traction comipidity are relaxed via the use of the
Lagrange multiplier method. Pian [67-70] has cauithto lead the research in the field
of hybrid-stress finite element methods. It is wartentioning that, in 1995, Pian [71]
wrote an article in which he describes how hybnd anixed finite element methods have
evolved and how different versions of the variagioinnctional have been utilized for the
construction of more robust finite elements, esgcfor composite materials analysis.
Mau et al. [72] used the hybrid stress method tmédate quadrilateral elements for the
analysis of thick laminated plates. They used figdal degrees of freedom, namely three
displacements and two cross-sectional rotationsdch individual layer. Their results
for thick plates were good; however, the computetidime was high. Spilker [73] also
used the modified complementary finite element fdation to analyze composite
laminates. He focused on the through-the-thickdestsbutions for both the stress and
displacement components. His investigation wasicéstl to the cylindrical bending of
cross-ply laminates. A comparison between his tesuld the elasticity solutions
exhibited a good agreement. Since then, Spilkef7G}has used the hybrid stress

formulation to successfully develop additional eéerts. The majority of these elements



were implemented with an eight-node isoparametrniméilation based on the plate
bending elements developed by Spilker and Muni}.[77

1.3.2 Laminated Composite Cylindrical Shells

a) Elasticity Theory and Analytical Methods

There is a vast amount of literature on the thémakand numerical analysis of
composite shells. Here, the focus is on laminatedposite cylindrical shells. The first
research on anisotropic cylindrical shells was reggbin 1924 by Shtayerman [78]. Since
then, considerable progress has been made in #igsenof such laminated shells. Most
of the early publications were limited to predigtigeneral response characteristics
(vibrations frequencies, buckling loads, averageubh-the-thickness displacements and
rotations) and employed the assumptions of clasgizashell theory. An adequate
theory for this purpose is the Classical Laminafitveory [79, 80]. The roots of CLT for
plates and shells can be found in the first wofkdise&xhnitskii [81-83]. However, the
variation of material properties through the thieks direction associated with a
laminated structure makes the Kirchhoff-Love hyests inappropriate for the study of
moderately thin to thick walled composite structure

The increased use of composites materials in sigthtbch industries as aircraft
and petro-chemical has enhanced the interest iara atcurate prediction of the detailed
response characteristics during the design angsaalf laminated anisotropic
cylindrical shells, especially when employed aspuee vessels. It is commonly admitted
that when the diameter ratio (outside to insiddgniger than 1.1 the vessel should no
longer be considered thin-walled [84]. Therefordeaign method based on three-

dimensional stress-strain analysis is quite appaigprMany authors [85-90][8-13] have
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included the analysis of laminated cylindrical \ve#ssn their investigation, but only a
few have carried out a 3-D analysis.

Full-scale 3-D analyses of cylindrical laminate@lhwere developed starting in
the 1980s [91-92]. The problem statement was uhydoemulated in terms of the
equations of elasticity of a laminated anisotrdmdy (therefore this did not require any
specifications, especially on the symmetry of #maihate). The research then shifted
from developing analytical plate and shell theot@edeveloping approximate numerical
3-D solutions for them [93,94]. In the second exitof his famous bool;heory of
Elasticity of an Anisotropic Bodyekhnitskii [82] studied the particular case o
strain cylindrical structures. Roy and Tsai [92{ezxded the work of Lekhnitskii and
proposed a simple and efficient design methodhmktcomposite cylinders. Their
analysis, based on cylinders in the state of géimedaplane strain, can be used for both
pipes and pressure vessels and was proven to beateand efficient [18]. Parnas and
Katirci [95] studied the design of such pressureseés under various loading conditions
based on a linear elasticity solution of the thickled multi-layered filament-wound
cylindrical shell.

The method of asymptotic expansion [96-98] can hésased to develop
approximate shell theories to any order for anggmtr laminated media. Chung et al. [99]
accomplished this via the method of asymptoticgragon of the three-dimensional
elasticity equations, while Logan et al. [100, 104¢d this method in conjunction with
Reissner’s variational principle to derive thesaapns for composite cylindrical shells.
Widera et al. [102] showed, for the problem ofyel&d tube under in plane loadings,

that the asymptotic expansion approach, when coedpaith the elasticity solution,
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results in approximate shell theories which congerngiformly for all thickness to radius

ratios less than one.

b) Finite Element Analysis of Laminated Composigendrical Shells

The finite element analysis of composite shelldtrtes is still a great challenge
for the research community. Numerous numerical @ggres have been developed and
Yang et al. provide an extensive review of thenB8]1The most popular because of its
simplicity and efficiency, and the one which is ptial in this investigation, is the solid
shell degenerated approach. The earliest pajdtriisuted to Ahmad et al. [104]. Since
then, significant contributions have been providgdRamm [105], Hallquist et al. [106],
and Liu et al. [107]. The shell degenerated elemare successful with structures not
exhibiting enough warping as, for example, a cyical shell under internal pressure or
uniformly loaded folded plates. To overcome thisilj degenerated shell elements with
“drilling” degrees of freedom were proposed in literature. A displacement-type
modified variational formulation was developed ananerically assessed by Hughes et
al. [108]. Flat shell elements are obtained by domlb a plate bending element with a
membrane element. At present, there still existsrsiderable interest in using flat shell
elements to model curved shells [109], mainly duthe simplicity of their formulation.
Some authors have combined finite element methattistireoretical and experimental
analysis to determine the burst pressure of cyitatlshells. The first-ply failure in
composite pressure vessels was investigated bygJhan] by using the acoustic
emission technique. He obtained close results letviaite element method (FEM) and
experimental results. Mirza et al. [111] investeghtomposite vessels under concentrated

moments applied at discrete lug positions by atsogithe finite element method. A
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more recent study of the burst failure load of cosife pressure vessels was carried out
by Onder et al. [112]. They came to the conclusiat a FEM analysis using ANSYS
was not sufficiently accurate in predicting thduee pressure, while their analytical
method gave close results when compared to theiexgrgtal result. This remark was
also made by Bogdanovich and Pastore [94]. Thegddhat interlaminar stress
predictions using the 3-D FEM ANSYS code were rmauaate. Even after refining the
mesh in the through-the thickness direction, thplame stress predictions were still not
sufficiently accurate at the interfaces.

1.3.3 Failure Criteria in Composite Material Structures

As mentioned earlier, failure analysis is an imaotipart of today’s requirement
in analyzing composite materials. Although not ceden the dissertation, a review of
the state of the art is deemed important in ordeomplete the discussion on the
necessity of needing an effective and accuratestaealysis of cylindrical composite
shells.

The increase in the usage of composite structuessmthat factors such as
reliability and durability are becoming more andrenonportant. Many types of failure,
such as fiber rupture, interfiber matrix crackidglamination, etc., were taken into
account in the pioneering work of Timoshenko [1T3ai [114-119], Hashin [120-122]
and Puck [123]. However, it emerged from an ‘expeareeting’ held at St. Albans (UK)
in 1991 on the subject of ‘Failure of Polymeric Gmoaites and Structures: Mechanisms
and Criteria for the Prediction of Performance’4],2hat there is no universal definition
of what constitutes ‘failure’ of a composite andttthere is a lack of faith in the failure

criteria in current use [125]. In 1992, following that meeting, the participants launched
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an international exercise to determine the accuoatlye current theories employed for
predicting failure in composite laminates. Thisilége Olympics’ named “World Wide
Failure Exercise” involved recognized experts ia énea of fiber composite failure
theories, including leading academics and devetopkesoftware/numerical codes. A
summary of the methodologies employed in each theodirect comparison of the
predictions made for each test case, and the dyeealictive capabilities of the various
theories when compared with the experimental resudts presented in [126] and [127].
The World-Wide Failure Exercise evaluated 19 thecaeapproaches for predicting the
deformation and failure response of polymer contpdaminates when subjected to 14
different test cases of complex states of stres2004, they provided recommendations
as to how the theories can be best utilized toigeosafe and economic predictions in a
wide range of engineering design applications [12Z8E leading five theories were
explored in great detail to demonstrate their gfflesiand weaknesses. It was shown that
there still appeared some shortfalls in the thepeepecially in predicting the final
strength (burst failure) of composite material ptee vessels.

Many authors have integrated the analysis of Haiisire prediction into their
investigation. For example, Adali et al. [129] meted a method of optimizing multi-
layered composite pressure vessels using an eraticay solution. A three-dimensional
theory for anisotropic thick composite cylinderdgated to axisymmetrical loading
conditions was derived. The three-dimensional adive Tsai-Wu failure criterion was
employed to predict the maximum burst pressure.offtiization analysis of these
pressure vessels shows that the stacking sequétiee layers can be employed

effectively for maximizing the burst pressure. &airal. [130] calculated the stresses and
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the burst pressure of filament wound solid-rocketancases. The maximum stress
failure criterion and a stiffness-degradation magete introduced in the failure analysis.
Bakaiyan et al. [131] analyzed multi-layered filari@ound composite pipes under
combined internal pressure and thermomechanicdiigawith thermal variations and
then integrated Tsai-Hill failure criteria into te&sticity solution.

Many studies used the plain strain elasticity sofuas developed by Lekniski
[82] to develop a theoretical burst pressure exgwesfor cylinders. Others have carried
out the finite element analysis of laminated conmssunder internal pressure by using
commercial software (ANSYS) and failure criteriaery few of these studies, however,
have questioned the accuracy of the so-determinesises applied in the failure criteria.
From the WWE [128] conclusions, there is still eglounvestigative work needed to
improve the failure analysis of laminated compositactures. It is the belief here that
this improvement needs to start with a more acewstiess analysis using an appropriate
computational formulation. An accurate represeaotatif the transverse shear
deformation will play a significant role in the ddgpment of structural theories for the
composite plates or shells. It is expected thateffiect will vary a lot depending on the
type of lamina material, boundary conditions, logdand stacking sequence.

1.4. Objective and Scope of Present Study

The intent of this study is to contribute to a maceurate as well as efficient
displacement and stress analysis of laminated csitgpplates and shells by using
specially developed finite elements to adequatgbyasent the non-homogeneous,
anisotropic nature of such laminated structuree. gioposed analysis technique,

although using a higher order formulation, doesimatease the number of variables
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associated with each layer. Moreover, the inclusioa shear convergence parameter
allows one to account for the disparities of logdimoundary conditions, layer thickness
and material properties. A finite element formwatbased on a modified complementary
energy principle is used to develop the new elemdrite second objective of this
dissertation is to use the developed plate elemerashell formulation to assess the
stress and displacement analysis of shell strugture

The remainder of the current study is outlinedddsws:

Chapter 2 provides a review of the theoreticaldasmposite of laminated plate
and shell theories. It includes a summary of theargaverning equations applicable to
theories employed in the present investigationedssients of these theories are also
presented.

Chapter 3 presents the new displacement field fatioun with the shear
convergence parameter integrated into a modifieptementary energy principle. A
detailed procedure is given for the derivationha stiffness matrix.

Chapter 4 contains the plate and shell finite el@nf@mulations and their
implementation within a numerical code written imfl&b. A detailed flowchart is
provided and the coding process using Matlab isudised.

Chapter 5 discusses the effectiveness of the neweglts by studying plates and
shells problems with different geometries, boundamyditions, and loading type. The
relevance of the convergence parameter is alsaedve

Chapter 6 summarizes the conclusions drawn fromiivestigation and presents
future studies in terms of a discussion of theipaldr case of the stress analysis of

laminated cylindrical shells under internal pressur



CHAPTER 2
REVIEW OF COMPOSITE LAMINATED PLATE AND SHELL THEORIES

The goal of this Chapter is to present some ofrtiportant aspects about the
theories of laminated plates and shell that wilebgloyed during the course of this
study. The development of the governing equatidribese theories references an
anisotropic linear elastic body, and can be camwigcby use of the following basic
principles:

(2) Kinetics or conservation of momenta.

(2) Kinematics or strain-displacements relations.

3) Principle of virtual work and its variants.

4) Constitutive equations or the stress-strain refatio

The equations resulting from these principles appemented by appropriate
boundary and initial conditions from the problemtetent. In the present study, a time
non-dependent linear elastic deformation will besidered.

2.1. Anisotropic Linear Elasticity Theory

2.1.1 Kinematics or Strain-Displacements Relations.

Consider a loaded body as shown in Figure 2.1.bDdy experiences relative
displacements and changes in geometry. Let {uhleadisplacement vector from an
initial position to an actual position after defation, with (u, v, w) as components with
reference to the Cartesian coordinate system . y,he strain analysis aims at
guantifying all possible kinds of changes in thiatiree positions of the part of a

deformed body. The engineering components of tianstare then given by:
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Figure 2. 1: Deformed body under external forces.
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These equations define six different strain funtichree normal strains,( s,
g,) and three shear straingy, v,,, ¥xz), Which are expressed in terms of the three
displacement vector components. It indicates fhdisplacement functions are specified,
all six strain components will be determined thgrdtence, the strain functions cannot
be defined subjectively. However, if the strain gaments are specified, the following
equations of compatibility are required to insunéque values of the displacement
components, and thus have displacement continuihynathe deformed body.

d%e, N 0%, _ 0%Yxy
dy? = 0x? dx0y

9%, N 0%e, %Yy,
dz2 = 0y?  0ydz

d%e, N 0%¢, _ 0%y,,
0x2%2  02z2 0x0z

a <6yyz L W ayxy> , 9%
0z

(2.2)

-~ T oxdy

0x ady 0z

9 (Wyz Oy Oys) _ 0%
dx \ dy dy 0x

d <aVJ/Z ayyz _ asz) —9 azgy

ay\ 9z ' ox dy

2.1.2 Kinetics or Equilibrium Equations.

Consider again the loaded body as shown in FigureThe applied loads induce
internal forces in the body which can be groupetivim categories: body forces and
surface forces. Figure 2.2 shows a three dimenksbate of stress acting on an
infinitesimal parallelepiped element of the bodyheut body forces. The stresses acting

on one face of the parallelepiped body are caligctibn stresses.
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Figure 2. 2: 3-D state of stress acting on an infinitesimabfalepiped element.

Assuming that there is an internal stress gradigmtgighout the body and that

the stress components and their first derivativesantinuous, some differences will

exist between the surface stresses (tractionsjgaoti the opposite sides of the

parallelepiped. The equilibrium of the infinitesinedement including body forces

componentsK,, Fy, F,) can be expressed as

06, 0Ty N 0Ty,
0x dy 0z

+F =0

0tyy 0do, 01y,
ax dy > Y

0Ty, N dty, 0do,
0x dy 0z

or using standard tensor notation,

(2.3)
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ani
_Jt - 2.4
o, + F, =0 (2.4)

wherei = 1, 2, 3 and the summation oyes taken from 1 to 3.

2.1.3 Constitutive Equations

The relationship between the stress componentstaaid components depends
on the material properties of the structure. Indage of a linear elastic anisotropic body,
as considered in this study, the constitutive @qoattake the form of generalized
Hooke’s law and in Cartesian coordinates are esprkas:

Ox = Ci1 &+ Ci2 &+ Ci3 &, + Cia Viy + Cis Vyz + Ci6 Yz
Ox = Cp1 8¢+ Cop 8y + Co3 &5 + Cou Viy + Co5 Vyz + Co6 Vs
Ox = C31 &+ (328, + C33 &, + C34 Vyy + C35 Vyz + C36 Vs
(2.5)
Txy = Ca1 Ex + Cap €y + Ca3 &5 + Cag Viey + Cas Vyz + Cag Vaz
Tyz; = Cs1 &x + Cs3 €y + Cs3 €, + Cs4 Viy + Css5 Vyz + Csg Vaz
Txz = Ce1 &x + Coz &y + Co3 &5 + Coy Viey + Cos Vyz + Cop Vaz

Note that the number of independent stiffness caraptsC;; is equal to 21

[132]. The stress-strain relations for a generatlisotropic linear elastic body can be

expressed in matrix form as follows:
{o} = [C]{e} (2.6)
or the strain - stress relations given by

{e} = [S]{a} (2.7)

where
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{o} = {o%, 0y ,0z,Txy, Tyz, sz}T
{e} = {ex €y €z, Vxy  Vyzo VxZ}T

C11 Ciz Ciz3 Ciy Cis Gy
Crz Cy3 Cay (G5 Cye
C33 (34 C35 C3g

C44 C45 C46
Sym Css  Cse (2.8)
Ces

[S]=

544 S45 546
Sym Sss Sse
Se6

where[C] and[S] are the stiffness and compliance matrices, reset

All six stress components and six strain componkeat® been considered with
no restriction on the geometry, loading conditionsnaterial properties. The strain-
displacement relations (2.1), the equilibrium eopret (2.3) and the stress-strain relations
(2.6) constitute together with the prescribed baupaonditions, the conditions that
must be satisfied by any anisotropic elastic bodgquilibrium.

2.1.4 Mechanics of Orthotropic Lamina
a) Constitutive Equations in Material and Global@dinates

Three important aspects are to be taken into a¢aoiien modeling a laminated
composite structure. First, since each laminasiciered a macroscopic homogeneous

anisotropic body which posses three planes of syinyiitbe constitutive equations of
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each lamina are orthotropic. Second, the constéwgguations depend on the kinematics
assumptions of the theory used. Finally, mategiairaetry has to be added to the
geometric and loading symmetry when consideringudeeof symmetry conditions in the

analysis. For an orthotropic lamina, the stiffnesgrix takes the form of

C11 Cip Ci3 O 0 0 7
C,, C,3 O 0 0
C3z; O 0 0
[C] = (2.9)
Cse O 0
Sym Css O
C66_

In general, the uni-directional mechanical progsrof one lamina are obtained
experimentally. They are expressed in the matedatdinate systenx{, X, X) as

E;. Gij, andv;;, withi,j = 1,2, 3 and are, respectively, the elastic moduli, sheatuiio

ijo
and Poisson’s ratios.
Consider that the material coordinate system etedtabout the global coordinate

system X, y, 2 of an angleg, as shown in Figure 2.3.

Z 74

Figure 2. 3: lllustration of material and global coordinatessms

Definel; , m; andn; as the components of the direction cosines matrch that
x= Lix+my+n;z (2.10)

withi= 1,2,3.



23

For orthotropic material, the compliance matribmaterial coordinates system is

given as
1 —vy —vs
— 0 0 0
E, B E;
1 _V32
— 0 0 0
E, Ej
! 0 0 0
E;
[STme = . (2.11)
— 0 0
GZ3
S ! 0
ym I
Gl3
1
GZZ
while the stiffness matrix is defined by
[Clime = [S]r_nlc (2.12)

Consider the stress and strain components in mhtaordinates expressed as

{0}me = {01,02,03,7112,T23, T13}T

(2.13)
{elme = {€1,€2,€3, V12, V23, Y13}
The constitutive equation in material coordinatethen given as
{U}mc = [C]mc{g}mc (214)

The relationship between stress and strain compemapressed in material coordinate
system (Eq. (2.11)) to stress and strain comporentslated in global coordinate
system are stated in matrix form as [85]

{0} = [THo}me

{e} = [Tel{e}me

(2.15)

where
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5 13 13 21,1, 21,15 21,15
2 2 2
mi m5 ms3 2mym, 2myms 2m,ms
n? n2 n? 2nyn 2nyn 2n,n
1 2 3 112 1143 2143

Imy Lyimy, ILymy Iimy+1Lmy Iimg+ilzmy  lyms+1z3m, (2.16)

ling Ion, l3ns Lin, + 1Lbny Iing + lsnyg Ions + l3n,

lmin, myn, myn, mun, + myn; Mmung +mgn;  Myng + man,

Upon substituting using Egs. (2.14) and (2.15t8dn (2.6), the transformed
constitutive equations are obtained as
{0} = [T[Clmc[Te]™He} (2.17)
with the stiffness matrix in global coordinateside$ as
[C] = [TI[Clmc[Te]™ (2.18)
In the three dimensional theory of a laminated cositp, each layer is modeled
as a 3-D body using Egs. (2.2), (2.4) and (2.9)wvélcer, each set of governing equations
is related to the lamina layer position and mankétl a superscriptng). For example,
the constitutive equation (2.9) becomes
{o}™ = [CT™{e}™ (2.19)
Assuming perfect bonding between layers, the iayen boundary conditions in
terms of stresses and/or displacements become tampor

b) Displacement Continuity and Traction Free Coiudlis

The assumption of homogeneous anisotropic lamiedeggt bonded continuum)
implies that &C° displacement continuity must be satisfied at eyipt within the

lamina. On any free surface, there must be nosgse$-or orthotropic laminated
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structures loaded in bending, that means the teaise\shear stresses at the top and the
bottom of the surface are zero. It follows that at ig

032 =224+ 2 = 0,and 1,00 y,2) = 2+ 2 = 0 2.20
)/yz X,y,Z _aZ ay_ ;an )/xz x,y,Z _62 ax_ ( )

whereh is the thickness of the structure.

The anisotropic linear elasticity theory (hereiegented) is the reference theory
because it has no assumptions on the geometryfaiagion, and no restrictions on the
type of loadings or boundary conditions. Subseqtlexdries are derived from this
reference theory by transforming a three-dimensitmrenulation to a two-dimensional
one.

An example of elasticity solution for orthotropigliader is given in Appendix A
(it is a plane strain case).

2.2 Technical Theories - Analytical Approach
2.2.1 Classical Plate and Shell Theories
a) Plate and Shell Theory Assumptions

Here, a plate or a shell is an isotropic body bomogeneous anisotropic (one
lamina) elastic structure whose thickness is somtipared to the span and width. It is
loaded in such a way that bending deformation ohitamh to stretching are caused. The
thickness coordinate is eliminated from the govegrelasticity equations such that the
3D problem is reduced to a 2D case. The thickriesslhecomes a known parameter that
is provided. A plate can be considered as a pdaticase of shell with no initial
curvatures. In many other cases, especially for FEghell can often be modeled as an

assembly of small plate elements.
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Classical plate theory (CPT) is an extension of&hker-Bernoulli beam theory to
plates by Kirchhoff [3]. It is based on three kireia assumptions (Figure 2.4) known as
theKirchhoff hypothesisThey are:

(1) Straight lines normal to the plate mid-surface rensé&raight after

deformation.

(2) There is no change of elongation in the thickneiection; the thickness is

inextensible.

(3) Straight lines normal to the plate mid-surface ttich that they remain

perpendicular to the mid-surface after deformation.

The consequence of the inextensibility of the theds is that the strain in the
thickness direction is zero:

ow

= 2.21
= 0 (2.21)

gz(x’yiz) =

this suggests that the transverse displacementndépendent of the z-coordinate. By
definition, the third hypothesis implies that thare no transverse shear strains:

v Jdw ou aw_

Yyz(x,¥,2) = 3, + E = 0;and y,,(x,y,z) = 3, + Frie 0 (2.22)

If the transverse shear strains are all zero, iteording to Hooke’s law the
transverse shear stresses are also zero. Thiothe because these shear stresses are
needed for equilibrium. In order to accommodats taintradiction, one assumes that
Hooke’s law only holds for the in- plane quantiti#ss also assumed thay is
negligible compared ta, andg,. Laminar elements parallel to the middle surface Q)

are thus assumed to be very nearly in a plane ctateess.
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Midsurface

Figure 2. 4: Transverse displacement basedachhoff hypothesis

After integrating Eq. (2.22), Kirchhoff assumptiangply the following

displacement field:

aw,
u(foIZ) - uO(fo) _ZW

ow 2.23
v(x,v,2z) = vo(x,y) — Za_yo ( )

w(x,y,z) = WO(ny)
where {1, vy, Wy) are the displacement along the mid-surface oplthte (see Figure

2.4). Using the Eqg. (2.23) in Eq. (2.2), the sti@id is derived as
&(x,y,2) = g}({o) (x,y) + Zefcl)(x, y)
&y(0,y,2) = e (x,y) + ze5” (x,y) (2.24)

Yay(6,,2) = ¥ (6, 9) + 215 (x,)

where
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ouy(x,y) 02wy (x,y)
ey ==, e =
vy (x,y) 92wy (x,y)
(0) 0 (€9) - _ 0
Gy =L, ) = - (2.25)
y )( y) = duo (x, )’) v, (x,y) (1)( y) = azwo(x,y)
Xy oy ox ' 0x0dy

(0) RO

&y yxy)) while thebending strainsre

Notice that themembrane strainare (e,

given by (", &", ¥,

b) Equilibrium Equations

When a transverse loadacts on the top surface of a plate as shown iar€ig.5,
it produces in plane stressgs o), , 7,,,, and transverse stressgs, 7,,. In classical
plate theory, these stresses are replaced byréseiltant forces acting at the middle
surface of the plate. These are bending moméht&ndM,, , twisting momenM,,,,
shear forcéV,,, transverse shear forc@s and@, and transverse normal forcis and
N,,.. These quantities are forces and moments pefangth (also called stress

resultants). They are obtained by integration thhothe thickness and expressed as

follows:

Q, = f_ﬁrxzdz, Qy = f_ﬂ‘[yzdz (2.26)
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The equilibrium equations can be obtained eithecdnsidering the state of
equilibrium for an infinitesimal element or by ugithe principle of virtual work. Details
derivation can be found in many textbooks [24, 88 Euler-Lagrange equations of the

principle of virtual displacement provide the eduribm of an isotropic structure as

ON, 0Ny, —0

0x dy

0Ny, 0N,

x| + E =0 (2.27)

0*M, N a*M,, N 0%*M,, N
d0x? dy? d0xdy

Figure 2. 5: Force and moment resultants actingroelement plate or shell.

b) Constitutive Equations

The constitutive equations for classical isotrq@ate theory are the two
dimensional version of the generalized constituéigaation (2.4) applied to isotropic

homogeneous plates or shells in whighy,, andy,, are all zero. The constitutive

eguations in matrix form are given as
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E Ev ]
Ox [1—v2 1-—v2 O| €x
oy | = | B E j & (2.28)
T 0fle
w) T —v2 1T—42 xy
0 0 G

where,E, G, andv are the Young modulus, the shear modulus and é¢torssio
respectively.
Substituting the strain displacement relation (23)) into Eq. (2.26¢), the

expressions for the bending and twisting momentsrims of displacements are given as

M. =D 0w N 0w
o axz dy?
0*w  0%*w

— _ 2.29

M, D(v =+ 6y2> (2.29)
M, = —D(1— )2V
X v dxdy

whereD is the flexural rigidity of the plate defined as
Eh3
S — 2.30
b 12(1 —v?) (2.30)

Upon substituting Eq. (2.29) into Eq. (2.27) thegming differential equation for

deflection of thin plates and shells are derived as

0*w ’w  d*w ¢
2 —_— 2.31
dx* + 0x?dy? + dy* D ( )
which can be written in a concise form as
vayzy = L (2.32)
D

where
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,_ 08 0% (2.33)
dx? 0dy?

is the Laplace operator.

c¢) Solution Methods

It is often difficult to find a solution for the gerning equation (2.32), except for
problems having a simple geometry and loading ¢, Very often, what is called the
“inverse method” is used to attempt a solution. rtezghod consists of assuming
solutions for displacements which satisfy bothdbeerning equation and the boundary
conditions. This method can provide “exact” solafdor simple problems, and one can
then use these solutions as the basis for approiximaethods for the analysis of more
complex configurations. For example, Timoshenko dadng [107] present the
solutions for a square plate with two boundary corks, namely simply supported and
clamped edges. Their solutions will be used for ganson in the course of this study.

