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ABSTRACT 
EFFECT OF SUPPORT COMPLIANCE ON THE RESONANT BEHAVIOR OF 

MICROCANTILEVER-BASED SENSORS IN VISCOUS FLUIDS 
 
 

Rabin Maharjan, B.E., M.S. 
 

Marquette University, 2013 

Resonant microcantilevers are often considered for use in chemical sensing and 
biosensing applications. However, when excited in the conventional transverse flexural 
mode, their performance in liquids is severely compromised. Theoretical and 
experimental studies have shown that the detrimental effects of the liquid may be 
mitigated by operating the microcantilever in lateral flexure, especially for microbeams 
having smaller length-to-width (L/b) ratios. However, for these most promising 
geometries the predictions of existing models tend to diverge from experimental data for 
resonant frequency (fres) and quality factor (Q). A likely reason for these discrepancies is 
support compliance, which has been neglected in existing models. Thus, the derivation of 
an analytical model for the lateral-mode dynamic response of a microcantilever in a 
viscous fluid, including the effects of support compliance, is warranted and is the focus of 
this dissertation. 

 
Analytical solutions for natural frequency and Q are first obtained for the free-

vibration case, followed by solutions for the forced-vibration response when the 
cantilever is excited by an imposed harmonic relative rotation near the support 
(simulating electrothermal actuation). Values of fres and Q are extracted from the response 
spectra for the tip deflection and the bending strain near the support. The support 
compliance (required as model input) is analytically related to device dimensions by 
employing dimensional analysis and 3-D FEA. The analytical results for the resonant 
characteristics are also related to sensor performance metrics (sensitivity and limit of 
detection), thus permitting one to exploit the potential of lateral-mode microcantilever-
based liquid-phase sensors. The impact of support compliance, fluid resistance, and beam 
dimensions on the free- and forced-vibration response are explored, as are the differences 
associated with the two output signals. Comparisons of results with experimental data 
show a marked improvement over the previous rigid-support models for smaller L/b 
values. For the practical ranges of parameters considered the model indicates that, at 
smaller L/b values, support compliance may reduce Q by up to ~14% and fres and mass 
sensitivity (Sm) by up to ~21%. Conversely, for L/b>15 the support compliance effects are 
no more than 2% on Q and 4% on fres and Sm.  
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CHAPTER 1  
INTRODUCTION 

 

1.1 Background of Microcantilever-Based Sensors 
 
 
 In recent years microelectromechanical systems (MEMS) devices, in particular, 

microcantilever-based devices have been increasingly utilized in physical, chemical, and 

biochemical sensing applications. The interest in microcantilever-based sensors has 

increased mainly because of their estimated high sensitivity resulting from the large 

surface area-to-volume ratio [Dufour et al., 2012]. Other advantages associated with 

microcantilever-based sensors are label-free sensing, low cost, portability, fast sensing 

rate, and parallel sensing ability [Boisen et al., 2011]. Small size, simple structure and 

ability to operate in both liquid and gas make microcantilevers highly attractive sensing 

platforms [Finot et al., 2008]. Because of these many benefits, microcantilevers have 

generated interest in fields as diverse as medicine (specifically for the screening of 

diseases, blood glucose monitoring), in-situ environmental monitoring, and detection of 

chemical and biological warfare agents.  

 Microcantilevers were first used in atomic force microscopy (AFM) as a force 

sensor to image surfaces [Binnig et al., 1986].  The discovery that humidity, temperature 

and chemical adsorption influence the quasi-static deflection and resonant frequency of 

microcantilever probes in AFM led to the use of microcantilevers in chemical, physical, 

biological, and biochemical sensing applications [Thundat et al., 1994]. 

 Microcantilever-based sensors consist of an inert base material as the main 

structure which is coated with a sensing layer or receptor [Lavrik et al., 2004] that sorbs 

specific analytes of interest from the ambient environment. Microcantilever-based 
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sensors can be operated in either the static mode or the dynamic (resonant) mode [Lavrik 

et al., 2004; Finot et al., 2008]. In the static mode of operation the quasi-static deflection 

of the cantilever, due to analyte-induced surface effects, is measured, while in the 

dynamic mode the resonant frequency, affected by sorbed mass, is monitored.  Any 

changes in deflection (static mode) or shifts in frequency (dynamic mode) may be used to 

quantify the concentration of analyte present in the operating environment. For the 

dynamic-mode sensors, the accurate measurement of resonant frequency and frequency 

shift greatly depends on the quality factor Q associated with the resonant peak of the 

system. Larger Q values represent sharper resonant peaks which can be measured easily, 

thus giving accurate readings for resonant frequency and frequency shifts. Smaller Q 

values correspond to broader resonant peaks from which it is difficult to measure 

resonant frequency and frequency shifts accurately. Therefore, achieving high-Q 

resonances is of paramount importance if a resonator is to be employed as an effective 

dynamic-mode sensor; indeed, this has been a major obstacle in the development of 

microcantilever-based sensors for liquid-phase detection. For this reason modeling the 

dynamic mode operation of microcantilevers in liquids will be a primary focus of the 

present work.   

Different methods of measuring the cantilever deflection can be employed. 

Optical read-out using a laser [Lavrik et al., 2004; Boisen et al., 2011] and piezoresistive 

read-out [Beardslee et al., 2012] are two commonly used methods for measuring 

cantilever deflection. Optical read-out uses a laser to track the tip of the cantilever and 

thus determine its deflection response. As an example of the piezoresistive read-out 

method, the deflection may be indirectly measured using a piezoresistive Wheatstone 



3 
 

bridge near the support. The bending strain will cause a change in resistance of the 

piezoresistors which in turn alter the bridge voltage. This change in voltage can then be 

related to the deflection of the microcantilever [Cox, 2011]. In the modeling efforts to be 

pursued in the present work, both read-out methods will be considered.      

 Dynamically driven microcantilevers can be excited in various modes: the 

transverse (out-of-plane) flexural mode, the lateral (in-plane) flexural mode, the torsional 

mode, and the axial mode. The most commonly used exciting mode for dynamic mode 

microcantilevers is the transverse mode mainly because it is the most flexible mode, i.e., 

the mode in which the beam “naturally” tends to vibrate. This mode of excitation has 

been successfully employed in many gas-phase sensing applications [e.g., Thundat et al., 

1995; Lange et al., 2002; Rogers et al., 2003; Vancura et al., 2005; Tetin et al., 2010]. 

When the transverse mode is used for liquid phase sensing, however, the drastic drop in 

quality factor and resonant frequency compared to gas phase sensing makes liquid-phase 

sensing unfeasible [e.g., Dufour et al., 2007a; Vancura et. al., 2008]. This is mainly 

caused by the added mass and damping associated with the liquid [Dufour et al., 2007a; 

Dufour et al., 2012; Cox et al., 2012]. The cantilever drags a portion of the liquid with it 

as it vibrates, causing an increase in its effective mass and therefore a decrease in the 

resonant frequency. Also, the viscosity of the liquid increases the damping of the system 

(the dissipation of energy increases), which results in a severe decrease in the quality 

factor as well as a drop in resonant frequency. To overcome these detrimental effects of 

the liquid, the lateral mode of vibration can be utilized [Sharos et al., 2004; Dufour et al., 

2004; Dufour et al., 2007a]. The lateral mode is stiffer than the fundamental transverse 

mode, but it involves less effective fluid mass and lower levels of viscous damping due to 
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the more “streamelined” orientation (see Fig. 1-1), thus resulting in higher quality factors 

and resonant frequencies [Dufour et al., 2004; Dufour et al., 2007a]. Experimental 

investigations [Beardslee et al., 2010a-d; Beardslee et al., 2012] and theoretical studies 

[Heinrich et al., 2010a, b; Cox et al., 2012] have already explored in detail how the lateral 

mode of vibration may significantly improve the quality factor and resonant frequency of 

a microcantilever resonating in a liquid medium. These studies have also quantified the 

strong role that the dimensions of the microbeam have on the resonant characteristics of 

the device.  

 
(a)                                                         (b) 

Figure 1-1: Two flexural modes of a microcantilever device: (a) the conventional 
transverse (out-of-plane) bending mode; (b) the lateral (in-plane) bending mode. 
 
 
1.2 Motivation for the Study 
 
 
 As noted in the previous section, the transverse flexural mode is not a viable 

option for liquid-phase microcantilever-based sensing because of the fluid inertia and the 

large energy losses that take place due to viscous dissipation in the liquid. The associated 

degradation of the resonant characteristics translates into poorer mass sensitivities and 

limits of detection when the microcantilever is used as a platform for sensing. Some 

recent studies by the Marquette University/Georgia Tech/University of Bordeaux 
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(MU/GT/UB) research team – in particular, the theoretical work by Heinrich et al., 

(2010a, b), which were based on Bernoulli-Euler beam theory for the perfectly fixed case, 

and the experimental work by Beardslee at el., (2010a-d) -- have shown that the most 

effective design for a microcantilever-based sensor vibrating in the lateral mode in a 

viscous fluid is a microcantilever that is short and wide. However, for short and wide 

beams the perfectly fixed beam model based on classical Bernoulli-Euler beam theory 

loses its accuracy likely due to (1) Timoshenko beam effects of shear deformation and 

rotatory inertia, and (2) support compliance effects. The influence of the Timoshenko 

beam effects has recently been studied in detail [Schultz et al., 2013a, b], but that model 

also assumes a “perfect clamp” boundary condition. For microcantilevers that are 

relatively short and wide and loaded in lateral flexure, the microcantilever is very stiff 

relative to the beam’s support structure. As a result, the conventional  assumption  that  

the  support  is  perfectly  “fixed”  against  rotation  becomes questionable. This provides 

one of the major motivations for the present dissertation research, i.e., to understand the 

effects of support compliance on the resonant characteristics of lateral-mode 

microcantilevers. (While the present model will be based on Bernoulli-Euler beam theory 

and will therefore not account for the Timoshenko beam effects considered in Schultz et 

al. (2013a, b), the theoretical results obtained are expected to prove valuable in future 

extensions to Timoshenko beam models for the compliant support case.) An important 

second motivation is the need to account for the fluid effects in laterally vibrating beams 

because the energy dissipation resulting from fluid effects is large compared to other loss 

mechanisms like support losses, temperature effects, internal damping, etc. 
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1.3 Specific Objectives of the Study 
 
 

The specific objectives of the present study are the following: 

1) to derive a continuous-system model (i.e., having infinite degrees of freedom) 

for lateral (in-plane) vibrations of a microcantilever beam in a viscous fluid, 

incorporating the effects of support compliance and fluid properties.   

2) to formulate boundary value problems (BVPs) for the in-fluid free vibration 

case and in-fluid forced vibration case caused by harmonic relative rotation 

imposed near the support. 

3) to determine the solutions to the BVPs and use these solutions to obtain 

theoretical results for vibration characteristics of particular relevance in 

dynamic-mode sensor applications, i.e., the inherent system properties of 

natural frequency and quality factor corresponding to a free vibration and the 

frequency response, resonant frequency and quality factor for the forced 

vibration case. 

4) to quantify the rotational stiffness of the support in terms of system 

parameters via 3-D finite element analysis  and dimensional analysis. 

5) to study the impact of fluid resistance and beam geometric parameters on the 

natural/resonant frequency and quality factor of the beam, including the 

influence of support compliance. 

6) to compare theoretical frequency and quality factor predictions from the new 

model to the values predicted by previously derived models found in the 

literature and with those measured in experiments of laterally vibrating 

microcantilevers in water. 
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7) to relate the derived theoretical results  to the performance of laterally excited 

microcantilever-based liquid-phase sensors. 

1.4 Problem Statement 
 
 

The primary objective of this research is to derive a mechanics-based, analytical 

model for lateral (in-plane) vibrations of a microcantilever beam in a viscous fluid 

incorporating the effects of support flexibility and fluid properties. Figure 1-2 shows the 

geometric and material parameters of such a system along with the reference axes. 

Parameters L, b, and h are length, width, and thickness of the microcantilever beam, 

respectively. The origin is at the center of the beam-support interface with the x-, y-, and 

z-axes in the directions shown. The lateral deflection (in the y-direction) is denoted by

( , )y x t . The beam is assumed to be elastically supported (in a rotational sense), i.e., not 

perfectly clamped at 0x = , and “free” atx L= . The beam is made of a material with 

Young’s modulus E and mass densitybρ  and is operating in a fluid having dynamic 

viscosity η  and mass desnityfρ . 

 
 

 

 

 

 

 

Figure 1-2: Schematic of a laterally vibrating microcantilever showing dimensions and 
material parameters. 
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The improved mathematical model to be derived in the dissertation research will 

involve the derivation and solution of two boundary value problems (BVPs) that account 

for a finite rotational support stiffness (i.e., an elastic rotational spring support) and will 

incorporate the fluid resistance via a “Stokes-type fluid assumption” [Heinrich et al., 

2010 a, b] that utilizes the solution to Stokes’s second problem [Stokes, 1851]. Rigorous 

derivations and analytical solutions will be obtained for (a) the free vibration case and (b) 

a forced vibration caused by a harmonic relative rotation imposed at an infinitesimal 

distance from the spring support. The motivation behind choosing the loading of (b) is 

that it provides a kinematic means of simulating the electrothermal excitation utilized in 

recent experiments on devices that employed integrated heating resistors near the beam 

support [e.g., Beardslee et al., 2010a]. (See Fig. 1-3.)  Such an equivalent load was 

introduced in a recent effort to model these devices under the assumption of infinite 

support stiffness [Heinrich et al., 2010b]; thus, the forced-vibration solution pursued in 

the present work represents an extension of the previous model to account for support 

compliance. For the free vibration case, the characteristic equation of the system is 

determined and from it the natural frequencies are determined and then the quality factors 

and mode shapes are determined. For the forced vibration case, the total tip displacement 

response and bending strain response at the root of the beam will be determined and from 

these responses the important dynamic characteristics associated with the harmonically 

excited system – namely, the resonant frequencies and resonant quality factors -- will be 

derived. These results for resonant/natural frequencies and quality factors will then be 

related to the sensor performance metrics of mass sensitivity, chemical sensitivity, and 

limit of detection (LOD). 
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For the forced vibration excitation via harmonic relative rotation near the support, 

the choice of the bending strain at the root of the beam as an output signal of interest is 

motivated by the devices tested previously [e.g., Beardslee et al., 2010a] which detect 

beam motion via piezoresistive elements near the cantilever support, i.e., beam motion is 

measured in terms of bending strain near the support. (See Fig. 1-3.) The total tip 

displacement response, also examined in the present work, is relevant for sensor 

applications that utilize an optical (laser) system to monitor total tip displacement/slope.  

 

 
Figure 1-3: Electrothermally excited microcantilever: (a) SEM image; (b) schematic of 
heating resistors and piezoresistive Wheatstone bridge for vibration detection [Beardslee 
et al., 2010b]. 
 
 

An important aspect of the proposed work that may perhaps have widespread 

applicability in the microcantilever/MEMS field is that a mechanics-based correlation 

study will be performed in order to relate the rotational spring constant of the support 

(support stiffness) to the geometric parameters (length L, width b, and thickness h) of the 

microcantilever for one of the most common support/beam interface topologies 

encountered in MEMS devices. This will result in analytical expressions, based on 3-D 
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finite element analysis, which will accurately quantify rotational support stiffness in 

terms of L, b, and h. 

Results of the study will be compared to other known models for particular 

limiting cases, including previous models and experimental data [Heinrich et al., 2010a,b; 

Beardslee et al., 2010a-d; Beardslee et al., 2011; Beardslee et al., 2012]. These 

comparisons will not only provide a verification of the new model, but will also lead to a 

better understanding of the effects of support flexibility and fluid properties on the 

lateral-mode vibration of microcantilever-based sensors operating in liquids. 

1.5 Organization of Dissertation 
 
 

This dissertation is organized into eight chapters. Following the present 

introductory chapter, which includes the background on microcantilever-based sensors, a 

review of relevant literature, the motivation and objective for the present study, and a 

statement of the problem to be investigated, a detailed review of relevant literature will 

be presented in Chapter 2. This review will include both transverse-mode and lateral-

mode microcantilevers as well as a review of limited studies that attempt to theoretically 

model the effects of a compliant support on a vibrating microcantilever. In Chapter 3, the 

mathematical model for the lateral vibration of an elastically supported cantilever beam 

in a viscous fluid will be formulated as boundary value problems (BVPs) for two cases: 

in-fluid free vibration and in-fluid forced vibration caused by harmonic relative rotation 

imposed near the support. In Chapter 4, the solutions of the BVPs formulated in Chapter 

3 will be obtained. Both exact and approximate analytical solutions will be derived for 

the in-fluid free vibration case. For in-fluid forced vibration via harmonic relative 

rotation near the support, the solution will be expressed in terms of the total tip 
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displacement and the bending strain at the root. Chapter 5 will focus on the quantification 

of the rotational stiffness of the typical support type encountered in microcantilever 

applications. This stiffness will be expressed in terms of cantilever dimensions, i.e., L, b 

and h. This will be accomplished by using Finite Element Analysis (FEA), the results of 

which will be used in conjunction with a dimensional analysis based on the Buckingham 

Pi Theorem in order to rationally deduce a simple analytical expression for the 

dimensionless rotational support stiffness. In Chapter 6 parametric studies based on the 

results obtained in the previous chapters will be performed and discussed. These 

theoretical results will also be compared with recent theoretical and experimental results 

from the literature. In Chapter 7 the results for resonant frequencies and quality factors 

will be related to the performance characteristics of microcantilever-based sensors, 

namely, mass sensitivity, chemical sensitivity and limit of detection (LOD), and 

recommendations for achieving optimum cantilever geometries for sensing applications 

will be made. A summary of the study, including the main conclusions as well as 

recommendations for future work, will be given in Chapter 8. 
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CHAPTER 2  
LITERATURE REVIEW OF RESONANT MICROCANTILEVERS 

 

2.1 Introductory Remarks 
 
 

In this chapter a literature review of analytical and experimental studies pertaining 

to resonant cantilevers and dynamic-mode microcantilever-based sensors, many having 

applications in the realm of chemical and biochemical sensing, is presented. The 

literature review begins by summarizing several of the important works on dynamically 

operated transverse-mode microcantilevers in both gas and liquid media. Previous 

analytical and experimental studies on resonating lateral-mode microcantilevers operating 

in fluid are then reviewed. These studies on lateral flexural vibrations were primarily 

motivated by the desire to overcome the detrimental effects of a surrounding liquid (fluid 

inertia and viscous energy dissipation) on the resonant characteristics of transverse-mode 

sensors. These studies have shown that the improvement in the in-liquid resonant 

characteristics are more pronounced for shorter and wider microcantilevers for which 

support compliance effects might be of significant importance, thereby providing the 

context for the present research whose primary objective is to quantify the effects of 

support comliance and liquid resistance on the resonant characteristics of 

microcantilevers and the associated performance of microcantilever-based sensors. Also, 

to place the present work in the proper context from a fundamental mechanics standpoint, 

some earlier papers published in the mechanics literature that explore support compliance 

and its effect on vibrating cantilever beams are discussed as the present study builds upon 

some of the approaches taken by prior researchers. 
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2.2 Transverse-Mode Microcantilevers 
 
 
 With the invention of atomic force microscope (AFM) in 1986, microcantilevers 

were utilized as imaging probes in AFM devices [Binnig et al., 1986]. In 1994, Thundat 

observed that relative humidity, temperature and vapor adsorption influenced the 

deflection and resonant frequency of microcantilever probes in AFM [Thundat et al., 

1994]. This discovery, especially regarding the effect of vapor adsorption on deflection 

and resonant frequency, initiated the use of microcantilevers as the basis for novel 

chemical sensors in mid-1990s [Barnes et al., 1994; Thundat et al., 1994, 1995]. Ever 

since, transverse-mode microcantilevers operating in the dynamic (resonant) mode have 

been used in various gas-phase sensing applications, e.g., for detection of mercury vapor 

[Thundat et al., 1995; Rogers et al., 2003], carbon dioxide and helium [Tetin et al., 2010], 

and volatile organic compounds [Lange et al., 2002; Vancura et al., 2003, 2005]. These 

devices have also been used as chemical and biological sensors involving liquid-phase 

detection [e.g., Tamayo et al., 2001; Lavrik et al., 2004; Li et al., 2006]. However, 

transverse-mode microcantilevers operating dynamically in viscous liquids suffer severe 

reductions in resonant frequency and quality factor (relative to the in-vacuum or in-gas 

cases), thus decreasing their sensing capabilities [e.g., Schaffer et al., 1996; Chon et al., 

2000; Basak et al., 2006; Dufour et al., 2007a; Vancura et. al., 2008]. This is mainly 

caused by the added mass and damping associated with the liquid [Dufour et al., 2007a, 

2012; Ghatkesar et al., 2008; Cox et al., 2012].  

