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Abstract: The racemic (6-cyclo-heptadienyl)Fe(CO)3
+ cation ((±)-7), 

prepared from cyclooctatetraene, was treated with a variety of carbon 

and heteroatom nucleophiles. Attack took place at the less hindered C1 

dienyl carbon and decomplexation of the (cycloheptadiene)Fe(CO)3 

complexes gave products rich in functionality for further synthetic 

manipulation. In particular, a seven-step route was developed from 
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racemic (6-styryl-2,4-cycloheptadien-1-yl)phthalimide ((±)-9d) to 

afford the optically active aminocycloheptitols (—)-20 and (+)-20. 

Keywords: cyclitols, hydrocarbons, pi complexes, regioselectivity, 

synthetic methods 

 

Introduction 
 

The use of simple hydrocarbons as starting materials for the 

synthesis of complex molecules relies on efficient methods for 

oxidation, functionalization, or rearrangement. For example, various 

researchers have explored cyclopentadiene[1] or cycloheptatriene[2] as 

precursors for the preparation of a wide variety of drug candidates, 

natural products, and synthetic products. The simple hydrocarbon 

cyclooctatetraene (COT), prepared by the catalytic tetramerization of 

acetylene,[3] has recently been used in the syntheses of  

minocyclitols,[4a] bis-homoconduritols,[4b] bis-homoinositol,[4c] 

pentacycloanammoxic acid methyl ester,[4d] the polyene segment of 

roxaticin,[4e] and cyclooctitols.[4f] Tricarbonyl(cyclooctatetraene) iron 

(1), which is readily prepared from COT,[5] reacts with a variety of 

electrophiles to form (dienyl)iron cations.[6] We have previously 

reported on the synthesis of 2-(2’-carboxycycloalkyl)glycines (2 and 3, 

Scheme 1) from cations derived from 1.[7] 

 

Polyhydroxyl aminocyclohexanes (“aminocyclitols”) and its 

derivatives are important biological entities. For example, certain 5-

amino-1,2,3,4-cyclohexanetetraols are inhibitors of -glucosidase and 

-galactosidase.[8] Although a variety of synthetic routes to 

aminocyclitols have been reported,[8] there are considerably fewer 

syntheses of analogues with seven-membered-rings 

aminocycloheptitols, Figure 1).[9] In general, these routes utilize chiral 

pool materials to generate the hydroxyl stereocenters. For example, 

Casiraghi and coworkers reported a 12-step synthesis of 4 that relied 

on a vinylogous aldol reaction between 2-(tert-butyldimethylsilyloxy) 

pyrole and D-arabinose bis-acetonide,[9a] and Yamada and co-workers 

prepared 5 from D-xylose by using an intramolecular nitrone–alkene 

cycloaddition.[9c] Similarly, the cycloheptane ring can be found in the 

unique bicyclic skeleton of ingenol (6). This diterpene has attracted 

considerable synthetic interest because various esters of ingenol act as 

activators of protein kinase (PKC).[10] As part of our interest in the 
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generation of molecular complexity from simple hydrocarbons,[7] we 

herein report on the reactivity of the (6-styrylcycloheptadienyl) iron 

cation 7 and transformation of these products into optically active 

aminocycloheptitols and the bicyclo[4.4.1]undecatriene skeleton. 

 

 
 

Results and Discussion 
 

The literature procedure for the reaction of reaction of 1 with 

tropylium tetrafluoroborate in the presence of pyridine is reported to 

give (7-styryl-1,3,5-cycloheptatriene)iron in modest yield (41%).[6d] 

The mechanistic rationale proposed by Connelly et al. begins with 

addition of the electrophile to a noncoordinated olefin to generate a 

homobutyl cation (Scheme 2, A). Rearrangement of the homobutyl 

cation to a cyclopropylcarbinyl cation affords structure B, which 

undergoes a [3,3]-Cope rearrangement to generate the norcaradiene 

intermediate C. Opening of both of the cyclopropane rings gives the 

cyclohexadienyl cation D, which upon deprotonation gives the 

styrylcycloheptatriene complex. Protonation of this cycloheptatriene 

complex with HBF4
+ yields the cation (±)-7 (67%). We were able to 
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improve the overall yield of 7 (76% from 1) by i) using 1 equivalent of 

pyridine, ii) exhaustive extraction of the reaction mixture, and iii) use 

of the crude cycloheptatriene complex, without chromatographic 

purification, for protonation. 

 

 
 

The reaction of 7 with a variety of nucleophiles proceeded exclusively 

by attack at C1 to afford the cis-1-substituted-6-styryl-2,4-

heptadiene)iron complexes (±)-8a–g (Scheme 3, Table 1). The 

structures of 8a–g were assigned on the basis of their NMR spectral 

data. In particular, two signals at approximately =87–91 ppm in the 
13C NMR spectra and multiplets integrating to two protons at 

approximately =4.9–5.6 ppm in the 1H NMR spectra are consistent 

with the two internal carbons (C3/C4) of an η4-bound cycloheptadiene 

and their attached protons.[11]  
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In addition, an apparent quartet at approximately =0.9–2.0 ppm 

(J≈12 Hz) in the 1H NMR spectra for (±)-8a, c, d, and f was assigned 

to H7. The three large couplings are due to diaxial vicinal coupling of H7 

with H1 and H6, and a geminal coupling to H7’. The regioselectivity for 

nucleophilic addition to 7 is similar to that observed for other 6-

substituted (heptadienyl)Fe+ cations.[11]  

 

 
 

Oxidative decomplexation of (±)-8b–e with cerium ammonium 

nitrate (CAN) in methanol gave the corresponding free ligands  
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(±)-9b–e, respectively (Table 1). In contrast, successful 

decomplexation of cycloheptadienol complex (±)-8 f required the use 

of basic decomplexation conditions (H2O2/NaOH/MeOH) to afford (±)-9 

f. The structures of the products (±)-9c, d, and f were assigned based 

on their NMR spectral data. In particular, signals in the range of 

=5.5–6.0 ppm that integrate to four protons correspond to the 

olefinic protons of the conjugated diene portion of the molecule. The 

structural assignment of (±)-9d was further corroborated by single-

crystal X-ray diffraction analysis.[12] 

