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Abstract
Background: Intelligent management of wearable applications in rehabilitation requires an
understanding of the current context, which is constantly changing over the rehabilitation process
because of changes in the person's status and environment. This paper presents a dynamic
recurrent neuro-fuzzy system that implements expert-and evidence-based reasoning. It is intended
to provide context-awareness for wearable intelligent agents/assistants (WIAs).

Methods: The model structure includes the following types of signals: inputs, states, outputs and
outcomes. Inputs are facts or events which have effects on patients' physiological and rehabilitative
states; different classes of inputs (e.g., facts, context, medication, therapy) have different nonlinear
mappings to a fuzzy "effect." States are dimensionless linguistic fuzzy variables that change based on
causal rules, as implemented by a fuzzy inference system (FIS). The FIS, with rules based on
expertise and evidence, essentially defines the nonlinear state equations that are implemented by
nuclei of dynamic neurons. Outputs, a function of weighing of states and effective inputs using
conventional or fuzzy mapping, can perform actions, predict performance, or assist with decision-
making. Outcomes are scalars to be extremized that are a function of outputs and states.

Results: The first example demonstrates setup and use for a large-scale stroke neurorehabilitation
application (with 16 inputs, 12 states, 5 outputs and 3 outcomes), showing how this modelling tool
can successfully capture causal dynamic change in context-relevant states (e.g., impairments, pain)
as a function of input event patterns (e.g., medications). The second example demonstrates use of
scientific evidence to develop rule-based dynamic models, here for predicting changes in muscle
strength with short-term fatigue and long-term strength-training.

Conclusion: A neuro-fuzzy modelling framework is developed for estimating rehabilitative change
that can be applied in any field of rehabilitation if sufficient evidence and/or expert knowledge are
available. It is intended to provide context-awareness of changing status through state estimation,
which is critical information for WIA's to be effective.

Background
Emerging wearable technologies are expected to consti-

tute an important component of the vision of user-cen-
tered, 21st-century rehabilitative healthcare [1-4]. Indeed,

Published: 28 June 2005

Journal of NeuroEngineering and Rehabilitation 2005, 2:15 doi:10.1186/1743-
0003-2-15

Received: 10 February 2005
Accepted: 28 June 2005

This article is available from: http://www.jneuroengrehab.com/content/2/1/15

© 2005 Wang and Winters; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.jneuroengrehab.com/content/2/1/15
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15985181
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Journal of NeuroEngineering and Rehabilitation 2005, 2:15 http://www.jneuroengrehab.com/content/2/1/15

Page 2 of 17
(page number not for citation purposes)

the consensus recommendations of a workshop on future
homecare technologies envisioned intelligent wearable
sensors as one of the top trends [1]. The top two knowl-
edge gaps that were identified targeted the need for better
[1,2]:

1. information reduction algorithms and sense-making
tools, and

2. outcomes and functional assessment tools.

This project addresses these gaps in knowledge for the area
of rehabilitative healthcare.

The first of these recognizes the challenge of effectively
integrating and using the massive amount of sensor-based
data that can be potentially be collected. It is well estab-
lished in the intelligent systems community that a key bar-
rier to intelligent use of information is context-awareness.
With humans, this "context" is always changing as their
state of health and their present environment or goals
change. Relevant "states" of a person with disability can
range from a degree of impairment (e.g., spasticity) to a
perception of pain, and such states frequently change over
the course of a day (e.g., due to medication). Thus a first
goal is context-awareness , which for an intelligent weara-
ble technology includes estimation of relevant states of
the person. For instance, how a certain sensed event is
interpreted can be influenced by the current "state" of per-
son (e.g., degree of spasticity, pain), as well the history of
past inputs (e.g., medications taken recently).

In response to the second of these, our original work on
this project was motivated by the desire to create an intel-
ligent system that was based on the mind-set of the reha-
bilitation practitioner. This led to the aim of designing a
prognosis-prediction system that integrated the stages
identified in clinical practise guidelines [5], a dynamic
process that includes diagnosis (based on factual and con-
text data), prognosis (prediction of outcomes, based on
certain assumptions), a "clinical algorithm" of interven-
tions (inputs to the human system), allocation of human
resources (e.g., practitioner time), and outcomes measure-
ment. While we started from the perspective of planning
to use consensus expert experience to build models, a key
trend in clinical rehabilitation has been a focus on evi-
dence-based practice [2,5,6]. Also, we noted that the com-
mon goal of optimizing therapeutic interventions (e.g.,
movement therapy) over the continuum of care [6,7]
bears striking similarity to classic engineering optimiza-
tion problem [3].

The above concepts provided the core motivation for our
Intelligent Telerehabilitation Assistant (ITA) project
[1,3,8,9]. There are two core parts to our vision for mobile

ITA technology [1]: i) a user-customized interface that
supports multimedia teleconferencing and wireless com-
munication, and collection of sensor-and user-based
information that can be used to determine events; and ii)
embedded intelligent "soft" computing, based on event-
driven expert system modules. This paper addresses a part
of the latter, which to us appears to be the greater chal-
lenge. Given this focus, perhaps a better term than ITA, at
least for mobile applications, would be a wearable intelli-
gent assistant/agent (WIA). Use of WIA emphasizes the
need for context-awareness and prognosis prediction to a
greater degree, with the focus on the person rather than on
the connection. Aims of a WIA include: i) providing data
within an ecologically valid setting, ii) improving timely
assessment of health status, iii) identifying and predicting
client outcomes (a running prognosis); and iv) assisting
with intervention strategies.

Notice the inclusion of both "assistant" and "agent" for a
WIA. The former is motivated by the disability commu-
nity, and the latter by the intelligent systems community.
An intelligent assistant is an assistive technology that
directly interacts with and supports the user-client by pro-
viding strategic assistance (e.g., with completion of a cer-
tain task; providing reminders related to a certain
assessment or therapeutic protocol; using performance
monitoring to change settings during a therapeutic task).
In contrast, an intelligent agent recognizes events and/or
senses data on the user's behalf, and once triggered (nor-
mally by using a previously designed rule database), can
perform certain actions (e.g., process and manage data,
prompt a session between the client and a remote site,
negotiate with other agents) while requiring minimal
attentional resources by the user. We view ITAs and WIAs
as falling into two categories [3]:

• Task-based, assistive modules that facilitate ease of use
and implementation of evaluative and therapeutic proto-
cols, and

• Decision-support modules that assist practitioners and
consumers with outcomes assessment and with optimiz-
ing the rehab intervention strategy.

