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ABSTRACT

POSITIONS IN THE GLUN2C-CONTAINING NMDAR REGULATE

ALCOHOL SENSITIVITY AND ION CHANNEL GATING

MAN WU

Marquette University, 2014

The N-methyl-D-aspartate (NMDA) receptor, a subtype of glutamate-gated ion
channel, has been shown to be a major target of ethanol in the central nervous
system (CNS). Previous studies have identified positions in the third and fourth
membrane-associated (M) domains of the NMDAR GIuN1 and GIuN2A
subunits that influence ethanol sensitivity. Among the alcohol sensitive sites, a
methionine residue is highly conserved in all GIluN1 and GIuN2 subunits. We
proposed the methionine position (Met-821) in the M4 domain of the GIuN2C
subunit can regulate ethanol sensitivity and ion channel gating.

14 mutations were made at the methionine position, 7 substitutions yielded
functional receptors, which can influence ethanol sensitivity, glutamate potency
and desensitization compared to wild type NMDAR containing GIuN2C subunit.
The other 7 mutations showed small spontaneous currents with apparent
ethanol inhibition.

The predicted structure of the NMDAR indicates that alcohol sensitive positions
in the M3-M4 intersubunit interfaces between the two subunit types interactively
regulate ethanol sensitivity and ion channel gating. We proposed that the Met-
821 position interact with the Gly-638 or Phe-639 position in the GIuN1 M3
domain to regulate ethanol sensitivity and ion channel gating. Dual tryptophan
mutants G638W/M821W and F639W/M821W showed small spontaneous
currents with apparent ethanol inhibition. To test the interaction between these
two pairs of positions, cysteine mutations were made at Gly-638, Phe-639, and
Met-821. Dual cysteine mutants G638C/M821C and F639C/M821C yielded
functional receptors. G638C/M821C showed significant interaction with respect
to ethanol inhibition, suggesting these pair of positions interactively regulate
ethanol sensitivity and ion channel gating.



DTT reducing experiments showed DTT-potentiated currents and increased
deactivation time constant Tau in the dual cysteine mutant G638C/M821C.

In the present studies, we showed that the Met-821 position involved in
regulating ethanol sensitivity and ion channel gating. We also showed Gly-638
and Met-821 positions in the M3-M4 intersubunit interfaces between GluN1 and
GIuN2C subunits interactively regulate ethanol sensitivity. The results we
observed from GIuN2C-containing NMDAR are different from the previous
discoveries in the NMDAR containing GIuN2A subunit. The difference may
mainly lies in the sequence difference between GIuN2A and GIuN2C M4
domains and small hydrophobic environment formed near the methionine
position.
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Chapter 1. Introduction

The NMDA receptor: a general introduction

The N-methyl-D-aspartate (NMDA) receptor, belonging to the ionotropic
glutamate receptor family, is highly expressed in the central nervous system
(CNS)[2, 3]. The NMDARs are sensitive to the specific agonist N-methyl-D-
aspartate (NMDA)[4, 5], which distinguishes NMDARs from other L-glutamate-
activated receptors (AMPA, kainite, and delta)[6]. As one of the most important
neurotransmitter-activated ion channels in the brain, NMDAR plays critical roles
in multiple aspects of brain function, including generating rhythms for breathing
and locomotion activities, controlling synaptic plasticity underlying learning and
memory processes, and regulating higher cognitive brain functions, such as

cognition, attention, and fear[7-10].

NMDA receptor development and distribution

NMDARs are heterotetramers[1, 11-13], and functional receptors are
assembled from two GIuN1 subunits with either two GIUN2 subunits or a
combination of GIuN2 and GIuN3 subunits[14-16]. The GIuN1 subunit, as the
key element of tetrameric NMDARSs, is present and widespread from an early
developmental stage[17-19]. In contrast, GIuN2 subunits show distinct

expression patterns during the developmental process. In the rat CNS, only



GIuN2B and GIuN2D subunits are expressed during the prenatal stage, but
shortly after birth, GIuN2A and GIuN2C subunits quickly predominate while the
GIuN2B and GIuN2D subunits decline to adult levels, resulting in a limited
distribution[20]. GIUN2B expression levels peak in the hippocampus and cortex
during the third postnatal week and then decline to the low adult levels, while
GIuN2A expression continues to increase in the hippocampus and cortex, and
peak throughout the brain during the third postnatal week before declining to
adult levels[21-24]. GIuUN2C expression is very low in the cerebellum and
forebrain at P7, but dramatically increases in the cerebellum at P12, where its
expression peaks throughout granule cells during the third postnatal week and
where it continuous to be expressed at high levels in the adult as the
predominant subunit[23, 25]. In summary, the GIuN1 and GIuN2A subunits are
ubiquitous in the adult brain; the GIuN2B subunit is mainly in the forebrain; the
GIuN2C subunit predominates in the cerebellum and various select nuclei; and

the GIuN2D subunit is limited to the diencephalon and the midbrain[20, 25-28].

NMDA receptor physiology

The NMDARs are integral membrane proteins formed by four subunits, at least
two GIuN1 subunits with either two GIuN2 subunits or a combination of GIuN2
and GIuN3 subunits[14-16]. Each individual subunit contains four distinct
domains: the extracellular amino-terminal domain (ATD), which is involved in

subunit assembly, trafficking and modulation; the ligand-binding domain (LBD),



which participates in agonist or competitive antagonist binding and channel
activation; the membrane-associated domains (MD), which form the
membrane-spanning part of the receptor, and an intracellular carboxyl-terminal
domain (CTD), which is mainly responsible for receptor localization and
signaling regulation. Although each GIuN subunit shares highly homologous
sequence and architecture, NMDAR kinetics, regulation, and interaction with
multiple intracellular proteins varies depending upon subunit composition[28,
29]. First, at resting membrane potentials, most subtypes of NMDARs undergo
rapid channel block by extracellular Mg?*, which is only relieved with
simultaneous depolarization and synaptic release of glutamate[30-32].
GluN2C—containing NMDARs are ~ 10 fold less sensitive to Mg?* block
compared to receptors containing GIuN2A and GIuN2B NMDARs[14, 33].
Second, NMDARs are highly permeable to both monovalent cations and Ca?*
ions. NMDAR activation results in an influx of Ca?* as well as the influx of Na*
and efflux of K*[34-37]. Ca2+ entry has been demonstrated to be the key trigger
for many important physiological activities including long-term potentiation (LTP)
[7, 38, 39]and long-term depression (LTD)[40-42], where the relative magnitude
of the rise in intracellular Ca2+ concentration and its temporal and spatial
character determines which type of synaptic plasticity is induced[43-46]. Third,
NMDAR activation requires coincident binding of both glutamate and the co-
agonist glycine[47, 48]. Glutamate is the endogenous agonist of GIuN2

subunits[49, 50], while glycine and D-serine act as the agonist at the GIuN1



subunit[51, 52]. In addition to glutamate, D- and L-aspartate are also
endogenous agonists for the GIuN2 subunits[53-56]. The GIuN2 subunits show
various glutamate potencies and efficacies. The GIuUN2A and GIuN2B subunits
have lower potency compared to the GIuN2C and GIuN2D subunits[14, 57, 58],
but higher efficacy as indicated by higher open probability (P,) during the time
when the receptor is fully occupied by agonist (intraburst P,). Fourth, NMDAR
desensitization is defined as a reduced response in the sustained presence of
agonist. There are at least three different processes of NMDAR apparent
desensitization: true desensitization, in which NMDAR responses are
diminished in the continued presence of glutamate in a time-dependent
manner[28, 59]; glycine-dependent apparent desensitization, in which binding
of glutamate decreases the affinity for glycine, so that NMDAR responses
decay in the presence of low concentrations of glycine[60, 61]; calcium
inactivation, in which intracellular Ca?* causes a decay in NMDAR-mediated
current through an interaction with the GIuN1 subunit cytoplasmic domain[61-
63]. All forms of apparent and real desensitization are prominent in GIUN2A-
containing NMDARSs, but are not observable in GIluN2C-containing NMDARs[14,
64-66]. Fifth, NMDAR deactivation contributes to the EPSC time course and is
also dependent on subunit composition. The time constants of deactivation in
NMDARs containing GIuN2C or GIuN2D subunits are much higher than those

in GIuN2A- and GIuN2B- containing NMDARSs.



The NMDA receptor pharmacology

The complicated architecture of the NMDAR provides agonists and antagonists
with several distinct binding sites. The glycine binding site in the GluN1 subunit
ligand-binding domain (LBD) is activated by glycine or D-serine, and blocked
by antagonists such as 7-chlorokynurenic acid and its analog 5,7-
dichlorokynurenic acid (5,7-DCKA)[67-69]. Glutamate, NMDA, aspartate, and
other agonists activate the glutamate binding site in GIuN2 subunits and the
classical competitive antagonists of this site are (R)-2-amino-5-
phosphonopentanoate (AP5 or APV)and its analogs, such as AP7[47].
Extracellular Mg?* blocks the NMDAR channel pore at negative membrane
potentials. Other open channel blockers, such as MK-801 and ketamine, block
the ion channel in a manner that is not voltage-dependent, although recovery
from block is accelerated by the outward movement of ions at positive
membrane potentials[70]. Zinc inhibits NMDAR via dual actions: at millimolar
concentrations, it produces ion channel block[71], and at nanomolar
concentrations, it binds to the GIUN2A ATD[72-74] of GIluN2A-containing
NMDAR to cause a rapid decay in current[75, 76]. Polyamines such as
spermine and spermidine can inhibit or potentiate the NDMARs activities, at
high and low concentrations respectively. At low micromolar concentrations,
polyamines promote channel opening and at high concentrations, they block

the channel[77-79].



The NMDA receptor and alcohol addiction

Ethanol is one of the most widely abused drugs in the world. Chronic alcohol
exposure can cause multiple aspects of changes in brain morphology, function
and behavior. Studies have shown that alcohol addiction not only can cause
brain shrinkage and loss of neurons, but is associated with aberrant learning
and memory processes[80-83]. It acts on multiple target proteins in the central
nervous system at high millimolar concentrations[2, 3]. Among those targets,
the NMDARs play a crucial role for the inhibitory effect of ethanol in the
brain[84-90]. One of the earliest studies from Lovinger et al (1989). showed that
acute ethanol exposure can inhibit NMDA-activated current in hippocampal
neurons[91]. Later, ethanol inhibition of NMDA receptor activity was also
demonstrated by measuring NMDA receptor-mediated excitatory postsynaptic
potentials/currents (EPSPs/EPSCs) in slices from many different brain regions,
such as cortex[92, 93], amygdala[94], nucleus accumbens[95, 96],
hippocampus[91], and dorsal striatum[97, 98]. Similar inhibitory effects of
ethanol were also found in HEK cells and Xenopus oocytes, expressing
recombinant NMDA receptors. Single-channel recordings provided evidence
that ethanol decreases the open channel probability and mean open time of
NMDA receptors in cultured cortical neurons[92]. Although all of this evidence
indicates that ethanol rapidly inhibits NMDA receptor function in vivo and in vitro,
the precise molecular mechanisms of ethanol inhibition on the NMDA receptors

have been difficult to determine. By using electrophysiological techniques,



rapidly-inhibited NMDA-evoked currents were detected in response to acute
ethanol exposure in a concentration-dependent manner[99, 100], which
suggested ethanol directly interacts with NMDA receptors. The questions that
remain concern where this small molecule binds in NMDA receptors and how it

changes NMDA receptor channel kinetics.

