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ABSTRACT 

 

CONTRIBUTIONS OF INDIVIDUAL DIFFERENCES IN STRESS REACTIVITY TO 

POST-TRAUMATIC STRESS DISORDER VULNERABILITY AND RESILIENCE 

 

 

Jonathan Edward Hill, B.A. 

 

Marquette University, 2013 

 

 

 Post-traumatic stress disorder (PTSD), an anxiety disorder precipitated by 

exposure to extreme emotional and/or physical stress, is characterized by persistent, 

intrusive memories of the precipitating trauma. Thus, the pathogenesis of PTSD has been 

conceptualized as involving a deficit in consolidation mechanisms underlying the 

extinction of fear memory. The mechanisms underlying this deficit have not been 

elucidated. In addition to intrusive memories, patients with PTSD display heightened 

sensitivity of the hypothalamic pituitary adrenocortical (HPA) axis to glucocorticoid 

negative feedback. As glucocorticoids are important modulators of memory 

consolidation, increased sensitivity to HPA negative feedback, by blunting glucocorticoid 

responses, may contribute to memory-related symptoms in PTSD patients. Emerging 

evidence in human patients suggests that the observed heightened negative feedback 

sensitivity in PTSD patients represents a marker of susceptibility to developing PTSD, 

rather than an effect of exposure to trauma, but this hypothesis has not been tested in 

animal studies. We examined individual differences in HPA responsiveness in rats 

displaying low (LR) and high (HR) locomotor responses to novelty. LR rats exhibited 

increased anxiety-like behaviors and less motility as compared to HR rats. HR rats 

displayed larger increases in corticosterone in response to restraint stress as compared to 

LR rats. LR and HR rats were subjected to contextual fear conditioning in order to 

examine consolidation, incubation, and extinction effects. LR rats exhibited increased 

freezing time and a reduction in the ability to extinguish fear memory as compared to HR 

rats. Additional animals were measured for acoustic startle prior to and following 

exposure the animal PTSD-model single-prolonged stress. LR rats subjected to a SPS 

exhibited a small increase in freezing indicative. HR rats expressed slightly lower levels 

of startle amplitude for most conditions, suggestive of habituation between trials. Overall, 

LR rats provide a working model to examine how individual differences in the HPA axis 

stress response play a role in the formation of PTSD-like behaviors.   
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CHAPTER I 

 

 

GENERAL INTRODUCTION 

 

 

General Introduction 

 

 

 Posttraumatic stress disorder (PTSD) is a severe anxiety disorder that develops in 

response to extreme physical and/or emotional stress during which the individual 

experiences actual or perceived threat of safety to self or others; accompanied by an 

extreme sense of helplessness and fear (DSM-IV-TR, 2000). It is estimated that 

approximately 69% of Americans will experience some form of traumatic episode in their 

lifetime (Norris, 1992). The precipitating trauma can be varied, for example: natural 

disasters (Hussain et al., 2011), rape (Rothbaum et al., 1992), sudden loss of a loved one 

(Breslau et al., 1999), severe automobile accidents, or combat (Javidi & Yadollahie, 

2012). However, not all individuals who experience a traumatic episode develop PTSD. 

It is approximated that only 7.8% of all Americans are affected by PTSD (Kessler et al., 

1995).  

 Following exposure to the traumatic episode, individuals with PTSD can show a 

wide variety of symptoms. PTSD is characterized by a combination of hyperarousal and 

numbing symptoms and persistent, intrusive memories of the traumatic episode (DSM-

IV-TR, 2000). Persistent and intrusive memories can manifest as generalized anxiety, 

nightmares, and flashbacks (Freud, 1962; Hartmann, 1984; Hanlon, 1987; Kavaler, 1987; 

Greenberg et al., 1992; Stickgold, 2002). All are potential processes affected by memory 

dysfunction. Indeed, these characteristics have led to the hypothesis that the pathogenesis 
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of PTSD may involve a dysregulation in the consolidation mechanisms underlying the 

extinction of fear memory (Rauch et al. 2006).  

 Individuals with PTSD have been shown to exhibit decreased circadian plasma 

concentrations of the stress-hormone cortisol (Mason et al., 1986; Yehuda et al., 1995) as 

well as enhanced sensitivity to suppression of cortisol in response to treatment with 

dexamethasone (Yehuda et al., 1993; Yehuda et al., 2002; Stein et al., 1997). In other 

words, individuals with PTSD display altered functioning of the hypothalamic-pituitary-

adrenal (HPA) axis manifest through the expression of lower baseline cortisol levels and / 

or heightened sensitivity to glucocorticoid negative feedback. The question that arises is 

whether the observed differences in stress reactivity are a result of the precipitating 

trauma or of a genetic predisposition that may constitute a susceptibility factor. Previous 

studies demonstrate that dysregulation of the HPA axis and glucocorticoid imbalances 

can lead to pathology; such as hyperglycemia, adrenal suppression, depression, mania, or 

dysregulation of memory (McEwen & Stellar, 1993; Lansang & Hustak, 2011; Marques 

et al., 2009; McGaugh & Roozendaal, 2002).  The question is whether the dysregulation 

of the HPA glucocorticoid system increases vulnerability to developing PTSD through 

the reduced availability of cortisol to interact with critical systems, or is a result of 

exposure to a traumatic insult.   

Hypothalamic-Pituitary-Adrenal Axis 

 

 

 The hypothalamic-pituitary-adrenocortical (HPA) axis is the primary 

neuroendocrine component of the stress response. In response to stressful stimuli, sensory 

information from the periphery is integrated and activates cells in the paraventricular 

nucleus of the hypothalamus (PVN). Upon activation, parvocellular neurons in the PVN 
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release corticotrophin-releasing factor (CRF), and other neuropeptides, into the 

hypophyseal portal circulation system (Vale et al., 1981; Rivier & Vale, 1983). Release 

of CRF causes subsequent release of adrenocorticotrophic hormone (ACTH) from the 

anterior pituitary gland. ACTH is released into the systemic circulation, whereupon it 

induces the production and secretion of glucocorticoids, namely cortisol (humans) or 

corticosterone (rodents), from the zona fasciculata of the adrenal cortex (Munck et al., 

1984) see Figure 1.1. Once released, glucocorticoids have a variety of actions throughout 

the body and brain. This includes activation of different cellular pathways regulating the 

redistribution of energy (Contarino et al., 2000; Richard et al., 2002), organization and 

processing of memory (Croiset et al., 2000 ) and negative-feedback inhibition of the HPA 

axis to inhibit further corticosterone release (Widmaier & Dallman, 1984; de Kloet et al., 

2005). Previous studies have demonstrated that corticosterone concentrations in the brain 

are reflected in plasma concentrations collected from the periphery. More specifically, 

central corticosterone concentrations have been found to be a linear function of its plasma 

concentration (Weber, Eckert, & Müller, 2006). This is important because most studies 

examining corticosteroid levels sample plasma concentrations, underscoring how 

important it is to know whether plasma concentrations reflect, to some degree, central 

concentrations.  
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Figure 1.1 Diagram of the Hypothalamic-Pituitary-Adrenal (HPA) axis. In response to stress (lightning 

bolts) sensory information is integrated within the hypothalamus and subsequently activates parvocellular 

neurons in the paraventricular nuclei (PVN). This results in the secretion of corticotrophin-releasing factor 

(CRF), which enters the anterior pituitary and induces the release of adrenocorticotrophic hormone 

(ACTH). ACTH enters the systemic circulatory system and targets the adrenal cortex, where it induces the 

release of glucocorticoids from the zona fasciculata. At high enough concentrations, glucocorticoids will 

initiate negative feedback inhibition of further release by inhibiting the release of CRF from the PVN and 

ACTH from the pituitary, resulting in the deactivation of the stress response. 
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HPA Axis & PTSD 

 

 

 Individuals with PTSD have been shown to exhibit differences in the functioning 

of the HPA axis. The glucocorticoid cortisol, or corticosterone in rodents, is an important 

component of the stress response system, and as such has been a focus of research in 

understanding the underlying mechanisms of PTSD. Studies have demonstrated that 

individuals with PTSD have exhibited decreased concentrations of cortisol (Boscarino, 

1996; Yehuda, 2002; Yehuda et al., 1993, 1995), enhanced sensitivity to negative 

feedback inhibition of the HPA axis (Yehuda et al., 1993; Yehuda et al., 2002; Stein et 

al., 1997) and expressed increased concentrations and responsiveness of the 

glucocorticoid receptor (Yehuda et al., 1995). Furthermore, individuals that expressed 

lower cortisol levels in the emergency room immediately following a traumatic 

experience, such as rape or motor vehicle accidents, had a greater incidence of 

developing PTSD over time as compared to individuals with higher levels of cortisol that 

underwent the same trauma and had similar trauma history (Resnick et al., 1995; 

McFarlane et al., 1997). This is interesting because it suggests a positive correlation 

between low cortisol levels following traumatic stress and the development of PTSD. 

Considered together, it is possible that by possessing decreased concentrations of cortisol, 

individuals with PTSD are unable to properly activate cortisol-dependent processes 

mediated through the glucocorticoid receptor during times of stress and therefore develop 

a variety of PTSD-like behaviors. 

 It is important to note however, that other studies have demonstrated that 

individuals with PTSD may exhibit a hyperactivity of the HPA response; sometimes 

resulting in higher levels of cortisol (Heim et al., 2000; Pittman & Orr, 1990; Rasmussen 
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et al., 2001), or no difference in cortisol levels from controls (Meewisse et al., 2007; 

Young & Breslau, 2004). However, in the previous studies significant differences were 

observed in cortisol concentrations, but only within select subpopulations. For example, 

Young and Breslau (2004) reported that only when an individual with PTSD expressed a 

comorbidity with major depressive disorder did they observe a significant elevation of 

cortisol. This difference was not observed when analyzing PTSD patients without major 

depressive disorder.   

 Furthermore, a study by Bremner et al. (2003) found that although individuals 

with PTSD have demonstrated lower basal cortisol levels, when presented with a 

cognitive stress individuals with PTSD demonstrated no differences in cortisol 

concentrations in response to stress compared to individuals without PTSD. This study is 

important because it examines glucocorticoid levels following stress, not at a basal level. 

This study, while important, is subject to the same issues as the aforementioned studies 

when trying to understand the role glucocorticoids and the HPA axis play in PTSD.  

 One complication of trying to understand how differences in HPA response may 

contribute to PTSD is that there are no set parameters in how the question is addressed. 

As the above paragraphs introduce, there are many conflicting observations regarding 

cortisol levels in individuals with PTSD. This is a result of a combination of factors: 

different methodologies, demographics of participants, and pharmacological controls. 

Regardless of the differences in demographics and methodologies used, one critical 

question remains: what role do individual differences of the HPA axis play, if any, in the 

vulnerability or resilience to developing PTSD? Do lower basal cortisol levels, as 

observed in individuals with PTSD, contribute to the development of PTSD; and if so, is 
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it the result of an inability to activate critical glucocorticoid receptor-dependent signaling 

cascades? 

Glucocorticoids  

 

 

 Glucocorticoids, such as corticosterone, are steroid hormones released from the 

adrenal glands in response to activation of the HPA axis. The effects of glucocorticoids 

are mediated mainly through specific intracellular receptors, the glucocorticoid and 

mineralocorticoid receptors, within the central nervous system (de Kloet et al., 1998). 

Glucocorticoid receptors can be separated into two types. Type I, or mineralocorticoid, 

receptors (MR) are high affinity receptors that are typically occupied under basal 

conditions. Type II, or glucocorticoid, receptors (GR) are lower affinity receptors that are 

typically occupied only under stress conditions or pharmacological manipulation (de 

Kloet et al., 1998). GR will be the focus for the remainder of this dissertation because of 

this receptor's involvement in stress and learning. The MR, while important, is thought to 

be saturated at basal conditions as a result of a 10-fold higher affinity for cortisol (Reul & 

de Kloet, 1985), and therefore is not as critical in playing a role in stress systems under 

fluctuating levels of glucocorticoids as compared to the GR.  

 Glucocorticoid receptors are ubiquitously expressed within the brain (Joëls, 2008) 

including areas known to be involved in cognition, such as the hippocampus, amygdala, 

and prefrontal cortex. The hippocampus is a limbic structure involved in declarative and 

spatial memory (Eichenbaum et al., 1999; Squire, 1992). The amygdaloid nuclei play 

important roles in emotional memory (LeDoux, 2000; McGaugh & Roozendaal, 2002). 

The prefrontal cortex is important for short-term working memory and regulation of 

coping behaviors (Baddeley, 2001; Maier & Watkins, 2010). Therefore any reduction in 
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the activation of these receptors, possibly through reduced cortisol concentrations as seen 

in individuals with PTSD, could have serious impacts on a host of behavioral and 

physiological systems; especially memory.  

Transactivation 

 

 

 Glucocorticoids diffuse across the cell membrane as a result of their cholesterol 

backbones. Inside the cellular cytoplasm, the GR exists as part of a larger protein 

complex that includes multiple chaperone proteins, including heat-shock and FK506-

binding proteins (Schiene-Fischer & Yu, 2001). Once in the cytoplasm, glucocorticoids 

bind to the GR and cause a conformational change that results in the jettison of associated 

heat-shock proteins and FKBP51 from the receptor complex (Heitzer et al., 2007). This 

allows for FKBP52 to bind to the protein complex and assist in translocation into the 

nuclear membrane through a dynein-cytoskeletal interaction (Silverstein et al., 1999; 

Davies et al., 2005; Wochnik et al, 2005). Inside the nucleus, glucocorticoids bind to 

specific DNA response elements in the promoter region of target genes and regulate gene 

expression. (Binder, 2009; Heitzer et al., 2007).  

Chaperone Proteins 

 

 

 FKBP51, encoded by the gene FKBP5, is a chaperone protein that is part of the 

glucocorticoid receptor complex and decreases its affinity for glucocorticoid binding 

(Wochnik et al, 2005). Upon binding to the associated GR complex, glucocorticoids 

cause a structural change that removes FKBP51 from the complex (Heitzer et al., 2007), 

increasing affinity for glucocorticoid binding and allowing for FKBP2 binding, which 
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recruits dynein and induces translocation of the receptor complex across the nuclear 

membrane (Silverstein et al., 1999; Davies et al., 2005; Wochnik et al, 2005).  

Current research suggests an additional role for FKBP51 in the modulation of the 

glucocorticoid response. In the absence of glucocorticoids binding to the receptor 

complex, FKBP51 is able to translocate the receptor complex into the nucleus (Zhang et 

al., 2008). This effectively limits the capacity for glucocorticoid effects by reducing the 

number of GR complexes in the cytosol available for glucocorticoids to interact with and 

induce subsequent genomic responses.  

  Therefore, regulation of FKBP51 and FKBP52 expression is an important 

component in establishing an effective glucocorticoid response. Mineralocorticoids, such 

as progestins, have been demonstrated to have a weak effect on the promoter sequence of 

the FKBP5 gene (Hubler & Scammell, 2004).  Glucocorticoids, however, have been 

shown to promote FKBP5 gene transcription (Hubler et al., 2003) even though increased 

levels of FKBP5 reduce glucocorticoid sensitivity (Wochnik et al, 2005; Zhang et al., 

2008). It has been hypothesized that this creates a short intracellular negative feedback 

loop for glucocorticoid receptor activity (Vermeer et al., 2003), whereby expression of 

FKBP5 increases glucocorticoid resistance at the intracellular level.  

 In support of this hypothesis, Binder et al. (2008) observed that healthy 

individuals who expressed alleles for increased FKBP5 expression demonstrated lower 

dexamethasone suppression and therefore a high degree of glucocorticoid resistance 

(Binder et al., 2008). Interestingly, in response to stressful stimuli, these individuals 

exhibited increased anxiety and decreased recovery of cortisol levels following exposure 

to a stressful stimuli (Ising et al., 2008). This suggests that alterations in expression of 
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FKBPs have: A) the capacity to increase or decrease glucocorticoid sensitivity and 

resistance, effectively modulating the genomic response (Wochnik et al, 2005; Zhang et 

al., 2008), and  B) are partially dependent upon differential activation of the HPA axis in 

response to stressful stimuli (Ising et al., 2008; Binder, 2009).    

 Low levels of FKBP5 mRNA expression have been positively correlated to the 

development of PTSD symptom (van Zuiden et al., 2012). Lower levels of FKBP5 could 

result in increased glucocorticoid sensitivity, supporting previous reports of individuals 

with PTSD exhibiting enhanced sensitivity to HPA negative feedback by cortisol 

(Yehuda, 1993; 1997). Furthermore, polymorphisms in the FKBP5 gene previously 

associated with psychopathologies have been found to be positively correlated with 

threat-related activation of the amygdala (White et al., 2012), an important center for the 

regulation of fear memory and response (McGaugh et al., 1996; McGaugh, 2000).  

 Neuro-circuitry of Emotional Memory 

 

 

 As mentioned previously, glucocorticoids modulate neuronal function in multiple 

brain regions associated with cognition; the hippocampus, prefrontal cortex, and 

amygdala. The amygdala is perhaps the most important integration center for emotional 

learning and memory. The amygdala receives input from a number of brain nuclei, but 

the prefrontal cortex, ventral/medial regions (vmPFC), and hippocampus are two regions 

critical in amygdalar regulation of emotional memory. Insufficient output by the vmPFC 

is thought to underlie deficits in suppression of attention and response to trauma-related 

cues as well as deficits in extinction (Rauch et al., 1998). Inadequate influence by the 

hippocampus may result in difficulties in the ability to identify safe contexts in addition 

to other memory deficits (Bremner et al., 1995). Combined, inadequate regulation of the 
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amygdala could result in hyper-responsivity and persistent intrusive memories, which 

could account for a majority of the observed symptoms of PTSD. 

 The amygdala can be divided into multiple sub-nuclei, each with specific 

functions and microcircuitry. The basal and lateral regions, known collectively as the 

basolateral (BLA) region, are important areas for mediating the effects of emotional 

arousal and fearful events on memory consolidation (McGaugh et al., 1996; McGaugh, 

2000). The mechanisms underlying glucocorticoid actions on consolidation are unknown, 

but research has suggested that the glucocorticoid cortisol (corticosterone in rodents) (van 

Stegeren et al., 2007; McGaugh & Roozendaal, 2002) and the monoamine 

neurotransmitter norepinephrine (Lalumiere et al., 2003, van Stegeren et al., 2008) are 

key components in regulating memory consolidation involving the amygdala and other 

regions. 

Learning & Memory 

 

 

 Memory consolidation is a specific stage of memory processing. Memory can be 

separated into three primary stages; acquisition, consolidation, and retrieval (Abel & 

Lattal, 2001). In acquisition, the memory is initially learned and processed. Consolidation 

is the process by which the memory trace is stabilized and put into storage. The time 

between acquisition and consolidation is sensitive to modulation (Schafe et al., 2001).  

Retrieval is the process by which the memory is evoked, or recalled. Current research has 

suggested that after evocation of a memory, it is temporarily labile, and subject to 

reconsolidation (Nader et al., 2000; Sara, 2000) This is potentially a mechanism whereby 

a previously stored memory can be edited. Another component of memory is extinction, 
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which is a process in which a context cue that was formerly associated with an adverse 

stimulus is no longer able to elicit a behavioral response. 

Fear Conditioning 

 

 

 Fear conditioning is a Pavlovian model of learning in which a neutral stimulus is 

paired with a noxious stimulus, resulting in behavioral responses (fear) towards the 

formerly neutral stimulus (Johansen et al., 2011). For example, a rodent can be placed 

into a neutral context and have no particular behavioral response. The context can then be 

paired with a series of electrical footshocks; the footshocks inducing fear behaviors. This 

would create an association between the two, so that when subsequently exposed to the 

originally neutral context the rodent would respond fearfully to the context even without 

the presentation of the noxious stimuli, such as electric footshocks.  

Stress Hormone Modulation of Memory Consolidation 

 

 

 Glucocorticoids and norepinephrine are potent regulators of memory 

consolidation (McGaugh & Roozendaal, 2002; Lalumiere et al., 2003, van Stegeren et 

al., 2007,2008). Gold and van Buskirk (1975) presented the first evidence suggesting that 

an endogenous hormone could play a role in memory consolidation in a study that 

reported systemic administration of epinephrine enhanced retention of inhibitory 

avoidance behavior in a dose-dependent manner when administered after training. It has 

since been shown that during times of emotional arousal, and/or intense fear, 

norepinephrine is released within the BLA, inducing activation (McIntyre et al., 2002; 

Pelletier et al., 2005), further suggesting a role for norepinephrine in the mediation of 

consolidation of fear memory. Additional studies have shown that activation of β -
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adrenoceptors in the amygdala enhances consolidation of fear memory when 

administered after training, while antagonism of β -adrenoceptors inhibits norepinephrine 

effects on memory consolidation (Liang et al., 1986; Ferry & McGaugh, 1999; Liang et 

al., 1990).  

 Glucocorticoids, which are released during emotionally arousing, or fearful events 

(Vermetten & Lanius, 2012), can also modulate the consolidation of fear memory. 

Administration of glucocorticoids shortly after fear training has an enhancing effect on 

memory consolidation similar to that observed in response to norepinephrine (Pugh et al., 

1999; Sandi et al., 1997; Cordero et al., 1998; Roozendaal et al., 1999; Roozendaal, 

2000). Additionally, administration of a GR antagonist, but not an MR antagonist, 

immediately following a training session for a spatial memory task impairs subsequent 

memory challenges (Oitzl & de Kloet, 1992; Roozendaal et al., 1996), indicating that any 

glucocorticoid effects on memory consolidation are due to activation of GR and not MR. 

Conversely, removal of the adrenal gland, effectively inhibiting glucocorticoid synthesis, 

reduces memory performance and retention (Roozendaal et al., 1996). Furthermore, 

treatment with the corticosterone synthesis inhibitor metyrapone inhibits the enhancing 

effects observed with post-training administration of norepinephrine (Roozendaal et al., 

1996). 

 Interestingly, the enhancing effects of glucocorticoids on memory are dependent 

upon norepinephrine activation within the BLA (Roozendaal et al., 2006). Administration 

of the β-adrenoceptor antagonist propranolol into the BLA blocks the corticosterone-

induced enhancement of memory (Roozendaal et al., 2006). Rats that received a systemic 

injection of corticosterone immediately following a 3-minute habituation trial to a novel 
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environment demonstrated enhanced retention 24 hours later, but not if they had prior 

habituation to the context, and thus lower novelty-induced emotional arousal  (Okuda et 

al., 2004; Roozendaal et al., 2006). This suggests that in order for corticosterone to 

exhibit enhancing effects, a degree of heightened emotion is necessary. Furthermore, the 

enhancing effect of corticosterone was blocked by systemic or intra-BLA administration 

of propranolol, a β-adrenoceptor antagonist. Additionally, administration of yohimbine, 

an α2-adrenoceptor, in the habituated animals resulted in enhanced memory (Roozendaal 

et al., 2006). Therefore, corticosterone by itself was not sufficient to enhance memory in 

the pre-habituated animals, but in combination with yohimbine-driven norepinephrine 

release memory was enhanced. This suggests that a component of the consolidation 

mechanism underlying fear memory extinction involves: A) the noradrenergic system, B) 

glucocorticoids, and C) the BLA. Imbalances, or dysregulation, of either of the two 

aforementioned neurochemical systems can have significant effects on the consolidation 

of extinction for fear memory. 

Emotion & Consolidation 

 

 

 It is important to note that the enhancing effects of glucocorticoids are dependent 

upon a component of the experience being emotionally arousing. For example, rats that 

received post-training corticosterone injections immediately following an object 

recognition trial demonstrated enhanced 24-hr retention performance only if they were 

unhabituated to the context, thereby having an increased novelty-induced emotional 

arousal. Animals that were habituated to the context demonstrated no improved retention 

with post-training administration of corticosterone (Okuda et al., 2004). Similarly, 

humans received a cortisol or placebo injection and were then shown a series of pictures 
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with varying degrees of emotional arousal. Participants were tested one week later and 

demonstrated enhanced memory for emotionally arousing images, but not neutral images, 

if they had previously received a cortisol injection, but not placebo (Buchanan & Lovallo, 

2001). These, and additional studies, support the idea that in order for glucocorticoids to 

have a robust effect on memory enhancement, a component of the experience being 

consolidated has to be emotionally arousing (Cahill et al.¸2003; Abercrombie et al., 

2006).   

Extinction 

 

 

 Extinction is a process in which a context cue that was formerly associated with 

an adverse stimulus is no longer able to elicit a behavioral response (Milad et al., 2006). 