The present contribution can be viewed as an encapsu-
lated, distributed intelligent processor that is used by a
WIA, or more specifically as a resource for a WIA.

Importantly, it is designed in two stages. In the develop-
ment stage, the designer possesses a suite of tools for cre-
ating the model. This model includes identification of:

• input events and facts,
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• the bio-states of interest that are expected to change over
time (and whose estimation provides context-awareness),

• performance outputs to be predicted by the model (and
in some cases can be compared to sampled measures),
and

• desired outcomes (optional capability).

All of these are represented as signals, and furthermore
signals that change over time. Indeed, the aim of clinical
rehabilitation is to cause change that is over-and-above
spontaneous healing bioprocesses [3], and to study such
processes one must also model intrinsic healing mecha-
nisms. Thus what is needed is a dynamic model that cap-
tures change, and can furthermore predict future change
(make a "prognosis") if assumptions are made on future
inputs (e.g., a "clinical algorithm" of interventions is
implemented). The need to model change in states such as
"impairment" implies a model that includes differential
equations, and the desire to "remodel" the system sug-
gests adaptive control mechanisms. Yet the likely designer
of the system is one with experience and knowledge of
available evidence, i.e. a practitioner or a clinical
researcher. This makes a strong case for using rule-based
fuzzy inference , which is well-known for its ability to both
capture expert reasoning and provide robust system per-
formance [10,11]. It also suggests that any model devel-
opment environment must have carefully-designed
graphical user interface (GUI) windows that can help
guide the designer through the process of defining linguis-
tically-meaningful signals (inputs, states, outputs, out-
comes) and using rules to establish how changes in states
will happen in response to input events and current states.
More broadly, it can be viewed as a bio-modelling tool for
uses rules to generate nonlinear differential equations that
can be used by stakeholders ranging from telepractitioners
to basic scientists who are addressing healing and remod-
elling bioprocesses.

When formulated in this way, the structure bears direct
similarity to the classic state and output vector equations
of systems and control theory, only with the nonlinear
state equations developed by fully linguistic and interac-
tive procedures of a rule-based fuzzy inference system
(FIS). In our case the equations are implemented via
dynamic connectionist neural network (CNN) connec-
tions. We thus use "rules" as the bridge between human
reasoning and the mathematical model [8-11]. Note that
crisp logic can be viewed as a special case of fuzzy logic
[11].

Such neuro-fuzzy approaches fall under the umbrella of
"soft computing" technologies [10,11], but the approach
described here appears to be unique in its focus associat-

ing rules with changes in state and thus nonlinear differ-
ential state equations created in a linguistic space. Such
soft computing approaches have the dual advantages of a
structure that can enable robust model behaviour (if
designed well) that has made fuzzy controllers such an
economic success story, plus use of a intelligent systems
architecture that should make it interface well with WIAs
decision-making modules. We have coined our general
design system SoftBioME (Soft Bio-Modeling Environ-
ment, pronounced "soft-by-ohm").

Once designed and customized for a client, in the embed-
ded "run" mode, the model must receive inputs (sensor-
events, user-events) as a function of time. The job of the
model is then to produce ongoing state estimation (for
context-awareness) and useful outputs . There are three
types of useful outputs: i) performance predictions (e.g.,
for comparison to actual performance, when measured);
ii) specific actions that are a function of states and inputs
(e.g., prompting/informing/reminding a client); iii) other
value-added decision-support signals for a WIA. Note that
it also allows "what if" use by the WIA or a user: it will pre-
dict future states, output and outcomes if assumptions are
made on future input events.

Developed within the Microsoft .Net Framework using
mostly C# code, the "run mode" code is designed to run
on any Windows-base system ranging from desktop to
PDA. It uses an object-oriented structure, it's support for
XML should make it easy to interface with other modules
or the web. However, when used in designer mode, it
requires a monitor that is large enough to display interface
window sizes that are normally intended for desktop/lap-
tops.

Methods
The fuzzy system is implemented by a dynamic recurrent
neural network that is composed of four layers of CNNs
(Figure 1): input, rule-state, output and outcome. Collec-
tively, it is defined by its structure, signals, and parameters
(e.g., membership function describing parameters,
weights, time constants). We define four roles for users,
listed by level of security access:

• User-designers, who have access to all aspects of model
creation and implementation, including defining and
adding signals, rules and parameters.

• User-analysts, who have access to specifying inputs, to
all graphics capabilities, and to using tools such as sensi-
tivity analysis on any internal signals or parameters, but
cannot add rules or permanently change parameters.
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• User-practitioners, who have access to specifying inputs
and storing "what-if" and sensitivity-analysis simulations,
as well as full desktop graphics features.

• User-clients, who are often also patients, and have a sim-
pler interface intended for a PDA that can specify inputs,
receive outputs, and can obtain current state and output
information and summary predictive information.

A given user may participate in (and thus have access to)
multiple roles. For instance, an informed and highly
engaged patient-client who is active in self-care may nor-
mally function in the role of user-client, but can log in to
a desktop version where they have "user-practitioner" or
"user-analyst" access. Similarly, an experienced practi-
tioner may normally function in the role of user-practi-
tioner, but periodically login as user-analyst and on
occasion as user-designer so as to add a new rule or change
a membership function or gain. The remainder of this sec-
tion targets the capabilities of the system from the per-
spective of the user-designer.

Early versions of this model have been presented as con-
ference papers [8,9]. In the process of using this model for
research and for homework projects in rehabilitation
courses, it became clear that there was a need to add a
number of features:

i) to more fully delineate between and support key
dynamic processes associated with different forms of
inputs;

ii) to set up a rule structure that enables parametric time
constant changes;

iii) to define and implement homeostatic states; and

iv) to support advanced sensitivity and optimization
tools.

This paper presents this refined structure, with a special
focus on two areas of special interest for WIAs: state esti-
mation for context-awareness and outputs/outcomes pre-
diction for prognosis updating. The model of Figure 1 is
presented in a right-to-left progression, since a user-
designer normally starts by identifying desired outcomes
and outputs.

