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ABSTRACT
EFFECT OF SUPPORT COMPLIANCE ON THE RESONANT BEHAR OF
MICROCANTILEVER-BASED SENSORS IN VISCOUS FLUIDS

Rabin Maharjan, B.E., M.S.

Marquette University, 2013

Resonant microcantilevers are often consideredderin chemical sensing and
biosensing applications. However, when excitedheérdonventional transverse flexural
mode, their performance in liquids is severely coonpsed. Theoretical and
experimental studies have shown that the detrimheffects of the liquid may be
mitigated by operating the microcantilever in latdlexure, especially for microbeams
having smaller length-to-width._(b) ratios. However, for these most promising
geometries the predictions of existing models tendiverge from experimental data for
resonant frequency:{s) and quality factor@). A likely reason for these discrepancies is
support compliance, which has been neglected stiagimodels. Thus, the derivation of
an analytical model for the lateral-mode dynamgpomse of a microcantilever in a
viscous fluid, including the effects of support qaiance, is warranted and is the focus of
this dissertation.

Analytical solutions for natural frequency aQdre first obtained for the free-
vibration case, followed by solutions for the fateabration response when the
cantilever is excited by an imposed harmonic redatotation near the support
(simulating electrothermal actuation). ValuedgfandQ are extracted from the response
spectra for the tip deflection and the bendingstn@ar the support. The support
compliance (required as model input) is analyticedlated to device dimensions by
employing dimensional analysis and 3-D FEA. Thdital results for the resonant
characteristics are also related to sensor perfocenmetrics (sensitivity and limit of
detection), thus permitting one to exploit the ptitd of lateral-mode microcantilever-
based liquid-phase sensors. The impact of supparptiance, fluid resistance, and beam
dimensions on the free- and forced-vibration respare explored, as are the differences
associated with the two output signals. Comparisdmesults with experimental data
show a marked improvement over the previous rigipksrt models for smallér/b
values. For the practical ranges of parametersideresi the model indicates that, at
smallerL/b values, support compliance may red@ky up to ~14% anfles and mass
sensitivity §) by up to ~21%. Conversely, fafb>15 the support compliance effects are
no more than 2% o® and 4% orfesandSy.
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= work done by the bending stregst beam support interface calculated

from finite element analysis;

= spatial coordinate along the longitudinal (lengtiection of the beam;
= small distance from support to the point oflagapion of the imposed
rotation associated with the heating resistors;
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CHAPTER 1
INTRODUCTION

1.1 Background of Microcantilever-Based Sensors

In recent years microelectromechanical systemsMEdevices, in particular,
microcantilever-based devices have been increasitiized in physical, chemical, and
biochemical sensing applications. The interesticrocantilever-based sensors has
increased mainly because of their estimated highkisety resulting from the large
surface area-to-volume ratio [Dufour et al., 202her advantages associated with
microcantilever-based sensors are label-free sgnisiw cost, portability, fast sensing
rate, and parallel sensing ability [Boisen et20.11]. Small size, simple structure and
ability to operate in both liquid and gas make méamtilevers highly attractive sensing
platforms [Finot et al., 2008]. Because of thesayraenefits, microcantilevers have
generated interest in fields as diverse as med(sipecifically for the screening of
diseases, blood glucose monitoring), in-situ emvimental monitoring, and detection of
chemical and biological warfare agents.

Microcantilevers were first used in atomic forcerscopy (AFM) as a force
sensor to image surfaces [Binnig et al., 1986]e discovery that humidity, temperature
and chemical adsorption influence the quasi-stigftection and resonant frequency of
microcantilever probes in AFM led to the use of ma@antilevers in chemical, physical,
biological, and biochemical sensing applicationsyidat et al., 1994].

Microcantilever-based sensors consist of an in@se material as the main
structure which is coated with a sensing layereceptor [Lavrik et al., 2004] that sorbs

specific analytes of interest from the ambient esrvinent. Microcantilever-based



sensors can be operated in either the static mothe @ynamic (resonant) mode [Lavrik
et al., 2004; Finot et al., 2008]. In the staticde@f operation the quasi-static deflection
of the cantilever, due to analyte-induced surfdtects, is measured, while in the
dynamic mode the resonant frequency, affected dyesbmass, is monitored. Any
changes in deflection (static mode) or shifts @gtrency (dynamic mode) may be used to
quantify the concentration of analyte present endperating environment. For the
dynamic-mode sensors, the accurate measuremeggmiant frequency and frequency
shift greatly depends on the quality facfpassociated with the resonant peak of the
system. Large® values represent sharper resonant peaks whichecareasured easily,
thus giving accurate readings for resonant frequand frequency shifts. Small€r
values correspond to broader resonant peaks froichvths difficult to measure
resonant frequency and frequency shifts accurai¢lgrefore, achieving higy-
resonances is of paramount importance if a resomato be employed as an effective
dynamic-mode sensor; indeed, this has been a obgbacle in the development of
microcantilever-based sensors for liquid-phasedtiete. For this reason modeling the
dynamic mode operation of microcantilevers in laguwill be a primary focus of the
present work.

Different methods of measuring the cantilever dgiten can be employed.
Optical read-out using a laser [Lavrik et al., 20Bdisen et al., 2011] and piezoresistive
read-out [Beardslee et al., 2012] are two commasBd methods for measuring
cantilever deflection. Optical read-out uses arlasérack the tip of the cantilever and
thus determine its deflection response. As an elaoithe piezoresistive read-out

method, the deflection may be indirectly measurgdgia piezoresistive Wheatstone



bridge near the support. The bending strain willseaa change in resistance of the
piezoresistors which in turn alter the bridge vgétaThis change in voltage can then be
related to the deflection of the microcantileveo¥C2011]. In the modeling efforts to be
pursued in the present work, both read-out metholtibe considered.