 

Treatment of (±)-9b with the Grubbs 1st generation catalyst 

(G-I) led to the ring-closed product (±)-10 (Scheme 4).[13] The 

structural assignment for 10 as the Δ6,7 isomer is based on its NMR 

spectral data. In particular, the 1H NMR spectrum of 10 integrates to 

18 H atoms, five of which are olefinic. Furthermore, the 13C NMR 

spectrum of 10 consisted of 15 signals with five olefinic methine 

carbons and one quaternary olefinic carbon. The reaction of (±)-9e 

with the Grubbs 1st generation catalyst led to a complex mixture of 

products; the use of the Grubbs 2nd generation catalyst (G-II) gave 

the 2-azabicyclo[4.4.1]undeca-5,7,9-triene 12, which slowly 

underwent decomposition in solution. Olefin isomerization has 

previously been observed as a competitive side reaction of Ru-

catalyzed olefin metathesis.[14] Presumably, the thermodynamically 

more stable product 10/12 is formed by isomerization of the initially 

formed Δ7,8 isomer 11. 

 

 
 

Reaction of (±)-9d with singlet oxygen gave (±)-13 as a single 

diastereomer (Scheme 5). Cycloaddition occurs on the diene face 

opposite to the syn-C1/C6 substituents. Similar facial selectivity was 
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also observed for substituted cycloheptadiene systems by the groups 

of Pearson and Seitz.[15]  

 

 
 

Although the reduction of endoperoxide 13 with thiourea gave the diol 

(±)-14, these conditions proved to be low yielding and slow, giving 

only a 50% yield based on consumed starting material. Alternatively, 

the use of zinc and acetic acid to reduce 13 proceeded rapidly (<1 h) 

to afford 14 in excellent yield; the reaction of 14 with acetic anhydride 

gave the diacetate (±)-15. The relative stereochemistries of 13, 14, 

and 15 were assigned on the basis of their NMR spectral data; in 

particular, the signal for H3’ of 13 appears at =2.11 ppm, whereas the 

comparable signals for H5’ of 14 and 15 appear at =2.73 and 2.85 

ppm, respectively. The relative upfield shift for H3’ of 13 (compared 

with H5’ of 14/15) may be attributed to the anisotropic effects of the 

proximal C6–C7 olefin. In addition, the signal for H4 of 15 appears as a 

broad triplet at =4.42 ppm (J=10.8 Hz); these two large couplings 

are due to axial–axial couplings to both H5’ and H3, thus indicating that 

H3 occupies an axial orientation in 15. 

 

Truncation of the styryl group present in 9d into a 

hydroxymethyl substitutent was done in the following fashion. 

Dihydroxylation of (±)-7d with commercially available AD-mix β gave 

a mixture of diastereomeric diols. Singlet oxygen cycloaddition to the 

mixture of diols gave a mixture of diastereomeric endoperoxide diols, 

which undergo cleavage with Pb(OAc)4 to give a single, racemic 

aldehyde endoperoxide (±)-16 (Scheme 6). This three-step process 

could be conducted with only a single chromatographic purification of 

the aldehyde (±)-16. Reduction of the aldehyde functionality in the 

presence of the endoperoxide proved challenging; however, this was 
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eventually accomplished by using NaBH3CN/AcOH to afford (±)-17 in 

quantitative yield. Reaction of 17 with tert-butylchlorodiphenylsilane 

(TBDPSCl) gave the silyl ether (±)-18. Reduction of the endoperoxide 

moiety with Zn/HOAc gave the diol (±)-19. The relative 

stereochemistries of 16–19 were assigned by comparison of their 1H 

NMR spectral data with those for 13–15. In particular, the signals for 

H3’ of 16, 17, and 18 appear relatively upfield at =2.11, 1.84, and 

1.78 ppm respectively. The signal for H4 of 19 appears as a doublet of 

doublet of doublets at =4.14 ppm (J=2.4, 10.0, 12.4 Hz); the two 

larger couplings are due to axial–axial couplings to H5’ and H3. 

Dihydroxylation of 19 with catalytic OsO4 gave a mixture of 

diastereomeric tetraols (±)-20 and (±)-21 (ca. 6:1), from which the 

major diastereomer can be isolated by careful chromatography. The 

relative stereochemistry of 20 was tentatively assigned on the basis of 

the facial selectivity noted by Kishi et al.[16] for dihydroxylation on the 

face of an allylic alcohol opposite to the adjacent hydroxyl groups. In 

this fashion, the racemic protected cycloheptitol (±)-20 was prepared 

from (cyclooctatetraene)Fe(CO)3 (1) in 11 steps and six 

chromatographic purifications in 22% overall yield.  
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The mixture of diastereomeric diols (—)-22 and (+)-23 

resulting from the asymmetric dihydroxylation of (±)-9d was 

separable only by preparative thin layer chromatography (Scheme 7). 

The absolute configuration of the 1’,2’-dihydroxy-2’-phenylethyl side 

chain for each was assigned based on the Sharpless mnemonic 

device.[17] Cycloaddition of the less polar cycloheptadiene 

diastereomer, (—)-22, with Nphenyl-1,3,5-triaza-2,4-dione (PTAD), 

followed by reaction with 3,5-dinitrobenzoylchloride gave (+)-24. 