Outcomes Layer: Predicting Client Outcomes
Outcomes are defined as scalar signals that relate to what
in engineering optimization are called performance sub-
criteria or cost functions, and can be a function of fuzzy
states and outputs (and if desired, also inputs). Outcomes
are thus what a "clinical algorithm" seeks to maximize or
minimize. Examples of rehabilitative outcomes are

Structural relation between the model and the real human systemFigure 1
Structural relation between the model and the real human system. The intervention plan drives both the real system 
and fuzzy model, with the sampled (measured) output signals feedback back as an error event signal, and outcome error signals 
available to mildly tune the adaptive state estimators and output and outcome predictors. Targeted parameters can include 
input or output mappings or rule weights. When used in a simulation mode, the model can be used to predict the conse-
quences of alternative treatment/intervention plans, and thus help the user optimize the intervention strategy. CNN: connec-
tionist neural network. Dashed line: Sampling. Dotted line: future adaptive CNN work.
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numerical representations of terms such as impairment,
disability, independence, quality of life, satisfaction, and
cost. An outcome is calculated as a weighted sum or a
weighted sum of squares of dimensionless state signals (X
) and state expressions (e.g., result of "state is low", called
M x ), and output (Y ) signals. Weights are selected by the
user-designer from a menu table.

Output Layer: Converging Signals to Predict Performance
As with a conventional control system, outputs are lin-
guistic variables that are function of states and inputs, and
change value dynamically only as states and/or inputs
change. A given output typically falls into one of three
categories:

i) performs an action (e.g., prompt WIA or user-client, ini-
tiate communication, store data in an electronic record),

ii) predicts a performance metric, preferably of a quantity
that can be sampled on occasion (e.g., a measure such as
a clinical scale or biomechanical metric), or

iii) provide targeted decision-support information of use
to the user.

The output of the ith output-neuron in this layer, y i , is a
function of the states of the rules and the input events (see
figure 2).

y i = f (X , M U , M X )  (1)

where X are state signals, M U are the values of member-
ship-neurons based on fuzzy input-MF mapping, M X are
membership-neuron values for fuzzy state-MF mapping.

The function f can be a Sujeno fuzzy inference system [11]
or a weighted sum, selected by the user-designer. Depend-
ing on the application and the user-designer's intent, the
output can be treated as a fuzzy or crisp value.

When output predictions are of measures that can be
experimentally sampled, the user can determine an error
signal. Such sampled errors can be viewed as a form of
corrective "context" input that can be used to help tune
future states and outputs.

Layer structure of the modelFigure 2
Layer structure of the model. Most of the neurons in the input layer detect the occurrence of events and mapping the 
events into fuzzy variables. Others are pre-processing neurons for certain types of inputs, such as performing as pharmacoki-
netic models to map the dose and/or regimen of one kind of medication into the effective concentration, or integration neu-
rons to calculate the accumulative effect of interventions. For each state, there are generally five nuclei in the rule-state layer. 
The outputs of tonic rules nuclei determine the absolute value of the state, and the phasic rules nuclei brings the instant change 
to the state. (Specially, the nuclei connect the fact/context and the states as tonic rules and phasic rules, with neuronal leaky 
integrators defined by a time constant to describe how fast the caused change in states reaches its result value.) One nuclei 
functions as homeostasis mechanism, whose reference is given by the output of phasic rule for reference nuclei (see also Figure 
3). The last nuclei works as a math model to relate the Type B interventions and the change of the state. The output of the 
integration neuron in the rule-state layer is the state X, which then along with inputs are mapped into output Y. The outcome 
J is a function of all inputs, states, and outputs.
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Rules and State Layer: Nuclei Generating Differential 
Equations
States in this model are fuzzy linguistic variables that are
dynamic estimators of physical, physiological and/or
psychological states of the human body, of body impair-
ments and of risks. They are modelled as dimensionless
signals that can change value as a function of time, based
on rules designed within a fuzzy expert system that serve
to set up the dynamic state equations that are imple-
mented as a CNN. The rule-state layer consists of a nuclei
(cluster of neurons) for each state (see Figure 2), with each
nuclei essentially implementing a nonlinear differential
equation for that state that can also include recurrent con-
nections from all states, including self-connections.

The fuzzy inference ("expert") system (FIS) consists of a
left-half side (LHS, also called "if" or "antecedent" side)
and a right-half side (RHS, also called "then" or "conse-
quence" side). As is conventional for a FIS [11], each lin-
guistic state variable has one or more fuzzy sets
(represented by a linguistic "value") that are characterized
by associated membership functions (MFs) over the vari-
able's Universe of Discourse, such that a state member-
ship value (M X ) represents the "degree of membership"
of the state variable x in a fuzzy set (linguistic value), or
the "degree of truth" that "x is value." The result is a
number on the interval <0,1>, where "1.0" is full member-
ship. Each rule may include any combination of state
memberships (M x ) and input memberships (M u ) on the
LHS, and must include a state membership value calcula-
tion (M x ) on the RHS that indicates how the state would
change. Classic fuzzy operations (AND, OR, NOT) and
hedges (VERY, MORE-OR-LESS) are supported, and easily
added to rules through an interactive GUI. The end result
is that the LHS provides a "strength" of firing for the state-
change operation(s) described on the RHS.

Of note is that while the logic of the FIS is a function of
the states x and input effects u * occurring at the same time
iteration and thus is a nonlinear static mapping, there are
dynamic operations both after and often prior to this FIS
operation. The form of the RHS determines the manner of
desired change in the state. Rule consequents that target
the absolute value of the affected state are implemented
by tonic-neurons, while rule consequences that target a
relative positive or negative change in state are imple-
mented by phasic-neurons. The dynamic effect of the FES
on a state is determined by which of two classes the state
is associated with, as is now discussed.

1) Group I: Conventional Fuzzy States
Conventional states change over time based on one or
more rules. For one state x s, normally the spontaneous
recovery procedure is:

where x r is the new drive, based on weighted considera-
tion of the current strength of rules associated for a given
state, as implemented by the state's nuclei. The time con-
stant τ represents first-order dynamics.

There is also a FIS associated with dynamically changing
the time constant of the rules as a function of states and
inputs on the LHS. This is a feature that needn't be part of
the user-designer's strategy, but is really quite a powerful
addition since it makes available a range of possibilities
for state transition dynamics. For instance, the popular
Michaelis-Menten kinetics [12] and various cell growth
laws [13] can be mathematically viewed as state-depend-
ent variable time constants (inverse of rate constants) that
represent special cases of the menu of possibilities.

While all linguistic states can be treated as dimensionless
fuzzy signals with first-order dynamics that use a variable
time constant that can also be set by a fuzzy rule, based
our experiences and those of students using versions of
the model in courses, there is also a need for another class
– homeostatic states, which are described next. Examples
of states that are inherently non-homeostatic are pain,
skill, balance and risks.

