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Frozen rotor approximation in the mixed quantum/classical theory
for collisional energy transfer: Application to ozone stabilization

Alexander Teplukhin, Mikhail Ivanov, and Dmitri Babikova)

Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee,
Wisconsin 53201-1881, USA

(Received 8 July 2013; accepted 2 September 2013; published online 23 September 2013)

A frozen-rotor approximation is formulated for the mixed quantum/classical theory of collisional en-
ergy transfer and ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107
(2011)]. Numerical tests are conducted to assess its efficiency and accuracy, compared to the original
version of the method, where rotation of the molecule in space is treated explicitly and adiabatically.
New approach is considerably faster and helps blocking the artificial ro-vibrational transitions at the
pre- and post-collisional stages of the process. Although molecular orientation in space is fixed, the
energy exchange between rotational, vibrational, and translational digresses of freedom still occurs,
allowing to compute ro-vibrational excitation and quenching. Behavior of the energy transfer func-
tion through eight orders of magnitude range of values and in a broad range of �E is reproduced well.
In the range of moderate −500 ≤ �E ≤ +500 cm−1 the approximate method is rather accurate. The
absolute values of stabilization cross sections for scattering resonances trapped behind the centrifugal
threshold are a factor 2-to-3 smaller (compared to the explicit-rotation approach). This performance
is acceptable and similar to the well-known sudden-rotation approximation in the time-independent
inelastic scattering methods. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821349]

I. INTRODUCTION

Collisional energy transfer (CET) plays crucial role dur-
ing the second step of the recombination reaction that forms
ozone in Earth’s atmosphere:

O + O2 ↔ O3
∗, (1)

O3
∗ + M → O3 + M∗. (2)

Here, M can be any atmospheric molecule (or Ar atom in lab-
oratory experiments1), whose role is to remove energy from
the metastable O3

∗ states (excited ro-vibrationally above the
dissociation threshold) to produce stable ozone molecules,
O3. In order to provide complete theoretical treatment of
ozone formation kinetics one should be able, ideally, to com-
pute cross sections for all ro-vibrational state-to-state transi-
tions that take place in O3

∗ due to collisions with M, and in-
corporate those data into the master equation formalism.2, 3

While very easy to state, this is practically impossible to do.
The density of vibrational states near dissociation threshold
of ozone is close to one state per 1.2 cm−1, and each of those
vibrational states is accompanied by a dense spectrum of ro-
tational states (rotational constant is ∼0.4 cm−1). Ozone is a
heavy rotor and a broad distribution of rotational states (up to
J ∼ 90) is populated at room temperature. Thus, the rotational
transitions between different J-values are impossible to rule
out. Rotational energy transfer occurs simultaneously with vi-
brational stabilization and plays a very important role. More-
over, the collision-induced dissociation (CID) of O3

∗ takes

a)Author to whom correspondence should be addressed. Electronic mail:
dmitri.babikov@mu.edu

place simultaneously with its stabilization and should also be
described theoretically.

The classical-trajectory treatment of process (2) was rela-
tively straightforward,4 but it did not help to answer questions
related to the famous anomalous isotope effect,1, 5 which is be-
lieved to be related to quantum mechanical phenomena such
as zero-point energy, symmetry, and scattering resonances.6–8

On the other extreme side, the full-fledged quantum treatment
of the process is unaffordable computationally, for the reasons
discussed in the previous paragraph (large density of states,
importance of rotational excitation, dissociation). Thus, sev-
eral theory groups searched for alternatives to the exact quan-
tum mechanics. The first approximate quantum treatment of
process (2) was proposed by Clary’s group within the time-
independent coupled-channel formalism.9, 10 They used the
dimensionally reduced model of ozone (frozen bending) and
looked at non-rotating ozone molecule (J = 0 only). The next
study by Bowman’s group11 offered a considerable improve-
ment through implementing the full-dimensional treatment of
O∗

3. However, their calculations have been carried out for very
few (just three) collision geometries of M + O∗

3. A similar
treatment was developed by Schinke’s group,12, 13 also based
on the coupled-channel formalism for J = 0. Their calcula-
tions converged with respect to the number of partial waves
for orbital motion, but their basis set contained just the bound
states of O3 (below dissociation threshold) so, no metastable
states of O∗

3 (scattering resonances above dissociation thresh-
old) were involved at all. Neither of these groups incorporated
lifetimes of O∗

3 into their treatment of kinetics.
Recently, the group of Babikov implemented a con-

ceptually different method for theoretical treatment of
the ozone forming reaction—the mixed quantum/classical