2.2.2 Classical Lamination Plate and Shell Theories
a) Displacement and Strain Fields

The classical lamination plate theory (CLT) firstvélopped by Reissner and
Stavsky [27] is simply an extension of the cladgitate theory from the previous
section, but applied to a multi-layered composi&ep It differs from the elasticity
laminated theory in the assumptions made aboutdhnsverse deformation. While the
elasticity theory considers an independent rotadfoeach layer, the CLT reduces all the
layers to an equivalent single layer in terms afrgetry of deformation (Figure 2.6) and

material properties (equivalent stiffness and coamgle properties, also knowm as
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Equivalent Single Layer (ESL) theory). The assuoriimply that the transverse strains

(nornal and shear) are all neglected.

Figure 2. 6. Equivalent single layer laminated composite $tmec

b) State of Stress

The displacement and strain fields expressiondamstical to Eqgs (2.23) and
(2.25). However, the orthotropic properties of ldminates induce another consequence
for the state of stress. The transverse sheasesese neglected like in isotropic
materials. The problem is that composite matehalse a very low shear modulus
(G<E/10), and many failures are due to transvee$erchation especially for moderately
thick to thick plates. The first order shear defation theory tries to remediate this

drawback.
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c) Governing Equations

The Euler-Lagrange equations (equilibrium) arestme as Eq. (2.27).
The constitutive equations are similar to the oh€®T (equation (2.26)) with
the difference that the integration is performedeach lamina, since the material

properties vary through the thickness. The forarmoment resultants are given as

NL Zm+1 NL Zm+1
Z f o,dz, Z f aydz,
m= m
NL Zm+1
ny = Z j O'xde,
m=1 Zm
(2.34)
NL Zm+1 NL Zm+1
Z[ zo,dz, M, = Z[ zaydz,
m=1"%m m=1"%m
NL Zm+1
M, = Z f Z0yydz
m=1"%m

Using the 2-D form of Eq. (2.5) and the strain egsion of Eq. (2.24) in Eq.

(2.34), the force and moment resultants in globaldinates and matrix form become:

Ny NL Zmi1 Q11 Q1 Q_16 (& )+ Zg(l)\

Ny &= f Q21 Q22 Qa6 { o ZE }dz

Ny 17 %m Q6 Q26 Qo k (0) + zgg))

(2.35)

_ _ — (0) €]
b Qu Q. Qu]" (& ()”6 )
My b = Z Q_21 sz 926 +Z€ }dz
Myy)  m=17"%m Qe Q26 Qs k ( )+ zs(l)

where@ij are the lamina stiffness coefficients.

Define the extensional stiffness components as



Ay = f Gy Z jZmHQl,dz ZQU (2mas = 2m)

the bending stiffness components
NL
1 nm 2 2
Bl] = E Z Qij (Zm+1 — Zm)
m=1
and the bending-extensional coupling stiffness camepts as
NL
1 nm 3 3
D;j = 3 Z Qij (Zm+1 — Zm)
m=1

The laminate constitutive equations are then espkas

0) ®

Ny A1 A A (E’(“O)\ Byy Biz Bis (8’(“1)\
Ny t =141z Az Ase &y }‘l' Biz Baz By {Ey
Ny A Az Ass ©) Bie B Bes kg(l)
xy X

(0) €Y}

M By Biz Bis {E’(‘O)\ Dy; Dy 16 {E’(‘l)\
My b =|Bi; Bzz Bag {Ey +|D12 Daz Dye {Ey
M B B B (0) D D D (1)
xy 16 26 66 quy J 16 26 66 quy

34

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

Using a compact form notation, Egs. (2.39) andQRcén be presented as

Lo} =lis1 1011165

where{e,} and{e,} are defined in Eq. (2.25).

(2.41)

The governing equations are obtained in termssygldcementsu, vy, w,) by

substituting only the in-plane components of thaistdisplacement equations (2.1) into

the laminate constitutive equations (2.39) andQR.4
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4 0%v, 0%uy, 0%, 3w,
12 9x0 6\ ogxdy = ox? 1 9x3
23w, B 23w, A 02 0 4 0%v,
12 9x0y? 16 9y0x2 16 9xdy % 0y?
(2.42)
0%u, 0%v 03 a3 03
+A66 . . 26 o B16 o 66 -
dy? = 0xdy ay3 0x?%0 dxdy?
=0
4 0%v, 0%u, 0%v, 3w,
%6 9x0 66\ gxdy = 9x? 16 9x3
3 3 2 2
Wo Wo 0 0V
666 a 2 66 ayaxz +A12a a +A22 a 2
(2.43)
0%u, 0%v 3w 3w 3w
+A26 . . 22 . B12 . 26 -
dy?  0xdy dy3 dx?dy dxdy?
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d3u, 231, 3u, 93w, 0wy 0wy
Buges tBug gt Biel; 29y 0x3 D5 12 9x20y?
0w, 3uq d3v,
Dis 5 39y 163520y T 2 26 9x0y?
b2y (L S0\ _yp OWo 97w
66\ 9ydx?2 = 9xdy? 16 9x30y %6 9x9y3 (2.44)
*wy 93 93v, 93v,
D66a 26 2 12 a a 2 BZZ ay3 26 ayaxz
B 03v,  03ug 0wy 0wy
26\ gy20x = ay3 12 9x20y? 22 gyt

e) Analytical Solution

A solution of these equations for orthotropic cosimlaminated structures with
simply supported boundary conditions and using 8lawipe method can be found in
[24] and is made used of in Chapter 5. The Naviethd is explained in Section 2.2.3.

d) Tractions Continuity or Interface Boundary Catats

As stated before, these governing equations ageoftan solved exactly through
the inverse method using simple problems. Howealkesolutions must integrate the
interface boundary conditions as a consequendeeaigsumption of perfect bonding
between laminae. Equilibrium conditions requiret tha traction components must be
continuous across any surface. Figure 2.7 illus$réite stress continuity on two surfaces

(imaginatively separated).
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m m
Tzx TZY
oy

Layer m $ om-1

m-1 ; m-1
sz Tzx
Layer m-

Figure 2. 7: Interlayer traction continuity conditions

In terms of equations they are expressed at teefate where = h,, as

m __ m-1
O-.X'Z - O—xZ 4

m __ m-—1
o = ot (2.45)
ot = g1

These conditions will be entirely satisfied in fivet and third order formulation of the

present work.

2.2.3 First Order Deformation Theory

a) Displacement and Strain Fields

Reissner [133] and Mindlin [134] proposed a refigtaksical laminated theory
which includes the effect of transverse shear dedtion, known as First Order Shear
Deformation Theory (FSDT). The new kinematic asstiomas that the straight lines
normal to the midplane remain straight but not redrafter deformation (Figure 2.5).

Therefore, the displacement field becomes
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u(fofZ) = uO(fo) - Zl/’x(xJ’)
v(x, Y, Z) = UO(X, y) - Zl/)y(x' :V) (246)

W(x' Y Z) = WO(X, y)

where (o, vy, Wy, Py, P,) arethe generalized displacementkich are to be

determined. They dependent only on the in-planedinates (X, y).

Midplane

a) b)

Figure 2. 8: lllustration of the first order she@formation theory. a) Undeformed
geometry, b) Deformed geometry.

The strains are obtained by substituting Eq. (2ui3®) Eq. (2.2):

£:(%,,2) = 2 (x,y) + 2 (%, y)

g, (x,,2) = eV (x,y) + eV (x,y) (2.47)

Yay (6,,2) = ¥ (%, 9) + 215 (x,)
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Yy2(%,,2) = 150 (%, )

sz(x:y: Z) = sz)(x y)

&(x,v,z)=0
where
duy(x,y) Py (x,y)
0) _ 0 L _ _Zrx
Sx (x'y) - ax ) Sx ax
av (x, y) oY, (x,y)
(()) 0 (1) — y
dup(x,y)  0ve(x,y) 0P, (x, y) P, (x,y)
0) _ 0 0 (1) x y
Yey (6,¥) = 3y L y (x,y) = 3y F (2.48)
owy(x,y)
Vyr (6Y) = ==+ iy (x,y)
y
Wo(x y)

0) _
rDx,y) = 0 + Pe(x,y)

It can be noticed that the transverse shear st(giny,.) are constant through
the laminate thickness. So will also be the trarsvshear stresses. However, it is
established from the elementary theory of homogenbéeams that the transverse shear
stress has a quadratic variation in the thicknesstibn. For laminated composite plates
and shells, the transverse shear stresses shoxddhhkeast a quadratic variation. To
remedy this, a shear correction factor is use®mputing the transverse force resultants.
It is obtained by equating the strain energy duthéoFSDT transverse shear stresses to
the strain energy due to the true transverse sgga®dicted by the three-dimensional
elasticity theory. Modified complementary energgnfialations, in general, do not

require the use of such a correction factor.
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Many of the FSDT theories are successful in predidhe transverse deflections,
natural frequencies and buckling loads (see Yarad, §135]), but they do not adequately
predict the interlaminar stresses. Therefore, highder theories which account for the
variation in the transverse shear deformation acessary.

b) Governing Equations

The process of deriving the governing equationgHeffirst order shear
deformation theory is very similar to the one depeld in the previous Sections for CPT
and CLT. The Euler-Lagrange equations (equilibriang) similar Eq. (2.27) but

augmented by the transverse force result@ptandQ,, defined as

h h
Qx = Cf fz O'xde, Qy — Cf fjlo-yzdz (249)
2

_h
2

whereCf is the shear correction factor.

The final expression of the Euler-Lagrange equateme given as

dN, ON.
x n Xy _ 0
0x dy
_any + % =0
0x ady
00x 99y _ _ a (2.50)
0x dy
oM, 0M,,
ax T dy Cx
OMy, OM,
ax dy O

The transverse forces are also added to the CLStitative equations so that the

constitutive equations for FSDT are
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(0) @®
N, A1 Ap Ags (E’(“O)\ Bi1 Biz Bis (8’(“1)\ (2.51)
Ny t =141z Az Ase g+ |[Biz B2z Ba|{¢ '
N A A A B B B
xy 16 26 66 kgj(c(;) 16 26 66 kggz)
HO) £
M, Bi1 Biz Bis ’(‘0) D11 Diy Dys ’(‘1) (2.52)
My b =|Bi; By, Bag|ie, p+|Diz D2z Daglie '
M, Bis Bzs Bes (0 Dig Dis Des €))
Exy Exy
augmented with
(0)
{Qx}: Ayq A45] Yxz (2.53)
Qy)  1Ass Assl|yP

The equilibrium equations (2.50) in terms of gehieea displacementsu,
Vo, Wo, Py, P,) are obtained by substituting the strain-displacgmelations, Eq.

(2.47), into Eq. (2.52). The final expressionsgiken as

0%u, 0%v, 0%u, 0%v, 04y,
A A Aig| =—=—+—=—— —_—
192 M 0xdy T4 <6x6y + d0x? ) 1 gx2

aZ 2 aZ 2 2
Yy <6 Y, ¢y> 0%u 0%v, (2.54)

0
+ BlZ m +2B16 —+ + A16 axay +A26 ayz

dxdy  0x?
0%u, 0%v 04y 0%y, 9%y
25 5 58)

dxdy  0y?
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0%u, 0%v, 0%uy, 0%, 04y,
6\oxdy = 0x2 16 942

ley <62¢x+ l/’ ) 0%u, 0%v,

By —2 1 + A +A,y —
T 526 gxay TP \axay T axz | T 12 5xay 422 52
(2.55)
4 0%u, 0%v,
26\ ay?2 =~ oxdy
0%, 0%, 0%, 0%,
Cotes (L0 4 00\ 4 oy (DWW Ly (9W0 | O
Fss\ax2 T oox r7ss\ oxay | ox F745\ oxay | dy
(2.56)
’w, 0y,
+ CfA44 < ayz +W —_ O
0%u, 0%v, 0%u, 04y, 9%y,
Byy—— %2 +B126y6 +B16a 6y+D11 %2 + 12520y
2 2 2
% 1/) 0°ug 0°ug
+D16<a 6y+ ax ) T B ey 6y+B26 dy?
0%v, 0%u, 04y, 9%y,
Beg [ —= +D Dy —=2
T Bes <6y6x+ ay2> 16 5x0y | 026 5y2 (2.57)

0%, 9%, owy
66 <6x6y * dy? > CrAss (6_ * lpx)

adw,
- CfA45 <W + l/)y> = 0
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d%u, 0%v, 0%u, 04y, 9%y,
B1662 82666 +BG666 +D1662+D26m

0%, azwy 0%u, 0%u,
6<6x6y+ ax2 | T P2 gxay T P22 52

0%v, 0%u, 04, 9%y,
<ayax dy? >+D 12 9x 6y+ 22 9y2 (2.58)

2 2
Yy 0%y dwy
DZG(a oy T ayz ) Crilas (G + %)

aw,
- CfA44_ (E + ¢y> = 0

Once the displacements are found, the stressestiamals can be computed
through the strain-displacement relations and tmestitutive equations.

c) Analytical Solutions

An exact solution for linear partial differentiajuations (2.53)-(2.58) is
cumbersome. For some particular geometry, bouralaayioading conditions, analytical
solutions are developed, such as Navier or Levg sglutions for a simply supported
rectangular plate loaded in bending only. If thet@lis considered as specially
orthotropic, the bending-stretching teris and the bending-twisting termB,§, D,)

are all neglected. Therefore, the governing eqoat(@.44) become

0*w, 0*w, 0*w, 2
Dyy—— 9xt -+ 2(D12 + 2Dg6) 7573 9x20y? + DZZWA;0 =—q (2.59)
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A Navier solution for the above equation is conséddevhen the four edges of the
plate are simply supported while a Levy type soluis developed when two opposite
edges are simply supported and the two others emen@ination of free, simple support
or fixed boundary conditions (Figure 2.5). The Natechnique consist of finding a
solution function which satisfies the boundary atinds such as a double trigonometric

series in terms of unknown parameters in the form
SR kmx lmx
wo(x,y) = Z Z 1Sin ( )sm (T) (2.60)
k=1 1l=1

whereW,,; are coefficients to be determined.

The load is also expanded in double trigonometrtees function as
Gey) = 2, 2 Qusin (=)sin () 20
k=11=1
Substituting Eqgs (2.60) and (2.61) into Eq. (2¥68)ds
Z Z{—Wk, [Dy,d* + 2(Dyz + 2Dgg)d?f2 + Dypf*] + Quy} sindx sinfx =0 (2:62)
k=11=1

whered=knx/a, andf=Ilnx/a. Solving forW,,; for any x and y, the solution is then

given as

wo(x,y) i ig— sin <k7rx) sin (lnTx) (2.63)

k=11=1

where
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b?m* b?
Rm = W D11§k4 + 2(D12 + 2D66)k2l2 + D22l4 (264)

This example is also used for comparison later on.

2.2.3 Higher Order Deformation Theories (HSDT)
a) Displacement Assumptions

Higher order theories refer to the order of theldisement expression in terms of
the z-coordinate. HSDT can represent the kinemagt®r that the CLT and FSDT.
They do not require shear correction factors aeg theld more accurate interlaminar
stress distributions [24]. In order to avoid ussinggar correction factors, the displacement
field can be expanded up to any desired order. Mewelue to algebraic complexity and
computational time involved in HSDT, theories higtiean third order have not been
attempted.

A very limited number of second orther-theories basn proposed, the most
importants being

0] Essenburg [136], who proposed a theory based ofolibging

displacement fields:
U =ug+ 2,
v =1y + 21, (2.65)
w=w, + 2y, + z%¢@,
(i) Whitney and Sun [137],
uU=uy+ 2z, +z%@,

(2.66)
v =v, + 21, + 2%¢,
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w=w, + 2y,
(i)  and Nelson and Lorch [138]
u=uy+ 2z, +z%p,

v =v, + 21, + 2%¢, (2.67)
w=w, + 2y, + 2%,

where y,, and ¢,, are dependent on the midplane coordinates.
Since the present study deals with a Third OrdeaEbeformation Theory
(TSDT), a brief account of earlier significant TS®Will be provided in the following.
The earliest TSDT is attributed to Reissner [1B®#.used a displacement field in
the form of
u =z, +z39,
v =z, + 2°9, (2.68)
w=w, +z%¢,
The midsurface deformation is neglected. Reissaerathstrated that this theory, applied
to the bending of a plate with a circular hole egwery accurate results when compared
with the elasticity solution.
Reissner’s theory was extended by Lo et al. [141],felinclude the effects of the
midsurface and out-of-plane deformations. The fdatnon is based on
u=uy+ 2y, +z%@, + 239,

v =y + 2y, + 2%, +2°9, (2.69)

w=wy + 2z, +ZZ(pZ



47

They investigated a simply supported thick isotcagmd laminated plate subjected to
cylindrical bending. The governing equations wdreamed from the principle of
minimum potential energy.

Later on, a new class of third order shear defaondheories began to florish in
the literature [40, 41, 142-144] with the displaesmfield very similar to that given by
Eq. (2. 21). The main difference is that the eff#atormal strain is neglected by
assuming a constant transverse displacemgmiirough the thickness direction. The
advantage of this new formalations is that by 8atig the condition of zero transverse
shear stresses on the top and bottom surfaces pfdte or shell, the number of
dependent unknowns can be successfully reducdz teaime number as for the FSDT,
without using any shear correction factors. Theldisements are given in the following

form

w222 (e + )

o=voraf1G) (w45 270

w = WO
where h is the thickness of the laminate.

b) Governing Equations - Constitutive Equations

Many authors derived the governing equations imseof displacements. The
procedure is similar to the one developedd in tleeipus Section. Also, there a many
different types of displacement fields. Reddy [gddposed an analytical solution for his
TSDT based on Eq. (2.22). However, he used that@nal principle of virtual

displacements to develop the governing equationalyAcal solutions are limited to
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simple cases. For complex problems, the FEM is eeénl provide excellent
approximate numerical solutions.

c) Analytical Solutions

A TSDT solution of an anti-symmetric cross-ply laatied composite plate, with
simply supported boundary conditions, was obtame&eddy [24] using a Navier
solution technique as presented in the previousosedreddy’s solution will be made
use of in Chapter 5.

2.3 Technical Theories - Finite Element Approach (Via Variational Principle)

The objective of this section is to give a brieeoxiew of the finite element
formulation of the FSDT and HSDT of laminated cosipoplate and shell structures.
These theories can be classified into displacefoemulation, mixed formulation and
hybrid stress or strain models.

2.3.1 Principal of Minimum Potential Energy.

The principle of minimum potential energy is a dég@ment based method. It is
also a particular case of the Principle of VirtDadplacement applied to linear elastic
bodies, since they exhibit an elastic potentiakgyelhere is a significant volume of
writings related to the use of this variational heoet to elasticity problems. Pryor and
Barker [42] developed a displacement finite elentesed on the FSDT to analyze thick
laminated composite plates. They used a rectanfpuamode element with seven
degrees of freedom per node. The transverse ssressach lamina are derived by
integrating the local differential equilibrium edigoen, Eq. (2.4). With a restriction on the

loading condition (applied load should not causadese warping of the cross section),
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their transverse stresses were in good agreeménthaise of the elasticity solutions.
Panda and Natarajan [145] improved the resultsydrRand Barker by using an eight-
node quadrilateral plate element with only five &g of freedom. However, when
thickness to length ration is larger than 0.1 (nmatédy thick), the accuracy of the results
is diminished. Pandya and Kant [146] also usegtheiple of minimum potential
energy to investigate a TSDT plate element. Theg asnine-node Lagrange
isoparametric plate bending element with six degfdeeedom per node (two transverse
rotations, one transverse displacement, and thrieeawn displacement terms). The
formulation and example analysis were limited dolgymmetrical laminates. Their
results were in good agreement with those of tlaetealasticity solution.

Details of the derivation of the formulation of tReinciple of Minimum Potential
Energy can be found in recent textbooks writteMynderlich and Pilkey [147], and by
Cook [148]. Here, we present only a summary ofpiteeedure, since it is part of the
modified complementary energy principle (MCEP) fatation. To formulate this
principle, let's consider again the loaded bod¥igure 2.1., in which some of the
portion of the body surfacéy, has prescribed displacemeits denoted by~ while
the other portionS,, is where the tractiorig are prescribed. Here,is the direction
cosine of the normal to the boundary. The stragrgynis expressed in terms of strain
vector{e}. The principal of minimum potential energy canritie stated [149] in the

form of minimizing the following potential energyrictional:

I, (u) = J- %{E}T[C] {e}dV — | {T}" {u}dS = Min. (2.71)
v

S
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where[C] is the elastic stiffness matrif} is the strain vector, arfa}, the boundary

displacement.

In the assumed displacement approach, the disptadsrare the only field
variables, and must be continuous within the domEerefore, the stresses, which are
very important for moderately thick to thick lamied composite plates and shells, are
not directly determined. Afshari demonstrated mdissertation [150] that the assumed

displacement method was not accurate for comptisiteplates.
2.3.2 Principle of Minimum Complementary Energy

The principle of minimum complementary energy s tdual” form of the
principle of minimum potential energy in which tbteains are expressed in terms of
stresses and the equilibrium conditions for thessies and the prescribed tractions along
the element boundary are satisfied. The only figidable are the stresses and the

complementary energy principle can be stated gs [68

n@ = |

%‘{U}T[S]{ff}dV - f {TY" {@}dS = Min. (2.72)
174

Su

Here,S, refers to portion of the boundady over which the surface displacemén} are

prescribed (Figure 2.1).

The assembly of these functions for streggg@snay be taken as admissible
functions for this functional if they satisfy thellbwing requirements; i) they are
continuous, single-valued and satisfy equilibriusp&tion within the body, and ii) they
satisfy the equilibrium conditions on the boundsirihere are very few accounts of the

finite element analysis of laminated compositegdand shells using the principle of
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minimum complementary energy. The reason is tlegt &éne less accurate compared to

those from the original mixed-formulation by thelliger-Reissner principle [71].
2.3.3 Mixed Formulation

The expressiomixedmethods is applied to the finite element formolasi in
which the resulting matrix equations consist of enibran one set of field variables. They
are also called modified variational principlesgd ame obtained by including the
constraint conditions in the functional through #pplication of the Lagrange multiplier
method [151]. For instance, by using the stressesagrange multipliers to relax the
constraining strain-displacement relati¢a}(= [B]{u}), Washizu [151] obtained a three-

field variational principle as

Maw(e,00) = | [SE7C1 () = 0 (&) - [B)up] av = | ()7 quds
14 So

2.73)
— | {T}" ({u} — {u})dS = Stationary

Su
whereS,; is the portion over which the surface tractiores @escribed.

By using the constitutive relations to replacegtrain expressions in Eq. (2.32),

the two-field original Hellinger-Reissner principkederived as

Mo, = [ [~10151 () ~ (@ (BYup] v = [ TV fupds
v Sy

(2.74)
— | {T}Y"({u} — {u})dS = Stationary

Su
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The entire domain is discretized into finite elemsemhich are summed up to
obtain the variational principles. There are maaggys on mixed formulations and
Felippa [152] gives a very good review of theirthier development as well as

applications.

For laminated composites, of all these variatigmadciples, the conventional
assumed displacement model is still by far the Bstscheme if an appropriate
interpolation function can be constructed that saltisfy the inter-laminar compatibility
conditions. These conditions can be easily satisbe problems such as plane elasticity,
axisymmetric solids, and three-dimensional solatsihich the continuity of the normal
derivatives along the inter-element boundarieotsequired.

However, when conditions of transverse displacerardtindependent cross-
sectional rotation are imposed, the assumed displact method (and assumed force
method) exhibits some shortcomings. Since eachadetha unique field variable
principle (either displacement or stress) the \\es must satisfy either the compatibility
or the equilibrium equations. The assumed displacemethod, most of the time, leads
to unnecessary stiffness (locking). To overcome shiortcoming, the mixed and hybrid
formulation are used, since they allow for indeparidields within an element and for a
boundary element (e.g., equilibrium within the edemthand displacement continuity
along the boundaries [153]). K. J. William demoatdd that hybrid and mixed

formulation methods perform better than the assudigalacement method [154].

In the case of thick composite plates and shélesdetermination of transverse
stresses is necessary in order to perform an atketpilure analysis of these laminated

structures. The assumed displacement method do@settict these stresses accurately
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[155]. On the other hand, a hybrid method, basethemModified Complementary
Energy Principle, is capable of predicting thesesstes by satisfying equilibrium and the
inter-laminar transverse stress continuity condgiorhe assumed stress model first
developed by Pian [66, 67] and Spilker [74-77] basn shown to perform well where
transverse stresses are to be determined. The&hayter will present a strain-based
hybrid type method which will have the advantagerefdicting both stresses and

displacements accurately.



CHAPTER 3
STRAIN-BASED MODIFIED COMPLEMENTARY ENERGY PRINCIPLE

There are different types of modified complementarergy principles. This
Chapter focused on a higher order strain-baseduiatiron. Compared to other
formulations, it does not uses a displacement fanstof a third order (Section 2.3.3) but
rather uses a third order strain formulation (whghew) to formulate a solution for the
analysis of composite laminates by use of finierednt methods. The first section will
present the general concept of how the complemestargy principle is modified
through the Lagrange multiplier method to obtasoacalled modified complementary
energy principle. The second section will desctitgprocess of obtaining the stiffness
matrix and the last section will present what igioal in the proposed formulation.

3.1 General Element Formulation

In order to weigh the equilibrium and compatibil@ynditions more equally,
Reissner [27, 96, and 97] formulated an alterngiieciple in which both the stresses
and strains are the admitted variables. The mabid@mplementary energy principle is
derived from Reissner’s principle and is obtaingaktending the complementary

energy with the addition of the global (integraljrh of the static boundary conditions:

) along an element boundary S (Figure 3.1a), wherddlundary tractions are
prescribed,
T-T=0 (3.1)
i) along the inter-element bounda®y, (Figure 3.1b) between two elements a and b,

T¢—TP =0 (3.2)
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Figure 3.1a. Prescribed traction on an element deynS

Tb

Figure 3.1b. Two continuous elements with boundsanyilibrium

Figure 3. 1: Prescribed traction and boundary éxjiiim on an element boundary

With the aid of the boundary displacemeijts, as Lagrange multipliers defined

on Sy, the principle can be expressed as

[T =11-2.6a (3.3)

where

o = [[ 6" T+ 1y (3.4)

Sab
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Thus, the requirement i) above is relaxed in thr&atianal equation and the functions for
stresses in each element may be selected indepgbndéhout concern for inter-element
stress continuity requirements.

For the whole body, the modified complementarycfion may be rewritten as

[74]

nmc Z( f 2 (0} [S1{o} av - aVn{T}T {u}ds +

where[S] is the compliance matriXg} is the stress matrixu} is the boundary

{r}" {u}d5> (3.5)

SO’TL

displacement)V, is thenth element boundary which includes the inter-elemen

boundary Sy, Sin, the portion over which the surface displacemeatpaescribed, and

S, the portion over which the surface tractionsmescribed. As noted earlier, the

component of the element boundary tractiBhis related to the stress components by
{1} = {"{a} (3.6)

In EqQ. (3,5), the independent quantities subjetdedariations ar¢s} and{u}. It is thus

seen that the present functional has the stresfigis the elements and the displacements

along the element boundaries as the field variables

3.2 Definition of the Functional for a Multilayered Plate or Shell Element.

The multilayered plate or shell is assumed tanlithe (x, y) plane within the local
coordinate system. The laminate reference surtaeed is located arbitrarily at the
geometric mid-surface. The laminate consist perfectly bounded layers numbered

bottom to top, withz =hih,, ... hy, ..., hv+1 (See Figure 3.2).
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Figure 3. 2: Multilayer element numbering.