2) Group II: Homeostatic fuzzy states
While conventional fuzzy signals can always be used
when evidence and/or expertise is available, our experi-
ence has been that many states are not well captured by
first order dynamics because they are part of more
involved internal body processes. Thus many physiologic
and functional states of the body, including both measur-
able signals and linguistic variables, are part of inherent
homeostatic systems. For instance, physiologic measures
ranging from body core temperature to heart rate are reg-
ulated, and after a tissue injury there are intrinsic healing
mechanisms that aim to minimize the degree of impair-
ment. All these states are controlled by a negative feedback
loop. Thus this class of states can include nearly all physi-
cal and physiological signals, from blood pressure to mus-
cle strength.

In determining the modelling strategy for such states, it is
important to recognize that the user-designer's experience
is typically with the closed-loop system, with no real
knowledge of open-loop dynamics. Thus a challenge is to
extract closed-loop knowledge of temporal dynamics and
reference state to implement elements within the frame-
work of a "plant" and "controller," and a reference ("set-
point") input that itself can change through an intrinsic
remodelling process. The current algorithm for how the

τ dx

dt
x xs

s r+ = ( )2
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homeostatic states maintain their equilibrium under the
effect of different kinds of inputs is demonstrated in Fig-
ure 3, and includes a PID (proportional-integral-deriva-
tive) controller to represent the real capabilities of
neurons for neural differentiation (e.g., primary muscle
affects) and neural integration (e.g., brain stem interneu-
rons). For any homeostatic state, there are two values in
this model: the reference and the actual dynamic state.

The reference is the value that represents the homeostatic
"ideal" for the human body. If, for any reason, the actual
state value deviates from the reference, the controlling
organs such as the nervous system and glands will, by
sending control signals, try to drive the actual state value
toward the reference. Homeostatic references may change
under the effect of both internal and external factors.
Internal factors include developmental growth and the

aging process. External factors include trauma causing
impairment and/or lifestyle changes. When intrinsic
homeostatic recovery processes are not successful or life-
style changes are sustained, certain states may gradually
adapt to a new reference.

Often D-action is zero unless there is an initial sharp
response to a sudden input effect. In such a case an initial
closed-loop time constant provided by the user-designer
relates primarily to P-action. There is often then a slower
drift toward homeostasis and/or remodelling, which can
be used to estimate I-action and slow (near-permanent)
transitions in reference.

As seen in Figure 3 this model contains two parts: the sub-
system for the actual state value and the subsystem for the
reference, both of which work as a feedback control

The structure of nuclei for reference and homeostasisFigure 3
The structure of nuclei for reference and homeostasis. A fact event can changes the reference via its own FIS (Rule 
Type A), and the change will be added to the reference through a first order system with a certain time of delay. When a con-
text event happens, it will affect the reference in the same way as fact events. When there is an intervention, its frequency at 
the point will be calculated based on the history by a frequency calculator. A user-defined mapping function will then be applied 
to calculate the change. The mapping function maps the frequency and intensity of the intervention and the initial reference 
value into the result change. Then the change will be added to the reference through a first order system with a certain time of 
delay. The mapping function is defined by the user as two tables. If the frequency or the intensity is not in the table, the result 
change will be calculated by interpolation. All the result changes on the reference of one state caused by different inputs will be 
summed together by fuzzy OR operation, and then applied to the reference value. Users are encouraged to change references 
slowly and conservatively. The homeostasis nuclei sense the state value and compare it to the reference. Its output is sent to 
the integration neuron in the rule-state layer. In homeostasis nuclei, each path in control part and nonlinear paths and the feed-
back path can be turned on/off by the user. The fuzzy OR operation is used to assure the stability.
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system. In the former, the human body senses the actual
state value and compares it to the reference. The error
between them is the input to the control part, which rep-
resents the neural system and glands. The fuzzy OR oper-
ation is used as summation because of the physical
limitation of the control signal. After the first order plant,
the model supports nonlinear paths to capture plant-
based nonlinear characters such as time delay or satura-
tion (e.g., a fact event of injury may cut off or activate
some specific nonlinear rehabilitation pathway); at
present this has not yet been used, and research on opti-
mizing the homeostatic feedback process continues.

To summarize, users specifying "homeostatic states" need
only provide general closed-loop temporal and steady-
state behavior, and a reasonable but conservative homeo-
static regulator is automatically implemented.

Pragmatic Consideration: Separate Use of the FIS for Other WIA 
Modules
While the rule structure in the model is set up for address-
ing changes in dynamic states within a FIS framework,
static rules and crisp logic are just special cases where the
post-FIS time constant is zero and MF's have a hard
boundary, respectively. Thus a WIA could also use this
model, for instance, to create a separate FIS module that
uses simpler, conventional real-time crisp logic, where
states-to-output mapping is trivial (states equal outputs)
or serves to perform aggregation/defuzification.

Input Layer: Classification and Implementation
Operations within the input layer depend on the type,
with inputs classified into facts, contexts, and
interventions. This layer can be viewed as a collector and
pre-conditioner of inputs, designed to help map them to
fuzzy "input effects" that are used in the rules that deter-
mine the state equations. Options include pre-filters such
as physical models (e.g., a pharmokinetic model for Inter-
vention Type-A (medications)) that are implemented
prior to mapping to the fuzzy linguistic world via MF's
that are associated with the input's fuzzy values.

In general, MF's are defined by two parameters that define
either Gaussian and boundary (sigmoidal) shapes (states
also have a monotone option). While these shapes pro-
vide continuous derivatives (good for many CNN algo-
rithms), the boundary option does support the special
case of a hard (crisp) boundary.

Facts
FIS systems often call their inputs "facts." As used here,
facts are linguistic variables with a universe of discourse
(range) that can be turned on but not normally turned off.
In rehabilitation and sport medicine, these are often asso-
ciated with the patient healthcare record, and include

demographic information (e.g., age, gender, education
level) and the occurrence of some diseases and diagnosis
information (e.g., severity and localization of an event
such as a stroke; co-morbidities). Each fact variable has at
least one associated fuzzy linguistic value (each with an
associated MF on <0,1>).

The relations between inputs such as facts and states are
represented within fuzzy rules in the FIS, as describe pre-
viously. However, before a fact-event is used in the FIS, it
is first mapped within the early part of rule-state nuclei
into a "fact-effect" by a first-order time constant selected
by the rule-designer (with default value of zero). Since a
fact-event provides a step change (and thus a fact-effect a
first-order step response), if one fact-effect was the only
input on the LHS (i.e., a "fact-effect is value" yielding a M

u number), the overall state change would be up to a sec-
ond-order (overdamped) step response (one time con-
stant before the FIS calculation that maps the "input
event" to an "input effect" and is associated with the rule,
and one after that is associated with the state). Individual
facts thus can trigger rules to fire and cause changes in val-
ues of certain states, and possibly changes in the state's
time constant and/or the reference value if the state is a
homeostatic state (see Figure 3).