0021-9606/2013/139(12)/124301/9/$30.00 © 2013 AIP Publishing LLC139, 124301-1
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theory (MQCT) for collisional energy transfer and ro-
vibrational energy flow.14 This method is still approximate,
but it overcomes many difficulties encountered earlier by
other workers. Namely, the scattering of M and the rotational
quenching of O∗

3 are treated classically, which allows cover-
ing a broad range of rotational excitations, up to J ∼ 90. These
classical approximations are well justified because no quan-
tum effects are expected to occur due to scattering of heavy
M, or due to rotation of heavy O∗

3. The vibrational motion of
ozone, however, is treated with time-dependent Schrödinger
equation, which incorporates zero-point energy and vibra-
tional symmetry. The scattering resonances of O∗

3 are also
accessible, including quantization of their energies, accurate
calculations of their decay rates and CID.15, 16

The MQCT is computationally feasible (in contrast to
the full-quantum methods) but the high density of vibrational
states and the broad range of rotational excitations in ozone
make even these calculations highly demanding. For these
reasons, the calculations of Babikov’s group were carried out
within the dimensionally reduced model of ozone,14, 17 where
only two bond stretches were treated explicitly, while the
bending motion was treated adiabatically (relaxed).

There is a strong need to progress towards the full-
dimensional treatment of ozone formation, including its bend-
ing motion. Moreover, oxygen has three stable isotopes,
which results in as many as 36 isotopically different versions
of the processes (1) and (2)1 and all of those should, ideally,
be explored theoretically! In order to make such calculations
computationally affordable one should think of some addi-
tional simplifications, within the framework of MQCT.

In this paper we formulate and test the frozen-rotation
(FR) approximation for MQCT. Since MQCT is time-
dependent and involves classical as well as quantum degrees
of freedom, the approximation we devise here is very differ-
ent from the well-known sudden-rotation approximation used
in the time-independent full-quantum calculations.18–21 The
main purpose of our FR approximation is to “freeze” the rota-
tion of O∗

3 during the M + O∗
3 scattering event, without cutting

off the energy exchange between translational, rotational, and
vibrational degrees of freedom. Freezing the rotation of O∗

3
gives significant computational advantages (discussed in the
paper), with relatively small intervention into the energy ex-
change process. Interestingly, it appears that rotational excita-
tion and/or quenching of the molecule can be described with-
out letting the molecule rotate in space during the collision
with M.

The paper is organized as follows. The MQCT method
is briefly reviewed in Sec. II. The formalism of FR approxi-
mation is introduced in Sec. III. Numerical results that serve
as a test of accuracy of the FR approximation are presented
and discussed in Sec. IV. Section V summarizes all the work
done.

II. THE MIXED QUANTUM/CLASSICAL THEORY

The idea of mixed quantum/classical treatment of col-
lisional energy transfer is not entirely new.22–26 A good re-
view of methods and their applications was done by Billing.27

In our implementation of MQCT14 the vibrational motion of

oxygen atoms in O3 is treated quantum mechanically, while
the rotational motion of O3 and the translational (scattering)
motion of Ar + O3 are treated classically. All coordinates
are divided into two groups: those describing quantum part
of the system and those describing classical part. The former
set is internal bond-angle coordinates RQ = (R1, R2, θ ). The
latter set RC = (qO3 , qAr, α, β, γ ) includes the Cartesian co-
ordinates of ozone qO3 and quencher qAr in the laboratory-
fixed frame and Euler angles (α, β, γ ) for orientation of O3

molecule in space.
Quantum description of vibrational motion involves

propagation of wave function �(RQ,t) using the time-
dependent Schrödinger equation:

i
∂

∂t
�(RQ, t) = Ĥ (t)�(RQ, t, ) (3)

Ĥ (t) = T̂J=0 + V (RQ; RC(t)) + Vrot(RQ; RC(t)). (4)

Through the V (RQ; RC(t)) dependence of the PES, the classi-
cal trajectory of motion RC(t) affects evolution of the quantum
part of the system (vibration). The effect of rotational motion
on vibration is included adiabatically,28–33 by introducing into
the Hamiltonian of Eq. (4) the rotational potential Vrot, which
is a smooth function of coordinates, computed numerically on
a grid of points in RQ using

Vrot(RQ) = 1
2 (J, I−1(RQ)J). (5)

Here, I(RQ) is the tensor of inertia on the grid and J(t) is the
instantaneous vector of angular momentum of the molecule,
both expressed in the lab reference frame. Rotational potential
is a time dependent quantity.