Based on the evidence that alcohol and NMDARSs antagonists produce similar
inhibitory effects in vivo and in vitro, studies mainly focused on finding alcohol
molecule binding sites in the agonist site or other modulatory sites. However,
the effect of ethanol on NMDARSs of cultured mouse hippocampal neurons only
showed decreased Emax values of the NMDARs concentration-response curve
without affecting ECso values, which indicates that ethanol inhibit NMDARs
activity in a non-competitive manner[86, 99, 101-103]. Whether the co-agonist
(glycine) site can mediate ethanol’s effects was initially controversial[86, 102-
107]. Wright et al. (1996) showed that ethanol inhibition of NMDA channels
does not involve substantial changes in fast closed state kinetics or changes in
open channel conductance, and thus is not attributable to block of the open
channel[92]. Peoples et al. (1997) showed there is no effect on ethanol
inhibition of NMDA-activated currents even in the presence of different
concentrations of Mg?* in the cultured cortical neurons[103]. These two
evidence indicate that alcohol molecule binding sites are not in the channel

pore. Taken together, there is no evidence that alcohol binding sites are in the



extracellular structure of the NMDARs and suggests ethanol may affect
NMDARs activities via effects on lipids or other intracellular proteins, such as
protein kinase C (PKC). Snell et al. (1994) demonstrated the involvement of
PKC in ethanol-induced inhibition of NMDARSs in cerebellar granule cells[108].
In contrast, Peoples and Stewart (2002) showed C-terminal truncation mutant
did not abolish the effect of ethanol on the NMDARSs[99]. This result against the
possibility that the alcohol inhibition on NMDARSs is mediated via intracellular
part of the receptors. Results from mutagenesis studies with alcohol- and
anesthetic-sensitive y-aminobutyric acid A (GABAa) and glycine receptors
showed that mutation at a serine residue in the second transmembrane (TM2)
domain or an alanine residue in the third transmembrane (TM3) domain greatly
affected the potentiation of GABAAa and glycine channel function by ethanol and
volatile anesthetics[109]. Larger amino acids in the ethanol sensitive positions
produce inhibition, while smaller amino acids producing enhanced potentiation.
To find the alcohol action sites in the membrane-associated domain, Peoples
and Woodward groups started a series of scanning studies in the M domain.
Our lab first identified Met-823, a site of alcohol action in the M4 domain of the
GIuN2A subunit, which can not only alter ethanol sensitivity of GIuN2A-
containing  NMDAR, but can regulate glutamate potency, apparent
desensitization, mean open time, and peak current density[110, 111]. The
Woodward lab found Phe-639, a site in the M3 domain of the GIuN1 subunit,

which also can alter ethanol sensitivity[112]. Above evidence confirmed the



hypothesis that alcohol molecule can act on the sites in the membrane-
associated domains. In the following studies, a series of ethanol sensitive
resides are recognized in both GIuN1 and GIuN2A subunit, Gly-638 in the M3
domain of the GIuN1 subunit, the cognate positions Phe-636, Phe-637, Met-
823, Ala825 in GIuN2A subunit[110, 111, 113-115] (Figure 1). Taken together,
these ethanol sensitive sites are hydrophobic amino acids; are not involved in

lining the ion channel lumen; and influence ion channel gating properties.

Because alcohol molecule can act on multiple sites in NMDARs, it is likely that
ethanol sensitive residues form a small environment to regulate ethanol
sensitivity together. Dual mutations at Phe-637 and Met823 in GIuN2A subunit
can influence ethanol sensitivity and receptor kinetics, which suggests that
these two positions are functionally linked because modulation of ethanol by
dual mutants is not additive[116]. Based on the reported structure of the GIuA2
glutamate receptor M domains[1], it is possible that sites of alcohol action is
formed by groups of 4-6 residues clustered in small regions at the M3-M4
intersubunit interfaces between GIuN1 and GIuN2A subunit[114] (Figure 1). By
using two-way ANOVA and mutant cycle analysis of log-transformed ethanol
IC50 values, significant interactions affecting ethanol inhibition was observed
at four pairs of positions in GIuN1/GluN2A: Gly-638/Met-823, Phe-639/Leu-824,

Met-818/Phe-636, and Leu-819/Phe-637[114]. Unlike the interaction between
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Phe637 and Met823 in GIuN2A subunit, these sites can alter ethanol action in

a manner that all side chains of interacted residues are in close proximity[114].

Although accumulated evidence showed the important role of GIuN1 and
GIuN2A subunit in the action of alcohal, it is largely unknown how other GIuN2
subunits are involved in the modulation. The protein sequence of M3 and M4
domains is highly conserved through all GIuN subunits. So, it is likely that
GIuN2C subunit also contain alcohol sensitive sites in the M3 and M4 domains.
Unlike GIuN2A and GIuN2B subunit, GIuN2C subunit has a limited distribution
in cerebellum[20, 25-27]. The GIuUN2C subunit also can be found in
thalamus[25], olfactory bulb[25], oligodendrocytes[117], and hippocampal
interneurons[20]. The GIUN2C subunit has its unique electrophysiologic and
pharmacologic properties that differ from those of the GIuN2A and GIluN2B
subunits. For example, the GluN2C-containing NMDA receptor has a lower
open probability, being opens for only ~1% of the time during agonist
activation[64], a lower single-channel conductance, shorter open time, lower
sensitivity to Mg2+ block[20, 118], and higher affinity for the agonist and
coagonist glutamate and glycine[57, 119]. In vivo studies have shown that
GIuN2C knockout mice have significant deficits in working memory and
acquisition of conditioned fear[120], suggesting that GIuN2C plays an important
role in controlling cerebellum function. The GluN2C-containing NMDA receptor

also shows differences in alcohol sensitivity. GIuN2C-containing NMDA



11

receptors are less sensitive to ethanol compared to GIuN2A- and GIuN2B-
containing NMDA receptors[121-123]. To fill the gap and better understand the
function of GIUN2C subunit, we will focus on studying the molecular mechanism

of alcohol modulation of GIluN2C-containing NMDAR.
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Chapter 2. Material and Methods

Materials

Ethanol (95%, prepared from grain) will be obtained from Aaper Alcohol &
Chemical Co. (Shelbyville, KY), and all other drugs will be obtained from Sigma.

Chemicals used to make recording solutions were the highest purity available.

Molecular Biology, Cell Culture, and Transfection

Site-directed mutagenesis in plasmids containing GIuN1 or GIUN2C subunit
cDNA was performed using the QuikChange Il kit (Agilent Technologies, Santa
Clara, CA), and all mutants were verified by double-strand DNA
sequencing. TSA201 cells, a transformed human kidney 293 cell line, were
maintained in flasks containing serum supplemented Dulbecco’s minimum
Eagle medium in a humidified 5% CO:2 incubator. For recordings, cells were
plated onto fibronectin-coated 35mm dishes at high-density (approximately 5 x
10% cells per dish) and transfected with GIuN1, GIuN2C, and green fluorescent
protein (GFP) using the calcium phosphate transfection kit (Invitrogen). 10mM
magnesium chloride (MgClz2) was added to the culture medium to prevent
excitotoxic cell death. MgCl2 was removed before use in experiments by

extensive washing. Cells were used in experiments 24-48h after transfection.
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Electrophysiological Recording

Whole-cell patch-clamp recording was performed at room temperature using
an Axon 200B amplifier (Molecular Devices, Sunnyvale, CA). Patch pipettes
(1-3 MQ) were pulled from borosilicate glass and filled with internal solution
containing 140 mM CsClI, 2 mM Mg+ATP, 10 mM BAPTA, and 10 mM HEPES
(pH 7.2). The recording solution containing 150 mm NaCl, 5 mmKCl, 0.2
mm CaCl2, 10 mm HEPES, 10 mm glucose, and 10 mm sucrose. The ratio of
added HEPES-free acid and sodium salt was calculated to result in a solution
pH of 7.4 (Buffer Calculator, R. Beynon, University of Liverpool). Solutions of
agonists and ethanol were prepared fresh daily and applied to cells using a
stepper motor-driven rapid solution exchange apparatus (Warner Instruments,
Inc.) and 600-um inner diameter square glass tubing. In concentration-
response experiments, the order of application of the various concentrations of
ethanol was randomized for each cell to eliminate time-dependent effects. Data
were filtered at 2 kHz (8-pole Bessel) and acquired at 5 kHz on a computer

using a DigiData interface and pClamp software (Axon Instruments).

Cysteine Cross-linking

Wild type and cysteine-substituted mutant receptors were treated with the
reducing agent 10mM DTT for 3-5min. In the presence of 300 uM glutamate,

steady-state currents were measured. The effect of DTT was calculated by the
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equation [((lafter/linitiar) — 1) % 100], where linital and latter are the stabilized current

before and DTT treatment.

Molecular Modeling

The model of the MD of the heteromeric GIuN1/GIuN2C NMDAR was
generated using the GluA2 (PDB-3KG2) as a template[1]. We first manually
aligned the GIuN1 and GIuUN2C sequences with the respective sequences of
GIuA2 as described in Supplemental Fig2. [1] in Discovery Studio 2.5 (Accelrys,

San Diego, CA). Then we mutated Gly-638, Phe-639 and M821 into cysteines.

Data Analysis

In concentration-response experiments, ICso or ECs0 and n (slope factor) were
calculated using the equation y = Emax/1 + (ICs0 or ECso/x)", where y is the
measured current amplitude, xis concentration, nis the slope factor,
and Emax is the maximal current amplitude. Statistical differences among
concentration-response curves were determined by comparing log transformed
ICs0 or ECso0 values from fits to data obtained from individual cells using one-

way analysis of variance (ANOVA) followed by the Dunnett test.

Time constant (1) of deactivation were determined from fits of the current decay

after the removal of glutamate (in the continued presence of glycine) to an
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exponential function using Clampfit (Axon Instruments/Molecular Devices).

Cells were adequately fitted by a single exponential function.