Assuming that the plate or the shell element is@pmated by a sum of small
elements in local coordinate, the modified completaey principle for a multilayer
composite structure is given by Pian [66] as:

Hmc - ZZ ( jv Ao} (S o} av — fv ni{a}iT{e}i dv

ni

3.7)
+ f {T}" {u}dS> = stationary
s

an

where{e} are the components of the strain as computed tinendisplacements via the
strain displacement relations (note that in a ld#Astress model, strains are computed
from the stresses through the constitutive equal}iofrhe superscript andi refer to the
n-th element andth layer, respectively.

For the application aff,cto laminated composites structures incorporating
independent cross-sectional rotations, the stragslem the layel are assumed in terms

of finite number of stress parametéf3’ in the form

{o} = [P1{BY (3.8)
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where[P]; is a function of the coordinates whose form ishstinat the homogeneous
equilibrium equations, the equilibrium conditiorfetwe tractions in the interlayer surface
and the traction-free conditions on the cylindrigaiface are satisfied. THg}are
parameters that are yet to be determined.

To avoid calculating thg's for each layer, adequate strain functions can be
chosen (see Afshari [72]) instead of stress funsti@s required for the complementary
energy method. The type of strain functions chatefimes the type of element, meaning
first order or higher order displacement field. Qifi¢he contributions of this dissertation
is the choice of appropriate strain functions. Thiditbe discussed in the next Section.

The in-plane strain vectde};, for the whole laminate can be expressed as

{€}in = [Plin {B} (3.9)
The in-plane stress — strain relation is given by

{0} = [C1{€}in (3.10)
Substituting Eq. (3.9) into Eq. (3.10), the in-@asiresses can be expressed as:

{0} = [CI'[Plin (B} (3.11)

Then, one substitutes the in-plane stresses ietedhilibrium equations (2.4) to
determine the other stress components. All thesttemponents can be related to the
strain parameters by

{o} = [PI'{B) (3.12)
The boundary displacemen{s,}, can be expressed in terms of generalized nodal

displacement parametefg,}, by

{e} = [Bl{u} = [Bl{q} (3.13)
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Substituting Egs. (3.9), (3.12), and (3.13) inte flanctional expressiofimc, EQ. (3.7),

one obtains

[] = ZZ( f ETPYTISIIPY Y v - f PRl 47

(3.14)
+ [ o ds>
Sn
Defining the elemenftH] and[G] matrices as
[ [H] ]
H] = = with  [H]i = | [P]7[S][P]idV,  (3.15)
(diag) [H]* "
Gl
(6] = G:Z with [G]' = f [P]I"[B] dV (3.16)
i "
{QY = | {T}"ds (3.17)

Sn
withi=1, 2, ..., k, wherek is the total layer number of the elemdid} is the prescribed
generalized nodal forcg;andq are the strain parameters and nodal displacements
respectively for the element,
BT ={pF . B {@dT={d" ... d}T
and substituting Eq. (3.15) through (3.17) into E314), the modified complementary

energy becomes

[1 = Gwrmne - eyeias + @) (3.18)
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The stationary value of the energy expression tained by taking the partial derivative
of Equation (3.18) with respect foand setting it equal to zero (i&7nwJ/dp =0). This
yields a relation betweergf and {£} as

{8} = [H]7*[G}{q} (3.19)
Upon substituting Eg. (3.19) into Eq. (3.18), tinergy expression in terms of the nodal

displacement parameters becomes
[ =) B@erm e+ e} @

From the stationary condition &k, the element matrix is obtained:
[K1{q} = {Q} (3.21)
where

[K] = [G7[H]T'[G]. (3.22)

This formulation is independent of the coordinatstem, the element type and
the displacement field formulation.

3.3 Proposed Element Formulation
3.3.1 Strain Functions Choices

Two categories of element are proposed. Both asedan assumed in-plane
strain functions and on the modified complemengargrgy principle method adopted
herein.

An eight-node isoparametric “serendipity” elementised because of its
practicability in overcoming the shear locking efféhat was observed with the four node

guadrilateral element [6]. The assumed in-planpldcement functions used to obtain the
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nodal functions are truncated quadratic Lagrantgrpolation formulas [148] (they are
missing the %Xand Y in the fourth row of Pascal triangle (Figure 3.3)he polynomial

terms of Pascal triangle will also influence theick of the strain functions.

x2 Xy y

x3 x%r xyz .y3

oy oA oay Y

Figure 3. 3: Pascal triangle.

Two new element types based on different straictfans are proposed. The first
type is characterized by the displacement fieldiaggion of independent but linear
transverse rotations, similar to Eq. (2.17). Theose category is a series of new higher
order elements based on third order in-plane sfuaiotions. A convergence parameter is
added to the higher order strain functions forghgose of making the element more
flexible in accounting for diverse types of georgeimaterial properties, loadings and
boundary conditions, these being typical charagties of laminated composite
structures. All the elements have the same numterdes per element (eight nodes) and
the same number of degrees of freedom per node (o in-plane displacements, one

transverse displacement and two independent Imeaihear rotations).



62

3.3.2 First Order Element Formulation

This formulation is based on in-plane strain fuoies as follows
€x(X,7,2) = €x0(x,y) + z€x1 (x,¥)
€y(x,¥,2) = €y9(x,y) + z€y; (x,y) (3.23)
€xy(X,7,2) = €xy0 (X, ) + Z€xy1 (x, )
Wheree,, €x1, €0, €51, €xyo aNdey,,; are functions to be determined. Note that the
notation is changed from that previously employedrder to conform to the strain-
based modified complementary energy formulation.

The number of strain parameters and the type pfaiement assumptions used
will be the main characteristic of the element nooh&ure. A sample nomenclature is
FELM36 or TELM54 to designate a first order elemeith 36 betas or a third order
element with 54 betas, respectively. When two efgmbave the same number of strain
parameters with different strain functions, the ben?2 will be added at the end of the
second element. There are only two of these casesely TELM422 and TELM482. As
an example, the in-plane strain field for FELM3@rgen by

€x = P1 + Bax + 7y + Broxy + Bi3x® + Piey? + Piox® + B2y
+ 2(Ba2s + BagXx + P31V + Baaxy)
€y = Bo + Bsx + Psy + P11xy + P1ax* + P17y* + Brox> + Pasy?
(3.24)
+ 2(B26 + B2ox + P32y + B3sxy)
€xy = Bz + Bex + Poy + Pr2xy + Pisx® + Pigy? + Parx® + Posy?
+ 2(B27 + Bzox + B33y + Baexy)

or in matrix notation,
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€x = {on}T{lpO} + Z{ﬁxl}T{lpl}
ey = {Byo} (o} +2{By1} (W1} (3.25)

€Exy = {ﬁxyo}T{lpo} + Z{.Bxyl}T{lpl}

where

{ﬁxo}T = {B1, Bs B7, B10, B13, B16) P19, B22}; {ﬂx1}T = {B25, B28) B30, B34}
{ﬂyo}T = {B2, Bs, Bs, B11, Br4» P17, B20, B23}; {.By1}T = {B26 B29, P32, B35}

{ﬁxyo}T = {B3, Bs) Bos B12, B1s: B1s P21, B2a}; {ﬁxyl}T
= {B27, B30, B33, P36} (3.26)
and
{o} ={1,x,y,xy,x%,y% %% y°}
W1} = {Lxy,xy}

The expressions of the basis functiihg} and{y,} are chosen to be the same
for €,, €, ande,,,, for two reasons. First, to have the same ordethfa matrix of strain
functions, avoiding therefore the matrix mismatghanror during the numerical
implementation using Matlab. Secondly, having ideitbasis functions assumes an
initial balance of in-plane behavior where all regameters have equal weight. For
instance, if the basis function fey has morex variables than the one ef, then the
formulation would suggest a particular influencetlex components on the behavior of
the plate. In what follows, the strain functiondl\we identified only by the form of the

basis functiongy,} and{y,}.
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There are two FSDT elements investigated in thidystthe above mentioned
FELM36 which uses two incomplete quadratic and ciiplane strain functions and

FELMA48 for which the first component of the str&umction is

€x = {Bro} {Lx,y, xy,x%,y%, x%y, xy?, x3,y%}
(3.27)
+ z{Bx1} {1, %, y, xy, x%, y*}
It is seen that FELM48 is characterized by one detemuadratic and one complete

cubic in-plane strain function.

3.3.3 Third Order Strain Element

Similar to the notation type Eq. (3.25), the pragmbghird order strain element has

the strain field expressed as follow:

€Ex = {ﬂxo}T{wo} + Z{ﬁxl}T{wl} + (0(Z)3{ﬂx2}T{l/)2}
ey = (Byo) (o} + 2{Byr} (W1} + (@2)*(Br} (102} (3.28)

€xy = {Buyo) o} + 2{Buyr} (s} + (€2)*(Bay2) (2}
wherey,, ¥, andy, are functions which depend only on in-plane cawatiés x and .
The convergence parametey,s incorporated the z-cube terms for comparisapgaes
with the linear ones. As stated before, there ispexial physical meaning to the z-cube
term, besides the fact that it permits the straicfion to be non-linear, allowing for a
non-linear variation of the transverse stresses.Z kerms have not been incorporated to
meet the requirement of free transverse sheaissgex the top and bottom surface of a
plate or shell loaded in bending, as stated ini@e&.1.4 (Eq. (2.20)). The proposed
expressions are more general in form and by uscanaergence parametet, one will
have more flexible elements which can account fecgl type of boundary conditions

and the structural geometry of laminated compasitke proposed formulation is based
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on strain functions. It is necessary and importhat the choice of the strain functions be
such that they are consistent with the displacementessions. This is especially true for
the strain based modified complementary energ\cipl@ where one can develop two
independents strain fields. The first is the inaglatrain field used to define the
constitutive equation within the formulation (E§.12)). The second is the strain field
involved in the boundary displacements (Eq. (3.18)jvhat follows, a detailed analysis
of the relationship between strain and displacerasstimptions in the proposed
formulation is presented.
From the third order strain field above (Eqg. (3)28)e general form of the in-

plane displacement field can be derived as

U= Uy + 2Py + (a2)°Pyr

(3.29)

V=V + 29y + (@2)% ¢y,
This expression assumes tractions free conditiarth@top and bottom surface. For the
sake of coherence and compatibility in formulatithe relationship between strain and
displacement functions is now discussed. The tradtee conditions, Eq. (2.20),
suggests that

h ov ow ou ow
atz = +—: = and _— ——
0z 0x

~5 &——W; (330)

Substituting the expression ofandv from Eq. (3.29) into Eq. (3.30), one obtains

aw ) ow )
— = —(@y1 + 3(a2)?9,,); and == —(Px1 + 3(az)°Py;) (3.31)
dy 0x

Atz = i% , these become

4 ow 4

ow
(px2 = - 3a2h2 (Qoxl + a) ; and (pyZ = - 3a2h2 <(py1 + E) (332)
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The in-plane strain displacement relations arergase

_au_ _617 _au ov

€x =573 ey—@ and E”‘EJra

(3.33)

Upon substituting the expressionsuwoédndv from Eq. (3.29) into Eq. (3.33), one obtains
€Ex = Ugx T ZPx1x t+ (az)%oxz,x
€y =Voy T 2Py1y + (a2)°@ysy (3.34)
€xy = (Uoy + Vox) + Z0x1y + 20y1x + (@2)>Qy2y + (@2)> @04
Differentiating the expression gf,, andg,,, from Eq. (3.32) and substituting them into

Eq. (3.34), the strain components are expressed as

, 4 d°w
€Ex = Ugyx T ZPx1x — AZ W Px1x T W

N , 4 ( N 62W>
€y = Voy T ZPy1y — AZ" 75| Py1x 2
3h dy (3.35)

€Exy = (uo,y + vO,x) + Z(Qoxl,y + <py1,x)

, 4 0%w
—az W ((pxl,y +(py1,x)+2 axay

By comparing Eqgs (3.28) and (3.35) one may formiaigntify the expression of the

proposed strain functions with the compatible assistrain fields, such that
€x = (Pro} + 2{a1} + (22)* W2}
ey = {yo} + 2{Yy1} + (@2)*{¥y2} (3.36)
€xy = {Yxyo} + 2{Way1} + (@2)* (P2}
where
{Wxo} = (Bro} {0} = o
a1} = Ber} (1} = Praa

(3.37)
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0x?

4 02
{2} = {ﬁxz}T{lpz} = —W(%Cm + —W>

{lpyo} = {ﬁyo}T{lpo} = Doy
{l/)yl} = {ﬁyl}T{wl} = Py1y (3.38)
4 0?2
{wyz} = {ﬂyz}T{lﬂz} = _W<(py1,x + a—y‘f>

{lpxyo} = {ﬁxyO}T{lpO} = (uo,y + vO,x)

{l/)xyl} = {ﬁxyl}T{lpl} = ((pxl,y + (pyl,x) (3.39)

4 0?
{l/)xyz} = {ﬁxyZ}T{lpz} = _W(((pxl,y + (pyl,x) + 2 a)(;;)

The choice of basis functiodg,}, {1, }, and{y,} will define the strain-based
elements. There is no particular condition impazed’ beside the fact that it depends
only on the in-plane coordinatesandy, and must be at lea§t continuous in order to
allow warping behavior (due toandy components im expression). Thusy should be
at least a bi-quadratic function ofandy. In classical plate theory, the expressions
(0%w/0x?) and(9%w/dy?) are the curvatures aboutindy axis, respectively. They are
expected to influence the behavior of the structun@ will also be selected freely. All the
basis in-plane strain functions are linearly indegent, but are related to the in-plain
displacement functions used in the isoparametqcagpmation of the shape functions.
Since isoparametric formulation is used, the bsisépe functions and displacement basis
functions must be identical. The in-plane displaeetifunctions used to derived the
shape functions of an eight-node isoparamsgrendipityelement are given by [148]

U=a; +ax + azy + axy + asx? + agy? + a;x%y + agxy? (3.40)
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V=dg+ AuoX + a1y + apxy + a3x? + ay? + aisx?y + agexy?

The in-plane strain functions, which are the fastivative of displacements do
not have to be of the same form, but must be cabipatith the isoparametric
formulation. However, one must expect that stramcfions that are not close to a bi-
guadratic form may yield inaccurate result. Thisng of the reasons why bi-linear strain
functions used for the first and third order foratidns do not work. Therefore, the in-
plane basis strain functiofyy,} , will be chosen with a slight variation of the bi-
guadratic functions. The basis functifgpy } is associated with the independent linear
transverse rotationgw/dx), and pw/dy), which are defined as unknown degrees of
freedom (DOFp,, andd,,, respectively. Therefore, they will be selectezbfy. The most
important aspect of the formulation is involvediwibhe choice of the basis function
{y,}. The strain functions can be considered as indgrgrfunctions which are
associated with new nodal degrees of freedom [tleethigher order rotations), therefore
increasing the total number of DOF to eight formlke node, and as well as increasing
the number of strain parameters. The advantagmighe tractions free boundary
conditions will bea priori satisfied. Another formulation method would betmsider
{y,} as a simple contribution to the general transvieesgvior of the structure without
association to any degree of freedom. The advastagekeeping the original number of
DOF and independently choosing the basis functimwever, one still has a larger
number of strain parameters when compared to tsiediider formulation. This case was
the first one investigated with several elementb\waiti be discussed further later. Since
basis function$y, } and{y,} are chosen freely, another possibility is to cledh&m to

be identical. Note that the strain functidis,, } and{y,,} associated to the basis
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functions are still linearly independent, but aom+inearly dependent ina-cube
terms, which is consistent with the third ordeastibased formulation adopted in this
study. The advantage is that the number of straiarpeters is reduced considerably,
while saving computing time. This option was alseestigated by selecting basis
functions as variations of the eight-node sereygghape functions.

Twenty one elements are investigated in the folhgwthirteen of which have
complete independence between basis funcfignsand{y,}, and eight for which the
basis functions are non-linearly z-cube dependedthich are consistent with the
traction free boundary conditions. For the elemestociated with the independent basis
function, the letter “I” will be added at the enfitke nomenclature. For instance,
TELMG66I represents a third order strain based elgmith 66 strain parameters
associated with independent first and third ordeidfunctions. A listing of the strain
functions is as follows:

1 - TELM422]

& = [Lx,y,xy,%%,y*1B3 + z[{1, x,y,xy3}18; + (a2)*[1,x,y, xy]1 B¢
2 - TELM45]

e = [Lx,y,xy,%%,y%, %%y, xy* 183 + z[1,x,y,xy1B; + (az)*[1,x,y]B]

3 - TELM51I

ex = [Lx,y,xy,x%,y%, %%y, xy? 183 + z[1,x,y,xy,x*,y*1B; + (az)*[1,x,y]Bf
4 - TELM54I

& = [Lx,y,xy, 2%y, x*y, xy?1B% + z[1, %, y, xy, x*, y*185

+ (az2)’[1,x,y, xy1B¢

5 - TELM5421



& = [Lx,y,xy, 2%y, x*y, xy?, %%, y*184 + z[1,x,,xy18;
+ (az)®[1,x,y,xy]B¢
6 - TELM57I
ex = [Lx,y,xy,x%,y%, x%y, xy%, x%,y31B% + z[1,x,y, xy,x*, y*1By
+ (a2)*[1, %, y1B¢
7 - TELM60I
& = [Lx,y,xy,x%, %, x%y, xy?184 + z[1,x,y, xy,x*, y*18;
+ (a2)*[1, %, y, xy, 2%, y*18¢
8 - TELM602I
& = [Lx,y,xy, 2%y, xy, xy?, %%, y*184 + z[1,%,,xy,x%,y*1By
+ (a2)*[1, %, y, xylB¢
9 - TELM66I
ex = [Lx,y,xy,x%,y%, x%y, xy%, x%,y31B% + z[1,x,y, xy,x*,y*1By
+ (a2)*[1, %, y, xy, x*, y*1B¢
10 - TELM72I
&x = [Lx,y,xy,x%,y%, x%y, xy?184 + z[1,x,y, xy,x%,y%, x*y, xy*1 B},
+ (a2)*[1, %, y, xy, x%,y%, x%y, xy?|B{
11 - TELM78I
& = [Lx,y,xy,x%, %, 2%y, xy?, 23, y3185 + z[1,x,y,xy, %, y%, x*y, xy*1By
+ (a2)*[1, %, y, xy, x%,y%, x%y, xy*1BL

12 - TELM84I

70



71

& = [Lx,y,xy,x%,y%, x%y, xy?, %%, y*184
+2z[1,x,y,xy,x%, y%, 2%y, xy?, 23, y*18;
+ (az)’[1,x,y,xy,x%, %, x%y, xy*1 B¢
13 - TELMOOI
& = [Lx,y,xy, 2%,y x%y, xy?, 2%, y3184 + z[1,x,,xy,x%,y%, 2%y, xy*, x°, y*18;
+ (a2)*[1, %y, xy, x%,y%, x%y, xy?, %%, y*1 B¢
14 - TELM30
& = [Lx,y,xy,x%,y*18% + [2+(a2)*1{1, x, v, xy}] B}
15 - TELM36
&x = [1,x,y,xy,x%,y%, %%y, xy*18% + [z+(a2)*][{L, x, y, xy}1B;
16 - TELM42
&x = [1,x,3,xy,x%,y%, x%y,xy%, 2%, y31B3 + [z+(az)®][1, x,y, xy]By
17 - TELM422
&x = [1Lx,y,xy,x%,y%, x%y, xy?183 + [2+(a2)*][1L,x,y, xy, x%, y*1By
18 — TELM54
& = [Lx,y,xy, 2%y, 2%y, xy?, %, y*184 + [z+(a2)*][1, x,y,xy,x%, y*1By
19 - TELM482
& = [Lx,y,xy,x%,y?, x*y, xy*184
+ [z+(a2)?][1, x, v, xy, x2, y2, x%y, xy?1 B
20 — TELM54
& = [Lx,y,xy,x%,y%, x*y,xy?, %%, y*184
+ [z+(a2)®][1, %, y, xy, 2%, y?, 2y, xy*1By

21 - TELM60
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& = [Lx,y,xy, %2,y x%y,xy?,x3,y3 1B

+ [z+(az)?][1,x,y, xy,x2, y%, x2y, xy?, x3, y 318}

In this Section the main characteristics of theppsed element formulations were
presented and a discussion on how they were cheagigiven. More details on their
incorporation in a strain-based approach of theifieadcomplementary energy principle

will be presented in the next Chapter.



CHAPTER 4
FINITE ELEMENT FORMULATION (ANALYSIS AND
IMPLEMENTATION)

In this chapter, the finite element method is us&the numerical technique to
implement formulations which are subsequently usesblve laminated composite plate
and shell problems. The strain-based modified cemphtary energy principle and two
different in-plane fields as presented in the pyesichapter are used for both plate and
shell element development. A detailed descriptibiine plate element development is
given first, followed by a brief presentation oétkhell element formulation. To avoid
redundancy, only the higher order strain elemeiitde presented, assuming that the
lower ones order can be easily deduced from themomputer program written in
Matlab is used to implement all the formulationsl aample problem solutions.

4.1 Plate Element Formulation
4.1.1 Geometry

The geometry characteristics of the multi-layet@klement are shown in Figure
4.1. The structure is made of several layers tHidabg wall thickness, each of which
may have a different thickness, fiber orientatiod anaterial properties. The layers are
assumed to be perfectly bonded. The mid-surfatieeoplate is taken as the reference
surface for the geometry of the element. The Cartesoordinate system (x, y, z) is used
to describe the global coordinate system and itgrois located on the middle surface.

The element consists of eight nodes: four corndea@nd four mid-side nodes.
The normalized coordinates systein, C) is used for the isoparametric element. All

three normalized coordinates vary between -1 aod the respective faces of the



74

element. A two-dimensional shape functidi(g, n), lies in the x-y mid-surface of the

plate element whilé is a linear coordinate in the thickness direction.

z, 4
hn.1
h
Layer m
__________________________________ hp-
— Y’XO ................. . 1 —ez_y
h;
X, Uo
SR R itttk hs
— N4
Layer h,
Ox v hy
Layer

Figure 4. 1: Multi-layer geometry and nodal degré&eedom for plate element.

The position of a point with coordinates x and gxpressed in terms of the

normalized coordinates by the isoparametric transition as

8
(= Z N &} (4.1)

wherex;, y; andN;(&,n) are, respectively, the global in-plane coordinatesodei and
the bi-quadratic serendipity shape function. Figushows the numbering pattern of a

typical element. The shape functions associatat¢h aode are given as [148]:



75

N; =025 -DA-m(E+n+1)
N, = 0.5(1—&")(1—n)
N; =025¢+ DA -mE—-n—-1)
N,=051-1m)1+8)
(4.2)
N =025+ DA +mE+n—-1)
Ne=0.5(1-&)1+m)
N; =025¢-DA+mE—-n+1)

Ng=05(1-n)(1-9

Figure 4. 2: Node numbering of quadratic element.

Since the element consist of layers, the normalizgtsverse coordinate for each

layer is given by Spilker [73] as:
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z = S[(hi + hiyr) + {(hipr — )] (4.3)

such that varies from (-1) to (+1) between the bottom areltthp of layei.

4.1.2 Displacement Field

The displacement field is derived from the typestodin field assumed in Eq.
(3.28). The element displacements consist of tltesuiface nodal displacement, namely
Uoi, Voi, W and two small rotation,; andé,; aboutx-axisandy-axis,respectively, as
shown in Figure 4.1.

The nodal and element degrees of freedom may bessqd, respectively, by the

vectors

y
( - )
{q} = {ql’ qz yrEr q8}

The displacement componenisv, w of an arbitrary point in the element in Cartesian

coordinates can be expressed in terms of noddbdsments as follows:

u 8 Upi 8 Qyi 8 Hyi
ve= ) N, ){Voi}+ N; (€, ){exi}+(a ) ) N; (€, ){Gxi} (4.5)
L RO R R

Since an isoparametric formulation is employed,Nhare the same shape functions as
those used in the geometric definition (Eq. 4.2 .e&ch node has five degrees of
freedom, each element thus has forty degrees eddra.

