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Mixed quantum/classical calculations of total and differential elastic
and rotationally inelastic scattering cross sections for light and heavy
reduced masses in a broad range of collision energies

Alexander Semenov and Dmitri Babikova)

Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee,
Wisconsin 53201-1881, USA

(Received 27 November 2013; accepted 5 January 2014; published online 23 January 2014)

The mixed quantum/classical theory (MQCT) for rotationally inelastic scattering developed recently
[A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is benchmarked against the full
quantum calculations for two molecular systems: He + H2 and Na + N2. This allows testing new
method in the cases of light and reasonably heavy reduced masses, for small and large rotational
quanta, in a broad range of collision energies and rotational excitations. The resultant collision cross
sections vary through ten-orders of magnitude range of values. Both inelastic and elastic channels
are considered, as well as differential (over scattering angle) cross sections. In many cases results
of the mixed quantum/classical method are hard to distinguish from the full quantum results. In
less favorable cases (light masses, larger quanta, and small collision energies) some deviations are
observed but, even in the worst cases, they are within 25% or so. The method is computationally
cheap and particularly accurate at higher energies, heavier masses, and larger densities of states. At
these conditions MQCT represents a useful alternative to the standard full-quantum scattering theory.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862409]

I. INTRODUCTION

The main goal of this paper is to explore the limits of
validity of the mixed quantum/classical theory (MQCT) for
rotationally inelastic atom + molecule scattering.1

Foundations of MQCT were laid by Gert Billing in
1980s, but the main body of his work belongs to vibra-
tionally inelastic scattering and development of the method in
which vibration of the molecule is treated quantum mechani-
cally, while its rotation and the scattering process are treated
classically.2, 3 In recent years such methods have been revived
and improved,4–6 and applied to complicated problems, such
as recombination reactions.7–9

For description of rotationally inelastic scattering Billing
proposed another version of MQCT, in which the rotational
motion is treated quantum mechanically, and only the transla-
tional motion is treated classically.2, 3 He applied this theory
to one system, He + H2, at two relatively high values of scat-
tering energies: E = 0.1 and 0.9 eV.10 Those ground-breaking
results were included into a review paper2 and a book3 but,
surprisingly, remained the only example of MQCT treatment
of rotationally inelastic scattering.

Detailed analysis of Billing’s work reveals that he em-
ployed only an approximate version of MQCT, known as
coupled-states (CS) approximation, where transitions be-
tween different m-states, within the same rotational energy
level j, are entirely neglected. We also found that the equa-
tions Billing used are applicable only to the simplest case,
when the initial rotational wave function has cylindrical sym-
metry (i.e., describes pure eigenstate). Such equations cannot

a)Author to whom correspondence should be addressed. Electronic mail:
dmitri.babikov@mu.edu

be employed to handle a general case, when the initial rota-
tional wave function corresponds to an arbitrary superposition
of eigenstates (a wave packet).

In a recent theory paper1 we presented a general and fully
coupled version of MQCT for rotationally inelastic scatter-
ing, formulated in both laboratory-fixed and body-fixed (BF)
reference frames and tested it using a model system. Here
we present results of calculations for two real systems, Na
+ N2 and He + H2, carried out in a broad range of scattering
energies. For our best knowledge this is the first systematic
and rigorous study of MQCT for rotationally inelastic scat-
tering. Our choice of the benchmark systems was based on
the following arguments. First of all, accurate full-quantum
coupled-channel (CC) results for these systems are available
from recent literature,11–13 as well as potential energy sur-
faces (PES) used in those studies. Second, all atoms in Na
+ N2 are relatively heavy, while they are light in the He
+ H2. This gives opportunity to observe the effect of re-
duced mass of the scattering partners – an important aspect
for the method where scattering is treated classically. Third,
the rotational quanta in heavy N2 and light H2 are very dif-
ferent, spanning the range of transition energies �E from
∼12 cm−1 to ∼813 cm−1, which allows testing applicabil-
ity of second Delos criterion.14 Namely, based on this crite-
rion, it is sometimes argued that any mixed quantum/classical
method is accurate only when the classical collision energy
E is much larger than the energy change �E associated with
quantum transition between the internal states.14 However, for
MQCT treatment of rotationally inelastic scattering this crite-
rion has never been tested and our results indicate that MQCT
remains accurate in a broader range than predicted by this
criterion.

0021-9606/2014/140(4)/044306/13/$30.00 © 2014 AIP Publishing LLC140, 044306-1
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Another aspect that, to our best knowledge, has not been
addressed before within MQCT framework is calculation of
the elastic scattering cross section and the differential (over
scattering angle) cross section. It is well known that classical
scattering theory is deficient in these two respects. At large
impact parameters and small scattering angles the classical
scattering cross section diverges, due to the lack of phase
information. Only at scattering angles larger than the “rain-
bow” angle (small impact parameters) the process of scat-
tering is classical. Interestingly, we found a way to compute
the scattering phase using MQCT, and use it to compute ac-
curate differential cross section at small scattering angles,
i.e., in the quantum scattering regime when interference is
important.

The paper is organized as follows: In Sec. II we re-
view major equations of the fully coupled general MQCT,
its simplified version, and the approximate CS version and
also present the method of computing cross sections. In Sec.
III we report numeric results for the integral rotationally in-
elastic scattering cross sections for two benchmark systems
and compare them with full quantum CC results, as well
as with complementary classical trajectory simulations, in a
broad range of collision energies. Section IV is devoted to
elastic scattering cross sections and differential cross sec-
tions computed by MQCT. Major findings are summarized in
Sec. V.

II. THEORETICAL FRAMEWORK

A. General and fully coupled MQCT

From the computational performance point of view the
most efficient formulation of MQCT is that in the BF refer-
ence frame.1 In order to simplify notations, in this paper we
use jm and j′m′ to label the initial and final rotational sates
of the molecule, instead of j′m′ and j′′m′′ used in Ref. 1, and
we also use ϕ instead of ϕ′ used in Ref. 1. Rotational and
vibrational motion of the diatomic molecule is described by
coordinates q = (r, γ , ϕ). These are quantum degrees of free-
dom; their evolution is determined by wave function ψ(r, γ ,
φ). Scattering of the quencher atom is described by spherical
polar coordinates Q = (R, �, �). These are classical degrees
of freedom; their evolution is determined by conjugate mo-
menta PR, P�, and P�. Interaction potential does not depend
on classical angles and angle ϕ due to symmetry, so, potential
is a function of Jacobi variables V = V (R, r, γ ). Definition
of these coordinates in the BF reference frame is illustrated in
Fig. 2 of Ref. 1. The MQCT equations of motion for classical
variables are:1

Ṙ = PR

μ
, (1)

�̇ = P�

μR2
, (2)

�̇ = P�

μR2 sin2 �
, (3)