Context Inputs
Contexts are inputs that can be turned on or off, and make
event-based "context awareness" available to the FIS for
state estimation [1]. Normally they relate to external envi-
ronmental events that can have an impact on the state of
the person, but there are no limitations placed on context
inputs. For instance, in stroke rehabilitation the clinical
prognosis is a function of factors such as the ongoing
degree of supports (e.g., social, caregiver, family), the cli-
ents diet and other nutritional concerns, the location and
type of rehabilitation that is available, the client's normal
daily or weekly life events, variation in their degree of
motivation or ability to achieve lifestyle modifications,
assistive technologies that are available to support inde-
pendence, and so on. All can be viewed as context inputs,
as can some interventions as long as the user-designer
doesn't desire to use the types of more sophisticated map-
pings discussed in the next parts of this section.

Context inputs are important for WIA's, and are often
used in tandem with state estimates for WIA decision-
making. To some extent, they can be viewed as "tempo-
rary facts" that help sculpt rules, often weakly but occa-
sionally strongly. Often they help add robustness and
integrated realism to the rules and thus state estimation.

The form of the relations between contexts and states are
the same as that between facts and states, except that the
effect is a pulse (rather than step) response. The change of
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the status of one context (from off to on, or from on to
off) is treated as a context event, which in turn may cause
rules to fire differently.

Interventions
Interventions are a purposeful procedures and techniques
aimed at producing changes in the condition consistent
with the diagnosis and prognosis. Interventions may
occur regularly or irregularly. Relative to the temporal
dynamics of adaptive change, interventions can usually be
viewed as impulses to the system. While interventions can
always be treated as context input events of short dura-
tion, it is useful to develop evidence-based customized
approaches for dealing with certain classes of interven-
tions that are common in rehabilitation.

Although one individual intervention often only brings
an "impulse response" change to state values because of
length of time required for adaptive remodeling, available
evidence or professional expertise may be available that
indicates that a series of one type of intervention – a treat-
ment "dosing" plan such as three sessions per week – may
gradually change the reference value since the human
body is an adaptive system. Often scientific studies pro-
vide evidence of remodelling based on a global dosing
algorithm that is maintained for weeks or months.
Adaptation thus can be due to the integration of the
responses of the body to each intervention, and to slower
intrinsic changes in homeostatic reference values. Based
on the mathematics used to mapping intervention inputs
to the effect on states, interventions are currently classified
into three types.

1) Type A: Medication
This type of intervention supports both oral and injected
medications or special dietary measures. In order to
describe the effect of a medication, pharmacokinetics (the
study of the bodily absorption, distribution, metabolism,
and excretion of drugs) and pharmacodynamics (the
study of the time course of pharmacological effects of
drugs) are included in this conventional (non-fuzzy)
model that is implemented within the input layer. The
common methods in pharmacokinetics, which are conse-
quently used in this model, are compartment model and
Michaelis-Menten kinetics [12]. There are several different
mechanism-based pharmacodynamics models [14], each
applicable in certain conditions. Essentially, pharmacody-
namics is the mapping between the concentration of cer-
tain drug and its "effect" on the state. Therefore, fuzzy
logic as a very powerful non-linear mapping tool is
adopted to implement the pharmacodynamics in this
model.

As shown in Figure 2, when there is an event of medica-
tion, at first it is mapped into a time series, which repre-

sents the concentration of that medication in the blood or
other destination spots, through a pharmacokinetics
model. If it is an oral medication, a compartment model
with two compartments (gut and blood) and Michaelis-
Menten (M-M) kinetics are used. The former describes
how fast the drug transfers from gut to blood, and the lat-
ter calculates the consuming velocity of that drug in
blood. Assuming the mass and concentration in the gut
are m 1 and C 1 and in the blood are m 2 and C 2 , the dif-
fusion constant between the gut and blood is K , and the
constants of M-M kinetics are V max and K m , the equations
are:

If injected, only the M-M kinetics equation is applied. As
part of a collaborative project with a post-doctoral fellow
(Nicole Sirota, D.O.), estimated values have been tabu-
lated for over 40 medications commonly administered by
rehabilitation physicians. The concentration is then an
input to a Tsukamoto fuzzy inference system [11,15] to
determine the dynamic effect on target states, for use in
the rule-state layer.

2) Effective Pulse Energy
Possible inputs of Intervention Type B include exercise,
language therapy, recreation therapy, etc. In this type of
intervention, a patient and/or provider provides inputs of
magnitude and duration that have associated "energy"
that is partially or fully "consumed" – the "effective"
input. If subsequent changes in the affected state exhibit
temporal dynamics that are long in relation to the time
duration of the intervention, the input can be viewed as
an impulse with an effective impulse energy; otherwise it
is a pulse with a changing "effective" magnitude over its
duration. In either case, how much energy is consumed in
one intervention relates to whether the pulse energy
becomes greater than an accumulation threshold energy,
after which it triggers a first-order history-dependent
recovery/refractory/fatigue variable that subtracts from
the input until full effectiveness is gradually restored.
Additionally, if another intervention event of the same
type happens during the period of time before full recov-
ery, the effectiveness of that event on states will depreci-
ate. This type of intervention is thus mapped to an input
effect that is then used to determine its effect on changes
in the affected states. Research in this area continues, and
details are not provided here.
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3) Anticipated Intervention Types C, etc
It is anticipated that there may be dynamic effects of other
interventions not yet modelled, which may be defined by
users if evidence suggests dynamic processes (e.g., physi-
cal lumped-parameter or compartmental models) prior to
mapping for use of fuzzy inference capabilities (e.g., func-
tional electrical stimulation).

Results
Example Model #1: State Estimator and Output Predictor 
for Neurorehab Using Medication & Activity Interventions
This first example demonstrates the model's use in provid-
ing ongoing context awareness of a person's state, which
is a critical need for future WIAs. A secondary purpose is
to predict performance outputs and outcomes prognosis.
There are two steps to the interactive design process: set-
ting up the model, and running simulations.

Table 1 describes the inputs, states, outputs and outcomes
for a hypothetical client, defined by a problem statement.

Design of the system usually proceeds with a right-to-left
flow, starting by identifying desired outcomes and per-
formance outputs, and then determining the internal
states that ideally would be estimated to determine these
measures. However, for the type of context-awareness
needed by WIA's, the WIA user-designer may have a need
for certain specific state estimates, and there is no require-
ment that every state map to an output or outcome.