Glucocorticoids have been demonstrated to play an important role in the maintenance and 

progression of extinction processes of fear memory. Specifically, systemic administration 

of the glucocorticoid receptor agonists dexamethasone and intra-amygdala infusion of 

RU28362 prior to extinction training resulted in a facilitation of extinction of conditioned 

fear in a dose-dependent manner (Yang et al., 2006). Furthermore, administration of  the 

corticosteroid inhibitor metyrapone prior to extinction trials results in an inhibition of 

extinction to context-dependent fear responses in rats (Yang et al., 2006) and mice 

(Blundell et al., 2011).  Importantly, administration of corticosterone immediately 

following extinction trials in mice that received a pre-trial injection of metyrapone 

demonstrated a rescue effect that allowed for extinction (Clay et al., 2011). Together, 

these data suggest that glucocorticoids are important in the extinction of conditioned fear 

and indicate the amygdala as an important site of glucocorticoid action in extinction 

processes. Furthermore, the data suggest that decreased glucocorticoids during re-
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activation of a fear memory may lead to a deficit in the extinction of fear memory. This is 

important because it suggests a possible mechanism which could explain why individuals 

with PTSD, who have decreased cortisol levels, have an inability to extinguish fear 

memory.   

Organic Cation Transporter 3 

 

 

Glucocorticoids and norepinephrine both act as potent modulators of memory 

consolidation (McGaugh & Roozendaal, 2002; Lalumiere et al., 2003, van Stegeren et 

al., 2007,2008).  Recent studies suggest that, in addition to exerting actions via the 

mineralocorticoid and glucocorticoid receptors (MR and GR), corticosteroids also act by 

inhibiting monoamine clearance mediated by uptake2, a high-capacity, low-affinity 

transport system for norepinephrine, epinephrine, dopamine, histamine and serotonin 

(Baganz et al., 2008; Feng et al., 2009, Gasser, Lowry & Orchinik, 2006; Gasser et al., 

2009). In contrast to uptake1, which is mediated by a combination of the specific 

transporters for norepinephrine (NET), dopamine (DAT), and serotonin (SERT), uptake2 

is a higher-capacity but lower affinity transport system, and is acutely inhibited by 

corticosterone and other steroids (Iversen & Salt, 1970; Simmonds & Gillis, 1968). 

Inhibition of uptake2 in cardiac or smooth muscle tissue by acute bath application of 

corticosteroids enhances the contractile effects of exogenously applied epinephrine, 

norepinephrine, serotonin and histamine (Horvath et al., 2003; Eyre, Elmes & Strickland, 

1979; Kalsner, 1975; Mikami et al., 1989; Purdy, Weber & Drayer, 1982; Purdy & 

Weber, 1983). Recent studies have identified a small group of transporters that mediate 

uptake2-like transport and have demonstrated their expression in the brain (Gasser, Lowry 

& Orchinik, 2006; Gasser et al., 2009; Engel, Zhou & Wang, 2004; Amphoux et al., 
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2006; Vialou et al., 2004).  Thus, uptake2 is a mechanism by which corticosteroids may 

act to enhance the actions of monoamines in the CNS as well as in peripheral targets. 

 Uptake2 activity has been attributed to a group of broadly-specific organic cation 

transporters.  These include the organic cation transporter (OCT) family: OCTs 1, 2 and 

3, and the plasma membrane monoamine transporter (PMAT).  Because OCT3 is the 

most sensitive of these transporters to inhibition by corticosterone, it has been described 

as the most important uptake2 transporter (Grundemann et al., 1998; Wu et al., 1998, 

Duan &Wang, 2010). However, all of the above transporters have uptake2-like 

characteristics.  All are broadly-specific organic cation transporters, capable of 

transporting, with varying efficiencies, norepinephrine, epinephrine, serotonin, dopamine 

and histamine, as well as the cationic neurotoxin 1-methyl-4-phenylpyridinium (MPP
+
) 

(Engel, Zhou & Wang, 2004; Grundemann et al., 1998; Grundemann et al., 1998; 

Grundemann et al., 1999.  All are sensitive to inhibition by corticosterone, though their 

sensitivities differ widely (Gasser, Lowry & Orchinik, 2006; Engel, Zhou & Wang, 2004; 

Wu et al., 1998; Duan et al., 2010; Schomig, Lazar & Grundemann, 2006; Gorboulev et 

al., 2005), and all are inhibited by the pseudoisocyanine compound 1, 1’-diethyl-2, 2’-

cyanine iodide (decynium-22) (Engel, Zhou & Wang, 2004; Hayer-Zillgen, Bruss & 

Bonisch, 2002). 

 All of the uptake2 transporters are expressed, at varying levels and with distinct 

distributions, in rodent and human brain (Gasser, Lowry & Orchinik, 2009; Gasser et al., 

2009; Engel, Zhou & Wang, 2004; Amphoux et al., 2006; Vialou et al., 2004), and recent 

studies suggest that they play important roles in monoamine clearance.  Pharmacological 

inhibition of uptake2 by direct application of decynium-22 decreases the rate of serotonin 
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clearance in mouse hippocampus (Baganz et al., 2008), and treatment of rats with the 

OCT3 inhibitor normetanephrine potentiates venlafaxine-induced increases in 

extracellular norepinephrine concentrations in rat prefrontal cortex (Rahman et al., 2008).   

Corticosterone inhibition of OCT3 has been suggested to play a role in the 

modulation of behavior. Specifically, corticosterone inhibition of OCT3 results in the 

potentiation of drug-seeking behavior (Graf et al. unpublished), providing a mechanism 

by which glucocorticoids can modulate behavior through inhibition of OCT3. For 

example, a model of how low cortisol levels may contribute to the development of 

PTSD-like behaviors is as follows. Under stress conditions, cortisol inhibits OCT3 and 

results in subsequent increases of norepinephrine that may be necessary for proper 

consolidation and extinction during times of emotional arousal, such as traumatic stress. 

Individuals with PTSD, who express lower levels of cortisol, may be unable to inhibit 

OCT3, thereby allowing for the continuation of norepinephrine clearance from the extra-

synaptic space within the amygdala and other memory-important areas of the brain. This 

could result in insufficient levels of norepinephrine and prevent the modulatory effects of 

norepinephrine on memory, resulting in dysregulation of memory processes.   

Negative Feedback of the HPA Axis 

 

 

 Glucocorticoid involvement in the HPA axis response is complicated. Not only do 

glucocorticoids have a variety of peripheral roles, but they also have very specific roles 

within the central nervous system. Glucocorticoids cross the blood brain barrier and 

target specific receptors within the brain (Widmaier & Dallman, 1984; de Kloet et al., 

2005). In order to limit further release, thereby providing negative feedback, 

glucocorticoids will bind to GRs in the hypothalamus and the pituitary. This causes the 
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subsequent inhibition of secretion for CRF (hypothalamus) and ACTH (pituitary), which 

leads to less stimulation of downstream products including glucocorticoid secretion from 

the zona fasciculata of the adrenal cortex.  

 The actions of glucocorticoids in HPA axis negative feedback can be broken 

down into two major time frames: fast and slow feedback (Keller-Wood & Dallman, 

1984). The slow response is the most classical in nature, in that it refers to glucocorticoid 

actions at the level of the genome. Glucocorticoids induce decreases in mRNA encoding 

for proopiomelanocortin (POMC), the precursor for ACTH, thereby reducing levels of 

ACTH (Heitzer et al., 2007; Keller-Wood & Dallman, 1984). The overall effect causes 

the reduction of downstream glucocorticoid secretion. The fast feedback response is 

much quicker as its name implies. Studies have shown that the fast feedback response can 

occur in as little as 15 minutes (Hinz & Hirschelmann, 2000). This is interesting because 

it suggests that the mechanism behind fast feedback inhibition of ACTH secretion is not 

genomic in nature.  

 Recent studies suggest that individuals with PTSD exhibit alterations in rapid 

negative feedback systems, not just in glucocorticoid concentrations. Yehuda et al. 

(2006) reported that individuals with PTSD demonstrated a greater decline in ACTH 

concentrations following an injection of cortisol, suggesting a greater sensitivity to 

cortisol effects at the pituitary. This is important because, accompanied with previous 

reports of individuals with PTSD exhibiting enhanced negative feedback through 

dexamethasone suppression, these data suggest that central, and peripheral, negative 

feedback inhibition may be altered in PTSD. The difference in fast negative feedback 

may be a result of differential expression of GR (Liberzon et al., 1999). The stress-



20 

 

restress animal model of PTSD has found that animals that receive a traumatic stress 

episode followed by a non-stress interval, and not a chronic stress interval, exhibit 

enhanced negative feedback during testing a week later (Liberzon et al., 1997).  This 

study was repeated but with a focus on changes in glucocorticoid receptor mRNA 

expression in the hippocampus. Animals that demonstrated enhanced negative feedback 

also demonstrated an increase in GR mRNA and a decrease in MR mRNA (Liberzon et 

al., 1999). Furthermore, it has been observed that individuals with PTSD express a 

greater number of glucocorticoid receptors in peripheral lymphocytes (Yehuda et al., 

1991), but show a decrease in these glucocorticoid receptors following administration of 

DEX that is not observed in control subjects (Yehuda et al., 1995), suggesting an 

enhancement of negative feedback systems at some level of the HPA axis . 

 Imbalances in these feedback mechanisms, or HPA negative feedback in general,  

may lead to pathological conditions (McEwen & Stellar, 1993; Lansang & Hustak, 2011; 

Marques et al., 2009), such as post-traumatic stress disorder, hyperglycemia, depression 

or mania. Increased sensitivity to HPA negative feedback by cortisol could account for 

the reduced basal cortisol levels observed in individuals with PTSD (Mason et al., 1986; 

Yehuda et al., 1995). Reduced cortisol levels could prevent activation of the 

glucocorticoid receptor or a lack of OCT3 inhibition, which could result in a number of 

behavioral and physiological deficits, such as activation of amygdala circuits which have 

been shown to be critical in the extinction of conditioned fear memory (Yang et al., 

2006). Therefore it is important to understand how an individual's innate cortisol 

response to stress may contribute to the development of pathological conditions. 

Increasingly, research has focused on whether or not an individual's specific stress 
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reactivity plays a role in his or her vulnerability or resilience to developing such a 

disorder (Levay et al., 2005; Kabbaj et al., 2000; Padilla et al., 2010; Duclot et al., 2011). 

Individual Differences in HPA Reactivity  

 

 

 One way to examine individual differences in HPA response is to separate rats 

into groups based upon locomotor activity in response to a novel stress (Kabbaj et al., 

2000; Liebsch, 1997). In detail, rats are placed within a locomotor chamber for a set 

period of time, typically an hour, and allowed to explore freely. During the trial, 

locomotor activity is recorded as infrared beam breaks. At the end of exposure, rats can 

be separated into two distinct behavioral phenotypes based upon locomotor activity: low 

and high responders (Jama et al., 2008).  

 It has been reported that rats with a higher novelty-induced locomotor response 

(HRs) exhibit heightened levels of corticosterone in response to stress, whereby rats with 

a lesser locomotor response to novelty (LRs) exhibit lower levels of corticosterone 

(Piazza et al. 1991). This is the first study to suggest that locomotor response to novelty 

is an indicator of individual differences in HPA reactivity.   

 Low responders and high responders have been observed to exhibit multiple 

behavioral differences in response to a novel, mild stress environment (Kabbaj et al., 

2006). As the names imply, LR animals locomote less within a novel environment as 

compared to HR animals (Piazza et al., 1989; Pierre & Vezina, 1997;1998). Additional 

behaviors, such as sniffing and rearing have been observed to be different between LR 

and HR animals (Hooks et al., 1994). This is interesting because these behaviors, sniffing 

and rearing, can be considered measures of active surveillance or vigilance; which is a 

behavior altered in many people with PTSD (Paulus, Argo, and Egge, 2013). Low 
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responders typically rear less and spend less time in the center, indicative of higher 

anxiety.  

 Low responders have been shown to exhibit significant differences in both 

phenotype and genotype as compared to HR counterparts (Kabbaj, 2004; Blanchard et 

al., 2009). Low responder rats exhibit lower levels of CRF mRNA in the paraventricular 

nucleus of the hypothalamus, an area important for activating the HPA response, as 

compared to high responder rats (Kabbaj et al., 2000). This could provide a mechanism 

underlying the differences in HPA reactivity. Specifically, lower CRF mRNA could 

result in less CRF available to activate downstream components of the HPA axis, thus 

resulting in lower corticosterone being secreted during stress. Additionally, HR animals 

but not LR, exhibited lower basal levels of CRF mRNA in the central amygdala, an area 

important for emotional modulation of learning and memory (Kabbaj et al., 2000). This 

could suggest an explanation as to why HR animals typically show lower anxiety and 

fear-like behaviors in general. It is possible that by having reduced CRF mRNA, HRs 

have lower CRF in the amygdala, and thus are unable to activate as robust a fear / anxiety 

response. In essence, they could be protected by lower CRF and require stronger 

emotional and fear inputs to demonstrate fear and anxiety-like behaviors.  

 HR rats have been shown to have an increase in novelty-seeking behaviors 

(Kerman et al., 2011; Kabbaj, 2006), a predilection that has suggested they be termed as 

more “thrill-seeking” in behavior. In response to administration of cocaine, HRs 

demonstrated higher increases of extracellular dopamine compared to LRs (Hooks et al., 

1991). This could be a result of the fact that HR rats have been shown to have fewer D2 

binding sites in the nucleus accumbens and the striatum as compared to LR rats, both 
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areas important for motivated behaviors and addiction (Hooks et al., 1994).  HR rats also 

display an increased preference for sucrose (Duclot et al., 2011; Hollis et al., 2011), and 

acquire self-administration of cocaine at low doses faster than LR controls (Beckmann et 

al., 2011) as well as amphetamine (Piazza et al.1991). 

Current Studies 

 

 

 Individuals with PTSD exhibit differences in HPA reactivity as compared to 

individuals without PTSD. Specifically,  a number of individuals with PTSD exhibit 

decreased basal concentrations of the stress hormone cortisol (Boscarino, 1996; Yehuda, 

2002; Yehuda et al., 1993, 1995). It has also been demonstrated that individuals with 

PTSD may also display enhanced sensitivity of the HPA axis to negative feedback 

inhibition of cortisol (Yehuda, 1997). Patients with PTSD have demonstrated increased 

suppression of cortisol following administration of dexamethasone, indicating enhanced 

sensitivity to negative feedback (Stein et al., 1997; Yehuda et al., 1993). This is further 

supported by experiments demonstrating individuals with PTSD exhibiting a decrease in 

glucocorticoid receptors on peripheral lymphocytes in response to dexamethasone, but 

not in individuals without PTSD (Yehuda et al., 1995). Conversely, studies have found 

that when cortisol negative feedback of the HPA axis is inhibited by administration of the 

11β-hydroxylase inhibitor, metyrapone, individuals with PTSD demonstrated increases in 

ACTH and 11-deoxycortisol, the precursor to cortisol (Yehuda et al., 1996), further 

supporting increased feedback inhibition by cortisol. 

  Decreased cortisol concentrations, possibly through enhancement of HPA 

sensitivity to glucocorticoid negative feedback, could result in an inability to occupy and 

activate the glucocorticoid receptor or inhibit the corticosteroid-sensitive monoamine 
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transporter, OCT3. This could result in dysregulation of a host of behavioral and 

physiological processes resulting in the expression of pathological symptoms. It has been 

shown that corticosteroids are important for the extinction of fear memory (Yang et al., 

2006; Blundell et al., 2011; Clay et al., 2011) and that without sufficient levels this 

process is disrupted and results in persistent fear behaviors similar to those expressed in 

PTSD. Furthermore, it has also been observed that norepinephrine is critical in the 

modulation of fear memory alongside of corticosterone (McIntyre et al., 2002; Pelletier et 

al., 2005; Roozendaal, 2006). A failure to inhibit the monoamine transporter, OCT3, 

could potentially result in a lack of available norepinephrine that would typically be 

available under stress conditions and allow for proper consolidation of memory. 

Therefore, a reduction in basal levels of cortisol, as seen in PTSD, could indicate an 

underlying deficiency in available cortisol that contributes to the expression of PTSD-like 

behaviors. 

 The current set of experiments utilize the LR/HR animal model to take advantage 

of a model in which individual HPA responses are readily identifiable, and most 

importantly, prior to exposure to any traumatic episode. These experiments seek to 

understand whether differences in stress reactivity are a contributing factor in developing 

PTSD-like behaviors. Additionally, these experiments aim to more fully understand the 

behavioral and physiological differences between LR and HR animals. Furthermore, the 

following experiments aim to understand how individual differences in stress reactivity 

play a role in the consolidation and extinction of fear memory, and the exhibition of 

PTSD-like behaviors.  
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CHAPTER II  

 

 

BEHAVIORAL AND HYPOTHALAMIC-PITUITARY ADRENOCORTICAL AXIS 

PHENOTYPES IN LOW AND HIGH RESPONDING RATS 

 

 

Introduction 

 

 

 Posttraumatic stress disorder (PTSD) is an anxiety disorder precipitated by 

exposure to extreme physical and/or emotional stress (DSM-IV-TR, 2000) that affects 

approximately 8% of all Americans (Kessler et al., 1995). Due to a combination of 

symptoms including but not limited to: hyperarousal, generalized numbing, and persistent 

and intrusive memories, it has been hypothesized that the pathogenesis of PTSD may 

involve a deficit in consolidation mechanisms underlying the extinction of fear memory 

(Rauch et al. 2006). One important factor involved in memory consolidation is 

glucocorticoid concentration which is dependent upon activation of the hypothalamic-

pituitary-adrenal axis stress response system. 

 The hypothalamic-pituitary-adrenal (HPA) axis is critical in the adaptation and 

response to stressful stimuli. Upon activation, corticotrophin-releasing factor (CRF) is 

released by cells in the paraventricular nucleus of the hypothalamus (PVN) into the 

hypophyseal portal circulation system (Vale et al., 1981; Rivier & Vale, 1983). This 

stimulates the release of adrenocorticotrophic hormone (ACTH) into the systemic 

circulatory system, leading to the secretion of glucocorticoids from the zona fasciculata 

of the adrenal glands (Munck et al., 1984). Once released into systemic circulation, 

glucocorticoids exert potent influences on multiple processes including the organization 
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and processing of memory (Croiset et al., 2000) and energy redistribution (Contarino et 

al., 2000; Richard et al., 2002). 

 Alterations in the functioning of the HPA axis have been observed in individuals 

with PTSD. The glucocorticoid cortisol, or corticosterone in rodents, is an important 

component of the stress response system, and as such has been a focus of research in 

understanding the underlying mechanisms of PTSD. Individuals with PTSD have been 

observed to express varying levels of cortisol. Studies have demonstrated that individuals 

with PTSD have exhibited decreased concentrations of cortisol (Boscarino, 1996; 

Yehuda, 2002; Yehuda et al., 1993, 1995), enhanced sensitivity to negative feedback 

inhibition of the HPA axis (Yehuda et al., 1993; Yehuda et al., 2002; Stein et al., 1997) 

and expressed increased concentrations and responsiveness of the glucocorticoid receptor 

(Yehuda et al., 1995). Furthermore, individuals that expressed lower cortisol levels in the 

emergency room immediately following a traumatic experience, such as rape or motor 

vehicle accidents, had a greater incidence of developing PTSD over time as compared to 

individuals with higher levels of cortisol that underwent the same trauma and had similar 

trauma history (Resnick et al., 1995; McFarlane et al., 1997). This is interesting because 

it suggests a positive correlation between low cortisol levels following traumatic stress 

and the development of PTSD. Considered together, it is possible that enhanced 

sensitivity to negative feedback could result in decreased cortisol in response to stress. 

Therefore, by possessing decreased concentrations of cortisol, individuals with PTSD are 

unable to properly activate cortisol-dependent processes mediated through the 

glucocorticoid receptor during times of stress and therefore develop a variety of PTSD-

like behaviors. 
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 It is important to note however, that other studies have demonstrated that 

individuals with PTSD may exhibit a hyperactivity of the HPA response; sometimes 

resulting in higher levels of cortisol (Heim et al., 2000; Pittman & Orr, 1990; Rasmussen 

et al., 2001), or no difference in cortisol levels from controls (Meewisse et al., 2007; 

Young & Breslau, 2004). However, in the previous studies significant differences were 

observed in cortisol concentrations, but only within select subpopulations. For example, 

Young and Breslau (2004) reported that only when an individual with PTSD expressed a 

comorbidity with major depressive disorder did they observe a significant elevation of 

cortisol. This difference was not observed when analyzing PTSD patients without major 

depressive disorder.   

 To examine whether individual differences in stress reactivity contribute to 

development of PTSD we used an animal model that examines individual differences in 

HPA reactivity based upon locomotor activity in response to novelty (Kabbaj et al., 2000; 

Liebsch, 1997). Specifically, rats are allowed to explore a novel locomotor chamber for 

an hour. During the trial, locomotor activity is recorded by infrared beam breaks, which 

can then be used to separate participating rats into two distinct behavioral phenotypes 

based upon locomotor activity: low and high responders. Low responders (LR), those 

who score within the bottom 33
rd

 percentile of locomotor activity, have been shown to 

exhibit significant differences in both phenotype and genotype as compared to high 

responder (HR) counterparts who score in the top 33
rd

 percentile (Kabbaj, 2004; 

Blanchard et al., 2009). Additionally, LRs have been observed to have less corticosterone 

in response to exposure to a novel environment as compared to HRs (Piazza et al., 1991). 
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This is the first study to suggest that locomotor response to novelty is an indicator of 

individual differences in HPA reactivity.   

 Low responders and high responders have also been observed to exhibit multiple 

behavioral differences in response to a novel, mild stress environment (Kabbaj et al., 

2006). As the names imply, LR animals locomote less within a novel environment as 

compared to HR animals (Piazza et al., 1989; Pierre & Vezina, 1997;1998). Additional 

behaviors, such as sniffing and rearing have been observed to be different between LR 

and HR animals (Hooks et al., 1994). Low responders typically exhibit reduced rearing 

and less time spent in the center of the open field.  

 Individuals with PTSD express altered HPA activity characterized by lower 

cortisol levels (Yehuda, 2002), suggesting that individuals with PTSD express a blunted 

stress response which may underlie alterations in the consolidation and/ or extinction of 

fear memory. The current set of experiments utilizes the LR/HR animal model in which 

individual HPA responses are readily identifiable prior to exposure to traumatic stress. 

These experiments aim to more fully understand the behavioral and physiological 

differences between LR and HR animals. Specifically, these experiments seek to 

understand the differences, if any, between LR and HR animals in anxiety-like behaviors 

including open field and light/dark box behavior and to describe HPA axis functioning in 

the two groups by measuring ACTH and corticosterone concentrations following 

exposure to a restraint stress. We predict that LRs, as previously reported possessing 

lower levels of corticosterone and increased anxiety-like behaviors, will exhibit increased 

anxiety-like behaviors, enhanced sensitivity to glucocorticoid negative feedback, and 

lower peak corticosterone levels in response to stress as compared to HRs. 
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Materials and Methods 

 

 

Animals 

 

 

 Adult male Spraque-Dawley rats (Harlan Laboratories, St. Louis, MO) were 

housed in cages of two under a 12:12 hour light:dark cycle (lights on 7:00 AM) in a 

temperature and humidity controlled facility. All procedures were approved by the 

Marquette University Institutional Animal Care and Use Committee and performed in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals.  Animal 

housing facilities were accredited by AALAC. 

Identification of Low and High Responders 

 

 

 All behavioral tests were conducted 2 hours into the light phase. Adult male 

Sprague-Dawley rats were placed into photocell cages that served as a novel locomotor 

chamber (AccuScan, Columbus, OH) and allowed to explore for 1 hour. Locomotor 

behavior (photocell beam breaks) was monitored by software provided by the 

manufacturer. Rats were separated into LR and HR groups based upon cumulative 

locomotor activity over the 1 hour test. Rats scoring in the bottom 33 percentile were 

classified as LR, and those in the top 33 percentile as HR. 

Light/Dark Activity 

 

 

 Anxiety-like behaviors were evaluated using a modified light/dark box (Crawley 

and Goodwin, 1980) consisting of a 94.0 cm long×30.5 cm wide×15.2 cm high acrylic 

glass chamber divided into a 71.1 cm long×30.5 cm wide light compartment with a white 

floor and walls and a 22.9 cm long×30.5 cm wide dark compartment with a black floor, 
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walls, and a removable black lid. Movement between compartments was possible through 

a 10.2-cm passageway. There was no appreciable illumination in the dark box. Time 

spent in and entries and explorations into the light and dark compartments and latency to 

enter the light compartment were measured. An entry was defined as introduction of all 

four paws into a compartment. An exploration was defined as introduction of fewer than 

four paws into a compartment. The apparatus was cleaned with 70% ethanol solution 

before testing each rat.  

 In one study, rats were placed into the light compartment facing one of the side 

walls. In another study rats were placed into the dark compartment facing one of the side 

walls at the beginning of the session. The varying of starting points between experiments 

was to determine any inherent differences between LR and HR animals, specifically in 

locomotor activity versus anxiety. All variables were assessed in regards to exploration 

and entries into the light chamber.   

