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Mixed quantum/classical theory of rotationally and vibrationally inelastic
scattering in space-fixed and body-fixed reference frames

Alexander Semenov and Dmitri Babikova)

Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee,
Wisconsin 53201-1881, USA

(Received 31 July 2013; accepted 15 October 2013; published online 6 November 2013)

We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scat-
tering process in the diatomic molecule + atom system. Two versions of theory are presented, first
in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and
the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-
valued and dense. Such calculations may be computationally demanding for heavier molecules and/or
higher temperatures, when the number of accessible channels becomes large. In contrast, the second
version of theory requires some tedious derivations and the final equations of motion are rather
complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-
valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from
the computational point of view, while the space-fixed formulation can serve as a test of the body-
fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model
system to ensure that all equations, matrixes, and computer codes in both formulations are correct.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827256]

I. INTRODUCTION

Theoretical predictions of inelastic scattering cross sec-
tions for ro-vibrationally excited molecules become increas-
ingly important for quantitative interpretation of molecular
spectra observed in a wide variety of astrophysical objects,
such as pre-stellar cores and proto-stellar environments, in-
terstellar media, and surcumstellar envelopes.1–11 The range
of relevant temperatures is very broad, from 5 K up to
2500 K, and the role of scattering partner (quencher) is played
by the interstellar background gasses, mostly He and H2, but
also by H2O in cometary comas. Usually, calculations of in-
elastic cross sections12 are carried out using quantum scat-
tering codes such as MOLSCAT.13 These calculations are
not trivial,14–20 but recently a significant progress has been
achieved in the rotational quenching of H2O by H2.21–25 An-
other outstanding example of such calculations is rotational
quenching of methyl formate, HCOOCH3 (astrophysically
relevant small organic molecule, SOM) by He with collision
energy E < 30 cm−1.26

One should admit, however, that quantum mechanics,
indispensable (and affordable) at low temperatures and for
the low-mass collision partners, becomes prohibitively de-
manding at higher temperatures and/or for larger molecules
and quenchers. Computational time increases with kinetic en-
ergy of collision (more partial waves should be included) and
with the number of internal quantum levels (e.g., j ≥ 50 be-
comes prohibitive). Today it is possible to do 6D diatom-
diatom inelastic scattering calculations using exact quantum

a)Author to whom all correspondence should be addressed. Electronic mail:
dmitri.babikov@mu.edu

mechanics, in a broad range of collision energies and with-
out resorting to any decoupling approximation. Beyond that
the calculations become prohibitive. For example, quantum
inelastic scattering calculations of H2O + H2O and their
deuterated forms are not yet computationally affordable, same
as quenching calculations for several important SOMs (e.g.,
methanol, acetaldehyde, dimethyl ether) in the temperature
range of interest.

It is also a question whether the exact full-quantum
framework is really needed in those cases. Can we switch from
full-quantum mechanics to a simpler and more affordable
theory in the temperature range where this theory becomes
accurate? And what theory is suitable for this purpose? If
the answer to the first question is positive and the answer
to the second question is found, many of the astrophysi-
cally relevant inelastic scattering calculations could become
possible.

It is probably true to say that at T > 10 K the translational
motion (scattering) can be described classically for most colli-
sion partners except the lightest, such as H + H2. An attractive
method for dynamics emerges if the classical trajectory treat-
ment of scattering is interfaced with quantum treatment of in-
ternal (rotational and/or vibrational) states in a self-consistent
way, which allows energy exchange between collisional and
internal degrees of freedom, but keeps total energy conserved.
The idea of such mixed quantum/classical approach is not en-
tirely new, but it has never been fully developed to the level
of a predictive computational tool.

Foundations of the quantum/classical theory were laid
by Gert Billing in 1980s and 1990s and published in sev-
eral journal articles,27–29 one large paper30 and one book.31

He also did calculations for a number of systems to sup-
port his theory. In recent years we tried to revive this

0021-9606/2013/139(17)/174108/15/$30.00 © 2013 AIP Publishing LLC139, 174108-1
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quantum/classical approach, and took a closer look at the
ranges of its validity. Sometimes it is argued that two De-
los criteria must be satisfied:32 (1) the de Broglie wavelength
should be very small, (�/a0)1/2 � 1, and (2) the translation
energy of reduced mass should be much larger than energy
of transition Et � |�εif|. With respect to the second crite-
rion, a distinction should be made between vibrationally and
rotationally inelastic transitions. The vibrational quanta are
particularly large and, formally, it looks like this property
limits significantly the range of applicability of the mixed
quantum/classical approach, to high-energy collisions only.
Recently, we carried out the mixed quantum/classical cal-
culations of vibrational quenching of CO(v = 1) by He im-
pact in a broad range of collision energies using the method
where only vibrations of CO are treated quantum mechan-
ically, while rotation of CO and scattering of He are both
treated classically.33, 34 Excellent agreement with full quan-
tum calculations has been obtained at collision energies down
to 100 cm−1, despite the fact that vibrational quantum of CO
is rather large, 2140 cm−1. Similar mixed quantum/classical
method was also very useful for description of collisional en-
ergy transfer in the recombination reaction that forms ozone,
O3.35–38 Finally, our recent calculations of rotationally inelas-
tic transitions in N2 + Na39 show that for excitation cross
sections the mixed quantum/classical approach becomes ac-
curate at energies roughly equal to 1

4 of rotational quantum
above the channel threshold, while the quenching cross sec-
tions are described accurately down to very low energies (few
wavenumbers, consistent with first Delos criterion, rather than
second). This is very encouraging and, probably, means that
the mixed quantum/classical approach for ro-vibrational tran-
sitions remains accurate at energies much smaller than those
indicated by the second Delos criterion.

In this paper we focus on the mixed quantum/classical
treatment of purely rotational quenching, where the vibra-
tional motion is not important, rotational motion is treated
quantum mechanically, and only the scattering is treated clas-
sically. It appears that such theory is very easy to formulate in
the space-fixed (SF) reference frame, but the corresponding
state-to-state transition matrix may be hard-to-handle numer-
ically. Much simpler transition matrix is obtained in the body-
fixed (BF) reference frame, but the underlying derivations are
notably difficult and the resultant equations of motion are
rather complicated. Gert Billing published some of the final
equations31 but not all of them, and did not provide enough
details about their derivation. So, one purpose of this paper it
to present a complete and detailed mixed quantum/classical
theory (MQCT) of rotationally inelastic scattering in the BF
reference frame. The second goal is to present an equivalent
theory in the SF reference frame, which Billing did not do,
and compare numerical results of two theories for a model
system in order to ensure that final equations of both theo-
ries are correct. Finally, it appears that Billing carried out his
MQCT calculations only within framework of the coupled-
states (CS) approximation, where transitions between differ-
ent m-states, within the same rotational energy level j, are
neglected.31 In this paper, we go well beyond this assump-
tion by formulating and numerically testing the fully coupled
version of MQCT.

II. THEORETICAL FRAMEWORK

Here we present MQCT method for treatment of inelastic
diatomic molecule + atom scattering:

AB∗+M → AB + M,

where the rotational and vibrational (internal) motions of the
molecule are treated quantum mechanically, while the trans-
lational motion of both particles (scattering) is treated classi-
cally. So, the molecule is AB and the quencher atom is M.

A. The Ehrenfest approach in general case

Consider a system characterized by a set of variables
treated classically (some of coordinates and their conjugate
momenta) and another set of variables described by quantum
mechanics (the remaining coordinates). In this situation wave
function of the system depends explicitly on classical vari-
ables. This dependence can be written as �(q; Q, P), where
q denotes all quantum variables, while (Q, P) denotes a set
of classical generalized coordinates and their conjugate mo-
menta. Our goal is to derive equations for evolution of such
quantum/classical system.