The desired outcomes are in this case to be maximized.
Outputs are performance measures that are a function of
several states (e.g., FIM score) and/or represent a predicted
measurement based on a state (e.g., hand ROM is one
measure of hand impairment). Dynamic state behavior is
fully dependent on the rules that map current inputs and
states (LHS) to changes in states (RHS).

Inputs are mostly pre-determined, based on practical con-
siderations of available data and events that can be sensed
or entered by the user. In this case of a WIA application for

Table 1: Signals for Example #1.

Female client with stroke-induced disability a large-scale model with 16 types of potential input events, 12 states to estimate, 5 outputs, and 3 
outcomes.

Problem statement: An older woman presents with stroke-induced disability (4 months post-stroke) that includes mild functional limitations to gait 
and posture, and significant impairment of the right arm and hand and of speech production. She also presents with mild osteoarthritis that affects 
her hips and knees. Released from outpatient care and living alone, her current "prescriptions" include three types of medication doses (for general 
joint and skeletal health, for pain from arthritis, and for spasticity), and three types of activities suggested by her former therapist (walking/cycling, 
hand operation, and oral communication). She also has two important weekly events: a visit most Sundays from her daughter (who is a nurse), and 
a visit most Tuesday's to the local community center (transportation is provided). She regularly uses a PDA-cellphone and a desktop computer 
(both set up by her other daughter who is an engineer, but lives in another state), and prefers to use an IP videoconferencing package to tele-visit 
with either of her daughters. Thus she is a good candidate for an assistive WIA.

Inputs (and MF example) States (and MF example) Outputs Outcomes 

Facts:
- Age (is old)
- Initial Stroke (is severe)
- Osteoarthritis (is mild)
Contexts:
- VisitDaughter (is full)
- VisitCommCenter (is full)
- LocationByGPS (is outside)
- TeleVisitDaught (is active)
- TimeOfDay (is morning)
- NovelEvent (is negative)
Interventions (Meds or Activity)
- PillsOsteo (is right-dose)
- PillsPain (is high-dose; conc)
- PillsSpast (is 2-pills; conc)
- Walking (is good)
- Cycling (is good-quality)
- Speech (is good-duration)
- Keyboard (is good-session)

Degree of Impairment:
- Gait (is faster)
- Balance (is better)
- RightArm (is worse)
- RightHand (is better)
- Speech (is improved)
Physiologic:
- RestingHR (is higher)
- RestingBP (is higher)
- BoneJointHealth (is low )
Other ("Degree of ..."):
- Pain (is high)
- RiskFalling (is high)
- Motivation (is high)
- SleepAtNight (is restful)

Communication [Φ (Speech, Pain)]
HandROM [Φ (Hand)]
FIM [Φ (Arm, Hand, Balance, 
Speech, Pain)]
RiskFracture [Φ (BJ-Health, Risk-
Falling)]
Adherence [Φ (Motivation, Pain, 
Sleep)]

GenHealth [Φ (all impairment 
\physiologic states)]
Participation [Φ (Communication., 
Gait]
QualityLife [Φ (Weekly-Pain, FIM, 
Speech, Gait, Adherence, Hand-
ROM)]

Notes: while one MF value is shown for each input or state, typically there are additional ones. Use hedges such as "not" or "very" or "more-or-less" 
can lower the number of MFs (and thus parameters) associated with a linguistic variable.
Key abbreviations: MF: membership function; GPS: Global Positioning System; HR: heart rate; BP: blood pressure; FIM: Functional Independence 
Measure [21].



Journal of NeuroEngineering and Rehabilitation 2005, 2:15 http://www.jneuroengrehab.com/content/2/1/15

Page 11 of 17
(page number not for citation purposes)

a "chronic" case that is customized to the specific user-cli-
ent, it is likely that the user-designer implicitly assumes
the effects of fact-events have already played out and can
focus on rules involving context-inputs and intervention-
inputs. In other scenarios or for more generic population-
based rule sets, facts would be a part of rules.

To illustrate how rules creation by a user-designer works,
a GUI for a representative subset of states from Table 1,
and their associated rules, are provided in Figure 4 and
Figure 5. Notice that for most rules there is one state-MF
on the "then" (right) side, and more than one input-MF
and/or state-MF on the "if" (left) side. State-MF's on either
side can take express the linguistic expression of a "tonic"
neuron "(state is high)" and/or a "phasic" neuron "(state
is higher)"; the state "pain," for instance, uses both. Also
notice that the rule operates on an "input effect" which is
the input mapped through a gain and time constant (see
also Figure 2); this allows a rule such as for an impairment
state, where changes happen slowly, to integrate context
inputs so their effect extends well beyond the time that
they are actually on, for that particular rule. Figure 5 also
shows that a state, such as pain, can be a function of sev-
eral rules (e.g., one more related to context inputs, the
other medications) that combine through fuzzy opera-
tions. Finally, the intrinsic time constant for each state-
neuron, differs dramatically between states (e.g., higher
value for impairment which changes gradually over weeks
versus a measure such as "pain" that can change on the
order of hours). These affect logic development. The user-
designer needs to understand several features that affect
rule design.

An example simulation, with a few weeks of inputs and
with states initialized, is presented in Figure 6. Here we
focus on the "context" (state estimates) based primarily
on "context" inputs, and on a certain slice of time – the
"present." Five conceptual points are emphasized here:

Five conceptual points are emphasized here:

1. State change often requires that a combination of
input/state conditions occurs, and certain states can
change suddenly (e.g., pain) while others only gradually
(e.g., impairments, and homeostatic states in general).

2. As with most large-scale nonlinear systems, the "func-
tioning" order of the system, and overall behavior, tends
to be only a function of a small subset of the model
parameters. As different events fire, different "subsystems"
of changing states emerge and the collection of parame-
ters with the highest sensitivity changes. Sensitivity analy-
sis tools, embedded in the model, can be used to gain
insight into what parameters matter most at any given
time.

3. Many of the expressions on the left-half ("if") side of
the rule may be designed to add robustness – they rarely
affect the rule, but when they do they effectively drive or
shut off firing.

4. While the primary need of WIAs is for context-aware-
ness of state, the fact there is also prediction of the future
can potentially be used by a WIA to consider the effects of
alternative plans for future events. This may be especially
useful for WIA decision-making while functioning in
"assist" mode, as there is a fine balance between the ben-
efit of providing a reminder or warning to the client versus
the cost of overburdening the client; "what-if" prediction
of the future can help in making this decision.