The rotation itself is treated classically using the fluid-
rotor equations of motion:14

⎛
⎜⎜⎝

α̈

β̈

γ̈

⎞
⎟⎟⎠ = G−1

⎡
⎢⎢⎣Ĩ−1

⎡
⎢⎢⎣τ̃ − ˙̃IG

⎛
⎜⎜⎝

α̇

β̇

γ̇

⎞
⎟⎟⎠

⎤
⎥⎥⎦ − Ġ

⎛
⎜⎜⎝

α̇

β̇

γ̇

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (6)

Here, Ĩ(t) is the instantaneous mean tensor of inertia of the
fluid rotor, while τ̃ (t) is the mean torque on the molecule
(caused by the quencher), defined as

Ĩ = 〈�(RQ, t)| I−1(RQ)|�(RQ, t)〉−1, (7)

τ̃ = −〈�(RQ)|
∑

i

ri × ∇V |�(RQ)〉, (8)

where ri = {xi, yi, zi} is the radius vector of ith atom relative
to molecular center or mass, ri × ∇V represents the torque
of the quencher on ith atom in the molecule, and the gradient
∇V is computed with respect to the Cartesian position of ith
atom. Summation in Eq. (8) is over three O atoms. Matrix G
in Eq. (6) was introduced for convenience:

G =

⎛
⎜⎜⎝

0 cos α sin β sin α

0 sin α − sin β cos α

1 0 cos β

⎞
⎟⎟⎠ . (9)

 



124301-3 Teplukhin, Ivanov, and Babikov J. Chem. Phys. 139, 124301 (2013)

Time derivative ˙̃I in Eq. (6) is computed as ˙̃I = ĨAĨ,
where matrix A is

A = 〈�| I−1

(
dI
dt

)
I−1 |�〉 − 2 Re〈�| I−1

∣∣∣∣ d

dt
�

〉
. (10)

Note that evolution of the vibrational state of the sys-
tem affects its classical rotational motion, through vibrational
wave function �(RQ, t) in expressions for the mean values of
Ĩ, τ̃ , and A.

Translational coordinates qO3 and qAr are propagated us-
ing classical equations of motion: q̇ = p/M and ṗ = −∇Ṽ ,
where transcripts are omitted for simplicity, and the mean
field potential is defined as

Ṽ (RC, t) = 〈�(RQ, t)|V (RQ; RC(t))|�(RQ, t)〉. (11)

Again, quantum vibrational state of the system �(RQ, t)
influences the classical trajectory for scattering, through Ṽ .

Overall, the energy is exchanged between translation, ro-
tation, and vibration, while the total energy is conserved.

III. FROZEN ROTOR APPROXIMATION

Let us start from the formal side of implementing the
frozen-rotor approximation. Two terms in Eq. (10) have very
transparent physical meaning. The first term is a rigid-rotor
term, while the second term is a fluid-rotor term. The second
term is zero if the vibrational wave function �(RQ) is con-
stant over the time. Its effect on rotation becomes important
only if the vibrational motion occurs and the wave function
changes, which affects the tensor of inertia. We want to keep
this term, because it describes ro-vibrational interaction. The
first term in Eq. (10) is a simple rotation in 3D of the tensor
of inertia of the rigid body. If the molecule does not rotate,
this term is unnecessary. So, in the frozen-rotor case Eq. (10)
simplifies to

A = −2 Re〈�(RQ)| I−1(RQ)

∣∣∣∣ d

dt
�(RQ)

〉
. (12)

Note that our frozen rotor remains fluid, due to the time
derivative in Eq. (12). Within its original orientation in space,
the tensor of inertia is allowed to change over the time if
d� / dt 
= 0, for example, due to centrifugal effect or due to
interaction with quencher.

Furthermore, if molecule does not rotate, its orientation
in space is constant and Ġ = 0. So, the last term in Eq. (6)
vanishes. Now it is convenient to introduce υα = α̇, υβ = β̇,
and υγ = γ̇ . These moieties are related to angular velocity ω

through

ω = G

⎛
⎜⎜⎝

υα

υβ

υγ

⎞
⎟⎟⎠ . (13)

In these notations, Eq. (6) can be rewritten as follows:⎛
⎜⎜⎝

α̇

β̇

γ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

υα

υβ

υγ

⎞
⎟⎟⎠ , (14)

⎛
⎜⎜⎝

υ̇α

υ̇β

υ̇γ

⎞
⎟⎟⎠ = G−1

⎡
⎢⎢⎣Ĩ−1

⎡
⎢⎢⎣τ̃ − d Ĩ

dt
G

⎛
⎜⎜⎝

υα

υβ

υγ

⎞
⎟⎟⎠

⎤
⎥⎥⎦

⎤
⎥⎥⎦ . (15)

If the molecule does not rotate in space, we do not have
to propagate Eq. (14) for angles at all, equivalent to saying
that α̇ = 0, β̇ = 0, and γ̇ = 0. Only Eq. (15) should be prop-
agated. It captures the effect of rotational excitation and/or
quenching and emphasizes that our frozen-rotor remains fluid,
within its original orientation in space. If the mean tensor of
inertia changes, d Ĩ/dt 
= 0, its effect onto rotational excita-
tion is included.