With the resonant characteristics of a microcantilever being strongly dependent on 

the fluid in which it operates, detailed theoretical studies of the interaction of vibrating 

cantilevers and viscous fluids have been the subject of several studies in recent years. In 
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1998, Sader presented a theoretical analysis of the frequency response of a cantilever 

beam of arbitrary cross section, operating in a viscous fluid via an arbitrary driving force 

with practical relevance to AFM applications [Sader, 1998]. He incorporated the viscous 

fluid effects (hydrodynamic forces) by introducing a hydrodynamic function for an 

infinitely thin rectangular blade oscillating out-of-plane. His work was relevant to 

practical AFM devices which typically involve transversely vibrating cantilevers of thin 

rectangular cross section. To test the validity and accuracy of Sader’s theoretical model, 

experimental investigations were made on the frequency response of AFM cantilever 

beams immersed in different fluids (air, acetone, CCL4, water, and 1-butanol), 

demonstrating good agreement between the theory and the experimental data for all fluids 

tested [Chon et al., 2000]. Green and Sader (2005) extended Sader’s earlier model by 

including the effects of a solid surface at an arbitrary distance from the vibrating 

cantilever. Subsequently, an investigation was done on the frequency response of 

rectangular cantilevers in viscous fluids for arbitrary transverse and torsional modes 

considering three-dimensional flows around the cantilever [Van Eysden and Sader, 

2007]. Maali et al. (2005) experimentally investigated the influence of the fluid motion 

on the oscillating behavior of an AFM cantilever, considering up to 8 vibration modes, 

while also rewriting Sader’s solution of 1998 in an alternative form. Ghatkesar et al. 

(2008) experimentally obtained in-liquid quality factor and resonant frequencies for the 

first 16 transverse modes using an array of 8 microcantilevers and compared the results 

with Sader’s (1998) and Van Eysden and Sader’s (2007) models. Both models compared 

well with the experimental results for quality factor. The frequency results were 

estimated well by the latter model, but the former model showed large deviation in 
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estimating frequency due to its development being restricted to the fundamental mode. 

The quality factors obtained were relatively low but increased with higher modes (1 at 

mode 1 to 30 at mode 16), indicating that the fluid effects were less prominent at higher 

modes. The theoretical models used for comparison were based on homogeneous 

cantilevers, but in practical applications the substrate material may be coated with one or 

more layers, often including a sensing layer (possibly viscoelastic) to sorb particular 

analytes. Subsequent research has investigated the effect of the coating viscoelaticity 

(non-mass effect) and the fluid on the resonant frequency and quality factor [Sampath et 

al., 2006; Dufour et al., 2007b; Cox et al., 2008]. A recent generalization of the 

hydrodynamic function used in the 1998 Sader paper was made by Brumley et al. (2010), 

in which the effect of an arbitrary aspect ratio of the rectangular cross section was studied 

in detail, in addition to the effect of Reynolds number.   

As noted earlier, the performance of dynamically operated transverse-mode 

microcantilever-based sensors in liquid-phase operation deteriorates due to the viscous 

dissipative and inertial effects of the liquid. To overcome this problem in liquid-phase 

sensing, recent research has examined alternative vibration modes in place of the 

transverse flexural mode. For example, torsional modes [e.g., Green and Sader, 2002, 

2005; Johnson and Mutharasan, 2011; Cai et al., 2012] and axial (longitudinal) modes 

[e.g. Castille et al., 2010] have been investigated in the literature in an effort to improve 

liquid-phase sensing. One of these alternative modes that has been suggested in the recent 

literature is the lateral (in-plane) flexural mode, which is the main interest of the present 

study. This class of devices is therefore the focus of the following section.  
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2.3 Lateral-Mode Microcantilevers  
 
 

With the aim of lowering the detrimental effects of fluids on the resonant 

frequencies and quality factors of microcantilever devices, the lateral flexural mode of 

vibration has been explored both experimentally and theoretically. Sharos et al. (2004) 

performed experiments on laterally vibrating microcantilevers and with the aid of finite 

element analysis showed potential improvements in mass sensitivity by an order of 

magnitude and significant improvements in the quality factor compared to the 

fundamental transverse mode of vibration. Dynamic-mode microcantilevers vibrating in 

the lateral direction have been experimentally investigated recently [Beardslee et al., 

2010a-d, 2011, 2012]. These investigations also included geometric optimization for 

improved resonant frequency and quality factor [Beardslee et al., 2010a; Beardslee et al., 

2012]. The lateral flexural mode has been shown to enhance the sensitivity and limit of 

detection of sensors for liquid-phase sensing [Beardslee et al., 2010c]. In all of these 

experiments, the microcantilever was excited electrothermally via heating resistors near 

the support and a piezoresistive detection method was used. (See Fig. 1-3.) 

Recently, lateral mode microcantilevers operating in viscous fluid have been 

theoretically investigated [Dufour et al., 2004; Dufour et al., 2007a; Heinrich et al., 

2010a, b; Cox et al., 2012]. Many of these studies were made in tandem with the 

aforementioned experimental studies. Approximate values of the in-liquid quality factor 

and resonant frequency for transverse and lateral mode vibrations of microcantilevers 

have been theoretically determined and compared by Dufour et al. (2004; 2007a) using 

Sader’s model [ Sader, 1998]. Those papers indicated that the viscous losses were 

reduced for the lateral case due to the beam’s more streamlined orientation and, thus, the 
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quality factor and resonant frequency were larger, improving the sensitivity and limit of 

detection of the device. The frequency also increased due to the increase in stiffness 

corresponding to strong-axis (in-plane) bending. However, the theoretical model that was 

employed in these studies ignored the shear stresses exerted by the fluid on the larger 

faces of the cantilever for the lateral-mode case. For this reason the advantages of the 

lateral mode may have been overestimated.  

To improve the theoretical model for the lateral vibration mode, Heinrich et al., 

(2010a) modeled the cantilever as a single-degree-of-freedom (SDOF) system using as a 

shape function the fundamental mode shape of a perfectly fixed cantilever in vacuum and 

employing the assumption of Stokes-type fluid resistance. The cantilever was excited via 

a harmonic lateral tip force and closed-form analytical expressions for resonant frequency 

and quality factor were obtained. The results for quality factor (Q) were then compared to 

the experimental work of Beardslee et al. (2010a). The comparison showed that the 

SDOF model gave an excellent quantitative estimate of the experimental Q for relatively 

thin cantilevers; for thicker specimens the analytical formula provided an upper bound on 

the experimental Q (most likely due to the neglected drag on the smaller faces of the 

beam and the support deformation that was neglected), yet still provided a reasonable 

quantitative estimate.  

It is to be noted that the actuation method employed in  recent experimental  

studies on lateral-mode devices was based on electrothermal excitation via integrated 

heating resistors near the beam support [Beardslee et al., 2010a-d; 2011; 2012]. To 

accurately model this type of excitation, a continuous system analytical model was 

derived in which an equivalent imposed support rotation was used to simulate the 
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electrothermal actuation [Heinrich et al., 2010b]. The support rotation loading is a more 

accurate, mechanics-based representation for thermal excitation near the support than is 

the tip load, although the latter may be a more appropriate representation for other 

applications. The analytical results for quality factor derived from this model verified the 

results obtained from the previous SDOF model with harmonic tip excitation, indicating 

the applicability of the SDOF results for thermally excited microcantilever devices using 

the fundamental lateral mode. In both of the analytical models [Heinrich et al., 2010a, b] 

the fluid-beam interaction was modeled using the classical solution of Stokes’s second 

problem for an oscillating infinite plate [Stokes, 1851]. This assumes that the fluid 

resistance is due to shear stresses on the largest faces of the beam and that the pressure 

effects on the narrower sides are negligible. Therefore, both of these models are 

applicable only for sufficiently thin microcantilevers vibrating in-plane in liquid. 

Recently, Cox et al. (2012) investigated lateral-mode cantilevers vibrating in viscous 

liquids and included the effect of fluid resistance due to pressure on the smaller faces in 

addition to the edge effects that were neglected in the Stokes model employed in Heinrich 

et al. (2010a, b). In that study a semi-analytical expression was derived for the 

hydrodynamic function and utilized to calculate theoretical values of resonant frequency 

and quality factor. The results were then compared with experimental data as well as with 

results for transverse-mode vibration. The laterally vibrating microcantilevers were found 

to have higher resonant frequency and Q compared to their transversely vibrating 

counterparts of the same geometry. The theoretical lateral resonant frequency compared 

quite well for long and narrow beams but for shorter and wider beams (e.g., for L=200 

µm, b= [45, 60, 75, 90] µm) the theoretical model of Cox et al. (2012) overestimated the 
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experimental resonant frequencies. The authors attributed this deviation from 

experimental data at larger b/L values as the result of Timoshenko beam effects and 

support compliance effects, which were not considered in that study. In most cases the 

theoretical quality factor in that study underestimated the experimental results but 

followed similar trends.  

Recent theoretical and experimental studies on resonant microcantilevers 

operating in the lateral mode in viscous liquids have shown that the quality factors and 

resonant frequencies are larger for shorter and wider cantilevers [Heinrich et al., 2010a, 

b; Beardslee et al., 2010a, 2012; Cox et al., 2012]. Thus, these geometries are the most 

promising for lateral-mode sensing application. However, the previously mentioned 

theoretical models [Heinrich et al., 2010a, b; Cox et al., 2012] are based on the 

assumptions of Bernoulli-Euler beam theory and the assumption of perfect fixity at the 

supported end of the microcantilever. For short and wide beams in lateral flexure, these 

assumptions become questionable. The fact that these various assumptions no longer hold 

for “stubbier” beams is supported by the fact that the theoretical estimates of resonant 

frequency and quality factor overestimate the experimental measurements when the 

specimens become shorter and wider [Heinrich et al., 2010a,b]. The validity of the 

Bernoulli-Euler assumptions becomes questionable due to the Timoshenko beam effects 

of shear deformation and rotatory inertia. These effects have recently been considered in 

a more general theoretical model [Schultz et al., 2013a, b], but the effect of support 

compliance in liquid-phase vibrations of lateral-mode devices has yet to be considered. 

The perfect-fixity assumption becomes especially suspect regarding the assumption of 

zero rotation at the support. Thus, the derivation of an analytical model for the lateral-
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mode dynamic response of a microcantilever in a viscous fluid, including the effects of 

rotational support compliance, is warranted and provides the major motivation for the 

present work. For this reason, the next section of the literature review will focus on the 

support compliance effects on the dynamic response of beams, including the effect on the 

resonant characteristics of in-fluid lateral-mode microcantilever-based sensors.   

2.4 Microcantilevers with Elastic Support  
 
 
 Many studies on the effects of support compliance on the static deflection of 

beams [e.g., O’Donnell, 1960] and the natural frequencies of vibrating flexural members 

[e.g., MacBain and Genin, 1973a,b] have been made since the mid-20th century, 

including a few recent papers that focus on MEMS/NEMS devices [Spletzer et al., 2006; 

2008; Rinaldi et al., 2007; Fadel-Taris et al., 2011; Guillon et al., 2011; Tanno et al., 

2012]. In the 1960 paper by W. J. O’Donnell an expression for the rotational support 

stiffness was derived for applications in computing the static deflection of so-called 

clamped beams. A decade later MacBain and Genin (1973a) studied the effect of support 

compliance on the natural frequencies of built-in beams and developed an expression for 

support stiffness for the case of the vibrating beam. In another investigation [Macbain 

and Genin, 1973b] the same authors took into account the Timoshenko beam effects to 

obtain theoretical values of the fundamental frequency and showed the effect of the 

rotational stiffness of the support on the fundamental frequency. Their numerical results 

were based on employing a finite difference formulation. The effects of translation as 

well as of rotation of the support on the fundamental frequency of a uniform cantilever 

beam were investigated by Justine and Krishnan (1980) using a matrix iteration 

procedure. In later studies Cook (1991) presented the derivation of an expression for the 
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rotational stiffness of the support for finite element applications and Stevens (1996) used 

finite element analysis to study the deflection of cantilever beams with an integral 

(monolithic) elastic support of a different modulus than the beam. All three of these 

studies were based on two-dimensional analyses of support stiffness and did not include 

fluid effects. They also did not include the types of support geometries found in 

microcantilever-based MEMS/NEMS devices which are the focus of the present study.  

 Recently, engineered support compliance has been introduced to synchronize 

coupled multiple cantilever systems used as resonant sensors in order to improve 

sensitivity [Spletzer et al., 2006, 2008; Tanoo et al., 2012]. Even when support 

compliance is not introduced intentionally, microfabrication methods and their limitations 

can result in non-ideal support geometries that introduce increased levels of support 

compliance. The non-classical support boundary condition of AFM microcantilevers has 

been quantified through experiments [Rinaldi et al., 2007]. While two other recent studies 

[Fadel-Taris et al., 2011; Guillon et al., 2011] aimed to quantify support flexibility effects 

in cantilever devices at the micro- and nano-scales, the approach taken in those studies 

was experimental and numerical (finite element modeling) and did not attempt to derive 

any physics-based formulas to clearly demonstrate the influence of the various system 

parameters in determining support stiffness. It is also to be noted that most of these 

studies involved transverse beam vibration, in which case the stiffness characteristics of 

the support will differ from those that are relevant to the lateral vibration case which is 

the focus of this study. In these respects, the proposed work will fill an important gap in 

the literature, especially from the perspective of using three-dimensional stress analysis to 

quantify the rotational support stiffness for in-plane microcantilever bending and 
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determining the effects of the support compliance on the resonant behavior of liquid-

phase MEMS/NEMS devices that are becoming more prevalent in today’s world.    

The present chapter and the background material of Chapter 1 have described the 

state-of-the-art with regard to the advantages and limitations of in-fluid lateral-mode 

microcantilever-based devices being operated dynamically for use in sensing 

applications. In particular, for liquid-phase applications the lateral vibration mode 

decreases the negative impact of the viscous fluid effects and improves the resonant 

characteristics, i.e., increases the resonant frequency and quality factor of the resonating 

devices. But for the most promising cantilever geometries in this regard, i.e., those that 

are relatively short and wide, the effects of support flexibility will be most pronounced. 

Because such effects have yet to be adequately addressed in the literature, the present 

research seeks to develop an analytical model for the lateral vibration of a dynamic-mode 

microcantilever in a viscous fluid, including the effects of support compliance.  
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CHAPTER 3 
MATHEMATICAL PROBLEM FORMULATION: LATERAL VIBRATION OF 

ELASTICALLY SUPPORTED CANTILEVER BEAM WITH STOKES-TYPE 
FLUID RESISTANCE 

 
 
3.1 Introductory Remarks 
 
 

In this chapter the mathematical model for the lateral vibration of an elastically 

supported cantilever beam with Stokes-type fluid resistance is formulated. The chapter 

begins with the assumptions made for converting the physical system (Fig. 1-2) into an 

idealized system (Fig. 3-1). Boundary value problems (BVPs) are explicitly formulated 

for two cases: in-fluid free vibration and in-fluid forced vibration caused by harmonic 

relative rotation imposed at an infinitesimal distance from the support. The equations of 

motion (EOMs) are derived by considering the equilibrium of a differential segment of 

beam. Respective boundary conditions (BCs) are discussed and derived. Both the EOMs 

and BCs are presented in non-dimensional forms. 

3.2 Modeling Assumptions 
 
 

In order to represent the physical system, depicted in Fig. 1-2, with an idealized 

model amenable to analytical treatment, the following assumptions are made: 

1) Bernoulli-Euler beam theory is valid, i.e. b << L, such that the shear 

deformation and rotatory inertia of the beam are negligible. Thus, the 

kinematic assumption of Bernoulli-Euler theory that cross sections remain 

planar and normal to the bent beam axis is employed. 

2) The slope of the deflected beam is small, i.e., much less than unity.   
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3) The beam material is isotropic and linearly elastic. (When applied to an 

anisotropic material, the appropriate value of Young’s modulus, i.e., along the 

x–direction, should be used.) 

4) The fluid is incompressible. 

5) Only lateral flexural modes are considered. 

6) The beam deflection at the supported end is assumed to be negligible; 

however, the beam may experience a non-zero rotation at the support due to 

support deformation. This will be incorporated into the model by the 

introduction of an elastic rotational spring at the supported end of the beam. 

The inertial effects associated with the deforming support are assumed to be 

negligible. 

7) Issues of structural instability (i.e., out-of-plane buckling) are not considered.    

8) The viscous dissipation in the fluid is the dominant energy dissipation 

mechanism, i.e., all other losses are negligible. 

9) The cross-section is relatively thin, i.e., h << b, so that the fluid resistance 

associated with the pressure on the two smaller faces (of dimensions h x L) is 

negligible compared with that due to the shear resistance of the fluid on the 

two larger faces (of dimensions b x L). 

10) The shear stress exerted by the fluid on the beam is uniform over the width 

dimension (b) and its magnitude is given by Stokes’s classical unidirectional 

solution for harmonic, in-plane oscillations of an infinite plate in a viscous 

fluid.  
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The combination of assumptions 9 and 10 will be refered to as the assumption of “Stokes 

fluid resistance,” which is expected to be valid for sufficiently thin beams vibrating at 

sufficiently high Reynolds numbers [Heinrich et al., 2010 a, b]. These assumptions allow 

the effect of fluid resistance to be modeled as a distributed fluid mass, fm and a 

distributed fluid damping coefficient,fc . (See Fig. 3-1.) These distributed fluid 

properties are defined per unit length of the beam and are frequency-dependent. The 

specific forms of the effective fluid properties can be shown to be (Appendix A) 

22f fc bηρ ω=       (3-1a) 

and 

22 f

f

b
m

ηρ

ω
= ,      (3-1b)  

where ω  represents the radial frequency (rad/sec) at which the beam oscillates. (Other 

quantities appearing in Eqs. (3-1a,b) have been defined in Sect. 1.4.) In the present study 

this frequency corresponds to either the natural oscillation frequency in the presence of 

fluid (in the case of free vibration) or the excitation frequency (in the case of a 

harmonically forced vibration). It is noted that these expressions will be accurate 

approximations of the fluid resistance for sufficiently thin beams experiencing 

harmonically forced lateral vibrations at higher Reynolds numbers; however, for the free-

vibration case, these expressions are approximate for another reason: they ignore the 

decay in the amplitude of oscillation that occurs during the free vibration. Nevertheless, 

the associated error incurred in the free-vibration analysis is expected to be minimal 

provided that the rate of decay is not high, i.e., when the equivalent damping ratio of the 
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beam/fluid system is less than 10%. This will be the case in the high-Q liquid-phase 

applications of interest in the present research.   

The foregoing assumptions allow the problem to be reduced to the analysis of the 

idealized system indicated in Fig. 3-1. The system parameters introduced in Fig. 3-1 are 

k, the rotational stiffness of the support; EI, the flexural rigidity of the beam cross section 

in lateral flexure; and bm , the mass per unit length of the beam: 

3

12

Ehb
EI = ,       (3-2a) 

b bm hbρ= .       (3-2b) 

As mentioned earlier,fc and fm are the frequency- dependent effective fluid damping 

coefficient and effective fluid mass, respectively.  

 

 
Figure 3-1: Idealized model of an elastically supported cantilever including effect of fluid 
resistance as distributed fluid mass and distributed fluid damping. 
 

3.3 Governing Equation of Motion for Stokes-Type Fluid Resistance 
 
 

To analyze a laterally vibrating elastically supported microcantilever with Stokes-

type fluid resistance, the equation of motion governing the deflection of the 

h  
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, ( )b fEI m m ω+
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f
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x  

( , )y x t  
y
 

L
 



27 
 

microcantilever must be determined along with the necessary boundary conditions. To 

this end, the equation of motion for the system subjected to an arbitrary distributed 

harmonic loading will be formulated. Thus, the equation for the free-vibration case will 

simply be a special case. 

Assume the beam in Fig. 3-1 is subjected to a lateral load ( , ) ( ) i tp x t P x eω=

(parallel to the y-axis) that varies arbitrarily with position and harmonically in time as 

shown in Fig. 3-2. The equation of motion can be derived by considering the equilibrium 

of the forces and moments acting on the differential segment (Fig. 3-3) taken from the 

beam shown in Fig. 3-2. Symbols M(x, t) and V(x, t) represent the bending moment and 

shear force, respectively. The inertial force,( , )If x t , acting on the element can be written 

as follows: 

   ( , ) ( ) ( , )I b ff x t m m y x t dxω = +  && .       (3-3) 

Summing all y-direction forces acting on the free-body diagram (FBD) leads to 

 [ ] ( )( , ) ( , ) ( , ) ( , ) ( ) ( , ) 0i t
I fP x eV x t V x t V x t dx dx f x t c y x t dxω ω′− + − + + =&        (3-4) 

In above equation and in Figs. 3-2 and 3-3, as well as in the equations that follow, the 

primes and dots represent differentiation with respect to space and time coordinates, 

respectively, unless mentioned otherwise. Substituting Eq. (3-3) into Eq. (3-4) results in 

  ( , ) ( ) ( , ) ( ) ( , ) ( ) i t
b f fV x t m m y x t c y x t P x eωω ω′  − + + + =  && & .               (3-5) 

Similarly, moment equilibrium about point O leads to 

[ ] [ ]( , ) ( , ) ( , ) ( , ) ( , )

( ) ( , ) ( ) ( , ) 0
2 2

i t
I f

M x t M x t M x t dx V x t V x t dx dx

dx dx
P x e dx f x t c y x t dxω ω

′ ′− + + +

 + − + = &

 ,     (3-6) 

wherein the rotational inertia of the differential element has been neglected. 
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Figure 3-2: Idealized model for elastically supported cantilever subjected to an arbitrary 
harmonic load including effect of fluid resistance as distributed fluid mass and distributed 
fluid damping. 
 