Effects of cortisol pretreatment on restraint-induced corticosterone in LR and HR 

rats 

 

 

 To examine potential differences in the sensitivity of LR and HR rats to rapid 

glucocorticoid-induced negative feedback, the effects of pretreatment with cortisol on 

restraint stress-induced increases in ACTH and corticosterone (in separate experiments) 

were examined in LR and HR rats. LR and HR rats (22 LR, 37 HR) received an injection 

of cortisol (2 mg/kg, ip, Steraloids, Newport, RI) or vehicle and were subjected to a 30 

minute full-body restraint. Restraint studies were conducted in a room distinct from that 

used for housing. Rats were placed into plexiglass tubes (6.5 cm i.d., 20.5 cm long) 

sealed at one end with tape to still allow airflow. This configuration prevented movement 
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in any direction but did not fully immobilize the rat. At the conclusion of the 30 minute 

restraint period the rat was released and placed back into the cage. 

 Blood samples were collected using a modified tail incision protocol (Fluttert et 

al., 2000). A scalpel was used to make a 4-6 mm diagonal incision approximately 10 mm 

from the end of the tail. At designated time points (0,15, 30, 60, or 90 minutes for 

restraint stress) blood was collected directly into commercially available EDTA coated 

capillary tubes (T-MQK, Terumo, Elkton, MD). Samples were centrifuged for 10 min 

and plasma was collected and stored at -20 ºC for future use. 

Corticosterone Radioimmuno Assay 

 

 

 Plasma samples were assayed for corticosterone using a commercially available 

125
I radioimmunoassay (RIA) kit (Cat. No. 07120103, MP Biomedicals, LLC, Irvine, 

CA). Dialysates were diluted (1:200) with steroid diluent according to the standard RIA 

kit protocol. A standard curve was generated with standards provided by the kit with the 

addition of two additional lower concentration standards (12.5 ng/mL and 6.25 ng/mL). 

Standards and samples were run in triplicate. 
125

I tracer and anti-serum were added to all 

standard and sample tubes (plastic, 12 × 75 mm). Tubes were then vortexed briefly and 

incubated at room temperature for 2 hours. Following incubation, a precipitant solution 

was added to all tubes before tubes were vortexed thoroughly. All assay tubes were then 

centrifuged for 15 minutes at 2500 r.p.m. (1000 x g). Once centrifuged, all tubes were 

decanted and allowed to drain for 10 minutes. The precipitate was counted in a gamma 

counter (Genysys GenII Series Gamma Counter, Laboratory Technologies, Inc., Maple 

Park, IL).  
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ACTH 

 

 

 Plasma samples were assayed as described previously (Nicholson et al., 1984). 

Standards and samples were assayed for ACTH concentration by way of a competitive 

radioimmunoassay courtesy of Dr. Robert Spencer, University of Colorado, Boulder, CO.  

Statistical Analysis 

 

 

 The significance of differences in behaviors of locomotor activity and within the 

light/dark box were determined using individual unpaired t tests as appropriate. The 

significance of between-group (LR v HR)  and within-group (Drug Treatment) 

differences in HPA reactivity between LR and HR rats were determined using a two-way 

analysis of variance (ANOVA), followed by Bonferroni post-hoc analysis when 

appropriate. 

Results 

 

 

Identification of Low and High Responders 

 

 

 Locomotor activity counts, as determined by total distance traveled, followed a 

unimodal distribution (see Figure 2.1).  The median locomotor activity score for the 

group including all rats (n=399) was 6085. Rats scoring in the top 33 percentile with 

scores of 7063 and above were assigned to the high responder (HR) group (n=131, mean 

± SE activity: ±91.27) and those scoring in the bottom 33 percentile with scores of 5153 

and below were assigned to the low responder (LR) group (n=133, mean ±SE activity: 

±64.26). The remaining rats with intermediate activity scores between 5160 and 7061 
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value were labeled as the middle group (MR) (n=135, mean ± SE activity: ±46.90). Total 

distance traveled in LR and HR animals can be observed in Figure 2.2A.  

 Center time, the amount of time spent in the center of the locomotor chamber is a 

measure of anxiety-like behavior (Katz, Roth, & Carroll, 1980). The longer the amount of 

time spent in the center is indicative of decreased anxiety-like behavior. As expected, 

LRs were found to spend significantly less time in the center as compared to HRs (Figure 

2.2B: t268 = 10.09, p <0.0001). 

 Rearing, a risk assessment behavior involving posturing on the hind legs and 

surveying the environment, can also be considered to be a measure of anxiety 

(Escorihuela et al., 1999). Specifically, lower rearing scores represent higher anxiety 

because the animal is not actively engaging in the environment. LRs were found to spend 

significantly less time engaged in rearing behavior compared to HRs (Figure 2.2C: t268 = 

10.21, p <0.0001).   
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Figure 2.1 Distribution of locomotor activity between LR and HR rats in a novel environment. Rats were 

placed into the novel environment and separated into 1000 count bins (n=406). 
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Figure 2.2. Behavioral assessment of LR and HR rats in a novel environment. Rats were placed into the 

novel environment and behaviors were recorded for total distance (A) (n=133:LR, 131:HR), center time (B) 

(n=135:LR, 135:HR), and rearing (C) (n=135:LR, 135:HR). All values are mean ± SEM. *** p<.0001. 

 

 



36 

 

Light-dark box 

 

 

 A total of 39 rats were tested in the light/dark box (11 LR and 28 HR) in which 

placement started in the dark chamber. The number of entries into the light chamber, 

number of explorations, latency to enter the light compartment, and total time in light 

compartment are shown (see Figure 2.3). Low responders explored the light chamber 

significantly less than HRs (Figure 2.3A: t37 = 2.185, p <0.05), entered the light chamber 

significantly less compared to HRs (Figure 2.3B: t37 = 2.064, p <0.05), and displayed a 

greater latency to enter the light chamber (Figure 2.3C: t37 = 2.255, p <0.05). 
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Figure 2.3. Behavior of LR and HR rats in the light/dark box test. Rats were placed in the dark chamber and 

allowed to explore for 5-minutes. Behavior was recorded for exploration (A), entries (B), latency to enter 

light compartment (C), and time in light chamber (D). All values are mean ± SEM (n=11:LR, 28:HR). * 

p<.05. 
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Dark-light box  
 

 

 A total of 65 rats were tested in a reversed placement light/dark box (27 LR and 

38 HR). One HR animal was removed due to consistent significant outlier data points 

(meaning the value was less than or equal to the first quartile minus 3 times the 

interquartile range). Therefore, 27 LR and 37 HR rats were used for analysis. Rats 

initiated activity in the light compartment, with latency to enter the dark component as a 

measure of general activity in addition to number of entries into the light chamber 

subsequent to entry into the dark chamber. Low responders did not differ from high 

responders in latency to enter the dark (Figure 2.4A: t63 = 0.2560, n.s.). Low responders 

demonstrated significantly fewer entries into the light chamber once they reached the 

dark chamber (Figure 2.4B: t63 = 2.879, p <0.01). Exploratory behavior and total time in 

light were also measured (see Supplementary Figure S1). 
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Figure 2.4. In a separate experiment from Figure 2, behavior of LR and HR rats in the light/dark box test. 

Rats were placed in the light chamber and allowed to explore for 5-minutes. Latency to enter the dark 

compartment was recorded (A). The number of re-entries into the light chamber was revealed to be 

significantly different between LRs and HRs (B). All values are mean ± SEM (n=27:LR, 37:HR). 

**p<0.01. 
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HPA Reactivity 

 

 

Corticosterone 

 

 

 Thirty seven rats were tested for corticosterone reactivity to stress (9 LR and 28 

HR). The effects of restraint stress on plasma corticosterone concentrations were 

examined by measuring plasma corticosterone concentrations at multiple time points in 

LR and HR rats following injections of vehicle (see Figure 2.5A) or cortisol 2mg/kg/i.p. 

(see Figure 2.5B). Low responders displayed less corticosterone in response to restraint-

stress as compared to high responders when subjected to pretreatment with vehicle. When 

subjected to a cortisol (2mg/kg/i.p.) pretreatment, there was no reduction in 

corticosterone values in LRs. There was however, a reduction in corticosterone levels in 

HRs. In order to test the hypothesis that LRs would exhibit lower peak corticosterone 

responses compared to HRs, we used a two-way ANOVA to examine the relationship 

between phenotype and drug treatment on peak corticosterone concentrations in LR and 

HR rats. Analysis revealed a significant drug treatment by phenotype interaction (F1,33 = 

4.163, p <0.05) and a main effect of phenotype (F1,33 = 4.606, p <0.05).  Bonferroni post 

hoc analysis revealed a significant effect of phenotype in the vehicle treated animals only 

(t27 = 3.667, p<0.01). Specifically, LRs had significantly lower peak corticosterone 

response than HRs. Additionally, Bonferroni post hoc analysis revealed a significant 

effect of drug treatment in HRs only (t26 = 2.335, p<0.05). Specifically, HRs had 

significantly lower peak corticosterone levels following a cortisol pretreatment (see 

Figure 2.5C) 
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Figure 2.5. Effects of restraint stress on plasma corticosterone concentrations between LR and HR animals. 

Rats received ip injections ten minutes prior to placement in a plexiglass restraint tube. Blood samples were 

collected by tail nick at the indicated times. Plasma corticosterone concentrations over time between LR 

and HR  animals following injections of saline (A) or cortisol (B) (2mg/kg, ip). Differences in peak plasma 

corticosterone concentrations following injections of saline or cortisol (2mg/kg, ip) in LR and HR rats (C). 

All values are mean ± SEM (n=LR:9, HR:28).  
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ACTH 

 

 

 Twenty four rats were tested for ACTH reactivity to stress (10 LR and 12 HR).   

The effects of restraint stress on plasma ACTH concentrations were examined by 

measuring plasma ACTH concentrations at multiple time points in LR and HR rats 

following injections of vehicle (see Figure 2.6A) or cortisol 2mg/kg/i.p. (see Figure 

2.6B). Both LR and HR rats displayed an increase in plasma ACTH concentrations in 

response to restraint stress in addition to a reduction in ACTH following administration 

of a cortisol pretreatment. In order to test the hypothesis that LRs would exhibit lower 

peak ACTH responses compared to HRs, we used a two-way ANOVA to examine the 

relationship between phenotype and drug treatment on peak ACTH concentrations in LR 

and HR rats. Analysis revealed a main effect of drug treatment (F1,18 = 21.21, p <0.001), 

but failed to reveal an effect of phenotype (F1,18 = 1.639, ns). Bonferroni post hoc 

analysis revealed a significant effect of cortisol in both LRs (t8= 2.557, p<0.05) and HRs 

(t10= 4.030, p<0.01) (see Figure 2.6C). 
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Figure 2.6 Effects of restraint stress on plasma ACTH concentrations between LR and HR animals. Rats 

received i.p. injections ten minutes prior to placement in a plexiglass restraint tube. Blood samples were 

collected by tail nick at the indicated times. Plasma ACTH concentrations over time between LR and HR 

rats following administration of vehicle (A) or cortisol (2mg/kg, ip) (B).  Differences in peak plasma 

ACTH concentrations following injections of saline or cortisol (2mg/kg, ip) in LR and HR rats (C). All 

values are mean ± SEM (n=LR:10, HR:12).  
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Histogram Analysis of Locomotor Activity and Peak Stress-Induced Corticosteron 

 

 

 A histogram examining the relation between locomotor activity and peak 

corticosterone response, regardless of time, was revealed to be non-significant (r
2
 = 

0.055, F1,49 = 2.0889, p<0.0955) (see Figure 2.7).  
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Figure 2.7 A histogram comparing locomotor activity with peak corticosterone response to restraint stress 

for a subset of animals (n=51). Δ designated as LRs, ○ designated as MRs, ■ designated as HRs.( r
2
 = 

0.055, F1,49 = 2.0889, p<0.0955) 
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Conclusions 

 

 

 As expected, animals exposed to a novel environment, a mild stressor, separated 

into distinct behavioral phenotypes as determined by locomotor activity. Locomotor 

differences between all animals resulted in the emergence of LR (bottom 33%) and HR 

(top 33%) groups. As expected, LRs exhibited more anxiety-like behavior as 

demonstrated by spending less time in the center and reduced rearing. Behavioral activity 

in the light-dark chamber demonstrated a pronounced difference between LR and HR 

animals. Low responders displayed significantly fewer explorations and entries into the 

light chamber than did high responders, suggestive of a preference for the dark chamber, 

which would be in line with the dark chamber representing a safe and less anxiety-

provoking environment (Crawley, 1980). It was also observed that LRs displayed a 

longer latency to enter the light chamber, preferring to spend more time in the dark 

chamber.  

 When the light/dark experiment was reversed, and animals began the session in 

the light chamber, there were no significant differences in latency to enter the dark 

between LR and HR animals. Thus, LRs moved to escape the light chamber and enter the 

“safety” of the dark with the same latency as HRs. This finding is important because an 

alternative theory for the emergence of distinct behavioral phenotypes in the locomotor 

test could be that LRs represent a more lethargic, or less mobile, group as compared to a 

more anxious phenotype. This is unlikely because when the placement was reversed LRs 

moved just as quickly as HRs to get out of the more stressful light environment, and 

continued to demonstrate elevated anxiety-like behaviors by re-entering the light chamber 

significantly less than HRs. Furthermore, one could posit that if locomotor differences 
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were a result of differences in motility then LRs would weigh more than HRs; but we 

found no weight differences between groups regardless of locomotor score (see 

Supplementary Figure S2). Finally, in rats selectively bred for divergent stress responses, 

similar observations in locomotor activity and anxiety-like behaviors were made 

supporting the idea that behavioral differences exhibited in light/dark box behavior are a 

result of exposure to novelty (Steimer & Driscoll, 2003). 

 When subjected to restraint stress, both LRs and HRs exhibited a rise in plasma 

corticosterone concentrations, which are indicative of corticosterone concentrations 

within the brain (Weber, Eckert, & Müller, 2006). As expected, based on previous reports 

indicating that locomotor response to novelty can indicate HPA reactivity (Piazza et al. 

1991), LRs exhibited significantly less corticosterone in response to stress than did HRs. 

Additionally, LRs and HRs did not differ in corticosterone under basal non-stressed 

conditions, suggesting that LRs exhibit a blunted corticosterone response to stress. It is 

possible that this provides a mechanism by which fear learning and memory processes 

are altered in individuals with PTSD, but other forms of memory not dependent upon 

emotional arousal remain unaffected.  

 In order to investigate enhanced sensitivity to negative feedback, another 

hallmark of PTSD (Yehuda et al., 1993; Yehuda et al., 2002; Stein et al., 1997), rats were 

pre-treated with cortisol. High responders expressed a reduction in corticosterone similar 

to what would be expected if negative feedback systems were being activated. Low 

responders failed to demonstrate a reduction in corticosterone concentrations, suggesting 

insensitivity to negative feedback. Therefore, to further elucidate the differences in 

negative feedback sensitivity between phenotypes we examined ACTH concentrations. 
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Low responders and high responders both demonstrated increases in plasma ACTH 

concentrations as a result of exposure to restraint stress. There were no differences 

between groups during basal non-stressed conditions. However, it is possible that 

significant difference could emerge as a result of an increased sample size, seeing that the 

current data suggest that in response to stress LRs secrete less ACTH than HRs. In 

response to pre-treatment with cortisol both LRs and HRs exhibited similar reductions in 

ACTH, suggesting that at the level of the pituitary the mechanisms responsible for 

negative feedback inhibition of glucocorticoid release are functional in both groups. 

Therefore, LRs do not exhibit enhanced sensitivity to negative feedback.  

Together, these data suggest that there are no differences in LRs and HRs at the 

level of the anterior pituitary. Negative feedback systems seem to be functional and 

similar in both phenotypes. At the level of the adrenal gland, there is a difference in 

adrenal output between LRs and HRs. Low responders fail to display a reduction in 

corticosterone following a cortisol-pretreatment, suggesting a lack of adrenal sensitivity 

to ACTH or that outside physiological systems are modulating adrenal output 

independent of the HPA response. Specifically, the sympatho-adreno-medullary axis 

could be exerting influence on the adrenals that results in adrenal output, but is specific to 

LRs or inactive in HRs. During stress the autonomic nervous system can stimulate the 

adrenal medulla through the splanchnic nerve (Jasper & Engeland, 1994) and cause the 

release of cortisol in addition to norepinephrine. Studies have demonstrated that 

splanchnic nerve innervation can increase adrenal responsivity to ACTH (Ulrich-Lai, 

Arnhold, & Engeland, 2006). Therefore, as a result of this potential change in ACTH 
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responsivity LRs secrete corticosterone even under inhibition by cortisol-driven negative 

feedback. 

 These data, in combination with previous studies, show that there are group 

differences between LR and HR rats in HPA reactivity at the level of the hypothalamus, 

the pituitary, and the adrenals. While we may not be able to directly identify the 

mechanisms of these differences, or clearly state what the full ramifications of these 

differences are, we can show that there are distinct and fundamental differences between 

LR and HR rats in regards to the HPA axis. As such, the LR/HR model provides an 

invaluable tool to attempt to ascertain the effects of such differences on a variety of 

PTSD-like behaviors and within PTSD-like animal paradigms. Specifically, LRs provide 

a means by which we can examine the effects that lower corticosterone levels have on 

behaviors disrupted in individuals with PTSD, possibly as a result of lower cortisol 

levels.  

 Together, these data support the idea that LR animals may provide a model in 

which we can begin to tease apart the question of whether blunted HPA responses 

contribute to vulnerability to developing PTSD-like behaviors. Individuals with PTSD 

display enhanced negative feedback (Yehuda et al., 1993; Yehuda et al., 2002; Stein et 

al., 1997) and decreased levels of cortisol (Mason et al., 1986; Yehuda et al., 1995), the 

human equivalent of corticosterone. Decreased corticosterone levels and increased 

anxiety-like behaviors, but not enhanced sensitivity to negative feedback, are 

characteristics observed in the LR animal phenotype, suggesting that the LR/HR model is 

a valid model to investigate stress differences, or more specifically; individual differences 

in the hypothalamic-pituitary-adrenal axis. 
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CHAPTER III 

 

 

 CONSOLIDATION AND PERSISTENCE OF FEAR MEMORY IN LOW AND HIGH 

RESONDING RATS 

 

 

Introduction 

 

 

 Posttraumatic stress (PTSD) disorder is a debilitating anxiety disorder estimated 

to affect 7.8% of Americans (Kessler et al., 1995). While considered to be mainly a 

wartime disorder, PTSD is increasingly being recognized in other types of trauma such as 

natural disasters, severe automobile accidents, diagnosis of a life threatening illness, 

sudden loss of a loved one, or rape (Hussain et al., 2011; Javidi & Yadollahie, 2012; 

Breslau et al., 1999; Rothbaum et al., 1992). A study by Norris (1992) found that 

approximately 69% of Americans experience some form of traumatic stress within their 

lifetime. However, only about 1 in 13 people in the United States will develop PTSD. 

Therefore, understanding what contributes to some developing the disorder while the 

majority do not is of utmost importance.  

 PTSD develops in response to an extreme physical and/or emotional stress during 

which the individual experiences actual or perceived threat of death or injury to self or 

others. This is typically accompanied by a strong sense of horror and paralyzing 

helplessness (DSM-IV-TR, 2000). Following the traumatic episode, individuals suffering 

from PTSD can show a wide variety of symptoms, such as persistent, intrusive memories 

of the traumatic episode and a combination of hyperarousal and numbing symptoms. 

Early evidence showing individuals with PTSD as having decreased 24-hour mean 

cortisol concentrations (Yehuda et al., 1995; Mason et al., 1986) suggest that 
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dysregulation of the neuroendocrine stress response may play a role in the pathogenesis 

of PTSD. Additionally, research has shown that individuals with PTSD demonstrate 

enhanced sensitivity to suppression of cortisol in response to treatment with 

dexamethasone (Yehuda et al., 1993; Yehuda et al., 2002; Stein et al., 1997). However, it 

remains unknown whether the dysregulation of the HPA axis observed in individuals 

with PTSD is a result of exposure to trauma or was present prior to trauma, potentially 

representing a marker of vulnerability to PTSD.  

 Glucocorticoids, such as cortisol, are hormones released from the adrenal glands 

in response to activation of the HPA axis. The effects of glucocorticoids within the brain 

are mediated mainly through specific intracellular receptors known as mineralocorticoid 

(MR) and glucocorticoid receptors (GR) (de Kloet et al., 1998). Mineralocorticoid 

receptors possess a 10-fold affinity for glucocorticoids such as cortisol, and are typically 

thought to be occupied under basal non-stressed conditions (Reul & de Kloet, 1985). 

Therefore, much research has focused on the glucocorticoid receptor (GR) which requires 

a higher concentration of cortisol, typically observed during stress exposure, in order to 

be activated. Glucocorticoid receptors (GRs) are found throughout the brain, including 

areas known to be involved in cognition, such as the hippocampus, amygdala, and 

prefrontal cortex.  

 The amygdala, with particular emphasis on the basal and lateral (BLA) regions, is 

critical for mediating the effects of emotional arousal and fearful events on memory 

consolidation (McGaugh et al., 1996; McGaugh, 2000). The exact consolidation 

mechanisms underlying extinction of fear memory remain widely unknown. Research has 

shown that mediators of the neuroendocrine stress response, such as norepinephrine 
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(Lalumiere et al., 2003, van Stegeren et al., 2008) and cortisol (corticosterone in rodents) 

(van Stegeren et al., 2007; McGaugh & Roozendaal, 2002) are key regulators of memory 

consolidation. Gold and van Buskirk (1975) reported that systemic injections of 

epinephrine enhanced retention of inhibitory avoidance in a dose-dependent manner 

when administered after training. This provided the first evidence suggesting that an 

endogenous hormone could play a role in memory consolidation. It has since been shown 

that during times of emotional arousal, and/or intense fear, norepinephrine is released 

within the BLA, inducing activation (McIntyre et al., 2002; Pelletier et al., 2005). Hence, 

further suggesting a role for norepinephrine in the mediation of consolidation of fear 

memory. Other research has shown that activation of β –adrenoceptors enhances memory 

consolidation when administered after training, while antagonism of β -adrenoceptors 

inhibits norepinephrine effects on memory consolidation. (Liang et al., 1986; Ferry & 

McGaugh, 1999; Liang et al., 1990).   

 In a variety of memory tests, administration of glucocorticoids after behavioral 

training sessions, but not prior to, has enhancing effects on memory consolidation similar 

to that observed in response to norepinephrine treatment (Pugh et al., 1999; Sandi et al., 

1997; Cordero et al., 1998; Roozendaal et al., 1999; Roozendaal, 2000). Furthermore, the 

enhancing effects of glucocorticoids on memory have been shown to be dependent upon 

norepinephrine activation within the BLA (Roozendaal et al., 2006). Treatment with 

metyrapone, a corticosterone synthesis inhibitor, inhibits the enhancing effects observed 

with post-training administration of norepinephrine, suggesting that a component of the 

consolidation mechanism underlying fear memory extinction may involve both the 

noradrenergic system and glucocorticoids. Imbalances or dysregulation of either system 



53 

 

can have significant effects on the consolidation of extinction for fear memory. This is 

important because one of the underlying deficits of PTSD is thought to be a deficit in 

consolidation mechanisms underlying the extinction of fear memory (Rauch et al. 2006).  

 Glucocorticoids play an important role in the maintenance and progression of 

extinction processes of fear memory. Extinction is a process in which a context cue that 

was formerly associated with an adverse stimulus is no longer able to elicit a behavioral 

response (Milad et al., 2006). Systemic administration of dexamethasone and intra-

amygdala infusion of RU28362, glucocorticoid receptor agonists, prior to extinction 

training facilitated extinction of conditioned fear in a dose-dependent manner (Yang et 

al., 2006). Conversely, administration of metyrapone, a corticosteroid inhibitor, prior to 

extinction trials resulted in an inhibition of extinction to context-dependent fear responses 

in rats (Yang et al., 2006) and mice (Blundell et al., 2011). Extinction was rescued by 

administration of corticosterone immediately following extinction trials in mice that 

received a pre-trial injection of metyrapone (Clay et al., 2011), reinforcing the idea that 

corticosterone is a critical modulator in learning and memory.  

 Individuals with PTSD may also exhibit an exacerbation of the fear response over 

time in the absence of extinction (Frueh et al., 2009; Smid et al., 2011). This 

phenomenon can be considered an incubation of fear. Fear incubation is best described as 

an increase in fear and anxiety that occurs over time following exposure to fear 

conditioning (Pickens et al., 2010; Schreurs et al., 2011). Therefore, an individual with 

PTSD experiences the traumatic event and forms associative memory traces between the 

trauma and cues in the environment. Over time, the fear response is elevated even 

without re-exposure to the cue or the environment. This is counter to what occurs in non-
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PTSD individuals, where a memory will typically extinguish barring re-exposure to the 

noxious cue. As a result, exposure therapy has been utilized for many with PTSD in order 

to provide a context similar to the precipitating trauma so that they might be able to 

extinguish the fear memory and to counter the effects of fear incubation (Myers et al., 

2007; Beckett, 2002; Quirk et al., 2008).   