The existing computer code14 can be very easily modified
to propagate Eqs. (12) and (15), instead of Eqs. (6) and (10).
Note, however, that Eq. (15) can be conveniently rewritten
using Eq. (13) as follows:

ω̇ = Ĩ−1

[
τ̃ − d Ĩ

dt
ω

]
. (16)

Rearranging terms, using chain rule and introducing an-
gular momentum J = Ĩω we obtain

dJ
dt

= τ̃ . (17)

Indeed, if the molecule is forcedly fixed in space, no
equations for rotational coordinates are necessary at all. All
we have to do is to integrate torque τ̃ (t) due to quencher along
the trajectory to determine the change of J (i.e., rotational
excitation or quenching). The time dependent value of J(t)
goes directly into Eq. (5) to give evolution of rotational poten-
tial Vrot(RQ) along the trajectory RC(t) for inclusion into the
Hamiltonian of Eq. (4). This is almost embarrassingly simple,
but makes sense.

IV. RESULTS AND DISCUSSION

We carried out preliminary calculations using both ver-
sions: either propagating Eqs. (12) and (15) or, alternatively,
Eq. (17) alone. The results are entirely identical, however,
Eq. (17) gives significant computational advantage, since cal-
culations of the wave function derivative d� / dt (on the grid)
in Eq. (12) are avoided, as well as numerous matrix operations
in Eq. (15). The computational advantage of the FR method
is substantial, speedup by a factor of ×3.8.

A. Examples of a single trajectory

Details of setting up the initial conditions for MQCT
calculations have already been discussed in detail.14 Initial
wave function is one of vibrational eigenstates in the rotation-
ally excited potential: �(RQ, t0) = �(i)

n (RQ). Here, index i de-
notes initial rotational excitation (quantized semi-classically),
while index n denotes a vibrational state in this rotationally
excited potential. We always start at a scattering resonance,
namely, the ro-vibrational state above the dissociation thresh-
old, E(i)

n > 0. The vibrational spectrum of 16O18O16O in the
dimensionally reduced model is relatively sparse. The upper
part of spectrum, within the energy range ∼1000 cm−1 below
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TABLE I. Cross sections (a0
2) for vibrational state-to-state transitions and stabilization of the normal mode state (#51).

Initial rotational statea

Final vibrational J = 25, K = 5 J = 35, K = 0 J = 35, K = 5 J = 35, K = 12
state (73.4; 3.5 × 10−5) (241.1; 1.1 × 10−4) (309.0; 1.9 × 10−3) (629.9; 1.5 × 10−3)

# Character AR FR AR FR AR FR AR FR

51 N 422.898 473.141 417.682 479.024 416.552 473.649 402.366 460.521
50 L2 0.100 0.085 0.139 0.057 0.120 0.079 0.202 0.376
49 L1 0.095 0.057 0.091 0.044 0.111 0.058 0.277 0.035
48 N 3.316 1.130 4.345 1.014 5.407 1.106 9.460 1.313
47 L2 0.030 0.034 0.046 0.018 0.036 0.032 0.174 0.074
46 L1 0.028 0.018 0.027 0.018 0.036 0.014 0.118 0.022
45 N 0.086 0.028 0.133 0.025 0.198 0.029 0.508 0.029
44 N 0.003 0.002 0.004 0.002 0.007 0.002 0.016 0.003
43 N 0.002 0.001 0.002 0.001 0.003 0.001 0.011 0.002
42 L2 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.002
41 L1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ro-vibrational 99.969 47.206 51.375 26.318 45.481 14.620 10.430 3.439
stabilization

aEach scattering resonance is characterized by J, K, energy and width (in parenthesis) in the units of wave number.

the dissociation threshold, contains only 11 vibrational states
(#41 to 51 in Tables I and II). Some of them belong to progres-
sion of the normal vibration modes (labeled by N), and some
to the local-vibration mode progression associated with either
channel 1 or 2 (namely, O–OO or OO–O, labeled L1 and L2).
Typical rotational excitations of J ∼ 20-45 bring these states
up (the centrifugal effect) and converts them into scattering
resonances trapped behind the centrifugal barrier at energies
few hundred wavenumbers above the dissociation threshold.
These are our initial states. Note that in rotationally excited
ozone the vibrational motion is rather localized, due to sharp
centrifugal barrier. We found that in such conditions all vi-
brational states can be easily assigned (in terms of quantum
numbers) up to dissociation threshold and even above. This is

very different from the non-rotating ozone, where the upper
20% of vibrational spectrum exhibit irregular behavior due to
flattening of the PES near dissociation threshold.34–37