 
 

Figure 3-3: Free-body diagram (FBD) of a differential element taken from the beam 
shown in Fig. 3-2. 
 
 
Substituting Eq. (3-3) into Eq. (3-6) and ignoring second-order terms in dx, Eq. (3-6) 

becomes  

     ( , ) ( , )V x t M x t′=   .              (3-7) 

dx 

( ) i tP x e dxω

 

( , ) ( ) ( , )I ff x t c y x t dxω+ &
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( , )M x t
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( , ) ( , )′+V x t V x t dx 
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Substituting Eq. (3-7) into Eq. (3-5) results in 

( , ) ( ) ( , ) ( ) ( , ) ( )′′  − + + + =  && &
i t

b f fM x t m m y x t c y x t P x eωω ω .         (3-8) 

The bending moment can be related to bending deflection by using the moment-curvature 

relationship from elementary bending theory [e.g., Gere and Timoshenko, 1984] 

    ( , ) ( , )′′= −M x t EIy x t  .                                    (3-9) 

Substituting Eq. (3-9) into Eq. (3-8) and assuming a prismatic beam with constant 

Young’s modulus E along the length results in 

( , ) ( ) ( , ) ( ) ( , ) ( )′′′′  + + + =  && &
i t

b f fEIy x t m m y x t c y x t P x eωω ω .      (3-10) 

This is the governing partial differential equation of motion for the system with arbitrary 

distributed load ( , ) ( )= i tp x t P x eω that varies harmonically in time. But this work focuses 

mainly on free vibration and forced vibration caused by a harmonic relative rotation 

imposed near the support, both of which are cases that involve no spatial distribution of 

external loading. Therefore, the cases of interest correspond to ( ) 0P x ≡ , yielding the 

following homogeneous equation of motion: 

( , ) ( ) ( , ) ( ) ( , ) 0′′′′  + + + =  && &b f fEIy x t m m y x t c y x tω ω .     (3-11) 

The solution of this equation must, of course, satisfy the prescribed boundary conditions 

at 0x = andx L= that correspond to the physical conditions present at those locations.  

These will be addressed in the next section. 

Introducing a normalized beam deflection and dimensionless space and time 

coordinates, i.e., 

0, ,≡ ≡ ≡
y x

y t
L L

ξ τ ω ,                       (3-12a-c) 

where  
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                 2
0 1 2 12 b

b E

L
ω λ

ρ
=                                               (3-13) 

is the natural frequency of the first lateral mode in vacuum for perfectly clamped 

cantilever ( 1 1.875104λ ≡ ), Eq.(3-11) may be converted to the following dimensionless 

form: 

  4 3
1 1

1

1
( , ) 1 ( , ) ( , ) 0y y y

ζ
ξ τ λ ξ τ λ ζ ω ξ τ

λ ω

 
′′′′ + + + = 

 
&& &     (3-14) 

with 

           

1/42 2

3

48 f

f

L

E h b

η ρ
ζ

ρ

 
≡  

  
= dimensionless fluid resistance parameter,    (3-15a) 

and 

 0

ω
ω

ω
≡ = dimensionless frequency.                       (3-15b) 

The primes and dots appearing in Eq. (3-14) now represent differentiation with respect to 

dimensionless space and time coordinates, respectively.  

The governing equation of motion for a laterally vibrating cantilever beam with 

elastic support in vacuum can be easily obtained by zeroing out the dimensionless fluid 

resistance parameter,ζ , in Eq. (3-14). Thus the governing equation of motion in vacuum 

is 

   4
1( , ) ( , ) 0y yξ τ λ ξ τ′′′′ + =&& .                (3-16) 
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3.4 Boundary Conditions 
 
 

The governing equation of motion derived in Section 3.3 must be accompanied by 

a particular set of boundary conditions for the formulation of the boundary value problem 

to be complete. The number of boundary conditions required depends on the order of 

governing differential equation of motion. The differential equation of motion in this case 

is of fourth order and thus four boundary conditions are necessary, two at each end of the 

beam. The present study focuses on free vibration and a forced excitation involving a 

harmonic relative rotation near the support. Only the boundary conditions for these two 

cases will be discussed herein, although BCs for other cases of potential interest may 

easily be formulated.  

Boundary Conditions for Free Vibration 

The boundary conditions relevant to the free vibration case are 

 (0, ) 0y t = ,     (3-17a) 

   
(0, ) (0, ) 0

EI
y t y t

k
′ ′′− = ,                                (3-17b) 

    ( , ) 0y L t′′ = ,                         (3-17c)      

    ( , ) 0y L t′′′ = .                  (3-17d)   

Equation (3-17a) corresponds to the lateral deflection being zero at the supported end       

( 0x = ). Since the beam is not perfectly clamped, the slope need not be zero at the 

supported end. Instead, this condition becomes a mathematical statement that the bending 

moment at the end of the beam must equal the reaction moment supplied by the 

compliant support (i.e., by the elastic rotational spring) as described by Eq. (3-17b). 
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Equations (3-17c) and (3-17d) correspond, respectively, to the bending moment (or beam 

curvature) and shear force at free end (x L= ) being zero. 

The boundary conditions may easily be converted to dimensionless form using 

Eqs.(3-12a-c) and (3-15b):  

(0, ) 0y τ = ,                 (3-18a) 

(0, )
(0, ) 0

y
y

k

τ
τ

′′
′ − = ,                             (3-18b) 

(1, ) 0y τ′′ = ,                                                     (3-18c)      

(1, ) 0y τ′′′ = .                  (3-18d) 

where 

    

kL
k

EI
≡                   (3-19) 

represents the dimensionless rotational stiffness of the support.  

Boundary Conditions for Forced Vibration via Imposed Relative Rotation near Support  

            For this forced vibration case, the displacement boundary condition at the 

supported end and the BCs corresponding to zero moment and zero shear force at free 

end are the same as that for the free vibration case. Thus, Eqs. (3-18a, c, d) remain 

unchanged; however, the equilibrium condition relating beam slope and beam curvature 

at the supported end is no longer given by Eq. (3-18b) since in the present case there is an 

imposed harmonic relative rotation near the support to simulate the electrothermal 

actuation (Fig. 1-3). This new boundary condition requires a careful examination and 

detailed derivation in order to distinguish between the imposed relative rotation and the 

resulting support rotation, the former corresponding to the electrothermal excitation as 

described in what follows. 
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 Experimental devices [e.g., Beardslee et al., 2010a] were excited electrothermally 

by means of integrated heating resistors near the support. Figure 3-4 indicates the static 

deformation pattern, obtained via finite element analysis, of a beam that is thermally 

loaded at the “extreme fibers” of an arbitrary cross section. The thermal input is out-of-

phase so that equal values of temperature change are specified, one being positive while 

the other is negative. As seen from the figure, the net effect of this type of loading may be 

represented kinematically as an imposed relative rotation of the beam at the location of 

the thermal input. This concept was utilized in a recent paper to simulate a harmonic 

electrothermal loading near a perfectly clamped support [Heinrich et al., 2010b]. In the 

present study – in which support compliance effects are to be included -- the imposed 

rotation associated with the heating resistors will be considered to occur at some distance 

x from the support in order to delineate between the loading near the support and the 

support rotation that occurs at the support. The two effects can then be incorporated 

subsequently by means of a single boundary condition by employing a limiting process, 

letting 0x → .  
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Figure 3-4: Thermally excited microcantilever via heating resistors near the support. 
 

 To derive the slope-curvature boundary condition it will be assumed that the 

harmonic relative rotation is applied at a distance x away from the support as shown in 

Fig. 3-5. The deflection response( , )y x t  may then be expressed in a piecewise manner as 

follows:   

    
( )

( )

1

2

( , ) 0
( , )

( , )

y x t x x
y x t

y x t x x L

≤ ≤= 
≤ ≤

   .     (3-20) 

 

Figure 3-5: Schematic of imposed harmonic relative rotation at a distance x from the 
support. 

0( ) i tt eωθ θ=  

L  

x
 
x  ( , )y x t  

k  
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The boundary conditions at the support and the continuity conditions at the point 

of application of relative rotation are as follows: 

1(0, ) 0=y t ,     (3-21a) 

1 1(0, ) (0, ) 0
EI

y t y t
k

′ ′′− = ,    (3-21b) 

   2 1( , ) ( , )y x t y x t= ,       (3-21c) 

   2 1( , ) ( , ) ( )y x t y x t tθ′ ′= +  ,    (3-21d) 

   2 1( , ) ( , )y x t y x t′′ ′′= ,     (3-21e) 

   2 1( , ) ( , )y x t y x t′′′ ′′′= ,     (3-21f) 

where 0( ) i tt e ωθ θ≡ is the harmonically varying relative rotation applied near the support. 

Equation (3-21a) corresponds to the lateral deflection being zero at the supported end. 

Equation (3-21b) corresponds to the moment reaction due to spring support being equal 

to the beam’s bending moment at the supported end. Equations (3-21c), (3-21e), and (3-

21f) correspond, respectively, to the continuity of beam deflection, bending curvature and 

shear force at the point of application of relative rotation. Equation (3-21d) represents the 

imposed discontinuity of slope at the point of application of relative rotation, which 

corresponds to the thermal excitation being applied at that location. Letting 0x → in Eq. 

(3-21c) and using Eq. (3-21a) yields the following BC on 2( , )y x t at 0x= :  

     2(0, ) 0=y t .     (3-22a) 

To obtain the second BC on2( , )y x t  at 0x= , the limits ( 0x → ) of Eqs. (3-21d, e) are 

taken to give 

   1 2(0, ) (0, ) ( )y t y t tθ′ ′= − ,    (3-22b) 
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    1 2(0, ) (0, )y t y t′′ ′′= .     (3-22c)
 

These two equations may now be used to express Eq. (3-21b) in terms of 2y only:  

   
2 2 0(0, ) (0, ) i tEI

y t y t e
k

ωθ′ ′′− = ,    (3-22d) 

where the harmonic form of the imposed relative rotation has been inserted on the right-

hand side. As, 0x → , 2 ( , )y x t represents the displacement over the entire domain of the 

beam and can therefore be written simply as( , )y x t for 0 x L≤ ≤ and Eqs. (3-22a) and (3-

22d) (without the “2” subscript) give the BCs at the left end. When combined with the 

zero shear and moment BCs at the right end, the four boundary conditions relevant to the 

problem of imposed relative rotation near the support may be summarized as
 

 

 (0, ) 0y t = ,     (3-23a) 

   
0(0, ) (0, ) i tEI

y t y t e
k

ωθ′ ′′− = ,                               (3-23b) 

    ( , ) 0y L t′′ = ,                         (3-23c)      

    ( , ) 0y L t′′′ = .                     (3-23d)   

 The boundary conditions can easily be converted to dimensionless form using 

Eqs.(3-12a-c) and (3-15b). The dimensionless boundary conditions are 

(0, ) 0y τ = ,                 (3-24a) 

    0

(0, )
(0, ) iy

y e
k

ω ττ
τ θ

′′
′ − = ,                             (3-24b) 

     (1, ) 0y τ′′ = ,     (3-24c)      

(1, ) 0y τ′′′ = .                  (3-24d) 
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3.5 Summary of Boundary Value Problems to be Considered 
 
 
 In this section a summary of the two boundary value problems to be considered in 

this study will be presented. The BVPs considered are the lateral free vibration of a 

microcantilever in a viscous fluid and the forced lateral vibration of a microcantilever in a 

viscous fluid via an imposed harmonic relative rotation applied next to the compliant 

support. 

3.5.1 Free Vibration with Stokes-Type Fluid Resistance 
 

The dimensionless BVP for the free vibration of an elastically supported 

cantilever beam in a viscous fluid is given below. It is to be noted that the corresponding 

in-vacuum BVP can be easily obtained by zeroing out the fluid resistance parameter,ζ . 

Equation of Motion 

  

4 3
1 1

1

1
( , ) 1 ( , ) ( , ) 0y y y

ζ
ξ τ λ ξ τ λ ζ ω ξ τ

λ ω

 
′′′′ + + + = 

 
&& & .        (3-25) 

Boundary Conditions 

    (0, ) 0y τ = ,                               (3-26a) 

   

(0, )
(0, ) 0

y
y

k

τ
τ

′′
′ − = ,                          (3-26b) 

    (1, ) 0y τ′′ = ,                                (3-26c)      

    (1, ) 0y τ′′′ = .                                           (3-26d) 

 
 

 



38 
 

3.5.2 Forced Vibration with Stokes-Type Fluid Resistance via Harmonic Relative 
Rotation Imposed Adjacent to the Support 
 

The dimensionless BVP for the forced vibration of an elastically supported 

cantilever beam in a viscous fluid via an imposed harmonic relative rotation adjacent to 

the compliant support is given below. It is to be noted that the corresponding in-vacuum 

BVP can be easily obtained by zeroing out the fluid resistance parameter,ζ . 

Equation of Motion 

   
4 3

1 1
1

1
( , ) 1 ( , ) ( , ) 0y y y

ζ
ξ τ λ ξ τ λ ζ ω ξ τ

λ ω

 
′′′′ + + + = 

 
&& & .     (3-27) 

Boundary Conditions 

    (0, ) 0y τ = ,          (3-28a) 

    
0

(0, )
(0, ) iy

y e
k

ω ττ
τ θ

′′
′ − = ,             (3-28b) 

     (1, ) 0y τ′′ = ,                             (3-28c)      

     (1, ) 0y τ′′′ = .                       (3-28d) 
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CHAPTER 4 
METHOD OF SOLUTION OF BOUNDARY VALUE PROBLEMS 

 
 
4.1 Introductory Remarks 
 
 

In this chapter the solutions of the BVPs summarized in Chapter 3 will be 

obtained. First, the solution for the in-fluid free-vibration BVP is derived. This is 

followed by the solution for the case of an in-fluid forced-vibration via harmonic relative 

rotation near the support. The corresponding in-vacuum results are special cases that may 

be obtained by setting 0ζ = .  

4.2 Solution for the In-Fluid Free-Vibration Response in Lateral Flexure 
 
 
 This section begins with the exact solution for in-fluid free-vibration response in 

lateral flexure. Later the approximate analytical results for the case of small values of 

fluid resistance parameter and large values of the dimensionless support stiffness are 

presented. 

4.2.1 Exact Solution for the In-Fluid Free-Vibration Response in Lateral Flexure 
 

The boundary value problem for the in-fluid, free-vibration of an elastically 

supported cantilever beam is summarized in Sect. 3.5.1 and is explicitly described by 

Eqs. (3-25) and (3-26a-d). For convenience, the equations are restated here:  

 

4 3
1 1

1

1
( , ) 1 ( , ) ( , ) 0y y y

ζ
ξ τ λ ξ τ λ ζ ω ξ τ

λ ω

 
′′′′ + + + = 

 
&& & ,          (4-1) 

    (0, ) 0y τ = ,                                 (4-2a) 

   

(0, )
(0, ) 0

y
y

k

τ
τ

′′
′ − = ,                            (4-2b) 
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     (1, ) 0y τ′′ = ,                             (4-2c)      

    (1, ) 0y τ′′′ = .                                             (4-2d) 

 The solution methodology for this BVP consists of determining the characteristic 

equation (frequency equation), obtaining the natural frequencies (eigenvalues) from the 

roots of the characteristic equation, determining the quality factors for each mode, and 

determining the corresponding mode shapes (eigenfunctions). It will be assumed that the 

free-vibration response of the beam in lateral flexure will admit the form 

   ( )( , ) ( ) ( ) ( )i id ti t dt i ty x t x e x e x e eω ωφ φ φ+Ω −= = = ,       (4-3) 

where ( )xφ is the unknown (possibly complex) mode shape of free vibration in fluid and

idωΩ = +  is the unknown complex natural frequency whose real part ω  is the unknown 

damped natural frequency (frequency of oscillation in fluid) and whose imaginary part d

is the unknown decay parameter. Now, the solutions to Eqs. (4-1) through (4-2a-d) are 

sought in a dimensionless form analogous to Eq. (4-3), i.e., 

   ( )( , ) ( ) ( ) ( )
i idi d iy e e e e

ω ττ τ ωτξ τ φ ξ φ ξ φ ξ+Ω −= = = ,         (4-4) 

where ( )φ ξ is the mode shape of free vibration in fluid expressed as a function of ξ ; Ω  is 

the unknown dimensionless complex natural frequency, ω and d are dimensionless forms 

of the  damped natural frequency and decay parameter, i.e., 

0

idω
ω
Ω

Ω ≡ = + ,      (4-5a) 

0

≡
ω

ω
ω

,          (4-5b) 

0

d
d

ω
≡ .       (4-5c) 
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Substituting  Eq. (4-4) into Eqs. (4-1) and (4-2a-d) results in the following eigenvalue 

problem: 

    
4( ) ( ) 0φ ξ α φ ξ′′′′ − = ,                   (4-6) 

  (0) 0φ = ,                           (4-7a) 

    

(0)
(0) 0

k

φ
φ

′′
′ − = ,       (4-7b) 

    (1) 0φ ′′ = ,                               (4-7c)      

    (1) 0φ ′′′ = ,                            (4-7d) 

where the unknown parameter α  is related to the fluid resistance parameter and the 

unknown free vibration response parameters through 

( ) ( )4 4 2 2 3
1 1

1

1
1 2i d d i d

ζ
α λ ω ω λ ζ ω ω

λ ω

 
≡ + + − − − 

 
.          (4-8) 

The general solution of Eq. (4-6) may be written as 

1 2 3 4( ) cos sin cosh sinhA A A Aφ ξ αξ αξ αξ αξ= + + + ,      (4-9) 

where iA, i =1, 2, 3, 4 are as yet undetermined constants. Imposing the BCs (4-7a-d) on 

the general solution leads to the following system of linear algebraic equations: 

[ ]{ } { }0e A = ,          (4-10) 

where  

  [ ]

1 0 1 0

k k

e

c s C S

s c S C

α α

 
 
 
 −
 

=  
 − −
 
 
 − 

,                                (4-11) 
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{ }

1

2

3

4

A

A

A

A

A

 
 
 
 
 

=  
 
 
 
 
 

,        (4-12) 

and          

cos , cosh , sin , sinhc C s Sα α α α≡ ≡ ≡ ≡ .         (4-13a-d) 

The following characteristic equation can be obtained by setting the determinant of 

matrix [ ]e equal to zero, which is necessary for Eq. (4-10) to have a non-trivial solution: 

( )1 Cc Cs cS
k

α
+ = − .                                  (4-14) 

The positive real roots of Eq. (4-14) will depend on the dimensionless rotational stiffness 

of the support, k , and shall be denoted bynα , n=1, 2, 3, ... with 1 2 3α α α< < < ... .  

Natural Frequencies 

For a specified value of dimensionless rotational stiffnessk , the positive real 

roots nα  can be determined numerically from Eq. (4-14), but one must still determine the 

physically meaningful free-vibration response parameters, nω  and nd , which correspond 

to each of the real numbers,nα , n=1, 2, ... . Substituting the value of nα into Eq. (4-8) and 

equating the real and imaginary parts of the resulting equation leads to 

( )4 2 2 3 4
1 1

1

1
1 n n n n n

n

d d
ζ

λ ω λ ζ ω α
λ ω

 
+ − + =  

 
,    (4-15) 

( )4 3 3/2
1 1

1

1
1 2 0n n n

n

d
ζ

λ ω λ ζ ω
λ ω

 
+ − =  

 
.                    (4-16) 
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Simplification of Eq. (4-16) gives 

      
1

1

2

n
n

n

d
ζ ω

ζ
λ ω

λ

=
 

+ 
 

 .                (4-17) 

Substituting Eq. (4-17) into Eq. (4-15) results in the following equation: 

( ) ( ) ( ) ( )
4 425 4 3

2 4 5
1 1 1 1

4 48 5
4 0n n

n n n n

α ζαζ ζ
ω ω ω ω

λ λ λ λ
+ + − − = .     (4-18) 

Equation (4-18) is a fifth-degree polynomial innω ; thus, the square of the positive real 

root of this polynomial is the dimensionless damped natural frequency,nω , which 

depends on the fluid resistance parameter,ζ , and the dimensionless rotational stiffness of 

the support,k . Once nω  has been determined for a particular mode n, the corresponding 

decay parameter,nd , may be obtained using Eq. (4-17). 

Viscous Damping Ratios and Quality Factors 

The form of the free-vibration response in Eq. (4-3) is identical to that of a 

viscously damped single-degree-of-freedom (SDOF) system [e.g., Tedesco et al., 1999]. 