ṖR = −∂Ṽ (R)

∂R
+ P 2

�

μR3
+ P 2

�

μR3 sin2 �
, (4)

Ṗ� =
∑
n′j ′m′

∑
njm

a∗
n′j ′m′anjm exp{i(En′j ′ − Enj )t/¯}

× [M, U]n
′j ′m′

njm + P 2
� cos �

μR2 sin3 �
, (5)

Ṗ� = −i
∑
n′j ′m′

∑
njm

a∗
n′j ′m′anjm

× exp{i(En′j ′ − Enj )t/¯} sin � [M, V]n
′j ′m′

njm . (6)

Here we introduced the mean-field potential Ṽ (R)
= 〈ψ(r, γ, ϕ) |V (R, r, γ )| ψ(r, γ, ϕ)〉 and the commuta-
tors [M,U] and [M, V] of the matrices introduced below.
Expansion of wave function over the basis set of ro-
vibrational eigenstates with time-dependent coefficients
anjm(t) and substitution into Schrodinger equation leads to:1

i¯
∂anjm

∂t
=
∑
n′j ′

an′j ′m exp{i(Enj − En′j ′ )t/¯}

×M
n′j ′
n j (R) − i¯

∑
m′

anjm′ Wm′
m . (7)

Structure of these coupled equations is such that the state-to-
state transition matrix M

n′j ′
n j , introduced for every m as

M
n′j ′
n j (R) = Aj ′m,jm〈φnj (r)Pjm(cos γ )

× |V (R, r, γ )|φn′j ′ (r)Pj ′m(cos γ )〉, (8)

describes only transitions from (nj ) to (n′j′), within the same
value of m. In contrast, the matrix Wm′

m , introduced for every
j, describes transitions between m and m′ = m ± 1, within the
same energy level (nj ). Elements of this matrix,

Wm′
m = Um′

m �̇ + i (sin �V m′
m − m′ cos �δm,m′ ) �̇, (9)

are expressed through elements of two simpler matrices:1

Um′
m = 1

2

[√
j (j + 1) − m′(m′ − 1)δm,m′−1

−
√

j (j + 1) − m′(m′ + 1)δm,m′+1

]
(10)

and

V m′
m = 1

2

[√
j (j + 1) − m′(m′ − 1)δm,m′−1

+
√

j (j + 1) − m′(m′ + 1)δm,m′+1

]
. (11)

Matrices M, U, and V are all real-valued, sparse, and time-
independent (should be computed only once). Note that ele-
ments of the matrix M and the mean-field potential Ṽ depend
on R only.
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B. A simplified version of MQCT

If the initial rotational wave function exhibits cylindrical
symmetry around the atom-molecule axis (i.e., corresponds
to rotational eigenstate, rather than rotational wave packet)
the classical trajectory remains in the same plane during the
course of entire collision event. In such cases we can restrict
our calculations to one plane, for example, � = π /2 and set
P� = 0. Equations (2)–(5) simplify to

�̇ = 0, (2′)

�̇ = P�

μR2
, (3′)

ṖR = −∂Ṽ (R)

∂R
+ P 2

�

μR3
, (4′)

Ṗ� = 0. (5′)

Clearly, Eqs. (2′) and (5′) are obsolete and there is no need to
propagate them. Equation (6) becomes

Ṗ� = −i
∑
n′j ′m′

∑
njm

a∗
n′j ′m′anjm

× exp{i(En′j ′ − Enj )t/¯}[M, V]n
′j ′m′

njm . (6′)

C. An approximate CS version of MQCT

The coupled-states (CS) approximation is easily formu-
lated within MQCT by setting Wm′

m = 0 in Eq. (7) for wave
function evolution. It becomes:

i¯
∂anj

∂t
=
∑
n′j ′

an′j ′ exp{i(Enj − En′j ′)t/¯} M
n′j ′
n j (R), (7′)

and should be solved for every value of m separately. Clas-
sical equations of motion (5) and (6) also simplify sig-
nificantly, because the commutator matrices vanish: [M,U]
= 0 and [M, V] = 0. If this CS-approximation is used to-
gether with simplification of Sec. II B (cylindrical symmetry),
then Eqs. (5) and (6) convert into

Ṗ� = 0, (5′′)

Ṗ� = 0. (6′′)

Again, these equations are trivial and there is no need to prop-
agate them.

In this form the MQCT becomes rather simple and simi-
lar to the method of Billing,2 with only one distinction. Billing
has chosen to restrict his trajectories to � = 0 plane and
setP� = 0. In principle this is equivalent, but in practice our
version is better, because fixing � = π /2 permits to avoid
singularity at � = 0, which affects Eqs. (3) and (4), and (5).
Equation (1) remains in its original form in any version of
MQCT.

D. Sampling of initial conditions

The exact quantum expressions for (integral) scattering
cross section are15

σj→j ′ = 1

(2j + 1)

j∑
m=−j

j ′∑
m′=−j ′

σjm→j ′m′ , (12)

σjm→j ′m′ = π

k2
j

∞∑
J=0

J+j∑
l=|J−j |

J+j ′∑
l′=|J−j ′ |

(2J + 1)

× ∣∣δjj ′δll′δmm′ − SJ
jj ′,ll′,mm′

∣∣2 , (13)

where SJ
jj ′,ll′,mm′ is the scattering matrix in BF system. MQCT

treatment is most straightforward for inelastic scattering
channels, when δjj′ = 0 and the probability amplitudes aj′m′

from Eq. (7) at the final moment of time can be used to
compute transition probability as |δjj ′δll′δmm′ − SJ

jj ′,ll′,mm′ |2
= |aj ′m′ |2. Transformation to MQCT treatment is achieved
by making the total angular momentum J a continuous (clas-
sical) variable, while keeping the values of j and m integer
and quantized. This imposes certain restrictions onto the val-
ues of continuous classical variable  = |l|, namely: |J − j|
≤  ≤ J + j. Figure 1 explains sampling of initial condi-
tions, including illustration of the allowed values for classi-
cal vector of orbital angular momentum l, related closely to
the collision impact parameter b through ( + 1) = k2b2

and k = P/¯. Absolute value of the initial momentum P2

= P 2
R + (P 2

� / sin2 � + P 2
�) /R2 is determined by incident

energy of collision, while various possible directions of P in
space correspond to different values of  = |l|, where l = J
+ j. In a general situation (without cylindrical symmetry, �


= const ) the range of possible directions of P is represented
by a segment of spherical surface illustrated in Fig. 1. If the
simplified version of theory (cylindrical symmetry) is appro-
priate, this range shrinks to a one-dimensional section of this
surface by � = π /2 plane.