 Overall, these data suggest that glucocorticoids are critical in the consolidation 

and extinction of conditioned fear and indicate the amygdala as an important component 

of these memory processes. Furthermore, these data suggest that decreased 

glucocorticoids during re-activation of a fear memory may lead to a deficit in the 

extinction of fear memory. This is important because it suggests a possible mechanism 

which could explain why individuals with PTSD, many of whom display decreased basal 

cortisol levels, have an inability to extinguish fear memory. Specifically, reduced cortisol 

levels could prevent proper activation of GR and inhibition of the high-capacity 

monoamine transporter organic cation transporter 3 (OCT3), resulting in a reduction in 

downstream signaling cascades resulting in dysregulation of consolidation and extinction 

of fear memory. 

 Organic cation transporter 3 (OCT3) is a corticosterone-sensitive low-affinity, 

high-capacity transport mechanism capable of clearing norepinephrine, epinephrine, 

dopamine, histamine, and serotonin from the extracellular space within the brain 

(Grundemann et al., 1998; Wu et al., 1998, Duan &Wang, 2010; Baganz et al., 2008; 

Feng et al., 2009; Gasser et al., 2006; Gasser et al., 2009). Of particular importance, is 

that OCT3 is stress-sensitive and under high concentrations of glucocorticoids 

monoamine transport is directly inhibited (Iversen & Salt, 1970; Simmonds & Gillis, 
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1958; Hill et al., 2010). Corticosterone inhibition of OCT3 has been implicated in the 

expression of altered behavioral responses. Specifically, inhibition of OCT3 has been 

demonstrated to play a role in the potentiation of drug-seeking behaviors (Graf et al. 

unpublished). This is especially relevant because it provides a mechanism by which 

glucocorticoids can modulate learning and memory processes reflected by behavioral 

changes. It is possible that glucocorticoid inhibition of OCT3 modulates the 

norepinephrine response within the amygdala. When there is insufficient corticosterone 

available, OCT3 continues to clear norepinephrine from the extracellular space limiting 

its reported enhancing effects on memory, thus contributing to dysregulation of 

consolidation mechanisms underlying the extinction of fear memory.  

To address this question we turned to animal models whereby we could examine 

individual differences in HPA responsiveness in the context of Pavlovian fear 

conditioning and subsequent differences in memory consolidation, extinction and 

incubation. Previous studies have focused on separating Spraque-Dawley rats into 

distinct phenotypic groups based upon locomotor activity during exposure to novelty 

(Kabbaj et al., 2000) as an indicator of HPA reactivity. Animals scoring in the bottom 

33% percentile were labeled as low responders (LR) and animals scoring in the top 33% 

percentile were labeled as high responders (HR). Any intermediate scoring animals were 

identified as median responders (MR). Kabbaj et al. (2000) also demonstrated that in 

response to restraint stress, rats designated as LRs had significantly lower peak 

corticosterone responses than HR rats. This suggests that at the level of HPA 

responsiveness, LR rats display a pre-existing blunted stress response, similar to what 

would be expected in an individual with enhanced sensitivity to negative feedback. 
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Proper regulation of the neuroendocrine stress response is critical in the regulation 

of glucocorticoids and norepinephrine, both of which are mediators in the consolidation 

mechanisms underlying extinction of fear memory. Therefore the aim of this study was to 

examine the effects of blunted HPA responsiveness on consolidation and persistence of 

contextual fear memory in LR and HR rats. We predicted that LR rats, which as a group 

display blunted corticosterone responses to stress, would display a prolonged and more 

pronounced fear response, a deficit in the extinction of the fear response, and lower 

corticosterone levels following extinction.  

Materials and Methods 

 

 

Animals  

 

 

 Adult male Spraque-Dawley rats (Harlan Laboratories, St. Louis, MO) were 

housed in cages of two under a 12:12 hour light:dark cycle (lights on 7:00 AM) in a 

temperature and humidity controlled facility. All procedures were approved by the 

Marquette University Institutional Animal Care and Use Committee and performed in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals.  Animal 

housing facilities were accredited by AALAC.   

Identification of Low and High Responders 

 

 

 Adult male Sprague-Dawley rats were placed into photocell cages that served as a 

novel locomotor chamber (AccuScan, Columbus, OH) and allowed to explore for 1 hour. 

Locomotor behavior (photocell beam breaks) was monitored by software provided by the 

manufacturer. Rats were separated into Low and High responders based upon cumulative 
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locomotor activity over the 1hour test. Rats scoring in the bottom 33% were classified as 

low (LR), and those in the top 33% as high (HR) responders. 

Experimental Design 

 

 

Experiment 1: Consolidation and extinction of contextual fear memory in LR and HR 

rats. 

 

 

 Two versions of this experiment were carried out. In Experiments 1A and 1B, rats 

(Experiment 1A: 14LR, 9HR; Experiment 1B: 8LR, 14HR) were subjected to a 

contextual fear conditioning session (D1) followed by a consolidation test (D3) and then 

a series of extinction sessions over the following week (D6-10). Rats in experiment 1B 

then received an extinction challenge on D32.  

 On Day 1, rats were trained in a Pavlovian contextual fear conditioning 

procedure. Rats were tail-marked within their respective colony room before transport to 

the laboratory. Rats were placed in the conditioning chambers and allowed to explore for 

4 minutes before receiving a series of 3 electric foot shocks (1mA intensity, 2 second 

duration, 3 minutes inter-shock interval). Animals were removed from the chamber 30 

seconds after the final shock and returned to their home cages.  

 On Day 3, rats were returned to the training chambers for a test of consolidation 

of contextual fear memory. After a 10-min period for observation, rats were returned 

immediately to the home cage. 

 For the remainder of the experiment, rats were exposed daily to the training 

context for 10 minutes, and behavior was recorded.  
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 In Experiment 1B, rats were trained and put through extinction as in experiment 

1A. Animals were returned to the conditioning chambers on D32 to examine the 

persistence of extinction memory. Rats were then immediately returned to the home cage. 

Experiment 2: Incubation effects on consolidation of contextual fear memory in LR and 

HR rats. 

 

 

 Experiment 2 was designed to examine potential differences between LR and HR 

animals in incubation of fear responses, or more specifically if the lack of repeated 

extinction training had an effect on behavior. LR and HR rats (8 LR, 12HR) were 

subjected to a contextual fear conditioning session (D1) followed by re-exposure to the 

training chambers on D10 and D32.  

 On Day 1, rats were trained in a Pavlovian contextual fear conditioning procedure 

as in Experiment 1. After training, rats were returned to their home cages for 9 days, 

during which time they received standard care, including cage cleaning.   

 On Day 10, rats were returned to the training chambers for a 10 minute period for 

observation, during which behavior was recorded, and returned to their home cages. Rats 

remained in home cages for 22 days with routine care and cage cleaning. 

 On Day 32, rats were returned to the conditioning chambers for a 10 minute 

period for observation during which behavior was recorded. Rats were then immediately 

returned to the home cage.  

Experiment 3: Plasma corticosterone concentrations following a series of extinction 

trials. 

 

 

 Thirty-seven rats were used for sampling following a fear conditioning paradigm 

(20 LR, 17 HR). Rats were subjected to contextual fear conditioning as described in 
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Experiment 1A. On Day 10, rats were placed within the context and allowed to explore 

for 10 minutes, and immediately following the 10 minute extinction trial rats were 

subjected to blood sampling.    

 Experiments 1A, 1B, 2, and 3 utilized different groups of animals. 

Fear Apparatus 

 

 

Animals were trained in squads of four, in four identical conditioning chambers 

(30 cm × 24 cm × 21 cm; Med Associates Inc., St. Albans, VT). The chambers were 

installed on a stainless-steel rack in a brightly lit room (8 100-W overhead incandescent 

bulbs). The ceiling and back wall of each chamber were constructed of opaque white 

plastic. The sides of each chamber were constructed of aluminum. The front wall/door 

was constructed of clear polycarbonate plastic. The floor of each chamber was 

constructed of a removable grid and waste pan. Before each squad of animals was 

conditioned, the chambers were cleaned with a 1% acetic acid solution (in tap water) and 

dried thoroughly with paper towels and a hair dryer. A thin film of the same solution was 

placed in the waste pan of each chamber as well. The grid floor was composed of 36 

stainless steel rods (3 mm dia., spaced 8 mm apart center to center). The grid floor, when 

placed in the chamber, made contact with a printed circuit board through which shock 

was delivered. The presentation of all stimuli was programmed with a PC running 

MedAssociates software (Med Associates, Inc., St. Albans, VT). During training and 

testing, background white noise (60 dB) was provided by a standard HEPA air filter. 

Sound levels for the background white noise were calibrated and monitored with a Radio 

Shack dB meter (A scale). Shock intensity was confirmed for each grid of each chamber 

before the introduction of each squad of animals, with a storage oscilloscope (B&K 
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Precision Corporation, Yorba Linda, CA) and a 10 kΩ resistor. Context testing and 

extinction took place in the same chambers and under the same ambient conditions as did 

training but in the absence of any other stimuli. 

Collection of Plasma  

 

 

 Blood samples were collected using a modified tail incision protocol (Fluttert et 

al., 2000). A scalpel was used to make a 4-6 mm diagonal incision approximately 10 mm 

from the end of the tail. Immediately following a 10 minute extinction session on Day 

(10), blood (from a separate group of animals) was collected directly into commercially 

available EDTA coated capillary tubes (T-MQK, Terumo, Elkton, MD). Samples were 

centrifuged for 10 min and plasma was collected and stored at -20 ºC for future use. 

Corticosterone Radioimmuno Assay 

 

 

 Plasma samples were assayed for corticosterone using a commercially available 

125
I radioimmunoassay (RIA) kit (Cat. No. 07120103, MP Biomedicals, LLC, Irvine, 

CA). Dialysates were diluted (1:200) with steroid diluent according to the standard RIA 

kit protocol. A standard curve was generated with standards provided by the kit with the 

addition of two additional lower concentration standards (12.5 ng/mL and 6.25 ng/mL). 

Standards and samples were run in triplicate. 
125

I tracer and anti-serum were added to all 

standard and sample tubes (plastic, 12 × 75 mm). Tubes were then vortexed briefly and 

incubated at room temperature for 2 hours. Following incubation, a precipitant solution 

was added to all tubes before tubes were vortexed thoroughly. All assay tubes were then 

centrifuged for 15 minutes at 2500 r.p.m. (1000 x g). Once centrifuged, all tubes were 

decanted and allowed to drain for 10 minutes. The precipitate was counted in a gamma 
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counter (Genysys GenII Series Gamma Counter, Laboratory Technologies, Inc., Maple 

Park, IL).  

Behavioral analysis  

 

 

 During all contextual fear procedures, a single camera recorded behavior from all 

four chambers simultaneously. The video signal was sent to a DVD recorder for storage 

and records were digitized later to Quicktime files on a Macintosh G5. For freezing 

measures, video records were digitized at 1 Hz. A human observer counted the number of 

samples, per minute, in each resulting video file during which the animal made any 

movement. Freezing behavior simply was quantified as the percentage of samples during 

which no movement was detected. Freezing percentage scores for the context tests were 

averaged across the first 4 minutes (pre-shock) and extinction tests were averaged across 

the total 10 minute exposure.  

Statistical Analysis 

 

 

Between-group and within-group differences in consolidation and extinction 

behaviors between LR and HR rats were examined using a two-way repeated measures 

Phenotype x Day ANOVA followed, when appropriate, by Bonferroni post hoc analysis.   

Results 

 

 

Experiment 1A: Consolidation and extinction of contextual fear memory in LR and 

HR rats 

 

 

 In experiment 1A, twenty three rats were used for extinction testing (14 LR and 9 

HR). A repeated measures two-way ANOVA (Phenotype x Day) examining differences 

between LRs and HRs in freezing behavior showed a significant main effect of day (F6,126 
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=27.10; P<0.0001) (see Figure 3.1A). Bonferroni post hoc analysis revealed both LRs (t12 

= 9.684, p<0.001) and HRs (t7 = 7.878, p<0.001) displayed significant increases in 

freezing behavior from Day 1 to Day 3. LRs, but not HRs displayed a significant 

reduction in freezing behavior from Day 3 to Day 6 (t12 = 2.934, p<0.01). However, 

compared to Day 3, LRs (see Figure 3.1B) and HRs (see Figure 3.1C) showed significant 

reductions in freezing behavior on Day 7 (LR: t12 = 3.171, p<0.01; HR: t7 = 2.926, 

p<0.01), Day 8 (LR: t12 = 3.604, p<0.001; HR: t7 = 3.916, p<0.001), Day 9 (LR: t12 = 

3.266, p<0.01; HR: t7 = 3.975, p<0.001), and Day 10 (LR: t12 = 4.258, p<0.001; HR: t7 = 

4.495, p<0.001). Additionally, HRs demonstrated a significant reduction in freezing on 

the last day of extinction (Day 10) as compared to the first day of extinction (Day 6) (t7 = 

2.537, p<0.05). No significant differences in freezing where revealed between LRs and 

HRs on any day (see Figure 3.1D). 
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Figure 3.1. Experiment 1A. Consolidation and extinction of contextual fear memory in LR and HR rats. 

Rats received a training trial followed by a consolidation test and subsequent extinction trials to measure 

consolidation of fear memory through freezing behavior (A). Freezing behavior between LR (B) and HR 

rats over time (C). Repeated measures two-way ANOVA showed main effect of Day, but failed to show 

any significant interaction between Phenotype and Day. There were no significant differences between LRs 

and HRs at any point (D). All values are mean ± SEM (n=14LR, 9HR). 
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Experiment 1B: Consolidation and extinction of contextual fear memory in LR and 

HR rats 

 

 

 In the second experiment, twenty two rats were used for extinction testing (8 LR, 

14 HR). A repeated measures two-way ANOVA (Phenotype x Day) examining 

differences between LRs and HRs in freezing behavior showed a significant main effect 

of day (F7,140 =46.70; p<0.0001) and a main effect of phenotype (F1,140 =4.859; p<0.05) 

but failed to reveal a significant interaction between phenotype and day (F7,140 =1.249; 

ns) (see Figure 3.2A).  

  Bonferroni post hoc analysis revealed both LRs (t6 = 11.39, p<0.001) and HRs 

(t12 = 10.37, p<0.001) displayed significant increases in freezing behavior from Day 1 to 

Day 3. Low responders displayed significantly higher freezing on Day 3 compared to 

HRs (t20 = 3.030, p<0.05) see Figure 3.2D).  

 Compared to Day 3, LRs (see Figure 3.2B) and HRs (see Figure 3.2C) showed 

significant reductions in freezing behavior on all consecutive days: Day 6 (LR: t6 = 5.967, 

p<0.001; HR: t12 = 6.030, p<0.001), Day 7 (LR: t6 = 7.844, p<0.01; HR: t12 = 7.987, 

p<0.01), Day 8 (LR: t6 = 8.790, p<0.001; HR: t12 = 9.330, p<0.001), Day 9 (LR: t6 = 

9.230, p<0.01; HR: t12 = 9.788, p<0.001), Day 10 (LR: t6 = 9.776, p<0.001; HR: t12 = 

10.03, p<0.001), and Day 32 (LR: t6 = 8.197, p<0.001; HR: t12 = 9.170, p<0.001). 

 Compared to the first extinction trial (Day 6) LRs and HRs showed significant 

reductions in freezing behavior in subsequent extinction trials from Day 8 through Day 

10: Day 8 (LR: t6 = 2.823, p<0.05; HR: t12 = 3.300, p<0.01), Day 9 (LR: t6 = 3.263, 

p<0.01; HR: t12 = 3.758, p<0.001), Day 10 (LR: t6 = 3.810, p<0.001; HR: t12 = 4.004, 

p<0.001). When exposed to a delayed extinction trial on Day 32, only HRs continued to 
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display significantly less freezing compared to the first extinction trial (Day 6): (LR: t6 = 

2.231, ns; HR: t12 = 3.140, p<0.01).  

 When compared to acquisition on Day 1, LRs and HRs displayed increased 

freezing behavior on Day 6 (LR: t6 = 5.425, p<0.001; HR: t12 = 4.338, p<0.001) and Day 

7 (LR: t6 = 3.548, p<0.001; HR: t12 = 2.382, p<0.05). On Day 8, only LRs displayed 

significantly higher freezing compared to Day 1 (LR: t6 = 2.602, p<0.05; HR: t12 = 1.039, 

p<0.05). Neither group displayed significantly different freezing behaviors on Days 9 or 

10 compared to Day 1. However, when exposed to a delayed extinction trial on Day 32, 

LRs only exhibited a significant increase in freezing behavior compared to Day 1 (LR: t6 

= 3.194, p<0.01; HR: t12 = 1.198, ns). 
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Figure 3.2. Experiment 1B. Consolidation and extinction of contextual fear memory in LR and HR rats. 

Rats received a training trial followed by a consolidation test and subsequent extinction trials to measure 

consolidation of fear memory through freezing behavior. Rats underwent delayed extinction trial to 

measure persistence of fear memory on Day 32 (A). Freezing behavior in LR (B) and HR (C) rats over 

time. Repeated measures two-way ANOVA revealed a main effect of Day and Phenotype, but failed to 

reveal any significant interaction between Phenotype and Day. Freezing behavior was significantly 

different between LRs and HRs on Day 3 (D). All values are mean ± SEM (n=8LR, 14HR). 

  

 

 

 

 

 

 

 

Experiment 2: Incubation effects on consolidation of contextual fear memory in LR 

and HR rats. 
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 Twenty rats were used for incubation testing (8 LR, 12 HR). A two-way repeated 

measures ANOVA (Phenotype x Day) showed a significant main effect of day (F2,36 

=63.70; P<0.0001) but failed to reveal a significant effect of phenotype (F1,36 =2.667; ns) 

(see Figure 3.3A). Post hoc analysis using Bonferroni t-test revealed significant increases 

in freezing behavior between Day 1 and Day 10 in both LRs (t6 = 7.967, p<0.001) and 

HRs (t10 = 6.803, p<0.001). The elevation in freezing behavior was maintained over time 

and found to be significant between Day 1 and Day 32 in both LRs (t6 = 6.768, p<0.001) 

and HRs (t10 = 5.752, p<0.001) (see Figure 3.3B).  
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Figure 3.3. Experiment 2. Incubation effects on consolidation of contextual fear memory in LR and HR 

rats. Rats received a training trial followed by a consolidation test on D10 and an extinction trial on D32 to 

investigate any differences in behavioral response as a result of an incubation effect. Freezing behavior 

between LR and HR rats over time (A). Repeated measures two-way ANOVA revealed significant main 

effect of Day, with both LRs and HRs displaying significantly elevated freezing on Day 10 and 32 

compared to Day 1 (B). All values are mean ± SEM (n=8LR, 12HR).  
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Experiment 3: Plasma corticosterone concentrations following a series of extinction 

trials. 

 

 

 Thirty-seven rats were used for sampling following a fear conditioning paradigm 

(20 LR, 17 HR). Analysis using individual unpaired t test comparing LR and HR 

corticosterone levels following extinction revealed LRs to display significantly lower 

corticosterone than HRs (t35 = 2.886, p <0.01) see Figure 3.4. 
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Figure 3.4. Plasma corticosterone concentrations in LRs and HRs following extinction. On the last day of 

extinction rats were placed within the training context for 10-minutes and allowed to explore freely. 

Immediately following extinction, rats were removed and subjected to blood sampling and plasma 

corticosterone concentrations were measured. All values are mean ± SEM (n=20LR, 17HR). ** p<.001.  
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Conclusions 

 

 

 In the current study, we examined the consolidation and the persistence of fear 

memory in LR and HR rats. Experiments 1A and 1B examined differences between LRs 

and HRS over the course of fear memory acquisition followed by a series of extinction 

trials. Experiment 2 examined maintenance and persistence of fear memory in LR and 

HRs rats not subjected to repeated extinction. In an experiment similar to experiment 1A, 

we examined the levels of plasma corticosterone immediately following exposure to a 

series of successive extinction trials.    

 In experiment 1A, both LRs and HRs showed significant increases in freezing 

behavior on the day of consolidation (Day 3) compared to Day 1, demonstrating that both 

phenotypes learned fear. Of note, LRs and HRs did not exhibit differences in freezing 

behavior on the day of acquisition. Over the course of extinction trials both LRs and HRs 

displayed reductions in freezing behavior compared to Day 3, suggesting that both 

phenotypes were capable of extinguishing the fear response. Low responders, but not 

high responders, failed to show significant reductions in freezing behavior on the last day 

of extinction compared to the first extinction trial. This is the first time we observed LRs 

to be potentially resistant to extinction, or maintaining a longer and more persistent fear 

response compared to HRs.  

There were no significant differences in freezing behavior between LRs and HRs 

at any point in time. It was noted however, that a difference between LRs and HRs started 

to emerge following repeated extinction trials, but never reached statistical significance, 

suggesting a possible emergence of a differential extinction response that could be 

significant if we increased our sample size. However, the lack of a significant difference 
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in freezing behavior between LRs and HRs was not expected. Low responders have 

repeatedly been found to exhibit decreased exploratory and locomotor behaviors (Kabbaj, 

2004; Blanchard et al., 2009; Kerman et al., 2011; Kabbaj, 2006). It was expected that 

following acquisition there would be a distinct separation between LRs and HRs, with 

LRs exhibiting increased freezing.   

 Experiment 1B revealed similar results in that both LRs and HRs did not display 

any initial differences in freezing on Day 1 alone, but both groups did display significant 

increases in freezing behavior on Day 3 as compared to Day 1, suggesting that again both 

phenotypes learned fear. However, LRs displayed significantly higher freezing on Day 3 

compared to HRs, suggesting that LRs consolidated fear memory better than HRs. 

Conversely, it is possible that HRs did not consolidate the fear memory as well, but based 

on the significant increase in freezing compared to acquisition, HRs were still able to 

demonstrate some degree of learning. Throughout extinction, both LRs and HRs 

demonstrated reductions in freezing behavior compared to consolidation testing, 

indicating that both groups were extinguishing. However, LRs took longer to display 

significant reductions in freezing as a result of extinction than did HRs. Again, LRs are 

maintaining a longer and more persistent fear response than HRs. Furthermore, when 

exposed to a delayed extinction trial on Day 32, only LRs displayed significant elevations 

in freezing compared to Day 1. Together, these data indicate that LRs extinguish slower 

and maintain a longer and more persistent fear response as compared to HRs, and display 

heightened fear responses when re=exposed to the context after a long delay.  

Experiments 1A and 1B displayed similar, but conflicting data in regards to 

consolidation and extinction of fear memory in LRs and HRs. To resolve the conflicting 
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results between experiments, we examined any differences in experimental design 

between animals. Animals in experiment 1A were handled daily for  nine days, once per 

day for 5 minutes per animal by laboratory personnel regardless of involvement in 

experimentation, meaning that some of the handlers were not the experimenters. Animals 

in experiment 1B were handled daily for 2 weeks, 2 times per day for approximately 2 

minutes per animal per session by laboratory personnel involved in experimentation. 

Handling has been demonstrated to reduce glucocorticoid secretion (Vallée et al., 2008) 

and thereby reduce stress-like behaviors (Costa et al., 2012). Therefore, a lack of 

handling could result in the observed behaviors, as compared to experiment 1B. Low 

responders in general would be expected to demonstrate higher levels of freezing 

compared to HRs (Kabbaj, 2004; Blanchard et al., 2009; Kerman et al., 2011; Kabbaj, 

2006). The difference in handling could contribute to the elevation of freezing behaviors 

in experiment 1A compared to experiment 1B. Thus, HRs demonstrating heightened 

freezing could be demonstrating elevated stress behaviors due to a lack of inurement, not 

in response to the context. The increased handling in experiment 1B provided increased 

habituation to physical manipulation, a necessary component of fear conditioning, 

thereby potentially reducing anxiety and stress as a result of experimenter contact with 

the animal. 

 Experiment 2 examined the persistence of fear memory in LRs and HRs not 

subjected to repeated context re-exposure after conditioning. Animals were exposed to 

the context only twice, on days 10 and 32. This could also be considered an examination 

of incubated fear, assuming both phenotypes acquire fear learning as displayed in the 

previous two experiments. Fear incubation is described as the increase in fear and anxiety 
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that occurs over time following exposure to fear conditioning (Pickens et al., 2010; 

Schreurs et al., 2011). Individuals with PTSD have been shown to exhibit incubation-like 

effects on fear behavior; mainly that fear responses are exacerbated and delayed in onset 

over time following exposure to the precipitating trauma (Frueh et al., 2009; Smid et al., 

2011). 