In Fig. 1 we consider an example trajectory which starts
at the scattering resonance with J = 35 and K = −5, n = 50
and E(i)

n = 133.6 cm−1 (specifying semi-classical initial con-
ditions for rotation we set Kb = Kc and assume that K = Ka is
good quantum number, for simplicity). This is a local-mode
state with 8 quanta of vibration along the O + O2 dissociation
channel and one quantum of vibration in O2. Collision energy
of Ar is Ecoll = 217 cm−1 and impact parameter is b = 3.64 a0.
Plotted in Fig. 1 are the values of rotational potential Vrot(RQ)
at two important points on the PES: the bottom of covalent
well (Fig. 1(a)) and the top of centrifugal barrier in one of

TABLE II. Cross sections (a0
2) for vibrational state-to-state transitions and stabilization of the local mode state (#50).

Initial rotational statea

Final vibrational J = 20, K = 9 J = 35, K = −5 J = 35, K = 9 J = 45, K = −5
state (26.1; 3.8 × 10−6) (133.6; 8.7 × 10−3) (349.7; 2.5 × 10−6) (418.6; 2.5 × 10−1)

# Character AR FR AR FR AR FR AR FR

51 N 0.077 0.083 0.143 0.039 0.911 0.074 0.374 0.012
50 L2 400.088 434.582 365.551 359.478 360.393 427.081 360.987 244.492
49 L1 0.668 0.728 1.651 1.808 1.390 0.236 0.576 0.744
48 N 0.776 2.395 11.430 18.729 2.451 4.340 5.623 3.137
47 L2 29.544 16.832 41.678 8.661 33.814 15.381 41.652 5.309
46 L1 0.078 0.211 0.289 0.620 0.902 0.125 0.232 0.257
45 N 0.639 0.638 1.890 1.049 3.730 0.587 3.098 1.161
44 N 0.026 0.172 0.029 0.234 0.372 0.068 0.048 0.207
43 N 0.026 0.028 0.018 0.041 0.360 0.021 0.048 0.022
42 L2 0.016 0.070 0.017 0.020 0.332 0.077 0.040 0.016
41 L1 0.005 0.004 0.000 0.014 0.128 0.003 0.015 0.012
Ro-vibrational 127.245 94.858 104.177 52.552 45.906 14.148 48.544 18.438
stabilization

aEach scattering resonance is characterized by J, K, energy and width (in parenthesis) in the units of wave number.
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FIG. 1. Time evolution of rotational potential along one trajectory at the
point near (a) bottom of covalent well on the PES of ozone R1 = R2
= 2.4 a0; (b) top of centrifugal barrier R1 = 2.3 a0, R2 = 3.8 a0. Red solid
line stands for FR-method, black dotted stands for AR-method. Initial (clas-
sical) rotational state is J = 35, K = −5, and the ro-vibrational energy is
E

(i)
n = 133.6 cm−1. See text for further details.

the dissociation channels (Fig. 1(b)). We can see that in the
original MQCT method, where the adiabatic-rotation (AR)
is explicitly going on, the centrifugal potential Vrot evolves
during the pre-collisional and post-collisional stages of the
process, due to the ro-vibrational interaction in the fluid rotor
model. In the frozen-rotor version of MQCT the rotational po-
tential Vrot(RQ) is constant over time (at every point of the RQ

grid). Note that for description of the resonance stabilization,
for CET, the focus is not really on the ro-vibrational interac-
tion during the pre- and post-collisional stages, but more on
the molecule-quencher interaction during the short collision
event. Figure 1 demonstrates that this last effect is well de-
scribed by the FR approximation.

In the time-dependent mixed quantum/classical method
we do not really have to make any assumptions about good-
ness of the rotational quantum number K, because we use
classical trajectories for description of rotation, either as fluid-
rotor or as rigid-rotor. In either case, three components of J
evolve during the dynamics. Figure 2(a) shows an example
of typical trajectory (b = 2.55 a0 and Ecoll = 489 cm−1) for
the initial vibrational state n = 50 and a quasi-classical initial
state J = 35, K = Ka = 12, |Kb| = |Kc| = 23. One sees that the
value of Ka is approximately conserved on the pre-collisional

K
a,

K
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K
c
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K
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K
c
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0.5 1.0 1.5 2.0 2.5