Significant interactions respect to ethanol sensitivity, steady state current and
deactivation among mutants were determined by two-way ANOVA and by
mutant cycle analysis[124]. Natural logarithm (In) transformed values of WT and
mutant IC50 or EC50 or time constant (1) values were used for computing
interaction free energies by using the equation AAGiNT = RT[In(WT) +
In(mut1,mut2) - In(mut1) - In(mut2)], with propagated errors reported in
standard error (SEM). AAGiNT £ error were analyzed using one-sample t test
for statistical significance from zero energy, with degrees of freedom (df) =
Nwt + Nmut1+ NmuT2 + NmuT1,muT2 — 4, where Nx = number of cells used for each

combination of wild-type and mutant subunits.
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Chapter 3. A Methionine (Met-821) Position in the M4 Domain of GIuN2C

Subunit Can Alter Ethanol Sensitivity.

Introduction

Alcohol, one of the oldest and most widely abused drugs in the world, produces
its effects primarily via actions on ion channels in the nervous system. The N-
methyl-D-aspartate  (NMDA) receptor, a subtype of ionotropic glutamate
receptor family, has been demonstrated to be a major target in mediating the
inhibitory effects of alcohols in the mammalian brain. Chronic ethanol exposure
can result in up-regulation of NMDA receptor function and enhanced glutamate-
mediated excitotoxicity[125-128]. The Lovinger and colleagues first showed
that acute ethanol exposure can inhibit NMDA-activated currents in
hippocampal neurons. In the following studies, ethanol inhibition on NMDARs
activities also has been demonstrated by measuring NMDARs-mediated
excitatory postsynaptic potentials/currents (EPSPs/EPSCs) in various slices
from many different brain regions, such as cortex[92, 93], amygdala[94],
nucleus accumbens[95, 96], hippocampus[91], and dorsal striatum[97, 98].
Similar inhibitory effects of ethanol were also observed in cell lines, like HEK293
cells, expressing recombinant NMDARSs. In single-channel studies, mean open
time and frequency of channel opening are decreased in the presence of

ethanol[92].
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The NMDAR is heterotetramer, composed of two GluN1 subunits with either
two GIuN2 subunits or a combination of GIuN2 and GIuN3 subunits[14-16]. The
GIuN2 subunit contains four subtypes (A-D) that arise from separate genes,
whereas the GIluN1 subunit has eight isoforms that are generated by alternative
splicing of a single gene[129]. The subunit compositions affects the
physiological and pharmacological properties of the NMDARs[8]. All 32
combinations of GluN1/GIuN2 subunits have been examined in the presence
of 100mM ethanol. Generally, receptors containing GIuN2A and GIuN2B
subunits are more sensitive to ethanol inhibition than receptors containing
GIuN2C and GIuN2D subunits[47], suggesting subunit composition can

influence ethanol sensitivity.

Because ethanol and NMDARs antagonists produce similar inhibitory effects
on receptor activities in vivo and in vitro, an initial question was whether ethanol
was a NMDAR antagonist binding in the agonist binding site. However, a
number of studies showed the effect of ethanol only decreased Emax values of
the concentration-response curve without affecting ECso values which indicates
that ethanol inhibit NMDARSs activity in a non-competitive manner[86, 99, 101-
103]. Peoples et al. (1996) showed ethanol inhibition on NMDARs did not
involve substantial changes in fast closed state kinetics, changes in open
channel conductance, or block of the open channel[92] and there was no effect

on ethanol inhibition of NMDA-activated currents even in the presence of



18

different concentrations of Mg?* in cultured cortical neurons[103], which
indicates that alcohol molecule binding sites are not in the channel pore. Taken
together, there is no evidence that alcohol binding sites are in the extracellular
structure of the NMDARSs and suggests ethanol may affect NMDARSs activities
via effects on lipids or other intracellular proteins, such as protein kinase C
(PKC). Snell et al. (1994) demonstrated the involvement of PKC in ethanol-
induced inhibition of NMDARSs in cerebellar granule cells[108]. In contrast,
Peoples and Stewart (2002) showed C-terminal truncation mutant did not
abolish the effect of ethanol on the NMDARSs[99]. This result argues against the
possibility that the alcohol inhibition on NMDARSs is mediated via intracellular

part of the receptors.

Results from mutagenesis studies with alcohol- and anesthetic-sensitive y-
aminobutyric acid A (GABAA) and glycine receptors showed that mutation at a
serine residue in the second transmembrane (TM2) domain or an alanine
residue in the third transmembrane (TM3) domain greatly affected the
potentiation of GABAA and glycine channel function by ethanol and volatile
anesthetics[109]. Larger amino acids in the ethanol sensitive positions produce
inhibition, while smaller amino acids producing enhanced potentiation.
Although the sequence and structural homology between GABAAa and glycine
and glutamate receptors are extremely low, it is likely that ethanol sensitive

sites exist in the M domains of the NMDARSs.
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The membrane-associated domains (MD) of the NMDARs are composed of
four segments, including M1, M3, M4 spanning the membrane[130-133] and
M2 forming a reentrant loop[134]. Using the substituted cysteine accessibility
method (SCAM)[135], cysteine substitution mutants were generated to identify
channel-lining residues of the GIuN1 subunit[136]. Within the M1 segment, all
nine consecutive positions (W545-H553) were not accessible to the cysteine-
specific methanethiosulfonate (MTS) reagents in the presence of glutamate, in
contrast the preM1 segment, defined as the segment further N-terminal to the
M1 segment, were accessible to both MTS-ethylammonium (MTSEA) and the
larger MTS-ethyltrimethylammonium (MTSET). These reagents can covalently
link their positively charged -S-CH2-CH2-NH3* or -S-CH2-CH2-N(CHs)s* groups
to the sulfhydryl groups of cysteines exposed to the water-accessible surface
of the channel[134]. The overall pattern of accessibility for MTSEA and MTSET
suggests that positions in preM1, but not in M1 itself, are exposed at the water-
accessible surface of the extracellular vestibule[136]. The SCAM results also
shows that the regions C-terminal to M3 and N-terminal to M4 are also the
primary determinants of the extracellular vestibule[136]. The residues in the M3

and M4 domains are mainly involved in channel-lining.

The Woodward group first examined whether positions in the M domains alter
ethanol sensitivity. Alanine substitutions at several residues within the preM1,

M1, and M2 domains did not produce significant changes in ethanol sensitivity.
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In contrast, alanine mutation at GIluN1 (Phe-639)/GIuN2A yielded significantly
less sensitive to ethanol than wild type[137]. Tryptophan substitution at this
position produces slightly more sensitivity to ethanol inhibition than wild type.
These results may suggest that the physical or chemical properties of the amino
acid substitution at this position may be an important determinant of ethanol
sensitivity[137]. The Phe-639 residue is highly conserved through all GIluN1 and
GIuN2 subunits, suggesting a key role for this residue. Coexpressing either
GIuN1 (F639A)/GIuN2B or GluN1 (F639A)/GIuUN2C also produce significantly
less sensitivity, which is consistent with the results observed from mutant
combination GIuN1 (F639A)/GIuN2A[137]. Although the F639A mutation
significantly reduced ethanol sensitivity of all mutant combinations NDMARSs, it
did not fully eliminate ethanol inhibition, indicating there may be other ethanol
sensitive sites or the cognate sites in the GIuN2 subunits also play a critical role

in altering ethanol sensitivity.

Based on the assumption that additional site or sites of alcohol action in one of
the M domains exists, we used tryptophan scanning mutagenesis and found a
highly conserved methionine residue in the M4 domain of GIuN2A subunit can
influence NMDARs alcohol sensitivity in a manner that is related both to
desensitization of the ion channel and the physical and chemical properties of
the substituent amino acid[111]. GIuN2A(M823C), GIuN2A(M823S), and

GIuN2A(M823W) produced the lowest sensitivity to ethanol, whereas
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GIuN2A(M823F), GIuN2A(M823L), and GIuUN2A(M823Y) resulted in the highest
sensitivity to ethanol[111]. In the studies of alcohol action of GABAa and glycine
receptors, it has been shown that the physical and chemical properties of
substituent amino acid play a determinant role of ethanol sensitivity. Linear
regression analysis of alcohol sensitivity versus hydropathy, hydrophilicity,
hydrogen bonding, molecular volume, and polarity of the substituent was
performed and significant linear relationships were observed between ethanol

ICs0 and both hydrophilicity and molecular volume[111].

It should be noted that either GIuN1 (Phe-639) or GIuN2A (Met-823) are not
able to completely eliminate the inhibitory effects of alcohol, which indicates
alcohol molecule acts on multiple sites of the NMDARSs. In the following studies
of scanning ethanol sensitive sites, a series positions of alcohol action are
identified in both GIuN1 and GIuN2A subunit, Gly-638 in the M3 domain of the
GIuN1 subunit, the cognate positions Phe-636, Phe-637, Met-823, Ala825 in
GIuN2A subunit[110, 111, 113-115]. Taken together, these ethanol sensitive
sites are hydrophobic amino acid; are not involved in lining the ion channel

lumen; influence ion channel gating properties.

In previous studies of the role of GIuN1 (Phe-639) in alcohol sensitivity
modulation, similar significant reduced ethanol sensitivity were observed

among the different GIUN2 subunit containing NMDARSs[137]. Although
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GIuN2C-containing NMDAR is much less sensitivity to ethanol compared to
GIuN2A- and GluN2B-containing NDMARs, the mutant combination GIuN1
(Phe-639)/GIuN2C is still markedly less than its wild type[137]. The methionine
residue is highly conserved among all GIuN2 subunits and has been shown to
play a critical role in alcohol action modulation in GluN2A-containing
NMDAR[111]. So, it is likely this methionine residue can influence ethanol
sensitivity in the GIuN2C-containing NMDAR. Figure 2 shows the model of the
GIuN2C subunit with the membrane-associated domains (M1-M4), and the

presumed location of Met-821 residue in the M4 domain of GIuN2C subunit.

Results

Ethanol Inhibition by Various GIuN2 Subunits at the Methionine Residue

in M4.

According to the previous studies in this laboratory, a methionine residue in M4
domain of the GIuUN2A subunit not only regulates ethanol sensitivity, but
influences ion channel gating[110, 111]. To determine whether the effects of
the methionine residue on ethanol sensitivity are consistent through the GIuN2
subunits, GIuUN2A (M823W), GIuN2B (M824W), and GIuN2C (M821W) were
coexpressed with GIuN1 subunit. Surprisingly, ethanol sensitivity of GIuN2

subunits with tryptophan substitution at the methionine residue exhibited
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differently that determined for their respective wild type counterparts (Figure 3).
As reported previously, GIuN2A (M823W) showed significantly decreased
ethanol sensitivity[111]; in contrast, GIuN2C (M821W) showed significantly
increased ethanol sensitivity. There was no significant difference between wild
type GIuN2B and GIuN2B (M824W). The slope factors of the ethanol

concentration-response curves did not differ significantly among the subunits.