Following these arguments, the triple sum in quantum
Eq. (13) is replaced by classical integral:

σjm→j ′m′ = π

k2
j

∞∫
0

(2J + 1)dJ

∫
l=J+j

∣∣aj ′m′
∣∣2 dl. (14)

In practice, this integral is estimated using the Monte-Carlo
sampling technique. First, the value of J is sampled randomly

FIG. 1. Sampling of initial conditions for atom-molecule collision in space-
fixed (SF) reference frame. Shaded area on the surface of the sphere of radius
|P| determines all possible directions of classical vector P. Different direc-
tions correspond to different values of impact parameter, with largest impact
parameter obtained in the case of lmax and smallest impact parameter in the
case of lmin .
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and uniformly between zero and Jmax = k¯bmax . Next, for a
chosen initial j, the value of  is sampled randomly and uni-
formly in the range |J − j| ≤  ≤ J + j, and is used to define
the initial classical momentum P� = ¯√( + 1) in Eq. (3)–
(5). This procedure is repeated for N classical trajectories (la-
beled by i) and the inelastic scattering integral cross section is
determined numerically as

σjm→j ′m′ = π

k2

Jmax

N

∑
i

(2J (i) + 1)
∣∣∣a(i)

j ′m′

∣∣∣2 . (15)

Quantum equation (12) is used in MQCT without modifica-
tions; it describes sum over the final values m′ and average
over the initial values m.

It may also be instructive to consider the trivial case of
j = 0, when J =  and the range of possible directions of
vector P shrinks to a single point. In this case no sampling
over  is needed at all, the integral in Eq. (14) becomes one-
dimensional, σjm→j ′m′ = π/k2

j

∫
(2J + 1)|aj ′m′ |2dJ , which

can be easily evaluated using any structured grid method (no
Monte-Carlo needed). However, when j > 0, it is advanta-
geous to use the two-dimensional Monte-Carlo sampling over
J and , for faster convergence.

E. Phases and elastic scattering cross sections

For the elastic scattering channel the phase of the
corresponding diagonal element of scattering matrix S in
Eq. (13) becomes important, but there are two contributions to
the overall phase. One contribution is phase of rotational (or
ro-vibrational, internal) wave function. It is contained in the
complex-valued transition amplitude ajm, which is accurately
computed within MQCT by propagating Eq. (7). We will de-
note this phase δj and compute it as δj = arg ajm. Second con-
tribution is phase shift of the partial wave, δ, which is missing
in MQCT because scattering is treated classically. However,
classical treatment of scattering provides classical deflection
function �(). The deflection function cannot really be used
directly to compute cross section at angles smaller than the
rainbow angle (see, for example, Ref. 16), but we found it
possible to recover the value of δ from the �() dependence.
Namely, in the semi-classical treatments of scattering it is as-
sumed that deflection is determined by the total phase shift
(see the Appendix):

�() = d(δ + δj ())

d
. (16)

If the �() and δj() dependencies are both known, this ex-
pression can be used as a differential equation for δ() with
boundary condition δ(∞) = 0, which corresponds to no scat-
tering at large impact parameters. Solving this equation nu-
merically allows reconstructing the δ() dependence and ex-
pressing transition probability in Eq. (13) for the elastic chan-
nel as: |δjj ′δll′δmm′ − SJ

jj ′,ll′,mm′ |2 = | 1 − ajm exp(iδ)|2. Fi-
nally, this probability is averaged over N trajectories using the
Monte-Carlo method, just like in Eq. (15):

σjm→jm = π

k2

Jmax

N

∑
i

(2J (i) + 1)
∣∣∣ 1 − a

(i)
jm exp(iδ)

∣∣∣2,
(17)

where the phase shift is computed from

δ = −
∫

∞
�(s)ds − δj (), (18)

where s is a dummy variable introduced for integration
over .

F. Differential cross sections

For simplicity of presentation, we will focus on differen-
tial cross section for the elastic channel (j → j), but the pro-
cedure and conclusions are general and applicable to inelastic
scattering as well. Scattering amplitude,

fjm→jm(θ ) = i

k

∞∑
l=0

(2l + 1)
(
1 − SJ

jj,ll,mm

)
Pl(cos θ ), (19)

is used to compute the differential cross section (averaged
over the initial states m):

dσj→j (θ )

d�
= 1

(2j + 1)

j∑
m′=−j

j∑
m=−j

∣∣fjm→jm′ (θ )
∣∣2. (20)

In MQCT, the sum of Eq. (19) is replaced by a semi-classical
integral over continuous distribution of , and the phase δ is
introduced (as above), which leads to

fjm→jm(θ ) = i

k

∞∫
0

(2 + 1)(1 − ajm exp(iδ))Pl(cos θ )d.

(21)
Using Monte-Carlo approach this integral is computed as

fjm→jm(θ )= i

kj

Jmax

N

∑
i

(2+1)
(
1− a

(i)
jm exp(iδ)

)
Pl(cos θ ).

(22)

G. Numerical approach

As in full-quantum calculations, we used the potential
energy surface expanded in terms of Legendre polynomials:
V (R, r, γ ) =∑Vk(R, r)Pk(cos γ ). For Na + N2(v = 0) sys-
tem we included all even terms up to k = 8 and used the
R-dependent expansion coefficients Vk from Ref. 10. For He
+ H2 system we included terms up to k = 8. Equations (1)–
(7) were solved numerically altogether using Runge-Kutta
method of 4th order. The initial molecule-quencher separa-
tion was close to R = 28.2a0 in the case of Na + N2 system
and about R = 24a0 in the case of He + H2. Classical im-
pact parameter, determined by convergence studies, was bmax

= 24 a0 in the case of Na + N2 and bmax = 15 a0 in the case
of He + H2. The magnitude of classical momentum is chosen
as prescribed by the symmetrized average-velocity approach,4

which takes into account microscopic reversibility of state-to-
state transitions. In calculations with small j the rotational ba-
sis set included all eigenstates up to j = 14 in the case of Na
+ N2 system and up to j = 12 in the case of He + H2. In one
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case, quenching of j = 22 in He + H2, we included all rota-
tional states up to j = 32 and two vibrational states v = 0 and
v = 1.

An important practical aspect is how to generate Pl(cos θ )
when  is a continuous variable. In principle, one should re-
place a set of Legendre polynomials by their continuous ana-
logue – the hyper-geometric function.17 A FORTRAN routine
from the package POLPAK for computation of the hyper-
geometric functions worked fine for  < 25 but crashed at
larger values of . We also tried to compute hyper-geometric
function using MATLAB, but at large  this was inconve-
niently slow. As an alternative, we tried to round the value
of  to the closest integer and use polynomials, since they are
fast to compute at any values of . For the moderate values of
 the difference between the two methods was small and we
finally adopted this approach.