5. While not shown in Table 1 (but evident in Figure 1),
of note is that "errors" between a predicted output and
measured output (e.g., arm force, hand ROM, FIM and
recent pain or adherence can measured by the daughter
during weekly visits) can be fed back as context input
events that can then be integrated into a rule for a state,
helping gradually improve the state estimate.

Example Model #2: Muscle Force and Joint Strength 
Changes: Short-Term Fatigue and Long-Term Adaptation
This example illustrates use of the model by a user-
designer who has expertise in a certain area plus access to
scientific evidence, here demonstrated for muscle
strength. One can easily envision an athlete or coach using
a WIA to plan and implement an exercise program that
has the desired outcome of maximizing muscle strength
and tissue hypertrophy over a certain time window, and
has estimates of relevant internal states during the proc-
ess. Similarly, one can envision a musculoskeletal or neu-
romuscular rehabilitation program that seeks to regain
muscle strength or minimize muscle atrophy. In either
case, the estimated states and sampled performance out-
put measures can help a WIA to provide a user-client with
a suggested input intervention program (e.g., exercise reg-
imen, diet).

This example also exposes another use for the model: by
scientists who study bio-change, and in particular who
desire to synthesize knowledge of macro-and micro-
changes at the organ/tissue and cellular levels, to make
model predictions that may be testable, and to bridge
human macro-studies with animal micro-studies. Here
the onus is on the expert to integrate experience and
available evidence. One of us (JMW) has published exten-
sively using neuromusculoskeletal models that include
Hill muscle models [16-18]. Hill-based muscle models
predict force as a function of muscle activation, length and
velocity. In traditional use of such models, parameters are
assumed constant for a given simulation. But we know
that some parameters do change as a function of activity,
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and in recent years a growing body of evidence has
amassed on how three key parameters [maximum isomet-
ric force (Fmax), maximum unloaded velocity (Vmax), a
Michaelis-Menten kinetics parameter related to calcium
deactivation] change as a function of: i) fatigue (a shorter-
term reversible change in parameters over a time period of
seconds to hours); and ii) true muscle adaptation (a more
permanent change that occurs over time periods of days to
months).

Table 2 focuses on a simple model structure for estimating
one of these parameters: Fmax, which also directly corre-

lates to muscle strength and size. It does so on two time-
frames, using different models: i) for fatigue, the model
runs for minutes, with rules structured on the assumption
that an exercise "pulse" corresponds to the intensity (per-
cent of maximum) and duration (number of repetitions)
of a weight-training "set"; and ii) for adaptive change, the
model runs for weeks or months, and an exercise "pulse"
is the average intensity of a "workout" where a time of an
hour is small relative to the dynamics of adaptive tissue
change. In both cases these are "converging" models with
many inputs; Table 2 keeps these inputs simple. Figure 7
provides an example simulation, here for a client with a

The interface the inputs, states and outputs in model #1Figure 4
The interface the inputs, states and outputs in model #1. There are three facts (bottom left), ten contexts (up), three 
medications (bottom left two), twelve states (bottom right two) and five outputs (bottom right). User-designer can add or 
delete inputs, states, outputs or outcomes. For a selected variable, the user-designer is able to set the range (min and max), 
add/delete membership functions, define the membership functions, and see the graphics of the membership functions. If the 
variable is a state, the user-designer also has access to the reference, time constant, the negative feedback (on/off), and all of 
the control parameters.
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sedentary lifestyle who makes a number of positive life-
style changes but then, after nearly four weeks of training
and some improvements in Fmax, gets injured.

Discussion
This paper develops a novel rule-based neuro-fuzzy
dynamic model that is intended to provide continuous
state estimation, to predict outputs, and to evaluate the
effect of different intervention plans. It enables a user-
designer who is an expert in a rehabilitative field, but not
necessarily in mathematical modeling, to generate and

use causal models that contain underlying nonlinear dif-
ferential equations implemented with a CNN. To be
effective they need to have a solid understanding of the
concepts of a time constant, a weight (or gain), how a MF
maps a variable, and how negative feedback works; the
interactive GUIs can actually be used as a learning tool to
help pick up these skills. When creating new inputs and
states, default MFs for classic linguistic values such as
"high" or "low" are automatically created for the user-
designer, using either Gaussian or Boundary fits that are
defined by two intuitive parameters – a "middle" and a

Type C rules and type D rules in model #1Figure 5
Type C rules and type D rules in model #1. There are six types of rules (RA to RF) based on what kind of relation they 
represent between inputs and states. For example, RC (back window) describes how the facts/contexts change the states' val-
ues directly, and RD (front window) defines the relation between medication and affected states. The user-designer can add, 
delete and change rules, and also change the properties of rules such as rule name and rule weight. When working on "If" side 
or "Then" side, user-designer can add an element, or delete the right-most element, which is demonstrated helpful for design-
ing rules. In the "If" part, several options are available to help define precise and flexible rules. These operations include: "AND" 
and "OR" operations, constraints (such as "NOT", "VERY", and "NOT VERY"). There is also a weight for each input element.
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"shape." These default MFs can be renamed, edited or
deleted. The GUI for rule creation, shown in Figure 5, is
similar to GUI's for other FIS implementations, only with
some added capabilities that are unique to this model.
Once the model structure and parameters are set, simula-
tions are managed on a separate GUI that enables the cre-
ation of input trains, state initialisation, and other
bookkeeping features. In addition to plotting state, output
and outcome trajectories, a GUI is available for parameter
sensitivity analysis. Once refined to the satisfaction of the
user-designer, the model is ready to be used as an embed-
ded application.

The first example shows the application of this neuro-
fuzzy modelling framework as a WIA to estimate the cur-
rent states values and predict key outputs and outcomes.
There is no doubt that real-time monitoring of certain key
states is valuable for some patients/clients in their daily
lives. However, not all of these states can be directly meas-
ured by wireless sensors. SoftBioME provides the possibil-
ity for an integrated WIA in which wireless sensors
measure the measurable events and states and send them
to the intelligent agent, while the intelligent agent records
these states and estimates un-measurable states, detects
the occurrences of pre-defined events (e.g., a state is above
or below certain value), and does some pre-processing.
This example demonstrated that SoftBioME can provide
an estimate of certain states' values at any time. If the user-
designer defines crisp MFs and crisp rules, it can also serve
as an event-detector. Since the model is designed based on
expert knowledge (e.g., how the walking exercise affect the
gait) and scientific evidence (e.g., the effect of medications
on states), the estimation error shouldn't be beyond

expectation. In addition, rules can include error signals on
the LHS that are based on any difference between an esti-
mated variable (output, outcome) and periodically meas-
ured signals (output, outcome), enabling state estimation
to improve over time. Furthermore, by running the simu-
lation repeatedly, an experienced user-designer may
adjust the parameters to try to heuristically optimize a cus-
tomized model before use for real time estimation. The
CNN model structure is designed so that in the future a
neuro-optimization toolset can be provided to improve
the model performance for a certain client, i.e. to "learn"
the client's behavior. All of the above promise an accurate-
enough estimation for the type of context-awareness that
is needed for effective WIAs.