Dynamically driven microcantilevers can be excitedarious modes: the
transverse (out-of-plane) flexural mode, the ldt@raplane) flexural mode, the torsional
mode, and the axial mode. The most commonly useiirex mode for dynamic mode
microcantilevers is the transverse mode mainly bsedt is the most flexible mode, i.e.,
the mode in which the beam “naturally” tends toratb. This mode of excitation has
been successfully employed in many gas-phase ggapplications [e.g., Thundat et al.,
1995; Lange et al., 2002; Rogers et al., 2003; Vemnet al., 2005; Tetin et al., 2010].
When the transverse mode is used for liquid phessisg, however, the drastic drop in
guality factor and resonant frequency comparedatogiase sensing makes liquid-phase
sensing unfeasible [e.qg., Dufour et al., 2007a;caa et. al., 2008]. This is mainly
caused by the added mass and damping associatethwitiquid [Dufour et al., 2007a,;
Dufour et al., 2012; Cox et al., 2012]. The cantlledrags a portion of the liquid with it
as it vibrates, causing an increase in its effeaiass and therefore a decrease in the
resonant frequency. Also, the viscosity of theiligncreases the damping of the system
(the dissipation of energy increases), which resala severe decrease in the quality
factor as well as a drop in resonant frequencyovarcome these detrimental effects of
the liquid, the lateral mode of vibration can bigized [Sharos et al., 2004; Dufour et al.,
2004; Dufour et al., 2007a]. The lateral mode if$estthan the fundamental transverse

mode, but it involves less effective fluid mass #&nler levels of viscous damping due to



the more “streamelined” orientation (see Fig. 1#i)is resulting in higher quality factors
and resonant frequencies [Dufour et al., 2004; Dué& al., 2007a]. Experimental
investigations [Beardslee et al., 2010a-d; Beaedsteal., 2012] and theoretical studies
[Heinrich et al., 2010a, b; Cox et al., 2012] halready explored in detail how the lateral
mode of vibration may significantly improve the tjtyefactor and resonant frequency of
a microcantilever resonating in a liquid mediume3é studies have also quantified the
strong role that the dimensions of the microbeawe !t the resonant characteristics of

the device.

(a) (b)
Figure 1-1: Two flexural modes of a microcantiledewice: (a) the conventional
transverse (out-of-plane) bending mode; (b) ther#t(in-plane) bending mode.

1.2 Motivation for the Study

As noted in the previous section, the transvdesaifal mode is not a viable
option for liquid-phase microcantilever-based segdiecause of the fluid inertia and the
large energy losses that take place due to visgisggation in the liquid. The associated
degradation of the resonant characteristics tregssliato poorer mass sensitivities and
limits of detection when the microcantilever is dises a platform for sensing. Some

recent studies by the Marquette University/Geofigiah/University of Bordeaux



(MU/GT/UB) research team — in particular, the tlegimal work by Heinrich et al.,
(20104, b), which were based on Bernoulli-Eulemb&aeory for the perfectly fixed case,
and the experimental work by Beardslee at el., 2ed) -- have shown that the most
effective design for a microcantilever-based sengmating in the lateral mode in a
viscous fluid is a microcantilever that is shortamde. However, for short and wide
beams the perfectly fixed beam model based onicid$3ernoulli-Euler beam theory
loses its accuracy likely due to (1) Timoshenkorbedfects of shear deformation and
rotatory inertia, and (2) support compliance eBedthe influence of the Timoshenko
beam effects has recently been studied in detellfz et al., 2013a, b], but that model
also assumes a “perfect clamp” boundary condifi@n.microcantilevers that are
relatively short and wide and loaded in lateratdlies, the microcantilever is very stiff
relative to the beam’s support structure. As altege conventional assumption that
the support is perfectly “fixed” against nd& becomes questionable. This provides
one of the major motivations for the present disdéem research, i.e., to understand the
effects of support compliance on the resonant charatics of lateral-mode
microcantilevers. (While the present model willdeesed on Bernoulli-Euler beam theory
and will therefore not account for the Timoshenkarn effects considered in Schultz et
al. (2013a, b), the theoretical results obtainedeaipected to prove valuable in future
extensions to Timoshenko beam models for the campsiupport case.) An important
second motivation is the need to account for thigl #éffects in laterally vibrating beams
because the energy dissipation resulting from fiifdcts is large compared to other loss

mechanisms like support losses, temperature effietésnal damping, etc.



1.3 Specific Objectives of the Study

The specific objectives of the present study aeefdiowing:

1) to derive a continuous-system model (i.e., haviripite degrees of freedom)
for lateral (in-plane) vibrations of a microcantiége beam in a viscous fluid,
incorporating the effects of support compliance #nid properties.

2) to formulate boundary value problems (BVPs) foritiéluid free vibration
case and in-fluid forced vibration case causeddrynonic relative rotation
imposed near the support.

3) to determine the solutions to the BVPs and useetBekitions to obtain
theoretical results for vibration characteristi€particular relevance in
dynamic-mode sensor applications, i.e., the iniesgstem properties of
natural frequency and quality factor corresponding free vibration and the
frequency response, resonant frequency and qdatitgr for the forced
vibration case.

4) to quantify the rotational stiffness of the supporterms of system
parameters via 3-D finite element analysis andedisional analysis.

5) to study the impact of fluid resistance and beaongsric parameters on the
natural/resonant frequency and quality factor eflikam, including the
influence of support compliance.

6) to compare theoretical frequency and quality faptedictions from the new
model to the values predicted by previously deriregtiels found in the
literature and with those measured in experimehlaterally vibrating

microcantilevers in water.



7) to relate the derived theoretical results to teégrmance of laterally excited
microcantilever-based liquid-phase sensors.

1.4 Problem Statement

The primary objective of this research is to deaymechanics-based, analytical
model for lateral (in-plane) vibrations of a micamtilever beam in a viscous fluid
incorporating the effects of support flexibilitycifluid properties. Figure 1-2 shows the
geometric and material parameters of such a syateng with the reference axes.
Parameterg, b, andh are length, width, and thickness of the microdenér beam,
respectively. The origin is at the center of tharhesupport interface with the, y-, and
z-axes in the directions shown. The lateral deftec{in they-direction) is denoted by

y(x t). The beam is assumed to be elastically suppontea rotational sense), i.e., not
perfectly clamped at=0, and “free” ax= L. The beam is made of a material with

Young’'s modulu€ and mass densigy, and is operating in a fluid having dynamic

viscosity  and mass desnigy, .

viscous fluid
1, Ps

Figure 1-2: Schematic of a laterally vibrating neicantilever showing dimensions and
material parameters.



The improved mathematical model to be derived endissertation research will
involve the derivation and solution of two boundaajue problems (BVPSs) that account
for a finite rotational support stiffness (i.e., @astic rotational spring support) and will
incorporate the fluid resistance via a “Stokes-t{fpel assumption” [Heinrich et al.,

2010 a, b] that utilizes the solution to Stoke€smd problem [Stokes, 1851]. Rigorous
derivations and analytical solutions will be obtdrfor (a) the free vibration case and (b)
a forced vibration caused by a harmonic relatitatron imposed at an infinitesimal
distance from the spring support. The motivatiohihé choosing the loading of (b) is
that it provides a kinematic means of simulating ¢tectrothermal excitation utilized in
recent experiments on devices that employed integt@eating resistors near the beam
support [e.g., Beardslee et al., 2010a]. (SeelFR)) Such an equivalent load was
introduced in a recent effort to model these devigeder the assumption of infinite
support stiffness [Heinrich et al., 2010b]; thuee forced-vibration solution pursued in
the present work represents an extension of theque model to account for support
compliance. For the free vibration case, the charstic equation of the system is
determined and from it the natural frequenciesdatermined and then the quality factors
and mode shapes are determined. For the forcedtibrcase, the total tip displacement
response and bending strain response at the raloé dieam will be determined and from
these responses the important dynamic charactsressisociated with the harmonically
excited system — namely, the resonant frequenci@sesonant quality factors -- will be
derived. These results for resonant/natural freggsrand quality factors will then be
related to the sensor performance metrics of masstsvity, chemical sensitivity, and

limit of detection (LOD).