In general, using a standard expansion of the PES in Ja-
cobi coordinates V (R, r, γ ) =∑Vk(R, r)Pk(cos γ ), one can
evaluate matrix elements M

n′j ′
n j (R) as follows:

M
n′j ′
n j (R) = 〈φnj (r) |Vk(R, r)| φn′j ′ (r)〉

(
j ′

−m

k

0
j

m

)

×
(

j ′

0
k

0
j

0

)√
(2j ′ + 1)(2j + 1)(−1)m. (23)

A FORTRAN routine W3JS18 was used to com-
pute Wigner 3j symbols. Note that matrix elements
〈φnj (r) |Vk(R, r)| φn′j ′ (r)〉 do not depend on m. Their
values were computed on a grid of 400 points for along 2.0 <

R < 25.0a0. In order to calculate derivatives in Eq. (4) a cubic
spline was prepared for each such matrix element. Vibrational
wave functions φnj(r) were calculated as prescribed in Ref. 4
using package ARPACK on an optimized grid of 128 points
along 0.2 < r < 5.0a0.

III. NUMERICAL RESULTS

A. Tests of fully coupled MQCT method

Inelastic scattering calculations for Na + N2 system
were carried out in order to test accuracy of MQCT method
in the case of reasonably heavy atomic masses. Full quan-
tum CC results for this system are available from Ref. 11.
Figure 2(a) summarizes data for excitation of the ground ro-
tational state j = 0. Excitation cross sections were computed
in a broad range of collision energies, 10 ≤ E ≤ 1100 cm−1.
Recall that for homo-nuclear N2 in the initial state j = 0 the
allowed transitions are: 0 → 2, 0 → 4, 0 → 6, etc. Anal-
ysis of Fig. 2(a) indicates that all these excitation processes
are accurately reproduced by MQCT in a broad range of col-
lision energies, and through four-orders-of-magnitude range
of cross section values. Interestingly, as energy E increases,
the value of cross section for 0 → 2 slightly decreases, while
it increases slightly for 0 → 4, and it passes through a pro-
nounced maximum in the case of 0 → 6 transition. All these
major features are reproduced well by MQCT (see Fig. 2(a)).
But even less significant features, such as slight ondulations
of the σ (E) dependencies, are also reproduced by MQCT. Im-
portantly, even the channel thresholds are correctly predicted.

σ
(

10
-1

6
cm

2 )

10-2

10-1

10
0

101

102

E (cm-1)

101 102 103

σ
(

10
-1

6
cm

2 )
10-2

10-1

100

101

102

0 2

0 4

0 6

a)

b)

0 2

0 4

0 6

FIG. 2. Energy dependence of excitation cross sections for Na + N2 system
in the ground rotational state j = 0. Three allowed rotationally inelastic chan-
nels are shown for transitions into the excited states j = 2, j = 4, and j = 6.
MQCT results are shown by symbols in frame (a), while classical trajectory
results are shown by dashed lines in frame (b). Full-quantum data from Ref.
11 are shown by solid lines in both frames for comparison.

In Fig. 3(a) we summarized results for the inelastic tran-
sition processes that originate in the excited rotational state j
= 5, located at energy E = 59.7 cm−1 above the ground rota-
tional state. In this case the allowed excitation processes are:
5 → 7, 5 → 9, etc., while the allowed quenching processes
are 5 → 3 and 5 → 1. In all these cases MQCT reproduced
quantum results very accurately in a broad range of collision
energies and through five-orders-of-magnitude range of cross
section values. Again, even small oscillations of σ (E) depen-
dencies for the processes 5 → 3 and 5 → 1 are correctly re-
produced.

Inelastic scattering calculations for He + H2 system were
carried out in order to test accuracy of MQCT method in the
limit of lightest atomic masses. This example is often thought
of as an essentially non-classical system, the worst-case sce-
nario for, and the stringent possible test of, the mixed quan-
tum/classical method. Full quantum benchmark data for this
system are available from Refs. 12 and 13. Figure 4 summa-
rizes results for quenching or two lowest excited rotational
states, the processes 2 → 0 and 4 → 2, at collision energies
in the range 1 ≤ E ≤ 10 000 cm−1. We see that, indeed, in this
light system the deviations of MQCT from quantum bench-
mark are more noticeable, and occur in a somewhat larger
range of collision energies, compared to more classical Na
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FIG. 3. Energy dependence of inelastic cross sections for Na + N2 system
in the excited rotational state j = 5. Two excitation channels correspond to
allowed transitions into j = 7 and j = 9. Two quenching channels correspond
to allowed transitions into j = 1 and j = 3. MQCT results are shown by
symbols in frame (a), while classical trajectory results are shown by dashed
lines in frame (b). Full-quantum data from Ref. 11 are shown by solid lines
in both frames for comparison.

+ N2 system. However, the values of these deviations are
still relatively small. For example, at E = 25 cm−1 the de-
viations are only 15% and 25% for processes 2 → 0 and 4
→ 2, respectively. Interestingly, at even lower collision ener-
gies, the accuracy of MQCT remains about the same, it does
not worsen significantly even at E = 2 cm−1. But, as energy
increases, MQCT results merge monotonically with full quan-
tum results. For 2 → 0 excellent agreement is found above E
= 100 cm−1. For 4 → 2 the agreement improves significantly
when collision energy approaches E = 200 cm−1. Note that
the dependence of cross section in Fig. 4 goes through min-
imum and maximum and those features are reproduced well
by MQCT. Thus, MQCT is applicable even to this light and
highly non-classical system, and it remains reasonably accu-
rate even at low collision energies.

B. Test of CS-approximation

Figure 5 shows the same data as in Fig. 2(a), but obtained
using the approximate CS-version of MQCT, derived in Sec.
II C. Overall, the quality of these data is very reasonable. De-
viations from the full quantum benchmark are observed for all
three processes: 0 → 2, 0 → 4, and 0 → 6, but typically they
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FIG. 4. Energy dependence of quenching cross sections for He + H2 system.
Two transitions are shown, one from j = 4 into j = 2, and the other from j
= 2 into j = 0. MQCT results are shown by symbols. Full-quantum data from
Ref. 12, where available, are shown by solid lines for comparison.

do not exceed 25% (somewhat more near the channel thresh-
old). Overall, one should admit that the fully coupled version
of MQCT is in much better and more detailed agreement with
exact quantum results (compare Fig. 5 vs. Fig. 2(a)).

For Na + N2 system the CS-version of theory was faster,
but not by much, just by a factor of ×3. For more compli-
cated systems (triatomic + atom or triatomic + diatomic)
the computational speed up may be more substantial, but one
should keep in mind that accuracy of CS approximation is
non-uniform. For example, we found that for 0 → 2 transi-
tion at lower collision energies the value of CS cross section
is larger, while at higher collision energies it is smaller, com-
pared to the fully coupled MQCT data and quantum bench-
mark data. The switching occurs near E = 50 cm−1, which
produces an artificial oscillation of the CS cross section, quite
different from the benchmark data. In contract, the fully cou-
pled version of MQCT gives detailed and uniformly reliable
description through the entire range of collision energies.