FIG. 2. Time evolution of Ka (red), Kb and Kc (blue and green) along a
typical trajectory for initial J = 35, Ka = 12, |Kb | = |Kc | = 23 and vibrational
state n = 50. (a) Original AR method; (b) developed FR approach. One sees
that Ka is approximately a good quantum number in both cases.

and post-collisional stages, in contrast to Kb and Kc that oscil-
late widely. This picture supports a well-known fact—ozone
is very close to a symmetric top. Its rotational constants are
only ∼10% different. For simplicity, we sample the initial ro-
tational states such that |Kb| = |Kc|, so that we can label these
quasi-classical initial conditions by J and K only. As rotation
starts (on the pre-collisional stage) the memory of |Kb| = |Kc|
is immediately lost, while K = Ka remains roughly the same.
Figure 2(b) demonstrates that K remains good quantum num-
ber in the FR-method too.

One more advantage given by the FR approximation be-
comes obvious. On the post collisional stage the centrifu-
gal potential is constant, so, one can start spectral analy-
sis of the final vibrational wave packet �(RQ, tfin) at any
moment of time, as soon as quencher leaves. This is not
so straightforward in the AR version of the method, where
rotational potential continues evolving due to ongoing ro-
vibrational interaction. This continuing ro-vibrational en-
ergy exchange causes artificial ro-vibrational transitions at
the post-collisional stage, which is a known deficiency of
the mixed quantum/classical treatment.14 In order to cancel
its effect we usually use the forward-backward propagation
technique,38 but it doubles the computational effort. In the
FR version of MQCT this problem does not exist, so that the
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backward propagation is unnecessary, which saves computa-
tional resources.

B. Energy transfer

Projection onto vibrational eigenstates of the final ro-
tational potential permits to compute energy spectrum of
the final wave packet, or the probabilities of state-to-state
transitions:

p
(i)
n,n′ = ∣∣〈�(i ′)

n′ (RQ)
∣∣�(RQ, tf in)

〉∣∣2
. (18)

This information, together with magnitudes of the energy
transfer �E = E

(i ′)
n′ − E(i)

n , can be used to bin the data for a
batch of trajectories into a 2D-histogram, like those presented
in Fig. 3 (3000 trajectories for the same initial state as Fig. 1).
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FIG. 3. Intensity of the energy transfer as a function of impact parameter
b and the magnitude of energy change �E for a batch of 3000 trajectories
in the (a) original AR method; (b) developed FR approach. Red is for high
intensity, blue is for low intensity. Excitation is at positive �E, quenching is
at negative �E. Elastic peak is at �E = 0 and large impact parameter. Initial
ro-vibrational state is the same as in Fig. 1.

These plots visualize intensity of the excitation/quenching as
a function of impact parameter 0 ≤ b ≤ 15 a0 and the mag-
nitude of energy transfer −1000 ≤ �E ≤ +1000 cm−1. Col-
lision energy was sampled from thermal distribution at room
temperature. Figure 3(a) describes the case of explicit adia-
batic rotation, while Fig. 3(b) corresponds to our frozen-rotor
approach . Both methods show the elastic scattering peak (�E
= 0) at large impact parameters, and both indicate quenching
(�E < 0) as well as excitation (�E > 0) going on at impact
parameters less than b ≈ 8 a0. We have to admit that in the
FR case the excitation is clearly overestimated in the region
of �E > +500 cm−1, compared to the AR case. Explanation
is as follows: when the rotational motion is frozen, the abil-
ity of the molecule to dodge the quencher is limited to the
translational recoil only, which leads to more intense inter-
action with quencher and larger amount of energy is trans-
ferred to the molecule. This is a negative consequence of FR
approximation.

It should also be mentioned that the total energy in the
FR method is not exactly conserved. We conducted a careful
study of this issue and found that for some trajectories the to-
tal energy increases as a result of collision, while it decreases
for others. Average over the batch of trajectories, with thermal
distribution of collision energies at room temperature, leads to
relatively small overall energy defect.

The weighted sum over b of the 2D-histogram in
Fig. 3 produces a differential (over �E) cross section for en-
ergy transfer, plotted in Fig. 4. Such dependence is used in
analytic theories of CET39–41 and is sometimes called the en-
ergy transfer function. Comparison of the AR vs. FR data
(filled vs. empty symbols) shows that in the regime of mod-
erate energy transfer, −500 ≤ �E ≤ +500 cm−1, the agree-
ment between two methods is reasonably good. Furthermore,
the overall trend of the differential cross section is reproduced
well by FR-method through eight orders of magnitude range
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FIG. 4. Energy transfer function obtained by the original AR (filled sym-
bols) and the developed FR (empty symbols) methods. The long dashed line
at �E = 0 separates quenching (to the left) from excitation (to the right).
Purely vibrational quenching is to the left of the short dashed line at �E
= −489 cm−1. Discontinuity at �E = −590 cm−1 is due to the vibrational
mode character. Note that the FR method reproduces all these fine features.
Initial ro-vibrational state is the same as in Figs. 1 and 3.
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of values and in a broad range of �E. At large positive �E
> +500 cm−1 the FR-method overestimates cross section (as
discussed above), while at large negative �E < −500 cm−1