It may easily be shown that the viscous damping ratio of this equivalent SDOF system is 

given by 

*

2 2

n
n

n n

d

d
ξ

ω
=

+
.          (4-19) 

Thus, Eq. (4-19) may be considered to represent the viscous damping ratio associated 

with the nth lateral flexural mode of a freely vibrating cantilever with Stokes-type fluid 

resistance. Substituting Eq. (4-17) into Eq. (4-19) results in 
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*

2
1

2
1 1

1

2 2 5
4

n

n n

ζ
ξ

λ ζ ζ
ω ω

λ λ

=

+ +

.          (4-20) 

 The quality factors, nQ , defined here in terms of the reciprocal of the respective damping 

ratios, can be obtained using Eq. (4-20) as 

2 2 2
1

* 2
1 1

1 2 5

2 2 4
n n

n n n
n n

d
Q

d

ω λ ζ ζ
ω ω

ξ ζ λ λ
+

≡ = = + + .     (4-21) 

Mode Shapes 

Knowing the values of nα  from Eq. (4-14) and substituting them into Eq. (4-10), 

one may solve for the constants2A , 3A and 4A in terms of 1A ; thus, using Eq. (4-9), the 

specific form of the mode shapes of free vibration in a viscous fluid may be written as 

1

2 2

( ) cos cosh sin sinh

n n
n n n n n n

n n n n n

n n n n

C c S C c s
k kA

S s S s

α α

φ ξ α ξ α ξ α ξ α ξ
+ + + −

= − − +
+ +

 
 
 
 
 

,  (4-22a) 

where 

cos , cosh , sin , sinhn n n n n n n nc C s Sα α α α≡ ≡ ≡ ≡ .         (4-22b-e) 

Here 1A represents the arbitrary amplitude of the mode shape functions, ( )nφ ξ . It is to be 

noted that these mode shapes are independent of the fluid parameters and thus are the 

same as for the in-vacuum case. 

4.2.2 Approximate Analytical Results for Small Fluid Resistance and Small Support 
Compliance 

 

In many cases of practical interest the fluid resistance parameter ζ is expected to 

be much smaller than 1. For example, for a silicon cantilever with dimensions Lxbxh = 
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(400x50x10) mµ immersed in water, 0.07ζ = . Also, for many practical cases the 

normalized rotational support compliance,1/ k , is expected to be much smaller than 

unity. This provides the motivation to derive simple analytical expressions for the results 

derived earlier (dimensionless natural frequency and quality factor) in those cases for 

which the values of the fluid resistance parameter and rotational support compliance are 

small. Since for most lateral-mode sensing applications the first lateral mode of vibration 

is the most easily excited, this section will only consider the results for the fundamental 

mode of lateral vibration.   

To this end it will be assumed that1ω  may be expanded in a power series in ζ as 

 2
1 0 1 ( )c c Oω ζ ζ= + +    as     0ζ → ,      (4-23) 

where 1ω  is the mode-1 dimensionless natural frequency; 0c and 1c  are coefficients which 

may depend on 1/ k and may be obtained by substituting Eq. (4-23) into Eq. (4-18) , 

expanding the left-hand side of Eq. (4-18), and subsequently equating the coefficients on 

like powers of ζ up to the linear term. The coefficients are 

1
0

1

c
α
λ

= ,    1
1

1

4
c

λ
= − .                                 (4-24a-b) 

The expression for1ω is obtained by squaring Eq. (4-23) as follows: 

2 2
1 0 0 12 ( )c c c Oω ζ ζ= + +     as     0ζ → .        (4-25) 

If the coefficients of Eq. (4-25) are subsequently expanded in powers of 1/ k and all 

higher-order terms (higher than first-order) are ignored, the resulting bilinear 

approximation for 1ω is only moderately accurate when 1/ k is in the vicinity of 0.1. 

Therefore, to obtain an analytical result having better accuracy, an alternative approach 
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shall be taken. Recognizing that the first term on the right hand side of Eq. (4-25) (i.e.,20c

) represents the mode-1 dimensionless natural frequency in vacuum for the case of a 

compliant support, 1,vacω , this term may be approximated quite accurately by fitting the 

curve of the exact 1,vacω vs.1/ k , obtained using Eq. (4-18) with 0ζ = , instead of 

expanding analytically about1/ 0k = . Figure 4-1 shows a plot of the exact 1,vacω  vs. 1/ k

for the first-mode lateral vibration and the corresponding quadratic polynomial curve-fit. 

The range of  1/ k  considered for the fit is 0 to 0.15, which is expected to include most 

practical cases for the application of interest and the support configuration considered. In 

performing the fit, the value of normalized frequency is forced to be 1 when 1/ 0k =  in 

order to agree with the perfectly fixed case. The maximum error of the fit over the range 

of 1/ k  considered is 0.22%. The expression for 1,vacω obtained from the quadratic curve-

fitting for the range of 1/ k considered is 

 
2

2
1, 0

1 1
1 1.909 3.417vac c

k k
ω  = ≈ − +  

 
.    (4-26) 

Substituting Eq. (4-26) into the first term on the right-hand side of Eq. (4-25) and Eqs. (4-

24a-b) into the second term results in 

  ( )
2

21
1 2

1

1 1
1 1.909 3.417

2
O

k k

α
ω ζ ζ

λ
 ≈ − + − + 
 

as     0ζ → .   (4-27) 
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Figure 4-1: In-vacuum exact dimensionless natural frequency for fundamental lateral 
mode and quadratic curve fit. ( )0 1/ 0.15k≤ ≤  

  

Equation (4-27) depends on the first positive real root of the characteristic 

equation (Eq. (4-14)),1α , which in turn depends on the dimensionless rotational 

compliance of the support,1/ k . If one assumes that 1α may be expanded in a power 

series in terms of1/ k , 1α may be written as 

 
2

1 0 1

1 1
a a O

k k
α

    = + +          
    as     

1
0

k
→ ,    (4-28) 

where 0a  and 1a  are the coefficients to be determined. Substituting Eq. (4-28) into Eq. (4-

14), expanding both sides of Eq. (4-14), and subsequently equating the coefficients on 

like powers of 1 / k
 
gives following two equations: 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0.75

0.8

0.85

0.9

0.95

1

1/k
bar

ω
b

a
r

 

 

Exact 

Quadratic fit: 1- 1.909 (1/k
bar

)+3.417 (1/k
bar

)2 
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0 01 cosh cos 0a a+ = ;    (4-29a) 

 0 1 0a a+ = .     (4-29b) 

Equation (4-29a) is the characteristic equation for the free vibration of a perfectly 

supported (“fixed”) cantilever in vacuum and the positive real roots of this equation are 

well known [e.g., Clough and Penzien, 2003]. The first root shall be denoted by1λ , whose 

value is listed below to 7-significant-figure accuracy:  

1 1.875104λ ≡  .                            (4-30) 

(Note that 1λ  has been introduced previously in Eq. (3-13).) Therefore, from Eqs. (4-29a-

b), the coefficients are: 

0 1a λ= ;      (4-31a) 

1 1a λ= − .        (4-31b) 

Substituting Eq. (4-31a-b) into Eq. (4-28) gives 

    
2

1 1

1 1
1 O

k k
α λ

  = − +  
   

 as 
1

0
k

→ .     (4-32) 

Substituting Eq. (4-32) into Eq. (4-27) results in the approximate expression for the 

mode-1 dimensionless natural frequency of a laterally vibrating cantilever beam with 

elastic support and Stokes-type fluid resistance for the case ζ << 1 and 1/ k << 1 as 

follows: 

   
2

1
1

1 1 1 1
1 1.909 3.417 1

2k k k
ω ζ

λ
   ≈ − + − −   
   

.    (4-33) 
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Placing the numerical value of 1λ  from Eq. (4-30) into Eq. (4-33) gives 

2

1

1 1 1
1 1.909 3.417 0.2667 1

k k k
ω ζ   ≈ − + − −   

   
.    (4-34) 

Now, the approximate expression for lateral mode-1 quality factor for the case   

ζ << 1 and 1/ k << 1 can be obtained by substituting Eq. (4-33) into Eq. (4-21) to yield 

1
1

1

1 1.5
1 1.91Q

k

λ
ζ

ζ λ
≈ − + .      (4-35) 

Here the terms of order 2 or higher in ζ or in1/ k , including their product, have been 

ignored. After binomial expansion, Eq. (4-35) reduces to 

1
1

1

1 0.75
1 0.95Q

k

λ
ζ

ζ λ
 

≈ − + 
 

  .     (4-36)  

The last term is insignificant in many practical cases, in which case it may be ignored, 

resulting in 

1
1

1
1 0.95Q

k

λ
ζ

 ≈ − 
 

    ,     (4-37)  

which clearly and concisely indicates the main influences of the Stokes-type fluid 

resistance and the support compliance on the viscous quality factor.  

It is to be noted that the difference between Eqs. (4-36) and (4-37) is simply an 

additive constant of 0.75 and, thus, this difference is only significant for low quality 

factors. But in most practical cases and in this present study, large values of quality 

factors are of primary interest and, thus, Eq. (4-37) can be used without significant error. 

Also, the current theoretical model underestimates the resistance offered by the viscous 

fluid and therefore overestimates the actual quality factor values. Therefore, using Eq. (4-
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37) helps to compensate to some extent for the error due to the underestimation of 

viscous dissipation in the fluid. 

4.3 Solution for the In-Fluid Forced-Vibration Response via Harmonic Relative 
Rotation near Support in Lateral Flexure 
 

Presented in this section is the derivation of the exact solution for the in-fluid, 

forced-vibration, lateral flexural response caused by a harmonic relative rotation near the 

support. The BVP governing this problem is summarized in Section 3.5.2 and is 

explicitly described by Eqs. (3-27) and (3-28a-d). For convenience this BVP, involving a 

partial differential equation, is restated here:  

 

4 3
1 1

1

1
( , ) 1 ( , ) ( , ) 0y y y

ζ
ξ τ λ ξ τ λ ζ ω ξ τ

λ ω

 
′′′′ + + + = 

 
&& & ,   (4-38) 

    (0, ) 0y τ =  ,         (4-39a) 

    
0

(0, )
(0, ) iy

y e
k

ω ττ
τ θ

′′
′ − =  ,             (4-39b) 

     (1, ) 0y τ′′ =  ,        (4-39c)      

     (1, ) 0y τ′′′ = .                         (4-39d) 

Once this BVP is solved, i.e., after the displacement response is determined, theoretical 

frequency response plots may be generated, from which the resonant frequencies and 

quality factors may be extracted. The quality factors may be determined, for example, by 

using the -3dB bandwidth method [e.g., Meirovitch, 2001].   

The solution to Eqs. (4-38) through (4-39a-d) is sought in the form 

    ( , ) ( ) iy eωτξ τ φ ξ=  ,            (4-40) 
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where ( )φ ξ is the shape of the vibrating beam under an imposed complex harmonic 

relative rotation near the support and ω  is the dimensionless form of the specified 

exciting frequency, ω , and, thus, also the dimensionless frequency of the steady-state 

response, i.e., 

 
 

0

ω
ω

ω
= .         (4-41) 

Substituting Eq. (4-40) into Eqs. (4-38) and (4-39a-d) results in the following BVP, 

which now involves an ordinary differential equation: 

    
4( ) ( ) 0φ ξ α φ ξ′′′′ − = ,                 (4-42) 

  (0) 0φ = ,                          (4-43a) 

    
0

(0)
(0)

k

φ
φ θ

′′
′ − = ,     (4-43b) 

    (1) 0φ ′′ = ,                                 (4-43c)      

    (1) 0φ ′′′ =   .                        (4-43d) 

where the known complex parameter α  is related to the fluid resistance parameter and 

the normalized forcing frequency through 

4 4 2 3 3/2
1 1

1

1
1 i

ζ
α λ ω λ ζω

λ ω

 
≡ + − 

 
.         (4-44) 

The general solution of Eq. (4-42) may be written as 

1 2 3 4( ) cos sin cosh sinhA A A Aφ ξ αξ αξ αξ αξ= + + + ,                     (4-45) 

where iA, i =1, 2, 3, 4, are as yet undetermined constants. Imposing BCs from Eqs. (4-

43a-d) on Eq. (4-45) gives the following complex shape of the vibrating beam under an 

imposed complex harmonic relative rotation, 0
i teωθ , near the support: 
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( )( ) ( ) ( )

( )
0

cosh cos 1 sinh 1 sin
( )

2 1

Cs cS Cc Ss Cc Ss

Cc Cs cS
k

αξ αξ αξ αξθ
φ ξ

α
α

− − + + − + + +
=

+ − −

 
      

,     (4-46) 

where 

 cos , cosh , sin , sinhc C s Sα α α α≡ ≡ ≡ ≡ .             (4-47a-d) 

In practical sensing applications the beam response may be monitored in different 

ways. Two of the most common methods of measuring response are optical (laser) and 

piezorestive detection. In the optical method the total tip deflection or tip slope is 

monitored (e.g., using a laser), while in the piezoresistive method piezoresistive elements 

near the support monitor the bending strain that results from the vibration. Thus, to 

account for both types of detection methods, the amplitudes of the both the tip 

displacement and the bending strain at the root of the beam will be of particular interest 

in this study and results in terms of both of these quantities will therefore be presented. 

The complex (normalized) displacement amplitude at the tip is obtained by 

evaluating Eq. (4-46) at 1ξ = : 

( )
0(1)

1

s S

Cc Cs cS
k

φ
α

α
θ

+
=

+ − −

 
  
    

.      (4-48) 

The modulus of this quantity may be scaled by its quasi-static value, which corresponds 

to a slowly applied harmonic rotation at the support, 0(1)staticφ θ≡ , thereby resulting in the 

following “dynamic magnification factor” for tip displacement, tipDMF : 

( )0

(1) (1)

(1) 1
tip

static

DMF
s S

Cc Cs cS
k

φ φ
αφ θ α

=
+

= =
 + − −  

.          (4-49) 
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The maximum bending strain ( , )max x tε at any x and t on the beam is given by
  

    

( , )
( , ) max

max

x t
x t

E

σ
ε = ,        (4-50) 

where ( , )max x tσ is the maximum bending stress at position x at time t, and can be related 

to the curvature at (x, t) by   

( , ) ( , )
( , )

2 2
max

max

M x t b EIy x t b
x t

I I
σ

′′
= = .     (4-51) 

Substituting Eq. (4-51) into Eq. (4-50) results in 

      
( , ) ( , )

2max

b
x t y x tε ′′= .         (4-52) 

Equation (4-52) can be written in terms of dimensionless deflection and dimensionless 

coordinates ξ and τ as 

    
( , ) ( , )

2max

b
y

L
ε ξ τ ξ τ′′= .        (4-53) 

Using Eqs. (4-40) and (4-53), the maximum bending strain at the root of the beam is 

(0, ) (0)
2

i
max

b
e

L
ωτε τ φ ′′= ,      (4-54) 

so that 

    
(0)

2max, root

b

L
ε φ ′′≡        (4-55) 

is the amplitude of the maximum bending strain at the root. Substituting Eq. (4-46) into 

Eq. (4-55) results in 

 
( )

( )0 0

(0)

/ 2 1

max, root
max, root

Cs cS

b L
Cc Cs cS

k

φ αε
ε

αθ θ

′′ −
≡ = =

 + − −  

,    (4-56) 
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where max, rootε is the normalized amplitude of the maximum bending strain at the root of 

the beam. 

 Equation (4-49) represents the normalized beam response as measured by the tip 

displacement amplitude (e.g., an optical method) and Eq. (4-56) corresponds to the 

normalized beam response as detected by monitoring the bending strain amplitude at the 

root of the beam (e.g., by piezoresistive detection). The dependence of these results on 

the exciting frequency will be used in Chapter 6 to determine the resonant frequencies 

and quality factors for a microcantilever beam excited by a harmonic relative rotation 

near the support. More specifically, the frequency response plots (plots of normalized 

response vs. normalized exciting frequency) for tip displacement amplitude and bending 

strain amplitude at the root will be generated and the resonant frequencies shall be 

extracted as the exciting frequencies at which the respective response quantities attain 

their relative maximum values. Then one may use a resonant frequency value and the 

corresponding frequency response plot to extract the associated quality factor using the -

3dB bandwidth method. Note that the frequency response plots and the associated 

resonant frequency and quality factor values need not be the same for the two different 

types of output signals that will be considered.  
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CHAPTER 5 
QUANTIFICATION OF DIMENSIONLESS SUPPORT STIFFNESS, 

DIMENSIONLESS RESONANT FREQUENCY AND QUALITY FACTOR IN 
TERMS OF SYSTEM PARAMETERS 

 
 
5.1 Introductory Remarks 
 
 

The main objective of this dissertation is to study the effects of support 

compliance on the resonant behavior of lateral-mode microcantilevers operating in 

viscous fluids. For this purpose, the BVPs and their solutions for different cases were 

discussed in Chapters 3 and 4 with dimensionless rotational stiffness of the support 

(or compliance1/ )k k  as a “specified” system parameter. However, to obtain the results 

for the natural and resonant frequencies and quality factors for a particular practical 

application, a rational means of determining the value of this parameter is needed. This 

chapter deals with the quantification of k in terms of cantilever dimensions, i.e., L, b and 

h. In order to quantify the rotational stiffness of the support, finite element analysis 

(FEA) will be used. Several three-dimensional (3-D) finite element analyses will be 

performed using the commercially available ANSYS 13.0 software package [ANSYS 

Inc., 2013] and the results will be used to determine an appropriate analytical expression 

for k  and, thus, for 1/ k . Then the expression for 1/ k will be used in conjunction with 

the results for dimensionless frequencies and quality factors obtained in Ch. 4 to obtain 

analytical expressions for 1ω  and 1Q in terms of system parameters.   

 The chapter begins with the general description of the 3-D finite element 

modeling/analysis approach taken in ANSYS, including how the rotational support 

stiffness is defined through the concept of work equivalence so that its value may be 
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extracted from the ANSYS results. Then the Buckingham Pi Theorem [e.g., Fox and 

McDonald, 1993] is used to obtain the possible dimensionless relationships between k

and the system parameters. Based on those results, a parametric study is then performed 

using ANSYS, the results of which are used in conjunction with the dimensional analysis 

in order to rationally deduce a simple analytical expression for the dimensionless 

rotational stiffness and compliance, k and 1/ k , respectively. Finally, the 

stiffness/compliance expression permits one to convert the previously obtained analytical 

expressions for 1ω  and 1Q  to formulae expressed explicitly in terms of the fundamental 

system parameters. 

5.2 3-D Finite Element Modeling Approach     
                                                             
 

This section will include a statement of the assumptions on which the FE model is 

based, a brief description of the ANSYS modeling/analysis procedure, and an explanation 

of how rotational support stiffness is defined and calculated using concept of work 

equivalence. 

5.2.1 Modeling Assumptions 
 
  

In order to perform 3-D finite element modeling and analysis within ANSYS, the 

following assumptions are made: 

1) The cantilever beam and the “support block” are made of the same material and 

that material is elastic and isotropic.  

2) The SOLID187 element, which is a higher-order, 3-D, 10-node tetrahedral 

element, will be used to model both the beam and the support. 
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3) The support block is assumed to be sufficiently large in comparison to the beam 

dimensions so that it is, for all practical purposes, “infinite” in that its dimensions 

do not affect the support stiffness.  

4) The length of the beam is large enough so that it has no influence on the rotational 

stiffness of the support. 

5) The outer surfaces of the support block that are not adjacent to the supported end 

of the beam are considered fixed; however, by virtue of assumption (3), the 

details of the support conditions on these surfaces should not have an appreciable 

effect on the characteristics of the support deformation. 

6) The beam is assumed to be loaded with a static bending moment applied at the 

unsupported end of the cantilever. This moment is distributed in the form of a 

linear normal stress over the end cross-section. The orientation of this moment is 

such that it will cause the beam to bend in the lateral direction.  

7) Since the geometry and the loading exhibit anti-symmetry, only half of the 

geometry will be modeled. (See Fig. 5-1.) 

8) In order to perform the ANSYS analysis, the support block and cantilever 

dimensions, material properties, and the applied moment magnitude are to be 

specified. In this analysis following numerical values will be used for 

aforementioned quantities: 

Modulus of elasticity of material, E =0.1 2N /µm  =100 GPa; 

       Poisson’s ratio, ν =0, 0.1, 0.2, 0.25, 0.3, and 0.4; 

Support block dimension: length=1000µm , width=thickness= 500µm ;  

Beam dimensions: L=300µm , b= (10, 20, 50, 100, 200)µm , h=10µm ;  
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Applied moment magnitude: M=0.01 Nµm . 