For the forced vibration excitation via harmonitateve rotation near the support,
the choice of the bending strain at the root ofttkam as an output signal of interest is
motivated by the devices tested previously [e.garBslee et al., 2010a] which detect
beam motion via piezoresistive elements near théleaer support, i.e., beam motion is
measured in terms of bending strain near the sup{@ee Fig. 1-3.) The total tip
displacement response, also examined in the presekt is relevant for sensor

applications that utilize an optical (laser) systenmonitor total tip displacement/slope.
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Figure 1-3: Electrothermally excited microcantilev@) SEM image; (b) schematic of
heating resistors and piezoresistive Wheatstomgérior vibration detection [Beardslee
et al., 2010b].

An important aspect of the proposed work that memhaps have widespread
applicability in the microcantilever/MEMS field that a mechanics-based correlation
study will be performed in order to relate the tiat@al spring constant of the support
(support stiffness) to the geometric parametergyftel, width b, and thicknesh) of the

microcantilever for one of the most common suppedmn interface topologies

encountered in MEMS devices. This will result irabtical expressions, based on 3-D
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finite element analysis, which will accurately qtignrotational support stiffness in
terms ofL, b, andh.

Results of the study will be compared to other knamodels for particular
limiting cases, including previous models and ekpental data [Heinrich et al., 2010a,b;
Beardslee et al., 2010a-d; Beardslee et al., 2B&ardslee et al., 2012]. These
comparisons will not only provide a verificationtble new model, but will also lead to a
better understanding of the effects of supportitiiéity and fluid properties on the
lateral-mode vibration of microcantilever-basedssea operating in liquids.

1.5 Organization of Dissertation

This dissertation is organized into eight chaptedlowing the present
introductory chapter, which includes the backgroandnicrocantilever-based sensors, a
review of relevant literature, the motivation argjextive for the present study, and a
statement of the problem to be investigated, alddteeview of relevant literature will
be presented in Chapter 2. This review will inclibd¢h transverse-mode and lateral-
mode microcantilevers as well as a review of lichis¢udies that attempt to theoretically
model the effects of a compliant support on a Yibgamicrocantilever. In Chapter 3, the
mathematical model for the lateral vibration ofedastically supported cantilever beam
in a viscous fluid will be formulated as boundagfue problems (BVPs) for two cases:
in-fluid free vibration and in-fluid forced vibratn caused by harmonic relative rotation
imposed near the support. In Chapter 4, the solstad the BVPs formulated in Chapter
3 will be obtained. Both exact and approximate il solutions will be derived for
the in-fluid free vibration case. For in-fluid fe@d vibration via harmonic relative

rotation near the support, the solution will beregged in terms of the total tip
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displacement and the bending strain at the rocap€in 5 will focus on the quantification
of the rotational stiffness of the typical suppiyfde encountered in microcantilever
applications. This stiffness will be expressedeimts of cantilever dimensions, i.k,,b
andh. This will be accomplished by using Finite Elememiadysis (FEA), the results of
which will be used in conjunction with a dimensibaaalysis based on the Buckingham
Pi Theorem in order to rationally deduce a simplalgical expression for the
dimensionless rotational support stiffness. In Gaap parametric studies based on the
results obtained in the previous chapters will edggmed and discussed. These
theoretical results will also be compared with redaeoretical and experimental results
from the literature. In Chapter 7 the results ganant frequencies and quality factors
will be related to the performance characteristicsiicrocantilever-based sensors,
namely, mass sensitivity, chemical sensitivity &midt of detection (LOD), and
recommendations for achieving optimum cantilevangetries for sensing applications
will be made. A summary of the study, including thain conclusions as well as

recommendations for future work, will be given ihapter 8.
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CHAPTER 2
LITERATURE REVIEW OF RESONANT MICROCANTILEVERS

2.1 Introductory Remarks

In this chapter a literature review of analyticatla&xperimental studies pertaining
to resonant cantilevers and dynamic-mode microleseti-based sensors, many having
applications in the realm of chemical and biocheinsensing, is presented. The
literature review begins by summarizing severahefimportant works on dynamically
operated transverse-mode microcantilevers in bashagd liquid media. Previous
analytical and experimental studies on resonatitgrl-mode microcantilevers operating
in fluid are then reviewed. These studies on l&fezaural vibrations were primarily
motivated by the desire to overcome the detrimeaftatcts of a surrounding liquid (fluid
inertia and viscous energy dissipation) on themasbcharacteristics of transverse-mode
sensors. These studies have shown that the impentdamthe in-liquid resonant
characteristics are more pronounced for shortemaddr microcantilevers for which
support compliance effects might be of significamportance, thereby providing the
context for the present research whose primaryctibgeis to quantify the effects of
support comliance and liquid resistance on thenasbcharacteristics of
microcantilevers and the associated performanceiacantilever-based sensors. Also,
to place the present work in the proper contextfeofundamental mechanics standpoint,
some earlier papers published in the mechanigaiitee that explore support compliance
and its effect on vibrating cantilever beams aseused as the present study builds upon

some of the approaches taken by prior researchers.
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2.2 Transverse-M ode Microcantilevers

With the invention of atomic force microscope (AFM 1986, microcantilevers
were utilized as imaging probes in AFM devices fBgnet al., 1986]. In 1994, Thundat
observed that relative humidity, temperature ammbvadsorption influenced the
deflection and resonant frequency of microcantiigrebes in AFM [Thundat et al.,
1994]. This discovery, especially regarding theefof vapor adsorption on deflection
and resonant frequency, initiated the use of mamtitevers as the basis for novel
chemical sensors in mid-1990s [Barnes et al., 198dndat et al., 1994, 1995]. Ever
since, transverse-mode microcantilevers operatirige dynamic (resonant) mode have
been used in various gas-phase sensing applicagansfor detection of mercury vapor
[Thundat et al., 1995; Rogers et al., 2003], carthoride and helium [Tetin et al., 2010],
and volatile organic compounds [Lange et al., 200G cura et al., 2003, 2005]. These
devices have also been used as chemical and alagnsors involving liquid-phase
detection [e.g., Tamayo et al., 2001; Lavrik et 2004; Li et al., 2006]. However,
transverse-mode microcantilevers operating dyndiitcaviscous liquids suffer severe
reductions in resonant frequency and quality fafrelative to the in-vacuum or in-gas
cases), thus decreasing their sensing capabiltigs Schaffer et al., 1996; Chon et al.,
2000; Basak et al., 2006; Dufour et al., 2007a;daa et. al., 2008]. This is mainly
caused by the added mass and damping associatetheiiquid [Dufour et al., 2007a,
2012; Ghatkesar et al., 2008; Cox et al., 2012].