the FR-method somewhat underestimates the cross section.
Note a sharp change of the slope at �E = −489 cm−1. This
amount of energy corresponds to the initial rotational exci-
tation of the molecule in this example, so, the point where
the energy transfer function bends corresponds to transforma-
tion from the ro-vibrational quenching to purely vibrational
quenching. Finally, note a discontinuity of cross section at �E
= −590 cm−1. To the right of this dashed line the normal-
mode state n′ = 47 (which is ∼101 cm−1 below the initial
state) participates in the energy transfer, while to the left of
this line the energy transfer is dominated by the local-mode
state (much smaller cross section, see below). Interestingly,
even these fine features of the energy transfer function are re-
produced by the FR-method.

C. Vibrational state-to-state transition cross sections

More detailed insight is provided by comparing cross
sections for vibrational state-to-state transitions computed as

σ
(i)
n,n′ = 2πbmax

N

∑
bp

(i)
n,n′ (b). (19)

Here, the sum is over N trajectories in a batch and in-
cludes all the final (classical) rotational states. In this com-
putational experiment we took, as initial states, four different
rotational states of the normal-mode vibrational state n = 51,
and four different rotational states of the local-mode vibra-
tional state n = 50. Those are listed in Tables I and II. Total en-
ergies E(i)

n of these scattering resonances cover a broad range,
from roughly 25 cm−1 to 630 cm−1 above dissociation thresh-
old. Their widths �(i)

n (inversely proportional to lifetimes) also
cover a broad range of values, 10−6 to 10−1 cm−1. The fi-
nal vibrational states are listed in the first column of Tables I
and II.

The largest values in Tables I and II correspond to elas-
tic scattering cross sections. They are all reproduced accu-
rately enough for the normal-mode initial states (deviations
are 11%-14%) and somewhat less accurately for the local-
mode initial states (deviations are 2%-17%). Only in one case
the deviation is quite large (39%, last column of Table II), but
this is because this initial state is very close to the barrier top
(large width of the resonance � = 0.25 cm−1). It has short
lifetime and, consequently, tends to dissociate. Small changes
in the energy transfer lead to significant changes in the post-
collisional behavior.

It is well known that the elastic scattering cross section,
strictly speaking, diverges if the scattering motion is treated
classically. Sometimes this problem is overcome by an appro-
priate choice of the maximum impact parameter, or by remov-
ing, in an ad hoc way,42 the elastic scattering peak clearly seen
at �E = 0 in Fig. 3 (red) and Fig. 4 (dashed line). We tried
several of these methods and saw very similar results. The
elastic scattering cross sections given in Tables I and II were
obtained by disregarding all trajectories with |�J| < 1. This
method allows removing selectively all points of the elastic
scattering peak, without affecting the rest of data. Roughly, it

corresponds to setting up the maximum impact parameter at
∼9 a0 (see Fig. 3).

As for vibrationally inelastic processes, the largest cross
sections are usually observed for transitions between states of
same character. Normal-mode states tend to stabilize to the
normal-mode states, while local-mode states tend to stabi-
lize to proper local-mode states. For example, for the initial
normal-mode state (n = 51) the largest inelastic cross section
corresponds to the final state n = 48 (see Table I), which is
the closest normal-mode state. Similarly, for the initial local-
mode state (n = 50) the largest inelastic cross section cor-
responds to the final state n = 47 (see Table II), which is
the closest local-mode state in the same dissociation chan-
nel. This qualitative feature is reproduced well by the FR
method, but the absolute values of cross sections are differ-
ent in the AR and FR cases. For the initial states at lower
energies E(i)

n ≤ 350 cm−1 the FR cross sections are a factor
of ×2 to ×5 smaller, compared to the AR cross sections.
This difference increases to ×8 for states at higher energies
E(i)

n ∼ 420 cm−1 and 630 cm−1, respectively (last columns in
Tables I and II).