Quantum part of the Hamiltonian operator Ĥq(q; Q, P)
and its classical part Hc(Q, P) are used to set up the full
Hamiltonian for evolution of the classical sub-system, accord-
ing to the Ehrenfest theorem:40

H (Q, P) = Hc(Q, P)+〈�(q; Q, P)|Ĥq(q; Q, P)|�(q; Q, P)〉.
(1)

The Hamilton’s equations of motion are then obtained as

Q̇ = ∂H (Q, P)

∂P
, Ṗ = −∂H (Q, P)

∂Q
. (2)

Substitution of (2) into (1) and differentiation using the chain-
rule give

Q̇ = ∂Hc(Q, P)

∂P
+ 〈�(q; Q, P)| ∂Ĥq(q; Q, P)

∂P
|�(q; Q, P)〉

+2Re〈�(q; Q, P)|Ĥq(q; Q, P)|∂�(q; Q, P)

∂P
〉, (3a)

Ṗ = −∂Hc(Q, P)

∂Q
− 〈�(q; Q, P)| ∂Ĥq(q; Q, P)

∂Q
|�(q; Q, P)〉

−2Re〈�(q; Q, P)|Ĥq(q; Q, P)|∂�(q; Q, P)

∂Q
〉. (3b)

For evolution of quantum part of the system we should solve
the time-dependent Schrodinger equation (TDSE):

Ĥq(q; Q, P)�(q; Q, P) = i¯
∂�(q; Q, P)

∂t
. (4)

The system of Eqs. (3) and (4) completely describes behavior
and time evolution of any quantum-classical system.

It is important to note several points. The wave function
evolves (depends on time) but we also have to differentiate it
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FIG. 1. Space-fixed (SF) reference frame. Cartesian coordinates x, y, and z
are introduced for convenience.

with respect to classical variables, since it depends on them
too. These classical coordinates also evolve. It is just a formal
mathematical rule which has very important physical conse-
quence: without the last term in Eqs. (3a) and (3b) we will
not satisfy the energy conservation law. In what follows we
will see that in the SF reference frame only the second term
in Eqs. (3a) and (3b) is important, while in the BF reference
frame only the third term matters.

B. MQCT in the SF reference frame

Figure 1 is used to define coordinates of the system. The
quantum Hamiltonian is

Ĥq = Ĥvib + ĵ2

2μABr2
+ V (R,�,�, r, θ, ϕ), (5)

where μAB is the reduced mass of the molecule,
Q = QM − QAB = (R, �, �) describes the relative po-
sition of quencher and center of mass of the diatomic
molecule, angles (θ , ϕ) describe molecular orientation, and
r is the interatomic distance in the molecule. The vibra-
tional Hamiltonian contains potential of the diatomic only:
Ĥvib = T̂vib + VAB(r), while the potential V in Eq. (5) has
everything but this term:

V (R,�,�, r, θ, ϕ) = VABM(R,�,�, r, θ, ϕ) − VAB(r).
(6)

The PES of the entire system VABM does not have to be sepa-
rable.

For convenience we will switch to the radial wave func-
tion ψ defined as � = ψ(r, θ , ϕ)/r, with corresponding vibra-
tional kinetic energy operator:

T̂vib = − ¯2

2μAB

∂2

∂r2
. (7)

For solution of TDSE we will use expansion over the basis
set of ro-vibrational eigenstates with time-dependent coeffi-
cients:

ψ(r, θ, ϕ, t) =
∑

anjm(t)φ
nj

(r)Yjm(θ, ϕ) exp{−iEnj t/¯}.
(8)

To simplify notations we will leave out the time dependence:
anjm = anjm(t). Substituting Eqs. (5)–(8) into TDSE (4) and
projecting out eigenstates in a standard way, we obtain the

system of coupled equations:

i¯
∂anjm

∂t

=
∑
n′j ′m′

an′j ′m′ exp{i(Enj − En′j ′)t/¯}Mn′j ′m′
njm (R,�,�),

(9)

where

M
n′j ′m′
njm (R,�,�)

= 〈φn′j ′(r)Yj ′m′ (θ, ϕ)|V (R,�,�, r, θ, ϕ)|φnj (r)Yjm (θ, ϕ)〉

= Aj ′m′jm

2π∫
0

ei(m−m′)ϕ

π∫
0

Pj ′m′(cos θ )Pjm(cos θ )

×
∞∫

0

φn′j ′(r)φnj (r)V (R,�,�, r, θ, ϕ)dr sin θdθdϕ. (10)

Here

Aj ′m′jm = 1

4π

√
(2j + 1)(2j ′ + 1)(j − m)!(j ′ − m′)!

(j + m)!(j ′ + m′)!

is a constant factor that comes from normalization coeffi-
cients. The Jacobian with respect to r is just dr. Notice that
M

n′j ′m′
njm is a function of variables (R, �, �). Summation in

Eq. (10) goes over all quantum states, including the diago-
nal element njm. In general the matrix elements of M

n′j ′m′
njm

are complex-valued and non-zero for m �= m′, because wave
functions depend on ϕ.

So, the quantum coordinates here are q = (r, θ , ϕ), while
classical coordinates are Q = (R, �, �). The wave function
�(q) depends on quantum coordinates only, which is the sim-
plest case, no explicit �(q; Q, P) dependence. The classi-
cal equations of motion can be derived either in the refer-
ence frame associated with center-of-mass of the entire ABM
system using spherical polar coordinates, or in the reference
frame where AB is initially at rest using Cartesian coordi-
nates. In the first case, according to Eq. (1):

H = P 2
R

2μ
+ P 2

�

2μR2
+ P 2

�

2μR2 sin2 �
+ H0 + Ṽ (R,�,�),

(11)
where μ is the reduced mass of AB + M, and we introduced

H0 = 〈ψ(r, θ, ϕ)|T̂q + VAB(r)|ψ(r, θ, ϕ)〉
=

∑
nj

∑
m

|anjm|2Enj (12)

and

Ṽ (R,�,�) = 〈ψ(r, θ, ϕ) |V (R,�,�, r, θ, ϕ)| ψ(r, θ, ϕ)〉
=

∑
n′j ′m′

∑
njm

a∗
n′j ′m′anjm exp{i(En′j ′ − Enj )t/¯}

×M
n′j ′m′
njm (R,�,�). (13)

This average potential is a real number (for detailed prove see
Appendix C), which means that all forces produced by partial
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derivatives with respect to classical variables (R, �, �) are
also real. The equations of motion, from Eq. (3), are

Ṙ = PR

μ
, (14a)

�̇ = P�

μR2
, (14b)

�̇ = P�

μR2 sin2 �
, (14c)

ṖR = −∂Ṽ (R,�,�)

∂R
+ P 2

�

μR3
+ P 2

�

μR3 sin2 �
, (14d)

Ṗ� = −∂Ṽ (R,�,�)

∂�
+ P 2

� cos �

μR2 sin3 �
, (14e)

Ṗ� = −∂Ṽ (R,�,�)

∂�
. (14f)

Alternatively, using six Cartesian coordinates, the Hamilto-
nian is

H = P 2
XM

2mM
+ P 2

YM

2mM
+ P 2

ZM

2mM
+ P 2

XAB

2mAB
+ P 2

YAB

2mAB
+ P 2

ZAB

2mAB

+Ṽ (XM − XAB, YM − YAB, ZM − ZAB). (15)

The equations of motion are simply:

Q̇i = Pi

mi

, Ṗi = − ∂Ṽ

∂Qi

. (16)

C. MQCT in the BF reference frame

The body-fixed frame is an inertial reference frame. Its
origin is placed into the center-of-mass of the entire ABM sys-
tem. The same classical variables Q = (R, �, �) are used,41

but the quantum degrees of freedom are described by Jacobi
coordinates q = (r, γ , ϕ′), as shown in Fig. 2. The potential
does not depend on classical angles and angle ϕ′ due to sym-
metry, so V = V (R, r, γ ). In these new coordinates the basis
function Yjm′ (γ , ϕ′) can be re-expressed through the SF basis

γ
ϕ′

r

COM

),(R,Q

z

x

y
AB

M

FIG. 2. Body-fixed (BF) reference frame. Origin of Cartesian coordinates is
in the center of mass (COM) of the entire AB + M system.

functions Yjm(θ , ϕ) and the Wigner rotation functions42, 43 (see
Appendix A):

Yjm′(γ, ϕ′) =
∑
m

D
j

mm′(�,�, 0)Yjm(θ, ϕ). (17)

Note that in this section, and in Appendix A, we use unprimed
index m to label spherical harmonics of angle ϕ in the SF
reference frame, while we use primed index m′ (and later m′′)
to label spherical harmonics of angle ϕ′ in the BF reference
frame. (In contrast, indexes j and n are the same in both SF
and BF reference frames and we will use j, j′, and j′′ below as
needed, without association with SF or BF.)