With the resonant characteristics of a microcantitdoeing strongly dependent on
the fluid in which it operates, detailed theordtstadies of the interaction of vibrating

cantilevers and viscous fluids have been the stibfeseveral studies in recent years. In
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1998, Sader presented a theoretical analysis dfélj@ency response of a cantilever
beam of arbitrary cross section, operating in aads fluid via an arbitrary driving force
with practical relevance to AFM applications [Sade398]. He incorporated the viscous
fluid effects (hydrodynamic forces) by introduciadnydrodynamic function for an
infinitely thin rectangular blade oscillating oufqalane. His work was relevant to
practical AFM devices which typically involve traressely vibrating cantilevers of thin
rectangular cross section. To test the validity accliracy of Sader’s theoretical model,
experimental investigations were made on the frequeesponse of AFM cantilever
beams immersed in different fluids (air, aceton€L&; water, and 1-butanol),
demonstrating good agreement between the theoryhanekperimental data for all fluids
tested [Chon et al., 2000]. Green and Sader (28d@nded Sader’s earlier model by
including the effects of a solid surface at antaaloy distance from the vibrating
cantilever. Subsequently, an investigation was donthe frequency response of
rectangular cantilevers in viscous fluids for awdny transverse and torsional modes
considering three-dimensional flows around theitardr [Van Eysden and Sader,
2007]. Maali et al. (2005) experimentally investagathe influence of the fluid motion
on the oscillating behavior of an AFM cantilevesnsidering up to 8 vibration modes,
while also rewriting Sader’s solution of 1998 inaternative form. Ghatkesar et al.
(2008) experimentally obtained in-liquid qualityctar and resonant frequencies for the
first 16 transverse modes using an array of 8 mamtlevers and compared the results
with Sader’s (1998) and Van Eysden and Sader’'sAR0dels. Both models compared
well with the experimental results for quality factThe frequency results were

estimated well by the latter model, but the forrmedel showed large deviation in
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estimating frequency due to its development beasgricted to the fundamental mode.
The quality factors obtained were relatively lowt mcreased with higher modes (1 at
mode 1 to 30 at mode 16), indicating that the fefif@cts were less prominent at higher
modes. The theoretical models used for comparisne Wwased on homogeneous
cantilevers, but in practical applications the $tdie material may be coated with one or
more layers, often including a sensing layer (dagsiiscoelastic) to sorb particular
analytes. Subsequent research has investigatedféot of the coating viscoelaticity
(non-mass effect) and the fluid on the resonanjueacy and quality factor [Sampath et
al., 2006; Dufour et al., 2007b; Cox et al., 20@8}ecent generalization of the
hydrodynamic function used in the 1998 Sader pajaarmade by Brumley et al. (2010),
in which the effect of an arbitrary aspect ratidlo# rectangular cross section was studied
in detail, in addition to the effect of Reynoldshmioer.

As noted earlier, the performance of dynamicallgraped transverse-mode
microcantilever-based sensors in liquid-phase dijperaeteriorates due to the viscous
dissipative and inertial effects of the liquid. @eercome this problem in liquid-phase
sensing, recent research has examined alternakixetion modes in place of the
transverse flexural mode. For example, torsional@sde.g., Green and Sader, 2002,
2005; Johnson and Mutharasan, 2011; Cai et al2]201d axial (longitudinal) modes
[e.g. Castille et al., 2010] have been investigatettie literature in an effort to improve
liquid-phase sensing. One of these alternative sttt has been suggested in the recent
literature is the lateral (in-plane) flexural mogdich is the main interest of the present

study. This class of devices is therefore the faxfuke following section.
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2.3 Lateral-Mode Microcantilevers

With the aim of lowering the detrimental effectsfloids on the resonant
frequencies and quality factors of microcantilegdtevices, the lateral flexural mode of
vibration has been explored both experimentally thedretically. Sharos et al. (2004)
performed experiments on laterally vibrating mi@oiilevers and with the aid of finite
element analysis showed potential improvementsaassensitivity by an order of
magnitude and significant improvements in the dquddictor compared to the
fundamental transverse mode of vibration. Dynamacienmicrocantilevers vibrating in
the lateral direction have been experimentally stigated recently [Beardslee et al.,
2010a-d, 2011, 2012]. These investigations alslidedl geometric optimization for
improved resonant frequency and quality factor fHskee et al., 2010a; Beardslee et al.,
2012]. The lateral flexural mode has been showenttance the sensitivity and limit of
detection of sensors for liquid-phase sensing [@&ae et al., 2010c]. In all of these
experiments, the microcantilever was excited ettisermally via heating resistors near
the support and a piezoresistive detection methaslwged. (See Fig. 1-3.)

Recently, lateral mode microcantilevers operatmygiscous fluid have been
theoretically investigated [Dufour et al., 2004;fBur et al., 2007a; Heinrich et al.,
20104, b; Cox et al., 2012]. Many of these studiese made in tandem with the
aforementioned experimental studies. Approximataeesof the in-liquid quality factor
and resonant frequency for transverse and latesdermibrations of microcantilevers
have been theoretically determined and compardduigur et al. (2004; 2007a) using
Sader’'s model [ Sader, 1998]. Those papers indidate the viscous losses were

reduced for the lateral case due to the beam’s stozamlined orientation and, thus, the
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guality factor and resonant frequency were larigeproving the sensitivity and limit of
detection of the device. The frequency also in@dahie to the increase in stiffness
corresponding to strong-axis (in-plane) bendingwkleer, the theoretical model that was
employed in these studies ignored the shear sgresseted by the fluid on the larger
faces of the cantilever for the lateral-mode c&se this reason the advantages of the
lateral mode may have been overestimated.