Full quantum calculations are very demanding at high
collision energies and for highly excited rotational states.
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FIG. 5. Same as in Fig. 2(a), but using an approximate CS-version of MQCT.
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At such conditions the exact CC-method is almost never
used, and the CS-approximation is usually adopted. For He
+ H2 system at high levels of rotational excitations such
(full quantum but approximate) CS results are available from
literature12, 13 and web site of one of the authors.19 We carried
out similar calculations using MQCT. Figure 6 presents our
MQCT-SC results for rotational quenching of j = 22 in com-
parison with quantum benchmark data. The dominant process
is 22 → 20, and the corresponding transition energy is huge,
�E = 2, 967.6 cm−1. Results of MQCT are accurate at colli-
sion energies above 350 cm−1. For this transition, no quantum
CS results are available above E = 1000 cm−1, but we easily
computed few points up to E = 10 000 cm−1. Moreover, it
should be noted that in the He + H2 system in j = 22 and at
this collision energy the vibrational state-to-state transitions
become important and should also be included, in addition
to rotational state-to-state transitions. The calculations we did
were such ro-vibrational calculations. However, in present pa-
per we prefer to restrict discussion to rotational transitions
only.

C. Criterion of accuracy

According to Delos criterion for atom-atom collisions,14

and by analogy with our earlier findings from MQCT calcu-
lations of vibrational quenching,5 the MQCT method is ex-
pected to be more accurate when the energy change �E asso-
ciated with quantum state-to-state transition is small. Similar
conclusion can be deduced from our data for Na + N2 sys-
tem presented in Fig. 2(a). For example, the transition 0 → 2,
which has smallest value of �E = 11.9 cm−1, is reproduced
by MQCT particularly well. For this process the deviation
from full quantum result is observed only near the channel
threshold, and this discrepancy vanishes quickly as collision
energy is increased. If we look at transitions 0 → 4 and 0 → 6,
where the values of energy quantum rise to �E = 39.8 cm−1

and 83.5 cm−1, respectively, we start seeing some deviations
from full quantum results slightly further from the channel
threshold. This behavior is understood and even expected near

the channel threshold, where E ≈ �E. Roughly, results of
Fig. 2(a) show that MQCT becomes very accurate at colli-
sion energies E > 2�E. But even in the energy range �E
< E < 2�E the results of MQCT are quite reasonable.

Most interestingly, we found that MQCT is particularly
accurate for the rotationally excited states. This makes sense,
since excited states are more classical. For example, the four
sets of data presented in Fig. 3(a) still correspond to relatively
large values of �E: 35.8 cm−1, 51.7 cm−1, 55.7 cm−1, and
119.4 cm−1. Nevertheless, the excitation cross sections com-
puted by MQCT for 5 → 7 and 5 → 9 are very accurate (even
at the channel threshold, E = �E), and the quenching cross
for 5 → 3 and 5 → 1 are accurate at any energies we con-
sidered, down to E = 5 cm−1 (because there is no threshold
for quenching). No any obvious criterion can be formulated
or needed here. MQCT data are simply almost as accurate as
the full quantum data.

In the case of He + H2 system the state-to-state transi-
tion energies �E are large: 384 cm−1 and 813 cm−1 for the
processes 2 → 0 and 4 → 2, respectively. From one side,
this explains why deviations of MQCT results from quantum
benchmark are larger in this system than in Na + N2. But from
another side, this also means that the criterion for validity of
MQCT may be less stringent. Namely, for He + H2, MQCT
is rather accurate at collision energies above E = 100 cm−1

for transition 2 → 0, and above E = 200 cm−1 for transi-
tion 4 → 2. Roughly, this corresponds to E > �E/4. And
again, this is for the lower, most quantum mechanical states.
Excited rotational states are more classical. For transition 22
→ 20 we have �E = 2967.6 cm−1and MQCT is accurate
above 350 cm−1 which, in fact, is much better than �E/4 (this
is closer to �E/8). This example gives clear indications where
the range of applicability and the predictive power of MQCT
approach are.

For all integral cross sections discussed above and both
benchmark systems studied here we computed relative errors
of MQCT method (% of the full-quantum result) and col-
lected them all together in Fig. 7. Only a few outlying points
were not included into this graph. Both excitation and quench-
ing processes were included. Horizontal axis gives the ratio
�E/E, and the range of its values is rather large, 10−2 < �E/E
< 103. More accurate corner of this graph corresponds to low
�E and high E, while less accurate corner corresponds to
high �E and low E. Despite some spread of points present
in these data, the plot in Fig. 7 shows clear correlation be-
tween accuracy and the value of �E/E. We found that the
data for He + H2 and for Na + H2 complement each other,
following very similar trends. Thus, we conclude that this de-
pendence is rather general and we recommend using this pic-
ture to estimate the error of MQCT method before applying
it to new systems. For example, consider rotational quench-
ing from the first excited rotational state to the ground state
in H2O, NH3 and in HCOOCH3 (methyl formate, small or-
ganic molecule important for astrophysics). Rotational quanta
in these molecules are �E =18.6 cm−1, 16.3 cm−1, and 0.41
cm−1, respectively. Neither of these systems was studied us-
ing MQCT, but we plan doing such calculations in the fu-
ture. From Fig. 7 one can expect that at energy of collision E
= 100 cm−1an error of MQCT should be no more than 2%
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FIG. 7. Percent error of MQCT method for all calculations of this paper.
The value of error correlates with the ratio of transition energy to scatter-
ing energy. Quenching processes for Na + N2 are plotted using red solid
lines, while excitation processes are plotted using green lines. The data for He
+ H2 are blue.

for H2O and NH3, and no more than 0.5% for methyl for-
mate. At higher collision energies the errors are expected to
be smaller. When MQCT results for these new molecules be-
come available, they can be added to this graph, in order to
improve predictive capability of the method.

One can also notice that the full quantum data for Na
+ N2 system (from Ref. 11, used here as a benchmark) ex-
hibit some resonances just above threshold, especially in the
case of 0 → 2 transition shown in Fig. 2(a). It is an interest-
ing general question whether MQCT can be used to treat these
purely quantum features of cross section. For example, clas-
sical trajectory capture is analog of quantum scattering reso-
nance, and we saw that at energies close to threshold many
trajectories were captured in the interaction region. Analysis
of these trajectories may give some useful information about
scattering resonances, but we decided to postpone exploration
of this topic to future work, and do that for a different system,
with fewer isolated resonances. Here, we restricted our anal-
ysis to non-resonant cross sections only and simply zeroed all
trajectories that exhibited resonant behavior.