Mutations at Met-821 Can Alter Ethanol Sensitivity and Glutamate

Activation.

Since the GIUN2C (Met-821) position involved in altering ethanol sensitivity, we
made 14 mutations at the methionine position to determine how this position
regulates ethanol sensitivity. There were 7 mutations yielded functional
receptors and were tested inhibited by ethanol in a concentration-dependent
manner. Ethanol ICso values among the mutants varied ranging from 138 to 215
mM (ANOVA, p < 0.0001).The slope factors of the ethanol concentration-
response curves did not differ significantly among the various mutants.
Expression of the mutant subunits GIUN2C (M821L), GIuN2C (M821S),
GIuN2C (M821W) with GIluN1 subunits resulted in the highest sensitivity to
ethanol. Tryptophan, the largest and most hydrophobic amino acid,
unsurprisingly produced the greatest effect of alcohol action on the receptor

with ethanol 1Cso value of 138 mM. Alanine, the smallest hydrophobic amino
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acid that is unlikely to destabilize a-helical regions, is predicted to eliminate or
diminish hydrophobic interactions present between larger side chains. However,

GIuN2C (M821A) did not alter ethanol sensitivity(Figure 4).

Surprisingly, a number of amino acid substitutions at this site yielded
nonfunctional receptors. M821D, M821F, M821G, M821N, M821R, M821V,
M821Y exhibited abnormal ion channel function. The abnormal functional
mutants exhibited small spontaneous currents with apparent ethanol inhibition.
This is the first time in this laboratory we observed ion channel behavior like

these mutants(Figure 4).

Ethanol Sensitivity is Independent of the Physical and Chemical

Properties of the Substituent at GIuN2C (Met-821).

In the previous study showing that GIuN2A (M823W) can alter ethanol
sensitivity of the GIuN2A-containing NMDAR, a linear relation was observed
between ethanol ICso and hydrophilicity (R? = 0.522; p < 0.05) and molecular
volume (R? = 0.683; p < 0.005) of the substituent[111]. If the observed changes
in ethanol sensitivity among the GIuUN2C (Met-821) mutant subunits were due
to a direct interaction of ethanol with this site, a significant linear relation of
ethanol ICso with the physical and chemical properties of the amino acid

substituent at this site is expected. To evaluate the relative contribution of the
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physicochemical parameters of the amino acid at this site to alcohol sensitivity,
linear regression analysis of ethanol ICso values versus hydropathy,
hydrophilicity, molecular volume and polarity of the substituent were
performed[111]. There was no significant linear relation observed between
ethanol ICso values and hydropathy (R? = 0.007; p > 0.05), hydrophilicity (R? =
0.09; p > 0.05), molecular volume (R?= 0.205; p > 0.05), or polarity (R?=
0.047; p > 0.05) (Figure 5). Although we did not detect any correlation, we
observed a positive trend between ethanol 1Cso values and hydrophilicity, and
a negative trend between ethanol 1Cso values and molecular volume, which
may due to missing plots. There were seven mutations that showed abnormal

glutamate activation.

Triheteromeric GIuN1/GIuN2A/GIuN2C M821G NMDAR Can Restore lon

Channel Gating Function.

Mutations at the methionine residue yielded abnormal functional mutants,
including M821D, M821F, M821G, M821N, M821R, M821V, M821Y. It is likely
that the P, of these mutants may be too low for detecting glutamate-activated
currents. So, we coexpressed GluN1, GIuN2A, GIuUN2C subunits to form
trihneteromeric NMDARSs, in which GIuN2A subunit increases the P, of the
receptors and stabilize the conformation to induce channel gating. Because

GIuN2A subunit is supposed to contain a high affinity Zn?* binding site in the
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ATDI[138], whereas GIuN2C subunit does not, diheteromeric GIuN1/GIuN2A
NMDAR is highly sensitivity to Zn?* modulation. 200nm Zn?* is sufficient to
cause almost 100% inhibition on the diheteromeric GIuN1/GIuN2A
NMDAR[139]. Triheteromeric GIuUN1/GIuN2A/GIuN2C NMDAR restores half
sensitivity to nanomolar Zn?* modulation[139]. We observed similar effects that
200 Zn?* inhibited almost all diheteromeric GIuN1/GIuN2A NMDAR and
diheteromeric GIuN1/GIuN2C, GIuN1/GIuN2C M821G NMDARs was not
sensitive to nanomolar concentration Zn?* inhibition and triheteromeric
GIuN1/GIuN2A/GIuN2C NMDAR restores half sensitivity to Zn?*. We then
coexpressed triheteromeric GIUN1/GIUN2A/GIuN2C M821G NMDAR, which
yielded functional receptor and Zn2+ produced half inhibition on the
trineteromeric  receptor(Figure 6). The  functional triheteromeric
GIuN1/GIuN2A/GIuN2C M821G NMDAR seems to restore agonist sensitivity
because a GIuN2A subunit may induce receptor gating by inducing activation

of the GIuN2C (M821G) subunit.

Discussion

The results of the present study demonstrate that mutations at the highly
conserved methionine (Met-821) in the M4 domain of the GIuUN2C subunit can
influence ethanol sensitivity of the GIuN2C-containing NMDAR. As expected,

the largest amino acid tryptophan produces largest change in the ethanol ICso
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values compared to wild type. In contrast, an alanine mutation at this position
did not yield any significant change of ethanol sensitivity. These results are not
in agreement with the hypothesis that alanine would alter ethanol sensitivity by
eliminating or diminishing hydrophobic interactions present between larger side
chains. We also observed a number of amino acid substitutions at this site
yielding abnormal functional receptors, which did not exhibit glutamate-
activated currents, but showed apparent ethanol inhibition in the presence of
both glutamate and ethanol. Although it has been reported in the GIuN2A (Met-
823) paper that several nonfunctional receptors were yielded when methionine
was replaced by other amino acid[111], this is the first observation that the
channel did not open properly, but still responded to the inhibitory effects of

ethanol.

Although diheteromeric GIUN1/GIuUN2C (M821G) has abnormal function,
trineteromeric GIuN1/GIuN2A/GIuN2C (M821G) restored ion channel gating
function. GIuN2C-containing NMDAR has an extremely low open probability
(Po~1%)[64], and a lower single-channel conductance of approximately
35pS[20, 118]. In contrast, NMDAR containing GIuN2A subunit has a 50-fold
greater open probability (Po,~50%) compared to GIluN2C-containing
NMDAR[140]. The subunit-specific gating of NMDARs is controlled by the
region formed by the ATD of the GluN2 subunit[140]. Moreover, single-channel

analysis from mutations at GIuUN2A (M823) showed the substitutions at this
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position can alter ion channel gating[110]. Taken together, it is likely that
abnormal functional mutants have an extremely low open probability, which
resulted in negligible glutamate-activated currents, but the coincidently opened
channel still responded to ethanol and exhibited ethanol inhibition of these
currents. Triheteromeric GIuN1/GIuN2A/GIuN2C (M821G) NMDAR containing
an ATD from the GIuN2A subunit increases open probability and induces the

channel to gate properly.

The functional mutations at Met-821 residue all produced glutamate-activated
currents and ethanol-inhibited currents. The ethanol ICs0 values among the
mutants are all different: M821L, M821S, and M821W mutants produced the
highest sensitivity to ethanol. Taken together with our previous studies in
GIuN2A[111], this suggests that some physical or chemical properties of the
amino acid substitution at this position may be an important determinant of
ethanol sensitivity[109]. We thus expected a significant linear relation of ethanol
ICs0 with the physical and chemical properties of the amino acid substituent at
this site. However, the results showed no correlation between ethanol ICso
values and any physicochemical parameters of the amino acid, suggesting
ethanol sensitivity is not simply represented by physical and chemical

properties of the substituent at GIuUN2C (Met-821).
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It has been reported that alcohols and anesthetics bind to the sites between M2
and M3 domains of GABAAa and glycine receptors and regulate channel function
in a molecular volume dependent manner[109, 141-143]. Our lab reported a
similar volume occupation effect at GIuN2A (Met-823): a significant linear
relation of ethanol sensitivity with molecular volume was observed when the
value for the tryptophan mutant was excluded from the analysis[111]. All the
evidence above suggested that the action of alcohol molecule involves filling a
critical volume in a cavity formed in part by this site and the presence of a
tryptophan, with the largest side chain, severely disrupts normal channel
function and ethanol inhibition[111]. However, in the case of the GIuN2C
subunit, the increased ethanol sensitivity of the tryptophan mutant at Met-821
is in agreement with the volume occupation theory, and suggests that
tryptophan does not disrupt channel function or the ability to interact with the

alcohol molecule.

In the study of GIuN1(Phe639), it has been shown that F639W can alter ethanol
sensitivity in a non GIuN2 subunit dependent way such that any GIuN2 subunit
coexpressed with GIuN1(F639W) showed reduced inhibitory effects of 100 mM
ethanol compared to their respective wild type counterparts[137]. Although like
the phenylalanine residue, the methionine residue in the M4 domain is highly
conserved through all GIuN2 subunits, comparison between wild type and

tryptophan mutants among GIuN2 subunits showed that the methionine
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position regulates ethanol sensitivity in a GIuN2 subunit dependent manner.
GIuN2A (M823W) showed significantly decreased ethanol sensitivity, whereas
GIuN2C (M821W) significantly increased ethanol sensitivity, and there was no
significant difference in ethanol sensitivity between the wild type GIuN2B and
GIuN2B (M824W). These results are consistent with our previous evidence that
alcohol action involves multiple adjacent residues that form a small environment
to regulate ethanol sensitivity together[114]. In addition to the Met-823 residue,
our lab found a phenylalanine residue in the M3 domain of the GIuN2A subunit,
the cognate site of GluN1 (Phe-639). Dual mutations at Phe-637 and Met823
in GIuN2A subunit can influence ethanol sensitivity and receptor kinetics, which
suggests that these two positions are functionally linked because modulation of
ethanol by dual mutants is not additive[116]. Functional interactions not only
occur between the residues within M3 and M4 domains in the same subunit,
but direct interactions can also be observed between residues in the M3 and
M4 domains from different subunits. By using two-way ANOVA and mutant
cycle analysis of log-transformed ethanol IC50 values, significant interactions
affecting ethanol inhibition were observed between multiple intersubunit M3/M4
domain pairs, including GIuN1 (G638W)/GIuUN2A(M823W) [114]. Unlike the
interaction between Phe637 and Met823 in the GIuN2A subunit, the side chains

of these interacting residues are in close proximity[114].
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Considering the important role of GIuUN2C (Met-821) in regulation of alcohol
action, we studied its role in altering ion channel gating and its possible
interactions with other residues to affect ethanol sensitivity in the following

studies.
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Chapter 4. A Methionine In the M4 Domain of the GIuN2C Subunit Can

Alter lon Channel Gating.