The wave function ψ(r, γ , ϕ′) is, again, expanded in a
basis set:

ψ(r, γ, ϕ′, t)=
∑
n j m′

anjm′ (t)φnj (r)Yjm′(γ, ϕ′) exp{−iEnj t/¯}.

(18)
It is important to note that in the BF the quantum angles (γ ,
ϕ′) depend on classical variables (�, �) that change over time
as collision progresses, and now the wave function depends
on classical variables explicitly: ψ = ψ(r, γ , ϕ′; �, �). To be
more specific, this dependence is through spherical harmonics
Yjm′ (γ , ϕ′; �, �) that, in turn, depend on D

j

mm′(�,�, 0). The
angles (�, �) depend on time, so, the time derivative in the
TDSE should be computed as

∂ψ

∂t
=

∑
n j m′

exp{−iEnj t/¯}φnj (r)

×
(

∂anjm′

∂t
Yjm′(γ, ϕ′) − anjm′

iEnj

¯
Yjm′ (γ, ϕ′)

+ anjm′
∑
m

∂D
j

mm′(�,�, 0)

∂t
Yjm(θ, ϕ)

)
. (19)

Analytic expression for time derivative of the Wigner function
is derived in Appendix B:

∂D
j

mm′(�,�, 0)

∂t

= ∂D
j

mm′

∂�
�̇ + ∂D

j

mm′

∂�
�̇

= 1

2
[
√

j (j + 1) − m′(m′ − 1)Dj

mm′−1(�,�, 0)

−
√

j (j + 1) − m′(m′ + 1)Dj

mm′+1(�,�, 0)]�̇

+ sin �
1

2
[
√

j (j + 1) − m′(m′ − 1)Dj

mm′−1(�,�, 0)

+
√

j (j + 1) − m′(m′ + 1)Dj

mm′+1(�,�, 0)]�̇

−im′ cos �D
j

mm′(�,�, 0)�̇. (20)

Using (20) in (19), substituting (19) into the TDSE and pro-
jecting out eigenstates, we obtain

i¯
∂anjm′

∂t
=

∑
n′j ′

an′j ′m′ exp{i(Enj − En′j ′ )t/¯}Mn′j ′
nj (R)

− i¯
∑
m′′

anjm′′Wm′′
m′ . (21)
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Here we introduced for every m′ the state-to-state transition
matrix:

M
n′j ′
n j (R) = Aj ′m′j m′

×〈φnj (r)Pjm′(cos γ )|V (R, r, γ )|φn′j ′ (r)Pj ′m′(cos γ )〉 (22)

and for every j the state-to-state matrix:

Wm′′
m′ = 1

2
[
√

j (j + 1) − m′′(m′′ − 1)δm′,m′′−1

−
√

j (j + 1) − m′′(m′′ + 1)δm′,m′′+1]�̇

+ i

(
sin �

1

2
[
√

j (j + 1) − m′′(m′′ − 1)δm′,m′′−1

+
√

j (j + 1) − m′′(m′′ + 1)δm′,m′′+1]

−m′′ cos �δm′,m′′

)
�̇. (23)

The structure of coupled equations (21) is such that the matrix
M

n′j ′
nj (R) describes only transitions from (nj) to (n′j′), within

the same value of m′. It is computed for every m′, separately,
because its elements depend on m′ through Legendre polyno-
mials and the constant factor in Eq. (22). Each such matrix
is symmetric, M

n′j ′
nj (R) = M

nj

n′j ′(R), and its elements are real
(see Appendix C). Each element is a function of R only. This
matrix does not depend on time; it is computed once.

In contrast, the matrix Wm′′
m′ is not a constant matrix, due

to time evolution of classical entities �(t), �̇(t), and �̇(t).
It describes transitions between m′ and m′′ = m′ ± 1, within
the same energy level (n j). This matrix is computed for ev-
ery j, separately, because its elements depend on j. In Ap-
pendix C we also show that this matrix is anti-Hermitian:
(Wm′′

m′ )∗ = −Wm′
m′′ . The last imaginary term in Wm′′

m′ is diago-
nal. It corresponds to the non-intermultiplet transition. Simply
speaking, it is responsible for the change of wave function’s
phase, im�, during rotation by angle �. The coupled-states
(CS) approximation is easily formulated by setting Wm′′

m′ = 0.
For future reference it is convenient to introduce two sim-

pler real-valued matrixes:

Um′′
m′ = 1

2
[
√

j (j + 1) − m′′(m′′ − 1)δm′,m′′−1

−
√

j (j + 1) − m′′(m′′ + 1)δm′,m′′+1] (24a)

and

V m′′
m′ = 1

2
[
√

j (j + 1) − m′′(m′′ − 1)δm′,m′′−1

+
√

j (j + 1) − m′′(m′′ + 1)δm′,m′′+1], (24b)

so that we can express

Wm′′
m′ = Um′′

m′ �̇ + i
(
sin �V m′′

m′ − m′′ cos �δm′,m′′
)
�̇. (25)

Matrixes Um′′
m′ and V m′′

m′ are time-independent and should be
computed only once.

As for classical degrees of freedom, the equations of mo-
tion for Ṙ, �̇, �̇, and ṖR are exactly the same as in the SF
reference frame, Eqs. (14a)–(14d), with one difference that in

the BF the average potential Ṽ depends on R only:

Ṽ (R) = 〈ψ(r, γ, ϕ′) |V (R, r, γ )| ψ(r, γ, ϕ′)〉. (26)

However, equations for Ṗ� and Ṗ� are more complicated in
the BF reference frame, because they use the last term in
Eqs. (3a) and (3b). Namely, instead of Eqs. (16e) and 16(f)
in the SF, we have in the BF:

Ṗ� = −2Re〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉

+ P 2
� cos �

μR2 sin3 �
, (27a)

Ṗ� = −2Re〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉. (27b)

Analytic expressions for these matrix elements are derived in
Appendix B. They can be conveniently expressed through the
commutator matrixes [M, U] and [M, V]. The final expres-
sions are

Ṗ� =
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp{i(En′′j ′′ − En′j ′)t/¯}

× [M, U]n
′′j ′′m′′

n′j ′m′ + P 2
� cos �

μR2 sin3 �
(28a)

and

Ṗ� = −i
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp{i(En′′j ′′ − En′j ′ )/¯}

× sin �[M, V]n
′′j ′′m′′

n′j ′m′ . (28b)

These formulas look rather complicated but, in fact, each
commutator is a time-independent matrix computed once
(since M, U, and V are all time independent). In the case
of CS-approximation these equations reduce to much simpler
formula:

Ṗ� = P 2
� cos �

μR2 sin3 �
, (29a)

Ṗ� = 0. (29b)

Before finalizing this section we want to stress again the
difference between SF and BF formulations. In the SF refer-
ence frame the third term of Eqs. (3a) and (3b) is zero, and
only the second term makes contribution to the equations of
motion. This term involves gradients of potential. In contrast,
in the BF reference frame the second term of Eqs. (3a) and
(3b) is zero, and only the third term makes contribution, which
has no gradients of potential. Instead, it involves derivatives of
wave functions. Indeed, in the BF reference frame the poten-
tial does not depend on (classical) angles � and �, but the
basis functions do!

III. NUMERICAL RESULTS

Without the purpose of computing converged quenching
cross sections for any real system, but in order to test the cor-
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rectness of our theory (in particular, the equivalence of SF and
BF formulations) we conducted some numerical calculations
using the model PES of the rigid rotor:

V (R, γ ) = D((exp{−(R − Re)/a} − 1)2 − 1)
(

1 + cos γ

2

)
.