D. Differential cross sections

Figure 7 presents differential cross section for the elas-
tic scattering channel of Na + N2 (j = 0) system at relatively
low collision energy E = 50 cm−1. Figures 8(a) and 8(b) show
the same for higher collision energies, E = 100 cm−1 and E
= 700 cm−1, respectively. In all these cases the full quantum
benchmark data are available from Ref. 11. We see that de-
pendence of cross section on scattering angle is highly os-
cillatory (non-classical) but MQCT method reproduces every
single oscillation of this dependence very accurately. To our
best knowledge this is the first application of mixed quan-
tum/classical theory to calculation of differential scattering
cross section.

Recall that classical scattering theory works only at large
scattering angles, beyond the classical rainbow angle (small
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FIG. 8. Differential cross section for the elastic scattering channel of Na
+ N2(j = 0) system at collision energy E = 50 cm−1. MQCT results are
shown by red dashed line. Full-quantum data from Ref. 11 are shown by
green solid line for comparison. Classical rainbow angle is indicated by ar-
row. A pseudo-classical (see text) cross section is shown by black solid line
in the range of angles beyond the rainbow.

impact parameters, backscattering). At the rainbow angle the
classical scattering cross section diverges (see the Appendix),
and it is poorly defined at angles smaller than the rainbow
angle (large impact parameters). Various versions of semi-
classical treatment of scattering exist, capable of removing
singularity at the rainbow angle,18 and expanding the range
of validity of the classical scattering theory slightly into the
quantum scattering regime (vicinity of the rainbow angle). No
semi-classical treatment of scattering is expected to work at
small scattering angles, in the quantum scattering regime.

It is encouraging that MQCT is very accurate at small
scattering angles, in the quantum scattering regime. Note that
in Fig. 8 logarithmic scale is applied to the horizontal axis, in
order to emphasize the small scattering angle part of cross
section dependence. The rainbow angle is also marked in
Figs. 7 and 8, and we see that in its vicinity the dependence
of MQCT cross section is regular, just as quantum benchmark
data, and is very accurate.

Unexpectedly, we found that differential cross sections
computed by MQCT exhibit unphysical behavior at large
scattering angles (not shown here), in the classical scattering
regime, where even a simple classical mechanics is expected
to work! This behavior is not yet completely understood, and
most probably is due to some technical issue, but we found a
temporary fix for it. In Figs. 7 and 8 we also plotted a pseudo-
classical cross section, obtained simply by differentiating the
classical deflection function �() derived from MQCT calcu-
lations (see Eq. (A15) in the Appendix). At scattering angles
larger than rainbow angle such cross section is well defined
and comparison with full quantum data shows that it sets up
accurately the asymptotic trend (see Figs. 7 and 8). Thus, at
large scattering angles one can easily switch to this pseudo-
classical cross section.

Finally, the integral elastic scattering cross section, ob-
tained by integrating the differential cross sections discussed
above, is presented in Fig. 9. The agreement with quantum
benchmark data is rather good, down to collision energies E
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FIG. 9. Differential cross section for the elastic scattering channel of Na
+ N2(j = 0) system at collision energies E = 100 cm−1 and 700 cm−1 in
frames (a) and (b), respectively. MQCT results are shown by red dashed line.
Full-quantum data from Ref. 11 are shown by green solid line for comparison.
Classical rainbow angle is indicated by arrow. A pseudo-classical (see text)
cross section is shown by black solid line in the range of angles beyond the
rainbow. This figure emphasizes small scattering angles (note logarithmic
scale in the horizontal axis).

= 50 cm−1 or so. At even lower energies we start seeing devi-
ations, but the overall trend of dependence is captured well by
MQCT: it goes through maxima and minima several times and
these quantum oscillations are all reproduced (see Fig. 10).
Recall that classical scattering theory cannot predict the elas-
tic scattering cross section, because the maximum impact pa-
rameter is impossible to define rigorously. In contrast, MQCT
uses phase information (just as full quantum method) which
avoids the problem. In the range of collision energies where
MQCT is accurate it can be used to predict the elastic scatter-
ing cross sections reliably.

As discussed in the theory section above, calculations
of differential cross sections and elastic scattering cross sec-
tions use phase information and quantum interference. These
phenomena are very sensitive to errors and when MQCT
becomes less accurate overall (at lower scattering energies)
these cross sections suffer the most. For example, we also
calculated the differential cross section at low collision en-
ergy E = 15 cm−1(in the region of scattering resonances), but
in this case we found larger discrepancies between MQCT re-
sults and the full quantum benchmark data. So, at very low
collision energies one should be careful using MQCT to pre-
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FIG. 10. Energy dependence of integral cross section for the elastic scatter-
ing channel of Na + N2 system in the ground rotational state j = 0. MQCT
results are shown by symbols. Full-quantum data from Ref. 11 are shown by
solid line for comparison.

dict differential cross sections or the elastic scattering cross
sections.

E. Purely classical trajectories

In MQCT formalism of rotational quenching the classi-
cal mechanics is used only for description of scattering, while
quantum mechanics is used for rotational state-to-state transi-
tions. Why not to get rid of the quantum mechanics entirely,
and treat all degrees of freedom classically? This was at-
tempted in the past and, in particular, it was shown that for the
He + H2 system at collision energies close to E = 1000 cm−1

the value of cross section for transition 2 → 0 is underesti-
mated by an order of magnitude or so.12 At collision energies
lower than E = 1000 cm−1 it is expected to be even worse.
Performance of the classical trajectory method for He + H2

system improves only when the collision energy reaches E
= 4000 cm−1 or so, but the agreement with full quantum
method still remains rather rough.12

For heavy atoms classical mechanics is expected to work
somewhat better, and we decided to run the purely classical
trajectory simulations for Na + N2 system. We tried several
known methods of the final state analysis but we found that,
when applied to various needed state-to-state cross sections in
a broad range of energies, neither method works consistently
better than others (although, we did not attempt the Gaus-
sian binning20). Results presented below were obtained using
the prescription of Bowman,21 which worked slightly better.
Furthermore, since N2 is symmetric, we had to introduce an
ad hoc factor of ×1/2 (which would be hard to justify in the
case of different isotopes). Only then the results of classical
trajectory simulations for Na + N2 fall into the right order of
magnitude range (Fig. 10).

Our classical results are summarized in Figs. 2(b) and
3(b). They can be conveniently compared to the full quan-
tum benchmark data and to our MQCT results as well, shown
in Figs. 2(a) and 3(a). We see that although not all, but
many σ (E) dependencies are similar. However, the quality of
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agreement is qualitative (at best), rather than quantitative.
Some of the classical state-to-state cross sections are higher
while others are lower compared to quantum results. Large
deviations by a factor of 2–4 are typical. Moreover, near the
channel thresholds (for excitation processes) and at lower col-
lision energy (for quenching processes) the deviations are par-
ticularly large and often reach two orders of magnitude. In
terms of accuracy for rotational state-to-state transition cross
sections, the classical trajectory method is not even close to
MQCT.