Introduction

lonotropic glutamate receptors, including NMDA, AMPA, kainate, and delta
receptors, are integral membrane proteins composed of four large subunits,
which form a central ion channel pore. High similarity in sequence alignment
among the ionotropic glutamate receptors family suggests that these receptors
share a similar architecture. A glutamate receptor subunit contains four discrete
semiautonomous domains: the amino-terminal domain (ATD), the ligand-
binding domain (LBD), the membrane-associated domain (MD), and the

carboxyl-terminal domain (CTD)[1].

The ATDs share sequence homology and structurally similarities with the
LBD[1]. To study the function of the ATDs, numerous mutant subunits have
been constructed including those lacking the entire ATD[73, 144-151].
Truncations in the ATD do not affect receptor assembly, and there are
functional similarities between the truncated mutants and wild type receptor,
suggesting a nonessential, regulatory role of the ATD for core function[10].
Evidence that the ATD can influence open probability, deactivation,

desensitization, and subunit-specific assembly is consistent with regulatory



33

roles of the ATD[72, 140, 152-155]. Moreover, the ATD also harbors binding
sites for divalent cations, such as Zn?*[72], and subunit-selective negative
allosteric modulators, such as ifenprodil[156]. The ATD has a clamshell-like
structure, composed of two lobes-R1 and R2, tethered together by loops[150].
Binding of Zn?* to GIuN2A or ifenprodil to GIuUN2B subunits seems to stabilize

a closed-cleft conformation of the ATD[150].

The LBD also has a clamshell-like architecture containing two lobes-S1 and S2,
which are structurally similar to the ATD[157]. The S1 was identified by the
region of extracellular N-terminal domain preceding the PreM1 domain, and S2
is the loop between the M3 and M4 domains[157-160]. Between the S1 and S2
segment, there is an agonist binding pocket[1, 161, 162]. The activation of
glutamate receptors involves simultaneous binding of agonists, such as
glutamate, NMDA, and the coagonists, such as glycine or D-serine, to the
GIuN2 and GIluN1 subunits, which leads to conformational change to enclose
the agonists in the binding sites[157, 161, 163]. This conformational event
triggers the subsequent transition of the channel pore into an open state[10,
164, 165]. In the open state, both the LBD and MD are in an unstabilized state,
and stability can be restored by LBD reopening to allow agonist dissociation[10,
164, 165]. In the agonist-bound state, the LBD dimer interface will go through
a rearrangement, allowing the receptor to enter a desensitized state[166-168].

Other forms of apparent NMDAR desensitization are related to glycine[60, 61]
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or intracellular Ca%*[61-63], and real or apparent ion channel desensitization
can influence the amplitude, duration, and following frequency of NMDA-

mediated synaptic events[61].

The MD is connected to the LBD by three short peptide linkers[1]. The MD of
the NMDARs is composed of four segments, M1, M3, and M4 which span the
membrane[130-133] and M2 which forms a reentrant loop[134]. The
transmembrane helices M2 and M3 from each of the four subunits contribute to
formation of the channel pore. In the previous chapter, we have discussed
SCAM results of the MD. According to the cysteine substitution channel-lining
experiments, the overall pattern of accessibility for MTSEA and MTSET
suggests that preM1, but not M1 itself, are exposed at the water-accessible
surface of the extracellular vestibule and the regions C-terminal to M3 and N-
terminal to M4 are also the primary determinants of the extracellular

vestibule[136].

Unlike other domains, the CTD is the most diverse one, varying in sequence
and length among the glutamate receptor family[10]. The CTD mainly involves
in regulatory effects on receptor localization and function. The CTD of GIuN1
subunit contains a number of regulatory protein binding sites, including sites for
Ca2+/calmodulin[169], scaffold proteins as well as phosphorylation sites for

protein kinase A (PKA), and protein kinase C (PKC)[170, 171].



35

Although the functional role of each structural element in the entire subunit has
been well characterized, the nature of the conformational changes and
molecular determinants underlying NMDARs are still largely unknown.
Numerous evidence shows that the LBD is structurally and functionally linked
to the MD. The dynamics between these two structural elements can affect
each other reciprocally. From the early work on GIuN1 (F639W), it is known that
this position not only alters alcohol action of the NMDARSs, but affects channel
properties, such as glycine potency. The increased affinity for glycine but not
glutamate[137] is consistent with the evidence that GIuN1 subunit contains
glycine binding site, whereas GIuN2 subunits provide glutamate binding sites[1].
Our previous work on GIuN2A (M823W) showed that mutation at the
methionine position only altered the steady state glutamate ECso values,
instead of glycine ECso0 values[110]. Taken together, sites in the MD also can
influence ion channel gating and may be involved in transducing agonist binding
into ion channel gating[110, 172, 173]. Mutations at MD not only affect agonist
potencies, but receptor kinetics, such as mean open time (MOT), deactivation,
and desensitization. GIuN2A (M823W) mutant receptors have dramatically
altered apparent desensitization, and increased mean open time[110]. GIuN2A
(F637W) and (F636W) mutant receptors also show alterations in glutamate

potency, desensitization and MOT.
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Results

Effects of mutations at GIuN2C (Met-821) on glutamate potency and

desensitization.

According to previous work on the cognate site GIuUN2A (Met-823), mutations
at this position not only affected alcohol action of the receptors, but
physiological characteristics, such as glutamate potency and desensitization.
To test whether the GIuN2C (Met-821) residue can also affect glutamate
sensitivity and desensitization, we performed concentration-response
experiments for glutamate in the functional mutants using a rapid solution
exchange apparatus in lifted cells. For the functional mutants, significant
differences were obtained in the ECso values for glutamate-activated
peak (P<0.001; ANOVA) and steady-state (P<0.001; ANOVA) current and for
the steady-state to peak current ratio (/ss:/p; P<0.0001; ANOVA). The ECso
values for glutamate-activated peak current were altered among the majority of
functional mutants, but the ECso values for steady-state current were changed
only in the M8211, M821L, and M821S mutants. Surprisingly, the tryptophan
mutant only had a difference in the peak ECso value, but not steady-state ECso
value. The slope factors of the glutamate concentration-response curves for
both peak and steady-state did not differ significantly from the wild type values

in any of the mutants. Apparent desensitization was affected by most of the
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mutations, even when steady-state ECso values were unchanged. It also should
be noted that there was no observable desensitization in the wild type GIuN2C

subunit(Figure 7).

In the previous studies, we reported that a linear correlation was obtained
between either peak ECso values versus steady-state ECso values or
peak/steady-state ECso values versus the steady-state to peak current ratio

(lss:1p)[110, 113]. However, we did not obtain any kind of correlation (Figure 8).

Effects of GIuN2C (Met-821) Mutants on Deactivation.

One of the prominent features of glutamate receptors in gating kinetics are time
course of deactivation, which mediate a majority of excitatory synaptic
transmission. One unique physiological property of GluN2-containing NMDAR
is unusually prolonged deactivation time course following the removal of
glutamate. To measure the maximal response, the co-agonist glycine was
present in all solutions (50uM), which saturated all the glycine binding sites,
and current responses were evoked with 300uM glutamate. GIuN2C-containing
NMDAR deactivated slowly with a single exponential time course with time
constants ranging from 1098 to 2183 ms (Figure 9). We subsequently analyzed
time constants of deactivation for other mutants at the Met-821 position. There

was a significant difference among the mutants compared to wild type
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(P<0.0001; ANOVA). M821L, M821T, M821W mutants have the most
significant changes for the deactivation. It should be noted that the steady-state
ECso value of tryptophan mutant does not have difference compared to wild
type receptor, while deactivation time course of this mutant becomes faster than

wild type.

Discussion

The results of the present study demonstrate that alcohol sensitive position
Met-821 in the M4 domain of the GIuN2C subunit is involved in regulating ion
channel gating and receptor kinetics. The tryptophan mutant can alter
glutamate-activated peak current, but not steady-state current ECso values. The
steady-state to peak current ratio (/ss:/p) also changed because of the attribution
of the significantly increased peak ECso values. We performed linear regression
analysis between either peak ECso values versus steady-state ECso values or
peak/steady-state ECso values versus the steady-state to peak current ratio,
and found that there was no correlation between any of these pharmacological
parameters. In the studies of cognate site GIUN2A (Met-823), we reported that
steady-state ECso values were highly correlated with steady-state to peak
current ratio, which was interpreted as agonist trapping on desensitized
receptors causing increased affinity[110]. The present studies of GIUN2C (Met-

823) showed that a majority of mutations at these position significantly increase
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the peak ECso values without affecting the steady-state ECso values. In contrast,
mutations at GIuUN2A (Met-823) only affected steady-state ECso values instead
of peak ECso values[110]. Taken together, the underlying mechanism at Met-
821 appears to differ from the trapping mechanism observed at GIuUN2A (Met-

823).

GIuN2C-containing NMDAR deactivated slowly with a single exponential time
course with time constants ranging from 1098 to 2183 ms, which is
approximately 40-fold longer compared to receptors containing GIuN2A[66,
174] . The deactivation tau of the M821W mutant 1291£160 ms, is significantly
different from wild-type and other mutants at this position. Several lines of
investigation have identified there are several factors that can regulate
deactivation time constant of NMDARS, such as the rates of ligand association
and dissociation, which are the primary determinants of the deactivation time
course[10]. We have showed that dual tryptophan mutant combinations GIuN1
(L819W)/GIUN2A (F637W) can significantly interact with each other to alter
deactivation[114]. The observations in this study provide additional evidence

that mutations at MD also can affect time course of deactivation.
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Chapter 5. A Methionine (Met-821) Position in the M4 Domain of GIuN2C

Subunit Can Interact with Positions in the M3 Domains of GluN1 Subunit.

Introduction

Ethanol is one of the common drugs of abuse and acts at high concentrations
(millimolar) on multiple targets in the central nervous system to regulate
neuronal activities[2, 3]. Among those are mainly channels gated by the
neurotransmitter glutamate, the major excitatory neurotransmitter in the
mammalian brain. The N-methyl-D-aspartate (NMDA) receptors, subtypes
belonging to the glutamate receptor family, play the most crucial role for the
inhibitory effect of ethanol[84, 85]. The first evidence that ethanol inhibited
NMDAR evoked currents in hippocampal neurons was shown by Lovinger et al.
(1989)[91]. Subsequent studies using radiolabeled neurotransmitter release,
calcium uptake, and ratiometric calcium indicators confirmed that NMDARs are
inhibited by alcohol across a wide range of brain regions[175]. Although there
is numerous studies leading to the conclusion that ethanol inhibits NMDAR
function, the mechanism of alcohol action remains unclear. The inhibitory effect
of alcohol action on NMDA-evoked currents is in a voltage-independent manner
and is not involved in altering single channel conductance, suggesting that
alcohol molecule does not act as an ion channel pore blocker[92, 176]. There

is also evidence showing that ethanol inhibition is not relate to competitive
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inhibition at the glycine and glutamate binding sites[86, 101, 103, 107, 123], or
allosteric modulation[103, 121]. In addition, although the phosphorylation sites
in the CTD, in some instances, modulate ethanol sensitivity of the NMDARSs[95,

175, 177], receptors lacking the CTD still show sensitivity to ethanol[99].