(30)

The Morse parameters were as follows: D = 50 cm−1, Re

= 5 a0, and a = √
2D/μ /ω, where ω = D. The values

of reduced mass and equilibrium inter-nuclear distance re

= 2.79 a0 in the molecule correspond to He + SO system.44

Equations (14a)–(14e) and (28a) and (28b) are propagated
using 4th-order Runge-Kutta method. Energies of rotational
levels were computed analytically, Ej = j(j + 1)B, where
B = 1/(2μSOr2

e ). In order to compute analytic gradients of
this potential with respect to � and � for equations of motion
in the SF reference frame we used:

cos γ = cos θ cos � + cos ϕ sin θ cos � sin �

+ sin ϕ sin θ sin � sin �. (31)

This expression is obtained from the scalar product of two
unit vectors: nq(θ , ϕ) and nQ(�, �), with γ being the angle
between them. The minimal rotational basis set of j = 0, 1
and m = 0, ±1 was used (four states). In the following two
tests we took the rotationally excited state j = 1 and com-
puted probability of its stabilization into j = 0 in several dif-
ferent ways. In each case the impact parameter was b = 3 a0

and the collision energy was EQ = 300 cm−1. The initial rela-
tive orientation (and the trajectory of collision) was physically
equivalent in each calculation, but it was intentionally made
different mathematically, in order to check the equations of
motion, as explained below.

A. Testing BF equations

Namely, in the BF reference frame we launched three dif-
ferent trajectories. For one of them the vector of initial veloc-
ity was placed in the � = 0 plane. This situation corresponds
to Ṗ� = 0 and �̇ = 0. Such trajectory stays in the polar plane,
� = const. In practice, the equation of motion (28b) for Ṗ�

can be ignored. All we have to do is to propagate Eq. (28a) for
Ṗ� and Eq. (14b) for �̇, since the value of � changes along
such trajectory.

For the second trajectory the vector of initial velocity was
placed in the � = π /2 plane. This situation corresponds to
Ṗ� = 0 and �̇ = 0. Such trajectory stays in the equatorial
plane, � = const. Now the equation of motion (28a) for Ṗ�

can be ignored. All we have to do is to propagate Eq. (28b) for
Ṗ� and Eq. (14c) for �̇, since the value of � changes along
such trajectory.

For the third (most general) trajectory the vector of initial
velocity was placed arbitrarily. The trajectory is still planar,
but both angles � and � evolve and we have to propagate

both Eqs. (28a) and (28b) for Ṗ� and Ṗ�, and both Eqs. (14b)
and (14c) for �̇ and �̇.

In all these cases the initial state was j = 1, m′ = 0
and we looked at the probability of its quenching into
j = 0, m′ = 0.

B. Testing BF vs. SF equations

In the SF reference frame we launched two more trajec-
tories. One was launched from the point on z-axis towards the
j = 1, m = 0 state (with some arbitrary value of �). Such tra-
jectory stays in the � = const plane. The second trajectory
was launched from the point on the x-axis, towards the su-
perposition state (m+ − m−)/

√
2 of j = 1 (with an arbitrarily

directed velocity vector). In these two cases we looked at the
probability of quenching into j = 0, m = 0.

Note that in all these (five) trajectories the relative ori-
entation of the velocity vector and the wave function of the
system at the initial moment of time were physically equiv-
alent. We propagated all five and found that the quenching
probability at the end of trajectory, as well as population of
the ground state j = 0 during the course of trajectory, were all
identical (within small numerical errors). Population of the
(final) ground state, as a function of time, is shown in Fig. 3.
All five curves coincide, which means that all five trajectories
are identical.

One practical result of these tests is that in the BF refer-
ence frame we do not really need the classical equations of
motion for both � and �. The trajectory is planar (exception
is discussed below), so that without the loss of generality we
can restrict our calculations to � = 0 plane, where �̇ = 0
and Ṗ� = 0. In most situations we only have to propagate
Eqs. (14b) and (28a) for �̇ and Ṗ�.

Still, the value of Eqs. (14c) and (28b) for �̇ and Ṗ� in
the BF reference frame is clear. First of all, they allow test-
ing the theory and the computer code. Second, they become
important if the initial state of the system is a superposition
of rotational eigenstates (see below) that has no cylindrical

t (103a.u.)

P

0.02

0.04

0.06

6762575242 4737
0

M

AB

FIG. 3. Time evolution of population in the ground rotational state j = 0
during the process of quenching of the excited state j = 1 for a typical trajec-
tory. Initial orientation of the velocity vector of M with respect to the wave
function of AB is shown schematically on the insert. See text for details.
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symmetry around the vector Q = (R, �, �). In such cases
the trajectory is not planar, which may be important for some
applications.

C. Testing BF to SF projection

In this test we took the j = 1, m = +1 eigenstate as ini-
tial state in the SF calculations. In order to start the equivalent
BF calculations from this very state, we projected this m-state
onto the m′ eigenstates of the BF at the initial moment of time
and for the initial position of the quencher (to determine the
expansion coefficients). Then, as initial state in the BF calcu-
lations, we took the corresponding superposition of m′ states
(with coefficients determined by projection). Wave function
of such initial state has no cylindrical symmetry around the
vector Q = (R, �, �), so, in the BF calculations we had to
propagate classical equations of motion for both � and �.

The impact parameter was b = 5.4a0, the initial position
of quencher M was on x-axis, but the initial velocity vector
was directed arbitrarily. As trajectory progressed, we deter-
mined populations of the m-states along the trajectory directly
from the SF calculations, and indirectly from the BF calcula-
tions, by projecting the BF wave function (superposition of m′

states) onto m-states in the SF reference frame after each time
step.

Results are presented in Fig. 4. For this trajectory the
most notable process is a transfer of ∼10% of population
from the excited initial state (red) to the ground state j = 0
(green). This transition occurs within a short time interval of
the molecule-atom encounter around t ∼ 5500 a.u., which is
seen in both the SF (Fig. 4(a)) and BF (Fig. 4(b)) calculations.
However, transitions within the multiplet states of j = 1 occur
very differently in the SF and BF calculations. In the SF cal-
culations transitions from m = +1 to m = 0 and m = −1 states
also occur only during the short time-interval of the molecule-
atom encounter (blue in Fig. 4(a), probabilities are 1.09% and
0.41%, respectively). In contrast, in the BF calculations at
the initial moment of time the population is distributed be-
tween different m′-states, and the transitions between them
occur continuously (Fig. 4(b)). When the molecule and the
atom are close these transitions are more intense (due to ge-
ometric considerations) but, strictly speaking, they never end.
Nor the populations of m′ = ±1 states reach any asymptotic
values. However, if the corresponding BF wave functions are
used to obtain the populations of m states in the SF (dashed
black lines in Fig. 4(a)), the results of direct SF calculations
are accurately reproduced.

From these three tests we can conclude that all our equa-
tions for calculations in the SF and BF reference frames are
correct.

D. Testing matrixes U and V

In this test (BF only) we artificially switched off the
molecule-quencher interaction potential. This makes matrix
M null, so that time-evolution includes only transitions be-
tween different m′-states, within the initial constant value of j
= 1, due to action of matrixes U and V. Initial conditions were

t (103a.u.)
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FIG. 4. Time evolution of rotational state populations in SF reference frame
(a) and BF reference frame (b) for a typical trajectory. The initial quantum
state was j = 1, m = 1 in the SF reference frame. Red curve in (a) corresponds
to this state. Green curve in (a) and (b) corresponds to the ground state j = 0
and describes quenching. Blue curves in (a) correspond to the inter-multiplet
transitions. Red curves in (b) correspond to different states of j = 1 level in
the BF, all populated (arbitrarily) at the initial moment of time. Black dashed
lines in (a) are obtained by projection of the BF results (b) onto SF basis
functions. They entirely coincide with SF results.

identical to those of the previous example. Results are plot-
ted in Fig. 5. As expected, transition to j = 0 is suppressed,
but transitions between m′-states are still there. The peaks in
Fig. 5 correspond to the distance of closest approach, not to
the maximum of any interaction (the interaction is zero in this
test). Overall, time evolution is very similar to what we saw in
the previous test, Fig. 4(b). This is because the scattering an-
gle of the trajectory in the previous test was relatively small,
less than 13◦. Without interaction the trajectory is a straight
line, of course.