To improve the theoretical model for the laterdration mode, Heinrich et al.,
(2010a) modeled the cantilever as a single-degi#eedom (SDOF) system using as a
shape function the fundamental mode shape of agrfiixed cantilever in vacuum and
employing the assumption of Stokes-type fluid tasise. The cantilever was excited via
a harmonic lateral tip force and closed-form anedytexpressions for resonant frequency
and quality factor were obtained. The results foaldqy factor Q) were then compared to
the experimental work of Beardslee et al. (201The comparison showed that the
SDOF model gave an excellent quantitative estirahtke experimenta for relatively
thin cantilevers; for thicker specimens the anadjtiormula provided an upper bound on
the experimentaD (most likely due to the neglected drag on the senddices of the
beam and the support deformation that was neglgotetistill provided a reasonable
guantitative estimate.

It is to be noted that the actuation method empagerecent experimental
studies on lateral-mode devices was based on efleetmal excitation via integrated
heating resistors near the beam support [Beardslele, 2010a-d; 2011; 2012]. To
accurately model this type of excitation, a conbimsi system analytical model was

derived in which an equivalent imposed supporttratawas used to simulate the
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electrothermal actuation [Heinrich et al., 2010[je support rotation loading is a more
accurate, mechanics-based representation for thesgation near the support than is
the tip load, although the latter may be a more@pate representation for other
applications. The analytical results for qualitgttar derived from this model verified the
results obtained from the previous SDOF model Wwéhmonic tip excitation, indicating
the applicability of the SDOF results for thermadiycited microcantilever devices using
the fundamental lateral mode. In both of the amzd{/imodels [Heinrich et al., 2010a, b]
the fluid-beam interaction was modeled using tlassical solution of Stokes’s second
problem for an oscillating infinite plate [Stokd®51]. This assumes that the fluid
resistance is due to shear stresses on the ldagestof the beam and that the pressure
effects on the narrower sides are negligible. Tioeee both of these models are
applicable only for sufficiently thin microcantileks vibrating in-plane in liquid.
Recently, Cox et al. (2012) investigated lateradmoantilevers vibrating in viscous
liquids and included the effect of fluid resistamitee to pressure on the smaller faces in
addition to the edge effects that were neglectaderStokes model employed in Heinrich
et al. (20104, b). In that study a semi-analytégdression was derived for the
hydrodynamic function and utilized to calculatedtetical values of resonant frequency
and quality factor. The results were then compavritll experimental data as well as with
results for transverse-mode vibration. The latgnalbrating microcantilevers were found
to have higher resonant frequency ghdompared to their transversely vibrating
counterparts of the same geometry. The theordtitadal resonant frequency compared
quite well for long and narrow beams but for shoated wider beams (e.g., for200

pm,b=[45, 60, 75, 90Jum) the theoretical model of Cox et al. (2012) ogéreated the
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experimental resonant frequencies. The authoibatidd this deviation from
experimental data at largefL values as the result of Timoshenko beam effeas an
support compliance effects, which were not congidén that study. In most cases the
theoretical quality factor in that study underestied the experimental results but
followed similar trends.

Recent theoretical and experimental studies omeeganicrocantilevers
operating in the lateral mode in viscous liquidséenahown that the quality factors and
resonant frequencies are larger for shorter anémadntilevers [Heinrich et al., 2010a,
b; Beardslee et al., 2010a, 2012; Cox et al., 200a}s, these geometries are the most
promising for lateral-mode sensing application. leger, the previously mentioned
theoretical models [Heinrich et al., 2010a, b; @bxal., 2012] are based on the
assumptions of Bernoulli-Euler beam theory andatssumption of perfect fixity at the
supported end of the microcantilever. For short\ait beams in lateral flexure, these
assumptions become questionable. The fact that treesous assumptions no longer hold
for “stubbier” beams is supported by the fact thattheoretical estimates of resonant
frequency and quality factor overestimate the expemtal measurements when the
specimens become shorter and wider [Heinrich e2@lL0a,b]. The validity of the
Bernoulli-Euler assumptions becomes questionabéetdihe Timoshenko beam effects
of shear deformation and rotatory inertia. Thesect$ have recently been considered in
a more general theoretical model [Schultz et 811,32, b], but the effect of support
compliance in liquid-phase vibrations of lateralaealevices has yet to be considered.
The perfect-fixity assumption becomes especialgpsat regarding the assumption of

zero rotation at the support. Thus, the derivatiban analytical model for the lateral-
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mode dynamic response of a microcantilever in eous fluid, including the effects of
rotational support compliance, is warranted andiples the major motivation for the
present work. For this reason, the next sectighefiterature review will focus on the
support compliance effects on the dynamic respohbeams, including the effect on the
resonant characteristics of in-fluid lateral-modenecantilever-based sensors.

2.4 Microcantilever swith Elastic Support

Many studies on the effects of support compliamtéhe static deflection of
beams [e.g., O’'Donnell, 1960] and the natural feggpies of vibrating flexural members
[e.g., MacBain and Genin, 1973a,b] have been miade she mid-20 century,
including a few recent papers that focus on MEMSYNEEdevices [Spletzer et al., 2006;
2008; Rinaldi et al., 2007; Fadel-Taris et al., BOGuillon et al., 2011; Tanno et al.,
2012]. In the 1960 paper by W. J. O’'Donnell an espion for the rotational support
stiffness was derived for applications in computimg static deflection of so-called
clamped beams. A decade later MacBain and GenirBg)studied the effect of support
compliance on the natural frequencies of built@atns and developed an expression for
support stiffness for the case of the vibratingnben another investigation [Macbain
and Genin, 1973b] the same authors took into addbenTimoshenko beam effects to
obtain theoretical values of the fundamental freqyeand showed the effect of the
rotational stiffness of the support on the fundarakinequency. Their numerical results
were based on employing a finite difference forrtiata The effects of translation as
well as of rotation of the support on the fundamaefrtequency of a uniform cantilever
beam were investigated by Justine and KrishnanQJL@8ing a matrix iteration

procedure. In later studies Cook (1991) preseritedierivation of an expression for the
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rotational stiffness of the support for finite elem applications and Stevens (1996) used
finite element analysis to study the deflectiorcanhtilever beams with an integral
(monolithic) elastic support of a different moduthan the beam. All three of these
studies were based on two-dimensional analysesgppiast stiffness and did not include
fluid effects. They also did not include the typésupport geometries found in
microcantilever-based MEMS/NEMS devices which &eefocus of the present study.
Recently, engineered support compliance has beérrduced to synchronize
coupled multiple cantilever systems used as res@®nsors in order to improve
sensitivity [Spletzer et al., 2006, 2008; Tanoalet2012]. Even when support
compliance is not introduced intentionally, mictofi@ation methods and their limitations
can result in non-ideal support geometries thabchice increased levels of support
compliance. The non-classical support boundary itimndof AFM microcantilevers has
been quantified through experiments [Rinaldi gt2007]. While two other recent studies
[Fadel-Taris et al., 2011; Guillon et al., 201Xhad to quantify support flexibility effects
in cantilever devices at the micro- and nano-scéhesapproach taken in those studies
was experimental and numerical (finite element nindgand did not attempt to derive
any physics-based formulas to clearly demonsthaerifluence of the various system
parameters in determining support stiffness. #l$® to be noted that most of these
studies involved transverse beam vibration, in Witase the stiffness characteristics of
the support will differ from those that are relewvemthe lateral vibration case which is
the focus of this study. In these respects, thpgsed work will fill an important gap in
the literature, especially from the perspectiveisihg three-dimensional stress analysis to

quantify the rotational support stiffness for iraipé microcantilever bending and
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determining the effects of the support complianceh® resonant behavior of liquid-
phase MEMS/NEMS devices that are becoming moregteatin today’s world.