Finally, we found that, from the computational stand-
point, the classical trajectory simulations are even more de-
manding than MQCT. This seems surprising first, but has sim-
ple explanation. It appears that at low collision energy, when
the value of transition cross section is small (and many cross
sections in Figs. 2(a) and 3(a) are very small) one needs to
sample literally hundreds of thousands of classical trajecto-
ries, in order to find that rare event (special collision arrange-
ment) that makes non-zero contribution to cross section. In
addition to everything said above, the classical cross sections
at low energies are typically poorly converged and very ex-
pensive computationally. MQCT is the method of choice. It is
almost as accurate as the full quantum method, and is compu-
tationally cheaper than the classical trajectory method.

IV. CONCLUSIONS

In this paper we carried out the first extensive bench-
marking of accuracy of the MQCT treatment of rotationaly
inelastic scattering processes. Two molecular systems were
considered, one of which contained all light atoms (He + H2),
while the other one contained all reasonably heavy atoms (Na
+ N2). A broad range of classical collision energies was ex-
plored: 1 < E < 10 000 cm−1. The values of quantum state-
to-state transition energies studied here also covered a wide
range: 10 < �E < 3000 cm−1. The amount of initial rota-
tional excitation varied from j = 0 to j = 22. The values
of obtained scattering cross sections varied from 10−23 to
10−13 cm2. In addition to energy dependence of integral cross
sections, we also looked at the differential (over scattering an-
gle) cross sections. Both elastic and inelastic scattering chan-
nels were studied. In all these cases a detailed comparison of
MQCT against the full quantum method was carried out.

We found that in many of these cases the results of
MQCT are hard to distinguish from the full quantum (CC) re-
sults. We also saw that in some unfavorable cases (low mass,
low collision energy, and large transition energy) MQCT be-
comes less accurate, but we never really saw it failing. For
example, in the worst-case situations the values of MQCT
cross sections were overestimated by 25% or so, which still
can be characterized as a semi-quantitative agreement. And
this is in the lightest possible system, He + H2. In all other
chemically relevant molecular systems, at thermal collision
energies, MQCT is expected to be much more accurate than
this.

As a rule of thumb, one can probably use the follow-
ing criterion for rotational quenching processes: When E
> �E/4 the results of MQCT become accurate to within few
percent, compared to full quantum data. Most importantly is

that MQCT results approach the full quantum results mono-
tonically, in a predictable way. Above E = �E/4 they are very
accurate, below E = �E/4 they start deviating from the full
quantum data, but this deviation does not increase rapidly. We
saw that MQCT always produces reasonable data, even in un-
favorable situations, when it is less accurate.

It seems that this method represents a useful alternative
to the full quantum methods in situations when collisional en-
ergies are high, rotational excitation is significant, masses are
large and the densities of states are large (small state-to-state
transition energies). These cases are hard to handle numeri-
cally using the full quantum methods, such as CC, but MQCT
becomes very accurate in these same situations. Of course,
larger number of states involved in expansion of wave func-
tion will make any calculations more demanding, both CC and
MQCT, but overall the mixed quantum/classical approach is
much more affordable.

The computational cost of MQCT is really low. For small
values of j in both systems considered here, only about 1 min
on single processor was spent per energy point. It is still hard
to say how this will grow with size of the molecule, since
we only start applying this theory to triatomic + atom sys-
tems. However, we want to stress that MQCT calculations for
different trajectories are entirely independent (sampling over
), which makes this method intrinsically and embarrassingly
parallel. One can easily spread MQCT trajectories onto hun-
dreds of processors with zero communication overlap. With
this capability, MQCT calculations are expected to be afford-
able even for polyatomic molecules, with large number of
states included, and even without the CS-approximation in-
volved. It is also important to note that propagation of MWCT
trajectories is computationally faster at higher collision ener-
gies, which makes this method appealing for high temperature
applications.

One more appealing aspect of MQCT methodology is
that it offers a unique time-dependent insight into mech-
anism of the process. Indeed, although the standard time-
independent scattering theory provides the transition matrix
and characterizes completely the outcome of molecular col-
lision, it tells us nothing about the course of the process,
how wave function of the system evolves in time and space.
In our MQCT approach and other related time-dependent
methods22, 23 one can monitor how state populations |aj ′m′ |2
change as collision progresses along the trajectory. Do the
populations change monotonically and describe direct tran-
sitions, or there is a temporary population transfer to some in-
termediate states? And what is the time scale of the process?
These opportunities will be explored in the near future.
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FIG. 11. Pseudo-classical deflection and scattering functions from MQCT
calculations. Scattering function θ () is always positive (solid line), while de-
flection function �() is always smooth (dashed line). Classical rainbow an-
gle is indicated. At angles below this value three branches of scattering func-
tion contribute and interfere (quantum scattering regime). At angles above
this value only one branch contributes and scattering is classical.
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APPENDIX: SEMI-CLASSICAL THEORY
OF SCATTERING

Figure 11 represents example of classical scattering func-
tion θ () and deflection function �() obtained from MQCT
calculations for Na + N2 (j = 0) system at collision energy
E = 50 cm−1. The “rainbow” angle is observed at 67.5◦. At
scattering angles larger than rainbow angle only one branch
of the �() dependence contributes to the differential cross
section and the scattering is classical (small values of , small
impact parameters). At angles smaller than rainbow angle sev-
eral branches contribute (three in Fig. 11), producing interfer-
ence. So, small scattering angles correspond to quantum scat-
tering regime (large values of , large impact parameters).

When (l + 1/2)sin θ � 1 it is usual to approximate Leg-
endre polynomials in Eq. (21) by the following expression:16
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Also, as explained in Sec. II D, the elastic element of transi-
tion matrix is 1 − a(l)exp {iδl} = 1 − |a(l)|exp { i (δj + δl)},
where, in order to simplify notations, we omitted subscripts in
a(l). Using these expressions the integral of Eq. (21), we can
split it onto three terms:
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The last term is equal to zero and does not affect the dif-
ferential cross section. The first two terms are estimated us-
ing the stationary phase approximation. Namely, the main
contribution to the first integral is given by small  (repul-
sive short range interaction) where the phase reaches a local
maximum.16 In other words

d

dl
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)
θ − π

4

)
= 0, (A3)

which gives us the condition:

d(δl + δj )

dl
= +θ. (A4)

Similar arguments for the second term in (A2) give us

d(δl + δj )

dl
= −θ. (A5)

Combining these two expressions, we have

d(δl + δj )

dl
= ±θ = �(l). (A6)

In semi-classical treatment �(l) is assumed to be the classical
deflection function. This finalizes derivation of Eq. (16) used
in Sec. II D.