5.2.2 ANSYS Modeling and Analysis Procedure 
 
 

Three-dimensional models of one-half of the beam-support geometry were 

created using SOLID187 elements. In all models the support block dimensions and the 

length and thickness of the cantilever were kept constant and only the width of the 

cantilever and Poisson’s ratio were varied. Figure 5-1a is an example of the 3-D ANSYS 

model and Fig. 5-1b represents the top view of the model. The models were meshed in 

such a way that the local meshing of elements on or near the interface of beam and 

support was very fine relative to the mesh farther away from this region. This is because 

of the expected stress concentration in this region of sudden change in geometry and the 

fact that the accuracy of the support stiffness calculation will be dependent on the 

accuracy of the displacement and stress values at the interface. (See section 5.2.3.) The 

mesh fineness was increased until the desired result for k was accurate to at least two 

significant figures. It is to be noted that, in those cases in which the beam was especially 

thin (relative to the beam width), there were a few element size warnings while meshing 

within ANSYS; however, such warnings did not appear in the vast majority of the 

meshes created.  
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(a) 

 
 

 
(b) 

Figure 5-1: Finite-element model showing coordinate axes, dimensions, applied stress 
and deflected shape: (a) 3-D model, (b) schematic of top view. 
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At the loaded face, the specified normal stress distribution is equivalent to a 

resultant moment M being applied over the entire cross-section. The maximum normal 

stress on the loaded face is related to the resultant moment through  

 x

M
c

I
σ = ±  ,           (5-1) 

where 3 /12I hb=  is the moment of inertia of the total beam cross-section about the 

neutral axis (“strong” axis) and  / 2c b=  is the distance from the neutral axis to the 

“extreme fibers.”  

On the plane of anti-symmetry, appropriate anti-symmetry boundary conditions 

apply:  

0 , 0 , 0y x zu uσ = = = ,        (5-2) 

where the subscripts refer to the reference frame shown in Fig. 5-1. Also, the three hidden 

faces of the support block in Fig. 5.1a are fixed ( 0x y zu u u= = = ). 

 After the application of the load and displacement boundary conditions, a linear 

elastic analysis of the models was performed using ANSYS. Via postprocessing of the 

results, the work done by the bending stress xσ at the beam-support interface was 

determined and, as specified in the next section, used to calculate the support stiffness as 

defined using the concept of equivalent work.  

 
 
 
 
 
 
 
 

xσ
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5.2.3 Determination of Effective Support Stiffness Using the Concept of Work 
Equivalence 
 
  

The work done by the bending stressxσ in displacing the support at the beam-

support interface may be considered to be equal to the resultant moment on the interface 

(M, by statics on the beam) acting through an “effective rotation”:  

  2 2FEM x x e

BSI

W W u dA Mσ θ= = ≡∫∫
  
,       (5-3) 

in which “BSI” refers to the beam-support interface of the finite-element model,eθ is the 

effective rotation of the beam-support interface, and the factor 2 is present so that 

2 FEMW W=  represents the work over the total interface, only half of which is modeled in 

ANSYS. [The notation FEMW  refers to the value of work obtained from the finite-element 

model.  It is defined by the integral appearing in Eq. (5-3), which is evaluated 

numerically within ANSYS.] Using the effective rotation to define the rotational support 

stiffness k yields 

     
e

M
k

θ
= .             (5-4) 

Using Eq. (5-3), one may eliminate the effective rotation from Eq. (5-4) to obtain the 

support stiffness explicitly in terms of the work calculated within the finite-element 

model: 

2

2 FEM

M
k

W
= .         (5-5) 

Despite the appearance of M in the numerator of Eq. (5-5), the stiffness does not depend 

on the value of M that is specified in the model, since the linearity of the model dictates 

that the work appearing in the denominator will also be proportional to M 2. 
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5.3 Dimensional Analysis for the Functional Relationship Between the Rotational 
Support Stiffness and the System Parameters 
 
 

In this section the Buckingham Pi Theorem [e.g., Fox and McDonald, 1993] is 

used to obtain the possible dimensionless relationships between k and the system 

parameters. Of these, the most convenient relationship will be chosen and used in Ch. 6 

in conjunction with the results of Ch. 4 to relate the dynamic response of the elastically 

supported cantilever to the geometric and material parameters of the system.   

Dimensional analysis performed by applying the Buckingham Pi Theorem [e.g., 

Fox and McDonald, 1993] to the present problem (Appendix B) results in the following 

candidate forms for the dimensionless relationship among rotational support stiffness, 

system geometry, and system material properties:   

13
,

k h
f

Eb b
ν =  

 
,    (5-6a)  

                             23
,

k h
f

Eh b
ν =  

 
,    (5-6b)  

32
,

k h
f

Ehb b
ν =  

 
,    (5-6c)  

42
,

k h
f

Eh b b
ν =  

 
.    (5-6d)  

These four candidate forms are equivalent representations, but they involve different 

dimensionless functions, each dependent on the cross-section’s aspect ratio,/h b, and the 

Poisson’s ratio,ν , of the device material. In the following section the most convenient of 

these four will be selected to yield the simplest analytical expression based on curve-

fitting the results of an FEA parametric study to the forms listed in Eqs. (5-6a-d). 
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5.4 Parametric Study for Rotational Stiffness of Support Based on 3-D Finite 
Element Analysis  
 
  

For a particular beam geometry the rotational stiffness of the support, as defined 

in the Section 5.2.3, may be obtained by performing a finite element analysis 

(summarized in Section 5.2.2) and substituting the value of the interface work from the 

analysis into Eq. (5-5). Performing several analyses of this type enables one to determine 

numerically how normalized support stiffness depends on system parameters. The results 

of such a parametric study are shown in Table 5-1, in which the numerical values of 

rotational support stiffness k for different aspect ratios (/h b) and different Poisson’s 

ratios( )ν  are listed. 

It can be concluded from the numerical results that k decreases significantly with 

an increase in the /h bratio, i.e., with a decrease in b for a fixed h. Since h is fixed in the 

models, smaller b results in a smaller beam-support interface area and, thus, for a given 

transferred moment, a larger rotation of the support resulting in smallerk . The table also 

indicates that the dependence of k on is quite weak, with the trend (increasing or 

decreasing) depending on the aspect ratio.   

 

 

 

 

 

 

 

ν
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h/b νννν  WFEM                           

(N-µm) 
k                         

(N-µm/rad) 

0.05 

0 2.265E-09 22073 
0.1 2.300E-09 21735 
0.2 2.320E-09 21555 
0.25 2.323E-09 21521 
0.3 2.323E-09 21525 
0.4 2.310E-09 21646 

0.1 

0 1.213E-08 4121.9 
0.1 1.235E-08 4049.8 
0.2 1.250E-08 4000.9 
0.25 1.255E-08 3984.4 
0.3 1.258E-08 3973.2 
0.4 1.261E-08 3966.2 

0.2 

0 6.089E-08 821.19 
0.1 6.183E-08 808.64 
0.2 6.248E-08 800.20 
0.25 6.270E-08 797.43 
0.3 6.284E-08 795.61 
0.4 6.290E-08 794.94 

0.5 

0 4.696E-07 106.47 
0.1 4.731E-07 105.69 
0.2 4.734E-07 105.62 
0.25 4.723E-07 105.86 
0.3 4.704E-07 106.29 
0.4 4.637E-07 107.83 

1 

0 2.090E-06 23.918 
0.1 2.095E-06 23.870 
0.2 2.080E-06 24.042 
0.25 2.065E-06 24.219 
0.3 2.044E-06 24.462 
0.4 1.985E-06 25.192 

Table 5-1: Rotational stiffness of support based on 3-D finite element analysis with E 
= 0.1 N/µm2, L = 300 µm, and h = 10 µm. 
 

 
5.5 Determination of Analytical Expressions for Dimensionless Rotational Stiffness 
of Support 
 
 

After obtaining the numerical results for the rotational stiffness of the support,k , 

using work equivalence and 3-D finite-element modeling as explained in the preceding 
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sections, an analytical expression for k  in terms of the problem parameters (beam 

dimensions and material properties) may be obtained.
 
Using the numerical values for k  

from Table 5-1 and the corresponding values of problem parameters, the dimensionless 

functions ( )/ ,if h b ν in Eqs. (5-6a-d) can be determined and plotted. Figures 5-2a-d 

show the plots of these dimensionless functions plotted versus the aspect ratio /h b for 

fixed values of Poisson’s ratio over the ranges considered. From the plots it is obvious 

that the dependence on ν is weak, as observed earlier in Table 5-1. Also, the plots for the 

dimensionless function in Fig. 5-2a, i.e.,( ) 3
1 / , /f h b k Ebν = , are nearly linear and, for 

this reason, the form of Eq. (5-6a) will be chosen to characterize the desired 

dimensionless relationship. In addition, since the dependence on ν is very weak, only the 

plot for 0.25ν = will be considered in determining an analytical form of this relationship. 

The plot in Fig. 5-2a for 0.25ν = is fitted by a straight line, as shown in Fig. 5-3, to 

obtain the following linear equation relating 3/k Eb  to /h b: 

 3
0.2258 0.0174= +

k h

Eb b
.        (5-7) 

Thus, the expression for the (dimensional) rotational stiffness of the support is 

    

3 0.2258 0.0174
h

k Eb
b

 = + 
 

.        (5-8) 

Now the relative rotational stiffness of the support with respect to the beam’s flexural 

stiffness, as defined in Chapter 3 and given by Eq. (3-19), is 

kL
k

EI
≡ .                    (5-9) 
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Figure 5-2: Values of dimensionless functions fi (h/b, ν) for in-plane static bending of 
microcantilevers of rectangular cross-section: (a) Eq. (5-6a), (b) Eq. (5-6b), (c) Eq. (5-
6c), (d) Eq. (5-6d). (Results are based on 3-D FEA results for rotational support stiffness 
calculation using the work equivalence method.) 
 

Substituting Eq. (5-9) into Eq. (5-8) with 3 /12I hb=  results ink explicitly in terms of 

system geometry: 
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2.710

0.2088
/

L b
k

b h b h
 = + 
 

,      (5-10) 

The corresponding compliance,1 / k , becomes 

          (5-11)  

Equations (5-10) and (5-11) are restricted to the range 0.05 / 1≤ ≤h b since the fit (Fig. 5-

3) was performed over this range. 

 

 
Figure 5-3: Linear fit of dimensionless function 3/k Eb vs. /h b for 0.25ν = , 
0.05 / 1.h b≤ ≤  
 
 
5.6 Determination of Analytical Expressions for Dimensionless Frequency and 
Quality Factor in Terms of System Parameters 
 
 

Having determined an analytical expression for 1 / k , the approximate 

expressions for the dimensionless natural frequency and quality factor for the first lateral 
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mode, derived in Ch. 4, can now be expressed explicitly in terms of system parameters. 

The approximate expressions [Eqs. (4-34) and (4-37)] from Ch. 4 are 

2

1

1 1 1
1 1.909 3.417 0.2667 1

k k k
ω ζ   ≈ − + − −   

   
,    (5-12) 

    1

1.8751 1
1 0.95Q

kζ
 ≈ − 
 

.      (5-13) 

The fluid resistance parameter,ζ , in Eq. (3-15a) can be written in the form  

    02.632
L L b

h b h
ζ = ,        (5-14) 

where 

     
2 2

0 3

f

b

L
E

η ρ

ρ
≡                     (5-15) 

has unit of length and may be interpreted as a “characteristic material length” which is 

constant for a given fluid and beam material. Substituting Eq. (5-11) into Eqs. (5-12) and 

(5-13) and making use of Eq. (5-14) results in,     

( ) ( )

( )

1 2

0

1.909 3.417
1

2.710 2.7100.2088 0.2088/ /

1
0.7019 1

2.710
0.2088

/

L b L b
b h b h b h b h

L L b

h b hL b

b h b h

ω ≈ − +
    +  +       

 
 
 − −  
 +    

  ,  (5-16) 

  

( )

1

0

0.7124 0.95
1

2.710
0.2088

/

Q
L L b L b
h b h b h b h

 
 
 ≈ −  
 +    

.    (5-17) 
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Equations (5-16) and (5-17) are valid for   

1 20
b

h
≤ ≤  ,     (5-18a) 

( )

1 1
0 0.15

2.710
0.2088

/

k L b

b h b h

≤ = ≤
 

+ 
 

   or,  

( )

1

2.710
0.15 0.2088

/

L

b b

h b h

≥
 

+ 
 

 , (5-18b)  

    02.632=
L L b

h b h
ζ << 1  .    (5-18c) 

Similarly, the displacement response due to forced vibration via relative rotation near the 

support, as described in Ch. 4 by Eqs. (4-49) and (4-56), can be rewritten in terms of 

system parameters using Eqs. (5-11) and (5-14) and then the corresponding results for 

resonant frequency and quality factor can also be determined in terms of system 

parameters. Those results are not listed explicitly here; however, in most cases of 

practical interest we expect that the analytical formulae based on free vibration – Eqs. (5-

16) and (5-17) – will give excellent approximations to the corresponding resonant 

quantities associated with forced vibration of the model. 

 The analytical results obtained in this chapter for natural frequency and quality 

factor for the first lateral mode of vibration will serve as the basis for a parametric study 

to be performed in the following chapter. The parametric study of the first lateral mode 

resonant frequency and quality factor for the forced vibration case will also be performed 

and discussed in Ch. 6.   
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CHAPTER 6 
NUMERICAL RESULTS AND DISCUSSION 

 
 
6.1 Introductory Remarks 
 
  

In this chapter a parametric study based on the results obtained in Chs. 4 and 5 is 

presented and discussed. First the results for the in-fluid free-vibration case, namely, the 

natural frequencies, quality factors, and mode shapes are presented. This is followed by 

the results for the in-fluid forced-vibration case for an imposed relative rotation near the 

support. These include frequency spectra for the response amplitude, resonant 

frequencies, quality factors, and vibrational shapes. For the forced-vibration case, the 

results are presented for both the tip displacement response and the bending strain 

response at the root. In addition the results for natural/resonant frequencies and quality 

factors are compared to experimental data. This chapter quantifies the impact of support 

compliance, fluid resistance and microcantilever dimensions on the dynamic response of 

lateral-mode microcantilevers. 

6.2 Parametric Study: Free Vibration with Stokes-Type Fluid Resistance 
 

In this section the parametric study of the natural frequencies, quality factors and 

mode shapes for the case of in-fluid free vibration are presented. The effects of support 

compliance and fluid resistance on natural frequencies and quality factors are presented 

for multiple lateral modes of vibration using results from Ch. 4. Then the results of Ch. 5 

are used to relate the support compliance to the beam dimensions so that a detailed study 

may be performed to show how the natural frequency and mode shape of the fundamental 
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lateral mode depend on the device dimensions. The fundamental mode is the focus since 

it is the most easily excited.    

6.2.1 Natural Frequencies 
 

The impact of support compliance,1/ k , fluid resistance,ζ , and beam geometry 

on the natural frequencies is examined in this section. The parametric study of the natural 

frequencies, obtained by solving the 5th-degree frequency equation given by Eq. (4-18), 

in terms of 1 / k  and ζ for the first three modes of in-fluid lateral vibration is presented 

in Fig. 6-1. This figure clearly indicates, as expected, that the natural frequencies 

decrease with increases in support compliance,1 / k , and fluid resistance,ζ . For the 

range of ζ considered, the natural frequency varies almost linearly in ζ but nonlinearly in

1 / k . Also, the curves for different 1 / k are parallel to each other indicating that the 

effects of support compliance and fluid resistance on natural frequency are somehow 

independent of each other. For the first mode and for the ranges of support compliance 

and fluid resistance considered, the support effects may cause up to a 21% drop in natural 

frequency, while the fluid resistance may cause up to a 25% drop in natural frequency. 

For second mode the relative change in natural frequency due to support effects and fluid 

effects might reach 16% and 11% respectively over the parameter ranges considered. For 

mode 3 the drop in natural frequency may reach 12% due to support effects and 7% due 

to fluid effects. As mentioned earlier, since the first mode of lateral vibration is the most 

easily excited lateral mode and thus the most practical lateral mode for sensors 

applications, the relative decrease in natural frequency due to support compliance and 

fluid resistance, which could be quite significant as demonstrated here, must be dealt with 
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properly to achieve reasonable theoretical estimates. Conversely, if higher modes can be 

excited, the adverse effects of support compliance and fluid resistance will be less 

significant.   

Figure 6-2 shows the comparison of the approximate analytical results for the 

fundamental natural frequency, obtained from Eq. (4-34), with the exact results presented 

in Fig. 6-1a. Over the practical range of support compliance, [ ]1 / 0, 0.15k ∈ , considered, 

the approximate results compare quite well with the exact results for small values of ζ . 

More specifically, for the considered range of support compliance the percentage error of 

the approximate results is less that 2% for [ ]0,  0.6ζ ∈ .   
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(b) 

 

 
(c) 

Figure 6-1: Dimensionless natural frequency for the first three modes of lateral vibration 
of a microcantilever beam in a viscous fluid [Eq. (4-18)]: (a) first mode, (b) second mode, 
(c) third mode. 
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Figure 6-2: Comparison of exact [Eq. (4-18)] and approximate [Eq. (4-34)] dimensionless 
natural frequency for the fundamental mode of lateral vibration of a microcantilever 
beam in viscous fluid. 
 

The effects of beam dimensions on the fundamental lateral natural frequency can 

be studied using the analytical expression given by Eq. (5-16), repeated here for 
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and thus represents the decrease in natural frequency due to fluid effects. The support 

compliance effect is also present in the last term via the negative term inside the 

parentheses. For Eq. (6-1) to be valid, it must satisfy the limits for the various parameters 

given by Eqs. (5-18a-c). In particular, the condition that ζ << 1 [Eq. (5-18c)] shall be 

interpreted as 0.6ζ ≤  as it has already been noted that this constraint ensures no more 

than a 2% error in the natural frequency (relative to the exact results of the model) over 

the range of support compliance of interest. This upper limit onζ , i.e., 0.6, enables Eq. 

(5-18c) to be rearranged to yield an upper limit on/L b , while a lower limit on /L b is 

given by Eq. (5-18b). Therefore, the restriction on /L b  for Eq. (6-1) to be valid is given 

by the following inequality: 

 

( )
0

1 0.2280

2.710
0.15 0.2088

/

L

b L bb
h hh b h

≤ ≤
 

+ 
 

.        (6-2) 

In addition the validity of Eq. (6-1) is limited to the range of cross-sectional aspect ratio, 

/b h, over which the FEA results of Ch. 5 were fitted. This inequality was specified in 

Eq. (5-18a), repeated here for convenience: 

1 20
b

h
≤ ≤ .          (6-3) 

Examining Eq. (6-1), one sees that, for a given beam material and a specified 

fluid, 0L is determined, so that if the thickness of the beam is also specified, the first 

mode natural frequency may be expressed in terms of /L b  and /b h only. These results 

will be valid provided that /L b  and /b h satisfy the constraints given by Eqs. (6-2) and 

(6-3) listed above.  For example, Eq. (6-1) may be applied for the case of beams made of 

silicon (E=169 GPa and bρ =2330 kg/m3) with thicknessesh= [5, 10, 15, 20] µm 
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vibrating in water (η =0.001 Pa·s, fρ =1000 kg/m3). The results may be cast in the form 

of the relative decrease in natural frequency due to the effects of support compliance and 

fluid resistance, which are plotted versus/L b for different /b h ratios in Fig. 6-3. From 

the figure it is clear that, with an increase in thickness,h , the reduction in natural 

frequency becomes smaller. This is because the Stokes fluid resistance parameter 

decreases with an increase inh , which is manifested through the 0 /L h  term in Eq. (6-

1). For microcantilevers that are short relative to their width (smaller /L b ) and for the 

values of /b hconsidered, Fig. 6-3 illustrates that support compliance effects dominate 

and fluid resistance effects are very small, which is why the effect of thickness h (i.e., the 

last term in Eq. (6-1)) is negligible. But for more slender microcantilevers (larger/L b ) 

the fluid resistance effects are large and thus the dependence on h for given value of /b h 

is more prominent, i.e., the second and third terms in Eq. (6-1) become negligible and the 

fourth term becomes linear in/L b . The starting value of /L b for each curve corresponds 

to 1/ 0.15k = (upper limit of support compliance) and the ending value to ζ = 0.6 (upper 

limit of fluid resistance parameter). The relative decrease in natural frequency at the 

starting value of /L b for all curves is about 0.21% and is about 0.16% at the ending 

value of /L b . For a fixed h  value, it is also clear that for smaller /L b ratios the natural 

frequency drop decreases with an increase in /b h because the relative support 

compliance,1 / k , decreases as /b h increases. [See Eq. (5-11).]  Conversely, for larger 

/L b ratios, the fluid resistance effect becomes dominant and, as indicated by the ζ

definition given by Eq. (5-14) and the last term in Eq. (6-1), an increase in /b hwill 

increase ζ and thus will also increase the relative natural frequency change. Because of  
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(a) 

 

 
(b) 

Figure 6-3: Relative difference between fundamental lateral natural frequency and 
perfectly clamped in-vacuum value for a silicon microcantilever beam in water with h= 
[5, 10, 20] µm and /b h= [2, 5, 10, 20]: (a) /L b∈ [0, 160], (b) /L b∈ [0, 20] (zoomed 
view). 
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the two competing effects, the plots of Fig. 6-3 are not monotonic. For each curve there is 

a value of the /L b ratio for which the frequency drop has a relative minimum. When the

/L b ratio is very large the relative frequency drop approaches 1/ 2ζ λ which is in 

agreement with the SDOF results for a perfectly fixed cantilever beam [Heinrich et al., 

2010a]. The drop in natural frequency from the fixed cantilever model [Heinrich et al., 

2010a] to the current elastic support model is 21% for the starting /L bvalue for each 

value of /b hconsidered. For the range of /b hconsidered, the difference between the 

two models is negligible (percent change in natural frequency is less that 4%) if / 15L b > . 