The present chapter and the background matertahapter 1 have described the
state-of-the-art with regard to the advantagesliamthtions of in-fluid lateral-mode
microcantilever-based devices being operated dycalipifor use in sensing
applications. In particular, for liquid-phase applions the lateral vibration mode
decreases the negative impact of the viscous @fietts and improves the resonant
characteristics, i.e., increases the resonant émeguand quality factor of the resonating
devices. But for the most promising cantilever getias in this regard, i.e., those that
are relatively short and wide, the effects of supflexibility will be most pronounced.
Because such effects have yet to be adequatelgsaht in the literature, the present
research seeks to develop an analytical modeh#olateral vibration of a dynamic-mode

microcantilever in a viscous fluid, including thiéeets of support compliance.
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CHAPTER 3
MATHEMATICAL PROBLEM FORMULATION: LATERAL VIBRATION OF
ELASTICALLY SUPPORTED CANTILEVER BEAM WITH STOKES-TYPE
FLUID RESISTANCE

3.1 Introductory Remarks

In this chapter the mathematical model for ther&dteibration of an elastically
supported cantilever beam with Stokes-type flugistance is formulated. The chapter
begins with the assumptions made for convertingpthesical system (Fig. 1-2) into an
idealized system (Fig. 3-1). Boundary value prold€BVPs) are explicitly formulated
for two cases: in-fluid free vibration and in-fluidrced vibration caused by harmonic
relative rotation imposed at an infinitesimal dista from the support. The equations of
motion (EOMSs) are derived by considering the efuilim of a differential segment of
beam. Respective boundary conditions (BCs) araudssz and derived. Both the EOMs
and BCs are presented in non-dimensional forms.

3.2 Modeing Assumptions

In order to represent the physical system, depictédg. 1-2, with an idealized

model amenable to analytical treatment, the follmrassumptions are made:

1) Bernoulli-Euler beam theory is valid, ile<<L, such that the shear
deformation and rotatory inertia of the beam amgligible. Thus, the
kinematic assumption of Bernoulli-Euler theory thedss sections remain

planar and normal to the bent beam axis is employed

2) The slope of the deflected beam is small, i.e.,hrass than unity.



3)

4)
5)

6)

7

8)

9)
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The beam material is isotropic and linearly elagifi¢hen applied to an
anisotropic material, the appropriate value of Yggarmodulus, i.e., along the
x—direction, should be used.)

The fluid is incompressible.

Only lateral flexural modes are considered.

The beam deflection at the supported end is asstoneel negligible;
however, the beam may experience a non-zero ratatithe support due to
support deformation. This will be incorporated itite model by the
introduction of an elastic rotational spring at supported end of the beam.
The inertial effects associated with the defornmsngport are assumed to be
negligible.

Issues of structural instability (i.e., out-of-pé&abuckling) are not considered.
The viscous dissipation in the fluid is the dominamnergy dissipation
mechanism, i.e., all other losses are negligible.

The cross-section is relatively thin, i.es<<Db, so that the fluid resistance
associated with the pressure on the two smallesféaf dimensione x L) is
negligible compared with that due to the sheaistasce of the fluid on the

two larger faces (of dimensiobs« L).

10)The shear stress exerted by the fluid on the beamiform over the width

dimension p) and its magnitude is given by Stokes’s classicadlirectional
solution for harmonic, in-plane oscillations ofiafinite plate in a viscous

fluid.
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The combination of assumptions 9 and 10 will bened to as the assumption of “Stokes
fluid resistance,” which is expected to be valid $afficiently thin beams vibrating at
sufficiently high Reynolds numbers [Heinrich et &010 a, b]. These assumptions allow

the effect of fluid resistance to be modeled astiduted fluid massn, and a
distributed fluid damping coefficiert, . (See Fig. 3-1.) These distributed fluid

properties are defined per unit length of the baachare frequency-dependent. The

specific forms of the effective fluid propertiesndae shown to be (Appendix A)

T =\2np Vo (3-1a)

and
[ 2

m =277T'2b, (3-1b)
where w represents the radial frequency (rad/sec) at wiietbeam oscillates. (Other
guantities appearing in Egs. (3-1a,b) have beenektkin Sect. 1.4.) In the present study
this frequency corresponds to either the naturallagon frequency in the presence of
fluid (in the case of free vibration) or the extiba frequency (in the case of a
harmonically forced vibration). It is noted thaé#ie expressions will be accurate
approximations of the fluid resistance for suffidig thin beams experiencing
harmonically forced lateral vibrations at highelyRelds numbers; however, for the free-
vibration case, these expressions are approxiroatnbther reason: they ignore the
decay in the amplitude of oscillation that occuusinly the free vibration. Nevertheless,
the associated error incurred in the free-vibratinalysis is expected to be minimal

provided that the rate of decay is not high, isden the equivalent damping ratio of the
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beam/fluid system is less than 10%. This will be ¢ase in the higlp liquid-phase
applications of interest in the present research.

The foregoing assumptions allow the problem todakiced to the analysis of the
idealized system indicated in Fig. 3-1. The syspamameters introduced in Fig. 3-1 are

k, the rotational stiffness of the suppdtt; the flexural rigidity of the beam cross section

in lateral flexure; and),, the mass per unit length of the beam:

El :—Elhf | (3-2a)
m, = p, hb. (3-2b)

As mentioned earliet, andm, are the frequency- dependent effective fluid dampin

coefficient and effective fluid mass, respectively.

C ()

y(x 1)

I g
Figure 3-1: Idealized model of an elastically supgd cantilever including effect of fluid
resistance as distributed fluid mass and distribéited damping.

3.3 Governing Equation of Motion for Stokes-Type Fluid Resistance

To analyze a laterally vibrating elastically sugpdrmicrocantilever with Stokes-

type fluid resistance, the equation of motion goireg the deflection of the
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microcantilever must be determined along with theassary boundary conditions. To
this end, the equation of motion for the systenjestibd to an arbitrary distributed
harmonic loading will be formulated. Thus, the etprafor the free-vibration case will
simply be a special case.