 As in the previous experiments, LRs and HRs displayed similar freezing on the 

day of acquisition, and both groups displayed significant increases in freezing behavior 

from Day 1 to Day 10, indicating that both groups successfully acquired fear learning. 

The elevation in freezing was maintained in both groups and was still significantly higher 

on Day 32, as compared to Day 1. However, at no time point did LRs and HRs differ 

significantly from each other. That being said, HRs consistently displayed lower mean 

freezing behavior than did LRs, suggesting that there may possibly be a difference in 

vulnerability to incubated fear if we increased our sample size. This would suggest that 

while HRs are less likely to express elevated fear in response to a lack of extinction trials, 

LRs are more likely to demonstrate exacerbated fear responses and therefore may be 

more prone to developing PTSD-like behaviors (Frueh et al., 2009; Smid et al., 2011). As 

a result, LRs could benefit from exposure therapy which has been utilized for many with 

PTSD in order to provide a context similar to the precipitating trauma so that they might 

be able to extinguish the fear memory and to counter the effects of fear incubation 

(Myers et al., 2007; Beckett, 2002; Quirk et al., 2008).    

 Immediately after the last extinction trial, corticosterone levels were significantly 

lower in LR than in HR rats. This is important, because as previously mentioned, lower 

cortisol levels following a traumatic stress have been positively correlated with 
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developing PTSD in the future (Resnick et al., 1995; McFarlane et al., 1997). It is 

possible that LRs are more vulnerable to developing PTSD-like behaviors, such as the 

observed prolonged fear response and resistance to extinction, as a result of decreased 

corticosterone.   

 Low responders display a blunted corticosterone response to stress (Piazza et al. 

1991), which could result in the inability of low responders to properly activate critical 

GR-mediated cellular processes necessary for learning and memory. Specifically, 

corticosterone levels in LRs could be insufficient to enhance memory as observed in 

previous studies (McGaugh & Roozendaal, 2002). This could be due to an inability to 

inhibit OCT3, the corticosterone-sensitive high-capacity monoamine transporter 

(Grundemann et al., 1998; Wu et al., 1998, Duan &Wang, 2010). This potentially would 

result in a lack of stress-induced elevations of norepinephrine, which have also been 

shown to be critical in the processing and maintenance of fear memory (Lalumiere et al., 

2003, van Stegeren et al., 2007,2008). Together, low corticosterone concentrations could 

affect a multitude of memory processes resulting in the exacerbation and persistence of 

fear memory following a traumatic event.   
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CHAPTER IV 

 

 

 MODULATION OF ACOUSTIC STARTLE BY EXPOSURE TO SINGLE-

PROLONGED STRESS IN LOW AND HIGH RESPONDING RATS: 

VULNERABILITY OR RESISTANCE ASSESSMENT 

 

 

Introduction 

 

 

 Posttraumatic stress disorder (PTSD) is a severe anxiety disorder precipitated by 

exposure to extreme physical and / or emotional stress (DSM-IV-TR, 2000). The 

traumatic event can be varied, such as natural disasters (Hussain et al., 2011), rape 

(Rothbaum et al., 1992), or combat (Javidi & Yadollahie, 2012). However, not all 

individuals who experience a traumatic episode develop PTSD. Approximately 69% of 

Americans experience a traumatic episode in their lifetime (Norris, 1992), but only 8% 

develop PTSD (Kessler et al., 1995). 

 Following exposure to trauma, individuals with PTSD show a variety of 

symptoms including hyperarousal, numbing symptoms, and persistent, intrusive 

memories of the traumatic episode (DSM-IV-TR, 2000). One key physiological 

characteristic of PTSD is altered levels of the stress hormone cortisol. Individuals with 

PTSD may exhibit decreased circadian plasma concentrations of cortisol (Mason et al., 

1986; Yehuda et al., 1995). Additionally, it has been observed that individuals with 

PTSD may also express increased sensitivity to cortisol negative feedback of the HPA 

axis (Yehuda et al., 1993; Yehuda et al., 2002; Stein et al., 1997). These characteristics 

combined could result in decreased, or blunted, cortisol levels during a traumatic/ 

stressful event. Thus, decreased cortisol levels could increase vulnerability to developing 

PTSD by insufficiently activating critical signaling pathways during stress. It has been 
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shown that in emergency room trauma patients low levels of cortisol following the 

trauma are positively correlated with future development of PTSD (Resnick et al., 1995; 

McFarlane et al., 1997). The previous chapters have discussed the importance of memory 

consolidation and the persistent, intrusive memories associated with PTSD. The current 

chapter focused on vulnerability to developing PTSD-like behaviors utilizing acoustic 

startle as a measure. Exaggerated acoustic startle, a component of the hyperarousal 

behaviors observed in PTSD, could result in part from blunted corticosterone responses 

to stress.  

 Acoustic startle, or the startle response, is a behavioral response in reaction to an 

abrupt and intense stimulus that has been demonstrated by a wide variety of species 

(Bradley et al., 1999; Grillon and Baas, 2003). However, it has been demonstrated that 

individuals with PTSD can display exaggerated acoustic startle responses (Shalev et al., 

1992; Orr et al., 1995; Garrick et al., 2001). Grillon et al. (1998) demonstrated that 

veterans with PTSD exhibited increased startle magnitudes as compared to veterans and 

civilians without PTSD in a trial during which they were under an experimental stressor, 

fear of electric shock. This exaggerated effect was not demonstrated in non-stress 

conditions, which suggests that the stress-response system may play a role in the 

mechanisms underlying acoustic startle. Importantly, the exaggeration of the startle 

response seems to be dependent upon the situation being stressful in nature, as no 

significant increases in startle were observed in control conditions.   

 Cortisol is believed to exert a modulatory influence over acoustic startle response. 

Studies examining the interaction between startle response and cortisol levels have 

demonstrated that healthy individuals exhibited a lower startle response in the mornings 
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and a higher startle response in the evenings (Miller and Gronfier, 2006). This is 

important because cortisol levels are higher in the morning and lower in the evening, 

suggesting a relationship between glucocorticoid concentrations and acoustic startle. 

Specifically, lower cortisol levels may be associated with higher startle responses, which 

is interesting considering individuals with PTSD have been observed to exhibit reduced 

levels of cortisol (Boscarino, 1996; Yehuda, 2002; Yehuda et al., 1993, 1995).  

 A study measuring acoustic startle in humans found that the startle response was 

reduced in participants who ingested oral doses of hydrocortisone (cortisol). The 

reduction in startle was only observed at the 20mg dose, as compared to the 5mg dose 

(Buchanan et al., 2001), suggesting the reduction was due in part to saturation of the 

glucocorticoid receptor by cortisol. Additional studies demonstrated that peripheral 

injection of corticosterone in rats decreased startle magnitude (Sandi et al., 1996), 

supporting the idea that low cortisol or corticosterone levels results in heightened startle 

responses. Furthermore, administration of the cortisol-suppressing drug metyrapone 

results in an enhancement of startle in human participants (Roemer et al., 2009). 

 In order to examine the question as to whether low levels of cortisol contribute to 

vulnerability in developing PTSD, we turned to an animal model. Previous studies have 

demonstrated that rats which exhibit locomotor responses to novelty in the bottom 33
rd

 

percentile of a population (LR animals) display significantly lower peak plasma 

corticosterone responses to restraint stress (Kabbaj et al., 2006). This suggests that at the 

level of HPA responsiveness, LR rats demonstrate a pre-existing blunted stress response, 

similar to what would be expected in an individual with enhanced sensitivity to negative 

feedback. 
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 To examine the responses of LR and HR rats to a severe stress, we used the 

single-prolonged stress model of PTSD (SPS) (Liberzon et al., 1997) to determine the 

effects of severe stress on acoustic startle behavior. In short, animals are subjected 

serially to a restraint stress, forced swim trial, and ether anesthesia. This test has been 

used as a means to observe a combination of behavioral abnormalities, such as enhanced 

anxiety, expressed in PTSD (Khan and Liberzon, 2004; Harada et al., 2007). 

 Rats that underwent SPS have demonstrated increased acoustic startle responses 

compared to rats that did not undergo SPS (Khan & Liberzon, 2004). Additionally, rats 

exposed to SPS had increased freezing in contextual fear conditioning (Imanaka et al., 

2006; Takahashi et al., 2006). Animals that underwent SPS have also been found to 

exhibit an upregulation of mRNA for the glucocorticoid receptor (GR) and a 

downregulation in mRNA for the mineralocorticoid receptor (MR) in the hippocampus 1 

week after SPS (Liberzon et al., 1999). This is important because it is the first evidence 

to suggest that rats subjected to SPS demonstrate enhanced negative feedback. A study by 

Liberzon, Krstov, and Young (1997) demonstrated that animals exposed to SPS 

expressed enhanced sensitivity to negative feedback during a stress test 1 week later. 

Furthermore, these same animals that were exposed to SPS did not differ in ACTH or 

corticosterone.  

 One key physiological characteristic of PTSD is altered levels of the stress 

hormone cortisol. Individuals with PTSD can exhibit decreased circadian plasma 

concentrations of cortisol (Mason et al., 1986; Yehuda et al., 1995). Exaggerated acoustic 

startle could result from decreased levels of cortisol. Previous studies have demonstrated 

that reduced cortisol levels result in enhanced startle response in humans (Miller and 
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Gronfier, 2006) and that administration of cortisol reduces the startle response 

(Buchannan et al., 2001; Sandi et al., 1996). Animal models have demonstrated that the 

SPS animal model of PTSD enhances startle response in animals following exposure 

(Khan and Liberzon, 2004; Harada et al., 2007). However, nobody has examined the 

effects of SPS on groups of rats with differential stress responses. 

 As a result of expressing reported blunted corticosterone levels similar to those 

observed in individuals with PTSD, LR animals make an appealing choice in trying to 

understand the role stress reactivity plays in PTSD-like symptoms. Therefore the aim of 

this study was to examine the effects of individual differences in HPA responsiveness on 

the susceptibility to developing PTSD-like behaviors. We predicted that LR animals 

would be more sensitive to SPS and express more PTSD-like behaviors as compared to 

HR animals. Specifically, we predicted SPS would cause greater increases in acoustic 

startle response in LRs as compared to HRs. Furthermore, we examined whether there 

were initial differences in acoustic startle response between phenotypes prior to exposure 

to severe stress in order to determine whether or not enhanced startle behavior is a pre-

existing characteristic or a result of trauma.  

Materials and Methods 

 

 

Animals  

 

 

 Adult male Spraque-Dawley rats (Harlan Laboratories, St. Louis, MO) were 

housed in cages of two under, a 12:12 hour light:dark cycle (lights on 7:00 AM) in a 

temperature and humidity controlled facility. All procedures were approved by the 

Marquette University Institutional Animal Care and Use Committee and performed in 
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accordance with the NIH Guide for the Care and Use of Laboratory Animals.  Animal 

housing facilities were accredited by AALAC.   

Identification of Low and High Responders 

 

 

 Adult male Sprague-Dawley rats were placed into photocell cages that served as a 

novel locomotor chamber (AccuScan, Columbus, OH) and allowed to explore for 1 hour. 

Locomotor behavior (photocell beam breaks) was monitored by software provided by the 

manufacturer. Rats were separated into Low and High responders based upon cumulative 

locomotor activity over the 1 hour test. Rats scoring in the bottom 33% were classified as 

Low (LR), and those in the top 33% as High responders (HR). 

Acoustic Startle 

 

 

 Rats were placed on a platform that rested on a force transducing plate to measure 

the amplitude of startle responses to loud noise. Following a 5 minute habituation period 

in a sound attenuating chamber (27.62x35.56x49.53cm) (Hamilton Kinder, CA, USA) 

that, rats were exposed to a series of 30 trials over 15 minutes (30 seconds interval) 

consisting of a single auditory stimulus (pulse stimulus; 51dB above the 57dB 

background noise, 50ms duration). In all experiments, rats were subjected to an acoustic 

startle trial to determine baseline response 2 weeks prior to single-prolonged stress. 

Following exposure to SPS, all rats were subjected to a second acoustic startle trial 2 

weeks following exposure to severe stress.   

Single-Prolonged Stress 

 

 

 Animals underwent single-prolonged stress, as previously described (Liberzon, et 

al., 1997). Briefly, 2 hours into their light cycle, animals were exposed to a single session 
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of prolonged stress consisting of restraint for 2 hour in a clear plexiglass container 

followed immediately by a forced swim for 20 minutes in 24°C water. Animals were 

allowed to recuperate for 15 minutes and then were exposed to ether vapors until loss of 

consciousness. The animals were then returned to their home cages and left undisturbed 

for two weeks. Forced swim was conducted in a 59.7cm x 46.7cm x 41cm container. 

Four rats at a time were subjected to swim stress in the same container. Animals were 

closely watched and prevented from escaping.  

Analysis of Acoustic Startle 

 

 

 Total startle amplitude over the course of all 30 trials was examined and 

represented as the mean and standard error for each animal subgroup.  The first three 

trials were used to habituate and stabilize startle responding similar to previous reports 

(Risbrough et al., 2009), and subsequently were excluded from analysis. Startle responses 

were averaged across trials 4-30 and represented as mean startle amplitude with mean 

standard error. 

Data Analysis 

 

 

 The differences in acoustic startle response between LR and HR rats were 

determined using a two-way ANOVA ( Phenotype x Stressor) followed, when 

appropriate, post-hoc testing using Bonferroni t test.   
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Results 

 

 

Acoustic Startle 

 

 

Thirty eight rats were used for startle response testing (14 LR, 24 HR)            

[LR : Control (7) /  SPS (7) ; HR: Control (12) / SPS (12)]. There were no significant 

differences in acoustic startle response between startle trials in LRs (Figure 4.1A) or HRs 

(Figure 4.1B) that did not receive an intervening stressor. 
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Figure 4.1. Effects of repeated startle trials on LRs and HRs. Animals were subjected to an acoustic startle 

session consisting of 30 individual trials. Startle amplitude for each day is reported for LR rats that 

underwent no stress (A) and HR rats that underwent no stress (B). Values are reported as mean and SEM. 

(LR = 7, HR = 12) 
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Effects of Startle Stimuli Following Exposure to SPS 

 

 

 A two-way ANOVA (Phenotype x Day) examining differences between LRs and 

HRs in startle response failed to reveal a significant effect of condition (F1,34 =0.3930; ns) 

or phenotype (F1,34 =1.927; ns).  (see Figure 4.2). Data do suggest an increase in acoustic 

startle in LRs following SPS, which could become significant if sample size is increased. 
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Figure 4.2 Effects of startle stimuli on LRs and HRs that received SPS. Animals were subjected to an 

acoustic startle session consisting of 30 individual trials. Startle amplitude for Day 2 (post-SPS) is reported 

for LR rats that underwent SPS (A) and HR rats that underwent SPS (C) compared to control animals. The 

rectangle indicates the trials examined (4-30) for statistical analysis. Mean differences in startle amplitude 

across all trials for LRs (B) and HRs (D) is represented. Values are reported as mean and SEM. (LR = 7, 

HR = 12) 
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Conclusion 

 

 

 Low responders and high responders subjected to repeated acoustic startle trials 

without any intervening stress did not reveal any significant differences in startle 

behavior over time or between phenotypes. This suggests that there are no inherent 

differences in startle behavior between phenotypes prior to exposure to trauma. 

Furthermore, it also suggests that repeated acoustic startle training has no significant 

effects on behavior. If anything, both LRs and HRs displayed a slight reduction in 

freezing behavior during the second startle trial compared to the first trial.  

 Animals that underwent SPS demonstrated no significant differences in the 

second acoustic trial (post-stress) than did animals in the control group during their 

second acoustic trial. When comparing LR and HR controls and LR and HR SPS animals 

against their respective second acoustic startle trials, LRs displayed a greater increase in 

startle amplitude following SPS than did HRs.  

 The lack of significant differences between stress conditions and / or phenotypes 

could be a result of a small sample size. Another consideration for why there was a lack 

of significant changes in startle behavior could be the result of a habiutation effect. As 

observed in control non-stressed animals, there seems to be a slight habituation effect 

where freezing is reduced in the second startle session. By exposing the animals to 

acoustic startle prior to trauma they may become habituated to the context and result in 

decreased startle responses upon secondary testing. Therefore, in order to observe any 

significant changes in behavior a given phenotype has to increase startle significantly to 

counter any habituation effects. This is one main reason why the question of pre-existing 

differences remains unstudied. There are not many working models.  
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 Another potential reason for the lack of a response could be experimenter error in 

the execution of the acoustic startle. This could be due to insufficient restraint of the 

animal during testing. If the animal was not properly installed in the recording apparatus, 

the normal force of startle could be reduced, resulting in inaccurate and blunted 

responses. Additionally, if the chamber was not properly sealed, with specific attention to 

the insulating plug, startle responses could have been modulated by ambient noise or 

leakage of the startle noise. This is again, unlikely because each startle apparatus was 

calibrated for sound prior to testing.  

   Together, the data suggest that there are no inherent differences in LRs 

and HRs prior to trauma, and that repeated acoustic startle sessions alone have no 

significant effects on startle behavior outside of a slight habituation effect. While not 

significant, the data suggest a trend in which LRs displayed heightened elevations in 

freezing behavior following exposure to the traumatic SPS model as compared to non-

stressed LRs. This increase was not observed in the HR phenotype. 
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CHAPTER V 

 

 

NATURAL AND SYNTHETIC CORTICOSTEROIDS INHIBIT UPTAKE2-

MEDIATED TRANSPORT IN CNS NEURONS 

 

 

Introduction 

 

 

 Natural and synthetic corticosteroids are powerful modulators of neuronal 

physiology and behavior.  By actions at a variety of cellular targets, they initiate both 

rapid and delayed effects on central nervous system (CNS) function. Recent studies 

suggest that, in addition to exerting actions via the mineralocorticoid and glucocorticoid 

receptors (MR and GR), corticosteroids also act by inhibiting monoamine clearance 

mediated by uptake2, a high-capacity, low-affinity transport system for norepinephrine, 

epinephrine, dopamine, histamine and serotonin (Baganz et al., 2008; Feng et al., 2009, 

Gasser, Lowry & Orchinik, 2006; Gasser et al., 2009). In contrast to uptake1, which is 

mediated by a combination of the specific transporters for norepinephrine (NET), 

dopamine (DAT), and serotonin (SERT), uptake2 is a higher-capacity but lower affinity 

transport system, and is acutely inhibited by corticosterone and other steroids (Iversen & 

Salt, 1970; Simmonds & Gillis, 1968). Inhibition of uptake2 in cardiac or smooth muscle 

tissue by acute bath application of corticosteroids enhances the contractile effects of 

exogenously applied epinephrine, norepinephrine, serotonin and histamine (Horvath et 

al., 2003; Eyre, Elmes & Strickland, 1979; Kalsner, 1975; Mikami et al., 1989; Purdy, 

Weber & Drayer, 1982; Purdy & Weber, 1983). Recent studies have identified a small 

group of transporters that mediate uptake2-like transport and have demonstrated their 

expression in the brain (Gasser, Lowry & Orchinik, 2006; Gasser et al., 2009; Engel, 
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Zhou & Wang, 2004; Amphoux et al., 2006; Vialou et al., 2004).  Thus, uptake2 is a 

mechanism by which corticosteroids may act to enhance the actions of monoamines in 

the CNS as well as in peripheral targets. 

 Uptake2 activity has been attributed to a group of broadly-specific organic cation 

transporters.  These include the organic cation transporter (OCT) family: OCTs 1, 2 and 

3, and the plasma membrane monoamine transporter (PMAT).  Because OCT3 is the 

most sensitive of these transporters to inhibition by corticosterone, it has been described 

as the most important uptake2 transporter (Grundemann et al., 1998; Wu et al., 1998, 

Duan &Wang, 2010). However, all of the above transporters have uptake2-like 

characteristics.  All are broadly-specific organic cation transporters, capable of 

transporting, with varying efficiencies, norepinephrine, epinephrine, serotonin, dopamine 

and histamine, as well as the cationic neurotoxin 1-methyl-4-phenylpyridinium (MPP
+
) 

(Engel, Zhou & Wang, 2004; Grundemann et al., 1998; Grundemann et al., 1998; 

Grundemann et al., 1999.  All are sensitive to inhibition by corticosterone, though their 

sensitivities differ widely (Gasser, Lowry & Orchinik, 2006; Engel, Zhou & Wang, 2004; 

Wu et al., 1998; Duan et al., 2010; Schomig, Lazar & Grundemann, 2006; Gorboulev et 

al., 2005), and all are inhibited by the pseudoisocyanine compound 1, 1’-diethyl-2, 2’-

cyanine iodide (decynium-22) (Engel, Zhou & Wang, 2004; Hayer-Zillgen, Bruss & 

Bonisch, 2002). 

 All of the uptake2 transporters are expressed, at varying levels and with distinct 

distributions, in rodent and human brain (Gasser, Lowry & Orchinik, 2009; Gasser et al., 

2009; Engel, Zhou & Wang, 2004; Amphoux et al., 2006; Vialou et al., 2004), and recent 

studies suggest that they play important roles in monoamine clearance.  Pharmacological 
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inhibition of uptake2 by direct application of decynium-22 decreases the rate of serotonin 

clearance in mouse hippocampus (Baganz et al., 2008), and treatment of rats with the 

OCT3 inhibitor normetanephrine potentiates venlafaxine-induced increases in 

extracellular norepinephrine concentrations in rat prefrontal cortex (Rahman et al., 2008).  

Extracellular concentrations of dopamine are elevated in the striatum of OCT3 knockout 

mice (Cui et al., 2009).  These studies demonstrate that uptake2 transporters play 

important roles in regulating extracellular concentrations of monoamines in the rodent 

brain.   

 Each of the identified uptake2-like transporters is inhibited by corticosterone, 

though they differ in their sensitivity to this corticosteroid.  OCT3 is the most sensitive 

(IC50 = 0.04 – 0.2 μM), followed by OCT2 (IC50 = 4 μM), OCT1 (IC50 = 150 μM) and 

PMAT (Ki = 450 μM) (Gasser, Lowry & Orchinik, 2006; Engel, Zhou & Wang, 2004; 

Wu et al., 1998; Duan & Wang, 2010; Schomig, Lazar & Grundemann, 2006; Gorboulev 

et al., 2005).  Studies in peripheral tissues suggest that uptake2-mediated transport is also 

inhibited by a variety of natural and synthetic corticosteroids.  In vascular smooth 

muscle, the mineralocorticoids aldosterone and 11-deoxycorticosterone enhance the 

contractile effects of epinephrine (Weber & Purdy, 1982; Weber, Purdy & Drayer, 1983),  

and OCT3-mediated norepinephrine clearance in bronchial smooth muscle is inhibited by 

the synthetic corticosteroids budesonide, methylprednisolone, and fluticasone (Horvath et 

al., 2007).  These studies suggest that uptake2 inhibition may play an important role in 

mediating the effects of both natural and synthetic corticosteroids on neuronal physiology 

and behavior.   
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 Given the powerful behavioral effects attributed to a wide variety of both natural 

and synthetic corticosteroids, it is important to understand the potential contribution of 

uptake2 inhibition to their actions in the CNS.  However, the structure activity 

relationships among the natural and synthetic corticosteroids for inhibition of uptake2 in 

neurons have not been determined.  We recently demonstrated that rat cerebellar granule 

neurons (CGNs) in culture accumulate [
3
H]-MPP

+
 in a corticosterone-sensitive manner, 

and that they express the uptake2 transporter OCT3, but not the uptake1 transporter DAT 

(Shang et al., 2003).  In the present studies, we fully characterized the expression of 

uptake1 and uptake2 transporters in CGNs, and examined the sensitivity of uptake2-

mediated accumulation of [
3
H]-MPP

+
 to various natural and synthetic corticosteroid 

hormones.  This information is important for a full understanding of the mechanisms by 

which corticosteroids influence CNS function.   

Materials and Methods 

 

 

Materials 

 

 

 All steroids were purchased from Steraloids (Newport, RI). Timed pregnant 

female Sprague-Dawley rats were purchased from Harlan (Madison, WI). 1-[
3
H]-Methyl-

4-phenylpyridinium ([
3
H]-MPP

+
) (specific activity of 86.4 Ci/mol) was purchased from 

Perkin Elmer (Waltham, MA). Primers for RT-PCR were synthesized by Invitrogen 

(Carlsbad, CA).  

Culture of Cerebellar Granule Neurons  

 

 

 CGNs were prepared from 6-8-day-old rat pups of either sex as described 

previously (Hillard et al., 1997) except that cerebellae were incubated in 40 rather than 
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20 U/mL of papain.  Cells were plated onto 6-well culture plates (2 ml, 1x10
6
 cells/mL) 

and were maintained in basal minimal Eagle’s media (BME; Invitrogen) supplemented 

with 10% heat-inactivated fetal bovine serum, 25 mM KCl, 5 mM glutamine, and 0.01 

mg/ml ampicillin.  After 24 h, cytosine arabinoside (10 μM) was added to the cultures to 

inhibit glial proliferation.  After 5 days in culture, 600 μl of the media was removed and 

replaced with BME supplemented as above, except that B-27 (Invitrogen) was substituted 

for fetal bovine serum.    