4.1.3 Kinematics
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The kinematic equations (2.2) and the displacerfelds equations (4.1) are used

to obtained the matrix [B] of the strain-displacerneelations. Using simplified

derivative notationg(%x’y) = u,, x ), the linear kinematic relations can be written a

€x = Uy
€y = Vy
Exy = Uy + Uy (4.6)

yz = Vz T Wy
€Exz = Uy + Wy

In terms of the shape functions, they become

8 8 8
€Ex = Z Nl',x Upi + ZZ Ni,x Hyl-+(az)3 Z Ni,x Hyl-
i=1 i=1 i=1
8 8 8
€y = Z Niy v + ZZ Ni O, +(az)? Z Niy Oy
i=1 i=1 i=1
8 8 8 8
€Exy = Z Ni,y Uy + Z Ni,x Voi + ZZ Ni,x Hxi+((XZ)3 Z Ni,x Oy
i=1 i=1 i=1 i=1
8 8
+ ZZ Ni,y Hyi+((XZ)3 Z Ni,y Hyl-
i=1 i=1
8 8 8
€yz = Z N;y w; + Z N; 0,;+3(az)? Z N; 0y
i=1 i=1 i=1

8 8 8
€xz = Z N;,w; + ZZ N; 0y;+3(az)? Z N 6y,
i=1 i=1 i=1

Putting equation (4.3) in a matrix form, one obsain

(4.7)
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8
(€)= B{a (48)
i=1
where the strain vector and th]; matrix for a single node are expressed as
Ny O 0 0 [z + (az)?]N; ]
0 Ny 0 [z+ (a2)’]N;,y 0
[B]i = Ni,y Ni,x 0 [Z + (az)g]Ni,x [Z + (az)3]Ni,y
0 0 Ny [1+3(z)?N 0 (4.9)
L0 0 Ny, 0 [1+ 3(az)?]N,]

{e} = {ex €y,€z,€xy,€Eyz, GXZ}T
The derivatives oN;(&,n) with respect to the global coordinates x and ynarte
available directly. Using the chain rule of diffatation, one obtains

Nl',é = Ni,xx,é + Ni,yY,é

(4.10)
Ni,n = Ni,xx,n + Ni,y)’,n
Equation (4.4) in a matrix form becomes
Ni¢ Xg 3’§] {Nix} {Nix}
=1L = ' 4.11
{Ni,n} [x.n Yl (Niy Ul Ny (4.11)

where[/] is theJacobian Matrix The components of the Jacobian matrix are derived

from Eq. (4.1) as follows:

8 8
x,f= ZNL{ Xi, X,nz ZNl-‘nxl-
i=1 i=1
8 8
Ve = Z Nigyi; Yo = Z N,y
i=1 i=1

Using Eq. (4.5)N; ,, andN; , are determined as

(4.12)
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{xﬁﬁ =Ur {xii} (4.13)

Therefore, all the components of the nodd; are determined. The strain displacement
relation for an element in matrix form can therelpressed as

{e} = [Bl{q} (4.14)
The [B] matrix is made up of eight (5x5) blocks of thgg] [

4.1.4 Stress Interpolation

The stresses are obtained by used of the straatifuns defined in the previous
chapter. Here, element TELM36 is used to demoresthet detailed procedure of
obtaining the element stiffness matrix. The expogsef the in-plane strain functions for
TELMS36are given by
€x = B1 + Bax + 7y + Broxy + Bi3x? + Biey® + Brox?y + Barxy® + (2

+ (az)?) (Bzs + B2aX + B31Y + B3axy)
€y = By + Bsx + Py + Pr1xy + Prax® + Br7y? + Baox?y + Pazxy® + (2
(4.15)
+ (@2)®) (B26 + B2oX + 32y + B35XY)
€xy = B3+ Bex + Boy + Pr2xy + Pisx® + P1gy? + P21x%y + Praxy?
+ (z + (a2)?) (B27 + B3oX + B33y + B36xY)
From the constitutive equations, the in-plane sessare
07" = CT1€x + Cl2€y + CT4€xy
03" = Cl2€x + C32€, + CH4€xy (4.16)
Oxy = C14€x T Ch4€y + Cli€xy
Substituting Eq. (4.15) into Eq. (4.16) the expi@ss of in-plane stresses become as

follows:
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ot = cii[B1 + Bax + B7y + BroXy + Bi13x* + P16y + ProX?Y + Brrxy?
+ (z + (a2)?) (Bzs + B2ax + B31Y + B3axy)] + c13[B
+ Bsx + Bgy + B11xy + Brax? + P17y + Brox?y
4.17)
+ Bazxy? + (z + (a2)?) (Bas + BaoX + P32y + B3sxy)]
+ cT4[Bs + Bex + Boy + Br2Xxy + Bisx? + B1gy” + 1 X%y
+ Boaxy? + (z + (a2)?) (B27 + B3oX + B33y + B3exy)]
o)t = c13[B1 + Bax + By + Broxy + B13x? + Brey? + Brox?y + Brrxy?
+ (z + (a2)?) (Bas + BagX + P31y + Baaxy)] + c33[B
+ Bsx + Bgy + B11Xy + Brax? + B17y* + Brox?y
(4.18)
+ Ba3xy? + (z + (a2)*) (B26 + BaoX + P32y + P35x¥)]
+ c74[Bs + Bex + Boy + Braxy + Bisx? + B1gy? + Br1x%y
+ Baaxy® + (z + (a2)?) (B27 + B3oX + B33y + B3sxy)]
oxy = C14[B1 + Bax + B7y + BroxXy + Pr13x? + Br6Y? + Prox?y + Brrxy®
+ (z + (a2)?) (Bas + BagX + P31y + Baaxy)] + 34 [B
+ Bsx + Bgy + Pr1xy + Brax? + B17y* + Brox’y
(4.19)
+ Ba3xy? + (z + (a2)*) (B26 + Baox + P32y + P35x¥)]
+ cialBs + Bex + Boy + Braxy + Pisx? + Bigy? + Pr1x’y
+ Baaxy? + (z + (a2)?) (Ba7 + BaoX + B33y + Bzexy)]

The transverse stresses are obtained from thaleguih equations (2.4) as follows:
o = — f(a,?x + oyy,y) dz + Cst1™ (4.20)

a},’} = —f(a;’;'x + ajr,fly)dz + Cst2™ (4.21)
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o = — f(a;’}'x + 03’,';,3,) dz + Cst3™ (4.22)

whereCst1™, Cst2™, andCst3™ are constants of integration.

It is important to note that the integrations aeef@rmed within one layer
thickness and not through the structure thickngelsey express the transverse equilibrium
within the element. Therefore, the transverse sé®are not the resultants as in the

equivalent single layer theory. This is anotheraadage of the modified complementary

energy principle.

4.1.5 Interlaminar Boundary Conditions

In the present study, three boundary conditionsatiefied to determine the

constants of integration. They are:

a) The transverse stresses are equal at the intexfdle layers. That implies

that

at z = h,,,

(4.23)
m __ m-—1
oy = oyt
ot =gt

b) The transverse stresses are zero on the bottoacsuwf the element. Thus,

atz = hy

ol, =0
(4.24)
1

O-yz =

ol =0
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By satisfying the above conditions, the constahtategration are determined for each
layer. Note that there are no specific restrictionghe top surface tractions (eq. (2.20))
although they are partially assumed in the striaid assumptions.
The final expression for all stresses are given as
oyt = 11 [B1 + Bax + B7y + Broxy + P13x? + P16y + Brox?y + Prrxy?
+ (z + (a2)?) (Bas + Bagx + P31y + Baaxy)] + cf3[B2 + Bsx
+ By + Br1xy + Prax® + B17y* + Baox?y + Pazxy? + (2
(4.25a)
+ (@2)?) (Bas + P2ox + P32y + Basxy)] + cli[Bz + Bex
+ Boy + P12xy + Pisx? + Prgy? + BoaX’y + Paaxy? + (2
+ (@2)?) (Ba7 + Bzox + B33y + Baexy)]
0yt = c13[B1 + Bax + By + Proxy + B13x? + P16y + Prox?y + Brrxy?
+ (2 4 (@2)?) (Bas + Basx + P31y + Baaxy)] + c55[B2 + Bsx
+ Bsy + Br1xy + Brax® + B17y* + Baox?y + Pazxy? + (2
(4.25b)
+ (a2)?) (Bas + Baox + B2y + Basxy)] + c74[Bs + Bex
+ Boy + B12xy + Pisx? + Pigy? + Ba1X’y + Baaxy? + (2
+ (@2)?) (Ba7 + Bzox + Bazy + Baexy)]
oxy = c15[Br + Bax + B7y + Broxy + Pizx? + Prey? + Prox?y + Baaxy?
+ (z + (2)?) (Bas + Bagx + Ba1y + Baaxy)] + c5i[B2 + Bsx
+ Bgy + B11xy + Prax? + B17y* + Paox’y + Bazxy? + (z
(4.25¢)
+ (@2)?) (Bas + B2ox + P32y + Basxy)] + cii[Bs + Pox

+ Boy + B12xy + Pisx? + Pigy? + Ba1X’y 4 Basxy?* + (2

+ (az2)*) (Bz7 + Bzox + Bazy + Bzexy)]
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= —2z|(A% + (32 + 22) CI + SAT, + 2DF[}) fro

+ (A%, + (G2 + 22) CI% + ST, + 2DFE) By
+ (A%, + (32 + 22) CI% + SATY + 2DFJ%) By

+ (A7 + (32 + 22) CI + SATS + 2DF[}) frs

+ (A% + (32 + 22) CI + SATS + 2DFI%) By

+ (A% + (32 + 22) CI + SAT, + 2DF[} ) frs

+ (A% + (32 + 22) CI% + SATS + 2DFI%) By

+ (A% + (52 + 22) CI% + SATS + 2DFIE) B

+ (Ag'g + (zz +z ) CIt + SAT, + 2DF24) Bis

+ (DF{Z + §ZZC14 + SD1} + F14) B2s

+ (DFZ’Z + gzzCﬁ + SD7; + Fz"i) B2o

+ (DFQ +222CJ% + SDI + Fﬂf) Pso

+ (DF11 + z2611 + SDI + Fn)ﬁ31

+ (DF12 + zzc12 +SDT5 + Flz)ﬁ32

+ (DF14 + §ZZC14 + SDiy + F14) B33

+ (DFl"zl + %ZZC}"Z1 + SD15 + Ffrzl) Bza

+ (DFZ"Zl +222C33 + SDJ + anzl) Pss

+ (DFf3 +222C3 + SDY3 + FI1) ]
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(4.25d)



Oxz = A11Ps + AT2PBs + ATaPs + ATuB7 + AZ4Ps + ALiBo
+ (AT3x + AT1Y) 1o + (ATax + AT1Y)B1s
+ (Afax + ATLY) P12 + 2AT1x2B,3 + 2AT5x P15
+ 2474V P16 + 2434V P17 + 2454V P1s + DF{1YBo
+ DF{3B23 + DF{4B24 + DF{4Bos + DF74 e
+ DFy3By7 + (DF{4x + DF{1y)B2s
+ (DF24x+DF(3y)B2o + (DF 4 x+DF{3y) B30
+ 2DFMxB31 + 2DF7,x P35 + 2DF3x B35

+ 2DF{}yB34 + 2DF;}yB3s + 2DF}y B3

oyy = Al4Bs + A7uPs + ALLPe + AT3 7 + A3z P + Aufo

with

+ (ATLy + AT1xX)B1o + (A2zx + A2LY) B1a

+ (AZ4x + AGLy)Prz + 2AT4xP1s + 24%4xP1s

+ 2475y P16 + 2453V P17 + 2474V P1s + DF{3yBa
+ DF74B23 + DFyBas + DF{3 Bos + DF35Boe

+ DF)} 27 + (DF5x + DF[}y) B2 + (DF}5x

+ DF34y)B2o+(DFz4x + DF3y)Bso + 2DF{3x P31

+ 2DF)i x5, + 2DF ;x5 + 2DF{%y B3,

+ 2DF}3yP3s + 2DF;3y 36

m
= Z h; (Clil - Clil_l) —zCy + C}%lhl

m
1 i —
DFf =~ [Z a?h?(CL, — Ciit) — (az)?Clt + CiLh?

84

(4.25e)

(4.25f)

(4.263)

(4.26b)
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m
SA =2 Z h; (AL, — AIY) + 24L by (4.26¢)
i=2
m
SFE =2 ) i (DFly - DFi") + 2DFjhy (4.26d)
i=2
m
R = > 43 (Gl — Cir®) + 2Chht; (4.26e)
i=2
Defining
A = =2 %z (ARl + Gz + 22)Cli + SAY + 2+ DFJY ) (4.26f)
FFf} = =2z (DF + C2?)Cl + ST + FIY) (4.269)

the stresses can be written in matrix form in teofnstrain parameterg;s, as follows
{o}™ = [P]™{B} (4.27)
where

[P]™ = (see next page) (4.28)



[ Ci1 Ciz Cia
Ciz C22 Ca4
m _ 0 0 0
[PY™ = Cia Ca4 Caa
0 0 0
| 0 0 0
Ci1xy Cizxy Craxy
Ci2xy Ca2xy Ca4Xy
ADq, AD,, ADyy
Ciaxy Caaxy Caaxy
Apax + A1y Apax + Ay AgaX + Ay
AX + A1ay  Agpx +Azsy  AgaX + Assy
Ciaz C12z C14z
Cizz Ca2z Casz
0 0 0
Ciaz Ca4z Caaz
0 0 0
0 0 0
Ci1zxy Ciazxy Ciazxy
Cipzxy Cyrzxy Caazxy
FFi, FFy, FFy,
Cr4zxy Caazxy Caazxy
DFi4x + DF1y DFux + DF 5y DFEyux + DFy,y
DFi,x + DF,4y DF,,x + DF,,y DFyux + DFEy,y

Cyqx?
Cypx?

2A11x
2A14x

C112x
Ci22x

Cia7x
DF;4
DF;4

Cyq2x?
Cypzx?
FF4
Cyazx?
2DF;1x
2DF;4x

2A1,x
2A54x0

C12x?
Cypzx?
FF,,
Cpq4zx?
2DF;,x
2DF,.x

Ciazx
Cyazx

Cya2zx
DF;,
DF,,

Cyazx?
Cy4zx?
FFi4
Caazx?
2DF,4x
2DF,.x

Ci12y
Cy2zy

Ci4zy
DF,,
DF;,

C11Z3’2
Clzzyz
FFi,
C1423’2
2DF, .y
2DF;,y

Ci2zy
Cypzy

Crazy

DFyy
DF,,

C122y2
szzyz
FF,,
62423’2
2DF,,y
2DF,,y

2444y
2424y

Ciazy
Co4zy

Caazy
DFy4
DF,,

C142y? ]
Crazy?
FF,,
Caazy®
2DF,.y
2DF,,y]
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4.1.6 Development of Stiffness Matrix

After forming the[P]™ and [B] matrices, the following matrices are found

)" = | pyrisyipyav

(4.29)
[G1™ = | [PI™"[B]dV

Va
Since the matriceg?]™ and [B] are expressed in the normalized coordisystem, the
element volume is rewritten using the followingretard transformation formula
demonstrated by Murnaghan [81]:
dV = |J|dédndc (4.30)
By substituting Eq. (4.30) into Eq. (4.29) and E428), thelH]™ and[G]™matrices can

be expressed as

+1 +1 +1

[H]™ = f f meTSmTPml’ |J|dédndg, (4.31)

-1 -1 -1

+1 +1 +1

[G]m=j j ijTBIJIdfdnd( (4.32)

-1 -1 -1

These integral are carried out numerically usirgg@aussian quadrature method.
However, the compliance and stress-parameter raatcicange from one layer to
another; and are not continuous function§. dtherefore, the thickness concept is utilized
by splitting the limits of integration through edelyer. This is done by modifying the
variable{ to {x in anym-th layer such thaj varies from -1 to +1 in the layer (see Figure

4.1). The change of variable is obtained from



k
g=-1+2 Ztm—tma—ck)]/t

i=1

and thus
d¢ = dg,

Here,tn, is the thickness of lay@n andt the element thickness.

Upon substituting of Eq. (4.29) into Eqs (4.27) &@8), thedH]™ and

[G]™matrices take the following form:

+1 +1 +1
t
=2 [ [ [ prrsrTem iagdnds,
-1 -1 -1
+1 +1 +1
[G]m == j j j P™T B |J|dédnd{;
-1 -1 -1

Applying the Gauss quadrature formula, one obtains:

NX NY NZ
H]™ = P™TS™T P | Wy Wy W,
y
1 1 1

NX NY NZ

(61" = > > > PRI WW,W,
1 1 1
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(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Here,NX, NY,andNZ are the number of Gauss points with associatedezrgance

parameters\, W, andW,, respectively. The element matrices [H] and [G] tteen be

obtained by summing the contribution of all layers:

N
[H] =" [H]"

m=1

N
6] = Z [G]™

(4.39)
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whereN is the total number of layers.
After computing the inverse of the H matrix, thiéfisess matrix for that element
is formed by using Eq (3.22),

[K] = [G]"[H]*[G]. (4.40)

4.1.7 Stress Calculation

Upon assembling the global stiffness matrix foitladl elements, the stresses can
be found. First, determine the generalized disphec#s {q}, using Eq. (3.21) as
follows:

{a} = [KI*{Q) (4.41)
where{Q} is the external load matrix. The strain parame{@}y are found using Eq.
(3.19)

{8} = [H]7'[G]{q} (4.42)
Then the stresses at each layer can be computed by
{o}™ = [P]I™ {B} (4.43)

The same procedure is going to be used to formthatshell elements proposed

in this study.

4.2 Shell Element Formulation

The curved shell elements proposed here is degeddram a 3-D solid
structure. They are applied to any type of shell,anly to cylindrical shells as some of

the figures may suggest.
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4.2.1 Geometry Definition and Description of the EBment

Similar to the plate element, the multi-layer skeddiment (Figure 4.3) is an eight
node isoparametric element with five degree ofdoee at each node. The shell element
is derived from the three-dimensional solid streetin which a point can be expressed by
the sum of two vectors. The first is the positi@ttor from the origin of the Cartesian
coordinate system (x, y, z) which is also usedescdbed the global coordinate system,
to a point on the reference surface of the shetheht. The mid-surface of the shell is
again taken as the reference surface for the gepwiethe element. The second vector is
a position vector from the mid-surface to the pointonsideration. The normalized
curvilinear coordinates syste {, ) is used for the isoparametric element.

At a typical node, Figure 4.4, a unit vectdf;;, in the thickness direction is
defined as

l3;
Vs = {mgi} (4.44)
nsi

wherels;, mg; andng; are direction cosines.



Mid-surface Y

0 X

Figure 4. 3: Multi-layer composite shell element

Figure 4. 4: Unit vectors at node
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The global coordinates of any point in the elenmeay be expressed in terms of
the position vectors of the nodes and the shapgitns as
X 8 X; 8 t
{y} =D Ni&w {w} £ N EW SV (4.45)
Z i=1 Zj i=1
wherex;, Vi, z andV3; are respectively the mid-surface coordinates bhadihit vector in

the thickness direction defined by

xj+xk }’]+}’k Zj+Zk
X; = > , Vi = T, zZ; = 5 (446)
and
La:
Var = dmagh, with 1y = 8290 @m0 g (4.47)
3t ngl ’ U =’ T My vkl T llz— zd '
3

The unit vectolV5 is chosen along the longitudinal axis of the ajtioal shell, and the
unit vectorVy; is obtained from the cross product\ef andVs;.

TheN; are the same shape functions as defined by E).Wdth the same
numbering pattern (Figure 4.2).

4.2.2 Displacement Field

The first order displacement field of Eq. (2.17)l\Wwe used to derive the element
formulation. The nodal and element degrees of fseedre given by Eq. (4.1). The
element displacements consist of the mid-surface niisplacements, namely v, w
and two small rotation8,; andédy,; aboutVy; andVa;, respectively, as shown in Figure 4.5.
Note that\Vy, Voi andV3; are mutually perpendicular, and that andV,; are tangent to
the element mid-surface at nadé&otest,; andé,; may differ from node to node in a

single element.
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The displacement componenitsv, w of an arbitrary point in the element in

global Cartesian coordinates can be expressedmstef nodal displacements as follows

U o )8 t 6,

{v} =N (a,n){vi}+zzvi 6.6 5 ldd{g"] (4.48)

w i=1 Wil  i=a t
whereu;, i, and ware the nodal displacements. Since the isoparanietmulation is
used, the\; are the same shape functions as those used gedmeetric definition (EQ.
(4.2)). Further, di] is a matrix of direction cosines of the unit \@astV,; andVy; at thei-

th nodal point (see Figure 4.5)

=l Ly
[di] = |—my my; (4.49)
—Ny; Ny

The nodal and element displacement may be expressgctively, by the vectors

{a:} = {us, vi,w;, 054,637
(4.50)
{a} = {0, q21---'CI8}T
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Figure 4. 5: Nodal displacements

4.2.3 Kinematics

The relationship between strain and displacemeuibtigined following the same
procedure as for the plate element. Some stepde&vskipped in order to avoid
redundancy.

The kinematic relations in a matrix form are gin®n
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(Ux
Uy
(&Y (1 0 0 0 0 0 0 0 0]]y,
] 10 000100 0 0ffy
€ lo o oo 0oo0o0 0 1]}
2= %
ey(=lo 10100 00 of).2( (4.51)
Lesz[000001010JWz
7 oo 100 010 0,7
"y
W,

The derivative with respect to the global coordisat obtained through the Jacobian

matrix. The 3x3 Jacobian matrix required for tHesgent is

Ul =

Xn Yn Zn
Xe V¢ 2t

Xg Ve Zg
] (4.52)

with determinant of [J] = |J|

The components of the Jacobian matrix are derinad £q. (4.45) as follows:

8 8
t
X, = Z Ni,f x; + Z Ni,f ( §l3i
i=1 i=1
8 8

t
x;n = ZNi,n xi + ZNL',T]( 5131'

i=1 i=1

8

t
X, ;= Z N; 5131‘
i=1
8 8 ¢
Ve = Z Nigy; + Z Nig ¢ > M
i=1 i=1

8 8
t
Yom = Z Niny; + z Ni, ¢ > Mai
i-1 i=1

8
t
Vg = Z N; > Msi
i=1

(4.53)
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8 8
Z,SZ—ZNifZi +ZNL'E€ 27131
i=1 i=1
8 8
t
Z,n = ZNinZi +ZNLT]( anl
i=1 i=1
8
t
Zl{ = ZNL §n3l
=1

Using Eq. (4.6) the derivative of the displacemevith respect to the curvilinear

coordinates are found as follows:

gy Nig 0 0 —(Niglyy  INjely;
U, Nim 0 0  —(Nyly {Ninlii
u,{ 0 0 0 _Nilzi Nilli ( Uu; \
Ve 810 Ng 0 —I{Njgmy (Nggmy|| v |
4 v,n r= Z 0 Ni,n 0 —(Nl-,nmzl- (Nl-‘nmli 4 QWi 5 $ (454)
U’q i=1] 0O 0 0 —Nimzi Nl-mli l:gxl/zJ
V;,,f 0 0 Nig —(Njgny; {N;enyq; yi/
\W.nJ 0 0 Ny —CNignz  (Nijgny;
4 | 0 0 0 —Nl-nzi Nl-nli
The transformation of these derivatives to glolmardinates gives:
() ' 1 %6
Uy U1t U1t U1 Un
U, Ue
Ux 8 Ve
{vy >=Z ]t ]t Uyt v (4.55)
vZ l::l v'{
W We
Wy Ul Ul U1t Vn
\W , J | 1\WweJ
where the inverse of the Jacobian matrix is giwen b
$x Nx SCx
17t =|éy ny Sy|=In (4.56)
$z Nz (z

Substituting Eq. (4.54) into Eq. (4.55), one olgain



u [a; —d;ly;

(X
u, b; —e;ly;
U, of —filsi
Vx 8 a; —d;my;
4 v,y = Z bi —eimy;
U,Z i=1 Cl _ﬁmzl
W a; —diny;

w

e b —einy;

W,
¢ —finy

where
a; = InJ11N; ¢ + Inj1,N;y)
b; = InJ1N; ¢ + InJy;Niy

¢; = InJ31Nj ¢ +InJ3,Ny )

d; = %(ai( + Inj;3N;)
t

e = E(bi( + InJ,3N;)
t

fi = 5 (c;i{ + InJ33N;)

2

dily; T

e;ly;
filii
dimy;
€;my;
fimq;
diny;
€iNqi

fing; |
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The strain-displacement relationship is derivednfieg. (4.57) and the strain

displacement relation, Eq. (4.6), as

8
(&)= 1B {a)
(&) = (B}

where

Ui
Wi .
0. (4.57)
kgyi)
(4.58)
(4.59)
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(a; —d;ly; dily;
b; —e;my; e;my;
(B,] = Ci —finai fini (4.60)
bi a —eily — dimy;  ely; + dimy;
¢ bi —fimy — eny;  fimy; + eny;
Lc; a;  —ding; — filsi  ding + fily;

The [B] matrix here is made up of eight (6x5) blocksBj.[

The components of the strain based modified comgheany energy principle are
given in the element coordinates system. Therefbes, have to be transformed into
local coordinates. The element stiffness matribamigid in local coordinates will then be
transformed into global coordinates for coherencidaé assembly.

4.2.4 Strain Transformation

The strain components at any point in the localdioates system are given by

Ex

Eyr

()
| & |

{e} = 1%; } (4.61)
ez

™

)/y 'z’
Vxz'

t\]

The global and local strains vectors are relateoligh a strain transformation matrix as
follows
{e} = [T.l{e} (4.62)
in which|[T,] is given by equation (2.16b).
The direction of the local axes is shown in Figi® For the case of the
cylindrical shell defined by the scalar field
g(x,y,z) = x* + y? (4.63)

the unit vectoVs normal to the surface’( y) is defined by
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_gradg

=979 4.64
lgrad g| (469

3

The transformation of global displacemenis w) to the local orthogonal

displacementsu(, v', w') is given by

u u'
{v} - [L]{v'} (4.65)
w w'

where L] is the matrix of the three perpendicular unitteesV,, V,, Vs in the X', y', 2'
directions and constructed as follows:
[L] = [V1, V3, V5] (4.66)
The transformation of global derivative of the désgmentsi, v andw to the

local derivatives of the local orthogonal displaesns is given by a standard operation,

u ,,x’ v ’,x’ w ,,x’ Uy Uy Wy
u',y, v',y, W’,y’ = [L]T [u,y Vy W'y] [L] (4.67)
u’,Z’ v’,Z' W',Z, u,Z IJ,Z W,Z

Substituting Eq. (4.59) into Eq. (4.62), the stre@mponents in local coordinates become

{e} = [T.][Bl{q} (4.68)

The nodal and element displacements in local coatds are expressed, respectively, as

{q'} = (W}, v, w04, 6,37

(4.69)
{a} = {a'va’y, - a)"
The element displacements in global and local doatés are related by
{q} = [DTH{q"?} (4.70)

Here, the transformation matrix [DT] is defined by
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[[DT]
[DT,] 0

[DT] = (4.71)
[DT;]

[DTg]

in which the PTj] are defined as

0

0
[DT1 =|ny; ny, ngy O (4.72)

1

0

RO O o O

By substituting Eq. (4.70) into Eq. (4.68), theastrdisplacement relations in local
coordinates become
{e}=1[BNq} (4.73)
where
[B] = [T.]"*[B][DT] (4.74)
Thus B is the modified strain-displacement matrix whislgoing to be used in the
calculation of the stiffness matrix as well as shresses.

4.2.5 Constitutive Equations

The stress-strain relations with respect to thallodthogonal axes x', y', z' can be
expressed as
{o}™ = [C]™{e}™ (4.75)
where []™ is the stiffness matrix of the m-layer.

The stresses in global and local coordinates dageckthrough the transformation
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{0} = [T:]{o} (4.76)
in which
[Te] =[T.]" (4.77)
Upon substituting Egs. (4.62) and (4.76) into Eqgr7%), the constitutive relations in
global coordinates are expressed as
{o}™ = [CC]™{e}™ (4.78)
where
[CG] = [T]T[CIIT.] (4.79)

The in-plain strain-function method is used to fthd stresses in local coordinates which

are given by:
o'y C1z2 €12 Cia]( €
o'y t=|[c12 €22 cau|{ €Yy (4.80)
O'xy Ci4  C24 Caal | €'y

4.2.6 Stress Interpolation

The stresses are obtained through the strain fimectiefined in the previous
chapter. Here, element FELM36 will be used to destrate the detailed procedure of
obtaining the element stiffness matrix. The expogssof the in-plane strain functions

for FELM36 are given by
€y =P+ Bax + By + Prox'y' + ﬁ13x'2 + ,816}],2 + 2z (1o + B22X
+ Basy’ + Pagx'y’ + ,33175'2 + ﬁ34y'2)
(4.81)

2 2
€'y = Bp + Bsx' + Bgy' + P11X'Y + B1aXx"" + B17Y"" + Z'( 20 + BozxX’

+ B26y’ + Paox'y’ + ﬁzlez + ﬂ35)"2)
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12 /2
€' xy = B3+ Bex' + Boy' + P12X'y + Pisx' + P18y’ " + Z' (P21 + Prax’

+ Ba7y’ + B3oX'y' + Basx® + B3sy?)
From the constitutive equations, one obtains
o' = c1€y + cTz€y + i€ yy
'Y = c13€  + c)€y + chhe (4.82)
0'%y = C14€ x + CJ4€'y + CILE xy
Note that the coefficients of the stiffness mathe not transformed, because they are

already transformed into element coordinates.