Assume the beam in Fig. 3-1 is subjected to adhtead p(x,t) = P(X) &
(parallel to they-axis) that varies arbitrarily with position andrimonically in time as
shown in Fig. 3-2. The equation of motion can beved by considering the equilibrium
of the forces and moments acting on the differésggment (Fig. 3-3) taken from the
beam shown in Fig. 3-2. Symbdx, t) andV(x, t) represent the bending moment and

shear force, respectively. The inertial forE€x, t), acting on the element can be written
as follows:
fL o) =[ M+ M (@)] Y x) (3-3)
Summing ally-direction forces acting on the free-body diagr&BID) leads to
V(X )=[V(x )+ V(%) df-P(xe" dx f( x)k+cl) ¢ Xt dx0  (3-4)
In above equation and in Figs. 3-2 and 3-3, as agih the equations that follow, the

primes and dots represent differentiation with eespo space and time coordinates,

respectively, unless mentioned otherwise. SubstguEq. (3-3) into Eq. (3-4) results in
VO )+[ M+ T (@) ] K X )+ T6@) Y Xx= R XE. (3-5)
Similarly, moment equilibrium about poifitleads to

M (X, ) =[M(xt)+ M'(x t) d{+[ V(% )+ V( x ) dk dx
(3-6)

P& [ f(x)+75(0) Y Xt k=0

wherein the rotational inertia of the differentedément has been neglected.
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Figure 3-2: Idealized model for elastically suppdrtantilever subjected to an arbitrary
harmonic load including effect of fluid resistaradistributed fluid mass and distributed
fluid damping.

P(X) e dx

V(xt) V(xt)+V'(x 1) dx

ZO' .

M (X, 1) T M (%, 1)+ M'(x, 1) dx
f (%84T (@) Y% o

e

Figure 3-3: Free-body diagram (FBD) of a differah@#lement taken from the beam
shown in Fig. 3-2.

O

Substituting Eq. (3-3) into Eq. (3-6) and ignorserond-order terms ok, Eq. (3-6)
becomes

V(xt)=M(x1 . 3-7)



29

Substituting Eq. (3-7) into Eqg. (3-5) results in
~M"(x,0)+[ M+ M (@) ] X ¥ )+ G(@) Y xx= R X'&. (3-8)
The bending moment can be related to bending dieffeby using the moment-curvature
relationship from elementary bending theory [eGere and Timoshenko, 1984]
M(x,t)=—Ely'(x 1) . (3-9)
Substituting Eq. (3-9) into Eq. (3-8) and assunarrismatic beam with constant

Young’s modulu€ along the length results in

Ely"'(x )+ M+ M (@) | ¥ x}+ ¢(@) ¥ xX= P X'8. (3-10)
This is the governing partial differential equatmirmotion for the system with arbitrary
distributed load(x, t) = P(X) &* that varies harmonically in time. But this work fises

mainly on free vibration and forced vibration cadi®g a harmonic relative rotation
imposed near the support, both of which are cdsddrvolve no spatial distribution of

external loading. Therefore, the cases of intevesespond t®(x) = 0, yielding the
following homogeneous equation of motion:

Ely""(x )+ M+ M (@) ] ¥ X }+76@) ¢ XX=0. (3-11)
The solution of this equation must, of course sfatihe prescribed boundary conditions
at x=0andx = Lthat correspond to the physical conditions preaettiose locations.
These will be addressed in the next section.

Introducing a normalized beam deflection and dineeiess space and time

coordinates, i.e.,
. T=opt, (3-12a-c)

where
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Wy =" — b (3)13
L° 12,0b

is the natural frequency of the first lateral madeacuum for perfectly clamped

cantilever (1, =1.875104), Eq.(3-11) may be converted to the following disienless

form:
=/ 4 é/ 1
Y&, 7)+ A ( ——] VE o)+ A2 NDYEr)=0 (3-14)
YN
with
48772/0 2 1/4 L
= f = dimensionless fluid resistance parameter, 1
A= e
and
& = -2 = dimensionless frequency. -15B)
@,

The primes and dots appearing in Eq. (3-14) nowesamt differentiation with respect to
dimensionless space and time coordinates, respéctiv

The governing equation of motion for a lateralliprating cantilever beam with
elastic support in vacuum can be easily obtaineddnging out the dimensionless fluid
resistance parameter, in Eq. (3-14). Thus the governing equation ofiorin vacuum
is

y"'(&7)+ A" V(&)= 0. (3-16)
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3.4 Boundary Conditions

The governing equation of motion derived in SecB8d must be accompanied by
a particular set of boundary conditions for therfatation of the boundary value problem
to be complete. The number of boundary conditieasiired depends on the order of
governing differential equation of motion. The di#éntial equation of motion in this case
is of fourth order and thus four boundary condiéi@me necessary, two at each end of the
beam. The present study focuses on free vibratidreaforced excitation involving a
harmonic relative rotation near the support. Ohlylboundary conditions for these two
cases will be discussed herein, although BCs togratases of potential interest may
easily be formulated.

Boundary Conditions for Free Vibration

The boundary conditions relevant to the free vibratase are

y(0,t)=0, (3-17a)

! El 4
y (O’t)_T y'(0,t)=0, (3-17b)
y'(L,t)=0, (3-17¢)
y"(L,t)=0. (3-17d)

Equation (3-17a) corresponds to the lateral defiadbeing zero at the supported end
(x=0). Since the beam is not perfectly clamped, thpesleeed not be zero at the
supported end. Instead, this condition becomesthamatical statement that the bending
moment at the end of the beam must equal the ogactoment supplied by the

compliant support (i.e., by the elastic rotatiosaling) as described by Eq. (3-17b).
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Equations (3-17c) and (3-17d) correspond, respagtito the bending moment (or beam
curvature) and shear force at free emd-(L) being zero.
The boundary conditions may easily be convertetirteensionless form using

Egs.(3-12a-c) and (3-15b):

y(0,7)=0, (3-18a)
7’(0,1)—@ =0, (3-18b)
y'@7)=0, (3-18¢)
y'Lz)=0. (3-18d)
where
= (3-19)

I
represents the dimensionless rotational stiffnésiseosupport.