Assignment of the relative stereochemistry of (+)-24 was 

accomplished by single-crystal X-ray diffraction analysis (Figure 2),[18] 

which also allowed assignment of the configurations of (—)-22 and 

(+)-23 as indicated. Separation of diastereomeric endoperoxide diols 

(+)-25 and (+)-26 proved more facile and could be accomplished by 

column chromatography on a >1 g scale. Separate singlet oxygen 

cycloaddition of (—)-22 gave (+)-25, thus allowing the configurational 

assignments for (+)-25 and (+)-26. Separate glycol cleavage of (+)-

25 and (+)-26 gave the optically active aldehyde endoperoxides (+)-

16 and (—)-16, which, upon reduction with NaBH3CN, gave the 

primary alcohols (+)-17 and (—)-17, respectively. Analysis of the 1H 

NMR spectra ([D6]acetone) of the diastereomeric (S)-MTPA (-

methoxy--trifluoromethylphenylacetate) esters[16] of (+)-17 and (—)-

17 (esters 27 and 28, respectively) indicated clear separation in one 

of the olefinic signals (27, =6.22 ppm; 28, =6.31 ppm). With this 

method, both 27 and 28 were determined to have a >94% 

diastereomeric excess (de). Separate protection of the alcohol (+)-17 

gave the silyl ether (+)-18; reduction of the endoperoxide 

functionality in (+)-18 gave diol (+)-19, and dihydroxylation afforded 

(—)-20 after chromatographic purification. In a similar fashion, (—)-

17 was successively transformed into (—)-18, (—)-19, and (+)-20, 

respectively. The overall yield of the optically active protected 

cycloheptitols (—)-20 and (+)-20, based on 1, is 15.7 and 12.2%, 

respectively. 
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Conclusion 
 

An improved preparation of (6-cycloheptadienyl)Fe(CO)3
+ 

((±)-7) was developed and the reactions of this cation with a variety 

of carbon and heteroatom nucleophiles were examined. Nucleophilic 

attack occurs preferentially at the less hindered C1 dienyl terminus. 

Decomplexation of these complexes gave cis-1,6-disubstituted 2,4-

cycloheptadienes. The racemic free ligand (6-styryl-2,4-cyclohepta-

dien-1-yl)phthalimide ((±)-9d) was transformed into the racemic and 

optically active, protected aminocycloheptitols (±)-, (—)-, and (+)-20. 

 

Experimental Section 
 

General methods: All reactions involving moisture- or air-

sensitive reagents were carried out under a nitrogen atmosphere in 

oven-dried glassware with anhydrous solvents. THF and diethyl ether 

were distilled from sodium/benzophenone. Purifications by 

chromatography were carried out by using flash silica gel (32–63 μ). 

NMR spectra were recorded on either a Varian Mercury+ 300 MHz or a 
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Varian UnityInova 400 MHz instrument. CDCl3, CD3OD, and 

[D6]acetone were purchased from Cambridge Isotope Laboratories. 1H 

NMR spectra were calibrated to =7.27 ppm for residual CHCl3, =3.31 

ppm for CD2HOD, or =2.05 ppm for [D5]acetone. 13C NMR spectra 

were calibrated from the central peak at =77.23 ppm for CDCl3, 

=49.15 ppm for CD3OD, or =29.92 ppm for [D6]acetone. Coupling 

constants are reported in Hz. The procedures for preparation of 

compounds 8 f, 8g, 9b, 9c, 9e, 9 f, 12, 13, 15b, (+)-24, and the 

(S)-Mosher esters of (+)-17 and (—)-17 can be found in the 

Supporting Information. 

 

Tricarbonyl(η5-6-cyclohepta-2,4-dien-1-yl)iron(+1) 

tetrafluoroborate ((±)-7): Dry pyridine (1.6 mL, 20 mmol) was 

added to a solution of 1 (5.00 g, 20.5 mmol) in dry acetone (25 mL) 

at -23°C under N2 and the mixture was stirred for 5 min. A 

solution/suspension of tropylium tetrafluoroborate (4.00 g, 22.5 mmol) 

in dry acetone (300 mL) was slowly added. The reaction mixture was 

stirred for 6 h at -23°C, and then for 2 h at room temperature. The 

clear reddish solution was concentrated to dryness under reduced 

pressure. Ether (100 mL) was added to the solid residue and the slurry 

was stirred for 2 h and filtered. This extraction process was repeated 

three times. The combined ethereal extracts were concentrated. The 

residue was dissolved in acetic anhydride (30 mL) and cooled to 0°C. A 

solution of tetrafluoroboric acid (30 mL, 50% in H2O) and acetic 

anhydride (30 mL) was added dropwise to the cooled solution. After 

stirring for 30 min, the slurry was poured into ether (2 L). The yellow 

precipitate was collected by vacuum filtration and the filtrate was 

washed several times with dry ether to afford (±)-7 (6.63 g, 76%) as 

a bright yellow solid. The 1H NMR spectral data for this cation was 

identical to the literature values.[6d] 

 

Tricarbonyl[dimethyl 2-(6-styryl-2,4-cycloheptadien-

1yl)propanedioate]iron ((±)-8 a): A solution of nBuLi (0.20 mL, 

1.6м in hexane, 0.43 mmol) was added to a stirred solution of 

dimethyl malonate (0.060 mL, 0.43 mmol) in THF (6 mL) at 0°C under 

nitrogen and then stirred for 30 min. Cation (±)-7 (100 mg, 0.24 

mmol) was added to the stirring mixture and the mixture was stirred 

for additional 45 min and gradually warmed to room temperature. The 

reaction was quenched with water and extracted several times with 
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ether, washed with brine, dried (Na2SO4), and concentrated. The 

residue was purified by column chromatography (SiO2, hexanes/ethyl 

acetate 7:3) to afford (±)-8a (50 mg, 46%) as a yellow oil. 1H NMR 

(400 MHz, CDCl3): =7.35–7.17 (m, 5H; Ar-H), 6.32 (d, J=16.0 Hz, 

1H; H9), 6.01–5.92 (dd, J=8.4, 15.6 Hz, 1H; H8), 5.33–5.26 (m, 2H; 

H3, H4), 3.74 (s, 3H; OCH3), 3.72 (s, 3H; OCH3), 3.28 (d, J=6.4 Hz, 

1H; CHE2), 2.91–2.72 (m, 4H; H1, H2, H5, H6), 1.05 (q, J=12.6 Hz, 1H; 

H7), 0.90–0.80 ppm (m, 1H; H7’); 13C NMR (100 MHz, CDCl3): =210.9 

(M—C=O), 167.6 (CO2Me), 137.3, 136.3, 128.8, 128.7, 127.4, 126.2, 

88.3, 88.0, 61.8, 61.6, 59.8, 58.6, 52.7, 43.0, 39.1, 33.5 ppm; HRMS 

(FAB) m/z calcd for C23H22O7Fe: 466.0715 [M+]; found: 466.0707. 