Substituting the strain expressions, Eq. (4.81 k. (4.82) one has
o= c11lBy + ,3435’ + ﬁ7}” + ﬁlox’y’ + ﬁ13x'2 + ﬁleylz + Z’( P19
+ Ba2x' + Bosy’ + Pagx'y’ + ﬂ31x’2 + ﬂ34)"2)]
+ci5[B2 + Bsx' + Pgy' + Brix'y' + ﬂ14x’2 + ,5)173"2 +Z'(Bao
(4.83)
+ Basx’ + By’ + Paox'y’ + ﬂ32x’2 + ﬂ35)"2)]
+cialBs + Bex' + Boy' + B12x'y + ,5)1535'2 + ,3183”2 +Z'(B21

+ BaaX' + Ba7y' + Baox'y' + Bazx? 4 Bzsy?)]

o' = BBy + Bax + Bry + Brox'V + Brax’* + iy’ +2'[ Bio
+ 22X + o5y’ + PosX'y + B31x"? + B34Y"%]
+cB[B; + Bsx’ + By + Puix'y' + Brax’® + Bi7y'* + 2 Bao (4.84)
+ 23X’ + 26y + P2oX'y' + B3x"? + B35Y'%]

+c74[B3 + BeX' + Boy’ + Prax'y' + ,31535'2 + ,318}”2 + 2'[ 21

+ BaaX' + Ba7y' + Baox'y' + Bazx? + Bzsy?]
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! /2 /2
o xmy = c{4[B1 + Bax' + B7Y" + Brox'y' + B13x"" + P16y’ + Z'[ Bio
+ Baox' 4 Basy' + Bagx'y' + Pa1x"? + B3ay'?]

+c74lB2 + Bsx' + Py’ + Brix’y' + 31435’2 + ﬁ17y'2 + 2'[ B2o

(4.85)
+ 23X’ + 6y + B2oX'y' + B32x"? + B35Y'%]
+c3[Bs + Bex' + By + Prox'y + Pusx'* + Prgy'* + 2 [ B
+ BoaX' + B27Y' + B3oX'y' + B3zx® + Baey?]
Using the equilibrium equations in local coordirsades follows:
Oxx + Oxyy + 0xzz =0 (4.86)
Oxyx t 0y, +0y,, =0 (4.87)
Oxzx T Oyzy + 07, =0 (4.88)

the transverse stresses can be deduced. Folloggpime procedure as in the previous
section, all the six stresses are found as
12 12
o'F =ity + Pax’ + B7y" + Brox'y' + Bi3x"" + P16y’ + 2" (P19
12 12
+ Ba2x' + Bosy’ + PagX'y' + B31x"" + B3ay’)]
I 1] .1 12 12 I}
+c13 B2 + Bsx’ + By’ + f11xX'y' + Prax’” + P17y " + 2" (P20
(4.89)
! r 1.1 12 12
+ B23x + Baey t+ BaoX'y + P32x"" + P35y )]
I r o 12 12 I}
+c14lBs + Bex’ + Boy' + Pr2X'y' + P1sx’" + Bigy’" + Z'( B2

+ BoaX' 4 Ba7y' + Baox'y' + Bazx? + Bzsy?)]
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12 [2
o'V =131+ Pax’ + L7y + BroxX'y + B13x"" + B1ey'” + Z'[ Bio
+ Baox' 4 Basy' + Basx'y' + Ba1x"? + B3ay'?]

+c33[B2 + Bsx' + Bey’ + Brix'y' + ,314?5'2 + ﬁ17y'2 + 2'[ B2o

(4.90)
+ B23X’ + Bo6Y’ + P2oX'y' + B32x"? + B35y
+cT3[Bs + Bex’ + By + ProX'y' + Bisx’* + Prgy'” + Z'[ Bay
+ 24X’ + B27Y' + B3oX'Y' + B3zx® + Baey?]
U’xmy = c1alf1 + Bax" + B7y" + ProX'y' + ﬁ13x'2 + ,316}”2 +Z'[ 1o
+ BoaX' + Bosy’ + PasX'y' + B31x"? + B34Y'?]
+czalBz + Bsx' + Bgy' + 11X’y + ,314?5'2 + ﬁ17y'2 +2'[ Bao (4.91)

+ Bazx' + Pasy + Baox'y' + Bazx? + B35y’
+cialBs + BeX' + Boy' + Piax'y' + ﬂ15x’2 + ,3183”2 +Z'[ B21

+ BoaX' + Ba7y' + Baox'y' + Pazx? + B3ey?]
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o'p = —22'| (41 + (32 + 2%) I3 + SAT, + 2D1% ) fro

1 2
AT, + 2 tz )C24+SA +2D24)ﬁ11

(
(
(
(

(
(

(
G

I~
£3
+

o
23
+

Z'+2'2) C + SAT. + 2D ) Bis

N| -

ZI

o
o3
+
+
N

)ci
)
%) i3 + SAT, + 203
)
)cis
)

:814

N| -

o
a3
+

7z + 7'? Cl + S + 2D1 :815

1)
1)
)
)

N| -

o
o3
+

N| -

AT, +

N| -

)
7' +27'%) C35 + SAD, + 2DJ} )ﬂn
=7 + Z’z) Co+ SAT, + 2D24) Bis
(4.92)
)
oL '2C24 + SDI% + F24)
) Bo

2
DIt +32'2Cl} + SDI1 + F{1 ) B

i)
+ (D73 + Z’2C12 +SDT; + F{3 )ﬁ32
FI2) Bss

DI + %Z’ZC{X +SD1s +

+ (D7 + ’2612 + SDI% + F[3 ) B3

(
(
(
(
(
(
(
(
+ (D;z; +22'2CJ% + SDJ} + FI} ) Bas
(
(
(
(
(
(
(
(o2

)
DIt + éz'ngrzl + SDJ% + ) Bas
;)
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o'y = ATiBs + AT3Bs + ATiBs + AT4B; + A% Bs + AfuBo
+ (ATax" + AT1Y)Bro + (ATax" + AT1Y) B
+ (A%x" + ATLy ) Brp + 2AT %2615 + 2AT5x By
+ 2474Y ' Bre + 2434y P17 + 2454Y ' B1g + D11V Ba2

+ D13 P23 + D14 f2a + Di4B2s + D34 f26 + DiaB27

+ (D13x" + DIty")Bag + (DF5x" + DI%y") 2o

(4.93)

+ (D34x'+D13y")B3o + 2D11x' 31 + 2D5x" B,

+ 2D13x B3z + 2D14Y ' B3a + 2D4Y B35 + 2D34Y Be
0'ys = ATyBs + ATy Bs + AT4Bs + AT3 By + AT Bs + AT4Bs

+ (AT4y' + AT1x) Bro + (A2ox" + AZ4Y) 1y

+ (AZx" + ALY ) Bra + 2AT4X B3 + 24%.x'Bys

+ 2475 P16 + 24%3Y P17 + 2A34Y ' Brg + D14y Baz

(4.94)
+ DJ3B23 + Diafrs + D15 P25 + D33 B26 + D33 B2y

+ (D12x" + D14y")B2s + (D33x" + D34Y") B2o+(D34x’
+ D3y )Bso + 2D14x' B3y + 2D35x B3y + 2D53x B3
+ 2D13Y'B3a + 2D33y B35 + 2D74Y ' B3e

with

m
m Z h (Cy — CiY) = 2/C + Clyhy (4.95)

=2

m
L . - ,
Dt =+ [Z h2(CL — Ct) — 2'2C + CLh? (4.96)
=2



m
SA™ =2 Z hi (AL, — AGY) + 244 hy
i=2

m
SO =2 Z h; (D}, — D7) + 2D} hy
i=2
m

4 : i1y , 4
Fel = Zgh? (Clu = Cia*) +5Cuhi;

i=2
Defining

ADJ = =2+ 7' (A + Gz’ + 22)CJl + SATS + 2 + D)

’ 2
D} = =22 (DI + Cz)Cl + S + F})

the stresses can be written in matrix form in teofr{g3} as follows:

{o'}™ = [P'I™{B}
where

[P']™ = see next page
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(4.97)

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)



[P =

C11x"y'
C12x"y'
C1ax"y'

Apx' + A1y Apux' + Ay AgaX + Ay
AppxX + A1y’ Appx' + Azsy AgaX' + Agsy'

Ci17
Ci,7
0
Ci47
0
0

Ci12'x"y'
Ci22'x"y'
DF,,
Ci4Z'x'y'
Disx' + D11y’
Dipx" + D1y’

C12x"y'
Cyax'y'
Coux'y'’

Ci27
Cyp 7'
0
Couz'
0
0

Clzzlxlyl
CZZZInyI
DFyy
C24Z,X,y’

Dyax'+ D13y Dygx’ + Dysy’
Dyyx' + D3yy"  Dayyx'+ Dysy’

Cia Crpx' Cr2x' Crax' C11y' Cr2y' Cray'
Cra Cr2x' Copx' CoaxX' Cr2y' C2y' Casy'
0 0 0 0 0 0 0
Cay Ciax Ca4x Caax’' Cray' Caay Casy
0 Ay Ag Aqy Ayy Az Ay
0 Ayy Az Ay Ay Ay Az
Crax'y’ Ciix?  Cppx' Ciax? Ciy? Ciy Cuay”
Coux'y' Ciax?  Copx'® Cpux?  Ciy"? Cpy'® Cauy”
ADyy AD;4 AD;, AD14 AD;, AD,, ADyy
Caax'y' Cia Coax'?  CaaX?  Cray?  Couy'?  Cagy”
2411x"  2A5,x"  2A54x" 2414y 245,y 2444y
241,x" 245,x'0 2A4,x" 245,y 245,y 24,4
Ci42' Ci12'x" Cppz'x’ Craz'x’ Cuz'y' Crpz'y' Cuuz'y'
C247' C127'x" Cp7'x’ CouZ'x’ Cip7'y" Cyz'y' Couz'y’
0 0 0 0 0 0 0
Cya? C14Z'x" Couz'x’ Cuaz'x’ Ciuz'y' Couz'y' Cuuz'y'
0 Dy Dy, Dy4 Dy4 D34 Dy
0 Dyy Dy, Dyq Dy, Dy, Dy,
Craz'x'y' C112'X'%  Cppz'x'? Ciaz'x'? Ci12'y'? Cpoz'y'? Ciaz'y'?1"
C242'X"y' C12Z'x? Cpp2'x'? CouZ'x? C1p2'y"? Cpp2'y"? Cuz'y”
DF,, DFy,  DF,  DFy,  DF, DFy,  DFyy
CeaZ'X'y’ C1aZ'x?  CouZ'x? CiaZ'x? Cru2'y? Cpu2'y? Cauz'y”
2Dy1x"  2Dyyx" 2Dy4x’ 2Dqay' 2Dyny' 2Dy’
2Dy4x" 2Dyux’ 2Dgux’ 2D1py" 2D,y 2Dyuy
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To form the [P'] matrix, the local coordinatesyx,and z' need to be expressed in
term of global coordinates x, y, and z. For a dsical shell in which the origin of the
global Cartesian coordinates coincides with theeresf the cylinder, the coordinate
transformations (while taking in account the tratish of the origin) are given by the

following expression.
x' = rll [2;(x — x;) — x;(z — z;)]
y =y (4.104)

7 = rl [xi(x — xi) + Zi(Z - Zi)]

where

= f(xi2+zi2)

4.2.7 Development of Stiffness Matrix

After forming the [P'] and [B'] matrices, the foling layered matrices based on

Eqgs (3.16) and (3.17) are found to be:
_ b 0T
= | 1PTISIIPT av, (4.105)

6= 1P1"

n

[B'] dV (4.106)

Since the matrice®]' and[B] are expressed in the normalized coordinates system
element volume is rewritten using the followingrgtard transformation formula
demonstrated by Murnaghan [81]:

dv = |J|dEdndg (4.107)
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By substituting Eq. (4.107) into Eq. (4.105) and Eq106) thdH''] and[G'"] matrices

can be expressed as

+1 +1 +1

wi= [ [ ] s e pidsands, (4.108)

-1 -1 -1

+1 +1 +1

¢'= [ [ | 1P1"1B11dédnds (4.109)

-1 -1 -1

These integrals are carried out numerically usmegGaussian quadrature method.
However, the compliance and stress-parametersaasithange from one layer to
another; they are not continuous functiong.afherefore the thickness concept is
utilized by splitting the limits of integration thmgh each layer. This is done by
modifying the variablé to ¢, in anyi-th layer such thaf, varies from -1 to +1 in the

layer. The change of variable is obtained from

({=-142 ti—ti(l—(m)] /t (4.110)
2
and
d¢ = 1d¢,, (4.111)

Here,t; is the thickness of lay@n and t the element thickness.
Upon substituting of Eq. (4.111) into Eqgs (4.108) §4.109) théH] ' and[G]'

matrices take the following form:

+1 +1 +1

=4[ [ s idgdndg, (112)
' +1+1 41
61 =4[ [ | P 1BIdédnds,, (4.113)
-1 -1 -1

Applying the Gauss quadrature formula, one obtains
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NX NY NZ
(H']E = Z Z Z P'ITSIT PT| W, W, W, (4.114)
1 1 1
NX NY NZ
61 = > Y IPITIBI W, (4.115)
1 1 1

Here,W,, W, andW, are the convergence parameters associated wittuthber of
Gauss pointd\X, NY,andNZ respectively. The element matrides] and[G'] can then

be obtained by summing the contribution of all Izye

NL

[H] = Z [H']: (4.116)
NL
[G'] = Z [G'] (4.117)

i=1
whereNL is the total number of layers. After computing theerse of théH'] matrix,
the stiffness matrix for that element is formedusyng Eq. (3.22)
K1=[61[H] (6] (4.118)
To assemble the final stiffness matrix, the eleniftness matrix has to be
transformed from local to global coordinates. Tinitd element system of equations is
given in the local coordinate system as
[K'l{a'} = Q) (4.119)
where{q'} is the vector of generalized displacements (Eg2 and{Q'} the element
load vector. Using the transformation matiX'] defined in Eq. (4.71), these can be
expressed in global coordinates system as

{a'} = [DT1{q} (4.120)

and
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{q'} = [DTHQ} (4.121)
Upon substituting Egs. (4.120) and (4.121) intd {9) one obtains
[K'1[DT]{q} = [DT]{Q} (4.122)
Modifying this equation by pre-multiplying both sithy one gets
[DT]" (K 1[DT](g} = () (4.123)
Therefore, the element stiffness matrix in glolmdrdinates systeifie] is derived as
[Ke] = [DT] Y[K][DT] (4.124)
Finally, the global stiffness matrix is obtainedaingh algebraic addition of all element
stiffness matrices.
The external force vectors are derived from the ifreticomplementary energy

formulation and expressed as (Eqg. (3.17))

QY = | {T}"ds (4.125)

Sn
The prescribed boundary tractions are approximi@atedach element using the
same isoparametric eight-node shape functidnss defined by Ep. (4.2). Therefore the
element force vector is said to be a “kinematicafipsistent nodal load vector” [148],

and is computed as

Q) = f [NT"(T} ds (4.126)
S

n

The global force matrix is also obtained by adsérg all the element matrices
through algebraic summation. After calculating tloelal displacementsgj, the
strain parameters and the stresses are obtaimeglkrgs (4.42) and (4.43),

respectively.
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4.3 Numerical Implementation (Development of FE code)

4.3.1 Flowchart

The finite element programs for either plates allshanalysis are developed
using MATLAB language [160]. Both codes follow og the formulation procedure of
the previous sections and they can perform theestatlysis of composite laminated
plates and shells under various loading conditsuth as concentrated load, simple or
double sinusoidal load, distributed load, self viatigr internal pressure. A detailed

flowchart of the shell element implementation igegi in Figure 4.7.
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START
(Main_Program)

LOAD Input Data
* Material properties
* Material geometry
* Boundary
conditions

EXTRACT & COMPUTE

* Control parameters

* Global coordinates

* Nodal connectivity

* Boundary conditions

[* Consistent forces loading]

INITIALIZATION
* Global stiffness matrix
* Global Inverse of H-matrix
* Global G-matrix
*Vector of BCs value

FOR eachD

INITIALIZATION
* Element stiffness matrix
* Element Inverse of H-matrix
* Element G-matrix
* Vector of element node number
* Vectors of coordinates system
* Matrix of orthogonal vectors at node i
* Vectors of the direction cosine

FOR each node

EXTRACT
* Node number (for the element)
* Coordinates (XC, YC, ZC) value of each
node
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COMPUTE
* Matrix of orthogonal vectors at node i
* Vectors of the direction cosine
* Transformation matrix for nodal displ.

FOR each layer

INITIALIZATION
* Layer Hi’-matrix
* Layer Gi’-matrix
* Layer B-matrix
* Vectors of integration points
* Vectors of convergence parameters

COMPUTE
* Orthotropic compliance matrix
* Reduced compliance matrix
* Reduced stiffness matrix components
* Vectors of integration points
* Vectors of convergence parameters

FOR each Integ. Pt.

COMPUTE
* Shape function and its derivatives
* Jacobian matrix and its determinant
* Strain-Displacement matrix in global coord.
* Stress-Strain transformation matrix
* Strain-Displacement matrix in local coord.
* Stress function matrix (P’) in local coord.
* Layer Hi’-matrix (adding for each point)
* Layer Gi’-matrix (adding for each point)

%

COMPUTE
* Inverse of Hi’-matrix
* H'-matrix (diagonal summation of Hi")
* Inverse of H’-matrix

STORE

* Pmtx and P’'mtx (for element and layer)
* Inverse of H'-matrix (only for element)
* G’-matrix (only for element)
* Inverse of H’-matrix (only for element)

%
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COMPUTE
* Element stiffness matrix in local coord.
* Element stiffness matrix in global coord.

EXTRACT: System DOF
associated to each element

ASSEMBLE: Element stiffness matrix
into to the global stiffness matrix

%

APPLY: Boundary conditions to
the global stiffness matrix

SOLVE: Displacements in global coord.
COMPUTE: Displacements in local coord.

FOR each

COMPUTE: strain parameters

FOR each layer

COMPUTE
* Stresses in local coord.
* Stresses in global coord.

(%
Output
* Displacement matrix

* Stresses matrices
(local and global)

END

Figure 4.7: Flow chart of the MCPSOLIDSHELL program
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4.3.2 Matlab Code Input

All inputs are specified in one input data filedanead by the main program. The
data file contains, the material properties with ¢tastic coefficients given in the
principal material directions, the basic elemergadigtion (total number of layers, nodes,
DOF per node), the nodal coordinates and their ectinity to each element, and the
loading and boundary conditions. The code for pdaulysis can be found in Appendix
B.

The finite element system of equations is solvesilyan MATLAB using the
anti-slash (\) notation. The zero energy mode ayaed automatically and a feedback
message is generated when the solution is clodeeitty singular. All the proposed

elements were successfully tested.



CHAPTER 5
SAMPLE ANALYSES AND VERIFICATION

To assess the accuracy of the present strain-ledeeents formulated via the use
of a modified complementary principle, the stagnling analysis of several example
problems for various geometry and material propstig analyzed. Displacements and
stresses are investigated and the results are cethpath the results from other models
in the literature (or those presented in Chaptersdyell as three-dimensional elasticity
solutions. A criterion of 5% percent differenceihe referenced solution is considered
as acceptable in this study. The rate of convemand the shear locking phenomenon
are addressed by examining elements with lowerdadmulation (FELM36 and
FELMA48) because these are the ones likely to elxbif@ar locking problems.

To simplify the presentation in this Chapter, tighler order elements which are
the main focus of this investigation are classifigthin two main categories, Type |
elements and Type Il elements. Each category sratgd into two subgroups,
“Serendipity” associated elements and “Lagrangsbeisited elements. Thus, there are
four subgroups described as follows:

1) The Type | elements have independent higher oadational strain basis
functions — elements identified with ‘I” at the eofithe nomenclature (such as
TELMS36I). For the first subgroup of Type | elemeritge in-plane basis
polynomials strain function are the same as theetslipity” basis polynomials
({1,x,y,xy,x%,y%, x%y,xy?}). The second subgroup is composed of elements

whose basis strain functions are complete thir@obasis polynomials
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(1, x, v, xy, x?,v?%, x%y, xy?, x3,y3}). They will be referred to as the
“Lagrange” type elements.

i) The type Il elements have a non-linear variatiothefrotational strain
functions. Its first subgroup is made of elemeragiing the same basis in-plane
polynomials function as the “Serendipity” one, dhd other subgroup as
“Lagrange” complete basis polynomials, as previpdsifined.

Table 5.1 shows the elements used to analyze tleeetit example problems
classified in sub-groups. Although all the twentyeelements were scrutinized in this

investigation, the discussions are limited to elet®m&vhich exhibit meaningful results.

Table 5.1: Third order elements used to analyze different case problems

Type Il

Elements with non-linea
variation of the rotationa
basis strain functions

Type |

Elements classification Elements with independent
higher order strain functiong

Elements consistent TELMA45I, TELM511, TELM36, TELM422,

with the “Serendipity” TELM54I, TELM6OI,
element TELM72I, (Type I-S) TELM482, (Type II-S)
Elements with the |  LC-Mo42l, TELMS7I, TELM42, TELMS54,
: .| TELMe021, TELMS6SI, TELMEA. TELMEO
complete “Lagrange TELM78I, TELM84I ! '
element TELMOOI, (Type I-L) (Type II-L)

The use of a convergence parameter will be disdusselation with the type of
structure analyzed. The convergence parametetireet proportional coefficient to the z
terms. The convergence parameters are generalliesitiean one, thus their inverse may
provide an easier number for graphical presentafiorhighlight the importance of the

convergence parameeter, two figures are givendon eharacteristic — boundary
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conditions or thicknesses. In the first (Figure #)¢ evaluation of the error (compared to
the exact elasticity solution or the percentagieehce if compared to an analytical
solution) starts with the convergence parameteakip one, meaning a strain function
without weighing factor. The second (Figure b))whdahe change in error when the
range of convergence parameters which gives arssixeeerror is removed. The
elements associated with a non-linear variatiothefrotational basis strain functions are
presented right after the analysis of elementscaas®al with independent strain
functions.

5.1 Displacement Examples

Although most of the discussion and attention®cs$ed on improving the
transverse stresses, it is still important thaténw elements also perform well for the
displacements. For the bending of plates, the vese displacemeny, is the most
important of these. Thus, it will receive the maiention when comparison results are
available without however neglecting the in-plampthcements. In the present analyses,
all layers constituting a plate or a shell are as=aito be of constant thickness. The
dimensions of the plate along the x-axis will laukd, andb along the y-axis, as shown
in Figure 5.1. The letter ‘S’ is used as the rafithickness to span (S=h/a). The

generalized displacements arg v, wy, 6y, ando,,.
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Figure 5. 1: Geometry and axes orientation for a

5.1.1 Deflection of an Isotropic Square Plat

An isotropic square plate with ss of length , various thickneses
and under both concentrated and a uniformly distributed | is analyzed. Also, tw
different boundary conditions (simply supported alamped edges) are selected for
analysis. In order to check the convergence ratheofesults, the number of elemeis
varied from one to sixteen. Because of symmetrly one quadrant of the plate
analyzed. Four meshing sizes are used, with théoauof elements per side varyi
from one to four.

The materiaproperties are given

E = 26.0E06 psi

v=0.3

a) Boundary ©nditions 1:Simply Supported Edges

The top surface of the platesubjected to aniformly distributed load of 1 ps
The boundary conditions ¢

at =0, = =0;
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atx =5in., u, =6, =0;

aty =0, w =6, =0;

aty =5in.,, v,=6,=0

The exact solutions using classical plate theoeg{{gn 2.2.1) of both a simply
supported and clamped square plate are presenféidnoghenko and Young [107].

The displacement solution for the simply suppodedare plate problem is given

in a series form as follows:

Wo(x,y) = 0 i i o (%) " (msz) (5.1)

whereD is the flexural rigidity of the plate defined iE?2.30). The expression of the

maximum deflection given is by

4
a
Wingy = 0.0046 Q‘I’) (5.2)

The transverse displacement is normalized for coisga purpose through the

following equation

D
Wy = WOW * 100 (53)

The finite element results for a thin (S = 0.01J anvery thin (S = 0.005) plate
are presented in Table 2. The convergence anali/gie center deflection in terms of the
ratio of the finite element results to the anabfi@sult is illustrated in Figures 5.2 and
5.3. The analysis is done using elements FELM36FR&1dM48 for both plates. One
notes that no shear locking is observed. Also erabie is the rapid convergence of both
types of elements. They give excellent accurach witmesh of only four elements. Thus,

they can be used for plate analysis. Note that ehfRELM48 has a slower convergenve
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rate. One reason is that its in-plane strain fomchias more higher order terms than

FELMS36.

Table 5.2: Normalized center deflection of an isotropic simply supported square

plate
S=h/a =0.01
N* Analytical | ppy 36 FELM48
solution
1 0.4062 0.3335 0.3025
2 0.4062 0.3985 0.3982
3 0.4062 0.4035 0.4034
4 0.4062 0.4049 0.4049
S=h/a =0.005
N Analytical | ppyyae | pELM48
solution
1 0.4062 0.3329 0.3012
2 0.4062 0.3981 0.3979
3 0.4062 0.4032 0.4031
4 0.4062 0.4046 0.4046
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Convergence rate with S =0.01

1.05

0.95

0.9

wl
o1/ .
/

FEM/EXACT

=== FELM48

0.75

0.7

0.65

0.6

1 4 9 16
Total Number of Elements

Figure 5.2: Convergence rate of the center deflection for a thin isotropic simply
supported plate (S=0.01).

Convergence rate with S =0.005

1.05

0.95
0.9

0.85 //

0.8 p/ —FELM36

FEM/EXACT

0.75 =i—FELM48

0.7

0.65

0.6
1 4 9 16

Total Number of Elements

Figure 5.3: Convergence rate for a moderately thin isotropic simply supported plate
(S=0.005).
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b) Boundary Conditions 2: Clamped Edges

In this case, the same material properties and gggras ina) is used. However,
the load condition becomes a transverse concedti@ae of 100 Ibs. at the center of the

top surface of the plate. The boundary conditi@msfamped edges are given as

atx =0, U=Vo=w=0x=0y=0;
atx=5in, g=0y=0;
aty =0, U=Vo=w=0,=0y=0;
aty=5in, ¥=0x=0.

The expression of the maximum deflection is givghl®d7]

4
a
Winax = 0.0056 Q‘Z) (5.4)

The transverse displacement at the center of tite inaximum deflection) is

normalized by the following equation

D
Wy = Wmaxm * 100 (55)

Table 5.3 shows the results for the thin and vierry tlamped square plate. The
number of elements starts with four because omaezieis not enough to represent the
proper behavior of a clamped edge plate. It caoldserved from Figure 5.5 that there is
a slower rate of convergence in comparison withsthely supported case. The
displacements are better predicted for the thitepkss before, FELM48 has a slower

rate of convergence.



Table 5. 3: Normalized center deflection of an isotropic clamped square plate

S=h/a=0.01
N Analytical | o) \ag FELM48
solution
2 0.5600 | 0.3924 0.3716
3 0.5600 | 0.5070 0.4923
4 0.5600 | 0.5288 0.5281
S=h/a =0.005
N Analytical | ce) \1ag FELM48
solution
2 0.5600 | 0.3846 0.3664
3 0.5600 | 0.5017 0.4865
4 05600 | 0.5232 0.5178

126
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Convergence rate with h/a =0.01
1
0.9
0.8
-
Q
< /
wo7
s =——FELM36
w
“ 06 —@—FELM48
0.5
0.4
4 9 16
Total Number of Elements

Figure 5. 4: Normalized center deflection of an isotropic clamped square plate
(5=0.01).