E. Testing impact parameter

In this test (SF only) we scanned the impact parameter
along z-axis for the initial state m = 0 and separately for
the initial state (m+ − m−)/

√
2 of j = 1. These two initial

states correspond to mainly perpendicular and mainly paral-
lel relative orientation of the molecular axis and the collision
velocity vector, respectively. While such calculations are re-
stricted, they scan pretty well the range of possible transition
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m'=0

m'=-1

m'=1

t (103a.u.)
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0.8

10080604020 120

j=0

FIG. 5. Same as in Fig. 4(b), but with interaction potential “switched-off.”
No quenching to j = 0 occur, but population of different multiplet states
within j = 1 level evolves continuously in the BF reference frame, and very
similar to that in Fig. 4(b).

probabilities. Results are presented in Fig. 6. We see that
transition probability is higher for perpendicular arrangement.
This property carries rather clear classical meaning. However,
the transition probability oscillates (as a function of impact
parameter), which reflects quantum properties of these calcu-
lations.

F. Testing microscopic reversibility

Here we carried out calculations of excitation probability
(SF only), in order to compare with probability of quenching
and assess how well the principle of microscopic reversibil-
ity is satisfied (or how badly it is violated). It is known that
the principle of microscopic reversibility is not immediately
built into the MQCT,34 but expected that it is approximately
satisfied when the value of internal energy quantum is small,
compared to scattering energy. Thus, we performed calcula-
tions with different scattering energies. Results are presented

b (a.u.)
0 2 4 6 8 10

P
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0.1

0.2

0.3

0.4

0.5

parallel

perpendicular

FIG. 6. Probability of j = 1 quenching as a function of impact parameter
for perpendicular (green) and parallel (blue) initial orientations of the wave
function of AB with respect to the velocity vector of M.
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FIG. 7. Probabilities of quenching (solid blue line) and excitation (dashed
red line) as functions of collision energy for two typical trajectories with
small (a) and large (b) values of impact parameter.

in Figs. 7(a) and 7(b) that correspond two different trajec-
tories, one with intermediate impact parameter b = 5.4a0,
and one with larger impact parameter b = 9a0. As expected,
the microscopic reversibility is violated at low collision en-
ergies. Here the value of rotational quantum is 1.6 cm−1. In
Fig. 7(a) the difference between excitation and quenching
probabilities changes smoothly and reaches ∼35% when the
collision energy is reduced to 25 cm−1. In Fig. 7(b) the dif-
ference between excitation and quenching remains small even
at 25 cm−1. Conclusion is that the microscopic reversibility is
not automatically satisfied at low collision energies, particu-
larly when the transition probability is large. In order to build
it into the MQCT one has to use the idea of collision energy
symmetrization.31, 33

IV. CONCLUSIONS

We formulated the mixed quantum/classical theory,
MQCT, for rotationally (and vibrationally) inelastic scatter-
ing process in the diatomic molecule + atom system. Two
versions of theory are presented: first in the SF and second
in the BF reference frames. The SF version is easy to derive
and the resultant equations of motion are transparent, but the
state-to-state transition matrix is complex-valued and dense
(many non-zero elements). Such calculations may be com-
putationally demanding for heavier molecules and/or higher
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temperatures, when the number of accessible channels be-
comes large. In contrast, the BF version of theory requires
some tedious derivations and the final equations of motion
are rather complicated (not particularly intuitive). However,
the state-to-state transitions are driven by real-valued near-
diagonal matrixes of smaller size. Thus, the BF formulation
is the method of choice from the computational point of view,
while the SF formulation can serve as a test of the BF equa-
tions of motion, and the code. Rigorous numerical tests were
carried out for a model system to ensure that all equations,
matrixes and computer codes in both SF and BF reference
frames are correct. These tests also helped to better under-
stand differences and similarities of two physically equivalent
but mathematically different formulations.

We want to emphasize again that MQCT is not thought
to replace the full-quantum calculations. At low tempera-
tures and/or light collision partners the full-quantum calcu-
lations are indispensable (accurate and affordable). It is at
higher temperatures and for heavier molecules/quenchers we
expect that MQCT can successfully complement the exist-
ing methods. In its current form this theory can be applied
to a number of important diatomic molecule + atom inelas-
tic scattering processes, such as SO + He,44 NH + He,45

and CO + Ar.46 Our recent MQCT calculations of rota-
tional state-to-state transition cross sections for N2 + Na sys-
tem show excellent agreement with full quantum results for
both excitation and quenching processes in a broad range of
collision energies.39 Another ongoing project is to develop
MQCT further, for treatment of general asymmetric top rotor
molecules (bent triatomics and small polyatomic molecules)
in order to treat the quenching of H2O and SOMs. Some
(very) preliminary data for H2O + He scattering are also
encouraging.
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APPENDIX A: DERIVATIVE OF WIGNER
ROTATION FUNCTION

Transformation of the basis set of rotational eigenstates
is

Yjm′(γ, ϕ′) =
j∑

m=−j

D
j

mm′(�,�, 0)Yjm(θ, ϕ). (A1)

In general:

D
j

mm′(�,�,�) = exp(−im�)dj

mm′(�) exp(−im′�),
(A2)

where d
j

mm′(�) are small Wigner d-functions, or explicitly:

d
j

mm′ (�) = [
(j + m′)!(j − m′)!(j + m)!(j − m)!

]1/2

×
∑

s

(−1)m−m′+s

(j + m′ − s)!s!(m − m′ + s)!(j − m − s)!

×
(

cos

(
�

2

))2j+m′−2s−m (
sin

(
�

2

))m+2s−m′

.

(A3)

The index s takes only such values that the factorials are non-
negative. The d-matrix elements defined here are real and cor-
respond to the z − y − z convention.41, 42

For an atomic quencher the last rotation (by angle �

around the mole-quencher axis) is meaningless. So, one can
set � = 0 without loss of generality. The purpose of this ap-
pendix is to derive expressions for ∂D

j

mm′(�,�,�)/∂� and
∂D

j

mm′(�,�,�)/∂�. It is quite clear that

∂D
j

mm′(�,�,�)/∂� = −im′Dj

mm′(�,�,�). (A4)

One could also write immediately ∂D
j

mm′(�,�,�)/∂�

= −imD
j

mm′ (�,�,�) but this expression is useless because
it contains m, while the sum in Eq. (28) is also over m. In order
to obtain a useful expression for ∂/∂�, and derive the expres-
sion for ∂/∂� without differentiating Eq. (A3) for d-function
directly, we will use the raising and lowering operators as ex-
plained below.

There is a deep connection between Wigner d-functions
and a quantum rotation of the symmetric top. D-function is
an eigenfunction of the symmetric top Hamiltonian. In terms
of Schrodinger equation: �2D

j

mm′ = j (j + 1)Dj

mm′ , where the
kinetic energy operator is

�2 = − 1

sin �

∂

∂�
sin �

∂

∂�

− 1

sin2 �

(
∂2

∂2�
+ ∂2

∂2�
+ 2 cos �

∂2

∂�∂�

)
.

Reference 40 emphasizes that Wigner functions have the same
properties as spherical harmonics. We know that for spherical
harmonics there are raising and lowering operators, e.g.,

(ĵx ± i ĵy)Yjm = ĵ±Yjm =
√

j (j + 1) − m(m ± 1)Yjm±1.

Similar operators exist for Wigner functions. They are called
the space fixed angular momentum operators of rigid rotor:

�x = i

(
cos � cot �

∂

∂�
+ sin �

∂

∂�
− cos �

sin �

∂

∂�

)
, (A5)

�y = i

(
sin � cot �

∂

∂�
− cos �

∂

∂�
− sin �

sin �

∂

∂�

)
, (A6)

�z = −i
∂

∂�
. (A7)

Then, the raising and lowering operators �+ = �x − i�y and
�− = �x + i�y (note: minus sign in raising and plus sign in
lowering) result in

�±D
j

mm′ = j (j + 1) − m′(m′ ± 1)Dj

mm′±1. (A8)
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The kinetic energy operator can be expressed as �2

= �+�− + �−�+ + �2
z . Raising and lowering operators al-

low expressing the partial derivatives of D-function through
other D-functions. In other words, action of a derivative oper-
ator is a mapping of one quantum state (the rotational state of
symmetric top) onto other states.