 

Tricarbonyl[(6-styryl-2,4-cycloheptadien-1-yl)phthalimide]iron 

((±)-8 d): Solid potassium phthalimide (0.659 g, 3.56 mmol) was 

added to a stirred suspension of (±)-7 (1.00 g, 2.37 mmol) in dry 

CH2Cl2 (100 mL) under N2 at room temperature. The reaction mixture 

was stirred for 12 h and then quenched with water. The reaction 

mixture was extracted several times with CH2Cl2, dried (Na2SO4), and 

concentrated. The residue was purified by column chromatography 

(SiO2, hexanes/ethyl acetate 4:1) to afford (±)-8d (820 mg, 72%) as 

a light-yellow solid. M.p. 185–188°C; 1H NMR (400 MHz, CDCl3): 

=7.88–7.80 and 7.78–7.70 (m, 4H; Phth), 7.20–7.35 (m, 5H; C6H5), 

6.38 (d, J=15.6 Hz, 1H; H9), 6.01 (dd, J=8.2, 15.8 Hz, 1H; H8), 5.57 

(dd, J=5.2, 7.2 Hz, 1H; H3 or H4), 5.44 (dd, J=5.2, 7.4 Hz, 1H; H3 or 

H4), 4.76 (dd, J=4.0, 12.4 Hz, 1H; H1), 3.03–2.95 (m, 2H; H2, H6), 

2.75 (d, J=6.8 Hz, 1H; H5), 2.01 (q, J=12.9 Hz, 1H; H7’), 1.59–1.48 

ppm (br d, J=12.9 Hz, 1H; H7); 13C NMR (100 MHz, CDCl3): =210.1 

(M-C=O), 167.9 (N—C=O), 137.3, 135.4, 134.2, 132.0, 129.1, 128.8, 

127.6, 126.3, 123.4, 89.5, 88.5, 61.8, 56.4, 50.7, 43.6, 33.7 ppm; 

elemental analysis calcd (%) for C26H19NO5Fe: C 64.88, H 3.98; found: 

C 64.85, H 3.97. 

 

(6-Styryl-2,4-cycloheptadien-1-yl)phthalimide ((±)-9 d): The 

decomplexation of (±)-8d (500 mg, 1.04 mmol) in methanol with ceric 

ammonium nitrate (1.71 g, 3.12 mmol) was carried out in a similar 

fashion to the decomplexation of (±)-8 c. Purification of the residue by 

column chromatography (SiO2, hexanes/ethyl acetate 3:1) gave (±)-

8d (315 mg, 88%) as a light-yellow solid. M.p. 107–108°C; 1H NMR 

(400 MHz, CDCl3): =7.88–7.80 and 7.75–7.56 (ABq, 4H; Phth), 7.35–
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7.17 (m, 5H; C6H5), 6.45 (d, J=16.0 Hz, 1H; H9), 6.16 (dd, J=8.2, 

15.9 Hz, 1H; H8), 5.88–5.75 (m, 4H; CH=CH—CH=CH), 5.25 (br d, 

J=11.2 Hz, 1H; H1), 3.60–3.50 (m, 1H; H6), 2.84 (dt, J=11.2, 12.8 Hz, 

1H; H7), 2.06–2.00 ppm (m, 1H; H7’); 13C NMR (100 MHz, CDCl3): 

=167.7 (CO), 137.2, 136.9, 134.1, 133.6, 132.2, 132.0, 129.8, 

128.6, 127.3, 126.2, 124.0, 123.9, 123.3, 50.5 (C1), 44.0 (C6), 38.2 

ppm (C7); elemental analysis calcd (%) for C23H19NO2: C 80.92, H 

5.61; found: C 80.61, H 5.67.  

 

rac-2-Formyl-4-phthalimido-6,7-dioxabicyclo[3.2.2]non-8-ene 

((±)-16): Methane sulfonamide (60 mg, 0.59 mmol) was added at 

room temperature to a mixture of (±)-9d (1.00 g, 2.93 mmol) in a 

mixture of tBuOH (20 mL), ethyl acetate (5 mL), and water (25 mL). 

The mixture was cooled to 0°C with an ice bath and then solid AD-mix 

β (4.325 g) was added. The reaction mixture was stirred for 34 h at 

0°C, after which time, monitoring by TLC indicated the disappearance 

of starting material. The reaction was quenched with water (20 mL). 

The mixture was transferred to a separatory funnel and the top, 

organic layer was decanted. The aqueous layer was extracted several 

times with ethyl acetate and the combined organic layers were dried 

(NaSO4), concentrated, and the residue was purified by column 

chromatography (SiO2, hexanes/ethyl acetate=2:3) to afford a 1:1 

mixture of diastereomeric diols (1.050 g, 96%) as a colorless foam. 