Convergence rate with h/a =0.005

0.95
0.9
0.85
/4
/ / —o—FELM36

=i=FELM48

FEM/EXACT

0.7

N

0.65

0.6

4 9 16
Total Number of Elements

Figure 5. 5: Normalized center deflection of an isotropic clamped square plate
(S=0.005).
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5.1.2 Displacements of Two-Layered Angle-Ply Compiie Square Plate

In this section, a composite laminated square platetwo angle-ply £6)
lamina is analyzed (Figure 5.6). The side lengtlkesegual to a, with a total thickness of
t. The two layers have equal thickness and are ofithe same material. The top

surface of the plate is subjected to a uniformstrdbuted pressure loading of magnitude

Qo-
The mechanical properties of each layer are asvisli
Ei1 = 40.0E06 psi k= 1.0E06 psi
G12=Gy3=0.5E06 psi
vi2 =vy3 = 0.25

Dimensions: a=101In t=0.21in

Boundary Conditions: The plate is simply suppoxadll four edges as shown in Figure

5.6. Since the laminate structure is not symmaeinit the boundary conditions are set up

as follows:
atx =0 and 10, W =guF 0, = O;
atx =0 and 10, w =o\= 0y = 0.

Whitney [156] provides an analytical solution byngsa Fourier series approach.
Spilker [76] noticed an error in Whitney’s calcudet. He also formulated a solution
using a hybrid displacement formulation for thid&tps. Spilker’'s elements were
formulated such that generalized displacements e@rgletely independent for each
layer, thus, using more computer time to solvepitodlem. Also, he used ten elements
along each side of the plate. This case studyasgdour elements per side, for a total

number of sixteen elements (compared to one hurelesdents used by Spilker). Afshari
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[150] also uses sixteen first order theory elememtmalyze this problem. All of their
results are used for comparison purpose. The dispiant results are presented in Tables
5.4 and 5.5. The number in the bracket is the péiteedisplacement error computed
using the following equation:

UEXACT

Error = <1 — ) * 100 (5.6)

FEM

One can notice that the results for the transwveisggacements, for both FELM36
and FELMA48, are in excellent agreement with theceaaalytical solution for both fiber
orientations. Although, the in-plane displacemeatsilts are very good (less than 3.65
%), they give poorer results compared to the agb&rtions. One reason is that FELM36
in-plane basis strain functions are two terms sbbtthe “serendipity” basis polynomials
(missing the termsy?, andx?y), while those of FELM48 are augmented by two terms

(x3, andy?).
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Table 5. 4: Displacement of a simply supported two layer anti-symmetric square
composite plate with fiber orientation 6=+35

Approach Uo Vo W
o435 | Exact[156] | 001465 | 001610 | OO
| 0% | oy | o
| % | oy | o
e | e | ey |
e | Oy | e | om

Table 5. 5: Displacement of a simply supported two layer anti-symmetric square

composite plate with fiber orientation 8=+45°

Approach Uo Vo w
0 = +45° Exact [156] 0.01481 0.01481 0.9152
_ 0.01480 0.01480 0.9300
Spilker [76]
(-0.07) (-0.07) (1.59)
_ 0.01485 0.01485 0.9273
Afshari [150]
(0.27) (0.27) (1.30)
0.01529 0.01529 0.9187
FELM36
(3.14) (3.14) (0.38)
0.0152 0.01520 0.9193
FELM48
(2.57) (2.57) (0.45)
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5.1.3 Deflection of a Three-Layered Semi-Infinite Bip

The case analyzed in this section is a three-layer cross-ply (0,90,0) long strip
of width, ], in the x-direction and an infinite length in the y-direction. The total
thickness varies from thin to thick place limits. All layers have equal thickness (h/3).
The other problem information is given as:

Mechanical properties of each layer:

E11=25.0E06 psi Ez2 = 1.0E06 psi
G12 = 0.5E06 psi G23 = 0.2E06 psi
viz =vi2 =0.25

Sinusoidal loading: q(x,y) = Qosin(mx/1)

1=101in width of the plate

b=1in width of the strip in the infinite direction

S=h/l thickness to width ratio

Boundary Conditions: symmetric

atx=0, w=0;
atx =35, uo = 0y =0;
aty =45, vo=0x=0;

Meshing: one half of the strip is modeled with 5 elements (1 x 5)

Pagano [4] developed an exact elasticity solutayrof problem. Spilker [58] also
obtained a solution using a hybrid stress formatatSpilker's formulation satisfies the

top traction free boundary. Both results are used¢dmparison. In this particular case,

all the elements are used to carry out the analyhis results are presented two fold. The

Type | elements are presented first, followed bpdil elements. The evolution of the
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percentile error as a function of the inverse ef¢bnvergence parameter is presented in
Figures 5.7 through 5.10 for the Type | elements, ia Figures 5.11 through 5.15 for
Type Il. The convergence parameter are generalgllenthan one, thus its inverse
provides an easier number for graphical presemtatio

It can be seen on Figure 5.7a that without the eayence parameter in the
formulation of the element strain functiam € 1), the error is more than 15%, while a
convergence parameter just smaller than one higifi(& 5.7b) reduced the error to less
than 1%. This observation is also true for modéydten plates (S = 0.05, see Figure
5.8), moderately thick plates (S = 0.1, see Figu®¢ and very thick plates (S = 0.25, see
Figure 5.10). One can also notice that the thitkemplate becomes, the higher the error
in the absence of convergence parameter. Alsdyehavior of the elements follows
strictly their classification into subgroups, espég for very thick plates (Figure 5.10).
Five Lagrange Type | elements (TELM78I, TELM542E0M6021, TELMG661), give
less 0.5 % error when the convergence paramesenadier than 1/3. The other elements

have less than 4% error, which is excellent.
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Figure 5. 7: Center deflection error of a thin (S=0.0375) symmetric 3-layered semi-

infinite strip using Type I elements.
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Figure 5. 8: Center deflection error of a moderately thin (S=0.05) symmetric 3-

layered semi-infinite strip using Type I elements.
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layered semi-infinite strip using Type I elements.
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Figure 5. 10: Center deflection error of a very thick (S=0.25) symmetric 3-layered

semi-infinite strip using Type I elements.
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On can observe from Figure 5.11 that all Type éhednts yield excellent
performance for thin plates, and none of them hslsear locking problem. Surprisingly,
even without a convergence parameter, the resdtess than 2% free of error. Also, it
can be seen from Figures 5.11b through 5.15b hleaé tare also two groups of elements
which correspond exactly to the subgroup of Typadmely, the “Lagrange” compatible
type and the “serendipity” one. One can noticepiaticular behavior of element
TELMG60. For very thick plates, it is the only elem@hich converges to the exact

elasticity solution when the convergence parantsteomes smaller.
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Figure 5. 11: Center deflection error of a very thin (S=0.01) symmetric 3-layered
semi-infinite strip using Type II elements.
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Figure 5. 12: Center deflection error of a thin (S=0.0375) symmetric 3-layered semi-

infinite strip using Type Il elements.
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Figure 5. 13: Center deflection error of a moderately thin (S=0.05) symmetric 3-

layered semi-infinite strip using Type Il elements.
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Figure 5. 14: Center deflection error of a moderately thick (S=0.1) symmetric 3-

layered semi-infinite strip using Type Il elements.
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Figure 5. 15: Center deflection error of a very thick (S=0.25) symmetric 3-layered

semi-infinite strip using Type Il elements.
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It can be seen from Figure 5.15 (or Table 5.6) thiavery thick plates the range

of convergence parameters which give less thanrsét is between 1/3.3 and 1/2.7.

Table 5.6 presents the center deflection erroafeery thick plate as a function of

the convergence parameter.

Table 5. 6: Center deflection error of a very thick (S=0.25) symmetric 3-layered
semi-infinite strip using Type II elements.

Inverse of convergence parameters

Elements
1.00 2.00 3.00 4.00 5.00 8.0( 10.00

TELM30 | 33.38 | -0.67 2.50 7.17 9.2( 1093 11.p1

TELM36 | 33.36 | -1.03 2.29 6.44 8.18 9.6b 9.89

TELM42 | 31.86 -2.77 1.75 5.26 6.79 8.00 8.21

TELM48 | 31.80 | -2.78 1.74 5.26 6.74 7.99 8.20

TELM54 | -13.15| -12.75( -1.31 3.27] 5.04 6.58 6.17

TELM60 | -13.65| -13.64 -6.40 -3.41] -2.21 -1.20 -1.03

TELM422 | -12.37 | -12.40] 0.53 5.54 7.46 9.0% 9.30

TELM482 | -12.82 | -12.59| -1.25 3.30 5.0§ 6.56 6.79

The particular behavior of element TEM60 is dughfact it is a complete
“Lagrangian” type for both the in-plane strain a@hd rotational strain functions. It has
the highest number of strain parameters. dl$® noticed that there is less of a distinction

between serendipity and Lagrange Type Il elements.
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In summary, all elements perform very well fromy#rin to moderately thick
plates. It has been confirmed that there is nordbeking effect for very thin plates for
all the proposed elements. Also, there is no need tonvergence parameter when
analyzing the displacements of very thin to moagyatick of plates. Any value greater
than 1/4 gives less than 1% error for thin to matidy thick plates. However, more
attention needs to be paid to the element type vahatyzing thick plates. Spilker’s [58]
solution has 5.16% error in comparison to the egkagticity solution.

5.1.4 Deflection of an Anti-Symmetric Cross-Ply Sgare Plate with
Various Edge Boundary Conditions.

The previous square plate is also analyzed heng atfferent boundary
conditions and a different loading. Khdeir and Re[2] worked out a Levy-type
solution using both the first and third order thesmof Sections 2.2 and 2.3. The
following materialproperties are used for each layer

E11 = 25.0E06 psi E = 1.0E06 psi

G2 = 0.5E06 psi & = 0.2E06 psi
vi2=vi2=0.25

The loading is assumed to be sinusoidal: q(x,y»€@3qx/a) sin @x/b)

a=10in length of the plate
b=10in width of the plate
S=01 moderately thick

Six different boundary conditions, combinationswhply supported and clamped

edges, are used as presented in Table 5.

Table 5. 7: Nomenclature for the boundary condition
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Symmetric analysis: Non-symmetric analysis:

SS: simply supported on both ends SC: simply supported and clampegd
CC: clamped on both ends FC: free and clamped edge

FF: free BC on both ends FS: free BC and simply supported

The results for Type | elements are shown in Fig&r&6 through 5.21. One can
observe that the convergence parameter is necdssatytype of boundary
conditions for an accurate analysis. Also, allél@ment solutions converge towards
the exact analytical solution when the weightingdmes smaller. For Type |
elements, there is no distinction between its salggs. The Serendipity and the
Lagrange categories behave equally well. All givaethan 98% accuracy when the

convergence parameter is smaller than 1/3.
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Figure 5. 16: Center deflection of antisymmetric cross-ply square plates (SS BCs)

using Type I elements.
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Figure 5. 17: Center deflection of antisymmetric cross-ply square plates (CC BCs)

using Type I elements.
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Figure 5. 18: Center deflection of antisymmetric cross-ply square plates (FF BCs)

using Type I elements.
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Figure 5. 19: Center deflection of antisymmetric cross-ply square plates (SC BCs)

using Type I elements.
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Figure 5. 20: Center deflection of antisymmetric cross-ply square plates (SS BCs)
using Type I elements.
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Figure 5. 21: Center deflection of antisymmetric cross-ply square plates (FC BCs)

using Type I elements.
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Six elements (TELM84I, TELM90I, TELM78I, TELM542TELM602I) give
less than 0.5% difference when the weighing faistdv10. The results are compared to
Reddy’s analytical and finite element solutionssidri’s solution is also integrated in
the comparison table shown in Table 5.8. Figur@ §i2es a graphical comparison for

the five best elements mentioned above.

Table 5. 8: Nondimensinal center deflection of antisymmetric cross-ply square
plates with Various Edge BCs - Comparison with other results.

Symmetric boundary Non-Symmetric boundary
conditions conditions
Elements | SS CcC FF SC FS FC
TSDT[23] 1.216 0.617 1.992 0.848 1.658 1.184]
REDDY[23] | 1.214 0.605 2.002 0.838 1.662 1.180
FSDT[23] 1.237 0.656 2.028 0.883 1.687 1.223
CLT[23] 1.064 0.429 1.651 0.664 1.471 0.980
AFSH[14] 1.215 0.621 1.998 0.849 1.668 1.187
FELM36 1.209 0.619 2.001 0.8474 1.657 1.185
FELM48 1.212 0.623 1.997 0.851 1.659 1.189
TELM422] 1.212 0.622 2.013 0.851 1.663 1.189
TELM45I 1.210 0.623 2.000 0.850 1.659 1.190
TELMS51I 1.213 0.624 2.000 0.852 1.661 1.191
TELM54] 1.213 0.624 2.000 0.852 1.661 1.191
TELM542] 1.210 0.620 1.998 0.848 1.659 1.188
TELM57I 1.211 0.621 1.997 0.849 1.659 1.188
TELM60I 1.213 0.624 2.000 0.852 1.661 1.191
TELM602I 1.211 0.620 1.997 0.849 1.659 1.188
TELM66I 1.211 0.620 1.997 0.849 1.659 1.188
TELM72I 1.212 0.623 1.997 0.851 1.659 1.190
TELM78I 1.211 0.620 1.995 0.849 1.658 1.187
TELM84I 1.210 0.619 1.995 0.848 1.657 1.186
TELM9O0I 1.210 0.619 1.994 0.847 1.657 1.186
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Figure 5. 22: Center deflection comparison of antisymmetric cross-ply square plates
with various edge BCs
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Figure 5.22a shows that the Classical Laminatiomofyr (CLT) gives between a
12 and 30% difference with the analytical solutiBemoving it from the comparison,
one gets Figure 5.22b. It can be noticed thatl@athents behave well. However, Reddy’s
third order element is less accurate than the mehdype | elements of the present
study. All the first order elements agree with gtiehl solution because the structure

analyzed is within the limits of plate analysis<9.1).

Figures 5.23 through 5.28 show the transverseatisphient analysis of the same
composite square plate using Type Il elementsanthe noticed that without a
convergence parameter the difference is more tbé&& @hile the use of a convergence
parameter smaller than 1/5 give less than 1% réifiee between the present elements
solutions and the analytical one. A closer lookigure 5.24b reveals a difference
between the Serendipity subgroup and the LagrangeTe latter one performs better,
although the difference is not significant. Alstereent TELMG60 is the most consistent
in converging to the analytical solutions for adiumdary conditions except for the SS BC

(Figure 5.23b).
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Figure 5. 23: Center deflection of antisymmetric cross-ply square plates (SS BCs)

using Type Il elements.
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Figure 5. 24: Center deflection of antisymmetric cross-ply square plates (CC BCs)

using Type Il elements.
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Symmetric BC - FF
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Figure 5. 25 : Center deflection of antisymmetric cross-ply square plates (FF BCs)

using Type Il elements.
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Figure 5. 26: Center deflection of antisymmetric cross-ply square plates (SC BCs)

using Type Il elements.
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Figure 5. 27: Center deflection of antisymmetric cross-ply square plates (FS BCs)

using Type Il elements.
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Figure 5. 28: Center deflection of antisymmetric cross-ply square plates (FC BCs)

using Type Il elements.
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Overall, displacement results for moderately tlaokisymmetric square plates
under sinusoidal loading have demonstrated thellernt@erformance of both Type | and
Type |l elements for various boundary conditiondhvergence parameter smaller than

1/3 works well for all the elements.

All the elements have been used to analyze vat@mated composites plates.
For very thin to moderately thick plates, all theneents predict excellent results when
compared to the exact elasticity solutions if tbevergence parameter is smaller than
1/10. However, for very thick plates, one shouldade carefully the elements and the
convergence parameter. Also noticeable, is thahaergence parameter smaller than 1/6
gives less than 1% error for all Type Il. Furtitbe best elements of the Type | category
are the Lagrange subgroup, with the higher numbsitrain parameters. Therefore, the

use of Lagrange Type Il is cost effective for ttese.

In the next Section, isotropic and laminated contpahell problems are

analyzed using the proposed elements.
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5.1.5 Barrel Vault Under Gravity Load

This case is a well-known benchmark problem (cafledrdelis-Lo roof). The
geometry of the problem is given in Figure 5.29 Tbof is subjected to a distributed
gravity load and is supported at each end by diggphragm. The analytical solution for
the maximum transverse deflection (point B in Fegbr29) is reported by Kwon and
Bang [157]. Other properties of the problem aregigas:

Material propertiesisotropic

E= 3.0E06 psi
v=0.0

Dimensions: a =600 in.

R=300 in.
t=3in.
0 =40

Loading: own weight of 90 IbAt

Boundary Conditionsrigid support at both curved edges and free foother
two.

Meshing: using symmetry, only one fourth of thefrigadiscretized. 16 elements
are used for this analysis as shown in Figure 5.29.

The results are given in Table 5 along with thds&ined by Simo et al. [158],
Reddy [24] and Kwon and Bang. Only the first ordiements are used, since the
material is isotropic. The two elements give veopd results considering that they use
only 65 nodes. Reddy’s solution in comparison usede than three times the same

number of nodes. It should be noted that earlis investigations, flat shell elements
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were used to implement the higher order straindb&s@nulation proposed here. They
performed poorly for this problem. The solid-sHelimulation adopted here is more

cumbersome to implement, but gives very good redattisotropic shells.

Table 5.9: Center deflection of the free edge Bhael Vault and comparison with other
results.

Simo et al. [158] Reddy [24] | Ref. [157] | FELM36 | FELM48
(289 nodes) (65 nodes) | (65 nodes)
3.6288 3.6170 3.5088 3.5781 3.3727

Figure 5. 29: Barrel Vault geometry and meshing (Scordelis-Lo Roof problem).




164

5.1.6 Pinched Cylinder Analysis

The pinched cylinder problem is, like the previgcase, a benchmark problem for
testing shell elements. It is considered by Bellgsakt al. [159] as an “obstacle course”
that any new shell element must pass. It testdesmnent’s ability to characterize both the
state of constant transverse strain and the coitplaixthe state of membrane strain of
shells in bending. Figure 5.30 shows the geomdttigeocylinder. The cylinder is
subjected to two diametrically opposite point loaflsnagnitude 1.0. Both ends of the
cylinder are rigidly restrained by diaphragms. &nelytical solution can be found in
Ref. [157]. Other data of the problem are givefollews:

Material properties Isotropic

E= 10.5E07 psi
v=0.315

Dimensions: a=10.35in.,

R=5in.,
t=0.094 in.,

Loading: point load of 100 Ib at the center (Feybr30).

Boundary conditions: rigid end diaphragms.

Meshing : in using symmetry, only one eighth of tbef is analyzed. 25 elements
are used for this analysis as shown in Figure 5.30.

The two first order elements, FELM36 and FELM4& ased for the analysis as
was the case for the other isotropic structures.

The numerical results are given in Table 5.10 alwitly the results from other

researchers.
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Table 5.10: Center deflection of a pinched cylinder and comparison with other
results.

Analytical solution
[157] Kwon & Bang FELM36 FELM48

0.1139 0.1087 0.24165 0.1186

FELMA48 performs very well while FELM36 does not.€&possible reason is that
FEML36 does not have enough terms in its in-plaamdostrain function to account for
the complexity of membrane strain in this probléinhas six terms, two terms shy of the
“serendipity” elements and four missing terms coraddo the complete “Lagrange”

type elements.

Figure 5. 30: Pinched cylinder geometry and meshing.
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5.1.7 Maximum Transverse Deflections of a Two-Layed Cross-Ply
Laminated Cylindrical Shell Roof of Various Thickness

The problem considered is similar to the Barrel WVprtoblem of Section 5.1.5 as
the geometry and loading conditions are the sameeder, the roof is a laminated
composite. Reddy [24] used a displacement fingeneint model to analyze this problem.
His results appear to be the only ones availalsledmparison. The material properties
are

E;1 =25.0 EO6 psi, £=1.0 EO6 psi

Gi2= 0.5 EO6 psi, & = 0.2 EO06 psi,

vi2=v12=0.25

Boundary condition:

aty=0and 10, Uo = Wo = 0y =0;

The absence of constraints on the displacemeng ahenx-axis suggests that one
must add another constraint in order to avoid rigsdy motion. The center of the shell is
therefore constrained in the x-directionXat 0 andy = 1/2, v, = 0).

Meshing: the full shell roof is modeled with 16mients (4 x 4).

The nondimensionalyzed transverse displacemeni (evaluated at the center of
the roof, is computed as follows:

10E, t3

= - 5.7
Wy = WrEm qR* (5.7)

Very thin to moderately thick shell roofs are araly. Eight Type | elements are used for
the analysis. Those with the higher number of stpairameters and associated with the
Lagrange type element (like FEMLA48) are selectamlvéler, two “serendipity” types

are also analyzed for comparison purpose.



167

It can be seen from Figures 5.31 trough 5.33 tiatésults are in excellent
agreement with the reference solutions. As wasd#se for the plate analyses, an absence
of the convergence parameter yields results that ha over 70 % percent difference.
Also, none of the elements converges identicaliyh&oanalytical solution. However, for
the thin to moderately thin composite barrel vaatialyzed all the elements converge

towards the reference solution for smaller convecgeparameters.
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Figure 5. 31: Center deflection of a very thin (S = 0.01) cross-ply Barrel Vault using

Type I element
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Figure 5. 32: Center deflection of a thin (S=0.02) cross-ply Barrel Vault using Type |

element.
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Figure 5. 33: Center deflection of a moderately thin (S=0.05) cross-ply Barrel Vault

using Type I element.
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In the above sections, the displacement of vandaies and shells structures
subjected to different type of loadings and boundias been analyzed with the proposed
Type | and Type Il elements. Very good to excellesults are obtained with these
elements, especially for very thin to moderatelgkiplate and shell structures. The Type
| and Type Il Lagrange elements perform bettettiark plates. Also, the “Pinched
Cylinder” test was passed by the first order Lagram types.

In the next Section, the same range of convergpaneters will be used for
the stress analysis composite laminated plateslagits. The same problems as in
Section 5.1 will again be analyzed with Type | diyghe 1l elements.

5.2 Stress Examples

Composite laminated structures fail mostly duedtachination. Thus, an accurate
stress analysis of composite plates and shellsrisimmportant. Many authors emphasize
the importance of the transverse stresses [14®B3%X4]. However, because of the
coupling effect in composite laminated structuress, equally important to have the in-
plane stress determined accurately for an effecsiihere analysis. In this Section, the in-
plane and transverse stress results are compatied éxact elasticity or exact analytical
solutions when possible. Also, the same categofieiements as in displacement
analyses are going to be used. For each case,raayrof the problem data is given.

5.2.1 Bending Stresses of a Simply Supported Isop@ Square Plate

This is the same case as in Section 5.1.1. Thdemotiata are as follows:
Material properties Isotropic
E=26.0 EQ7 psi

v=0.3
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Dimensions: a=10in.,
t=0.2 in.,
Loading: Transversely distributed load of 100qosithe top surface of the plate.
Meshing :sixteen elements (4 x 4).
Figure 5.33 shows the stress distribution throlghthickness of the plate. The

element FELM36 result is in excellent agreemenhhi&t of classical plate theory.

Maximum in-plane stress distribution

0.5

0.4

0.3
FELM36

0.2
\ et EXACT
0.1
0 \\
0.1 \
0.2

-0.3

NORMALIZED THICKNESS
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-0.5
-3,000.0 -2,000.0 -1,000.0 0.0 1,000.0 2,000.0 3,000.0

IN-PLANE NORMAL STRESS

Figure 5.34: Maximum In-plane distribution of an isotropic square plate
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5.2.2 Stress Analysis of a Three-Layered Semi-Infite Strip

The case analyzed is the same as in Section 5.%$3 three-layer cross-ply

(0,90,0) long strip. The material properties offekyer are:
Ei1 = 25.0E06 psi i = 1.0EQ6 psi
Gi2 = 0.5E06 psi & = 0.2E06 psi
vi2=v12=0.25

Sinusoidal loading: q(x,y) = &in(x/)

|=10in width of the plate

b=1in width of the strip in the infinite dirgon

S = h/l various thickness to width ratio

Boundary Conditions: symmetric case.

Meshing: one half of the strip is modeled with &meénts (1 x 5)

The exact elasticity solution of Pagano [4] is ukedomparison. The elements
associated with independent higher order rotatistraln basis functions - element with
‘I” at the end of the nomenclature such as (TELMZ6€& presented first. For each of the
boundary conditions, the difference in percentagf@ben the finite element result and
the exact elasticity solution is presented as atfan of the convergence parameter. The
latter is in fact a convergence factor, since @releterizes how well and fast the element
solution converges towards a certain value, noessarily towards the first order theory
solution. It is observed that, in general, thetéirelement solutions tend to the exact or
the analytical value. The convergence parametedisect proportional coefficient of the
z terms. As the convergence parameters are agagrally smaller than one, the inverse

may provide a better number for graphical presemtaf o highlight the importance of
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the convergence parameter, two figures are agaendor each boundary case. In the
first (Figure a)), the evaluation of the error (quare to the exact elasticity solution or the
percentage difference if compared to the analysoaltion) starts with the convergence
parameter equal to one, meaning a strain functitmowt convergence parameter. The
second (Figure b)) shows the change in error whemange of weighing factors which
gives an excessive error is removed. After thepeddent functions are analyzed, then
the elements associated with a non-linear variadfcdhe rotational basis strain functions
are presented.

The following figures illustrate the error evolutiof both normal in-plane and
transverse shear stresses.

It can be seen in Figures 5.35 and 5.36 that ikerery good agreement between
the finite element solution and the exact elastisdlution when the convergence
parameter is smaller than 1/6, except for elem&iM60 which is the only one giving a
poor result for a large range of convergence pat@msieT his is due to the€ andy® terms
in the transverse strain function. The result isedient for 3 elements (TELM30,

TELM422, TELM482).
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Figure 5. 35: Normal stress evaluation of a symmetric 3-layered semi-infinite strip
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5.2.3 Stress Analysis of an Anti-Symmetric Cross-RISquare Plate with
Various Edge Boundaries Conditions.

The square plate of Section 5.1.4 is also analf@estresses. As with the
displacement case, Khdeir and Reddy [62] solutasesused for comparison. The
following material properties are used for eaclefay

E1, = 25.0E06 psi E = 1.0E06 psi
G12 = 0.5E06 psi @ = 0.2E06 psi
vi2=vi2=0.25

The loading is assumed to be Sinusoidal: g(x,y»€d@3qx/a) sin {x/b)

a=10in length of the plate
b=10in width of the plate
S=01 moderately thick

Six different boundary conditions, as a combinabbsimply supported and

clamped edges, are used as presented in Tablef settion 5.1.4.

Nomenclature for the boundary condition:

Symmetric analysis: Non-symmetric analysis:

SS: simply supported on both ends SC: simply supported and clampe
CC: clamped on both ends FC: free and clamped edge

FF: free BC on both ends FS: free BC and simply supported

Note that the convergence parameters range uselisfdacements is also used

here, so that the same convergence parameterlisgfip both the displacements and
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the stresses. Therefore, here the convergence ptaanare not correction coefficients
applied to a particular component of the analysithier, they are applied to the overall
behavior of the structure. They thus adjust théfments of the strain functions to the
complexity of the loading, boundary conditions gewdmetry. It is a variant of the strain
field as defined in Eq. (3.28). The presentatiodiveded between a comparison of Type |
elements and then a combination of the best tymel lall the elements of Type II. Also,
two figures types illustrate the evolution of th#atence between analytical solution and
the finite element solution. Figures 5. 37 throbghb show the evolution of in-plane
normal stresses and the transverse shear strebgden elements.