Other entries in Tables I and II show similar differences
of state-to-state cross sections obtained from AR and FR
methods. Note that for smaller cross sections the statistical er-
ror is typically larger. In those cases when cross sections are
reasonably large and statistical error is small (within ∼25%)
the typical difference between AR and FR results is ×4. This
is similar to performance of the rotationally sudden approx-
imation in the time-independent methods, known to produce
cross sections that are a factor of ×2 to ×4 smaller, compared
to exact results.43, 44

D. Stabilization cross sections

For approximate treatment of recombination kinetics at
low and moderate pressure of M it is not really necessary to
compute individual cross sections for all vibrational state-to-
state transition. It is advantageous to introduce stabilization
cross section for each scattering resonance:

σ
(i)
n,stab = 2πbmax

N

∑
bP

(i)
n,stab(b), (20)

P
(i)
n,stab =

∑
E<0

p
(i)
n,n′ . (21)

The sum in Eq. (21) is over the final vibrational states
below dissociation threshold, E(i)

n < 0. Note that this en-
ergy includes the final rotational energy, so, the stabilization
cross section characterizes the overall ro-vibrational quench-
ing (within MQCT, where rotation is treated classically while
vibration is treated with quantum mechanics). Stabilization
cross sections are the most practically important moieties.
Figure 5 shows convergence study of stabilization cross sec-
tion for state n = 50 (same rotational state as before) in both
AR and FR calculations. For a batch of 3000 trajectories the
statistical error is rather small, typically close to 5%. Interest-
ingly, Fig. 5 demonstrates that with only as few as 100 tra-
jectories one can obtain a reasonable estimate of stabilization
cross section.

 



124301-8 Teplukhin, Ivanov, and Babikov J. Chem. Phys. 139, 124301 (2013)

N

0 500 1000 1500 2000 2500 3000

σ,
 δ

σ
(a

02 )

0

50

100

150

δσ

σ (AR)

σ (FR)

FIG. 5. Convergence of stabilization cross sections in the original AR (blue)
and the developed FR methods (red). Statistical errors for each method are
given at the bottom of the figure. Initial ro-vibrational state is the same as in
Figs. 1, 3, and 4.

Last row in Tables I and II lists the values of stabiliza-
tion cross sections for eight scattering resonances considered
here. The values obtained from FR method are only a factor
of ×2 to ×3 smaller, compared to AR method, in the entire
range of rotational excitations and for both normal and local
vibration mode states. This is very encouraging, since such a
difference is usually assumed quite acceptable in most kinet-
ics models. In Figure 6 we plotted the ratio of cross sections
= σ stab(AR)/σ stab(FR) obtained from two methods, as a func-
tion of initial (total ro-vibrational) energy of the scattering
resonance. Although the correlation is not particularly strong,
these data suggest that a ratio of 2-to-3 is typical for the FR
approach in the entire range of energies, when it is used to
compute the ro-vibrational stabilization cross sections.

E, cm
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FIG. 6. Ratio of stabilization cross sections computed from the original AR
method and the developed FR method. The data are presented for eight scat-
tering resonances: four different rotational states of the normal mode vibra-
tional state (filled symbols, see Table I) and four different rotational states of
the local mode vibrational state (empty symbols, see Table II). The fit is by a
logarithmic function.

V. CONCLUSION

In this paper we formulated the frozen-rotor approxi-
mation for MQCT and conducted a thorough numerical test
to assess its efficiency and accuracy, in comparison to the
original version of MQCT where rotation of the molecule
in space is treated explicitly and adiabatically. The FR treat-
ment of rotation only requires propagating a simple Eq. (17)
with mean torque defined by Eq. (8), and computing the cen-
trifugal potential function in Eq. (5), to add to the quantum
Hamiltonian. This approach permits to block the artificial
and undesirable ro-vibrational transitions at the pre- and post-
collisional stages of the process. As for computational costs,
the FR method is 3.8 times faster (for the 2D-model of ozone)
because the backward propagation is no more needed and
because the equations for rotational excitation/quenching be-
come much simpler. Computational advantage of the FR ap-
proximation is expected to be more important in the case
of full-dimensional 3D calculations of ozone stabilization,
planned in the near future.

Although molecular orientation is fixed in space, the
energy exchange between rotational, vibrational, and transla-
tional degrees of freedom still occurs in the FR method, allow-
ing to compute ro-vibrational excitation and quenching. Note-
worthy, behavior of the energy transfer function through eight
orders of magnitude range of values and in a broad range of
�E is reproduced well by the developed FR-method, includ-
ing some fine features. In the range of moderate −500 ≤ �E
≤ +500 cm−1 the FR-method is rather accurate. The absolute
values of stabilization cross sections for scattering resonances
trapped behind the centrifugal threshold are a factor 2-to-
3 smaller (compared to the explicit-rotation approach). This
performance is acceptable and is similar to the well-known
sudden-rotation approximation in the time-independent in-
elastic scattering methods.
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