This material was used in the next step without further 

characterization. Tetraphenylporphorine (15 mg) was added to a 

solution of the diol mixture (1.00 g, 2.67 mmol) in CHCl3 (30 mL). The 

darkpurple solution was irradiated for a 5 h period with a commercially 

available 100W halogen lamp while ultra-pure O2 was bubbled through 

the solution. The organic solvent was removed to afford a mixture of 

diastereomeric endoperoxide diols (1.00 g, 92%) that were used in the 

next step without further purification. Solid Pb(OAc)4 (544 mg, 1.23 

mmol) was added to a solution of the endoperoxide diols (500 mg, 

1.29 mmol) in dry CH2Cl2 (25 mL) at -78°C. The mixture was stirred 

for 30 min, and then quenched with water. The mixture was extracted 

several times with CH2Cl2, and the combined extracts were dried 

(Na2SO4) and concentrated. Purification of the residue by column 

chromatography (SiO2, hexanes/ethyl acetate 3:2) gave (±)-16 (244 

mg, 63%) as a colorless solid. M.p. 179–180°C; 1H NMR (400 MHz, 

CDCl3): =9.65 (s, 1H; CHO), 7.88–7.78 (m, 4H; Phth), 6.77 (dd, 
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J=7.2, 9.3 Hz, 1H; CH=CH), 6.43 (dd, J=7.2, 9.3 Hz, 1H; CH=CH), 

5.26 (d, J=7.2 Hz, 1H; H1), 4.86–4.80 (m, 2H; H2, H5), 3.16 (dd, 

J=5.0, 13.0 Hz, 1H; H4), 2.11 (q, J=13.0 Hz, 1H; H3’), 2.05–1.97 ppm 

(m, 1H; H3); 13C NMR (100 MHz, CDCl3): =199.0 (CHO), 167.7 (N-

C=O), 134.6, 131.7, 129.8, 124.6, 123.7, 80.0, 75.4, 54.3, 52.1, 23.9 

ppm; HRMS (ESI): m/z calcd for C16H13NO5+Na+:322.0686 [M+Na+]; 

found: 322.0685. 

 

Asymmetric dihydroxylation of (±)-9d: A 25 mL round-bottomed 

flask was charged with a mixture of tBuOH (3 mL) and water (3 mL) 

and stirred for 5 min at room temperature. Solid AD-mix β (0.826 g) 

was added to the stirring solution followed by the addition of methane 

sulfonamide (60 mg, 0.59 mmol). The mixture was stirred until the 

two layers were separated. The mixture was cooled to 0°C, at which 

point an inorganic salt was precipitated. Alkene (200 mg, 0.59 mmol) 

was added in one portion and the mixture was stirred for 72 h while 

maintaining the temperature at 0°C. The reaction mixture was 

quenched with water, extracted several times with ethyl acetate, and 

the combined extracts were washed with brine. The organic layer was 

concentrated under reduced pressure. The residue was purified by 

column chromatography (SiO2, hexanes/ethyl acetate=1:1) to give a 

mixture of diastereomers as a colorless oily liquid (149 mg, 71%). The 

diastereomers could be separated by preparative TLC (SiO2, 

hexanes/ethyl ether 1:1) to afford a less polar fraction (—)-22 and a 

more polar fraction (+)-23. 

 

6R-(1’R,2’R-Dihydroxy-2’-phenylethyl)-2,4-cycloheptadien-1S-

yl)phthalimide((—)-22): =—5.1 (c=0.500 in CH2Cl2); 1H NMR 

(300 MHz, CDCl3): =7.80–7.72 (m, 2H; Phth), 7.68–7.60 (m, 2H; 

Phth), 7.35–7.29 (m, 5H; C6H5), 5.90–5.77 (m, 3H; olefinic H), 5.57 

(dd, J=1.5, 11.1 Hz, 1H; olefinic H), 4.99 (qd, J=2.8, 11.1 Hz, 1H; 

H1), 4.65 (d, J=6.9 Hz, 1H; H9), 3.68–3.60 (m, 1H; H8), 2.95 (br s, 

1H; OH), 2.86 (q, J=11.4 Hz, 1H; H7), 2.71 (d, J=4.2 Hz, 1H; OH), 

2.60 (br d, J=11.1 Hz, 1H; H6), 1.82 ppm (br d, J=12.9 Hz, 1H; H7’); 
13C NMR (75 MHz, CDCl3): = 167.9, 140.9, 134.2, 133.1, 132.9, 

132.1, 128.9, 128.5, 126.9, 125.8, 124.6, 123.4, 79.2, 75.1, 50.9, 

41.5, 35.4 ppm; elemental analysis calcd (%) for C23H21O4N•3/4H2O: 

C 71.02, H 5.83; found: C 71.19, H 5.83. 
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6S-(1’R,2’R-Dihydroxy-2’-phenylethyl)-2,4-cycloheptadien-1R-

yl)phthalimide ((+)-23): =+74.1 (c=0.486 in CH2Cl2); 1H NMR 

(300 MHz, CDCl3): =7.90–7.80 (m, 2H; Phth), 7.78–7.70 (m, 2H; 

Phth), 7.41–7.25 (m, 5H; C6H5), 5.90–5.76 (m, 3H; olefinic H), 5.67 

(br d, J=11.7 Hz, 1H; olefinic H), 5.05 (br d, J=9.6 Hz, 1H; H1), 4.68 

(d, J=6.9 Hz, 1H; H9), 3.84–3.77 (m, 1H; H8), 3.12 (br s, 1H; OH), 

2.91 (br s, 1H; OH), 2.71 (td, J=11.1, 12.9 Hz, 1H; H7), 2.58 (br d, 

J=10.8 Hz, 1H; H6), 1.98 ppm (br s, 1H; H7); 13C NMR (75 MHz, 

CDCl3): =167.9 (N—C=O), 141.0, 136.5, 134.2, 132.9, 132.2, 128.9, 

128.5, 126.7, 125.4, 124.5, 123.5, 79.3, 75.3, 51.2, 41.2, 31.6 ppm. 

 

Singlet oxygen cycloaddition of diastereomeric diol mixture: A 

50 mL two-necked round-bottomed flask, equipped with a condenser, 

was charged with dienediol (1.30 g, 3.46 mmol), dry CHCl3 (30 mL), 

and tetraphenylporphorine (25 mg, 0.041 mmol). The dark-purple 

solution was irradiated with a 100 W tungsten-halogen lamp for 6 h 

while ultra-pure O2 was bubbled through the solution. The reaction 

mixture was concentrated under vacuum and the residue was purified 

by column chromatography (SiO2, hexanes/ethyl acetate 3:2) to give a 

less polar endoperoxide (+)-25 (671 mg, 48%) and a more polar 

endoperoxide (+)-26 (626 mg, 44%) as foamy compounds. 