(This limiting value of /L b is governed by the results for/ 2b h= .) It is important to note 

that at smaller values of/L b , not only are the support compliance effects important as 

indicated here, but other effects that have been neglected in the present Euler-Bernoulli 

beam model – namely, the “Timoshenko beam effects” of shear deformation and rotatory 

inertia – will also be important. Thus, one should use the results of Fig. 6-3 at smaller 

values of /L bwith caution; to obtain more accurate values in this range the results of Ch. 

5 could be used to specify appropriate boundary conditions in the Timoshenko beam 

model of Schultz (2012) to generate improved values of the relative frequency change, 

which would be expected to be larger due to the increased flexibility and inertia of a 

Timoshenko beam relative to its Bernoulli-Euler counterpart.    

6.2.2 Quality Factors 
 

The impact of support compliance,1 / k , fluid resistance,ζ and beam geometry 

parameters on the quality factors are presented in this section. The parametric study of 

the ”exact” quality factor furnished by the model for the free-vibration case, given by Eq. 
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(4-21), in terms of 1 / k  and ζ for the first three modes of in-fluid lateral vibration  is 

presented in Fig. 6-4. This figure clearly indicates that the quality factors decrease with 

increases in support compliance,1 / k and fluid resistance,ζ . It is also clear from the 

figure that the quality factor increases with mode number, a trend that has also been 

observed in theoretical and experimental studies on transverse-mode microcantilevers 

[e.g., Van Eysden and Sader, 2007; Ghatkesar et al., 2008]. The quality factor is heavily 

dependent on fluid resistance parameter,ζ , especially at small values. In contrast the 

quality factor dependence on support compliance is quite small. 

 

 

Figure 6-4: Quality factor for the first three modes based on lateral free vibration of a 
microcantilever beam in a viscous fluid [Eq. (4-21)]. 
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21), for the case of the fundamental lateral mode of vibration. For the practical ranges of 

support compliance, [ ]1 / 0, 0.15k ∈ , and fluid resistance, [ ]0,0.6ζ ∈ , the approximate 

results compare quite well with the exact results. Over these ranges the percentage error 

of the approximate results is less that 5%. Figure 6-5b shows the comparison of the 

approximate analytical result for quality factor, given by Eq. (4-37), with the exact results 

presented in Fig. 6-4, based on Eq. (4-21), for the case of the fundamental lateral mode of 

vibration. For the same ranges of support compliance, [ ]1 / 0, 0.15k ∈ , and fluid 

resistance, [ ]0,0.6ζ ∈ , the maximum error in this case is 25%. However, the case for 

utilizing the simpler form for Q given by Eq. (4-37) may be made on three points: (1) The 

simpler form of Eq. (4-37) will permit a very concise description of the dependence of Q 

on the geometric and material parameters, as will be discussed shortly. (2) While the 

accuracy level of Eq. (4-37) appears to be much worse than that of Eq. (4-36), the latter 

equation differs from the former only by an additive constant of 0.75.  (See previous 

discussion in Sect. 4.2.2.) Thus, the larger relative error of Eq. (4-37) is only significant 

at lower Q values, i.e., for devices/fluids that are not of interest here since they are not 

viable candidates for liquid-phase sensing applications. (One of the primary motivations 

of this study is to achieve high Q in liquids by exploiting the lateral mode.) (3) Because 

the Stokes-type fluid resistance model tends to overestimate the viscous quality factor, 

the fact that Eq. (4-37) yields a smaller value of Q than Eq. (4-36) will slightly 

compensate for some of the error inherent in the fluid resistance model. Thus, for these 

reasons Eq. (4-37) [or equivalent forms of it, such as Eq. (5-17)] will be used hereafter 

when presenting and discussing analytical results for the quality factor. 
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When the results of Ch. 5 are used to relate support compliance to beam 

dimensions, one may use Eq. (5-17) to directly relate the mode-1 viscous quality factor to 

beam geometry. To present these results in a general, yet efficient, manner the quality 

factor as given by the analytical Eq. (5-17), is normalized by
0/h L so that the resulting 

analytical expression for the quality factor, 

  

( )

1

0

0.7124 0.95
1

2.710
0.2088

/

Q

h L b L b
L b h b h b h

 
 
 ≈ −  
 +    

       (6-4) 

can be used to generate plots that are applicable for any value of thicknesshand any 

material and fluid, provided that the parameter range constraints [Eqs. (5-18a-c) or, 

equivalently, Eqs. (6-2) and (6-3)] are not violated. This normalized quality factor is 

plotted against the /L b  ratio for different /b hvalues and for / [0, 20]L b∈ as shown in 

Fig. 6-6. From the figure it is clear that, for specified values of thickness (h) and material 

properties (L0) and a fixed width (b), the quality factor increases with a decrease in length 

L. This figure may be used to graphically determine the quality factor for a lateral-mode 

microcantilever of specified geometry and given beam and fluid properties. Note that the 

starting points of the curves in Fig. 6-6 are dictated by the lower bound of the constraint 

given by Eq. (6-2). It is also important to note that Fig. 6-6 should NOT be applied for

/L b  ratios in excess of the upper bound listed in Eq. (6-2), although the entire curves of 

Fig. 6-6 are applicable in many practical instances. For example, if the beam material is 

silicon (E = 169 GPa, bρ =2330 kg/m3) and the fluid is water (η =0.001 Pa.s, fρ =1000 

kg/m3), then Fig. 6-6 is valid in its entirety provided that 3.3µm .h ≥   
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(a) 

 
(b) 

Figure 6-5: Comparison of exact and approximate quality factor for the fundamental 
mode of lateral free vibration of a microcantilever beam in a viscous fluid: Approximate 
results given by (a) Eq. (4-36), (b) Eq. (4-37). 
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Figure 6-6: Normalized mode-1 viscous quality factor in terms of beam geometry for 
lateral vibration of a cantilever beam in an arbitrary viscous fluid. Results of current 
compliant-support model based on analytical formula, Eq. (6-4). This figure should NOT 
be applied for /L b ratios in excess of the upper bound listed in Eq. (6-2). (Dashed curves 
are based on the fixed-support model of Heinrich et al., 2010a.) 
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 6.2.3 Mode Shapes 
 
 

The impact of support compliance,1 / k , on the mode shapes are presented in this 

section. (Recall that these mode shapes correspond to both an in-vacuum free vibration 

and a free vibration in a viscous fluid providing Stokes-type resistance.) The first three 

mode shapes given by Eq. (4-22a) have been normalized by their absolute maximum 

values and are presented in Fig. 6-7a-c. These figures clearly show the effect of the 

support compliance parameter on the mode shapes. For a perfectly fixed cantilever, i.e., 

1 / k =0, the slope of the mode shapes are zero at the support for all three modes, as 

expected, but when1/ 0k ≠  the mode shapes reflect the support compliance through a 

non-zero slope at the support. The vibrational nodes for modes 2 and 3 depend weakly on 

the support compliance.  
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(b) 
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(d) 

Figure 6-7: Mode shapes for the lateral vibration of an elastically supported 
microcantilever in a viscous fluid: (a) first mode shape, (b) second mode shape, (c) third 
mode shape, (d) mode-1 “bending-only” mode shape, i.e., first mode shape with rigid 
rotation removed. 
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However, this is not true for the higher mode shapes.    

6.3 Parametric Study: Forced Vibration Due to Harmonic Relative Rotation 
Imposed Near the Support 
 
 

In this section the results for the lateral vibration of a microcantilever in a viscous 

fluid will be presented for the case of an applied harmonic relative rotation near the 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

ξ

φ 1b
no

rm
al

iz
ed

 f
irs

t 
m

od
e 

sh
ap

e 
(b

en
di

ng
 o

nl
y)

 

 

1/k
bar

=0

1/k
bar

=0.05

1/k
bar

=0.10

1/k
bar

=0.15



87 
 

support. As noted earlier (Sects. 1.4 and 3.4), this type of loading is of practical interest 

since it simulates the electrothermal excitation scheme that has been employed in lateral-

mode cantilevers and cantilever-based sensors [Beardslee et al., 2010a,b; Heinrich et al., 

2010b; Beardslee et al., 2012]. The theoretical results to be presented and discussed 

include frequency response plots, resonant frequency, quality factor and vibrational beam 

shapes. The frequency response plots (plots of normalized response amplitude vs. 

normalized exciting frequency) will be determined for two types of “output signals”: the 

tip displacement amplitude and the bending strain amplitude at the root of the beam.  

These correspond to two common response detection schemes used in microcantilever 

applications: optical methods and piezoresistive methods, respectively. From these 

frequency response plots the resonant frequencies are extracted, these being defined as 

the exciting frequencies at which the respective response quantities attain their relative 

maximum values. Also extracted from the frequency response plots are the quality factors 

associated with resonant peaks; these are determined by employing the -3dB bandwidth 

method (also known as the half-power method) [e.g., Meirovitch, 2001]. While the 

frequency response plots are generated over a frequency range that includes the first three 

modes of lateral vibration, the resonant characteristics will only be determined for the 

first lateral mode of vibration as it is the most easily excited and most widely used mode 

in lateral-mode sensing applications. The impact of support compliance, fluid resistance 

and beam geometry on the beam response results and the resonant characteristics are 

presented. 
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6.3.1 Frequency Response 
 
 

The frequency response plots for the tip displacement amplitude are generated by 

plotting the dynamic magnification factor for tip displacement, given by Eq. (4-49), 

against the dimensionless exciting frequency as shown in Fig. 6-8. Similarly, the 

frequency response plots for bending strain amplitude at the root are generated by 

plotting the normalized amplitude of the maximum bending strain at the root of the beam, 

given by Eq. (4-56), as shown in Fig. 6-9. Figure 6-8a shows frequency response plots for 

tip displacement amplitude over a frequency range that includes the first three lateral 

modes, while Fig. 6-8b provides a clearer view of the first-mode response. Figure 6-9 

shows analogous information when the bending strain amplitude at the root is used as the 

theoretical output signal.   

Figure 6-8a indicates a reduction in resonant peak amplitudes at the higher 

resonances for the tip displacement signal, thus indicating that the first resonant mode 

may be the most suitable of the lateral flexural modes for sensing applications using a 

response detection method that tracks the tip deflection (or tip slope), e.g., optical.  

Figure 6-8a also shows the expected decrease in resonant frequencies and resonant peak 

amplitudes as the values of support compliance and fluid resistance parameter are 

increased. Similar trends are seen in Fig. 6-9 for the root bending strain amplitude, with 

the exception that the resonant peak amplitude increases as the mode number increases.  

The responses based on the two different detection schemes are exhibited more clearly in 

Fig. 6-10 for a particular system having a support compliance of 1/ 0.05k =  and a fluid 

resistance parameter of 0.2ζ = . In contrast to tip-tracking detection schemes, if the 

higher modes can be excited, strain-based detection methods (e.g., piezoresistive) may  
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(a) 

 

 
(b) 

Figure 6-8: Frequency response plots of normalized tip displacement amplitude for the 
lateral vibration of a microcantilever in fluid caused by relative harmonic rotation near 
the support: (a) [0, 20]ω ∈ (including first three modes), (b) [0,1.6]ω ∈ (including first 
mode). 
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(a) 

 
(b) 

Figure 6-9: Frequency response plots of normalized bending strain amplitude at the root 
of a cantilever for lateral vibration in fluid caused by relative harmonic rotation near the 
support: (a) [0, 22]ω ∈ (including first three modes), (b) [0,1.8]ω ∈  (including first 
mode). 
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have advantages at higher modes due to the stronger signal amplitude at higher modes in 

comparison to the fundamental lateral mode. All curves in Fig. 6-8 (and the solid curve in 

Fig. 6-10) start at 1 because at low frequencies the amplitude of tip displacement 

approaches the quasi-static value associated with a rigid rotation of the beam. The curves 

in Fig. 6-9 (and the dashed curve in Fig. 6-10) start at zero because, when the load is 

applied quasi-statically (i.e., at a very low frequency), there is no bending strain in the 

beam since the beam undergoes only a rigid rotation. Also, it is noted that, for 0ζ = , the 

maximum strain amplitude is zero at some exciting frequencies, indicating that the 

vibrational shape at those frequencies has zero curvature at the supported end. In other 

words, it indicates that the beam shape is in transition from one mode shape to the next.  

 

 

Figure 6-10: Comparison of frequency response plots for normalized tip displacement 
amplitude and  normalized bending strain amplitude at the root for a cantilever excited 
laterally by a relative harmonic rotation near the support (1/ 0.05k = , 0.2ζ = ). 
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6.3.2 Resonant Frequency 
 
 

The resonant frequency can be obtained from the frequency response plots as it is 

by definition the exciting frequency at which the response attains a relative maximum.  

Even though the higher mode resonant frequencies can be extracted from the frequency 

response plots discussed in previous section, only the first-mode resonant frequency is 

extracted and discussed in this section.  

In Fig. 6-11 the first-mode resonant frequency based on both tip displacement 

amplitude and maximum bending strain amplitude at the root is presented in terms of 

support compliance and the fluid resistance parameter. From Fig. 6-11 it is clear that, as 

expected, the fundamental lateral resonant frequency decreases with an increase in 1 / k

and ζ . It is also clear that this resonant frequency as detected by the maximum bending 

strain signal is greater than that for the tip displacement response, with the difference 

being negligible at smaller values of ζ (less than 2% for [0,0.4]ζ ∈ ) but approaching 8% 

as ζ approaches 1. As sensitivity is directly proportional to the resonant frequency 

[Dufour et al., 2007a, b] it can be concluded that the sensor devices that detect resonant 

response by monitoring the bending strain at the root of the cantilever will be more 

sensitive than ones whose output signal is based on tracking the tip displacement, and this 

advantage will become more evident at higher values of the fluid resistance parameter.  

Figure 6-12 compares the resonant frequency at first resonance, as detected by 

both the tip displacement response and the bending strain response, to the first-mode 

natural frequency obtained from the analytical expression given by Eq. (4-34). From Fig. 

6-12 it is clear that the natural frequency closely resembles the resonant frequency for the 

ranges of 1 / k and ζ considered, especially for small values ofζ (less than 1% error for



93 
 

[0,0.3]ζ ∈ ). Thus, the same analytical expressions for the first-mode dimensionless 

natural frequency given by Eqs. (4-34) and (5-16) can be utilized to predict the impact of 

support compliance, fluid resistance parameter and beam geometric parameters on 

resonant frequency at the first resonance for in-fluid lateral vibration of the cantilever via 

harmonic relative rotation near the support. The free vibration analytical result predicts 

the resonant frequency based on tip displacement better than that based on maximum 

bending strain at the root. 

 

 
 
Figure 6-11: Comparison of resonant frequency at first lateral resonance for tip 
displacement response and maximum bending strain response at the root of a cantilever 
in a viscous fluid caused by relative harmonic rotation near the support. (Resonant 
frequency extracted from frequency response curves.) 
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Figure 6-12: Comparison of first-mode lateral resonant frequency (extracted from 
frequency response curves) for excitation via harmonic relative rotation near support 
(both via tip displacement response and maximum bending strain response at the root) 
with the first-mode lateral natural frequency obtained via analytical expression [Eq. (4-
34)] for free vibration case.  
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From Fig. 6-13 it is clear that the quality factor decreases with an increase in the fluid 

resistance parameter and support compliance. The quality factor is extremely sensitive to 

ζ at small values of ζ . The effect of 1 / k is relatively weak compared to that of ζ . Also 

for small values of ζ , the quality factor based on maximum bending strain response at 

the root is nearly equal to that obtained via the tip displacement response. For larger 

values of ζ , the tip displacement response quality factor is greater than its bending–strain 

counterpart. But as mentioned earlier, for large values of ζ the -3dB bandwidth method 

does not accurately estimate quality factor. 

 

 
 
Figure 6-13: Comparison of quality factor (bandwidth method) at first resonance based 
on tip displacement response and maximum bending strain response at the root of the 
cantilever for lateral vibration in fluid caused by relative harmonic rotation near the 
support. 
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Figure 6-14: Comparison of first-mode quality factor (bandwidth method) for lateral 
excitation via harmonic relative rotation near support (both via tip displacement response 
and maximum bending strain response at the root) with the first-mode quality factor 
obtained via analytical expression [Eq. (4-37)] for lateral free vibration case. 
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6.3.4 Vibrational Beam Shapes 
 
 

The time-dependent vibrational shapes for forced vibration via relative harmonic 

rotation near the support are presented in Fig. 6-15. These shapes are plotted for

1/ 0.15k = , 0.2ζ =  and 0.7447=ω (fundamental lateral resonant frequency) and are 

based on a real forcing function of the form 0( ) Re[ ]iωτ
θ τ θ e= . Thus, what is plotted in 

Fig. 6-15 is 0Re[ ( , )] /y ξ τ θ , where ( , )y ξ τ is given by Eqs. (4-40) and (4-46). The figure 

clearly shows how the deflected position of the beam changes throughout one complete 

cycle of steady-state vibration. For the considered values of 1 / k ,ζ , andω , the 

vibrational shape (if normalized) is essentially constant over time. (The exceptions are 

near 0, , 2  ωτ π π= , at which times the beam is passing through an essentially 

undeformed configuration.) The maximum values of the beam deflection appear to occur 

near / 2ωτ π=  and 3 / 2ωτ π= .  Note that the beam positions indicated in the figure are 

consistent with the concept that, at resonance, the response should lag the input by 

approximately 90 degrees.   

 

 
Figure 6-15: Time-dependent vibrational shapes due to relative harmonic rotation near 
support for1/ 0.15k = , 0.2ζ =  , and 0.7447ω = .  
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6.4 Comparisons with Experimental Data 
 
 

The purpose of this section is to compare the present analytical results for the in-

fluid lateral-mode resonant frequency and quality factor to experimental data [Beardslee 

et al., 2010a; Beardslee et al., 2012]. The microcantilever devices used in the experiments 

were excited electrothermally near the support and the beam motion was detected via 

piezoresistive elements positioned near the “extreme fibers” of the cross section near the 

support. Thus, the most appropriate theoretical results of this study are those based on the 

forced-vibration model excited by an imposed relative rotation near the support with the 

output signal being the maximum bending strain at the root of the cantilever. However, as 

explained earlier (Sects. 6.3.2 and 6.3.3), at resonance the forced vibration results are 

very close to the free vibration results and, thus, the analytical formulae based on the free 

vibration results will be used here in making comparisons with the experimental data. 

 For the experiments the microcantilever beam was made of silicon and the liquid 

used was water. The experimental data were collected for four sets of nominal cantilever 

thickness, hnom = (5, 8, 12, 20)µm  and each thickness consisted of five cantilever lengths, 

L = (200, 400, 600, 800, 1000)µm,  and four cantilever widths, b = (45, 60, 75, 90)µm. 

The silicon cantilever was coated with several passivation layers, consisting of thermal 

oxide, PECVD silicon oxide and PECVD silicon nitride [Beardslee et al., 2012]. In 

comparing theoretical results with experimental data, the average total thickness is used 

in the theoretical models instead of the nominal thickness. These total thickness values 

were obtained by taking the average Si thickness and adding the corresponding 

passivation thickness. The average total thickness values for each nominal thickness set 

are listed in Table 6.1. As explained above, the beam is not homogeneous but made of 
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different layers of different materials. Thus, the material properties of the composite 

beam, especially the effective Young’s modulus E, will be different than that of pure 

silicon. The theoretical model is based on a homogeneous beam and, thus, an effective 

value of E for the composite beam must be specified in the model. Since it is difficult to 

specify the appropriate value of effective Young’s modulus, its value is determined by 

performing a least-squares fit of existing resonant frequency data for the in-air case with 

the in-vacuum, perfectly fixed cantilever model. (See Appendix C.) In performing the fit, 

it is assumed that the air resistance is negligible and only the data for (800 ,1000)µmL =

are considered for the fit. This is because the larger-length specimens are not expected to 

exhibit support-compliance and Timoshenko beam effects, so that these complicating 

effects will be negligible so that the fit will yield a reasonable estimate of the effective 

modulus. Also, the density of the composite beam is assumed to be the same as that of 

silicon bρ =2330 kg/m3. The best fit values for E for the different nominal thickness sets 

are listed in Table 6-2. The results show a very modest dependence on the cantilever 

thickness; thus, the average Young’s modulus of these four thickness sets, E=142 GPa, 

will be used as the effective Young’s modulus in all of the theoretical calculations in this 

section. Other input values to be specified in the theoretical model include the properties 

of water, given by fρ =1000 kg/m3 and η = 0.001 Pa·s , and the specimen geometries as 

specified by  h = (7.009, 10.32, 14.48, 22.34)µm,  L = (200, 400, 600, 800, 1000)µm,  and 

b = (45, 60, 75, 90)µm. The present theoretical results will also be compared with the 

results obtained from the Euler-Bernoulli model without support compliance effects 

[Heinrich et al., 2010a].  
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Nominal 
Thickness 
hnom (µm) 

Average Silicon 
Thickness         
hSi (µm) 

Passivation Layer 
Thickness         
hpas. (µm) 

Average Total 
Thickness        

ht (µm) 
5 5.169 1.84 7.009 
8 8.48 1.84 10.32 
12 12.61 1.87 14.48 
20 20.47 1.87 22.34 

Table 6-1: Average total thickness for each nominal thickness set [Beardslee and Brand, 
2010]. 
 