 [
3
H]-MPP

+
 Uptake Assay 

 

 

 Uptake experiments were carried out at room temperature on CGNs that had been 

in culture for 6-8 days.  Cells were washed and pre-incubated in 1.8 mL transport buffer 

(25 mM Tris Base, pH 8.5, 280 mM mannitol, 5.4 mM KCL, 1.8 mM CaCl2, 0.8 mM 

MgSO4 and 5 mM glucose).  To test the effects of putative uptake2 inhibitors on MPP
+ 

accumulation, CGNs were incubated in the presence of vehicle or increasing 

concentrations of inhibitors for 5 minutes before the addition of 20 nM [
3
H]-MPP

+
.  

Uptake was terminated after two minutes by aspiration of transport buffer, followed by 

two washes with 1mL ice-cold transport buffer.  CGNs were lysed by scraping in 500 µl 

water. Radioactivity in the cell lysate was determined by liquid scintillation spectroscopy. 

Uptake experiments were repeated at least three times, except where noted.  The effects 

of the following inhibitors were tested: 11-dehydrocorticosterone (10 nM – 5.0 μM); 11-

deoxycorticosterone (10 nM- 1 μM); aldosterone (10 nM – 1 μM); betamethasone (10 nM 

– 1 μM); corticosterone (10 nM – 5 μM); cortisol (10 nM – 10 μM); cortisone (10 nM – 5 

μM); decynium-22 (0.01 nM – 0.1 μM); dexamethasone (0.1 nM – 1 μM); prednisolone 

(10 nM – 5 μM); RU38486 (10 nM – 5 μM).   
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Reverse Transcriptase-PCR 

 

 

 After 7 days in culture, CGNs were washed twice with transport buffer and total 

RNA was isolated using 1 mL TRIzol Reagent (Invitrogen) per well according to the 

manufacturer's protocol.  One microgram of the resulting total RNA was reverse 

transcribed in the presence and absence SuperScript
TM

II Reverse Transcriptase 

(Invitrogen) using oligo(dT)20 primers.  Two microliters of the resulting cDNA were used 

as a template for PCR reactions using GoTaq Green Master Mix (Promega, Madison, WI) 

and gene specific primers (Invitrogen) at 1 µM.  Sequences for gene-specific primers and 

the corresponding PCR cycling parameters are shown in Figure 5.1.   
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Figure  5.1. Primers and cycling conditions for amplification of MPP+ transporters in CGNs. All reactions 

were initiated by a 2 min incubation at 94°C, were run for 32 cycles, and ended with 10 min at 72°C. 

Gene Primers (5'-3') 

Product 

Size (bp) Cycling Parameters 

rOCT1

a 

Forward-GAT CTT TAT CCC GCA TGA GC 

Reverse-TTC TGG GAA TCC TCC AAG TG 

477 45 s at 94C, 30 s at 55C, 45s at 72C 

rOCT1

b 

Forward-TGC AGA CAG GTT TGG CCG TAA 

Reverse-TCG AGG CCG CTA TTG GGT AGA 

722 45s at 94C, 30s at 55C, 45s at 72C 

rOCT2 Forward -CGT TGG GTA GAA TGG GCA TC 

Reverse -GTG AGG TTG GTT TGT GTG GG 

460 45 s at 94°C, 30 s at 57°C, 45 s at 72°C  

rOCT3 Forward -TCT TCA CCC TCG GAA TCA TC 

Reverse -TGA TAC ACC ACG GCA CTT GT 

351 45 s at 94°C, 30 s at 55°C, 45 s at 72°C  

rDAT Forward -TCC CTG ACAA GCT TCT CC 

Reverse -GCC AGG ACA ATG CCA AGA 

305 1 min at 95°C, 45 s at 56°C, 45 s at 72°C  

rNET Forward -ACA TCG GGA AAG GTT GTC TG 

Reverse -GTG GCG ACA TCC TCA ATC TT 

370 1 min at 95°C, 45 s at 60°C, 45 s at 72°C  

rPMAT Forward -ACC GCT ACC ATG CCA TCT AC 

Reverse -AAG GCC AGG AGG TAA CCT G 

238 1 min at 95°C, 45 s at 58°C, 45 s at 72°C  

rSERT Forward -GTA CCA CCG AAA CGG GTG CA 

Reverse -TGG TGG ATC TGC AGC ACA TG 

300 45 s at 95°C, 45 s at 60°C, 45 s at 72°C  
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Data Analysis 

 

 

 Results of uptake assays are expressed as means ± SEM from independent 

replicates.  Uptake data were analyzed using GraphPad Prism version 5.03 (GraphPad 

Software, San Diego, CA).  Transport data were analyzed by fitting untransformed data 

to appropriate equations using iterative, least-squares curve-fitting techniques.  IC50 

values for inhibitors were determined by fitting the pooled data from independent 

experiments to the one-site competition equation using non-linear regression. 

Results 

 

 

Expression of transporter mRNA in CGNs 

 

 

 RT-PCR was used to determine the expression of mRNA for uptake1 (DAT, NET 

and SERT) and uptake2 (OCT1, OCT2, OCT3 and PMAT) transporters in CGNs.  All 

primer pairs were tested for their ability to amplify the target genes from cDNAs obtained 

from tissues known to express each of the transporters.  All primer pairs were able to 

amplify products of the expected size in cDNA from positive control tissue: midbrain for 

OCT3, OCT2, PMAT, DAT, NET and SERT; and kidney for OCT1(a and b) and OCT2; 

data not shown).  As shown in Figure 5.2, mRNAs for OCT1, OCT3, and PMAT were 

clearly detected in CGNs, while mRNA for SERT was detected at very low levels, and 

mRNAs for OCT2, DAT, and NET were not detected.  Because the results of the current 

OCT1 RT-PCR contradicted our previous results (Shang et al., 2003), we repeated the 

OCT1 PCR using either the primer pair that we used in the earlier publication (OCT1b), 

or the new primer pair (OCT1a).  Using the OCT1a primer pair, we detected OCT1 

mRNA in CGNs, as well as in forebrain, liver, kidney and lung.  Using the OCT1b 
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primer pair, we failed to detect OCT1 mRNA in CGNs or in rat forebrain, but did detect 

OCT1 mRNA in kidney, liver and lung tissue (data not shown).   
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Figure 5.2.  Expression of monoamine transporters in CGNs.  RT-PCR was performed using total RNA 

extracted from CGNs and primers specific to OCTs 1, 2, and 3, plasma membrane monoamine transporter 

(PMAT), dopamine (DAT), norepinephrine (NET) or serotonin reuptake transporter (SERT).  PCR was 

performed on cDNA samples generated in the presence (+) or absence (-) of reverse transcriptase.  Only 

RT-PCR that included reverse transcriptase (+) produced distinct bands for any of the transporters.  

mRNAs for OCT1, OCT3 and PMAT were clearly detected, and a very small amount of mRNA for SERT 

was detected, in CGNs.   
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[
3
H]-MPP

+
 uptake assays  

 

 

 Previous studies demonstrated saturable accumulation of [
3
H]-MPP

+
 by cultured 

CGNs, and presented evidence that this accumulation was mediated by OCT3 (Shang et 

al, 2003).  We tested the sensitivity of CGN accumulation of [
3
H]-MPP

+ 
to the potent 

uptake2 inhibitor decynium-22, and to a variety of natural and synthetic corticosteroids.   

Uptake of [
3
H]-MPP

+
 was inhibited by both decynium-22 and corticosterone in a dose 

dependent manner, with decynium-22 inhibiting a larger fraction of MPP
+
 accumulation 

than did corticosterone (Figure 5.3, Figure 5.4).  Accumulation of [
3
H]-MPP

+
 was also 

partially inhibited by other naturally occurring corticosteroids and their metabolites, 

including aldosterone, cortisol, 11-deoxycorticosterone (11-DOC), and cortisone (Figures 

5.5 and 5.6, Figure 5.3).  These steroids inhibited [
3
H]-MPP

+
 uptake with efficacies 

similar to that of corticosterone (Figure 5.4).  11-Dehydrocorticosterone had only a slight 

inhibitory effect on [
3
H]-MPP

+
 uptake (Figure 5.6, Figure 5.4).  Synthetic corticosteroids 

inhibited [
3
H]-MPP

+
 uptake with varying efficacies.  Betamethasone inhibited uptake 

with an efficacy similar to that of corticosterone, while dexamethasone and prednisolone 

were less effective (Figure 5.7, Figure 5.4).  The glucocorticoid receptor antagonist 

RU38486 inhibited [
3
H]-MPP

+
 uptake, but was less effective than corticosterone (Figure 

5.7, Figure 5.4).   Decynium-22 inhibited a larger fraction of uptake than did any of the 

steroids examined (Figure 5.3, Figure 5.4).   
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Figure 5.3.  Effects of Decynium-22 and corticosterone on CGN accumulation of [
3
H]-MPP

+
.  Cultured 

CGNs were incubated in uptake buffer containing the indicated concentrations of inhibitors for 5 min, after 

which 20 nM [
3
H]-MPP

+
 was added and uptake was measured after 2 min.  Decynium-22 (∆) and 

corticosterone () inhibited [
3
H]-MPP

+ 
accumulation in a concentration-dependent manner. Error bars 

represent − SE from n = 3 (decynium-22) or 8 (corticosterone) replicate wells.     
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Figure 5.4. Potencies of inhibitors of [
3
H]-MPP

+
 accumulation by CGNs 

Inhibitor IC50 nM (95% CI) 

Maximal 

Inhibition (%) 

Decynium-22 3.4          (2.4 – 4.8)  76 ± 5 

11-dehydrocorticosterone 23           (2.3 – 200)  13 ± 5 

11-deoxycorticosterone 9.25        (4.25 – 20)  58 ± 7 

Aldosterone 18           (7.5 – 43)  49 ± 7 

Betamethasone 33           (15 – 72)  50 ± 8 

Corticosterone 81           (42 – 200)  55 ± 5 

Cortisol 1.1μM    (0.5 – 2.5)  47 ± 8 

Cortisone 82           (28 – 240)  32 ± 6 

Dexamethasone 0.1          (0.03 – 0.6)  25 ± 4 

Prednisolone 6.4          (1.2 – 33)  32 ± 7 

RU38486 44           (11.5 – 200)  25 ± 7 

IC50 values were determined by fitting pooled data from independent experiments to the 

one-site competition equation using nonlinear regression. 
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Figure 5.5.  Effects of corticosteroids on CGN accumulation of [
3
H]-MPP

+
.  Cultured CGNs were 

incubated in uptake buffer containing the indicated concentrations of inhibitors for 5 min, after which 20 

nM [
3
H]-MPP

+
 was added and uptake was measured after 2 min.  Aldosterone (о), cortisol () and cortisone 

(∆) inhibited [
3
H]-MPP

+ 
accumulation in a concentration-dependent manner.  Error bars represent − SE 

from n = 3 (aldosterone, cortisone) or 4 (cortisol) replicate wells.     
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Figure 5.6.  Effects of corticosterone and its metabolites on accumulation of [
3
H]-MPP

+ 
by CGNs.  

Cultured CGNs were incubated in uptake buffer containing the indicated concentrations of steroids for 5 

min, after which 20 nM [
3
H]-MPP

+
 was added and uptake was measured after 2 min.  The data for 

corticosterone () are from Figure 2, presented here for comparison to the other steroids.  Both 11-

deoxycorticosterone (о) and 11-dehydrocorticosterone (∆) inhibited [
3
H]-MPP

+ 
accumulation in a 

concentration-dependent manner, though with different efficacies.  Error bars represent − SE from n = 3 

(11-dehydrocorticosterone, 11-deoxycorticosterone) or 8 (corticosterone) independent wells.   
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Figure 5.7.  Effects of synthetic corticosteroids on accumulation of [
3
H]-MPP

+ 
by CGNs.  Cultured CGNs 

were incubated in uptake buffer containing the indicated concentrations of steroids for 5 min, after which 

20 nM [
3
H]-MPP

+
 was added and uptake was measured after 2 min.  A. Betamethasone (), prednisolone 

() and RU38486 (о) dose-dependently inhibited [
3
H]-MPP

+ 
accumulation.  B.  Dexamethasone () dose-

dependently inhibited [
3
H]-MPP

+ 
accumulation.  Error bars represent − SE from n = 3 (betamethasone, 

prednisolone, RU38486) wells or − SD from two (dexamethasone) wells.   
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Conclusion  

 

 

 This study is the most detailed characterization of the corticosteroid sensitivity of 

uptake2-mediated transport, and the first in CNS cells.  The data from expression and 

functional studies indicate that uptake2 is the primary monoamine transport system in 

CGNs, and that, as in peripheral tissue, uptake2 activity in the CNS is broadly sensitive to 

inhibition by both natural and synthetic corticosteroid hormones.  These data are 

consistent with the hypothesis that natural and synthetic corticosteroids exert modulatory 

actions in the CNS via inhibition of uptake2 -mediated clearance of monoamines, and that 

inhibition of uptake2-mediated monoamine clearance may underlie some of the effects of 

these hormones on neuronal physiology and behavior.   

 The data from RT-PCR studies indicate that [
3
H]-MPP

+
 accumulation by CGNs is 

mediated primarily by three uptake2 transporters: OCT1, OCT3 and PMAT.  These data 

are consistent with previous studies demonstrating expression of OCT3, OCT1 and 

PMAT protein or mRNA expression in the cerebellar granule layer (Gasser et al., 2009; 

Amphoux et al., 2006; Dahlin et al., 2007). However, our detection of OCT1 mRNA 

expression in CGNs is not consistent with our previous report that OCT1 mRNA is not 

expressed in these cells (Shang et al., 2003).  This discrepancy may be due to the use of 

different primer sets in the two studies.  In the present study, we used a primer set 

(OCT1a) that targets the 3’ end of the OCT1 cDNA, whereas in the previous study, we 

used a primer set (OCT1b) that targets a region in the middle of the OCT1 cDNA.  Both 

primer sets detected OCT1 mRNA in cDNA from kidney, raising the possibility that 

kidney and brain OCT1 mRNAs represent alternatively spliced forms of the gene, as has 

been reported for human OCT1 (Hayer et al., 1999).  To address this discrepancy, we 
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performed parallel PCR using each of the OCT1 primer pairs to amplify product from 

CGN and kidney cDNAs.  Using the OCT1b primers (from our earlier publication), we 

again detected OCT1 mRNA in kidney, but not in CGN cDNA.  Using the OCT1a 

primers, we detected OCT1 mRNA in both kidney and CGN.  These results suggest that 

the OCT1 mRNA we detected in CGNs represents an alternatively spliced form of the 

gene.  Further studies are required to test this hypothesis.   

 The data from RT-PCR studies further demonstrate that CGNs do not express 

DAT and NET, and that they express only very low levels of SERT.  These results are 

consistent with previous studies examining DAT and SERT mRNA expression in CGNs 

(Shang et al., 2003; Zusso et al., 2008).  Our data on the expression of these uptake1 

transporters seem to contradict previous studies demonstrating the expression of DAT, 

NET and SERT in the cerebellar granule layer.  However, these studies measured 

radioligand binding in intact brain sections, or uptake of substrates by acutely-prepared 

synaptosomes (Freund et al., 2003; Giompres & Delis, 2001; Gonzalez-Polo et al., 2001; 

Le et al., 1998; Strazielle et al., 1999).  Data obtained using these techniques likely 

reflect transporters expressed on monoaminergic terminals in the cerebellar granule layer 

(Ikai et al., 1992; Kerr & Bishop, 1991; Verney, Grzana & Farkas, 1982), rather than 

specifically in CGNs. Our data reflect transporter expression almost exclusively in 

CGNs.    

 Our functional studies are also consistent with a primary role of uptake2 in CGN 

transport.  Two well-characterized uptake2 inhibitors, decynium-22 and corticosterone, 

each inhibited substantial fractions of MPP
+
 uptake in the present studies.  All of the 

transporters we detected in CGNs are inhibited by decynium-22, though their sensitivities 
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are not equivalent.  OCT3 and PMAT are the most sensitive to decynium-22 inhibition 

(IC50 = 9-100 nM for OCT3, 100 nM for PMAT), while OCT1 is significantly less 

sensitive (IC50 = 0.5-1μM) (Engel, Zhou & Wang, 2004; Hayer-Zillgen, Bruss & 

Bonisch, 2002; Grundemann et al., 1997; Martel et al., 1996; Russ et al., 1992).  Some 

reports have suggested that, at very high concentrations, decynium-22 can inhibit NET 

and SERT (Russ et al., 1993; Martel et al., 2003).  In the present studies, decynium-22 

inhibited approximately 80% of [
3
H]-MPP

+
 accumulation with the same potency (IC50 = 

3.4 nM) as reported in our previous studies (Shang et al., 2003).  As the concentrations of 

decynium-22 used in the current study (0.01 nM – 0.1 μM) did not reach the previously 

reported IC50 for OCT1, the data suggest that the decynium-22-sensitive fraction of MPP
+
 

accumulation reported here is mediated primarily by PMAT and OCT3, and that the 

remaining fraction of MPP
+
 accumulation is mediated by OCT1, with a possible 

contribution of SERT.   

 While all of the uptake2 transporters expressed in CGNs are inhibited by 

corticosterone, they differ greatly in their sensitivity.  OCT3 is the most corticosterone-

sensitive, followed by OCT1 and PMAT (Gasser, Lowry & Orchinik, 2006; Engel, Zhou 

& Wang, 2004; Grundemann et al., 1998; Wu et al., 1998l Duan & Wang, 2010; Arndt et 

al., 2001).  The concentrations of corticosterone used in the current study did not reach 

the previously-reported IC50s for inhibition of OCT1 (150 μM) or PMAT (450 μM).  

Thus, the corticosterone-sensitive MPP
+
 uptake (50-60% of total uptake) observed in the 

present study is likely mediated primarily by OCT3, with the corticosterone-insensitive 

fraction (40-50% of total uptake) mediated by PMAT and OCT1.  Given the high levels 

of PMAT mRNA we detected in relation to OCT3, it is surprising that the corticosterone-
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insensitive fraction of MPP
+
 accumulation in CGNs is not larger.  This may be due to 

differences in the efficiencies with which OCT3 and PMAT transport MPP
+
.  In support, 

recently published studies demonstrated that the Vmax for OCT3-mediated MPP
+
 uptake is 

two-fold higher than that of PMAT (Duan & Wang, 2010).   

 Previous studies demonstrated that corticosterone-induced inhibition of OCT3-

mediated transport is a non-genomic, GR-independent phenomenon (Horvath et al., 

2003).  The present studies are consistent with a non-genomic mechanism, in that 

inhibition of MPP
+
 uptake by all tested corticosteroids was evident with only 5 minutes 

of steroid exposure, and that the GR antagonist RU38486 also inhibited MPP
+
 

accumulation.  The IC50 for corticosterone inhibition of MPP
+
 accumulation reported in 

the present study (81 nM) is consistent with previous studies (Gasser, Lowry & Orchinik, 

2006; Shang et al., 2003), and is within the physiological range reported for stress-

induced corticosterone concentrations the rat brain (Droste et al., 2008; Droste et al., 

2009).   

 While each of the individual uptake2 transporters is inhibited by corticosterone, 

their sensitivities to other corticosteroids have not been thoroughly characterized.  Early 

studies in peripheral tissues demonstrated that a variety of natural corticosteroids inhibit 

uptake2 activity or enhance the actions of epinephrine (Purdy, Weber & Drayer, 1982; 

Purdy & Weber, 1983).  However, the effects of corticosteroids other than corticosterone 

on individual uptake2 transporters have been examined only for OCT3. Those studies 

demonstrated that OCT3 is inhibited by budesonide, methylprednisolone, and fluticasone 

(Horvath et al., 2003; Horvath et al., 2007).  Our data indicate that uptake2-mediated 

transport in the CNS is broadly sensitive to inhibition by natural and synthetic 
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corticosteroids.  While it is likely that these corticosteroids exert their effects at least in 

part by inhibiting OCT3, further studies are required to determine the specific 

contributions of each of the expressed transporters to corticosteroid-sensitive uptake.  

The mineralocorticoids aldosterone and 11-DOC also inhibited MPP
+
 accumulation by 

CGNs.  This is consistent with previous studies, which demonstrated that these two 

mineralocorticoids could inhibit the clearance of epinephrine and norepinephrine, and 

potentiate their actions in vascular or cardiac tissue (Purdy , Weber & Drayer, 1982; 

Purdy & Weber, 1983; Bell & McLachlan, 1979; Martel, Azevedo & Osswald, 1993).  

This is the first study demonstrating mineralocorticoid-sensitive transport in CNS cells, 

and suggests that mineralocorticoids also exert actions in the CNS by inhibiting uptake2-

mediated monoamine clearance.  Interestingly, OCT3 knockout mice display alterations 

in salt intake that are comparable to those exhibited by aldosterone-treated animals 

(Vialou et al., 2004). As OCT3 protein and mRNA are expressed in brain regions 

involved in regulation of salt intake, including circumventricular organs and medial 

amygdala, these data raise the possibility that this particular uptake2 transporter 

represents a target for mineralocorticoid action on ingestive behavior (Gasser et al., 2009; 

Vialou et al., 2004). 

 Comparison of the effects of corticosterone, 11-DOC and 11-

dehydrocorticosterone on MPP
+
 accumulation indicates that slight differences in 

corticosteroid structure significantly alter potency and efficacy of steroid-mediated 

inhibition of uptake2.  These three steroids differ in structure only at C11 of the steroid 

backbone. 11-Deoxycorticosterone, which differs from corticosterone only by the lack of 

a hydroxyl group at C11, was a more potent and slightly more effective inhibitor of MPP
+
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accumulation than was corticosterone, suggesting that the lack of the C11 hydroxyl group 

may increase the potency of 11-DOC at OCT3 and/or make it a more effective inhibitor 

of PMAT and/or OCT1. 11-Dehydrocorticosterone, which contains a keto- group at C11, 

was a much less effective inhibitor than either corticosterone or 11-DOC.  Further studies 

are necessary to determine the effects of these steroids on individual uptake2 transporters.   

The present studies are the first to demonstrate sensitivity of uptake2 activity to 

dexamethasone, prednisolone, and betamethasone, and to demonstrate that uptake2-

mediated transport in the CNS is sensitive to synthetic corticosteroids.  These results are 

consistent with studies demonstrating that OCT3-mediated monoamine transport in 

bronchial smooth muscle cells is inhibited by budesonide, fluticasone and 

methylprednisolone (Horvath et al., 2003; Horvath et al., 2007).  Again, further studies 

are required to determine the relative contributions of OCT3, OCT1 and PMAT to the 

effects of each of the tested synthetic steroids.  However, these studies raise the 

interesting possibility that synthetic corticosteroids may acutely and potently enhance 

monoaminergic neurotransmission in the CNS, and that these actions may in part underlie 

previously described acute effects of synthetic corticosteroid treatment on behavior in 

humans (Greeves, 1984; Swinburn et al., 1988; Wolkowitz et al., 1997).   

 Both natural and synthetic corticosteroids have powerful effects on monoamine-

regulated behaviors, (Greeves, 1984; Swinburn et al., 1988; Wolkowitz et al., 1997; de 

Quervain et al., 2000; Mizoguchi et al., 2004; Roozendaal et al., 2006; Sandi, Venero & 

Guaza, 1996; Wada et al., 2000).  Accumulating evidence suggests that uptake2 

transporters may play important roles in regulating monoaminergic neurotransmission in 

specific brain regions (Baganz et al., 2008; Gasser, Lowry & Orchinik, 2006; Rahman et 
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al., 2008; Cui et al., 2009).  The present studies demonstrate that uptake2 represents an 

important target for corticosteroid action in the brain and that inhibition of uptake2-

mediated clearance of monoamines must be taken into consideration when interpreting 

the results of acute treatment with both natural and synthetic corticosteroid hormones. 
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CHAPTER VI 

 

 

ORGANIC CATION TRANSPORTER 3 IS DENSELY EXPRESSED IN THE 

INTERCALATED CELL GROUPS OF THE AMYGDALA: ANATOMICAL 

EVIDENCE FOR A STRESS HORMONE-SENSITIVE DOPAMINE CLEARANCE 

SYSTEM 

 

 

Introduction 

 

 

 The amygdala is a critical component of the neural circuitry mediating anxiety 

and fear (Davis et al., 1994; Ledoux, 2000). Effective regulation of anxiety and fear-

related behaviors requires strict control over the activity and excitability of neurons in the 

basolateral amygdala (BLA) and the central amygdala (CeA), so that anxiety and fear 

responses are suppressed under most conditions, but can be rapidly expressed when 

necessary. This regulation is accomplished in part by a complex inhibitory network 

surrounding the amygdala which, driven primarily by cortical projections, suppresses 

BLA and CeA activity and thus prevents inappropriate expression of fear and anxiety 

responses (Davis & Myers, 2002; Quirk & Gehlert, 2003; Sanders & Shekhar, 1995). 