 

4-(1’R,2’R-Dihydroxy-2’-phenylethyl)-2-phthalimido-6S,7R-

dioxabicyclo-[3.2.2]non-8-ene ((+)-25): M.p. 97–98°C; 

=+41.0 (c=0.0011 in CH2Cl2); 1H NMR (300 MHz, CDCl3): =7.85–7.71 

(m, 4H; Phth), 7.39–7.26 (m, 5H; C6H5), 6.71 (dd, J=7.2, 9.1 Hz, 1H; 

CH=CH), 6.41 (dd, J=7.5, 8.4 Hz, 1H; CH=CH), 5.18 (d, J=7.2 Hz, 

1H; H1), 4.73–4.68 (m, 3H; H2, H5, H10), 3.43–3.39 (narrow m, 1H; 

H9), 2.68 (d, J=3.9 Hz, 1H; OH), 2.48 (d, J=4.8 Hz, 1H; OH), 2.29 

(dd, J=5.7, 12.6 Hz, 1H; H3’), 2.10–2.03 (m, 1H; H4), 1.60 ppm (br d, 

J=12.6 Hz, 1H; H3); 13C NMR (75 MHz, CDCl3): =167.8, 141.0, 134.5, 

131.8, 128.9, 128.8, 128.4, 126.5, 125.8, 123.6, 79.8, 78.1, 76.9, 

74.0, 52.2, 43.8, 27.6 ppm; HRMS (ESI): m/z calcd for 

C23H21NO6+Na+: 430.1261 [M+Na+]; found: 430.1254. 

 

4-(1’R,2’R-Dihydroxy-2’-phenylethyl)-2-phthalimido-6R,7S-

dioxabicyclo-[3.2.2]non-8-ene ((+)-26): =+33 (c=0.0011 in 

CH2Cl2); 1H NMR (300 MHz, CDCl3): =7.90–7.70 (m, 4H; Phth), 7.40–

7.25 (m, 5H; C6H5), 6.65 (dd, J=7.6, 8.8 Hz, 1H; CH=CH), 6.47 (dd, 
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J=8.0, 8.8 Hz, 1H; CH=CH), 4.73–4.65 (m, 2H), 4.58 (dd, J=4.4, 12.8 

Hz, 1H; H2), 4.49 (dd, J=2.4, 6.9 Hz, 1 H), 3.80–3.75 (narrow m, 1H; 

H9), 3.25–3.10 (br s, 2H; 2OH), 2.23 (q, J=12.6 Hz, 1H; H3’), 2.07–

1.98 (m, 1H; H4), 1.65 ppm (td, J=4.0, 12.8 Hz, 1H; H3); 13C NMR (75 

MHz, CDCl3): =167.8, 140.7, 134.4, 131.8, 129.0, 128.7, 127.3, 

126.6, 126.5, 123.5, 81.4,79.7, 77.0, 75.1, 52.4, 44.0, 23.4 ppm. 

HRMS (ESI): m/z calcd for C23H21NO6+Na+: 430.1261 [M+Na+]; found: 

430.1252. 

 

2R-Formyl-4S-phthalimido-6S,7R-dioxabicyclo[3.2.2]non-8-ene 

((+)-16): solid Pb(OAc)4 (1.061 g, 2.396 mmol) was added to a 

solution of less polar endoperoxide diol (+)-25 (650 mg, 1.60 mmol) 

dissolved in dry CH2Cl2 (30 mL). The reaction mixture was stirred for 

15 min and then quenched with water, and the mixture was extracted 

several times with CH2Cl2. The combined organic extracts were dried 

(Na2SO4) and concentrated, and the residue was purified by column 

chromatography (SiO2, hexanes/ethyl acetate 3:2) to afford (+)-16 

(439 mg, 93%) as a colorless solid. M.p. 55–57°C; =+88 

(c=0.0011 in CH2Cl2); the NMR spectral data for (+)-16 was identical 

to that for the racemic material (±)-16. 

 

2S-Formyl-4R-phthalimido-6R,7S-dioxabicyclo[3.2.2]non-8-ene 

((—)-16): The glycol cleavage of endoperoxide diol (+)-26 (46 mg, 

0.11 mmol) was carried out in a similar fashion to the glycol cleavage 

of (+)-25 to afford (—)-16 (23 mg, 73%). M.p. 55–57°C; =—100 

(c=0.287 in CH2Cl2). The NMR spectral data for (—)-16 was identical 

to that for the racemic material (±)-16. 

 

4-Hydroxymethyl-2-phthalimido-8,9-dioxabicyclo[3.2.2]non-6-

ene ((±)-17): Compound (±)-16 (50.0 mg, 0.167 mmol) was added 

to a solution of THF (10 mL) and glacial acetic acid (2 mL) and the 

mixture was stirred for 5 min. Solid NaBH3CN (16 mg, 0.254 mmol) 

was added, and monitoring of the reaction by TLC indicated complete 

disappearance of starting material after 1 h. The solvent was 

evaporated and the residue was purified by column chromatography 

(SiO2, hexanes/ethyl acetate 2:3) to afford (±)-17 (51 mg, quant.) as 

a colorless solid. M.p. 139–141°C; 1H NMR (400 MHz, CDCl3): =7.90–

7.72 (m, 4H; Phth), 6.77 (dd, J=7.2, 9.8 Hz, 1H; CH=CH), 6.45 (dd, 

J=6.8, 9.8 Hz, 1H; CH=CH), 4.98 (d, J=7.2 Hz, 1H; H1), 4.81–4.73 
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(m, 2H; H2, H5), 3.66–3.60 (m, 1H; CH2O), 3.47–3.38 (m, 1H; CH2O), 

2.40–2.31 (m, 1H; H4), 1.84 (q, J=12.8 Hz, 1H; H3’), 1.61 (td, J=4.4, 

12.8 Hz, 1H; H3), 1.53 ppm (br s, 1H; OH); 13C NMR (100 MHz, 

[D6]acetone): =167.8, 134.5, 131.9, 129.7, 124.9, 123.6, 80.0, 78.3, 

64.2, 52.3, 44.7, 26.6 ppm; HRMS (ESI): m/z calcd for 

C16H15NO5+Na+: 324.0842 [M+Na+]; found: 324.0839. 