Note that in our MQCT calculations of differential cross
sections we neither use the approximation of Eq. (A1) for
Pl(cos θ ) nor estimate f(θ ) from Eq. (A2). Instead, we use
Eq. (A6) only to recover the value of scattering phase δl (see
Eq. (18)), and then we substitute δl into the exact Eq. (21),
without any approximations. This must be the reason why
MQCT treatment works well even at small scattering angles,
where the usual semi-classical theory of scattering (outlined
below) does not work.

In order to continue manipulations with Eq. (A2), for
given θ we can find a stationary point l0 (or, in the quan-
tum regime, several such points: l0, l1, and l2) and expand
the argument in its vicinity using Taylor series to 2nd order.
First derivative is equal to zero since l0 is extremum. Second
derivative:

∂2

∂l2

(
δl + δj −

(
l + 1

2

)
θ − π

4

)
= ∂2

∂l2
(δl + δj ) = ∂�(l)

∂l
,

(A7)
where we used Eq. (16). The expansion is

δl + δj −
(

l + 1

2

)
θ − π

4
≈ δl(l0) + δj (l0) −

(
l0 + 1

2

)
θ

−π

4
+ ∂�(l0)

∂l

(l − l0)2

2
=−

l0∫
∞

�(s)ds −
(
l0 + 1

2

)
θ
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−π

4
+ ∂�(l0)

∂l

(l − l0)2

2
, (A8)

where we used Eq. (18). Substitution of this argument into
the first integral in Eq. (A2) gives

1

k

∞∫
−∞

(
l0 + 1

2

)
|a(l0)|

√
2π l0 sin θ

exp

{
i

(
−

l0∫
∞

�(s)ds −
(

l0 + 1

2

)
θ

−π

4
+ ∂�(l0)

∂l

(l − l0)2

2

)}
dl =

(
l0 + 1

2

)
|a(l0)|

k
√

2π l0 sin θ

× exp

{
i

(
−

l0∫
∞

�(s)ds −
(

l0 + 1

2

)
θ − π

4

)} ∞∫
−∞

× exp

{
i

(
∂�(l0)

∂l

(l − l0)2

2

)}
dl. (A9)

The last factor here can be computed using Fresnel’s integral:

∞∫
−∞

exp

{
i

(
∂�(l0)

∂l

(l − l0)2

2

)}
dl =

√
2π

∂�(l0)
∂l

exp
{
i
π

4

}
.

(A10)
Substitution of this result into Eq. (A9) leads to

(
l0 + 1

2

) |a(l0)|
k
√

2πl0 sin θ

× exp

⎧⎨
⎩i
⎛
⎝−

l0∫
∞

�(s)ds−
(
l0+ 1

2

)
θ− π

4

⎞
⎠
⎫⎬
⎭
√

2π
∂�(l0)

∂l

exp
{
i
π

4

}

=
(
l0 + 1

2

) |a(l0)|
k

√
l0 sin θ ∂�(l0)

∂l

exp

⎧⎨
⎩i

⎛
⎝−

l0∫
∞

�(s)ds −
(

l0 + 1

2

)
θ

⎞
⎠
⎫⎬
⎭

=
(√

l0 + 1
2
√

l0

)
|a(l0)|

k

√
sin θ ∂�(l0)

∂l

exp

⎧⎨
⎩i

⎛
⎝−

l0∫
∞

�(s)ds−
(
l0 + 1

2

)
θ

⎞
⎠
⎫⎬
⎭

≈
√

l0 |a(l0)|
k

√
sin θ ∂�(l0)

∂l

exp

⎧⎨
⎩i

⎛
⎝−

l0∫
∞

�(s)ds −
(

l0 + 1

2

)
θ

⎞
⎠
⎫⎬
⎭ .

(A11)

Here we assumed that l0 �1. This is the final result for the
first integral in Eq. (A2).

Similar considerations are applicable to the second inte-
gral in Eq. (A2), but in the classical scattering regime (single
branch of the deflection function, single extremum l0) the sec-
ond integral is always oscillatory and makes no contribution
to f(θ ). However, in the quantum scattering regime, each ad-
ditional branch of the deflection function produces one addi-
tional extremum (l1 and l2 in Fig. 11). At such conditions the

second integral in Eq. (A2) gives

√
l1 |a(l1)|

k

√
sin θ

∣∣∣ ∂�(l1)
∂l

∣∣∣
exp

⎧⎨
⎩i

⎛
⎝−

l1∫
∞

�(s)ds +
(

l1 + 1

2

)
θ

⎞
⎠
⎫⎬
⎭ ,

(A12)
for l1, and similar for l2. Combining all branches of the de-
flection function and using ±θ = �, we finally obtain a semi-
classical expression for scattering amplitude:

f (θ ) =
∑

q

√
lq
∣∣a(lq)

∣∣
k

√
sin θ

∣∣∣ ∂�(lq )
∂l

∣∣∣

× exp

⎧⎪⎨
⎪⎩i

⎛
⎜⎝−

lq∫
∞

�(s)ds −
(

lq + 1

2

)
�(lq)

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

(A13)

where the sum is over q branches of the deflection function
�(l) (e.g., three in Fig. 11).

We tried this semi-classical method for differential cross
section and found that indeed the Eq. (A13) allows remov-
ing singularity at the rainbow point and gives correct asymp-
totic value of cross section at large scattering angles (as
θ → π , backscattering, classical regime). However, it fails to
reproduce quantum oscillations of cross section seen in Figs.
7 and 8. Also, it is rather inaccurate at small scattering angles
and diverges at θ → 0. Overall, the standard semi-classical
approach reviewed in this appendix is inferior to the MQCT
treatment proposed in this paper, and from our point of view
is not particularly useful (except Eq. (A6), used to compute
the scattering phase δl).

In the case of a single branch, i.e., outside of the rainbow
point, in the classical scattering regime, one can substitute

f (θ )=
√

l0 |a(l0)|
k

√
sin θ ∂�(l0)

∂l

exp

⎧⎨
⎩i

⎛
⎝−

l0∫
∞

�(s)ds −
(
l0 + 1

2

)
�

⎞
⎠
⎫⎬
⎭

(A14)
into Eq. (20), which yields classical expression for differential
cross section:

dσ (θ )

d�
= l0 |a(l0)|2

k2 sin θ

∣∣∣ ∂�(l0)
∂l

∣∣∣ . (A15)

In the body of the paper we called this version a pseudo-
classical cross section, since the expression itself is classi-
cal, but the input data for probability |a(l)|2 and the deflection
function �(l) are obtained from MQCT calculations.
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