In the � = 0 case relevant to the diatomic molecule
Eqs. (A5)–(A7) simplify to

�̃x = i

(
cot �

∂

∂�
− 1

sin �

∂

∂�

)
, (A9)

�̃y = −i
∂

∂�
, (A10)

�̃z = −i
∂

∂�
. (A11)

Derivative over � is obtained from the second of these equa-
tions, which gives ∂ / ∂� = i�̃y .

Using �̃y = (�̃− − �̃+)/2i one arrives to

∂

∂�
= (�̃− − �̃+)

2
. (A12)

One can also restrict consideration to � = 0 and � = 0 using
the following relation:

∂D
j

mm′(�,�,�)

∂�
= exp(−i�m − im′�)

∂D
j

mm′(0,�, 0)

∂�
.

(A13)
This is so because only d

j

mm′ (�) depend on �. So

∂D
j

mm′(0,�, 0)

∂�

=
( �̃− − �̃+

2

)
D

j

mm′(0,�, 0)

= 1

2
[
√

j (j + 1) − m′(m′ − 1)Dj

mm′−1(0,�, 0)

−
√

j (j + 1) − m′(m′ + 1)Dj

mm′+1(0,�, 0)]. (A14)

Finally, for derivative over � we obtain

∂D
j

mm′(�,�, 0)

∂�

= exp(−im�)
∂D

j

mm′(0,�, 0)

∂�

= exp(−im�)
1

2
[
√

j (j + 1) − m′(m′ − 1)Dj

mm′−1(0,�, 0)

−
√

j (j + 1) − m′(m′ + 1)Dj

mm′+1(0,�, 0)]

= 1

2
[
√

j (j + 1) − m′(m′ − 1) exp(−im�)Dj

mm′−1(0,�, 0)

−
√

j (j + 1) − m′(m′ + 1) exp(−im�)Dj

mm′+1(0,�, 0)]

= 1

2
[
√

j (j + 1) − m′(m′ − 1)Dj

mm′−1(�,�, 0)

−
√

j (j + 1) − m′(m′ + 1)Dj

mm′+1(�,�, 0)]. (A15)

This is the final expression for ∂/∂�.

Now focus on derivative over �. Combining Eq. (A8)
with �+ = �x − i�y and using Eqs. (A9) and (A10), one
obtains:

�+D
j

mm′(�,�, 0)

=
√

j (j+1) − m′(m′+1)Dj

mm′+1(�,�, 0)

=
{
i

(
cot �

∂

∂�
− 1

sin �

∂

∂�

)
− ∂

∂�

}
D

j

mm′(�,�, 0).

(A16)

Using Eq. (A15) for derivative over � and Eq. (A4) for deriva-
tive over � one obtains

∂D
j

mm′(�,�, 0)

∂�

= i
1

2
[
√

j (j + 1) − m′(m′ − 1)Dj

mm′−1(�,�, 0)

+
√

j (j + 1) − m′(m′ + 1)Dj

mm′+1(�,�, 0)] sin �

− im′Dj
mm(�,�, 0) cos �. (A17)

This is the final expression for ∂/∂�. Note that this expression
depends on m′ (not on m) so that summation in Eq. (19) can
be carried out analytically as follows:

∑
m

∂

∂�
D

j

mm′(�,�, 0)Yjm(θ, ϕ)

=
∑
m

(
i
1

2
[
√

j (j + 1) − m′(m′ − 1)Dj

mm′−1(�,�, 0)

+
√

j (j + 1) − m′(m′ + 1)Dj

mm′+1(�,�, 0)] sin �

− im′Dj

mm′(�,�, 0) cos �

)
Yjm(θ, ϕ)

= i
1

2
[
√

j (j + 1) − m′(m′ − 1)Yjm′−1(γ, ϕ′)

+
√

j (j + 1) − m′(m′ + 1)Yjm′+1(γ, ϕ′)] sin �

− im′Yjm′(γ, ϕ′) cos �. (A18)

Expressions (A15) and (A17) can be found in the handbook,43

where they are given without any prove.

APPENDIX B: MATRIX ELEMENTS IN THE BF

Using the expansions of Eqs. (17) and (18) and
the expression (A15) for partial derivative over �
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we can write:

∂ψ(r, γ, ϕ′)
∂�

=
∑
n′j ′m′

an′j ′m′φn′j ′ (r)
∂Yj ′m′ (γ, ϕ′)

∂�
exp

{
− iEn′j ′ t

¯

}

=
∑
n′j ′m′

an′j ′m′φn′j ′ (r)
∑
m

∂D
j ′
mm′(�,�, 0)

∂�
Yj ′m(θ, ϕ) exp

{
− iEn′j ′ t

¯

}

=
∑
n′j ′m′

an′j ′m′φn′j ′(r)
1

2
[
√

j ′(j ′+1)−m′(m′−1)Yj ′m′−1(γ, ϕ′) −
√

j ′(j ′ + 1) − m′(m′ + 1)Yj ′m′+1(γ, ϕ′)] exp

{
− iEn′j ′ t

¯

}
.

(B1)

Now we need to substitute (B1) into the first of term of Eq. (27a), which for convenience can be split onto two terms as follows:

−2Re〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉

= −〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉 − 〈∂ψ(r, γ, ϕ′)
∂�

|V (R, r, γ )|ψ(r, γ, ϕ′)〉. (B2)

The substitution gives

〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉

=
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)
〈φn′′j ′′ (r)Yj ′′m′′(γ, ϕ′)|V (R, r, γ )|

×φn′j ′(r)
1

2
[
√

j ′(j ′ + 1) − m′(m′ − 1)Yj ′m′−1(γ, ϕ′) −
√

j ′(j ′ + 1) − m′(m′ + 1)Yj ′m′+1(γ, ϕ′)]〉

=
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)

×1

2
[
√

j ′(j ′ + 1) − m′(m′ − 1)〈φn′′j ′′ (r)Yj ′′m′′ (γ, ϕ′)|V (R, r, γ )|φn′j ′ (r)Yj ′m′−1(γ, ϕ′)〉

−
√

j ′(j ′ + 1) − m′(m′ + 1)〈φn′′j ′′ (r)Yj ′′m′′(γ, ϕ′)|V (R, r, γ )|φn′j ′(r)Yj ′m′+1(γ, ϕ′)〉]

=
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)

×1

2
[
√

j ′(j ′ + 1) − m′(m′ + 1)Mn′′j ′′m′′
n′j ′m′+1(R) −

√
j ′(j ′ − 1) − m′(m′ − 1)Mn′′j ′′m′′

n′j ′m′−1(R)], (B3)

and similarly

〈∂ψ(r, γ, ϕ′)
∂�

|V (R, r, γ )|ψ(r, γ, ϕ′)〉 =
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)

×1

2
[
√

j ′′(j ′′ + 1) − m′′(m′′ + 1)Mn′′j ′′m′′+1
n′j ′m′ (R) −

√
j ′′(j ′′ − 1) − m′′(m′′ − 1)Mn′′j ′′m′′−1

n′j ′m′ (R)]. (B4)

Combining these two expressions we finally obtain

−2Re〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉 = −〈∂ψ(r, γ, ϕ′)
∂�

|V (R, r, γ )|ψ(r, γ, ϕ′)〉 − 〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉

=
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)
1

2

[
M

n′′j ′′m′′−1
n′j ′m′

√
j ′′(j ′′ + 1) − m′′(m′′ − 1)

−M
n′′j ′′m′′+1
n′j ′m′

√
j ′′(j ′′ + 1) − m′′(m′′ + 1) +

√
j ′(j ′ + 1) − m′(m′ − 1)Mn′j ′m′−1

n′′j ′′m′′ −
√

j ′(j ′ + 1) − m′(m′ + 1)Mn′j ′m′+1
n′′j ′′m′′

]
.

(B5)
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It is shown in Appendix C that this expression can be con-
veniently re-written through the commutator of matrixes M
and U:

−2Re〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉

=
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′

× exp

(
i
En′′j ′′ − En′j ′

¯
t

)
[M, U]n

′′j ′′m′′
n′j ′m′ . (B6)

which leads to Eq. (28a). Furthermore, we can split the sum
in Eq. (B6) onto a pair of terms:

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)
[M, U]n

′′j ′′m′′
n′j ′m′

and

an′′j ′′m′′a∗
n′j ′m′ exp

(
i
En′j ′ − En′′j ′′

¯
t

)
[M, U]n

′j ′m′
n′′j ′′m′′ .