 

4S-Hydroxymethyl-2S-phthalimido-8,9-dioxabicyclo[3.2.2]non-

6-ene ((+)-17): The reduction of (+)-16 (400 mg, 1.34 mmol) was 

carried out in a similar fashion to the reduction of (±)-16 to afford the 

optically active primary alcohol (+)-17 (329 mg, 82%). M.p. 163–

166°C;  =+119 (c=0.00176 in CH2Cl2). The NMR spectral data for 

(+)-17 was identical to that for the racemic compound (±)-17. 

 

4R-Hydroxymethyl-2R-phthalimido-8,9-dioxabicyclo[3.2.2]non-

6-ene ((±)-17): The reduction of (—)-16 (360 mg, 1.204 mmol) was 

carried out in a similar fashion to the reduction of (±)-16, to afford the 

optically active primary alcohol (—)-17 (281 mg, 78%). M.p. 167–

169°C;  =—95 (c=0.00082 in CH2Cl2). The NMR spectral data for 

(—)-17 was identical to that for the racemic compound (±)-17. 

 

4-(tert-Butyldiphenylsilyloxy)methyl-2-phthalimido-8,9-

dioxabicyclo-[3.2.2]non-6-ene ((±)-18): Imidazole (18 mg, 0.266 

mmol) was added to a solution of (±)-17 (40.0 mg, 0.133 mmol) in 

freshly distilled CH2Cl2 (5 mL) cooled to 0°C, and was followed by the 

dropwise addition of tert-butylchlorodiphenylsilane (44 mg, 0.159 

mmol) over a period of 15 min at 0°C. After stirring at room 

temperature for 3 h, monitoring of the reaction mixture by TLC 

indicated the complete disappearance of starting material. The mixture 

was quenched with water and extracted several times with CH2Cl2. The 

combined extracts were concentrated and the residue was purified by 

column chromatography (SiO2, hexanes/ethyl acetate 4:1) to give (±)-

18 (65 mg, 91%) as a colorless foam. M.p. 44–46°C; 1H NMR (400 

MHz, CDCl3): =7.87–7.70 (m, 4H; Phth), 7.65–7.60 (m, 4H; Ar-H), 

7.48–7.37 (m, 6H; Ar-H), 6.71 (ddd, J=1.2, 7.2, 9.6 Hz, 1H; CH=CH), 

6.25 (ddd, 0.8, 7.2, 9.2 Hz, 1H; CH=CH), 5.01 (d, J=7.2 Hz, 1H; H1), 

4.75 (dd, J=4.8, 12.8 Hz, 1H; H2), 4.72 (d, J=6.8 Hz, 1H; H5), 3.60 

(dd, J=5.0, 10.4 Hz, 1H; CH2OSi), 3.36 (dd, J=8.6, 10.6, 1H; CH2OSi), 

2.50–2.38 (m, 1H; H4), 1.78 (q, J=12.7 Hz, 1H; H3’), 1.47 (td, J=4.8, 
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12.8 Hz, 1H; H3), 1.07 ppm (s, 9H; tBu); 13C NMR (100 MHz, CDCl3): 

=167.7, 135.7, 134.4, 133.3, 131.9, 130.0, 129.4, 128.0, 125.0, 

123.5, 80.0, 78.6, 65.0, 52.4, 44.5, 27.0, 26.3, 19.4 ppm. HRMS 

(ESI): m/z calcd for C32H33NO5Si+Na+: 562.2020 [M+Na+]; found: 

562.2010. 

 

4S-(tert-Butyldiphenylsilyloxy)methyl-2S-phthalimido-8,9-

dioxabicyclo-[3.2.2]non-6-ene ((+)-18): Protection of (+)-17 

(200 mg, 0.664 mmol) with tert-butyldiphenylsilyl chloride was carried 

out in a similar fashion to the reaction of (±)-17 to afford (+)-18 (311 

mg, 87%). M.p. 44–47°C;  =+48 (c=0.0013 in CH2Cl2). The NMR 

spectral data for (+)-18 was identical to that for the racemic 

compound (±)-18.  

 

4R-(tert-Butyldiphenylsilyloxy)methyl-2S-phthalimido-8,9-

dioxabicyclo-[3.2.2]non-6-ene ((—)-18): Protection of (—)-17 

(200 mg, 0.664 mmol) with tert-butyldiphenylsilyl chloride was carried 

out in a fashion similar to the reaction of (±)-17, except that the 

reaction time was extended to 15 h, to afford (—)-18 (358 mg, 99%). 

M.p. 45–47°C;  =—48 (c=0.0012 in CH2Cl2). The NMR spectral 

data for (—)-18 was identical to that for the racemic compound (±)-

18. 