Ronald et al. first found a phenylalanine residue (Phe-639) in the M3 domain of
the GIuN1 subunit influences alcohol sensitivity[137]. The previous studies from
our laboratory also identified a number of alcohol sensitive sites, including two
phenylalanine residues (Phe-636) and (Phe-637) in the M3 domain of the
GIuN2A subunit[113, 115], a methionine residue (Met-823) and an alanine
residue (Ala-825) in the M4 domain of the GIuN2A subunit[111, 114]. Although
these residues can alter ethanol sensitivity of NMDARs, mutations at these
sites did not abolish ethanol inhibition. Studies in GABAa and glycine receptors
showed residues in transmembrane domains two and three forming sites of
alcohol and anesthetic action[109, 178]. Based on these results, we tested the
role of dual tryptophan mutants GIuN2A (F637W M23W) in influencing ethanol
sensitivity and receptor function. We observed that dual mutations at Phe-637
and Met823 in GIuN2A subunit can interactively influence ethanol sensitivity
and receptor kinetics, which suggests that these two positions are functionally
linked because modulation of ethanol by dual mutants is not additive[116]. After
this study was performed, the high-resolution structure of an ionotropic

glutamate receptor was reported [1]. Our group subsequently showed that sites
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of alcohol action are formed by groups of 4-6 residues clustered in small regions
at the M3-M4 intersubunit interfaces between GIuN1 and GIuN2A subunit[114].
By using two-way ANOVA and mutant cycle analysis of log-transformed ethanol
IC50 values, significant interactions affecting ethanol inhibition were observed
at four pairs of positions in GIuN1/GluN2A: Gly-638/Met-823, Phe-639/Leu-824,
Met-818/Phe-636, and Leu-819/Phe-637[114] (Figure 1). Unlike the functional
interaction between Phe637 and Met823 in GIuN2A subunit, these side chains
appear to physically interact with one another, which is consistent with the

proposed model that places these pairs of positions in close proximity [114].

Unlike GluN2A-containing NMDAR, which predominates in mammalian brain
and has been shown to be involved in multiple brain functions, GIuN2C-
containing NMDAR are mainly expressed in cerebellar granule neurons[20, 25-
27], thalamus|[25], olfactory bulb[25], oligodendrocytes[117], and hippocampal
interneurons[20]. The GIuN2C subunit has unique electrophysiological and
pharmacologic properties that differ from those of the GIuUN2A subunit. For
example, the GIuN2C-contianing NMDA receptor has a lower open probability,
being open for only ~1% of the time during agonist activation[64], a lower single-
channel conductance, shorter open time[20, 118], higher affinity for the agonist
and coagonist glutamate and glycine[57, 119], and much less sensitivity to
ethanol compared to GluN2A-containing NMDAR[121-123]. To understand the

role of GIuUN2C subunit in regulating ethanol sensitivity and channel gating
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function, the cognate position Met-821 in the M4 domain was substituted by
tryptophan and showed different alcohol sensitivity, glutamate potency and
desensitization. Dual tryptophan mutants GIuN1 (G638W)/ GIuN2C (M821W)
and GIluN1 (F639W)/ GIuN2C (M821W) showed abnormal channel gating
activity in the presence of glutamate, which may suggest apparent interactions
between these two pairs of positions at the intersubunit interface in the M3 and
M4 domains of the GIuN1 and GIuN2C subunits. In this study we introduced
cysteine mutations in the GIuN1 at G638, F639 and in the GIuN2C at M821.
Significant changes in ethanol sensitivity, agonist affinity, and deactivation have
been observed and mutant cycle analysis also showed an interaction between
the dual cysteine mutants. Based on these findings, we propose that two pairs
of positions can interact and play a crucial role for ethanol sensitivity modulation

and channel gating activity.

Results

Effects of Dual Tryptophan Mutants on Glutamate Activation.

Our previous studies have identified significant interactions altering ethanol
sensitivity between the GluN1 (G638) and GIUN2A (M823) positions[114]. We
predicted that the cognate sites in GIuN2C-containing NMDAR M3-M4

intersubunit interfaces would exhibit a similar interaction consistent with a site
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of alcohol action. Using tryptophan substitution, we first tested whether single
tryptophan mutants at GIuN1 (G638), GIuN1 (F639), GIuN2C (M821) could alter
ethanol sensitivity. Tryptophan is the largest amino acid and has consistently
produced the greatest effect on ion channel behavior in previous studies from
this laboratory[110, 111, 113-115]. All of the single tryptophan mutants
exhibited increased alcohol sensitivity, in which the ethanol ICs0 value was
significantly decreased (p <0.0001; ANOVA) (Figure 10). We next coexpressed
either GIuN1 (G638W) or GIuN1 (F639W) with GIUN2C (M821W), which is
predicted to be in close proximity. However, neither G638W/M821W nor

F639W/M821W exhibited observable glutamate-activated currents.

Coexpressed Cysteine Mutants in the M3 and M4 Domains of GIuN1 and

GIuN2C Subunits Interact to Regulate Ethanol Inhibition.

The GIuN1 (G638W)/GIuN2C (M821W) GluN1 (F639W)/GIuN2C (M821W) dual
tryptophan mutants were not sensitive to glutamate, but both mutants appeared
to respond to ethanol, in that very small apparent spontaneous currents in these
mutants were inhibited by 100mM ethanol. These may be due to the side chain
of tryptophan at one position, which may interact with the side chain of the other
one to disrupt the ion channel gating activity. To test whether the sites in the
M3 and M4 domains intersubunit interfaces can interact, we made cysteine

substitution at G638, F639 and M821 positions. All of the single cysteine
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mutants did not alter ethanol sensitivity, but ethanol ICso value in the mutant
combination G638C/M821C differed significantly from the wild type (p < 0.0001;
ANOVA) (Figure 11). Interestingly, we observed the opposite results in the
mutations F639C/C744A and F639C/C744A/M821C, in which the redox site
Cys744 is substituted by alanine, decreased ethanol sensitivity. We next used
both two-way analysis of variance (ANOVA) on log-transformed I1Cso values and
mutant cycle analysis to calculate whether there were significant free energy
changes. We found an interaction between the mutant combinations of
G638C/M821C and G638C/C744A/M821C, as both types of analysis were
statistically significant. In contrast, we did not detect any interaction in

F639C/M821C, but in F639C/C744A/M821C (Figure 12).

Coexpressed Cysteine Mutants in the M3 and M4 Domains of GIuN1 and

GIuN2C Subunits Can Regulate Glutamate Potency.

To determine whether dual cysteine mutants also influence glutamate potency,
we compared ECso values for glutamate activation of steady-state currents.
Both single cysteine mutants GluN1 (F639C) and GIuN2C (M821C) showed
different glutamate ECso values and highly significant differences were obtained
in dual cysteine mutants F639C/C744A/M821C (p < 0.0001; ANOVA) (Figure
13). Interestingly, although G638C/M821C exhibited significantly altered ICso

value, it was not involved in changing steady-state glutamate potency;
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F639C/M821C did not change ethanol sensitivity, but varied the agonist affinity.
After removing the redox site Cys744, we observed both dual cysteine mutants
G638C/C744A/M821C and F639C/C744A/M821C  significantly altered

glutamate ECso values.

Coexpressed Cysteine Mutants in the M3 and M4 Domains of GIuN1 and

GIuN2C Subunits Can Regulate NMDA Receptor Kinetics.

Our previous results have shown that dual tryptophan mutants GIuN1
(G638W)/GIuN2A (M823W) can interact to alter NMDA receptor kinetics[114].
If the side chain of cysteine at G638 or F639 in the GluN1 M3 domains interact
with the side chain of cysteine at M821 in the GIuUN2C M4 domains and are
involved in regulating ion channel function, dual cysteine mutants should also
affect relevant ion channel behaviors. We measured time of decay among the
mutants: the cysteine mutants containing redox site Cys744 all showed
markedly decreased time constant of deactivation compared to wild type, while
the mutants with C744A all increased the time of decay. We observed
extremely prolonged deactivation in the mutant GIluN1 (F639CC744A)/GIuN2C
(Figure 14). Then, we analyzed interactions among the dual cysteine mutants
respect to deactivation. In the group containing redox site C744, although time
constants of deactivation differed among the various mutants, we did not

observed significant interactions with respect to deactivation between
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G638C/M821C and F639C/M821C; while in the group with C744A, significant
interaction was obtained in the mutant combination F639C/C744A/M821C

(Figure 15).

Cross-linking Between Cysteine Substitutions in the M3 and M4 Domains

of GluN1 and GIuN2C Subunits.

To confirm whether G638/F639 and M821 are sufficiently spatially proximal to
interact, we examined the effects of applying the reducing reagent DTT among
the mutants. Previous work from other laboratories has reported that a pair of
cysteine residues, Cys744 and Cys798 in GluN1, is responsible for the
potentiation of GIUN1/GIUN2A by DTT, and that redox modulation can be
completely abolished in the mutant GluN1 (C744A, C798A)/GIuUN2C[179-181].
To eliminate the effect of endogenous redox sites, we substituted cysteine at
C744 with alanine. However, we did not observe DTT-potentiated currents in
either GIuUN1/GIuN2C or GIuN1(C744A)/GIuN2C. We then examined the effects
of DTT on all the single and dual cysteine mutations. As expected, significant
potentiation was only obtained among dual cysteine mutants. There was no
effect of DTT treatment on current amplitude in any single cysteine mutant. In
contrast, when either the GIuN1 (G638C) or GIuN1 (F639C) mutants (with or
without the C744A mutation) were expressed with GIuN2C (M821C), DTT

treatment significantly increased current amplitudes (Figure 16). We also
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compared time constants of deactivation after DTT exposure among the
mutants, and observed significant increases in time constants of decay in dual
cysteine mutants containing the Cys744 residue, but not in those containing

C744A (Figure 17).