 When these responses are appropriate, however, inhibitory control of amygdala 

output must be released. Recent studies have demonstrated that the dopaminergic system 

plays a critical role in releasing cortical inhibition of amygdala activity, and thus is a 

potent regulator of fear and anxiety responses (de la Mora et al., 2010; Fadok et al., 2009; 

Guarraci et al., 1999). Acting primarily through D1 receptors, dopamine increases the 

activity of BLA pyramidal neurons by attenuating inhibitory influence from the 

infralimbic prefrontal cortex (PFC) and enhancing sensory cortical inputs, resulting in 

overall enhancement of BLA-mediated behaviors (Greba et al., 2001; Lamont & 
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Kokkinidis, 1998; Rosenkranz & Grace, 2001). Thus, D1 receptors are thought to 

function as a switch, facilitating the transition of the BLA from a PFC-controlled, 

relatively inhibited state to a disinhibited, more excitable state (Rosenkranz & Grace, 

2002). Recent studies suggest that the effects of dopamine on amydala activity result in 

large part from its actions on neurons in the intercalated cell groups of the amygdala 

(ITC) (Marowsky et al., 2005).   

 The ITCs consist of dense clusters of D1 receptor-expressing small-to-medium-

sized GABAergic neurons surrounding the BLA, and are subdivided into the main (IM), 

anterior (IA) and lateral and medial paracapsular (Ilp and Imp respectively) islands 

(Millhouse, 1986). ITC neurons receive prominent excitatory inputs from the PFC 

(Berretta et al., 2005; Quirk et al., 2003; Sesack et al., 1989; Vertes, 2004) and send 

projections to the central and basolateral amygdaloid nuclei, as well as to adjacent ITC 

cell groups  (Royer et al., 1999; Royer et al., 2000). ITC neurons are activated during 

fear expression, extinction training and extinction retrieval (Busti et al., 2011), and in 

response to pharmacological activation of infralimbic PFC neurons (Berretta et al., 2005). 

 Recent studies have demonstrated that the intercalated cell groups are functionally 

heterogeneous, and suggest that they form a complex interconnected network that 

controls the sensitivity of the amygdala to afferent neuronal signals and regulates 

communication between distinct nuclei within the amygdala. These studies suggest that 

cells in Imp and IM regulate the flow of neuronal signals from the BLA to the central 

nucleus (Royer et al., 1999; Manko et al., 2011), while Ilp neurons regulate PFC-to-

amygdala signals (Marowsky et al., 2005). Neurons in the IA may modulate 

communication between right and left amygdalae (Marcellino et al., 2012). In addition, 
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the ITCs are functionally and anatomically interconnected, such that activation of one 

intercalated cell group may result in inhibition of another. Stimulation of IM, Ilp and Imp 

neurons by infralimbic PFC projections results in inhibition of BLA and CeA projection 

neurons (Marowsky et al., 2005; Amir et al., 2011), and lesions of Imp neurons result in 

increases in anxiety and fear, and deficits in extinction of conditioned fear (Pape & Pare, 

2010; Likhtik et al., 2008). 

 Intercalated cell groups receive dense dopaminergic projections from the VTA 

(Asan, 1998; Freedman & Cassell, 1994; Moore & Bloom, 1978), and express the highest 

concentration of dopamine D1 receptors in the mammalian amygdala (Fuxe et al., 2003). 

Activation of D1 receptors hyperpolarizes and decreases the firing rates of GABAergic 

neurons in both the Imp and the IM (Marowsky et al., 2005; Manko et al., 2011). In the Imp, 

this effect is mediated by D1-receptor-induced activation of G protein-coupled inwardly 

rectifying potassium (GIRK) channels, decreasing the sensitivity of ITC neurons to PFC 

stimulation, and resulting in disinhibition of BLA and CeA activity (Marowsky et al., 

2005). Thus extracellular dopamine, by regulating ITC-mediated inhibitory tone, is a 

critical determinant of amygdala excitability and plasticity.  Stimuli, including stress-

related stimuli, which increase dopamine concentrations in these cell groups, would lead 

to altered sensitivity of BLA neurons to excitatory signals. 

 Neuroanatomical studies of the ITC indicate that a substantial portion (up to 50%) 

of dopaminergic neurotransmission within these areas occurs via volume transmission 

(Fuxe et al., 2003; Fuxe et al., 2005; Marcellino et al., 2012). Thus, mechanisms, 

including presynaptic or postsynaptic transport, that regulate extracellular dopamine 

concentration are likely to be important determinants of amygdala function. Previous 
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studies have demonstrated that the pattern of dopamine transporter (DAT) 

immunoreactivity in the amygdala overlaps with that of tyrosine hydroxylase (TH), with 

high densities observed within the ITCs, and lower densities elsewhere (Revay et al., 

1996). Recent descriptions of TH immunostaining have described a spatial “mismatch” 

between these dopaminergic terminals and D1 receptors in the ITC, with distances of 1 

µm or more separating D1 receptors from TH-immunoreactive terminals, suggesting that 

other clearance mechanisms besides the presynaptic DAT may be involved in regulating 

dopaminergic neurotransmission in these areas (Marcellino et al., 2012; Fuxe et al., 

2003).  

 We have recently described the expression in the amygdala of an additional 

dopamine clearance mechanism, organic cation transporter 3 (OCT3), with particular 

enrichment in dense clusters of small cells surrounding the BLA (Gasser et al., 2009). In 

contrast to the DAT, OCT3 has higher capacity and lower affinity for dopamine, is 

sodium-independent, and has the capacity to transport norepinephrine, serotonin, and 

other monoamines (Duan & Wang, 2010; Grundemann et al., 1998; Grundemann et al., 

1999). Interestingly, OCT3-mediated transport is directly and acutely inhibited by the 

stress hormone corticosterone (Grundemann et al., 1998). Thus, OCT3 may represent a 

stress-sensitive dopamine clearance mechanism, and may act within the amygdala to 

control extracellular dopamine concentrations. Because of the profound functional 

implications of high-density expression of a previously uncharacterized dopamine 

transporter in this important brain region, and in order to understand the contribution of 

OCT3 to the regulation of dopaminergic neurotransmission, we sought in this study to 

more fully describe the distribution of OCT3-immunoreactivity in the ITC, to examine its 
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relationship to D1 receptors and dopaminergic terminals in the ITC, and to identify the 

phenotype(s) of OCT3-expressing cells. 

Materials and methods 

 

 

Animals 

 

 

 Male Sprague Dawley rats (Harlan Laboratories, Inc., St Louis, MO, USA), 

weighing 275-325 g, were housed individually in a temperature- and humidity-controlled, 

AAALAC-accredited vivarium under a 12h/12h light-dark cycle (lights on at 0700 h) 

with ad libitum access to food and water. Housing conditions and experimental protocols 

approved by the Marquette University Institutional Animal Care and Use Committee, and 

were carried out in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals (NIH publication number 80-23, revised 1996).  

Perfusion and Histology 

 

 

 Rats were deeply anesthetized by intraperitoneal injection of sodium pentobarbital 

(100 mg/kg) and were transcardially perfused with ice-cold 0.05 M phosphate-buffered 

saline (PBS) followed by 4% paraformaldehyde in 0.1 M sodium phosphate buffer (PB, 

pH 7.4). Following perfusion, brains were removed and post-fixed in the 4% 

paraformaldehyde solution for 12 h at 4 °C, and were rinsed twice in 0.1 M PB for 12h. 

The brains were incubated in 30% sucrose in 0.1 M PB for approximately 72 h.  Brains 

were then blocked into two pieces with a cut in the coronal plane at the caudal border of 

the mammillary bodies (approximately –5.30 mm bregma) using a rat brain matrix 

(RBM-4000C, ASI Instruments, Warren, MI, USA). Brains were frozen rapidly in dry-

ice-chilled liquid isopentane and stored at –80 °C until sectioning.  Forebrain sections (25 
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µm) including the basolateral amygdala were cut across the coronal plane using a cryostat 

(Leica Biosystems, Buffalo Grove, IL, USA), and stored as 6 alternate sets of sections in 

cryoprotectant (30% ethylene glycol (w/w)/20% glycerol (w/w) in 0.05 M PB, pH 7.4) at 

–20 °C until immunostaining.   

Antibodies 

 

 

 For immunodetection of OCT3, an affinity-isolated antibody (rabbit anti-OCT3, 

cat # OCT31A, Alpha Diagnostics International, San Antonio, TX, USA) raised against 

an 18-amino acid sequence in the large intracellular loop of rat OCT3 (amino acids 313-

330:  HLSSNYSEITVTDEEVSN) was used. This amino acid sequence is 100% 

conserved in mouse and rat OCT3, and has no significant sequence homology with other 

OCTs or with any organic cation/carnitine transporters.  The specificity of this antibody 

was confirmed previously in immunohistochemical and immunofluorescence applications 

(Gasser et al., 2006; Gasser et al., 2009; Lips et al., 2005; Vialou et al., 2004).  For 

immunodetection of tyrosine hydroxylase (TH) a monoclonal antibody (mouse anti-TH, 

cat # MAB318, Millipore, Billerica, MA, USA), previously used to characterize TH 

expression in the rat amygdala (Muller et al., 2009), was used at a dilution of 1:1600. For 

Dopamine D1 receptor immunodetection, a monoclonal antibody (mouse anti-D1a 

receptor, cat # MAB5290, Millipore) was used at a dilution of 1:5000 

(immunohistochemistry) or 1:250 (immunofluorescence). This antibody has been 

thoroughly characterized and shown to be specific for D1 receptors, and to display no 

cross-reactivity for dopamine D5 receptors (Luedtke et al., 1999).  For immunodetection 

of the neuronal marker NeuN, a monoclonal antibody (mouse anti-NeuN, cat# MAB377, 

Millipore) was used at a dilution of 1:400. 



118 

 

Immunohistochemistry 

 

 

 Free-floating sections were incubated in 24-well tissue culture plates and gently 

shaken on an orbital shaker throughout the staining process.  For single-label 

immunostaining, sections were first rinsed in 0.05 M PBS for 15 min, then treated with 

1% hydrogen peroxide in 0.05 M PBS for 15 min, washed again for 15 min in PBS, pre-

incubated in PBS containing 0.3% Triton X-100 (PBST), and then incubated overnight at 

room temperature with primary antibody (OCT3 (1:500) or D1r (1:5000)) in 0.1% PBST.  

Sections were rinsed twice for 15 min in 0.05 M PBS, after which they were incubated 

for 90 min with secondary antibody (biotinylated swine anti-rabbit IgG, cat. no. E0353, 

DAKO, Ely, UK) diluted 1:200 in 0.05 M PBS.  After two more 15-min rinses in PBS, 

sections were incubated for 90 min with an avidin-biotin complex (Elite ABC reagent; 

Vector Laboratories, Burlingame, CA, USA) diluted 1:200 in PBS. Sections were then 

rinsed for 15 min in 0.05 M PBS, and incubated in a solution containing 0.001% 3,3’-

diaminobenzidine tetrahydrochloride (DAB) and 0.0015% hydrogen peroxide in PBS for 

20 min or until staining was clearly visible.  Stained sections were rinsed for 15 min in 

0.1 M PB, dipped briefly in water, and mounted onto SuperFrost slides (VWR, Arlington 

Heights, IL, USA). After drying at room temperature overnight, sections were dehydrated 

in ascending alcohol concentrations and slides were mounted with cover slips using 

Entellan mounting medium (Electron Microscopy Sciences, Hatfield, PA, USA).   

 Separate sections were processed for double-label immunostaining for OCT3 and 

TH. Procedures for OCT3 immunostaining were conducted as above. After the DAB 

reaction, sections were rinsed twice in 0.05 M PBS, followed by an additional treatment 

with 1% hydrogen peroxide in 0.05 M PBS for 15 min, rinsing, and overnight incubation 
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in mouse anti-TH in 0.1% PBST. Sections were then washed twice in 0.05 M PBS, 

followed by a 90-min incubation with secondary antibody (biotinylated donkey anti-

mouse IgG (Millipore, 1:200 in 0.05 M PBS).  After rinsing, sections were incubated for 

90 min with Elite ABC reagent (diluted as above), rinsed, and incubated for 10 min with 

a peroxidase substrate solution (Vector SG; Vector Laboratories) diluted as 

recommended by the vendor. Sections were transferred into 0.05 M PBS to stop the 

chromogen reaction, rinsed briefly in distilled water, mounted onto glass microscope 

slides, dehydrated and coverslipped as above.  

Immunofluorescence 

 

 

 Separate coronal sections (25 µm) containing the BLA were used for combined 

detection of OCT3 and either dopamine D1 receptor (1:250), tyrosine hydroxylase, or 

NeuN. After rinsing in PBS, sections were incubated overnight with anti-OCT3 antibody 

(1:250) and anti-DA D1r antibody (1:250) in 0.1% PBST. Sections were rinsed the next 

day, and incubated 2 h with fluorophore-conjugated secondary antibodies 

(AlexaFluor594-conjugated donkey anti-rabbit and AlexaFluor488-conjugated donkey 

anti-mouse IgG antibodies (1:200; Invitrogen)). Sections were then rinsed briefly in PB, 

mounted onto SuperFrost microscope slides, dried briefly and coverslipped with 

Vectashield antifade mounting medium containing DAPI for visualization of nuclei 

(Vector Laboratories). All immunostaining studies were repeated a minimum of three 

times with similar results.  
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Imaging 

 

 

 Photomicrographs were acquired using a Nikon 80i microscope fitted with a 

Retiga 2000R digital camera (QImaging, Surrey, BC, Canada) linked to a computer 

running NIS Elements-D software (Nikon Instruments, Melville, NY, USA).  Color 

bright field images were captured using a liquid crystal RGB color filter (QImaging 

RGB-HM-S-IR). Distances and cell diameters were estimated using a utility in the NIS 

Elements-D software, which measures the length of a line drawn across the diameter of 

each cell of interest. Care was taken to exclude proximal processes from the diameter 

estimates. Mean cell diameters were calculated by averaging the estimated diameters of 

at least 25 cells within the region of interest. 

Results 

 

 

OCT3 immunostaining in the intercalated cell groups: Comparison with DA D1r 

immunostaining. 

 

 

  Immunohistochemical localization revealed a consistent pattern of OCT3-like 

immunoreactivity in the BLA and intercalated cell groups in the brains of each rat (n = 

4). OCT3-like immunoreactivity was seen as a brown reaction product concentrated in 

perikarya, with diffuse punctate brown reaction product visible at higher magnification 

(Fig. 6.1A,C). As previously reported, this staining pattern was not observed in tissue 

sections incubated in the absence of primary antibody (data not shown). OCT3-like 

immunoreactive (OCT3-ir) perikarya were observed at low density in the BLA and at 

high density in small clusters of cells on the dorsal, medial and lateral borders of the 

BLA, and in one large cluster ventromedial to the BLA (Fig. 6.1C). These clusters 
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corresponded to the areas in which dense D1 receptor immunoreactivity were observed 

(Fig. 6.1B,D), and thus to the locations of the main, paracapsular and anterior intercalated 

cell groups, respectively (Fuxe et al., 2003; Marcellino et al., 2012). In both the BLA and 

intercalated clusters, OCT3-ir perikarya were small, ranging from 6 – 12 µm in diameter. 

OCT3-ir perikarya in the BLA were slightly, but significantly, smaller than those in the 

intercalated clusters (ITC mean diameter (n=50 cells) = 9.85 ± 1.1 µm, range 7.1 – 12.39 

µm; BLA mean diameter (n=30 cells) = 8.84 ± 1.29 µm, range 6.4-11.28 µm; unpaired t-

test, p < 0.001).  

 The distribution of D1 receptor immunoreactivity in the BLA and ITC was similar 

to that of OCT3, with low densities in the BLA, and high densities in the ITC. D1 

receptor immunoreactivity was observed as punctate brown reaction product, and 

occurred at high density in small clusters dorsal, medial and lateral to the BLA, and in 

one large cluster ventromedial to the BLA. D1 receptor immunoreactivity was also 

observed, though at much lower density, on perikarya throughout the BLA (Fig. 6.1B, 

D).  
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Figure 6.1. OCT3 and dopamine D1 receptor are expressed at high density in the main, anterior and 

paracapsular intercalated cell groups of the amygdala. Bright field photomicrographs of sections 

immunostained with antibodies directed against OCT3 (A, C) and dopamine D1 receptor (B, D). Boxes in 

A and B indicate regions shown at higher magnification in C and D, respectively. A: Low power 

photomicrograph showing the basolateral amygdaloid complex at approximately –2.04 mm bregma. 

Arrows indicate dense clusters of small-diameter OCT3-ir perikarya dorsal, lateral and medial to the BLA 

(medial is to the left). A larger dense cluster of OCT3-ir perikarya is visible ventromedial to the BLA (IM).  

B: Low power photomicrograph of the basolateral amygdaloid complex at approximately –2.04 mm 

bregma showing dense D1-like immunoreactivity in clusters dorsal, lateral and ventromedial to the BLA 

(medial is to the left).  C: Higher power photomicrograph showing OCT3-immunoreactive perikarya at low 

density in the BLA, and at high density in the adjacent main intercalated cell group (IM). D: Dense D1 

immunostaining in IM ventromedial to the BLA. Scale bar = 500 µm (A, B); 100 µm (C, D). BLA – 

basolateral amygdala; IM – main intercalated cell group; IA – anterior intercalated cell group; IP – 

paracapsular intercalated cell group.   
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OCT3 and D1 receptor dual immunofluorescence.  

 

 

 Dual-label immunofluorescence confirmed co-distribution of OCT3- and D1-like 

immunoreactivities in the intercalated cell groups. OCT3-ir perikarya and were most 

densely distributed in the intercalated cell groups, with lower density in the BLA (Fig. 

6.2A). In contrast to the immunohistochemical staining, in which OCT3-ir punctae were 

not readily distinguished, immunofluorescence revealed a dense distribution of discrete 

OCT3-ir punctae in the IM (Fig. 6.2B). Dense clusters of OCT3-ir perikarya and punctae 

were also observed in the anterior and paracapsular ITCs (data not shown). OCT3 

immunostaining overlapped with dense D1 receptor-immunoreactive punctae. 

Examination of the spatial relationships of D1- and OCT3-immunoreactive punctae at 

high magnification revealed close apposition of the two in the IM (Fig.6. 2 H, mean 

distance between D1- and OCT3-ir punctae (n=90) = 0.56 ± 0.25 µm, range 0.28 – 1.53 

µm).  
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Figure 6.2. Distribution pattern of OCT3 (red) and dopamine D1 receptor (green) immunostaining. 

Fluorescence photomicrographs of dual-label immunofluorescence localization of D1- and OCT3-

immunoreactivity in the main intercalated cell group. Panels depict sections incubated in the presence (A-

B, D-E, G-H) or absence (C, F, I) of primary antibodies.  Boxes in A, D and G indicate regions shown at 

higher magnification in adjacent panels. OCT3-ir perikarya (A, B) and puncta (B) in the main intercalated 

cell group and in the BLA were not observed in sections incubated in the absence of the primary antibody 

(C). D1-ir puncta (D, E) observed in the main intercalated cell group were not observed in sections 

incubated in the absence of the primary antibody (F, I). OCT3-ir perikarya were observed in close 

proximity to D1-ir puncta in the main intercalated cell group (G-H). Box in H indicates area shown at 

higher magnification in the inset. Non-specific (autofluorescent) signal was detected mainly in the BLA in 

sections incubated in the absence of either primary antibody (C, F) and was observed as yellow signal in 

(I). Scale bar = 100 µm (A, C, D, F, G, I); 20 µm (B, E, H); 4 µm (inset H). BLA – basolateral amygdala; 

IM – main intercalated cell group. 
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OCT3 and tyrosine hydroxylase dual immunolabeling in the amygdala. 

 

 

 Tyrosine hydroxylase-immunoreactive fibers were observed at high density in the 

striatum and amygdalostriatal transition area, at low-to-moderate density in the BLA, and 

at high density in the main, anterior and paracapsular intercalated cell groups (Fig. 6.3, 

6.4). In the main intercalated cell group, TH-ir fibers were most densely distributed in the 

region most proximal to the BLA, and decreased in density ventromedially (Fig. 6.3A). 

OCT3-ir perikarya and puncta were observed at high density in all intercalated cell 

groups, including Imp (Fig. 6.3B), IA (Fig. 6.3C), Ilp (Fig. 6.3D) and IM (Fig.6. 3E). In all 

ITCs, OCT3-ir perikarya occurred in very close proximity to TH-ir fibers. Dual-label 

immunofluorescence revealed a similar pattern of OCT3- and TH-immunoreactivity in 

the amygdala (Fig.6. 4). At high magnification, OCT3-ir punctae were observed in close 

proximity to, but only rarely overlapping with, TH-ir fibers (Fig. 6.4C).   
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Figure 6.3. Dual-label immunohistochemistry for OCT3 and tyrosine hydroxylase in intercalated cell 

groups. Photomicrographs depicting sections immunostained for OCT3 (brown) and TH (black). A: 

Composite photomicrograph depicting dense clusters of OCT3-ir perikarya and D1-ir fibers in the main, 

anterior and paracapsular intercalated cell groups. Boxes in A indicate areas depicted at higher 

magnification in panels  B-E. At high magnification, OCT3-immunoreactivity was observed both 

concentrated in perikarya and as diffuse brown reaction product adjacent to black TH-immunoreactive 

fibers in the medial paracapsular (B), anterior (C), lateral paracapsular (D) and main (E) intercalated cell 

groups. Scale bar = 250 µm (A); 20 µm (B-E). 
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Figure 6.4. Fluorescence photomicrographs of sections depicting OCT3 (red) and TH (green) 

immunoreactivity in the BLA and intercalated cell groups. Boxes in A and B indicate areas depicted at 

higher magnification in B and C, respectively. C: OCT3-ir perikarya and puncta in close proximity to TH-

ir fibers in the main intercalated cell group. Small box in C indicates area shown at higher magnification in 

the inset. Scale bar = 500 µm (A); 100 µm (B); 20 µm (C); 4 µm (inset C). 
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OCT3 and NeuN dual immunolabeling of the main intercalated cell group.  

 

 

 The intercalated cell groups were visible as dense clusters of NeuN-

immunoreactive perikarya on the borders of the BLA. Most NeuN-immunoreactive 

perikarya within the intercalated cell groups also displayed OCT3 immunoreactivity (Fig. 

6.5).  
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Figure 6.5.  Neuronal phenotype of OCT3-ir cells in IM. Fluorescence photomicrographs of sections dual-

labeled with NeuN (red) and OCT3 (green).  Box in (C) indicates region shown at higher magnification in 

(D). A, B: Dense clusters of NeuN-ir nuclei (A) and OCT3-ir perikarya (B) were observed in the main 

intercalated cell group. C, D: Most OCT3-ir perikarya in the IM were also positive for NeuN-

immunoreactivity. A few OCT3-ir, NeuN-immunonegative perikarya were observed outside the IM 

(arrowheads in C). Scale bar = 100 µm (A-C); 50 µm (D). IM – main intercalated cell group.  
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Conclusion 

 

 

 These studies provide anatomical evidence that OCT3, a high-capacity transporter 

for dopamine and other monoamines (Grundemann et al., 1998), may play a prominent 

role in controlling dopaminergic neurotransmission in the intercalated cell masses of the 

amygdala. The dense expression of OCT3, its close proximity to dopamine D1 receptors, 

and its relationship to catecholaminergic terminals, most of which are likely to be 

dopaminergic terminals (Marcellino et al., 2012), suggest that OCT3-mediated clearance 

may be a critical determinant of dopamine volume transmission and of the activation of 

D1 receptors in these areas. The expression of OCT3 in ITC neurons and not on 

catecholaminergic terminals, indicates that this transporter, in contrast to the DAT, does 

not function as a pre-synaptic reuptake mechanism, and suggests that OCT3 may mediate 

dopamine clearance on dopamine target cells in the this area. As OCT3-mediated 

transport is directly inhibited by corticosterone (Grundemann et al., 1998; Horvath et al., 

2003), OCT3 may represent a mechanism by which acute stress enhances dopaminergic 

neurotransmission in the amygdala.  