 

Nominal Thickness 
hnom (µm) 

Young’s Modulus 
E (GPa) 

Average 
Young’s Modulus 

E (GPa) 

5 138.97 

141.81 
≈ 142 

8 141.07 
12 138.67 
20 148.52 

Table 6-2: Effective Young’s modulus based on fitting lateral-mode in-vacuum, perfectly 
fixed model to in-air experimental lateral frequency data. 

 

Figures 6-16a-d show the comparison of resonant frequency from the current 

model [Eq. (6-1)] and the experimental data (in water) for each nominal thickness set.  

Also shown are the results from the Euler-Bernoulli fixed cantilever model. From the 

figures it is evident that the frequencies from the current model are closer to the 

experimental data than the perfectly fixed cantilever model based on Euler Bernoulli 

theory without support effects [Heinrich et al., 2010a]. But the current model still 

overestimates the experimental data, especially for the shorter and wider beams. This 

might be because of Timoshenko beam effects (shear deformation and rotatory inertia 

effects) which have not been considered in the present model. The other reason for the 

overestimation, especially for larger thickness, might be that the pressure effects of water 

on the side faces of the beam are not negligible as is being assumed in the present model.  
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Figures 6-17a-d show the quality factor comparison between the current model 

[Eq. (5-17) or, equivalently, Eq. (6-4)] and the experimental data for the various nominal 

thickness sets. Also shown are the results of the earlier fixed-cantilever model [Heinrich 

et al., 2010a]. It is evident from the figures that the quality factors from the current model 

are closer to experimental data than the results based on the perfectly fixed cantilever 

model of Heinrich et al., 2010a. For the thinner specimens (nominal thicknesses of 5µm

and 8µm ) the results of the present model provide very good quantitative estimates of Q 

(as does the earlier model); however, for the thicker beams (nominal thicknesses of 12

µmand 20µm ) the present results consistently overestimate the experiment data. This is 

most likely due to the fact that the Stokes-type fluid resistance assumption becomes 

worse as thickness increases. Also, the softening effect predicted by the model at higher 

/b L values is not as pronounced as that exhibited by the data. This indicates that other 

softening effects not considered here are coming into play. As explained earlier, these 

effects might include the Timoshenko beam effects of shear deformation and rotatory 

inertia. Such effects have been included in a model proposed recently [Schultz, 2012; 

Schultz et al., 2013a, b].  
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(c) 

 

 
(d) 

 
Figure 6-16: Fundamental lateral resonant frequency comparisons: current model, fixed 
cantilever model [Heinrich et al., 2010a], and experimental data for the following 
nominal Si thicknesses: (a) 5 µm; (b) 8 µm; (c) 12 µm; (d) 20 µm. 
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(c) 

 

 
(d) 

Figure 6-17: Fundamental lateral quality factor comparisons: current model, fixed 
cantilever model [Heinrich et al., 2010a], and experimental data for several nominal Si 
thicknesses: (a) 5 µm; (b) 8 µm; (c) 12 µm; (d) 20 µm.  
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6.5 Model Verification 
 
 

To verify the accuracy of the results obtained from the current model, the 

solutions of the boundary value problems (BVPs) for free vibration and forced vibration, 

the latter via relative harmonic support rotation near the support, are compared to 

numerical solutions obtained via the MATLAB bvp4c solver [Mathworks Inc., 2010]. For 

the free-vibration case the mode shapes (up to the third mode) are generated by solving 

the eigenvalue problem defined by Eqs. (4-6) and (4-7a-d) using bvp4c. (The value of the 

eigenvalue α  was specified in Eq. (4-6) and determined by numerically obtaining the 

first three positive real roots of the characteristic equation given by Eq. (4-14) for a 

specified value of 1 / k .) Similarly, for the forced-vibration case the complex vibrational 

shape is generated near the first resonance peak by using bvp4c to solve the forced 

vibration BVP defined by Eqs. (4-42) and (4-43a-d). The resulting mode shapes and 

vibrational shapes from MATLAB are then compared with their counterparts obtained 

from the theoretical modeling using Eqs. (4-22a) and (4-46) respectively to verify the 

validity of the analytical solutions obtained herein. The MATLAB programs used to 

generate these results are included in Appendix D.  

Figure 6-18 shows the comparison of the normalized mode shapes for up to the 

third mode, obtained by using Eq. (4-22a) and by the MATLAB bvp4c solver for

1/ [0, 0.15]k ∈ . The two methods show consistent agreement and hence verify the 

accuracy of the analytical free-vibration solution obtained using the current theoretical 

model. Figures 6-19a and 6-19b, respectively, show the real and imaginary parts of the 

complex vibrational shape for the forced-vibration case, obtained via Eq. (4-46) and via 

the MATLAB bvp4c solver. There is complete agreement between the vibrational shapes 
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obtained via the two methods, thus verifying the methodology used in this work to obtain 

the solutions for the present theoretical model.  

 

 
Figure 6-18: Normalized mode shapes for the lateral vibration of an elastically supported 
microcantilever in a viscous fluid.  (Mode shapes are independent of the fluid resistance 
parameterζ .)   
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(a) 

 

 
(b) 

Figure 6-19: Vibrational shape for the lateral vibration of an elastically supported 
microcantilever in a viscous fluid due to an imposed relative harmonic rotation near the 
support: (a) real part; (b) imaginary part.   
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CHAPTER 7 
APPLICATION OF RESULTS TO MICROCANTILEVER-BASED CHEMICAL 

SENSORS 
 
 
7.1 Introductory Remarks 
 
  

In Ch. 6 the results for resonant frequency and quality factor were presented and 

the impact of support compliance and fluid resistance on these resonant characteristics 

was studied. These results for resonant frequency and quality factor can be related to the 

performance metrics of microcantilever-based sensors – namely, mass sensitivity, 

chemical sensitivity, and limit of detection (LOD). In this chapter these sensor 

performance metrics are defined and related to the resonant characteristics, and the 

practical implications are discussed with the main focus being on impact of support 

compliance on sensor performance. 

7.2 Mass Sensitivity  
 
 

The resonant frequency of a microcantilever changes with the change in its mass 

and this change in resonant frequency can be monitored. The degree to which a resonant 

sensor changes its resonant frequency upon mass uptake is known as the mass sensitivity 

of the sensor. In general, the mass sensitivity is the ratio of the shift in resonant frequency 

to the change in mass of the sensor caused by analyte adsorption/absorption. Thus, the 

mass sensitivity can be defined mathematically as [Narducci et al., 2008] 

     res
m

f
S

m

∂
=

∂
,           (7-1) 

where resf = the resonant frequency (Hz) and m = the total mass of the cantilever. Thus, 
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the mass sensitivity as defined by Eq. (7-1) represents the rate of change of resonant 

frequency with respect to sorbed analyte mass.  

Using Eq. (3-13) for the fundamental natural frequency in vacuum for a perfectly 

fixed lateral-mode cantilever, the dimensionless natural (circular) frequency for first 

resonance, given by Eq. (6-1), can be written in terms of resonant frequency (in units of 

Hz). Assuming that the resonant frequency may be approximated by the natural 

frequency, this gives 

( ) ( )

( )

2
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1 22
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1
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b h b h b h b h
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  .     (7-2) 

Placing Eq. (7-2) into Eq. (7-1) results in the following expression for mass sensitivity, 

which is based on the assumption that the added mass is uniformly distributed along the 

length of the beam: 
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(7-3) 
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It is important to note that Eq. (7-2) and, thus, Eq. (7-3) are valid only if they satisfy the 

inequalities for /L b  and /b h given by Eqs. (6-2) and (6-3), respectively. The 

expression (7-3) clearly shows that the mass sensitivity may be increased if the Young’s 

modulus of beam material is increased or if the thickness of the beam or the density of 

the beam material is decreased. Moreover, the thickness of the beam has the greatest 

impact on mass sensitivity followed by the density of the beam material and then the 

Young’s modulus of the beam material. Also, for a fixed thickness the first-order 

behavior of the mass sensitivity decreases with an increase in the /L b  and /b h ratios. 

Note that it is clear from Eq. (7-3) that, to first order, the mass sensitivity increases by 

four orders of magnitude for every one order of magnitude for which the dimensions are 

scaled down.  Equation (7-3) can be normalized by3 4

1

b

E

hρ
 to obtain the following 

expression for normalized mass sensitivity in terms of the relative size of the cantilever 

dimensions and the characteristic material length:
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(7-4)

  

As an illustrative example, consider the case in which the cantilever is made of 

silicon (E=169 GPa and bρ =2330 kg/m3), has a thickness [5,  20] mh∈ µ , and is 

operating in water ( fρ = 1000 kg/m3, η = 0.001 Pa·s). Then the value of 0 /L h  is very 
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small ( 0 / 0.0021L h = for 5µmh = ) and, thus, for many geometries of practical interest 

the second term in Eq. (7-4) becomes negligible compared to the first term. This means 

that the mass sensitivity is insensitive to the effects of the surrounding liquid (water in 

this example). Ignoring this term, Eq. (7-4) can be simplified as                            

( ) ( )

3 3 2

3 4
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1

1 2.710 2.7100.2088 0.2088/ /
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 
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= − + 
        +     +              

.    (7-5)  

This normalized mass sensitivity expression is now applicable for a silicon beam in 

water, provided that 5 µmh ≥ and the parameter range constraints [Eqs. (6-2) and (6-3)] 

are not violated. (It should also be relevant for many other beam materials and liquids.) 

The normalized mass sensitivity for a perfectly fixed cantilever can be obtained by 

setting the term within large parentheses to unity, i.e., 

    ,

2 3

3 4

0.0808

1
m fixed

b

S

E L b
h b hρ

≈
   
   
   

.        (7-6) 

The normalized mass sensitivity for both the compliant-support case and the 

limiting case of a fixed support are plotted in Fig. 7-1 versus /L b  for different /b h 

values. From the plot it can be seen that the normalized mass sensitivity is larger for the 

perfectly fixed case, as expected, due to its higher resonant frequency. At larger/L b  

ratios, the mass sensitivity decreases toward zero because the resonant frequency is 

becoming smaller as the beam becomes more flexible. At smaller /L b  ratios, i.e., stiffer 

cantilevers, the mass sensitivity becomes larger as is evident from the figure and the 

associated analytical expression. Also, as evident from Eq. (7-5), the mass sensitivity  
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(a) 

 
(b) 

Figure 7-1: Normalized mass sensitivity of laterally vibrating silicon microcantilevers 
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(zoomed view).  These figures should NOT be applied for /L b ratios in excess of the 
upper bound listed in Eq. (6-2).   
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decreases with an increase in the /b h ratio. Figure 7-2 shows the percent decrease in the 

mass sensitivity of silicon cantilevers operating in water having thickness 5µmh ≥ due to 

the support compliance effects, according to Eq. (7-5). The curves indicate a 21% 

decrease in mass sensitivity at the lower limits of /L b for all /b h ratios considered. The 

percent drop due to support compliance decreases with an increase in the /b h ratio. For 

the range of /b h considered, the difference inmS  between the fixed and compliant-

support cases is less that 4% if/ 15L b > . (This limiting value of /L b  is governed by the 

results for / 2b h= .) It is also to be noted that for lower/L b  values the Timoshenko 

beam effects, which have not been considered here, might play an important role. Even 

more complex effects associated with 2-D and 3-D deformations of the structure may 

come into play as the structure becomes so short that it may no longer behave as a 

“beam.” 

 
Figure 7-2: Percent decrease in mass sensitivity of laterally vibrating microcantilever-
based sensors made of silicon operating in water due to the support compliance effect. 
This figure should NOT be applied for /L b ratios in excess of the upper bound listed in 
Eq. (6-2).   
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7.3 Chemical Sensitivity 
 
 

 Chemical sensitivity is another important sensor performance metric. It is the 

ratio of the change in resonant frequency to the change in analyte concentration in the 

surrounding environment. It can be defined as [e.g., Dufour et al., 2004; Cox, 2011, 

Schultz, 2012] 

     res
c

A

f
S

C

∂
=

∂
,           (7-7) 

where AC  is the ambient concentration of analyte.   

The chemical sensitivity can be related to the mass sensitivity [e.g., Cox, 2011; 

Schultz, 2012] as 

     c c mS KV S= ,         (7-8) 

whereK is the partition coefficient of the particular coating/analyte combination in the 

particular operational medium, andcV is the volume of the chemically sensitive layer. 

Thus, if K is known, then the expression forcS can be obtained by multiplying Eq. (7-3) 

by cKV . A similar study on the impact of beam parameters on cS may be done as was 

illustrated in the previous section formS , but will not be performed here. It is important to 

note that cV is dependent on cantilever geometry and, thus, the impact of the dimensions 

on chemical sensitivity will differ from that on mass sensitivity presented in Sect. 7-2. 
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7.4 Limit of Detection 
 
 

Another important metric of sensor performance is the resolution of the sensor, 

i.e., its limit of detection (LOD). The limit of detection is defined as the ambient analyte 

concentration corresponding to a frequency shift equal to three times the frequency noise 

of the system measurement [e.g., Lochon et al., 2005]. Thus, LOD can be expressed as 

3 noise

c

f
LOD

S

∆
= ,         (7-9) 

where noisef∆  is the frequency noise of the system. When operating in an oscillator 

feedback loop configuration, the frequency noise of the system is proportional to the ratio 

of the resonant frequency to the quality factor [e.g., Lochon et al., 2005; Cox, 2011; 

Schultz, 2012]: 

res
noise

f
f

Q
∆ ∝ .       (7-10) 

It follows from Eqs. (7-9) and (7-10) that the LOD is directly proportional toresf and 

inversely proportional toQand cS : 

res

c

f dy
LOD

Q S dx
∝ .      (7-11) 

Using Eq. (5-17) forQ , Eq. (7-2) for resf , and Eq. (7-8) for cS , an expression for the LOD 

dependence may be obtained and a parametric study performed. However, such a study is 

deemed outside the scope of the present work.   

 

 

 



117 
 

CHAPTER 8 
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 
 
 
8.1 Summary 
 
 

An improved continuous-system analytical model has been derived for the lateral 

(in-plane) vibration of a microcantilever beam in a viscous fluid, incorporating the effects 

of support compliance and fluid properties. This work was motivated by the fact that the 

there were discrepencies between the ideally clamped cantilever models and experimental 

measurements and these discrepancies were more pronounced for those geometries that 

have the most promise for sensing applications. Boundary value problems (BVPs) were 

formulated for the in-fluid free-vibration case and the in-fluid forced-vibration case in 

which the latter involved excitation caused by a harmonic relative rotation imposed near 

the support. This load type was considered as it simulates electrothermal excitation of the 

type that was employed in associated experimental testing. The fluid effects were 

incorporated in the model via a Stokes-type fluid-resistance assumption.  

Exact solutions to the BVPs were obtained in analytical form and from these 

solutions approximate analytical expressions for the natural/resonant frequency and 

quality factor were derived. For the forced vibration case, the results were obtained by 

considering two methods of vibration detection – tip deflection and bending strain at the 

root of beam. Resonant frequencies were obtained from the frequency response curves as 

were the quality factors via the -3dB bandwidth. The practical utility of the solutions 

derived was enhanced by quantifying the rotational stiffness of the support in terms of 
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system parameters by performing a combination of dimensional analysis, 3-D finite 

element analysis, and curve-fitting of the simulation results.  

The impact of the fluid resistance and the beam geometry on the natural/resonant 

frequency and quality factor of the beam, including the influence of support compliance, 

was studied in detail. The theoretical frequency and quality factor predictions from the 

new model were compared to the previously derived models found in the literature and 

with experimental data spanning a broad range of microscale dimensions for laterally 

vibrating microcantilevers in water. The derived analytical results were also related to the 

performance metrics (mass sensitivity, chemical sensitivity and limit of detection) of 

laterally excited microcantilever-based liquid-phase sensors. An analytical expression 

was obtained for mass sensitivity, which clearly showed the impact of beam geometry, 

including the effects of support compliance and fluid resistance. Analogous expressions 

for chemical sensitivity and LOD may easily be obtained as noted at the end of Ch. 7.   

8.2 Conclusions 
 
 

The following conclusions may be drawn from the research work presented in this 

dissertation: 

1) For the ranges of support compliance (1/ [0, 0.15]k  ∈ ) and fluid resistance 

parameter ( [0, 1] ζ ∈ ) considered, the support compliance effects may cause up 

to a 21% decrease in the fundamental lateral-mode natural/resonant frequency, 

while the fluid resistance may cause up to a 25% decrease in the fundamental 

lateral-mode natural/resonant frequency. The magnitude of these decreases in 

natural frequency is reduced with an increase in the mode number. For 
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example, for the third mode the maximum drop in natural frequency was found 

to be only 12% due to support effects and 7% due to fluid effects. The model 

also shows that the quality factor increases with increasing mode number. 

Thus, if higher modes can be excited, the adverse effects of support 

compliance and fluid resistance will be less significant. 

2) For the practical ranges of parameters given by1/ [0, 0.15]k  ∈ , [0, 0.6] ζ ∈  , 

/ [2, 20]b h  = , [5,  20] µmh∈ , the model indicates that, at smaller/L bvalues, 

support compliance may reduce the lateral-mode quality factor Q  by up to 

~14% and the lateral-mode resonant frequency  fres by up to ~21% compared to 

the fixed cantilever model of Heinrich et al. (2010a). Both of these values 

occur at the smallest value of /b h considered, i.e., / 2b h= . Conversely, for 

/ 15L b > the support compliance effects may decrease Q by no more than 2% 

and fres by no more than 4%. Thus, for/ 15L b > , the support effects can be 

ignored and the fixed cantilever model can be used. 

3) For small /L bvalues the support compliance effect is dominant while for large 

/L bvalues the fluid resistance effect is dominant. Due to the existence of 

these two regimes, the resonant frequency drop (due to the combined effects of 

support compliance and fluid resistance) acquires a local minimum at a 

particular /L b  value while transitioning from one regime to another.  

4) The fundamental lateral resonant frequency as detected by the maximum 

bending strain signal is nearly equal to that obtained via the tip displacement 

response for small-to-moderate values of fluid resistance parameter (less than 

2% difference for [0,0.4]∈ζ ), with the resonant frequency detected via the 
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bending strain response being greater than that for the tip displacement signal. 

Similarly, the quality factor obtained from the two detection methods are 

essentially the same over this range of ζ , with the tip displacement response 

yielding a slightly larger Q value.  

5) Even though the two detection methods give similar lateral-mode resonant 

characteristics for small-to-moderate fluid resistance values, the frequency 

response curves are different for the two detection methods and the resonant 

peak amplitudes exhibit different trends. For the tip deflection response, the 

resonant peak amplitudes tend to decrease at higher resonances, thus indicating 

that the first resonant mode may be the most suitable of the lateral flexural 

modes for sensing applications that utilize a tip-deflection monitoring scheme. 

In contrast to the tip detection scheme, the model responses for strain-based 

detection methods show stronger signal amplitudes at higher modes, thus 

indicating that, if the higher modes can be excited, this method of detection 

may have advantages at higher modes in comparison to the fundamental lateral 

mode. 

6) The fundamental lateral-mode resonant frequency obtained via both maximum 

bending strain detection at the root of the beam and the tip displacement 

closely resembles fundamental natural frequency for small values of ζ (less 

than 1% error for [0,0.3]ζ ∈ ). The lateral-mode quality factor for the free 

vibration case also compares quite well with the forced vibration quality 

factors obtained via both detection methods. Thus, the analytical expressions 

for fundamental natural frequency and fundamental quality factor expressions 
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can be used to estimate the fundamental resonant frequency and fundamental 

quality factor for smaller values of ζ on which the present work is mainly 

focused. 

7) The Euler-Bernoulli model with fixed support [Heinrich et al., 2010a, b] 

overestimates the lateral-mode resonant frequency and quality factor for wider 

and shorter cantilevers as compared to experimental data. Comparison with 

experimental measurements shows that the current model, which accounts for 

support compliance, predicts resonant frequency and quality factor better than 

the previous ideally clamped cantilever model for the cases of “stubbier” beam 

geometries.   

8) The analytical expression derived for the lateral-mode mass sensitivity shows 

that it may be increased by increasing the Young’s modulus of the beam and/or 

by decreasing any of the following (in order of decreasing effectiveness): 

thickness of beam, length-to-width or width-to-thickness ratio of the beam, and 

mass density of the beam.  

9) For a silicon beam operating laterally in water with the thickness range of 

[5,20]µmh∈  considered, the effect of water on mass sensitivity is negligible 

compared to the effect of support compliance. This is consistent with the fact 

that a change in stiffness will influence the natural/resonant frequency of a 

dynamic system more than a change in the damping coefficient. 