Discussion

These experiments were aimed at determining whether residues in GIuN1 M3
and GluN2C M4 at the intersubunit interfaces interact to alter ethanol sensitivity
and NMDA receptor ion channel behavior. We have observed that single
tryptophan substitutions at GIuN1 (G638), GIuN1 (F639), or GIuN2C (M821)
can alter ethanol 1Cso values, but neither GluN1 (G638W)/GIuN2C (M821W)
nor GluN1 (F639W)/GIuN2C (M821W) receptors exhibit glutamate-activated
current. However, both dual tryptophan mutants exhibit small-amplitude
spontaneous currents that respond to ethanol. Apparent ethanol inhibition has
been observed between these two mutants. These results are mostly in
agreement with the results from our previous findings[114] and suggest
apparent interaction between G638W/M821W or F639W/M821W may be too
strong to disrupt NMDA receptor function. Based on the x-ray crystallographic
structure of the GIuA2 subunit[1] and the structural model of the NMDAR M
domains[114], we predict these two pairs of residues are in close proximity to

produce effects on ethanol sensitivity and NMDA receptor function.
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Our previous work demonstrated that the side chains of one amino acid can
interact with one another to alter ethanol sensitivity[114]. In this study, we made
cysteine mutations at the above positions to determine the effects of amino acid
side chain interaction. Using both two-way ANOVA and mutant cycle analysis,
significant interaction was observed between GluN1 (G638C)/GIuN2C (M821C),
which is consistent with our previous results[114]. Redox site modulation
experiments also demonstrated that a disulfide-bond is spontaneously formed
between these two positions that alters current amplitude, and that the disulfide
bond can be reduced by DTT to enhance glutamate-activated currents.
Although this study does not directly answer the question about which
coexpressed tryptophan mutations at GluN1 (G638)/GIuN2C (M821) interacts
to alter ethanol sensitivity and NMDA receptor function, we have demonstrated
that the side chain of one cysteine can interact with one another in mediating
the action of alcohol. These results are consistent with our previous findings in

GIuN1 (G638W)/GIuN2A (M823W)[114].

NMDARs are regulated by an extracellular redox state and both GIuN1 and
GIuN2 subunits are involved in redox modulation. Two disulfide bonds have
been found within GIuN1 subunit, including Cys744 and Cys798 in the LBD and
SVC79ED and RGC308VG in the ATD[179, 181]; Cys87 and Cys320 are

proposed to form a disulfide bond within the ATD of GIuUN2A subunit[150]. The
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disulfide bonds formed within the ATD are responsible for the modification of
the Zn?* binding site[179], so in the present study, we only considered the
endogenous redox site Cys744 and Cys798 and mutated the cysteine at C744
residue into alanine. In the study of ethanol inhibition, we found that only the
dual cysteine mutant G638C/M821C altered ethanol sensitivity, as this mutant
had decreased ethanol ICso values, whereas in the group with C744A, GIluN1
(F639C/C744A) exhibited extremely low ethanol sensitivity and the dual
cysteine mutation F639C/C744A/M821C also significantly decreased ethanol
sensitivity. When we removed GIluN1 (F639C/C744A)/GIUN2C from the
analysis group, a significant difference was obtained in the dual cysteine mutant
GIuN1 (G638C/C744A)/GIuN2C (M821C). Although the involvement of Cys744
altered ethanol sensitivity among the mutants, the trend of change is similar in
the group with or without C774A. Because the Cys744 is in the LBD, the change
in this position may alter agonist affinity. In the glutamate concentration-
response experiments, GIuN1 (Cys-744)/GIuN2C significantly decreased
steady-state glutamate ECso values compared to wild type GluN2C-containing
NMDAR. The cysteine mutants containing C744A all showed decreased
glutamate ECso values except the dual cysteine mutant G638C/C744A/M821C.
Time of decay also showed that mutants containing C744A increased Tau
values, which is consistent with the increased agonist affinity. Taken together,
the cysteine mutants containing C744A alter ethanol sensitivity in an additive

manner. The alcohol molecule acts on the membrane-associated domain
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instead of the LBD as an antagonist[86, 99, 101-103, 111], so itis likely that the
mutation at Cys744 causes a long distance effect on the conformational change
of the MD to affect ethanol sensitivity. We have demonstrated that the change
in the methionine position in the GIuN2A subunit can cause agonist trapping in
the LBD to alter ethanol sensitivity[110, 111], the change in the LBD may
subsequently affect the alcohol action in the MD. In this study we used both
mutant cycle analysis and two-way analysis of variance to test for interactions
among dual cysteine mutants. Ethanol ICso values may represent fewer kinetic
rates compared with steady-state glutamate ECso values. It has been
demonstrated that the main action of ethanol on NMDAR kinetics is to decrease
mean open time[92], whereas glutamate EC50 depends on both agonist
binding and ion channel gating[114, 182]. Alcohol action in the mutants
containing C744A may involve multiple kinetic rates, so we only analyzed the
interaction among the dual cysteine mutants containing Cys744. A significant
interaction with respect to ethanol sensitivity was obtained in the mutant

combination G638C/M821C, but not in the mutant F639C/M821C.

The redox site modulation by reducing reagent DTT showed potentiated
currents in all the dual cysteine mutants. The time constant of decay after DTT
treatment was significantly increased in dual cysteine mutants containing
Cys744. Breaking disulfide bonds between two pairs of cysteine residues in the

GIuN1 M3 and GIuN2C M4 domain intersubunit interface can regulate receptor
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kinetics. We showed that mutations at GIUN2A (Met-823) can affect agonist
affinity by trapping the agonist in the closed, desensitized state[110]. Although
apparent desensitization was not changed by these mutations, these mutations
are in domains involved in regulating gating and we obtained a significant
interaction between G638C/M821C with respect to ethanol sensitivity. However,
we did not detect a significant interaction with respect to deactivation in either
G638C/M821C or F639C/M821C. The interaction we observed between the
GIuN1 M3 and GIuN2C M4 domains cysteine residues may mainly alter the
local conformational change, which is only reflected in a change in ethanol

sensitivity.

In summary, taking the results of this study together with those of previous
studies, we predict an interaction between G638C/M821C involved in
regulating ethanol action on NMDAR(Figure 18). It will be of interest in future
studies to test how adjacent amino acid side chains contribute to alter alcohol

action and ion channel gating within the M3-M4 interfaces.
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Chapter 6. General Discussion

We found that the GIuUN2C (Met-821) is an alcohol sensitive residue, which is
also responsible for regulating ion channel gating. It is possible that observed
changes in ethanol sensitivity among the mutants at the methionine position
result from changes in agonist potency or ion channel gating kinetics. Plotting
ethanol ICso values against both peak and steady-state glutamate ECso values
revealed there is no correlation. A significant linear relation was obtained when
ethanol ICso was plotted versus maximal /ss:l, values (R?= 0.501; P <0.05)

(Figure 19).

In the study of GIuUN2A (Met-823), we found that ethanol IC50 was negatively
correlated with the maximal Iss:l, values, such that the greater the
desensitization in a given mutant, the lower its ethanol sensitivity[111]. It is
possible that GIUN2A (Met-823) influences ethanol sensitivity indirectly via
changes in desensitization. In contrast, we observed a positive linear relation
between ethanol sensitivity and apparent desensitization among the various
mutants at GIuUN2C (Met-821). Ethanol has been shown to influence
desensitization in several ligand-gated ion channels, including a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA)[183], 5-
hydroxytryptamine (5-HT), and GABA receptors[184]. The opposite effects of

mutations at GIuN2C (Met-821), and its cognate position GIuN2A (Met-823) on
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ethanol sensitivity and desensitization may suggest that ethanol inhibition of
NMDARSs does not involve changes in desensitization.

Although mutants at GIuN2C (Met-821) can alter glutamate ECso values, we did
not detect any correlation between ethanol sensitivity and glutamate potency.
Most mutants showed significantly increased peak glutamate ECso values, but
not steady-state glutamate ECso values. It is possible that the alcohol molecule
physically interacts with the M821 position and leads to the limited
conformational changes only in the MD, which will not affect the conformation
of the LBD. Unlike the trapping theory we observed in GIuN2A (Met-823), the
changes in the GIuN2C (Met-821) position only cause short distance changes,

which only alter the local environment.

Although highly homologous sequences are found among all the GIuN2
subunits, several different amino acids are found in the M4 domain between
GIuN2A and GIuN2C subunit (Figure 20). There is only one different residue in
the M3 domain between GIuN2A and GIuN2C subunit, and it is located at the
C-terminal end of the M3 domain. It is unlikely there is either a physical or
functional interaction between that position and the sites in the M4 domain
because of the very long distance. We then compared the amino acids near the
methionine residue between GIUN2A and GIuN2C subunit. We found that the
Ala-825 and Ala-826, which are downstream of the GIuN2A (Met-823), are Leu-

823 and Val-824 in the GIuN2C subunit. Both leucine and valine are
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hydrophobic amino acids and the side chains are larger than alanine. These
two amino acids may form a small hydrophobic environment near the
methionine position, which can significantly alter the alcohol molecule interacts
with the GIuN2C (Met-821) position. We also found another five different amino
acids located near the C-terminal end of the M4 domain. However, the
difference in the physical and chemical properties among these amino acids is
not significant. So, it is unlikely those amino acids can cause long-term effects

on the alcohol modulation of the GIuN2C (Met-821) position.

In the present studies, we showed that the Met-821 position involved in
regulating ethanol sensitivity and ion channel gating. We also showed Gly-638
and Met-821 positions in the M3-M4 intersubunit interfaces between GluN1 and
GIuN2C subunits interactively regulate ethanol sensitivity. The results we
observed from GIuN2C-containing NMDAR are different from the previous
discoveries in the NMDAR containing GIuN2A subunit. The difference may
mainly lies in the sequence difference between GIuUN2A and GIuN2C M4
domains and small hydrophobic environment formed near the methionine

position.
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Figure 1. The structural model of M domains of the NMDARs. Shown is
a model of the NMDA receptor M domains from [1]. M domains of the GIuN1
subunit are shown in yellow, and those of the GIUN2A subunit are shown
in green. Five alcohol sensitive positions are illustrated by CPK models.
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Figure 2. A methionine residue in the M4 domain is highly conserved in
all GIuN subunit.A, shown is the sequences of the M4 domains of the GIuN
subunits. The arrow shows the position of the conserved methionine. B, model
of the NMDA receptor M domains from [1]. Met-821 position is illustrated by