 The distribution of OCT3 expression described in the present study is consistent 

with our previous studies (Gasser et al., 2009), and the extensive co-distribution with 

areas of dense D1 receptor expression confirms our previous assertion that the dense 

clusters of OCT3-expressing cells surrounding the BLA correspond to the D1 receptor-

rich intercalated cell masses. The sizes of OCT3-expressing cell bodies in all ITC cell 

groups, and their co-expression of the neuronal marker NeuN, indicate that they represent 

the small- to medium-sized GABAergic neurons most abundant in the ITCs (Marowsky 

et al., 2005; Millhouse, 1986).  
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 In addition to OCT3-expressing cell bodies, we observed a dense distribution of 

OCT3-ir punctae in the ITCs that were not localized on cell bodies. The fact that these 

punctae were not observed in tissue incubated in the absence of OCT3 antibody indicates 

that they, like the cell bodies, represent sites of OCT3 expression. While the OCT3-

expressing cell bodies very likely represent neurons, the cellular identity of the diffuse 

OCT3-ir punctae is not as clear. Based on the restricted distribution of dense OCT3 

labeling to the ITC groups, we hypothesize that OCT3-ir punctae in these areas represent 

transporter expressed on ITC GABAergic cell dendrites, which are largely confined 

within the ITCs (). This interpretation is also consistent with the absence of OCT3-ir 

punctae co-localized with TH+ catecholaminergic terminals in the ITCs. However, while 

these observations indicate that OCT3 is not expressed on dopaminergic terminals, they 

do not rule out the possibility that OCT3 is expressed presynaptically on glutamatergic or 

other afferent terminals. A clear determination of the subcellular localization of OCT3 

will require additional studies. 

 Our description of amygdala D1 receptor expression is consistent with previous 

anatomical studies demonstrating dense D1 receptor mRNA and protein expression on 

ITC GABAergic neurons (Fuxe et al., 2003; Maltais et al., 2000; Marcellino et al., 2012; 

Pinto & Sesack, 2008), and low levels of D1 receptor expression on neurons within the 

BLA (Pickel et al., 2006; Pinto & Sesack, 2008), and with functional studies 

demonstrating D1 receptor-mediated actions of dopamine in both BLA and ITC neurons 

(Marowsky et al., 2005; Rosenkranz & Grace, 2002). The dense expression of OCT3 in 

the ITCs suggests that dopamine clearance in these areas is accomplished by the 

combined activity of the presynaptic dopamine transporter (DAT) and OCT3, and that 
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OCT3-mediated transport plays a particularly prominent role in controlling extracellular 

dopamine concentrations in the main, anterior and paracapsular ITCs. The close 

apposition of OCT3-ir puncta in the ITCs to D1 receptors suggests that the transporter, by 

controlling dopamine levels immediately surrounding receptors, may be a key 

determinant of D1 activation in ITC neurons.    

 Previous studies examining the spatial relationships between D1 receptor-

immunoreactive puncta and tyrosine hydroxylase-immunoreactive fibers in the ITC have 

suggested that at least 50% of dopaminergic neurotransmission in these areas occurs via 

extrasynaptic volume transmission (Fuxe et al., 2003; Fuxe et al., 2005; Marcellino et al., 

2012; Marowsky et al., 2005). These studies have demonstrated that, while the ITC 

receive the densest dopamine innervation in the amygdala, the density of TH-

immunoreactive terminals within these cell groups is not uniform. Dopamine terminals 

are concentrated in the rostral ITC and, in the IM, in the dorsolateral portion of the cell 

group, while D1 receptors are expressed at uniformly high levels throughout the IM (Fuxe 

et al., 2003; Marcellino et al., 2012; Pinto & Sesack, 2008). We observed a similar 

polarized distribution of D1 receptors and TH-ir fibers in the IM (Fig. 1, 3). Thus, at areas 

distant from dopaminergic terminals, DAT is expected to play a less prominent role in 

controlling dopamine concentrations surrounding many D1 receptors. In the present 

studies, we observed uniformly dense OCT3 distribution throughout the intercalated 

islands, suggesting that OCT3 plays a prominent role in controlling dopaminergic 

transmission in these areas. Indeed, OCT3-mediated clearance may be the primary 

determinant of dopamine volume transmission in the DAT-poor ventromedial and caudal 

portions of the IM.   
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 The dense expression of a high-capacity monoamine transporter in the ITCs has 

important implications for the dopaminergic regulation of amygdala function. OCT3-

mediated monoamine clearance is acutely and directly inhibited by corticosterone via a 

non-genomic, glucocorticoid receptor-independent mechanism (Grundemann et al., 1998; 

Hill et al., 2011; Horvath et al., 2003; Gorboulev et al., 2005). We and others have 

demonstrated that OCT3-mediated transport is inhibited at concentrations of 

corticosterone within the range induced by acute exposure to stress-related stimuli 

(Gasser et al., 2006; Hill et al., 2011; Shang et al., 2003). Thus, OCT3 may represent a 

stress-sensitive component of the monoamine clearance system in the ITC and other 

areas, with OCT3-mediated clearance restraining volume transmission under basal 

conditions, and corticosterone-induced inhibition of clearance removing that restraining 

influence.  

 The expression of OCT3 on ITC neurons, and its close proximity to D1 receptors 

suggests that OCT3 plays a central role in determining dopamine concentrations 

immediately surrounding these important dopamine targets. Thus, during non-stress (low 

corticosterone) conditions, ongoing OCT3 activity may limit the influence of dopamine 

(and other monoamines) on intercalated neurons, ensuring that only large dopamine-

releasing stimuli would disinhibit BLA and CeA activity. During stress, corticosterone-

induced inhibition of OCT3-mediated clearance would be expected to increase the peak 

concentration, duration and physical spread of released dopamine, facilitating dopamine-

induced disinhibition of amygdala function. Such actions may be an important 

mechanism by which stress regulates the activity and plasticity of neurons in the BLA 

and CeA.   
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CHAPTER VII 

 

 

GENERAL DISCUSSION 

 

 

Discussion  
 

 

Individuals with PTSD have been shown to exhibit alterations in the functioning 

of the HPA axis. Cortisol, a glucocorticoid, is an important component of the stress 

response system, and as such has been a focus of research in understanding the 

underlying mechanisms of PTSD. Studies have demonstrated that individuals with PTSD 

have exhibited decreased concentrations of cortisol (Boscarino, 1996; Yehuda, 2002; 

Yehuda et al., 1993, 1995), enhanced sensitivity to negative feedback inhibition of the 

HPA axis (Yehuda et al., 1993; Yehuda et al., 2002; Stein et al., 1997) and expressed 

increased concentrations and responsiveness of the glucocorticoid receptor (Yehuda et 

al., 1995). Furthermore, individuals that expressed lower cortisol levels in the emergency 

room immediately following a traumatic experience, such as rape or motor vehicle 

accidents, had a greater incidence of developing PTSD over time as compared to 

individuals with higher levels of cortisol that underwent the same trauma and had similar 

trauma history (Resnick et al., 1995; McFarlane et al., 1997). This is interesting because 

it suggests a positive correlation between low cortisol levels following traumatic stress 

and the development of PTSD. Combined with decreased basal cortisol levels, increased 

sensitivity to negative feedback, and low cortisol following stress exposure it is possible 

that individuals with PTSD have low cortisol during the traumatic stress as well. 

Considered together, it is possible that by possessing decreased concentrations of cortisol, 

individuals with PTSD are unable to properly activate cortisol-dependent processes 
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mediated through the glucocorticoid receptor during times of stress and therefore develop 

a variety of PTSD-like behaviors. 

We utilized an animal model in which we could examine individual differences in 

the stress response system and investigate as to whether those difference contributed to 

the development of PTSD-like behaviors. Spraque-Dawley rats were placed within a 

novel environment and allowed to investigate for an hour. Locomotor activity was 

recorded as infrared beam breaks, and summed for each animal across the session. Rats 

with scores in the lowest 33% of locomotor activity were labeled low responders and 

those in the highest 33% were labeled high responders (Kabbaj et al., 2000; Liebsch, 

1997; Jama et al., 2008). Previous research has demonstrated that locomotor activity can 

reflect HPA response to novelty stress (Piazza et al. 1991). Specifically, LRs exhibit 

lower corticosterone responses to stress than HRs. This provided us a model to examine 

whether or not individual differences in the stress response system contributed to 

developing PTSD. 

 We examined the behavioral phenotype of LRs and HRs following locomotor 

sorting and revealed that LRs have an overall higher anxiety profile than do HRs. 

Specifically, we demonstrated that LRs spent significantly less time in the center zone, 

reared less, explored and entered the light chamber of the light-dark apparatus 

significantly less than did HRs, and had a greater latency to enter the light chamber. 

These are all measures of increased levels of anxiety (Katz, Roth, & Carroll, 1980; 

Escorihuela et al., 1999; Crawley and Goodwin, 1980), which were not observed in HRs. 

 The next thing was to investigate the physiological differences between LRs and 

HRs in response to stress. It was revealed that under basal non-stressed conditions, LRs 
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and HRs did not differ from each other in regards to plasma corticosterone or plasma 

ACTH concentrations. In response to restraint stress, both LRs and HRs demonstrated an 

increase in both plasma corticosterone and plasma ACTH. However, LRs displayed 

significantly less corticosterone in response to stress than did HRs, demonstrating a 

difference in the stress response between phenotypes. Plasma ACTH concentrations were 

also less in LRs than HRs, but not significantly different. Either way, LRs responded 

differently than HRs in response to restraint stress by exhibiting significantly lesser 

corticosterone. It is possible that this blunted corticosterone response to stress could 

contribute to the development of PTSD.  

Our prediction of LRs exhibiting enhanced rapid negative feedback was not 

supported. Both LRs and HRs displayed a reduction in ACTH following administration 

of cortisol. These data indicate that at the level of the pituitary the mechanisms for 

negative feedback are functional, but not significantly different between phenotypes. 

Interestingly, there seems to be a difference between LRs and HRs at the level of adrenal 

output. Following administration of cortisol, HRs demonstrated a reduction in plasma 

corticosterone which is in line with a typical negative feedback response. Low 

responders, while exhibiting initially lower levels of corticosterone than high responders, 

displayed no change in corticosterone following administration of cortisol, suggesting a 

lack of adrenal sensitivity to ACTH or that outside physiological systems are modulating 

adrenal output independent of the HPA response. Specifically, the sympatho-adreno-

medullary axis could be exerting influence on the adrenals that results in adrenal output, 

but is specific to LRs or inactive in HRs. During stress the autonomic nervous system can 

stimulate the adrenal medulla through the splanchnic nerve (Jasper & Engeland, 1994) 
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and cause the release of cortisol in addition to norepinephrine. Studies have demonstrated 

that splanchnic nerve innervation can increase adrenal responsivity to ACTH (Ulrich-Lai, 

Arnhold, & Engeland, 2006). Therefore, as a result of this potential change in ACTH 

responsivity LRs secrete corticosterone even under inhibition by cortisol-driven negative 

feedback. However, we detected no differences in adrenal weight between phenotypes 

(see Supplementary Figure 3). Additionally, chronic stress and / or prolonged affective 

disorders may result in dissociation between activation of the HPA axis and the adrenal 

cortex (Ehrhart-Bornstein et al., 1998; Pignatelli et al., 1998).  Therefore, it is possible 

that ACTH may not be an accurate mechanism to determine negative feedback 

sensitivity. 

 Together, these data suggest that LR animals may provide a model in which we 

can begin to tease apart the question of whether blunted HPA responses contribute to 

vulnerability to developing PTSD-like behaviors. Individuals with PTSD display 

enhanced negative feedback (Yehuda et al., 1993; Yehuda et al., 2002; Stein et al., 1997) 

and decreased levels of cortisol (Mason et al., 1986; Yehuda et al., 1995), the human 

equivalent of corticosterone. Decreased corticosterone levels and increased anxiety-like 

behaviors, but not enhanced sensitivity to negative feedback, are characteristics observed 

in the LR animal phenotype, suggesting that the LR/HR model is a valid model to 

investigate stress differences, or more specifically; individual differences in the 

hypothalamic-pituitary-adrenal axis and how they may contribute to the development of 

PTSD-like behaviors.  

Contextual fear conditioning is a behavioral paradigm that we utilized in order to 

investigate whether a blunted stress response had any effect on the consolidation and 
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extinction of fear memory. We predicted that LRs would display enhanced fear, through 

freezing behavior, and maintain a fear response longer than HRs, similar to the lack of 

extinction of fear memory observed in individuals with PTSD. In all trials, LRs and HRs 

displayed significant increases in freezing following acquisition, suggesting that both 

phenotypes learned, and that any differences in freezing behavior over time were the 

result of extinction processes. Our data demonstrated that LRs did not extinguish fear 

memory as rapidly as HRs and were more susceptible to demonstrating enhanced fear 

responses following a delayed fear extinction trial. Furthermore, LRs displayed 

significantly less plasma corticosterone following extinction than did HRs. This is 

important because reports show that emergency room patients who displayed lower 

cortisol following a traumatic experience had a higher incidence of developing PTSD 

than counterparts who had higher levels of cortisol following similar traumas (Resnick et 

al., 1995; McFarlane et al., 1997). Therefore, low levels of corticosterone during a 

traumatic stress could contribute to the development of PTSD. Specifically, lower 

corticosterone levels during stress, or recall of a traumatic experience, could result in an 

inability to properly activate glucocorticoid receptor-driven processes and inhibit the 

monoamine transporter, OCT3.    

Failure to activate the glucocorticoid receptor (GR) could result in a variety of 

memory deficits considering the GR is expressed in a number of brain regions critical for 

different types of memory such as the hippocampus, amygdala, and prefrontal cortex. 

The hippocampus is a limbic structure involved in declarative and spatial memory 

(Eichenbaum et al., 1999; Squire, 1992). The amygdaloid nuclei play important roles in 

emotional memory (LeDoux, 2000; McGaugh & Roozendaal, 2002). The prefrontal 
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cortex is important for short-term working memory and regulation of coping behaviors 

(Baddeley, 2001; Maier & Watkins, 2010). Together, dysregulation of GR, which induces 

important learning processes such as gene transcription (Binder, 2009; Heitzer et al., 

2007), could disrupt multiple types of memory and how they are maintained and 

processed. 

Specifically, corticosterone has been demonstrated to be a potent modulator of 

memory consolidation (McGaugh & Roozendaal, 2002; Lalumiere et al., 2003, van 

Stegeren et al., 2007,2008). Administration of glucocorticoids shortly after fear training 

has an enhancing effect on memory consolidation similar to that observed in response to 

norepinephrine (Pugh et al., 1999; Sandi et al., 1997; Cordero et al., 1998; Roozendaal et 

al., 1999; Roozendaal, 2000). Additionally, administration of a GR antagonist, but not an 

MR antagonist, immediately following a training session for a spatial memory task 

impairs subsequent memory challenges (Oitzl & de Kloet, 1992; Roozendaal et al., 

1996), indicating that any glucocorticoid effects on memory consolidation are due to 

activation of GR and not MR. Conversely, removal of the adrenal gland, effectively 

inhibiting glucocorticoid synthesis, reduces memory performance and retention 

(Roozendaal et al., 1996) as does treatment with the corticosterone synthesis inhibitor 

metyrapone (Roozendaal et al., 1996).  

Glucocorticoids have also been demonstrated to have an effect on extinction 

processes. Systemic administration of the glucocorticoid receptor agonists 

dexamethasone and intra-amygdala infusion of RU28362 prior to extinction training 

resulted in a facilitation of extinction of conditioned fear in a dose-dependent manner 

(Yang et al., 2006). Furthermore, administration of  the corticosteroid inhibitor 
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metyrapone prior to extinction trials results in an inhibition of extinction to context-

dependent fear responses in rats (Yang et al., 2006) and mice (Blundell et al., 2011).  

Importantly, administration of corticosterone immediately following extinction trials in 

mice that received a pre-trial injection of metyrapone demonstrated a rescue effect that 

allowed for extinction (Clay et al., 2011). Therefore, it is possible that blunted 

corticosterone responses to stress could contribute to the development of extinction 

deficits as a result of insufficient activation of critical GR-mediated memory processes. 

Additionally, insufficient corticosterone could result in a lack of available 

norepinephrine, which has also been demonstrated to modulate memory (Lalumiere et al., 

2003, van Stegeren et al., 2007,2008). The enhancing effects of glucocorticoids on 

memory are dependent upon norepinephrine activation within the BLA (Roozendaal et 

al., 2006). Administration of the β-adrenoceptor antagonist propranolol into the BLA 

blocks the corticosterone-induced enhancement of memory (Roozendaal et al., 2006). 

Rats that received a systemic injection of corticosterone immediately following a 3-

minute habituation trial to a novel environment demonstrated enhanced retention 24 

hours later, but not if they had prior habituation to the context, and thus lower novelty-

induced emotional arousal  (Okuda et al., 2004; Roozendaal et al., 2006). This suggests 

that in order for corticosterone to exhibit enhancing effects, a degree of heightened 

emotion is necessary. Furthermore, the enhancing effect of corticosterone was blocked by 

systemic or intra-BLA administration of propranolol, a β-adrenoceptor antagonist. 

Additionally, administration of yohimbine, an α2-adrenoceptor, in the habituated animals 

resulted in enhanced memory (Roozendaal et al., 2006). Therefore, corticosterone by 

itself was not sufficient to enhance memory in the pre-habituated animals, but in 
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combination with yohimbine-driven norepinephrine release memory was enhanced. This 

suggests that a component of the consolidation mechanism underlying fear memory 

extinction involves: A) the noradrenergic system, B) glucocorticoids, and C) the BLA. 

Imbalances, or dysregulation, of either of the two aforementioned neurochemical systems 

can have significant effects on the consolidation of extinction for fear memory. 

 As described previously, OCT3 is a high-capacity monoamine transporter that is 

inhibited by corticosterone and expressed in the brain (Iversen & Salt, 1970; Simmonds 

& Gillis, 1968; Grundemann et al., 1998; Wu et al., 1998, Duan &Wang, 2010; Gasser, 

Lowry & Orchinik, 2006; Gasser et al., 2009; Engel, Zhou & Wang, 2004; Amphoux et 

al., 2006; Vialou et al., 2004). Furthermore, OCT3 has been expressed within the basal 

and lateral regions of the amygdala, areas important in fear and emotional memory 

(LeDoux, 2000; McGaugh & Roozendaal, 2002).Under non-stressed conditions 

corticosterone is not available in significant concentrations to inhibit OCT3, thereby 

allowing continuous clearance of norepinephrine from the extracellular space. Under 

stress conditions, corticosterone concentrations would rise, thus inhibiting norepinephrine 

clearance and allowing for a rapid elevation of norepinephrine. This could result in the 

aforementioned enhancing effects of norepinephrine on memory. However, in individuals 

with lower corticosterone levels, OCT3 would not be sufficiently inhibited, and 

norepinephrine clearance would continue. This could result in a lack of norepinephrine-

driven memory enhancement as well as an inability for norepinephrine-dependent 

glucocorticoid enhancement of memory. Together, low corticosterone levels could 

contribute to a vulnerability to development of PTSD by preventing proper activation of 
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GR-dependent memory processes and inhibition of OCT3-mediated clearance of 

norepinephrine from the extracellular space.  

 Behavioral differences following exposure to stress manipulations provided some 

insight into how individual differences in HPA reactivity may be associated with 

susceptibility to developing PTSD-like other behaviors. Single prolonged stress, an 

animal model for traumatic stress thought to induce PTSD-like responses, did not have as 

strong an effect on startle behavior as expected. Following exposure to SPS, LRs 

demonstrated an increase in mean startle amplitude while HRs did not. However, this 

effect was not significant, but suggestive of a difference between groups. A larger sample 

size might allow for the determination of significance. Low responders, but not high 

responders, demonstrated higher initial startle amplitude in trials 1-5 following exposure 

to SPS than did non-stressed controls. Therefore, it is possible that LRs do have 

significant elevations in startle behavior, but are quickly habituated to the startle 

chamber. It would be interesting to see if the elevated startle behavior was maintained in 

LRs that were not previously exposed to the startle chamber in a baseline pre-SPS test. 

 The mechanisms underlying the differences in corticosterone concentrations 

remain unknown. Additionally, the mechanisms underlying the differences in extinction 

of fear memory remain unexplored. However, future research could examine 

noradrenergic differences between LRs and HRs. Individuals with PTSD display elevated 

twenty-four-hour norepinephrine urine excretion (Kosten et al., 1987; Yehuda et al., 

1992). Furthermore, treatment with yohimbine, an α2-adrenergic receptor antagonist, has 

been shown to induce panic attacks in individuals with PTSD (Southwick et al., 1997). 

These studies are highly suggestive of there being differences between individuals with 
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and without PTSD in the noradrenergic system, therefore it would be interesting to see if 

the LR / HR model could account for these differences. Imbalances in norepinephrine 

could affect everything from initial activation of the fight or flight response to the 

processing and encoding of fear in the amygdala alongside of glucococorticoids. In fact, 

the glucocorticoid and norepinephrine interaction in fear and emotional learning provides 

an entirely separate field of research. 

 Furthermore, inhibition of OCT3 has been suggested to play a role in the 

potentiation of addictive behavior (Graf et al. unpublished). This is important because it 

provides a mechanism by which glucocorticoids can not only modulate learning and 

memory, but also associated behaviors. Of particular note is that glucocorticoid inhibition 

of OCT3 has been suggested to play a role in the potentiation of drug seeking behaviors, 

seeing that individuals with PTSD have a high incidence of comorbidity with drug 

addiction (Logrip et al., 2012). Therefore, dysregulation in stress-induced corticosterone 

inhibition of OCT3 could alter norepinephrine concentrations in such a way as to 

exacerbate certain types of behaviors.  

 Glucocorticoids also have been demonstrated to have rapid non-genomic effects 

regarding HPA negative feedback, which could also partially account for the differences 

in LR and HR behaviors. Studies demonstrate that glucocorticoids bind membrane 

receptors on PVN neurons expressing CRF, and activate intracellular signaling cascades 

that cause the synthesis of endocannabinoids (Herman et al., 2012). Endocannabinoids 

are then able to inhibit glutamate release, which would reduce the overall activity of PVN 

neurons (Di et al., 2003). Inhibition of endocannabinoid receptors inhibits negative 

feedback inhibition of ACTH, and subsequent glucocorticoid release (Evanson et al., 
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2010). Additionally, administration of a membrane-impermeant glucocorticoid conjugate 

is equally as effective as an unconjugated steroid in inhibiting glucocorticoid release 

(Evanson et al., 2010), suggesting that the mechanisms underlying fast feedback 

inhibition are at, or near, the level of the cellular membrane. However, the exact 

mechanism remains unknown and could be the result of a number of different 

mechanisms. 

 In summary, examination of stress reactivity in the context of this dissertation 

highlights a small component of potential mechanisms by which an individual is more or 

less susceptible to developing PTSD. It would be interesting to examine whether or not 

LRs and HRs differentially express norepinephrine, and how that would alter fear 

processing. Furthermore, it would be interesting to investigate the effects of 

corticosterone-induced inhibition of OCT3 on behavior and physiology. Lastly, 

understanding what role, if any, endocannabinoids may play in determining potential risk 

or maintenance of PTSD-like behaviors is critical. 

The data indicate that LR rats exhibit similarities to individuals with PTSD. For 

example, LRs have increased baseline anxiety and fear-like behaviors. Emergency room 

patients who displayed lower cortisol concentrations following trauma were more likely 

to develop PTSD (Resnick et al., 1995; McFarlane et al., 1997), suggesting that low 

cortisol levels contributed to a vulnerability to PTSD. Combined with decreased basal 

cortisol levels and enhanced sensitivity to negative feedback, it is possible that 

individuals with PTSD have lower cortisol levels during traumatic stress in addition to 

before and after. This would be similar to what is observed in LRs, who possess a blunted 

corticosterone response to stress. 
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This blunted stress response may underlie the deficits in extinction of fear 

memory that LRs tend exhibit. It is possible that reduced corticosterone is preventing 

proper memory consolidation by insufficiently activating GR-mediated gene transcription 

in critical memory areas and failing to inhibit OCT3-mediated clearance of 

norepinephrine. Furthermore, when exposed to an animal model of PTSD, animals that 

demonstrated a pre-existing blunted stress response seemed to be slightly more 

susceptible to exhibiting exaggerated startle. Together, the LR/HR model is a useful tool 

to investigate how individual differences in the stress response contribute to vulnerability 

or resilience to the development of PTSD.  
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Supplemental Figure S1. Behavior of LR and HR rats in the light/dark box test. Rats were placed in the 

light chamber and allowed to explore for 5-minutes. Behavior was recorded for exploration (A) and time in 

the light chamber minus the latency to enter the dark compartment (B). All values are mean ± SEM 

(n=27:LR, 38:HR).  
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Supplemental Figure S2.Weight mean and standard error of both LR and HR rats at the time of locomotor 

sorting. All values are mean ± SEM (n= 11LR, 28HR). 
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Supplemental Figure S3.Weight mean and standard error of left and right adrenals of both LR and HR rats. 

All values are mean ± SEM (n= 11LR, 12HR). 
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