On can notice the good agreement between the fetaent solutions and the
exact analytical solutions for most elements wlnendonvergence parameter is smaller
than 1/8. However, it can be observed from Figbt8%b, 5.38b, 5.39b, 5.40b, and 5.41b
that the Type | Serendipity elements have pooreagesnt for the in-plane normal stresses
associated with boundary conditions SS and CC (EiguB8b and 5.39b). Although
some of the results for elements, TELM422I, TELM4Bt TELM54I, are within an
acceptable agreement in terms of transverse stneggsis, these elements should not be

used because of their overall poor performance.
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Figure 5. 37: Axial stress (S1) of antisymmetric cross-ply square plates (FF BCs)
using Type I elements.
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Figure 5. 38: Axial stress (S1) of antisymmetric cross-ply square plates (CC BCs)
using Type I elements.
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Figure 5. 39: Axial stress (S1) of antisymmetric cross-ply square plates (SS BCs)
using Type I elements.

181



AXIAL STRESS (S2) OF ANTISYMMETRIC CROSS-PLY SQUARE PLATES:
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Figure 5. 40: Axial stress (S2) of antisymmetric cross-ply square plates (FF BCs)
using Type I elements.

182
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Figure 5. 41: Axial stress (52) of antisymmetric cross-ply square plates (CC BCs)

b)

using Type I elements.
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Figure 5. 42: Axial stress (S2) of antisymmetric cross-ply square plates (SS BCs)
using Type I elements.
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TRANSVERSE STRESS (S4) OF ANTISYMMETRIC CROSS-PLY SQUARE
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Figure 5. 43: Transverse shear stress (S4) of antisymmetric cross-ply square plates
(FF BCs) using Type I elements.
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Figure 5. 44: Transverse shear stress (S4) of antisymmetric cross-ply square plates

(CC BCs) using Type I elements.
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Figure 5. 45: Transverse shear stress (S4) of antisymmetric cross-ply square plates

(SS BCs) using Type I elements.
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Base on the previous analysis, only five Type hradats are being kept for
comparison purposes with Type Il elements. Theyttsanost consistent for all the
displacement and stress analysis carried out sm, Ahe critical boundary conditions that
were used to eliminate some elements are chosaofigparison purposes. They are the
symmetric boundary conditions. The following Figairefom 5.46 to 5.51, illustrate the

behavior of the Type Il elements

AXIAL STRESS(S1) ERROR OF ANTISYMMETRIC CROSS-PLY
SQUARE PLATES: Symmetric BC - SS
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Figure 5. 46: Axial stress (S1) of antisymmetric cross-ply square plates (SS BCs)
using Type Il and bests of Type I elements.
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AXIAL STRESS(S1) ERROR OF ANTISYMMETRIC CROSS-PLY SQUARE PLATES:
Symmetric BC - CC
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Figure 5. 47: Axial stress (S1) of antisymmetric cross-ply square plates (CC BCs)
using Type Il and bests of Type I elements.

It can be observed that elements TELM48 and TELs®ineither convergent to
an acceptable agreement, nor possess a convenggmareeter range. Thus, they should

not be considered recommendable.
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AXIAL STRESS(S1) ERROR OF ANTISYMMETRIC CROSS-PLY SQUARE PLATES:
Symmetric BC - FF
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Figure 5. 48: Axial stress (S1) of antisymmetric cross-ply square plates (FF BCs)
using Type Il and bests of Type I elements.

It is seem that all elements give good results.
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Figure 5. 49: Transverse shear stress (S4) of antisymmetric cross-ply square plates
(SS BCs) using Type Il and bests of Type I elements.

The figure shows that TELLM30 does not give acdeletaesults.



192

15

10

Percentage Difference

-10

-15

-20

TRANSVERSE STRESS (S4) ERROR OF ANTISYMMETRIC CROSS-PLY SQUARE

PLATES: Symmetric BC - CC

N\

%
) 6 8 10
—{ = a

12

=¢—TELM30
=i—TELM36
=de=TELM42
=>=TELM48
==TELM54
=@—TELM60
t==TELM422
TELMA482

==

Inverse of Convergence Parameter

e TELM66I
=¢—TELM?72I
=l=TELM78I
=e=TELM84I

TELM9O0I

Figure 5. 50: Transverse shear stress (S4) of antisymmetric cross-ply square plates
(CC BCs) using Type Il and bests of Type I elements.

Here, it seems that TELM36, TELM30, TELM72 do not yield good results.
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Figure 5. 51: Transverse shear stress (S4) of ant symmetric cross-ply square plates
(FF) (BCs) using Type II and bests of Type I elements.

This is the most significant boundary condition dmmation for laminated

composite analysis, the free boundaries. A few etemsatisfy the criterion of

excellence (5%). These elements are: TELM54, TELM&A_M482 TELM48 and

TELM42.
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5.2.4 Stress Analysis of a Two-Layered Cross-Ply nainated Cylindrical
Shell Roof of Various Thicknesses

This case is the same as the one of Section :RRéddy [24] used a displacement
finite element model to analyze this problem. Hisults appear to be the only ones
available for comparison. The material properties a

Ei; = 25.0 EO6 psi, 4&= 1.0 EO6 psi

G12=0.5E06 psi, & =0.2 EO6 psi,

vi2=v12=0.25

Boundary condition:

aty=0and 10, Uo = Wo = 0y =0;

The absence of constraints on the displacemeng ahenx-axis suggests that one
must add another constraint in order to avoid riggdy motion. The center of the shell is
therefore constrained in the x-directionXat 0 andy = 1/2, v, = 0).

Meshing: the full shell roof is modeled with 16 mients (4 x 4).

The nondimensionalyzed normal stresses ¢;,), evaluated at the bottom and the
top of the center of the roof, respectively, armpated as follows:

10t? 10t?
OxN = UXFEMW »  Oyn = O-yFEMW (5.8)

Very thin to moderately thick shell roofs are azaly. Eight Type | elements are used for
the analysis because of the flexibility of theid@pendent strain functions. Those with
the higher number of strain parameters and assaolcveith the Lagrange type element are

selected. Three “serendipity” type elements are afglyzed for comparison purposes.



195

AXIAL STRESS (SX) OF A THIN (S=0.01) CROSS-PLY BARREL
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Figure 5. 52: Axial stress (Sx) of thin cross-ply Barrel Vault

It can be noticed that the range of appropriatereayence parameter is reduced
considerably, and only three elements can prodwegyagood result. The rapid variation

is due to the curvature of the shell.
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AXIAL STRESS (Sx) OF A MODERATELY THIN (S=0.02) CROSS-PLY BARREL
VAULT
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Figure 5. 53: Axial stress (Sx) of a moderately thin cross-ply Barrel Vault.

One can observe that some of the elements havded@rgye of good
performance. The percentage difference in betwesltiRs solutions and the present is
considerable when no convergence parameter isegplor a larger thickness, the

difference is reduced significantly.
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AXIAL STRESS (SX) OF MODERATELY THICK (S=0.05) CROSS-PLY
BARREL VAULT
200
W
O T T T T 1
0 10 15 20 25
-200 -
. =¢—TELM54|
§ == TELM60I
e -400 A
g_ e=fe=TELM66I
g —TELM72I
(]
g 000 - —=TELM78]I
a =@-=TELM84I
-800 ==f==TELMOO0I
-1000
-1200
Inverse of Convergence Parameter

Figure 5. 54: Axial stress (Sx) of a moderately thick cross-ply Barrel Vault

It can be observed from the figure above thatlathents have the same type of
variation, which is characterized by a consideraidecase in the value of the “error”

before they start to converge.
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AXIAL STRESS (Sy) OF A THIN (S=0.01) CROSS-PLY BARREL
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Figure 5. 55: Axial stress (Sy) of a thin cross-ply Barrel Vault

One can observe that all the elements have a goag for the choice of the

convergence parameter.
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Figure 5. 56: Axial stress (Sy) of a moderately thin cross-ply Barrel Vault
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It can be observed that only few elements (TELMBBLM84| TELM78I) have

the possibility of good performance.



200

AXIAL STRESS (SY) OF MODERATELY THICK (S=0.05) CROSS-PLY
BARREL VAULT
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Figure 5. 57: Axial stress (Sy) of a moderately thick cross-ply Barrel Vault

It is seen from the Figure above, that the prevedaments (all complete

“Lagrangian” type) show an acceptable convergeoesitds the analytical solution for a

moderately thick plate.

The in-plane stress analysis of the Barrel Vaunhthat for thin shell
structures, the range of good convergence parasistezduced considerably. For thick

shells, one observed a consistent convergencedswiae solution. Three Lagrange
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elements: TELM90I, TELM841 and TELM78I, give verpad results. All the serendipity

type elements selected for this analysis perforpoegly.

As expected, the range of a choice for the convexg@arameter is reduced
because of the curvature of the shell. A shellcstme loaded so as to cause bending
creates additional membrane stresses in companigbra plate structure. The
complexity of the nodal rotation (drilling rotatipim shell structures usually produces
instability in the solution. This is probably whatshown in Figure 5.54. All the elements

have a large gradient around the convergence p&aofel /5.

In summary, the proposed elements work very welldminated composites
plate and shell structures. The Lagrange subgrtaupents are excellent for a
displacement study, as well as for in and out ahplstress analysis. The independent
type | basis strain functions performance depemdte kind of problem analyzed, while
the non-linearly dependent elements (type 1l) aoeentonsistent in converging towards
the reference solution. Although shell structureseranalyzed with relatively small
number of elements (sixteen for the Barrel Vautiftg, results were good. The number of
proposed elements for this investigation seems higlas stated before, none exhibited
the type of results or inconsistency which show@deheliminated them earlier. This is
due to the fact that the basis strain functionsddd the variational principle are fully
consistent with the displacement field. To makedeice of element easier for analysts
of structural composite plate and shell structsoee elements are recommended in the

Conclusion for general or selective applications.
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CHAPTER 6
SUMMARY - CONCLUSION AND FUTURE WORK

6.1 Summary and Conclusion

New elements were proposed for the displacemenstess analysis of
laminated composite plates and shells. The elenagatsharacterized by higher order
strain functions which allow for a non-linear vaioa of the transverse strains. This in
turn allows for a more effective representationhaf complex nature of composite
laminates which are non-homogeneous and anisotrA@train-based modified
complementary energy principle is used to implentieaffinite element formulation.

This formulation has the advantage of satisfyimgiari the inter-element compatibility
conditions, the equilibrium within an element ansjppthcement continuity on the
boundary. An isoparametric eight node “serendip#tyape function with five degrees of
freedom per node is used to approximate both tapeshnd the displacement functions.
The proposed higher-order (ifterms) strain functions were chosen to be congiste
with the displacements assumptions, thus allowamgafnon-linear transverse
displacement. Full integration schemes (3x3 and wete used for the Gauss quadrature
numerical integration. As part of the formulatitwp types of higher order strain
functions, characterized by their in-plane basigfions, are proposed (using Pascal’'s
triangle): (1) those with the same in-plane stkasis functions as the “Serendipity”
elements (truncated series of bi-cubic basis fonstfor which the in-plane strain
functions have eight basis components witland ¥ terms missing), and (2) those which
are consistent with the “Lagrange” elements (falies of bi-cubic basis functions with

ten basis components). Note that, the “Lagrange€ lements are better suited for the
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full integration scheme than the serendipity tygdso, two sub-groups of elements
based on the transverse rotations were developese with independent higher order
transverse rotations, (thus having more strainmaters), and those for which the higher
order strain function is associated with the oupiaine rotation.

A total of twenty-three new elements were invesédgtwo elements are based
on first order strain functions and twenty-one aismrporating third order ones). During
the process of this investigation, some elements wkminated on the basis of poor
performance and viability. The usage of the devedoplements was demonstrated by the
analysis of a range of plate and shell problems. @roblems studied had different types
of loading (point, distributed, self weight, sinigal), various boundary conditions
(simply supported, clamped, free, combinationsheske types), various geometry and
thickness dimensions (very thin, thin, moderatbly,tmoderately thick and thick plates
or shells) and material properties (isotropic onilzated composite). It was demonstrated
that the proposed elements are effective and atecurae use of a convergence
parameter allows for more accurate convergencleeo$tlution. The numerical
implementation of the formulations was accomplisttedugh the use of two computer
codes written in MATLAB. All the displacement aness analyses of the samples

problem were carried out using these programs.

Conclusions drawn from the present study in theafiskee proposed elements are

as follows:

1. All elements did not show a shear locking effeatryithe analysis of both

plate and shell problems.
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3.
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The convergence parameter allows for the convesehelement strain
functions. It is truly different from a correctidactor as it does not correct
any simplification made in a formulation. As wagisgits absence can result
in an up to 50% error or difference with the refex@ solution. It was also
noticed that the thicker the plate becomes, thgelathe error when the
convergence parameter is absent.

All the proposed elements performed well withinfpenance criteria. Good
performance was considered to be within 5% errdrextellent within 2%.
The viability criterion in this case is simply bdsen the number of strain
parameters. This of course is linked to the contprtal time for obtaining a
solution. For instance, although element TELM66qgrened well, it was not
consider viable element when compared to the recamdrelements (see
below) since it has more strain parameters thawotiers.

For very thin to moderately thick laminated comp®giate problems, any of
the proposed elements can be used with a convergemameter of 1/3.
Excellent results were obtained using only a maxmad sixteen elements for
a plate and twenty-five for shell analysis, respety. For very thick plates,
only the recommended strain functions elementsldhzriused.

For shell problems, the two proposed first ordenent performed very well
for the Barrel Vault test problem; however only 8 passed the pinched
cylinder test. Therefore, FELM48 is recommend satiopic and thin

composites plate and shell structures.
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6. The elements recommended for any problem are TEL{2602), TELM482
(>2), TELMA48 (3-4) and TELM42 (2-3.5). The quantitybrackets is the

inverse of convergence parameter range.

The results obtained for cylindrical shell type lgeons while being very good for
the displacements, could be improved further iflandrical coordinate system is
employed in the formulation. While it would simplithe problem of cylindrical shell
analysis, it would not allow for an extension of tturrent investigation to study
composite shell intersections. These would be be#edled using Cartesian coordinates.

The Lagrange multiplier introduced in the completaenenergy principle
statement represent an additional displacemert fidle latter contributed greatly to the
accuracy and robustness of the proposed formuldtiafso provided additional
equilibrium constraints needed to achieve the dddavel of accuracy for both the
displacements and stresses. Further, it eliminaedhear locking effect observed in a
displacement formulation. How is the strain fiefdte strain-based MCEP related to the
displacement field used as the Lagrange multipl#s® does one chose a basis function
such that the element remains robust, stable amsbtdaiolate the stability requirements?
Those are questions that were answered duringabel@pment of the proposed
formulation.

For the nineteen failure theories evaluated byMWFE (during a period of
twelve years), none of them, according to the amieé documents of the exercise could,
predict failure stresses within 10% of the measwsteshgths in more than 40% of the test
cases. One reason for this discrepancy is thedbakcurate determination of the state of

stress within composites. The present work malamaibution in that direction. An
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accurate state of stress (and displacement) isssageto obtain accurate results from the
use of a failure theory.

6.2 Suggestion for Future Work

The following are recommendation for extensiontghefpresent work:

a. Extend the analysis to cylindrical shells undeeiinal pressure, by exploring
new ways of integrating the surface (boundary) suesinstead of nodal
integration.

b. Investigate the effectiveness of the present elésrfenlaminated composites
with a large number of layers.

c. Integrate the proposed element formulations witlexsting failure criterion or
with a new criterion which is compatible with thewelements, if necessary.

d. Investigate composite shell intersection problesiagithe present elements.
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APPENDIX A

Example Elasticity Solution for a Composite Cylindrical Shell

The anisotropic material structure in a compasiggerial combined with the
curvature in the geometry offer substantial matheralbcomplexity in finding exact
three-dimensional elasticity solutions for lamimhoglinders. However, the load
condition of a uniformly distributed pressure or thner surface of the cylinder
considerably simplifies the analysis. The presemestigation will provide an exact
analytical solution for anisotropic thick laminateamposite cylinders subjected to
internal pressure loading. The material propesdies geometries are taken from the

work of Onder et al. [112]. The closed-form solatwill be written in Matlab code.

1 Material and mechanical properties

The material is E-glass/Epoxy with the fiber aasim properties given in Table

Al.
Table Al Fiber and resin properties
E (GPa) | ors(MPa) | P (glen?) | & (%)
E-Glass 73.0 2400 2.6 4
Epoxy resin 3.4 50 1.2 6
The mechanical properties of the composite arergim Table A2.
Table A2 Mechanical properties of the composite
— — Y=
E; E> G2 Gos Vi2 = v X4 Yy =4 Xe 7 S
(GPa)| (GPa) | (GPa) | (GPa)| vis 2 | (MPa) | (MPa) | (MPa) ¢ | (MPa)

(MPa)

36.5 | 15.0 6.4 1.6 0.24| 0.2 105( 43 938 106 88
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2 Geometry
A filament wound composite pressure vessel as showigure Al is considered.

Here,r, 6, andz are the radial, tangential and axial coordinates asespectively.

3
Aq’

r
A
|
|
|
I
I

Figure Al Multi-layered E-glass/epoxy pressure gess

Geometry of the sample is shown in Figure A2 (Oredexl. [112]).

Figure A2 Geometry of the specimen.

Dimensions:
L =400 mm t=2.5mm
d =100 mm

3 Analytical solution

Consider a three dimensional model stressed asrshmokigure A3.



221

Figure A3 Three-dimensional elasticity model.

Problems of linear elasticity theory are governgdhoee sets of equations which can
be expressed in terms of cylindrical coordinates,(z) as follows:

Stress equilibrium equations:

00y 1 00,9 00yz 1 _

or + r 060 + 0z + T (Urr 099) + E =0
do,9 1 dogg dog, 2 _

a1 + ~ 28 + py + ~0rg +Fg =0 (A.1)

00rz 1 dogy, 00,5 1
= -0 E =0
ar r 96 + oz + r rz T Iz

Stress-strain relations (constitutive equation)

0ij = Cijki €1 (A.2)

or

&ij = Sijki Okl (A.3)
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Strain-displacement relations (kinematics)

_ Ouy | __ 1(0dug . __ Ouy
e =55 5 g0 = (G0 F ur) 6 = 5

_ 1(10u, Oug_ur) . A4
&ro = 2(r09+6r r) '’ (A.4)

1 (dug 1 6uz) 1 (6ur 6uz)
= - — -—; € = —|— —
€0z 2(az+r60 rz= 5\ tor

where

ojj = stress tensor component

u; = displacement tensor component
&j = strain tensor component

Fi = prescribed body force component
Ci = elastic stiffness coefficient

Sju = elastic compliance coefficient
Here, i,j =r, 6, zand repeated indices imply the use of the summabovention.

An elasticity problem consists of solving the abegeations for the domain
V. Along the boundar¥s, , the surface tractions &re prescribed, and along the
remaining boundary She displacements are specified. The surface tractionsfe
related to the stresses by

gjj nj:Ti (A5)

wheren; are the direction cosines of the surface normal.
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To match a benchmark example, a flament woundsure vessels made ofoft

angle-ply lay ups is studied. Figure 4 shows a nii@ghview of two adjacent layers.

S )
I

)

Figure A4 Enlarged view of the cross section

For a closed-end cylinder, the strain in the 2ation is assumed to be constant,

i.e.,sék)

= g2.

Due to cylindrical orthotropy, axisymmetric loadin and ignoring the
longitudinal bending deformation due to end closutbe current case is reduced to that

of a generalized plain strain problem. Define neaterial constants such as

(10 (1)

Siz Sjz i

Ry =S4 - RG (i.j=r, 6) (A.6)
st .

v = ) (i,j=r, 6) (A7)

Let T be the normal traction acting on the interfaceveen K' and (k+1Y' layers.

Then, the radial, hoop, and longitudinal stressesraspectively :



224

k
o =
(k)-1 (o 9 +1 g(k)—l gk)+1
k r \9I a k r k)\2g(k r
40 |G)"™ () e [ ()™ ey ()™
(A.8)
w0 _
Ogo
gI)-1 40\ 9IO+T r \9-1
4900 |() "+ () | ae | (G)
(k) g(k)+1]
(2900 (2%
(c®)290 (=) (A.9)
o = () () _ (k) Sy
- (SZZ S Opr 66 S(k)) (AlO)

where

Tk=D ()9 +1

(k) —
A 1 — (c®)2g9(k)

(k=1)
o =2
P
() 7%>
(k) _ RT‘T
S YO
00

The displacement components are:

u®(r) = r[R(k) () R(k)ae(’;) + vé’?eg’ I; v® = ; w =Le2  (A11)
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To find the axial straigy, the axial stressz(;‘), is assumed that the axial traction can be

satisfied on the average, i.e.

m ak (k) iny,2
et 27 [ ooy 0gp vdr = m(T™)a (A.12)
whereT" is the internal pressure.

The interface normal traction$'s, are determined by satisfying the contact comulit

of the interfaces

u® = o k+1) at r = a® (A.13)

A MATLAB code was written to implement this elastycsolution.
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APPENDIX B
=== e e
% THIS IS A FINITEELEMENT %
% PROGRAM THAT USES MODIFIED %

% COMPLEMENTARY ENERGYPRICIPLE TO %
% ANALYZE LAMINATED COMPOSTE PLATES %
% WRITTEN BY MARTIN-CLAUDE DOMFANG S.J. %
%

loadINPUT1.DAT -ASCII

fid = fopenOUTPUT1.txt, 'a);

% READ IN AND WRITE OUT THE TYPE OF THE METHOD
IMETH=INPUT1(1,1);

V1=now; % CURRENT DATE
strl=char(datestr(V1)); % TRANSFORM TO STRING

if IMETH==0
fprintf(fid,%\n, ...
‘THIS IS THE DISPLACEMENT METHOD OBTAINED ON );
fprintf(fid,%s%\n,strl);
elseif IMETH==1
fprintf(fid,\n’);
fprintf(fid,%s%\n, THIS IS A TSDT HYBRID METHOD OBTAINED ON 3);
fprintf(fid,%s%\n,strl);
else
fprintf(fid/%s%\n"ERROR IN TYPING THE METHOD)!
end
fprintf(fid,\n\n);

% READ IN AND WRITE OUT THE TYPE OF THE ANALYSIS @ BE DONE
ANTYPE=INPUT1(2,1);

if ANTYPE==
fprintf(fid/%s%\n'THIS IS A MODAL AND STATIC ANALYSIS):;
elseif ANTYPE==1
% fprintf(fid, %s%\n’, THIS IS A STATIC ANAYSIS );
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else
fprintf(fid,%s%\n'ERROR IN TYPING THE ANALYSIS TYPB,
end
% fprintf(fid,"\n\n");%

% READ IN AND WRITE OUT THE TYPE OF STRESS CALCUOAON
ISTRES=INPUT1(4,1);

if ISTRES==0

fprintf(fid,%s,' STRESSES CALCULATED USING DISPLACEMENT METHOR'
elseifISTRES==1

% fprintf(fid, STRESSES CALCULATED USING USBIHYBRID WITH SZZ = 0.0";

elseifISTRES==2

fprintf(fid,%s%\n,'SIX STRESS COMPONENTS CALCULATED USING HYBRIR'
else

fprintf(fid,%s%\n'"ERROR IN TYPING THE STRESSES ANALYSIS TYBE'
end

% READ IN AND WRITE OUT THE NUMBER OF STRESS FUNGINS
NBETA=INPUT1(5,1);

% fprintf(fid, ...

% '%g IS THE NUMBER OF STRESS FUNCTIONS 3rd HSD]TNBETA)

% READ IN AND WRITE OUT THE INTEGRATION SCHEME (Usg GAUS Function)
[INGPX,NGPY,NGPZ,GAUSS,WEIGHT] = GAUS;
% fprintf(fid,\n");%

% READ IN AND WRITE OUT SOME CONSTANTS
NUMLAYER=INPUT1(6,1);
NUMNODE =INPUT1(6,2);
NUMELE =INPUT1(6,3);
NUMDOFPN =INPUT1(6,4);
NUMNODEPE =INPUT1(6,5);
NUMDOFPE =INPUT1(6,6);
NUMDOFSTRUCT=NUMDOFPN*NUMNODE;
%  fprintf(fid, N\UMBER OF LAYERS ARE : %g \n\\WWUMLAYER);
% fprintf(fid, NUMBER OF D.O.F FOR THE STRUTRE IS: %g
\n\n, NUMDOFSTRUCT);

% READ IN AND WRITE OUT THE MATERIAL PROPERTIES
% AND DIRECTION OF EACH LAYER

%INITIALIZATION

PHI =zeros(1,NUMLAYER);
TH =zeros(1,NUMLAYER);
E11 =zeros(1,NUMLAYER);
E22 =zeros(1,NUMLAYER);
NU12 =zeros(1,NUMLAYER);
NU23 =zeros(1,NUMLAYER);
G12 =zeros(1,NUMLAYER);
G23 =zeros(1,NUMLAYER);
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DENS =zeros(1,NUMLAYER);
MATPROP=zeros(NUMLAYER,9);

% fprintf(fid,'%s%\n', 'MATERIAL PROPERTIES:")
% fprintf(fid,\n");%
% fprintf(fid,'%s%\n’, ...
% 'LAYER PHI TH Ell E22 NU12 NB2 G12 G23 DENS)
% fprintf(fid,\n");%
for | = 1:NUMLAYER

% fprintf(fid,\n");%

PHI(l) =INPUT1(6+1,1);

TH(l) =INPUT1(6+,2);

E11(l) =INPUTL(6+l,3);

E22(l) =INPUT1(6+l,4);

NU12(l) =INPUT1(6+l,5);

NU23(l) =INPUT1(6+,6);

G12(l) =INPUT1(6+l,7);

G23(l) =INPUT1(6+1,8);

DENS(l) =INPUT1(6+1,9);

MATPROP(I,:)=[PHI(I) TH(I) E11(l) E22(I) NU1@) NU23(]) ...

G12(I) G23(l) DENS(I)];
% fprintf(fid, ...
% '%2.0f %8.0f %5.2f %9.1E %9.1E %5.2f %5.2f %9%E.E %6.3f\n’, ...
% |, MATPROP(I,:));%
end

% fprintf(fid,\n");%
% fprintf(fid,'’ALPAH IN DEGREE : %g \n', PHL{);

% CALCULATING THE LOCATION OF THE REFERENCE PLANEND
% THE DISTANCE OF EACH LAYER H(LN) TO THE REF. FANE.