CPK model.
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Figure 3. Effects of ethanol on tryptophan mutations at the methionine
residue in the M4 domain of GIuN2 subunits. A, concentration-response
curves for ethanol inhibition of glutamate-activated current in cells
expressing tryptophan mutations in GIuN2 subunits. Data are the means %
S.E. of n = 6-9 cells; error bars not visible were smaller than the size of the
symbols. Curves shown are the best fits to the equation given under
“Methods” B, graphs plot ICso values for ethanol in tryptophan mutations in
GIuN2 subunits. Asterisks indicate ICso values that differed significantly from
that for wild type (***, p < 0.001; ANOVA followed by Tukey's test).
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Figure 4. Single mutations at Met-821 residue in the M4 domain of
GIuN2C subunit can alter ethanol inhibition. A, records are currents
activated by 300 uM glutamate and 50 pM glycine in the absence and
presence of 100mM ethanol in cells expressing various mutant GIuN2C
subunit. B, shown are concentration-response curves for ethanol inhibition
of glutamate-activated current in cells expressing various single site
substitution mutations in GIuN2C. Data are the means + S.E. of n= 6-9
cells; error bars not visible were smaller than the size of the symbols. Curves
shown are the best fits to the equation given under “Methods” C, graphs plot
ICs0 values for ethanol in various single site substitution mutations in
GIuN2C. Asterisks indicate ICso0 values that differed significantly from that for
wild type GIuN1/GIuUN2C subunits (**,p< 0.01 ***,p< 0.001; ANOVA
followed by Dunnett's test).
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Figure 5. Relation of amino acid physicochemical parameters of the
substituent at Met-821 to ethanol sensitivity.Graphs plot Log ICso for
ethanol versus hydrophilicity (A), molecular volume in A3 (B), polarity (C),
and LogP (D). The lines shown are the least-squares fits to the data. No
significant linear relations were obtained between log I1Cs0 and
physicochemical parameters of the substituents.
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Restore lon Channel Gating Function. Records are currents activated by
300 uM glutamate and 50 uM glycine in the absence and presence of
200nM Zn?* in cells expressing diheteromeric or trineteromeric NMDARSs.
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Figure 7. Single mutations at Met-821 residue in the M4 domain of
GIluN2C subunit can alter the ECso for peak and steady-state glutamate-
activated current and apparent desensitization. A, records are currents
activated by 300 yM glutamate in the presence of 50 uM glycine in cells
expressing various mutant GIuUN2C subunit. B, concentration-response
curves for glutamate-activated current in cells expressing various single site
substitution mutations in GIuN2C. Data are the means + S.E. ofn= 6-9
cells; error bars not visible were smaller than the size of the symbols. Curves
shown are the best fits to the equation given under “Methods” C, graphs plot
glutamate ECso values in various single site substitution mutations in
GIuN2C. D, bar graph shows the average values of maximal steady-state to
peak current ratio (/s:b) in lifted cells coexpressing GIuN1 and WT GIuN2C
subunits or GIUN2C subunits containing various mutations at M821.
Asterisks indicate ECso values that differed significantly from that for wild
type GIuUN1/GIuN2C subunits (*, p < 0.05 **, p < 0.01 ***, p < 0.001; ANOVA
followed by Dunnett's test).
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Figure 8. Relationship between glutamate ECso and apparent
desensitization. A, the graph plots values of glutamate log ECso for steady-
state current versus values of glutamate log ECso for peak current in the
series of mutants. Glutamate ECso values for peak and steady-state current
were not statistically significantly correlated (R? = 0.482; P > 0.05). The line
shown is the least-squares fit to the data. B-C, the graph plots the
maximal Iss:lp versus peak (e) and steady-state (o) log ECso values for
glutamate-activated current in various GIuN2C(Met-821) mutant subunits.
Maximal Iss:Ip for glutamate was not correlated with steady-state glutamate
log ECso (R?= 0.092; P> 0.05) and peak glutamate log ECso (R?=
0.129; P> 0.05). The lines shown are the least squares fits to the data: peak
(solid line) and steady-state (dash line).
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Figure 9. The deactivation time constant (t) of substituent at GIluN2C
(Met-821). Bar graph shows the average values of deactivation time course
in the presence of 300 300 uM glutamate and 50 pM glycine.
Asterisks indicate Tau that differed significantly from that for wild type

GIuN1/GIuN2C subunits (**, p< 0.01 ***, p < 0.001; ANOVA followed by
Dunnett's test).
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Figure 10. Single tryptophan mutations in the M3 and M4 domains of
GluN1 and GIuN2C subunits can alter ethanol inhibition. A, records are
currents activated by 300 uM glutamate and 50 uM glycine in the absence
and presence of 100mM ethanol in cells expressing various mutants. B,
concentration-response curves for ethanol inhibition of glutamate-activated
current in cells expressing various single tryptophan substitution mutations.
Data are the means + S.E. of n= 6-9 cells; error bars not visible were
smaller than the size of the symbols. Curves shown are the best fits to the
equation given under “Methods” C, graphs plot ICso values for ethanol in
various single tryptophan substitution mutations. Asterisks indicate
ICs0 values that differed significantly from that for wild type GluN1/GIuN2C
subunits (*, p < 0.05 ***, p < 0.001; ANOVA followed by Dunnett's test).
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Figure 11. Cysteine mutations in the M3 and M4 domains of GIuN1 and
GIluN2C subunits can alter ethanol inhibition. A, records are currents
activated by 300 uM glutamate and 50 pM glycine in the absence and
presence of 100mM ethanol in cells expressing various cysteine mutations.
B, concentration-response curves for ethanol inhibition of glutamate-
activated current in cells expressing various cysteine mutations. Data are
the means + S.E. of n = 6-9 cells; error bars not visible were smaller than
the size of the symbols. Curves shown are the best fits to the equation given
under “Methods” C, graphs plot 1Cso values for ethanol in various cysteine
mutations. Asterisks indicate 1Cso values that differed significantly from that
for wild type GIUN1/GIuN2C subunits (***, p < 0.001; ANOVA followed by
Dunnett's test).
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Figure 12. Positions in the GIuN1 subunit M3 domain interact with
GluN2C (Met-821) in M4 domain to regulate NMDA receptor ethanol
sensitivity. A-D, graphs plot ethanol ICso values versus the substituent at
position 638 or 639 in GIuN1 for mutants at GIuN2C position
821. Asterisks indicate significant interactions detected using log-
transformed [Cso values (**, p < 0.01; ***, p < 0.0001; two-way ANOVA)
(left panel). Mutant cycle analysis of ethanol ICso values for the subunit
combinations. Apparent free energy values associated with the various
mutations (AGx) are given in kcal mol™'. Asterisks indicate a statistically
significant difference of the apparent interaction energy AAGint from zero
energy determined using a one-sample t test (**, p < 0.01; ****, p < 0.0001)
(right panel).
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Figure 13. Cysteine mutations in the M3 and M4 domains of GIuN1 and
GIuN2C subunits can alter the ECso for steady-state glutamate-
activated current. A, records are currents activated by 300 uM glutamate
in the presence of 50 uM glycine in cells expressing various cysteine
mutations. B, concentration-response curves for glutamate-activated
current in cells expressing various cysteine mutations. Data are the means
t+ S.E. of n = 6-9 cells; error bars not visible were smaller than the size of
the symbols. Curves shown are the best fits to the equation given under
“‘Methods” C, graphs plot glutamate ECsovalues in various cysteine
mutations. Asterisks indicate ECso values that differed significantly from that
for wild type GIuN1/GIuN2C subunits (**, p < 0.01 ***, p < 0.001; ANOVA
followed by Dunnett's test).
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Figure 14. The deactivation time constant (t) of cysteine mutations in
the M3 and M4 domains of GIuN1 and GIuN2C subunits. Bar graph
shows the average values of deactivation time course in the presence of
300 300 pM glutamate and 50 pM glycine. Asterisks indicate Tau values
that differed significantly from that for wild type GIuN1/GIuN2C subunits
(**, p<0.01 ***, p <0.001; ANOVA followed by Dunnett's test).
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Figure 15. Positions in the GIuN1 subunit M3 domain interact with
GluN2C (Met-821) in M4 domain to regulate NMDA receptor
deactivation time course.A-D, graphs plot deactivation time
constants versus the substituent at position 638 or 639 in GIuN1 for
mutants at GIuN2C position 821. Asterisks indicate significant interactions
(***, p < 0.0001; two-way ANOVA) (left panel). Mutant cycle analysis of
deactivation time constants for the subunit combinations. Apparent free
energy values associated with the various mutations (AGx) are given in kcal
mol~'. Asterisks indicate a statistically significant difference of the apparent
interaction energy AAGINT from zero energy determined using a one-
sample t test (****, p < 0.0001) (right panel).
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Figure 16. Effects of DTT on cysteine mutations in the M3 and M4
domains of GIuN1 and GIuN2C subunits. Bar graph summary of the
percentage of change (meant SEM) in 300 uM glutamate steady-state (lss)
current amplitude after redox modification of wild type and cysteine
mutations with reducing agent DTT. The percentage of change in Iss after
DTT treatment is defined as [((lafter/linitat) — 1) % 100]. Negative values
represent a decrease in lIss after DTT reaction, whereas positive values
represent an increase in Iss. Asterisks indicate the percentage of change that
differed significantly from that for wild type GIuN1/GIuN2C subunits (**, p <
0.01; ANOVA followed by Dunnett's test).
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Figure 17. Effects of DTT on the deactivation time constant (t) of
cysteine mutations in the M3 and M4 domains of GIuN1 and GIuN2C
subunits. Bar graph shows the average values of deactivation time course
before and after DTT treatment in the presence of 300 uM glutamate and 50
MM glycine. Asterisks indicate Tau that differed significantly from that for wild
type GIUN1/GIUN2C subunits (**, p < 0.01 ***, p < 0.001; ANOVA followed

by Bonferroni's test).
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GIuN2C M4

Figure 18. Model of the MD of the NMDARs. Model of the MDs of the
GIuN1/GIUN2C subunit showing M3 and M4 helices (GIluN1, yellow;
GIuN2C, green). Other MDs have been removed for clarity. Space-filling
side groups are shown for the G638C and F639C positions in the M3 helices
of GIuN1, M821C position in the M4 helices of GIuN2C. Disulfide bridges
are represented by yellow dashed lines.
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Figure 19. Relation of agonist potency, ion channel gating to EtOH
sensitivity in NMDAR containing GIuN2C (Met-821) mutant subunits. A-
C, graph plot log I1Cs0 for EtOH vs log ECso for glutamate peak and steady-
state current and maximal /ss:l,. Data points are labeled with the substituted
amino acid for the various mutants at GIuN2C (Met-821). The lines shown
are the least squares fits to the data. No significant correlations were
obtained between log EtOH ICso vs log Ip ECso (R? = 0.182; P> 0.05), log Iss
ECso (R?=0.019; P > 0.05). A significant linear relation was obtained from
log EtOH ICs0 vs maximal ks:lp (R? = 0.501; P <0.05).



GluN2A

GluN2C

Figure 20. Model of the MD of the NMDARs. A, model of the MD of the
GIuN2A subunit. Space-filling side groups are shown for the different amino
acid in the M3 and M4 domains compared to GIuN2C subunit. GIuUN2A (Met-
823) residue is labeled by yellow. B, model of the MD of the GIuN2C subunit.
Space-filling side groups are shown for the different positions in the M3 and
M4 domains compared to GIuN2A subunit. GIuN2C (Met-821) is labeled by
yellow.
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