10) The support compliance effect may cause a decrease of up to 21% in the mass 

sensitivity of a lateral-mode silicon microcantilever in water over the range

[5,20]µmh∈ , with the larger influence occuring at smaller/L b ratios. For 
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increasing values of /L b , the influence of support compliance on mass 

sensitivity decreases; for/ 15L b > , the drop in mass sensitivity is less than 4% 

compared to the fixed cantilever result. 

It is important to emphasize that the above conclusions were based on a theoretical 

model that was based on (a) Bernoulli-Euler beam theory and (b) a Stokes-type fluid 

resistance model. Thus, the model does not account for Timoshenko beam effects 

(shear deformation and rotatory inertia), warping of cross sections or other three-

dimensional deformation patterns in the cantilever, or the pressure and edge effects 

associated with the beam/fluid interaction. Because these neglected effects become 

more significant at lower /L band /b hratios, the above conclusions should not be 

used without regard for the limitations imposed by the model’s underlying 

assumptions, i.e., they should be interpreted as “first-order guidelines” at the lower 

end of the /L band /b hranges considered.      

8.3 Recommendations for Future Work 
 
 

The following recommendations for future work are made to expand upon the 

present study: 

1) While showing marked improvement over previous modeling efforts based on 

perfectly clamped cantilevers, the resonant frequency and quality factor 

predicted by the current model overpredict experimental measurements for 

shorter and wider beams. In addition to exhibiting support compliance effects, 

beams with these geometries tend to have larger shear deformation and 

rotational inertia effects, which were not considered in the present model. 

Thus, it is recommended that the support compliance expression derived herein 
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be incorporated into a Timoshenko beam model such as that recently 

developed by Schultz (Schultz, 2012; Schultz et al., 2013a, b). This will permit 

both support compliance and Timoshenko effects to be accounted for and the 

relative contributions of these effects to be determined.   

2) In this study the fluid effects have been modeled via a Stokes-type fluid 

resistance assumption which ignores the pressure effects of the fluid on the 

smaller sides of the beam and edge effects in the fluid shear stress near the 

corners of the beam cross section. This assumption is expected to become less 

valid as the beam thickness increases (relative to the width) as is evident from 

the larger discrepencies for smaller/b hvalues between the analytical results 

and experimental measurements for resonant frequency and, to an even greater 

extent, for quality factor. Thus, incorporating more accurate hydrodynamic 

functions, such as those derived by Brumley et al. (2010) and Cox et al. (2012), 

to model the fluid effects on the beam will account for the fluid effects that 

have been neglected here and, thus, yield lower, more accurate resonant 

frequency and quality factor values in liquids for the geometries in question.   

3) The increase in resonant peak amplitudes at higher modes based on use of a 

bending strain signal is of potential interest. This method of detection is used in 

piezoresistive read-out methods. Furthur investigation into higher lateral 

modes, especially experimental work to activate these modes, might give rise 

to some significant improvements in lateral–mode microcantilever-based 

sensor performance. 
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4) This dissertation included a derivation of a detailed expression showing the 

dependence of mass sensitivity on device geometry and system (beam and 

liquid) material properties. Similar expressions may be easily derived 

(following the roadmap suggested in Sect. 7.2) for chemical sensitivity and 

limit of detection in order to better understand the effects of support 

compliance and fluid resistance on these very important sensor performance 

metrics. These expressions, including that for mas sensitivity included here, 

would provide the basis for a through parametric study to be performed in 

order to provide more detailed guidelines for lateral-mode sensor design. 
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APPENDIX A 
ADDED MASS AND DAMPING COEFFICIENT, DUE TO FLUID RESISTANCE, 

ON FINITELY WIDE PLATE VIBRATING  
FREELY IN VISCOUS FLUID  

 
 

 
 
Figure A-1: Schematic of thin, infinitely long beam of finite width b oscillating along x-
direction. 
 

 The plate with width b is vibrating along x-axis as shown in Fig. A-1. It will be 

assumed that the displacement of the fluid due to a beam of finite width is the same as 

that obtained with a beam of infinite width.  

The Navier-Stokes equation for incompressible flow ( ). 0fu∇ =
r

 is 

2f
f f

du dy
P u

dt dx
ρ η= −∇ + ∇

r
r

,       (A-1) 

where  

    , , ,
ˆˆ ˆ

f x f y f z fu u i u j u k= + +
r

        (A-2) 

 
 is the velocity field of the fluid at all points, P is the pressure, and fρ and η  are the 

density and dynamic viscosity of the fluid, respectively. Equation (A-1) can be written as 

( ) ( ) ( ) ( )2 2 2
, , , , , ,

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .f x f y f z f x f y f z f

d P P P
u i u j u k i j k u i u j u k

dt x y z
ρ η

 ∂ ∂ ∂  + + = − + + + ∇ + ∇ + ∇   ∂ ∂ ∂ 
                (A-3) 
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Comparing the same unit vectors in left hand side and right hand side, Eq. (A-3) can be 

written into following three different equations:  

2 2 2
, , , ,

2 2 2

x f x f x f x f
f

du u u uP

dt x x y z

 ∂ ∂ ∂∂
= − + + +  ∂ ∂ ∂ ∂ 

ρ η    ,   (A-4a) 

 
            

2 2 2
, , , ,

2 2 2

y f y f y f y f
f

du u u uP

dt y x y z

 ∂ ∂ ∂∂
= − + + +  ∂ ∂ ∂ ∂ 

ρ η  ,   (A-4b) 

2 2 2
, , , ,

2 2 2

z f z f z f z f
f

du u u uP

dt z x y z

 ∂ ∂ ∂∂
= − + + +  ∂ ∂ ∂ ∂ 

ρ η
 
 .                (A4-c) 

The Boundary Conditions 

Let the plate is vibrating in x-direction with velocity  

    0 0,
i t d t i t

x plateu U e U e eωΩ −= = ,      (A-5) 

where, 0U  is the amplitude of plate excitation velocity in x-direction, idΩ = +ω  is the 

complex frequency with real part ω and imaginary part d. At surface of plate, z = 0, the 

boundary conditions are: 

0, ,( 0) d t i t
x f x plateu z u U e e−= = = ω ,    (A-6a)  

, ( 0) 0y fu z= =    ,              (A-6b) 

, ( 0) 0z fu z= =   .     (A-6c) 

It has been assumed that fluid in contact with the plate will have the same velocity as the 

plate because of nonslip condition. Atz → ∞ , the boundary conditions are: 

, , ,( ) ( ) ( ) 0x f y f z fu z u z u z→ ∞ = → ∞ = → ∞ = ,   (A-6d) 

0( )P z P→ ∞ =  .                   (A-6e) 

Assume that the velocity of fluid and pressure are independent of x and y direction. Then, 
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, ,

, ,

( , ),

0,

( , ).

x f x f

y f z f

z t

P P z t

u u

u u= =

=

=

              (A-7a-c) 

Using Eqs. (A-7a-c) in Eq. (A-4a-c) gives 

           

2
, ,

2

( , ) ( , )x f x f
f

du z t u z t

dt x

∂
=

∂
ρ η ,                                 (A-8a) 

              0 = 0     ,          (A-8b) 

          
0

( , )
0 ( , ) ( )

( , ) ( )

P z t
P z t P t

z

P t P t P

∂
= ⇒ =

∂

∞ = =
    ,    (A-8c)                                            

where 0P  is the atmospheric pressure.  

Solution for x , fu  

       , ( , ) ( ) ( )i t d t i t
x f z tu f z e f z e eωΩ −= =       (A-9) 

Substituting Eq. (A-9) in to Eq.(A-8a) results in 

       

2
2

2

( )
( ) 0

∂
−

∂
=

f z
a

z
f z  ,    (A-10)  

with  

                         ( ) fa i d= −
ρ

ω
η

,     (A-11)  

where a is the square root of ( )− fi d
ρ

ω
η

 with positive real part.    

The general solution of Eq. (A-10) is: 
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      1 2( ) −+= a z a zf z C Ce e   .      (A-12)                        

Now the boundary conditions are:             

       
0(0) ,

( ) 0 .

f U

f ∞

=

=
                    (A-13a-b)                

Substituting Eq. (A-13a,b) in to Eq. (A-12) gives 1 0=C  and 2 0=UC  . 

Therefore, Eq. (A-12) reduces to 

       0( ) a zf z U e−= .     (A-14) 

Substituting Eq. (A-14) in to Eq. (A-9) results in 

      , 0( , ) a z d t i t
x fu z t U e e eω− −=  .               (A-15) 

Substituting Eq. (A-11) in to Eq. (A-15) gives 

     , 0

( )
( , )

f

d t i t
x f

i id z
z tu U e ee ω

ρ
ω

η −

− +
= .    (A-16) 

Using  1

2

+
=

i
i  in Eq. (A-16) gives  

     , 0

( ) (1 )
2( , )

f

x f
d t i t

id i z
z tu U e e eω

ρ
ω η−

− + +
=  .   (A-17) 

Shear stress at the surface of plate 

 Shear stress at a distance z from plate is 

 ,
( ) (1 )

2
0 ( ) (1 )

2

( , )
( )

f
fx t d t i t

id i zdu
U e e id i e

dz

z t
z −

− + +
− + += = ω

ρ
ω

ηρ
η η ω

η
τ  .   (A-18) 

At z=0, i.e., shear stress on the surface of the plate is 

   0 0(0) ( ) (1 )
2

fd t i tU e e id i−= = − + +ω ρ
τ τ η ω

η
 .                   (A-19)  
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Shear force acting on the surface of the plate 

 Shear force per unit length acting on plate can be obtained by integrating shear 

stress over the width of plate as 

  
/2

2
0 0

/2

( ) 2 2 ( ) (1 )
b

d t i t
s f

b

F t dx U e e b id i−

−

= = − + +∫ ωτ ηρ ω .     (A-20)       

Using 1

2

i
i

+
=  in Eq. (A-20) gives 

                                 

2
0( ) 2 ( )d t i t

s fF t U e e b i d−= − −ω ηρ ω .         (A-21) 

Let i d p iqω − = + , then, 

    

2 2 2 21 1
( ) ( )

2 2
p d d d dω ω= − + + − = + −   ,                (A-22a) 

    

2 2 2 21 1
( ) ( )

2 2
q d d d dω ω= − + − − = + +     .              (A-22b) 

Therefore, Eq. (A-21) becomes 

2 2 2 2 2 2
0 0( ) 2 2 d t i t

s f fF t U b d d i U b d d e e− = − + − − + + 
 

ωηρ ω ηρ ω .   (A-23) 

This shear force can also be written as 

      

,
,

(0, )
( ) (0, )x f

s f f x f

du t
F t m c u t

dt
= − − .    (A-24)     

Substituting Eq. (A-17) in to Eq. (A-24) results in    

     
( )0 0( ) d t i t

f f fsF t U dm c i U m e eωω − = − − .      (A-25)                      

Here fm and fc are real.  

Comparing Eq. (23) and Eq. (24) results in 
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2 2

2

2
1

f

f

b d d
m

ηρ

ω ωω
= + + ,                          (A-26a) 

    
2 2

2
2 2

2 1 1f f

d d d d d
c bηρ ω

ω ω ω ω ω

 
 = + + + + −
 
 

.            (A-26b) 

Eqs. (A-26a, b) are the exact results for added mass and added damping coefficient for  

infinitely wide plate vibrating under harmonically decaying excitation on viscous fluid. If 

there is no decaying of oscillation, then d=0 and Eqs. (A-26a, b) reduce to 

       

22 f

f

b
m

ηρ

ω
= ,                                   (A-27a) 

       22f fc bηρ ω= .                        (A-27b) 
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APPENDIX B 
DIMENSIONAL ANALYSIS TO OBTAIN THE POSSIBLE DIMENSIONLESS 

RELATIONSHIPS BETWEEN ROTATIONAL SUPPORT STIFFNESS AND THE 
PROBLEM PARAMETERS 

 
 

The dimensional analysis is performed using Buckingham Pi Theorem [e.g., Fox 

and McDonald, 1993]. The theorem states that if there are n parameters in a problem and 

these parameters contain m primary dimensions (for example F, L, T) the equation 

relating all the variables will have (n-m) independent dimensionless ratios (Π

parameters), expressible in functional form as 

( )

( )

1 2

1 1 2 3

, ,........, 0
or

, ,........, 0

n m

n m

f

f

−

−

Π Π Π =

Π = Π Π Π =
  .       (B-1) 

The rotational stiffness of support k  can be assumed to be the function of material 

properties E, ν and beam cross-sectional dimension b, h and can be written in the form of 

Eq. (B-1) as 

( ), , ,k f E b hν= .       (B-2) 

There are five problem parameters involved , , , , andk E b h ν .Therefore, m is 5.  If F, L, T 

are primary dimensions for force, length and time, the dimensions of each parameter are 

2, / , , , 1k FL E F L b L h L ν= = = = = .      (B-3) 

Therefore, the number of primary dimensions m is 2. So the number of dimensionless 

groups (Πparameters) is 3 (n-m=5-2=3). Parameters E and b are chosen as repeating 

parameters. Now setting up dimensional equations 

( ) ( ) 0 0 0
1 2

a
ba b F

E b k L FL F L T
L

 Π = = = 
 

 ,   (B-4a) 
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( ) ( ) 0 0 0
2 2

c
dc d F

E b h L L F L T
L

 Π = = = 
 

,   (B-4b) 

( ) ( ) 0 0 0
3 2

1
e

fe f F
E b L F L T

L
ν  Π = = = 

 
 ,     (B-4c) 

and equating the exponents of F, L , and T in Eqs. (B-4a-c) results in a=-1, b=-3, c=0, 

d=-1, e=0, and f=0. Therefore, the Pi functions become 

1 3

k

Eb
Π =  ,       (B-5a) 

2

h

b
Π =      ,       (B-5b) 

3 νΠ =      .      (B-5c)             

Now the functional relationship in Eq. (B-1) becomes 
 

13
,

k h
f

Eb b
ν =  

 
.    (B-6a)  

                           
But the Π  parameters are not unique, so the functional relationship could also have 

following forms: 

23
,

k h
f

Eh b
ν =  

 
;    (B-6b)  

32
,

k h
f

Ehb b
ν =  

 
;    (B-6c)  

42
,

k h
f

Eh b b
ν =  

 
.    (B-6d)  
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APPENDIX C 
DETERMINATION OF EFFECTIVE MODULUS OF ELASTICITY 

 
 

The effective Young’s modulus .effE is determined by fitting the in-vacuum 

results for perfectly fixed case to in-air experimental data based on least squared error 

method. Recall that the in-vacuum natural frequency is given by Eq. (3-13) as 

.2
0 1 2 12

eff

b

Eb

L
ω λ

ρ
=  .       (C-1) 

Converting the circular frequency in radians to natural frequency in Hz results in 

2
.0 1

0 22 2 12
eff

b

Eb
f

L

ω λ
π π ρ

= = .      (C-2) 

If airf is the experimental frequency data in air then the sum of squared error e between 

the this frequency and in-vacuum frequency is  

( )2

, 0,

N

air i i
i

e f f= −∑ ,         (C-3) 

where 

 N = number of data point, 

i = 1, 2, 3,….,N . 

Substituting Eq. (C-2) into Eq. (C-3) results in 

2
2

1
, .2

1

2 12

N
i

air i eff
i i b

b
e f E

L

λ
π ρ

 
= −  

 
∑ .      (C-4) 

The minimization of the total squared error requires that the derivative of e with respect 

to .effE be zero, i.e., 

.

0
eff

de

dE
= .                   (C-5) 



141 
 

Substituting Eq. (C-4) into Eq. (C-5) results in 

2
2

1
, .2

.

1
2 12

0

N
i

air i eff
i i b

eff

b
d f E

L

dE

λ
π ρ

 
− 

  =
∑

.      (C-6) 

Differentiating and simplifying Eq. (C-6) gives 

22
1

, 2 2
.

1 1
0

2 12

N
N i i

air ii
ii b ieff

b b
f

L LE

λ
π ρ

   
− =   

   
∑ ∑ ,     (C-7) 

2

, 2

. 22
1

2

1
2 12

N i
air ii

i
eff

N
i

ib i

b
f

L
E

b

L

λ
π ρ

  
  
  =        

∑

∑
         (C-8) 

Equation (C-8) is used to determine the effective modulus of elasticity of a composite 

microcantilever. Only L= (800, 1000) µm experimental data set are used since for these 

lengths the support compliance effects and Timoshenko beam effects are negligible. 
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(c) 

 
(d) 

Figure C-1: Best curve fit of experimental fundamental lateral frequency data in air for 
L= (800, 1000) µm: (a) hnom= 5 µm, (b) hnom= 8 µm, (c) hnom= 12 µm, (d) hnom= 20 µm. 
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APPENDIX D 
MATLAB CODES USING BVP4C SOLVER 

 
 
Free Vibration 

%This program provides the solution for eigenvalue problem of cantileverbeam with 
%elastic support in fluid 
 
function bvp4free 
%Specify nodes of the mesh and initial guess for the solution 
solinit = bvpinit(linspace(0,1,10000),[1 0 0 0]); 
%Solution using bvp4c 
sol = bvp4c(@bvp4ode,@bvp4bc,solinit); 
x = linspace(0,1); 
y = deval(sol,x); 
ymax=max(abs(y(1,:))); 
ybar=(y(1,:)/ymax); 
plot(x,ybar,'-r','LineWidth',2.5); 
xlabel('\xi') 
ylabel('\phi_{bar}(\xi)') 
  
%Differential Equation Definition and Evaluation 
function dxdy = bvp4ode(x,y) 
 
%calculation of eigenvalue(root for alpha from characteristic equation)  
% specify 1/kbar value 
K=0.15;                     %%% K=1/kbar 
 
%specify range of alpha based on mode to be solved 
%calculate root of alpha for first mode 
alphamin=0; 
alphamax=2; 
nalphainc=101; 
alpha=linspace(alphamin,alphamax,nalphainc); 
% Now  insert "for loop" here to calculate f at all alpha values. 
for jalpha=1:nalphainc; 
      ALPHA=alpha(jalpha); 
      f(jalpha)=1+cosh(ALPHA)*cos(ALPHA)-
(K*ALPHA*((cosh(ALPHA)*sin(ALPHA))-(sinh(ALPHA)*cos(ALPHA)))); 
      fFixed(jalpha)=(1+cosh(ALPHA)*cos(ALPHA)); 
end; 
%Next find the root for alpha. 
for jalpha=1:nalphainc 
        if (jalpha==1); 
           continue 
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        else 
% Now we will will omit the roots for perfectly fixed cantilever. 
           if (f(jalpha)*f(jalpha-1)<=0); 
%   If a sign change has occurred, determine which alpha value corresponds to the f value 
%   that is closer to zero.  
               fmagprevious=abs(f(jalpha-1)); 
               fmagcurrent=abs(f(jalpha));                     
               fmaglocal=[fmagcurrent fmagprevious]; 
               [fmagmin,Iminlocal]=min(fmaglocal); 
%   Note that if Iminlocal equals 1, then the index for alpharoot is jalpha; if Iminlocal is 
%   2, then the index for alpharoot is jalpha-1. So, in general, the index for alpharoot may 
%   be written as jalpha+1-Iminlocal. 
                alpharoot=alpha(jalpha+1-Iminlocal); 
           end     
        end 
end 
dxdy=[y(2) y(3) y(4) alpharoot^4*y(1)]; 
  
% Boundary Condition 
function res = bvp4bc(ya,yb)     
K=0.15;                                      %%%% K=1/k_bar 
res=[ya(1) ya(2)-ya(3)*K yb(3) yb(4)]; 
  
Forced Vibration 
 
%This program provides the solution for boundary value problem of cantileverbeam with 
%elastic support in fluid excited via relative harmonic rotation near support 
 
function bvp4forced 
% Specify nodes of the mesh and initial guess for the solution 
solinit = bvpinit(linspace(0,1,10000),[1 0 0 0]); 
%Solution using bvp4c 
sol = bvp4c(@bvp4ode,@bvp4bc,solinit); 
x = linspace(0,1); 
y = deval(sol,x); 
figure(1) 
plot(x,real(y(1,:)),'--b','LineWidth',2.5); 
xlabel('\xi') 
ylabel('Re[\phi(\xi)]/\theta_0') 
 
figure(2) 
plot(x,imag(y(1,:)),'--b','LineWidth',2.5); 
xlabel('\xi') 
ylabel('Im[\phi(\xi)]/\theta_0') 
 %Differential Equation Definition and Evaluation 
function dxdy = bvp4ode(x,y) 
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%Specify known parameters 
zeta=0.2;        % fluid resistance parameter 
omegabar=0.75;   % omegabar near first resonance 
lambda1=1.875104; 
alpha=(lambda1^4*(1+(zeta/(lambda1*sqrt(omegabar))))*omegabar^2-
1i*lambda1^3*zeta*omegabar^1.5)^0.25; 
dxdy=[y(2) y(3) y(4) alpha^4*y(1)]; 
  
% Boundary Condition 
function res = bvp4bc(ya,yb)     
K=0.15;                          %%%% K=1/k_bar is support compliance 
res=[ya(1) ya(2)-ya(3)*K-1 yb(3) yb(4)]; 
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