Because [M, U] is symmetric and real (according to
Eq. (C17)) we have the sum of these two numbers is a real
number. If n′j′m′ = n′′j′′m′′ the diagonal term (which does not
have a pair) is real by itself: |an′j ′m′ |2 [M, U]n

′j ′m′
n′j ′m′ . Thus, the

expression of Eq. (B6) always gives real numbers. Its physical
meaning corresponds to the torque.

Now consider ∂ψ /∂� in Eq. (27b):

∂ψ(r, γ, ϕ′)
∂�

=
∑
n′j ′m′

an′j ′m′φn′j ′ (r)
∂Yj ′m′ (γ, ϕ′)

∂�
exp

{
− iEn′j ′ t

¯

}
= i

∑
n′j ′m′

an′j ′m′φn′j ′ (r) exp

{
− iEn′j ′ t

¯

}

×
(

sin �
1

2
[
√

j ′(j ′ + 1) − m′(m′ − 1)Yj ′m′−1(γ, ϕ′) +
√

j ′(j ′ + 1) − m′(m′ + 1)Yj ′m′+1(γ, ϕ′)] − m′ cos �Yj ′m′ (γ, ϕ′)
)

.

(B7)

Then, for the matrix element in Eq. (27b) we can write:

〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉 = i
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)

×
(

sin �
1

2

[√
j ′(j ′ + 1)−m′(m′ − 1)Mn′j ′m′−1

n′′j ′′m′′ +
√

j ′(j ′+1)−m′(m′+1)Mj ′m′+1
n′′j ′′m′′

]−m′ cos �M
n′′j ′′m′′
n′j ′m′

)
, (B8)

and similarly

〈∂ψ(r, γ, ϕ′)
∂�

|V (R, r, γ )|ψ(r, γ, ϕ′)〉 = −i
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)

×
(

1

2
sin �

[√
j ′′(j ′′ + 1) − m′′(m′′ − 1)Mn′′j ′′m′′−1

n′j ′m′ +
√

j ′′(j ′′ + 1) − m′′(m′′ + 1)Mn′′j ′′m′′+1
n′j ′m′

] − m′′ cos �M
n′′j ′′m′′
n′j ′m′

)
.

(B9)

Combining these two expressions:

2Re〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉 = i
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)

×
(

sin �
1

2

[√
j ′′(j ′′ + 1) − m′′(m′′ − 1)Mn′′j ′′m′′−1

n′j ′m′ +
√

j ′′(j ′′ + 1) − m′′(m′′ + 1)Mn′′j ′′m′′+1
n′j ′m′

] − m′′ cos �M
n′′j ′′m′′
n′j ′m′

− sin �
1

2

[√
j ′(j ′ + 1) − m′(m′ − 1)Mn′j ′m′−1

n′′j ′′m′′ +
√

j ′(j ′ + 1) − m′(m′ + 1)Mn′j ′m′+1
n′′j ′′m′′

] + m′ cos �M
n′j ′m′
n′′j ′′m′′

)
. (B10)
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According to (C1) m′Mn′j ′m′
n′′j ′′m′′ = m′′Mn′′j ′′m′′

n′j ′m′ and
Appendix C shows that this expression can be conve-
niently rewritten through the commutator of matrixes M
and V:

−2Re〈ψ(r, γ, ϕ′)|V (R, r, γ )|∂ψ(r, γ, ϕ′)
∂�

〉

= −i
∑

n′′j ′′m′′

∑
n′j ′m′

a∗
n′′j ′′m′′an′j ′m′

× exp

(
i
En′′j ′′ − En′j ′

¯
t

)
[M, V]n

′′j ′′m′′
n′j ′m′ . (B11)

This leads to Eq. (28b). Furthermore, we can split the sum in
Eq. (B11) onto a pair of terms:

−ia∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)
[M, V]n

′′j ′′m′′
n′j ′m′

and

−ia∗
n′j ′m′an′′j ′′m′′ exp

(
i
En′j ′ − En′′j ′′

¯
t

)
[M, V]n

′j ′m′
n′′j ′′m′′ .

Due to Eq. (C8) we have

−ia∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)
[M, V]n

′′j ′′m′′
n′j ′m′

−ia∗
n′j ′m′an′′j ′′m′′ exp

(
i
En′j ′ − En′′j ′′

¯
t

)
[M, V]n

′j ′m′
n′′j ′′m′′

= −i

{
a∗

n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)

− a∗
n′j ′m′an′′j ′′m′′ exp

(
i
En′j ′ − En′′j ′′

¯
t

)}
[M, V]n

′′j ′′m′′
n′j ′m′ .

(B12)

Because

a∗
n′′j ′′m′′an′j ′m′ exp

(
i
En′′j ′′ − En′j ′

¯
t

)
− a∗

n′j ′m′an′′j ′′m′′

× exp

(
i
En′j ′ − En′′j ′′

¯
t

)
= 2iIma∗

n′′j ′′m′′an′j ′m′

× exp

(
i
En′′j ′′ − En′j ′

¯
t

)

is an imaginary number, the value of (B12) is always real and
[M, V]n

′′j ′′m′′
n′j ′m′ is real too. Note that the diagonal term in this

matrix is null: [M, V]n
′j ′m′

n′j ′m′ = 0, i.e., also real. This demon-
strates that the torque (B11) in the classical equation of mo-
tion (28) is always a real number.

APPENDIX C: PROPERTIES OF M, U, V, AND THEIR
COMMUTATORS

The expanded matrix M (labeled by three indexes) is ob-
tained by combining the smaller matrixes (labelled by two
indexes) for different values of m′ given by Eq. (31) in the
following way:

M
n′′j ′′m′′
n′j ′m′ (R) = δm′m′′M

n′′j ′′
n′j ′ (R). (C1)

By this construction, and according to the definition of
Eq. (22), the entire matrix M is symmetric, M

n′′j ′′m′′
n′j ′m′

= M
n′j ′m′
n′′j ′′m′′ , and is diagonal in m′: M

n′′j ′′m′′
n′j ′m′ = 0 if m′′ �= m′.

Similarly, the expanded matrixes U and V (labeled by
three indexes) are obtained by combining the smaller matrixes
(labelled by one index) for different values of (n j) given by
Eqs. (24a) and (24b). Namely:

U
n′′j ′′m′′
n′j ′m′ = δn′j ′,n′′j ′′Um′′

m′ and V
n′′j ′′m′′
n′j ′m′ = δn′j ′,n′′j ′′V m′′

m′ .

(C2)
So, the matrixes U and V are diagonal in (n j). Their elements
are zero if n′′ �= n′ or j′′ �= j′. Consider m′′ = m′ + 1. In this
case, due to the first term in Eq. (24a), we obtain

U
n′′j ′′m′+1
n′j ′m′ = δn′j ′,n′′j ′′

1

2

√
j ′(j ′ + 1) − m′(m′ + 1). (C3)

Here we replaced m′′ by m′ + 1, including the expression,√
j ′(j ′ + 1) − m′′(m′′ − 1) =

√
j ′(j ′ + 1) − (m′ + 1)m′.