Unlike all the use of macro-states in the first example, the
second example contains both macro-states and micro-
states. In this example, the macro-states depend on the
micro-states and macro evidence from strength training
and visa-versa, and that dependence can be described by
fuzzy rules. The muscle force model also demonstrated
that the model created in SoftBioME can not only estimate
states, outputs and outcomes, but also focus on parame-
ters changes. That's because one of the purposes of
SoftBioME is to support both signal models and parame-
ter models (e.g., longer-time remodelling models). The
parameters in a signal model may simultaneously be the
signal in a parameter model, with the two models operat-
ing on different time scales (e.g., seconds versus weeks).
For example, for some exercise activity performed fre-
quently, Fmax is the signal in the second example and is
also a (now adaptive) parameter in the first example (e.g.,
neuromusculoskeletal model using Hill-based muscles).

Table 2: Example of a converging model designed to estimate states, outputs and outcomes.

Inputs States Outputs Outcome

Fatigue Model:
Facts:
• InitFiberComp Context:
• Motivation Interventions
• SetHiRep60%
• SetLowRep80%

CalciumConc
Pi/H+-Conc1

PossibleReps@80%
PossibleReps@60%

PredictedRepsAt60%
PredictedMax

Fmax

Adaptive Model:
Facts:
• InitFiberComp Context:
• Diet
• Injury
• GenActivityLevel Interventions
• WeightSession
• AerobicSession
• PillsSteroids

Hypertrophy
Atrophy
FiberComp
MuscMass

PredictedStrength
PredictedPower

Fmax
Vmax

1 Phosphate and pH concentration, which reflect muscle energetics and transient recovery dynamics; for Fmax, evidence suggests these are are 
similar in influence (if we added Vmax to the model, available scientific evidence would suggest we separate these states).
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The ability to work at both signal dimension and param-
eter enables SoftBioME to deal with a variety of problems
in a broad area in rehabilitation.

When designing an intelligent agent through SoftBioME,
the most critical thing is to collect expert knowledge and/
or scientific evidence. There are several ways to collect
expert knowledge, such as Analytical Hierarchy Process
(AHP) [19] and Delphi [20]. The latter is often used by
doctors and nurses as decision making protocol, which
makes it a good choice when creating a rehabilitation

model. Published paper and textbooks are the main
sources for scientific evidence. Given available expert
knowledge and scientific evidence, how to transfer them
into membership functions and fuzzy rules is the next
challenge. Normally experts will help define MFs and
fuzzy rules. If creating an evidence-based model, usually
the evidence itself contains the rules implicitly (e,g,
abstracts often summarize findings in the form of rules).
Sensitivity analysis tools can help refine the MFs and eval-
uate the importance of rules, which assist the user-
designer in improving the model.

Example simulation result of model #1Figure 6
Example simulation result of model #1. The simulation period is from Feb. 09 2005 to Mar. 09 2005 (see top left). This 
figure shows the event train of TeleVisit in the input frame (up left), the status of Speech (bottom left), the rule firing rate of 
SpeechContext (up right), the output Communication (middle right) and the outcome Participation (bottom right). In the state 
frame, the blue line is the curve without medication and the red line the curve with medication. Comparing the event train of 
TeleVisit and the curve of the Speech, we can see clearly the effect of every TeleVisit on the Speech. The other protuberance 
on the Speech curve is caused by the visit to the local community center on every Tuesday.
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Of note is that because of the natural tendency for signal
and rule "soft saturation" when using fuzzy models with
smooth MFs, the nonlinear differential equations tend to

be inherently stable. Most biosignals also have soft satura-
tion at the extremes of their operating range. It is as if the
user can think in a more rule-based "linear" and causal

Example simulation of the "adaptive model" of Table 2Figure 7
Example simulation of the "adaptive model" of Table 2. For this simulation, the following four simple rules were used, 
one for each state: IF WeightSession is intense & (Diet is good & Hypertrophy is Low) THEN Hypertrophy is high & higher IF 
(GenActLevel is low & AerobicSess is not intense) or Injury is bad THEN Atrophy is high & higher IF WeightSession is intense 
& AerobicSess is not intense & FiberComp is low THEN Fibercomp is high & higher IF Hypertrophy is high & (WeightSession 
is not intense & Diet is not good & AerobicSess not intense THEN MuscMass is high & higher Since only one input, state, rule, 
etc can be shown in an image (user can easily toggle between them), others are described here. At the start the client has 
states that reflect a sedentary lifestyle. Inputs reflect that he gradually increases his general activity level (this is the input that 
happens to be shown), improves his diet, and starts a weight-training program. This continues for three weeks through the end 
of February, at which time he stops the weight training and starts an aerobic training program. However, on his fourth aerobic 
event, he gets injured and his activity decreases. The hypertrophy and atrophy states are viewed as bioprocesses that are 
always somewhat present, and compete with each other. Of the four states, the hypertrophy state is shown (lower left), and 
we see an initial rise and a subsequent mild effect of each weight training session. After these inputs stop the state falls a bit. 
The atrophy state follows the shape of the atrophy rule, which is shown (upper right). Notice that with increases in various 
activities, atrophy rule firing decreases until the injury occurs. The output (predicted strength) is assumed a weighted function 
of all states, and the "outcome" Fmax (which could have also been viewed as an output) is a weighted function of the predicted 
strength and some of the states. Both show increases with these lifestyle changes, then the start of a decrease after the injury.
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manner, but end up with models that, if well designed, are
robust over a larger region of the operating state space
than for a linearized version of a bio-model.

Conclusion
A neuro-fuzzy modelling framework (SoftBioME) is
developed for estimating changes of states in bio-systems
as a function of input event patterns. If carefully designed
with sufficient expert knowledge and/or scientific evi-
dence, it can be applied in rehabilitation (e.g., predict
intervention outcomes), sport medicine (e.g., evaluate the
effect of a training plan), biology (e.g., adaptive changes
in muscle), pharmacy (e.g., study the action or effect of
drugs), and perhaps other fields whose subject is a
dynamic system and adaptive change. It is able to make
predictions or real-time estimation. The latter is intended
to provide context-awareness of changing states, which is
critical for WIA's to be effective.
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