 

6-(tert-Butyldiphenylsilyloxy)methyl-3,7-dihydroxy-4-

phthalimido-cycloheptene ((±)-19): Activated zinc dust (55 mg) 

was added to a solution of (±)-18 (55.0 mg, 0.102 mmol) in CH2Cl2 (5 

mL). Acetic acid (61 mg, 1.020 mmol) dissolved in CH2Cl2 (3 mL) was 

added dropwise over a 10 min period to this suspension. The reaction 

mixture was stirred for 15 min at room temperature, the solvent was 

evaporated, and the residue was purified by column chromatography 

(SiO2, hexanes/ethyl acetate 2:3) to afford (±)-19 (52 mg, 94%) as a 

colorless foam. M.p. 51–53°C; 1H NMR (400 MHz, CDCl3): =7.85–

7.63 (m, 8H; Phth, Ar-H), 7.45–7.34 (m, 6H; Ar-H), 5.80 (td, J=2.8, 

12.8 Hz, 1H; CH=CH), 5.68 (td, J=2.6, 12.8 Hz, 1H; CH=CH), 4.93–

4.87 (m, 1H; H3), 4.45 (br d, J=9.6 Hz, 1H; H7), 4.14 (ddd, J=2.4, 

10.0, 12.4 Hz, 1H; H4), 4.07 (d, J=2.4 Hz, 1H; OH). 3.75 (dd, J=4.0, 

10.2 Hz, 1H; CH2OSi), 3.69 (dd, J=7.2, 10.2 Hz, 1H; CH2OSi), 2.38 

(td, J=12.0, 14.8 Hz, 1H; H5’), 2.00–1.90 (brm, 1H; H6), 1.87 (d, 

J=6.8 Hz, 1H; OH), 1.56 (td, J=2.4, 14.4 Hz, 1H; H5), 1.07 ppm (s, 
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9H; tBu); 13C NMR (100 MHz, CDCl3): =168.7, 136.3, 135.8, 135.7, 

134.2, 132.7, 132.07, 132.02, 130.23, 130.17, 128.11, 128.06, 

123.4, 74.1, 70.2, 68.7, 55.0, 44.8, 33.1, 27.0, 19.3 ppm; elemental 

analysis calcd (%) for C32H35NO5Si: C 70.95, H 6.51; found: C 70.66, 

H6.60. 

 

6S-(tert-Butyldiphenylsilyloxy)methyl-3S,7R-dihydroxy-4S-

phthalimidocycloheptene ((+)-19): The reduction of endoperoxide 

(+)-18 (80 mg, 0.15 mmol) with Zn and acetic acid was carried out in 

a similar fashion to the reduction of the racemic endoperoxide (±)-18 

to afford (+)-19 (73 mg, 91%). M.p. 53–55°C;  =+17 (c=0.0011 

in CH2Cl2). The NMR spectral data for (+)-19 was identical to that for 

the racemic compound (±)-19. 

 

6R-(tert-Butyldiphenylsilyloxy)methyl-3R,7S-dihydroxy-4S-

phthalimidocycloheptene ((±)-19): The reduction of endoperoxide 

(—)-18 (80 mg, 0.15 mmol) with Zn and acetic acid was carried out in 

a similar fashion to the reduction of the racemic endoperoxide (±)-18 

to afford (—)-19 (80 mg, 91%). M.p. 57–59°C;  =—11 (c=0.00062 

in CH2Cl2). The NMR spectral data for (—)-19 was identical to that for 

the racemic compound (±)-19. 

 

6-(tert-Butyldiphenylsilyloxy)methyl-2,3,4,5-tetrahydroxy-1-

phthalimidocycloheptane ((±)-20): A solution of N-

methylmorpholine N-oxide (14 mg, 0.122 mmol) in water (1 mL) was 

added to a solution of (±)-19 (44 mg, 0.081 mmol) in acetone (5 mL), 

followed by the addition of a solution of OsO4 (0.05 mL, 0.2м in 

toluene, 0.01 mol). The reaction mixture was stirred for 2 h at room 

temperature under N2. The solvent was evaporated and the residue 

was purified by column chromatography (SiO2, hexanes/ethyl acetate 

1:4) to afford (±)-20 (41 mg, 88%) as a colorless foam. M.p. 86–

87°C; 1H NMR (400 MHz, CD3OD): =7.90–7.78 (m, 4H; Phth), 7.65–

7.55 (m, 4H; Ar-H), 7.35–7.22 (m, 6H; Ar-H), 4.50 (dd, J=7.0, 10.2 

Hz, 1H; H2), 4.11 (dt, J=1.6, 11.0 Hz, 1H; H1), 3.97 (d, J=4.8 Hz, 1H; 

H4), 3.89 (dd, J=4.2, 9.8 Hz, 1H; H5), 3.83 (d, J=6.8 Hz, 1H; H3), 

3.68–3.58 (m, 2H; H8, H8’), 2.60 (td, J=11.2, 14.4 Hz, 1H; H7), 1.76–

1.67 (m, 1H; H6), 1.55 (d, J=14.0 Hz, 1H; H7’); 0.99 ppm (s, 9H; 

tBu); 13C NMR (100 MHz, CD3OD): =169.8, 136.9, 136.8, 135.4, 

133.5, 130.93, 130.88, 128.88, 128.84, 124.2, 78.5, 75.8, 73.6, 72.1, 
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67.9, 58.5, 29.4, 27.5, 20.2 ppm; HRMS (ESI): m/z calcd for 

C32H37NO7Si+Na+: 598.2232 [M+Na+]; found: 598.2219. 

 

6S-(tert-Butyldiphenylsilyloxy)methyl-2R,3S,4R,5S-

tetrahydroxy-1Sphthalimido-cycloheptane (—)-20: The 

dihydroxylation of (+)-19 (65 mg, 0.12 mmol) with catalytic OsO4 was 

carried out in a fashion to the dihydroxylation of (±)-19, to afford (—

)-20 (61 mg, 88%). M.p. 86–88°C;  =—17 (c=0.0010 in MeOH). 

The NMR spectral data for (—)-20 was identical to that for the racemic 

compound (±)-20. 

 

6R-(tert-Butyldiphenylsilyloxy)methyl-2S,3R,4S,5R-

tetrahydroxy-1Rphthalimido-cycloheptane ((+)-20): The 

dihydroxylation of (—)-19 (75 mg, 0.138 mmol) with catalytic OsO4 

was carried out in a similar fashion to the dihydroxylation of (±)-19 to 

afford (+)-20 (70 mg, 88%). M.p. 74–76°C;  =+14 (c=0.00090 in 

MeOH). The NMR spectral data for (+)-20 was identical to that for the 

racemic compound (±)-20. 
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