%INITIALIZATION
HT =0;
HREF =0;
H =zeros(1,NUMLAYER+1);

for | = 1:NUMLAYER
HT=HT+TH(1,));
H(1,1)=0.5*HT,;

end

for | = 1:NUMLAYER
HREF=HREF+TH(1,l);
H(1+1)=0.5*HT-HREF;

end

% READ SOME INPUT DATA
%  READ(15,*) A,B,Q0

LDR=7+NUMLAYER; % ROW, LOADINGS
A=INPUT1(LDR,1); % LENGTH OF THE PLATE
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B=INPUT1(LDR,2); % WIDTH OF THE PLATE

QO=INPUT1(LDR,3); % INTENSITY OF THE DISTRIBUTED LOAD
Po=INPUT1(LDR,4); % INTENSITY OF THE CONCENTRATED LOAD
LPo=INPUT1(LDR,5); % LOCALIZATION OF THE CONCENTRATED LOAD
NN=zeros(1,NUMNODE);

CORD=zeros(3,NUMNODE);

ICON=zeros(8, NUMELE);

ELR=LDR+NUMNODE+1; % ROW, ELEMENT

NWCLR = ELR+NUMELE;% ROW, NUMB OF NODES WITH CONC LOADS
NNWCL = INPUT1(NWCLR,1)%NUMB OF NODES WITH CONC. LOADS

% fprintf(fid,'%s%\n\n',/NODE NUMBER X-CORD Y-CORD Z-CORD))
% fprintf(fid,\n");%

% READ IN THE COORDINATES AND CONNECTIVITY OF NOD& AND ELEMENETS
for I = 1:NUMNODE
NN()= INPUTL1(LDR+l,1);
CORD(1,))=INPUT1(LDR+l,2);
CORD(2,))=INPUT1(LDR+l,3);
CORD(3,))=INPUTL1(LDR+l,4);
% fprintf(fid,'%6.0f %12.3f %11.3f %12.3(WN(1),CORD(;,1));%
end
% fprintf(fid,\n\n");%
% VERIF1=[NN' CORD

% fprintf(fid,'%s%\n’, ...
% 'ELEMENT NUMBER N1 N2 N3 N4 5N N6 N7 N8)
% fprintf(fid,\n");%

for | = 1:NUMELE
ICON(1,)=INPUT1(ELR+I-1,1);
ICON(2,)=INPUT1(ELR+I-1,2);
ICON(3,)=INPUT1(ELR+I-1,3);
ICON(4,)=INPUT1(ELR+I-1,4);
ICON(5,)=INPUT1(ELR+I-1,5);
ICON(6,1)=INPUT1(ELR+I-1,6);
ICON(7,)=INPUT1(ELR+I-1,7);
ICON(8,)=INPUT1(ELR+I-1,8);
% fprintf(fid, ...
% '%38.0f %9.0f %5.0f %5.0f %5.0f %5.0f %5%56.0f %5.0f \n', ...
% NN(I),ICON(:,1));%
end

% END OF INPUT DATA
Qff) —mmmmmemmm e mmmmmmmmnmm e m e mmnn

% PRINT OUT THE ENTERIES FOR THE S AND C MATRIX

% PRNT_MATMTX(NUMLAYER,E11,E22,NU12,NU23,R1G23,PHI);
% fprintf(fid,\n");%

% PRINT OUT THE NODE COORDINATE FOR EACH ELEMENT

% PRNT_COORD(NUMELE,ICON,CORD);



% fprintf(fid,\n");%

% COMPUTE THE CONSISTANT FORCES WITH
% FULL INTEGRATION SCHEME IS PERFORMED

FORC=zeros(1,NUMDOFSTRUCT);
EFORC_ELT=zeros(NUMDOFPE,NUMELE);
for EN=1:NUMELE
EFORC=zeros(1,NUMDOFPE);

% CALL GLOBAL COORDINATES
[XC,YC,ZC] =GCOORD(EN,ICON,CORD);

for NX=1:3
for NY=1:3

XSI=GAUSS(NX,3);

WX=WEIGHT(NX,3);
ETA=GAUSS(NY,3);
WY=WEIGHT(NY,3);

% CALL SHAPE FUNCTION

[SF,SFXI,SFET,XIDX,XIDY,ETDX,ETDY,X,Y,JACE SHAP(XSIETA,XC,YC);

% CALL THE STRETCHING PART OF THE "B" MARIX
SHMS = BSRMAS(SF);

WC=WX*WY*JAC,

% CALL SINUSIDOIDAL FORCE
EFORC = SINUF1(NUMDOFPE,SHMS,EFORC,WC,2QR);
% EFORC = SINUF2(NUMDOFPE,SHMS,EFORC,WC,X,Y,A,B )0
% CALL DISTRIBUTED FORCES
% EFORC = DISTF(NUMDOFPE,SHMS,EFORC,WC,Q0);

for LN=1:NUMLAYER % BEGIN LOOP FOR NUMBER OF LAYERS

%
for NZ=1:2
ZTA=GAUSS(NZ,2);
WZ=WEIGHT(NZ,2);
W=WX*WY*WZ*JAC*TH(LN)/2;
Z=0.5*(H(LN)+H(LN+1)+ZTA*(H(LN+1)H(LN)));

% CALL THE BENDING PART OF THE "BMATRIX
SHMS = BBNMAS(SHMS,2);

end
end
end
end
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EFORC_ELT(:;,EN)=EFORC(.);

%  CALL ASEMBLE FUNCTION
FORC = ASEMBF(EN,NUMNODEPE,NUMDOFPN,EFORC,ICEDRC);

end
DISTFORC=FORC;
EFORC _ELT;

% ADDING CONCENTRATED FORCES TO DISTRIBUTED FORCES
CONCFORC=FORC;
CONCFORC(1,LP0)=FORC(1,LP0)+Po;

% NUMBER OF FIXED NODES

FIXNR = NWCLR+NNWCL+1;, % ROW NUMBER OF FIXED NODES
NFIXN = INPUT1(FIXNR,1); % NUMBER OF FIXED NODES

BCDOF=BOUNDARYDOF(NFIXN);

% BEGIN LOOP FOR STRAIN FUNCTIONS

%STR_FCT=[42 45 51 54 57 60 66 72 78 84 90];
STR_FCT=6070[42 48];
% STR_FCT=[30 36 42 48 54 60];

% NUMBER OF TEST FUNCTION NTF
NTF=length(STR_FCT);

fprintf(fid, ...

TELM: -1/az= 1 2 3 4 5 8 10V

%,Daz(3),Daz(4),Daz(5),Daz(6),Daz(7),Daz(8)
fprintf(fid,\nY);%

for INB=1:NTF

% NUMBER OF UNKNOW BETAS FOR EACH STRAIN FUNCTION
NBETA=STR_FCT(INB);
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aZ=0;
% Daz=-[1 2 3 4 58 10];
% Daz=-20 ;

Daz=[1.0 1.5)6 2.03.04.5 7.0 10
WS=length(Daz);

Matrix_W=zeros(1,WS);
NORLDSIG1=zeros(1,WS);
NORLDSIG2=zeros(1,WS);
NORLDSIG4=zeros(1,WS);
NORLDSIG11=zeros(WS,9);
NORLDSIG13=zeros(WS,9);
NORSIGM13 1 2=zeros(WS,9);

for Iz = 1:WS

HM=zeros(NBETA,NBETA,NUMELE);
InvHM=zeros(NBETA,NBETA,NUMELE);
HM_L_E=zeros(NBETA,NBETA,NUMELE,NUMLAYER);
GM=zeros(NBETA,40,NUMELE);
GM_L_E=zeros(NBETA,40,NUMELE,NUMLAYER);
BIGK =zeros(NUMDOFSTRUCT,NUMDOFSTRUCT);
NB=NBETA,

aZ=Daz(lz);

for EN=1:NUMELE % BEGIN LOOP FOR NUMBER OF ELEMENTS

% INITIALIZE THE ELEMENT STIFFNESS MATRIX
BMTX=zeros(6,40);

% CALL THE COORDINATES OF THE ELEMENT
[XC,YC,ZC] =GCOORD(EN,ICON,CORD);

% EXTRACT CONNECTED NODE VECTOR FOR (EN)-TH ELEMENT
NOD=zeros(1,NUMNODEPE);
for I=1:NUMNODEPE
NOD()=ICON(I,EN);
end
% B1=0

% START THE INTEGRATION (XSI AND EAT SUMMATIONS)
for NX=1:NGPX
% NX

for NY=1:NGPY
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% NY

XSI=GAUSS(NX,NGPX);

WX=WEIGHT(NX,NGPX);
ETA=GAUSS(NY,NGPY);
WY=WEIGHT(NY,NGPY);

% CALL THE 2-D SHAPE FUNCTION
[SF,SFEXI,SFET,XIDX,XIDY,ETDX,ETDY,X,Y,JAC]= SHAP(XSILETA,XC,YC);

%

% VERELXEZ1=[EN XSI ETA];
% display(’ 9;

% display(ELT ~ XSI  ETAY;

% display(num2str(VERELXEZ1));

% ADDING THE STRETCHING PART OF THE B MATRIX
[BMTX] = BSRMTX(SF,SFXI,SFET,XIDX,XIDY,ETDX,HDY,BMTX);
% BMTX;

% FORM THE 'B', 'H' AND 'G' MATRICES FOR EACH LAYEE

for LN=1:NUMLAYER % BEGIN LOOP FOR NUMBER OF LAYERS
% LN
[S,C] = MATMTX2(NUMLAYER,E11,E22,NU12,NU2&12,G23,PHI);
[CMOD, SMOD] = MODMAT(NUMLAYER,C,S)% REDUCED THE SIZEOF C & S

for NZ=1:NGPZ
% NZ
% B1=B1+1
ZTA=GAUSS(NZ,NGP2);
WZ=WEIGHT(NZ,NGPZ);
W=WX*WY*WZ*JAC*TH(LN)/2;
% DISPLAY1=[EN LN JAC W]

Z=0.5*(H(LN)+H(LN+1)+ZTA*(H(LN+1)-H(LN)));

%  WRITE(27,%) 'ELT =EN,'LAY =',LN,'XSI'XSIETA="ETA, ZTA="ZTA,
% VERELXEZ=[EN LN XSI ETA ZTA X Y E

% display(’ 9;

% display('ELT LAY XSl ETA ZTA X Y Z");
% display(num2str(VERELXEZ));

o

% ADD THE BENDING PART OF THE B MATRIX
BMTX = BBN3MTX1(BMTX,Z,aZ);

if NBETA == 30

P = NP3MTX30422(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 36

P = NP3MTX36SN(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 42



%

P = NP3MTX42LN542(C,X,Y,Z,aZ,Li); %2
% P =NP3MTX42SL60(C,X,Y,Z,aZ,LN,H);
%P = P3AMTX422(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 45
P = P3MTX45(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 48
P = P3MTX48(C,X,Y,Z,aZ,LN,H);
% P = NP3MTX48LL66(C,X,Y,Z,aZ,LN,H); % 2
P = NP3MTX48SS72(C,X,Y,Z,aZ,LN;H)
elseif NBETA == 51
P=P3MTX51(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 54
% P=P3MTX54(C,X,Y,Z,aZ,LN,H);
% P=P3MTX542(C,X,Y,Z,aZ,LN,H);
P=NP3MTX54LN78(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 57
P=P3MTX57(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 60
% P=P3MTX602(C,X,Y,Z,aZ,LN,H);
% P=P3MTX60(C,X,Y,Z,aZ,LN,H);
P=NP3MTX60LL90(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 66
P=P3MTX66(C,X,Y,Z,aZ,LN,H);
elseifNBETA==72
P=P3MTX72(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 78
P=P3MTX78(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 84
P=P3MTX84(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 90
P=P3MTX90(C,X,Y,Z,aZ,LN,H);
else
fprintf(fid,..
'%s%\n'ERROR IN THE NUMBER OF STRESS PARAMENTERS'
end

% REDUCE THE SIZE OF B AND P MATRICES SO THAT THEERO ENTERIES
% WON'T MAKE THE MATRICES SINGULAR MPT=TRANSPOSEROMP
[MBMTX,MPT] = MODBMXHYB(BMTX,P);

% CALCULATE THE MODIFIED VERSION OF G MATRIX
GM = MODGMTX(MBMTX,MPT,EN,W,NBETA,GM)%

% CALCULATE ONE ENTRY OF THE 'H' MATRIX FOR 5 STRESES
HM = HMTX2(EN,LN,SMOD,W,MPT,NBETA,HM);

end % END LOOP ON NZ-INTEGRATION
end % END LOOP ON NUMBER OF LAYER
end % END LOOP ON NY-INTEGRATION
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end % END LOOP ON NX-INTEGRATION
% PUT HM IN S SQUARE MATRIX FORMFOR THE INVERSE
HHM=zeros(NBETA,NBETA);
for LL=1:NBETA
for JJ=1:NBETA
HHM(LL,JJ)=HM(LL,JJ,EN);
end
end

% COMPUTE THE INVERSE OF HHM = HI
HI=NEWINV(NBETA,HHM);

for LL=1:NBETA
for JJ=1:NBETA
HM(LL,JJ,EN)=HI(LL,JJ);
% InvHM(LL,JJ,EN)=HI(LL,JJ);
end
end

% COMPUTES THE ELEMENT SFIFFNESS MATRIX FOR HYBRIBTRESS
EKM = ELMKMXHYB(HM,GM,NBETA,NUMDOFPE,EN);
%  SIZE_EKM=size(EKM)

% EXTRACT SYSTEM DOFS ASSOCIATED WITH ELEMENT
[EDOFIND]=ELDOFAS(NOD,NUMNODEPE,NUMDOFPN) [1x40]

% ASSEMBLY OF ELEMENT MATRICES INTO THE SYSTEM MATK
[BIGK]=ASMBLBIGK(BIGK,EKM,EDOFIND);%

end % END LOOP FOR NUMBER OF ELEMENTS

FORCES = DISTFORC% JUST PUT POINT LOAD=0

% APPLY THE BOUNDARY CONDITIONS
BCVAL =zeros(1,NUMDOFSTRUCT);
[BIGKM,FORCM]=APLYBCS(BIGK,FORCES,BCDOF,BCVAL);

% SOLVE FOR A SET OF LINEAR EQUATIONS WITH PIVONIG AND SCALING
DISP = ELIM(NUMDOFSTRUCT,BIGKM,FORCM,NUMDOFSTROT+1)'% SAME AS
MATLAB

% PRINT THE FIXED DISPLACEMENTS
% PRNT_FIXDOF(NUMNODE,NUMDOFPN)

% PRINT THE DISPL. CALL
PRDISP(NUMDOFSTRUCT,NUMNODE,NUMDOFPN,DISP)
% DISPMTX=PRDISP(NUMNODE,NUMDOFPN,DISP);
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% PRINT THE DISPL AT NODE 33. CALL
PRDISP(NUMDOFSTRUCT,NUMNODE,NUMDOFPN,DISP)

% PRNT_DISP33=PRDISP33(NUMNODE,NUMDOFPN,DISP);
% PRNT_DISP65=PRDISYMP65(NUMNODE,NUMDOFPNJP);

% PRNT_DISP_STRIP17=PRDISTRIP117(NUMNODEMDOFPN,DISP);

% PRNT_DISP_STRIP11=PRDISTRIP1B11(NUMNODE,NUMDOFBKP);
% NW=PRDISTRIP1B11_Simple_Mtx(NUMNODE,NUMDOFPN,[RH

% PRNT_DISP_CP4A21=PRDISTCP4A21(NUMNODE,NUMDOFPNB);
% PRNT_DISP_CP4A21=PRDISTCP4A21_SIMPLE(NUMDEONUMDOFPN,DISP);

% PRNT_DISP_CP4B33=PRDISTCP4B33(NUMNODE,NUMDOFPI$P);
% PRNT_DISP_CP4B33=PRDISTCP4B33_SIMPLE(NUMNODEMDOFPN,DISP);
% NW=PRDISTCP4B33_SIMPLE_M(NUMNODE,NUMBP®N,DISP);

DW=100*E22(1)*HT"3/(Q0*AM);

NW= DW*DISP(83);
Matrix_W(Iz)=NW,

% PRINT THE DISPL AT NODE 33 and its surrounding

% PRNT_DISP33Plus=PRDISP33Plus(NUMNODE,NURFEPN,DISP);
% PRNT_DISP33Plus=PRDISP52933(NUMNODE,NUMDOFPN,DISP
% endif % END FOR DISPLACEMENT METHOD LOOP

% THE BETAS ARE FOUND FOR EACH ELT
BETA =zeros(NBETA,NUMELE);
for EN=1:NUMELE
BETA =
BETAS(NBETA,NUMDOFPE,NUMNODEPE,NUMDOFPN,EN,ICON,HK@M,BETA,DISP);
end

% PRINT THE LOCATION OF THE POINT WITHIN THE ELEMEN
% fprintf(fid,\n");%
% fprintf(fid,'%s%\n','% ELEMENT  POINFOSITIONY);
% fprintf(fid,\n");%
% fprintf(fid,'%6.0f %18.3f \n', ELPT(1),AT(3));%
% fprintf(fid,\n");%
%
% fprintf(fid,'%s%\n’, ...
%'%X Y Z SXX SYY SZzZ XS SYz SXZY;
% fprintf(fid,\n");%

NGPZ=3;
SIGMAMTX=zeros(NGPZ,7, NUMELE,NUMLAYER,NGPXXGPY);
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for EN=1:NUMELE
% fprintf(fid,\n\n");%
% PRNT_ELEMENT_COORD(EN,ICON,CORD);

BMTX=zeros(6,40);

% CALL THE COORDINATES OF THE ELEMENT
[XC,YC,ZC] =GCOORD(EN,ICON,CORD);

for LN=1:NUMLAYER

% fprintf(fid,\n");%

% fprintf(fid,'%s%\n',)ELEMENT LAYER LAYER POSITION');
% fprintf(fid,\n");%

% fprintf(fid,'%4.0f %9.0f %15.3f \n', ENN,H(LN));%

% fprintf(fid,\n");%

%

% fprintf(fid,'%s%\n’, ...

%'X Y Z SXX SYY SZz SX  SYZ SXZY;
% fprintf(fid,\n");%

XYP=0;

for NX=1:NGPX
for NY=1:NGPY

XYP=XYP+1,

XSI=GAUSS(NX,NGPX);
ETA=GAUSS(NY,NGPY);

%  CALL THE SHAPE FUNCTION

[SF,SFEXI,SFET, XIDX,XIDY,ETDX,ETDY,X,Y,JAC]=SHAP(XSI,ETA,XC,YC);
% CALL THE STRETCHING PART OF THE "B" MARIX

[BMTX] = BSRMTX(SF,SFXI,SFET,XIDX,XIDY,ETDXETDY,BMTX);

%INITIALIZE THE NUMBER OF Z WITHIN THE TOTAL THICKNESS
NZP=0;

%INITIALIZE THE STRESSES WITHIN LAYER LN
SIGNZP=zeros(NGPZ,7);

for NZ=1:NGPZ

% THE NUMBER OF Z WITHIN THE TOTAL THICKNESS
NZP=NZP+1,

ZTA=GAUSS(NZ,NGPZ);
Z=0.5*(H(LN)+H(LN+1)+ZTA*(H(LN+1)-H(LN)));



VCORD=[X Y Z];

%

%

CALL THE BENDING PART OF THE "B" MATRIX
BMTX = BBN3MTX1(BMTX,Z,aZ);

if NBETA == 30
P = NP3MTX30422(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 36
P = NP3MTX36SN(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 42
P = NP3MTX42LN542(C,X,Y,Z,aZ,LN); %2
% P = NP3MTX42SL60(C,X,Y,Z,aZ,LN,H);
%P = P3MTX422(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 45
P = P3MTX45(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 48
P = P3MTX48(C,X,Y,Z,aZ,LN,H);
% P =NP3MTX48LL66(C,X,Y,Z,aZ,LN,H); %2
P = NP3MTX48SS72(C,X,Y,Z,aZ,LN;H)
elseifNBETA == 51
P=P3MTX51(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 54
% P=P3MTX54(C,X,Y,Z,aZ,LN,H);
% P=P3MTX542(C,X,Y,Z,aZ,LN,H);
P=NP3MTX54LN78(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 57
P=P3MTX57(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 60
% P=P3MTX602(C,X,Y,Z,aZ,LN,H);
% P=P3MTX60(C,X,Y,Z,aZ,LN,H);
P=NP3MTX60LL90(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 66
P=P3MTX66(C,X,Y,Z,aZ,LN,H);
elseifNBETA==72
P=P3MTX72(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 78
P=P3MTX78(C,X,Y,Z,aZ,LN,H);
elseif NBETA == 84
P=P3MTX84(C,X,Y,Z,aZ,LN,H);
elseifNBETA == 90
P=P3MTX90(C,X,Y,Z,aZ,LN,H);
else
fprintf(fid,..
'%s%\n'ERROR IN THE NUMBER OF STRESS PARAMENTERS'
end

% REDUCE THE SIZE OF B AND P MATRICES SO THAT THEERO ENTERIES

% WON'T MAKE THE MATRICES SINGULAR MPT=TRANSPOSEROMP
[MBMTX,MPT] = MODBMXHYB(BMTX,P);
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SXX=0.0;
SYY=0.0;
SZ77=0.0;
SXY=0.0;
SYZ=0.0;
SXZ=0.0;
X1=X;
Y1=Y;
Z1=7;

if ISTRES ==

for J=1:NBETA
SXX=SXX+MPT(J,1)*BETA(NG;
SYY=SYY+MPT(J,2)*BETA(ING;
% SZZ=SZZ+MPT(J,3)*BETA(J,EN);
SXY=SXY+MPT(J,3)*BETA(NE;
SYZ=SYZ+MPT(J,4)*BETA(NE
SXZ=SXZ+MPT(J,5)*BETA(NE
end

SHOW=[X1 Y1 Z1 SXX SYY SZZ SXY SYZ SXZ];
CALSIG=[X1 Y1 Z1 SXX SYY SYZ SXZ];  %SHOW;
SIGNZP(NZP,:)=CALSIG(1,);

% FORM THE MATRIX OF ALL STRESSES AND THEIR POSITIO
SIGMAMTX(:,;,EN,LN,XYP)=SIGNZP(:,.);

% % LOCATION WHERE TO COMPUTE THE STRESSES

% % ELPT=[6,1,9];

% fprintf(fid, ...

%  '%1.2f %5.2f %6.3f %10.2E %10.2E %2.0f %10%E0.2E %10.2E\n',SHOW);%
% end

elseifISTRES ==

for J=1:NBETA
SXX=SXX+P(1,J)*BETA(J,EN)
SYY=SYY+P(2,J)*BETA(J,EN)
SZ7=S7ZZ+P(3,J)*BETA(J,EN)
SXY=SXY+P(4,J)*BETA(J,EN)
SYZ=SYZ+P(5,J)*BETA(J,EN)
SXZ=SXZ+P(6,J)*BETA(J,EN)

end

%  fid = fopen(OUTPUT1.txt','a");
SHOW=[X1 Y1 Z1 SXX SYY SZZ SXY SYZ SXZ];

% fprintf(fid, ...
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%  '%1.2f %5.2f 9%5.2f %10.2E %10.2E %2.0f %1092E0.2E %10.2E\n',SHOW);%
% fclose(fid);% Close the OUTPUIE f

else
fprintf(fid,\n");%
fprintf(fid,%s%\n'INCORRECT TYPE OF TYPE OF STRE$S'
fprintf(fid,\n");%

end

end % END LOOP ON NZ-INTEGRATION
end % END LOOP ON NY-INTEGRATION
end % END LOOP ON NX-INTEGRATION
end % END LOOP ON LAYER
end % END LOOP ON ELEMENT

% end % END LOOP FOR HYBRID METHOD

% LOCATION WHERE TO COMPUTE THE STRESSES

% CALSIG=NZP * [X1 Y1 Z1 SXX SYY SXY];

% SIGM11_5_14=SIGMAMTX(;4,5,:,14);

% SIGM11 5 15=SIGMAMTX(;4,5,:,15);
SIGM13_1_1_1=SIGMAMTX(1,7,1,1,2);
SIGM13_1_1_2=SIGMAMTX(2,7,1,1,2);
SIGM13_1_1_3=SIGMAMTX(3,7,1,1,2);
SIGM13_1_2_1=SIGMAMTX(1,7,1,2,2);
SIGM13_1_2 2=SIGMAMTX(2,7,1,2,2);
SIGM13_1_2 3=SIGMAMTX(3,7,1,2,2);
SIGM13_1_3_1=SIGMAMTX(1,7,1,3,2);
SIGM13_1_3 2=SIGMAMTX(2,7,1,3,2);
SIGM13_1_3 3=SIGMAMTX(3,7,1,3,2);

SIGM13_1_2=[SIGM13_1 1 1 SIGM13_1_1 2 SIGM13L13...
SIGM13_1 2 1 SIGM13 1 2 2SIGM13 1 2.3
SIGM13_1_3 1 SIGM13_1_3 2 SIGM13_1_3_3];

% COMPUTE THE STRESS SIGMA2

% EXTRAPOLATION SCHEME

% SIGMA11_LN = SIGMA11l_CASE2SS(SIGMAMTX,NGPZ NGPNGPY)
% SIGMA13_LN = SIGMA13_CASE2SS(SIGMAMTX,NGPZ,NGPNGPY);

% XSIGMAL_CASE4B = SIGMA1_CASE4B(SIGMAMTX,NGPX,N&Y,2,ZP,YP, XP);
% XSIGMA2_CASE4B = SIGMA2_CASE4B(SIGMAMTX,NGPX,N®&Y,1,0.5,YP,XP);
% XSIGMA4_CASE4B = SIGMA4_CASE4B(SIGMAMTX,NGPX,N®,LN,0,0,0);

%

% NORLDSIG11(1z,))=(1/Q0)*SIGMA11_LN(1,:);

% NORLDSIG13(1z,))=(1/Q0)*SIGMA13_LN(1,)
NORSIGM13_1_2(Iz,))=(1/Q0)*SIGM13_1_2(1,:);
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% NORLDSIG2(I2)=0.1*XSIGMA2_CASE4B;
% NORLDSIG4(Iz)=XSIGMA4_CASE4B;

% % CASE 4A SYMMETRIC

% XSIGMA1_CASE4A = SIGMA1_CASE4A(SIGMAMTX,NGPX,NBY,2,ZP,YP,XP);
% XSIGMA2_CASE4A = SIGMA2_CASE4A(SIGMAMTX,NGPX,NBY,1,0.5,YP,XP);
% XSIGMA4_CASE4A = SIGMA4_CASE4A(SIGMAMTX,NGPX,NBY,LN,0,0,0);

%

% fprintf(fid,\n');%

% fprintf(fid, 'NORMALIZED SIGMAL : %g '0.1*XSIGMA1_CASE4A)

% fprintf(fid,"\n");%

% fprintf(fid, 'NORMALIZED SIGMA2 : %g,'0.1*XSIGMA2_CASE4A)
% fprintf(fid,\n');%
% fprintf(fid, 'NORMALIZED SIGMA4 : %g, XSIGMA4_CASE4A)

% fprintf(fid,\n");%

%  fprintf(fid,'%s%\n’, ...

b emmmemmmemeomeeoe e e );
%  fprintf(fid,\n");%

end % END OF WEIGHING COEF LOOP
% NORLDSIG11

% fprintf(fid,...
%'CL%g: l/laz= 1 3 4 5 68 10 100\n', NBETA);

% PRDISPLACMT_VECTOR(Matrix_W,WS,NBETA);

% PRNTSIGMA11_MTX(NORLDSIG11,WS,NBETA,Daz);
% PRNTSIGMA11 MTX(NORLDSIG13,WS,NBETA,Daz);
PRNTSIGMA11_MTX(NORSIGM13 1 2 WS,NBETA,Daz);
% PRDISTCP4B33_MATRIX(Matrix_W,WS);

% PRNTSIGMA1_VECTOR(NORLDSIG1,WS);

% PRNTSIGMA2_VECTOR(NORLDSIG2,WS);

% PRNTSIGMA4_VECTOR(NORLDSIG4,WS);

%  fprintf(fid,\n");%

end % END OF STRAIN FUNCT LOOP

fclose(fid)% Close the OUTPUT file
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