(C4)
Now consider m′′ = m′ − 1. In this case, due to the second
term in Eq. (24a), we obtain

U
n′′j ′′m′
n′j ′m′+1 = −δn′j ′,n′′j ′′

1

2

√
j ′(j ′ + 1) − m′(m′ + 1). (C5)

Here we deliberately used m′ + 1 and m′ as lower and up-
per indexes, respectively. Comparing Eqs. (C3) and (C5) we
conclude that:

U
n′′j ′′m′
n′j ′m′+1 = −U

n′′j ′′m′+1
n′j ′m′ = U

n′j ′m′+1
n′′j ′′m′ . (C6)

Since U
n′′j ′′m′′
n′j ′m′ = 0 if m′′ �= m′ ± 1 (according to the definition

of Eq. (24a) and by construction) we also obtain from Eq.
(C6) that

U
n′′j ′′m′′
n′j ′m′ = −U

n′j ′m′
n′′j ′′m′′ . (C7)

Thus, matrix U is anti-symmetric.
Similar considerations apply to the matrix V, but it ap-

pears to be symmetric:

V
n′′j ′′m′′
n′j ′m′ = V

n′j ′m′
n′′j ′′m′′ . (C8)

The commutator of M and U is by definition:

[M, U]n
′′j ′′m′′

n′j ′m′

=
∑

n′′′j ′′′m′′′
M

n′′′j ′′′m′′′
n′j ′m′ U

n′′j ′′m′′
n′′′j ′′′m′′′ − U

n′′′j ′′′m′′′
n′j ′m′ M

n′′j ′′m′′
n′′′j ′′′m′′′ . (C9)

Consider the first term in this expression. Using Eq. (24a) we
obtain∑

n′′′j ′′′m′′′
M

n′′′j ′′′m′′′
n′j ′m′ U

n′′j ′′m′′
n′′′j ′′′m′′′

=
∑
m′′′

1

2
M

n′′j ′′m′′′
n′j ′m′ [δm′′′,m′′−1

√
j ′′(j ′′ + 1) − m′′(m′′ − 1)

−δm′′′,m′′+1

√
j ′′(j ′′ + 1) − m′′(m′′ + 1)]

= 1

2

[
M

n′′j ′′m′′−1
n′j ′m′

√
j ′′(j ′′ + 1) − m′′(m′′ − 1)

−M
n′′j ′′m′′+1
n′j ′m′

√
j ′′(j ′′ + 1) − m′′(m′′ + 1)

]
. (C10)
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And similar expression for the second term in Eq. (C9):∑
n′′′j ′′′m′′′

U
n′′′j ′′′m′′′
n′j ′m′ M

n′′j ′′m′′
n′′′j ′′′m′′′

=
∑
m′′′

U
n′j ′m′′′
n′j ′m′ M

n′′j ′′m′′
n′j ′m′′′

=
∑
m′′′

1

2

[
M

n′j ′m′′
n′′j ′′m′′′δm′,m′′′−1

√
j ′(j ′ + 1) − m′′′(m′′′ − 1)

− M
n′j ′m′′
n′′j ′′m′′′δm′,m′′′+1

√
j ′(j ′ + 1) − m′′′(m′′′ + 1)

]

= 1

2

[
M

n′j ′m′+1
n′′j ′′m′′

√
j ′(j ′ + 1) − m′(m′ + 1)

− M
n′j ′m′−1
n′′j ′′m′′

√
j ′(j ′ + 1) − m′(m′ − 1)

]
(C11)

or

−
∑

n′′′j ′′′m′′′
U

n′j ′m′
n′′′j ′′′m′′′M

n′′′j ′′′m′′′
n′′j ′′m′′

= 1

2

[
M

n′j ′m′−1
n′′j ′′m′′

√
j ′(j ′ + 1) − m′(m′ − 1)

− M
n′j ′m′+1
n′′j ′′m′′

√
j ′(j ′ + 1) − m′(m′ + 1)

]
. (C12)

Finally, substitution of expressions (C10) and (C12) into (C8)
gives

[M, U]n
′′j ′′m′′

n′j ′m′

= 1

2

[
M

n′j ′m′
n′′j ′′m′′+1

√
j ′′ (j ′′ + 1) − m′′ (m′′ + 1)

− M
n′j ′m′
n′′j ′′m′′−1

√
j ′′ (j ′′ + 1) − m′′ (m′′ − 1)

]

+1

2

[
M

n′j ′m′+1
n′′j ′′m′′

√
j ′(j ′ + 1) − m′(m′ + 1)

− M
n′j ′m′−1
n′′j ′′m′′

√
j ′(j ′ + 1) − m′(m′ − 1)

]
. (C13)

All similar considerations apply to the commutator of M and
V: ∑

n′′′j ′′′m′′′
M

n′′′j ′′′m′′′
n′j ′m′ V

n′′j ′′m′′
n′′′j ′′′m′′′

= 1

2

[
M

n′j ′m′
n′′j ′′m′′+1

√
j ′′ (j ′′ + 1) − m′′ (m′′ + 1)

+ M
n′j ′m′
n′′j ′′m′′−1

√
j ′′ (j ′′ + 1) − m′′ (m′′ − 1)

]
(C14)

and ∑
n′′′j ′′′m′′′

V
n′j ′m′
n′′′j ′′′m′′′M

n′′′j ′′′m′′′
n′′j ′′m′′

=
∑
m′′′

V
n′j ′m′
n′j ′m′′′M

n′j ′m′′′
n′′j ′′m′′

= 1

2

[
M

n′j ′m′+1
n′′j ′′m′′

√
j (′j ′ + 1) − m′(m′ + 1)

+ M
n′j ′m′−1
n′′j ′′m′′

√
j ′(j ′ + 1) − m′(m′ − 1)

]
, (C15)

and finally

[M, V]n
′′j ′′m′′

n′j ′m′

= 1

2

[
M

n′j ′m′
n′′j ′′m′′+1

√
j ′′ (j ′′ + 1) − m′′ (m′′ + 1)

+ M
n′j ′m′
n′′j ′′m′′−1

√
j ′′ (j ′′ + 1) − m′′ (m′′ − 1)

]

−1

2

[
M

n′j ′m′+1
n′′j ′′m′′

√
j (′j ′ + 1) − m′(m′ + 1)

+ M
n′j ′m′−1
n′′j ′′m′′

√
j ′(j ′ + 1) − m′(m′ − 1)

]
. (C16)

Several properties of the commutator matrixes are worth not-
ing. Namely,

[M, U]n
′′j ′′m′′

n′j ′m′ = [M, U]n
′j ′m′

n′′j ′′m′′ , (C17)

which means that this matrix is symmetric. This is easy to
prove using the properties (C1) and (C7) as follows:

[M, U]n
′′j ′′m′′

n′j ′m′

=
∑

n′′′j ′′′m′′′
M

n′′′j ′′′m′′′
n′j ′m′ U

n′′j ′′m′′
n′′′j ′′′m′′′ − U

n′′′j ′′′m′′′
n′j ′m′ M

n′′j ′′m′′
n′′′j ′′′m′′′

=
∑

n′′′j ′′′m′′′
U

n′j ′m′
n′′′j ′′′m′′′M

n′′′j ′′′m′′′
n′′j ′′m′′ − M

n′j ′m′
n′′′j ′′′m′′′U

n′′′j ′′′m′′′
n′′j ′′m′′

=
∑

n′′′j ′′′m′′′
M

n′′′j ′′′m′′′
n′′j ′′m′′ U

n′j ′m′
n′′′j ′′′m′′′ − U

n′′′j ′′′m′′′
n′′j ′′m′′ M

n′j ′m′
n′′′j ′′′m′′′

= [M, U]n
′j ′m′

n′′j ′′m′′ .

In contrast, the commutator

[M, V]n
′′j ′′m′′

n′j ′m′ = − [M, V]n
′j ′m′

n′′j ′′m′′ (C18)

is an anti-symmetric matrix. This is shown using Eq. (C8) as
follows:

[M, V]n
′′j ′′m′′

n′j ′m′

=
∑

n′′′j ′′′m′′′
M

n′′′j ′′′m′′′
n′j ′m′ V

n′′j ′′m′′
n′′′j ′′′m′′′ − V

n′′′j ′′′m′′′
n′j ′m′ M

n′′j ′′m′′
n′′′j ′′′m′′′

=
∑

n′′′j ′′′m′′′
M

n′j ′m′
n′′′j ′′′m′′′V

n′′′j ′′′m′′′
n′′j ′′m′′ − V

n′j ′m′
n′′′j ′′′m′′′M

n′′′j ′′′m′′′
n′′j ′′m′′

= −
⎛
⎝ ∑

n′′′j ′′′m′′′
M

n′′′j ′′′m′′′
n′′j ′′m′′ V

n′j ′m′
n′′′j ′′′m′′′ − V

n′′′j ′′′m′′′
n′′j ′′m′′ M

n′j ′m′
n′′′j ′′′m′′′

⎞
⎠

= − [M, V]n
′j ′m′

n′′j ′′m′′ .
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