Boundary Conditions for Forced Vibration via Impddelative Rotation near Support

For this forced vibration case, theptisement boundary condition at the
supported end and the BCs corresponding to zeroenband zero shear force at free
end are the same as that for the free vibratioe.CEzus, Eqgs. (3-18a, ¢, d) remain
unchanged; however, the equilibrium condition iethbeam slope and beam curvature
at the supported end is no longer given by Eq.813) since in the present case there is an
imposed harmonic relative rotation near the supimosimulate the electrothermal
actuation (Fig. 1-3). This new boundary conditiequires a careful examination and
detailed derivation in order to distinguish betwéesmimposed relative rotation and the
resulting support rotation, the former correspogdmthe electrothermal excitation as

described in what follows.
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Experimental devices [e.g., Beardslee et al., aDM@re excited electrothermally
by means of integrated heating resistors neartppast. Figure 3-4 indicates the static
deformation pattern, obtained via finite elemerdlgsis, of a beam that is thermally
loaded at the “extreme fibers” of an arbitrary srgsction. The thermal input is out-of-
phase so that equal values of temperature chaegpacified, one being positive while
the other is negative. As seen from the figure nibieeffect of this type of loading may be
represented kinematically as an imposed relatitegiom of the beam at the location of
the thermal input. This concept was utilized ireeent paper to simulate a harmonic
electrothermal loading near a perfectly clampedsugHeinrich et al., 2010b]. In the
present study — in which support compliance effactsto be included -- the imposed
rotation associated with the heating resistors béliconsidered to occur at some distance
Xfrom the support in order to delineate betweeridadingnearthe support and the
support rotation that occuad the support. The two effects can then be incorpdrat
subsequently by means of a single boundary comditjoemploying a limiting process,

lettingX — 0.
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Figure 3-4: Thermally excited microcantilever vigating resistors near the support.

To derive the slope-curvature boundary condittomili be assumed that the
harmonic relative rotation is applied at a distarR@wvay from the support as shown in
Fig. 3-5. The deflection responggx, t) may then be expressed in a piecewise manner as

follows:

y(x t)= . (3-20)

i ot

A
x|

Figure 3-5: Schematic of imposed harmonic relatotation at a distancg from the
support.



35

The boundary conditions at the support and theirmoity conditions at the point

of application of relative rotation are as follows:

y;(0,t)=0, (3-21a)
A (O,t)—% ¥, (0,t)=0, (3-21b)
Yo(X, )= (% 9, (3-21¢)
y, (X% 0=y (% 9+0() (3-21d)
Y, (=¥ (%9, (3-21e)
Y, (%)= Y (%9, (3-21f)

where4(t) = eoei“" is the harmonically varying relative rotation agplinear the support.
Equation (3-21a) corresponds to the lateral defiadbeing zero at the supported end.
Equation (3-21b) corresponds to the moment reachi@nto spring support being equal
to the beam’s bending moment at the supportedmqaations (3-21c), (3-21e), and (3-
21f) correspond, respectively, to the continuitypebm deflection, bending curvature and
shear force at the point of application of relatiggation. Equation (3-21d) represents the
imposed discontinuity of slope at the point of agadion of relative rotation, which
corresponds to the thermal excitation being appietthat location. Letting{ — Oin Eq.
(3-21c) and using Eg. (3-21a) yields the followB@ on vy, (X, t) atx=0:

Y,(0,t)=0. (3-22a)
To obtain the second BC gn(x,t) atx=0, the limits (X - 0) of Egs. (3-21d, €) are

taken to give

y, (0,t)=y, (0,)-6 (1), (3-22b)
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y, (0,t)=y, (O,t). (3-22¢)

These two equations may now be used to expres&SEx{b) in terms ofy, only:
! EI 4 wt
Y, (O’t)_? Y, (0,t)=6,e“", (3-22d)

where the harmonic form of the imposed relativatioh has been inserted on the right-

hand side. As{ — 0, Y, (X t) represents the displacement over the entire doofahe

beam and can therefore be written simplyyéz, t) forO< x< Land Egs. (3-22a) and (3-

22d) (without the “2” subscript) give the BCs a¢ fleft end. When combined with the
zero shear and moment BCs at the right end, thebfoundary conditions relevant to the

problem of imposed relative rotation near the supp@y be summarized as

y(0,t)=0, (3-23a)
, El ”
y (O,t)—? y'(0,t)=6,6", (3-23b)
y'(L,t)=0, (3-23c)
y"(L,t)=0. (3-23d)

The boundary conditions can easily be convertetitensionless form using

Egs.(3-12a-c) and (3-15b). The dimensionless baynztanditions are

y(0,7)=0, (3-24a)
7’(0,r)—@ =0,e°", (3-24b)
y'47)=0, (3-24c¢)

y'(Lz)=0. (3-24d)
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3.5 Summary of Boundary Value Problemsto be Considered

In this section a summary of the two boundary @gtoblems to be considered in
this study will be presented. The BVPs consideredtze lateral free vibration of a
microcantilever in a viscous fluid and the forcatktal vibration of a microcantilever in a
viscous fluid via an imposed harmonic relative tiotaapplied next to the compliant
support.

3.5.1 Free Vibration with Stokes-Type Fluid Resistance

The dimensionless BVP for the free vibration ofedastically supported
cantilever beam in a viscous fluid is given beldéws to be noted that the corresponding

in-vacuum BVP can be easily obtained by zeroingti@tfluid resistance parametér,

Equation of Motion

7””(&1)“(‘[ %%} VE )+ A%Vo yE r)=0. (3-25)
Boundary Conditions
y(0,7)=0, (3-26a)
¥(0,7)~ y"(O I_y, (3-26h)
y'1,7)=0, (3-26¢)

y'(Lz)=0. (3-26d)
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3.5.2 Forced Vibration with Stokes-Type Fluid Resistance via Har monic Relative
Rotation Imposed Adjacent to the Support

The dimensionless BVP for the forced vibration ofedastically supported
cantilever beam in a viscous fluid via an imposachionic relative rotation adjacent to
the compliant support is given below. It is to lmad that the corresponding in-vacuum
BVP can be easily obtained by zeroing out the fresistance parameter,

Equation of Motion

y"(& )+ A" [H%%j Y€ )+ A%NB YE 7)= 0. (3-27)
Boundary Conditions
y(0,7)=0, (3-28a)
7’(0,r)—@ =g, (3-28b)
¥'(L,7)=0, (3-28c)

y'(Lz)=0. (3-28d)
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CHAPTER 4
METHOD OF SOLUTION OF BOUNDARY VALUE PROBLEMS

4.1 Introductory Remarks

In this chapter the solutions of the BVPs summalrineChapter 3 will be
obtained. First, the solution for the in-fluid fredration BVP is derived. This is
followed by the solution for the case of an in-dldorced-vibration via harmonic relative
rotation near the support. The corresponding insuactresults are special cases that may

be obtained by setting=0.

4.2 Solution for the In-Fluid Free-Vibration Responsein Lateral Flexure

This section begins with the exact solution foflind free-vibration response in
lateral flexure. Later the approximate analytieduits for the case of small values of
fluid resistance parameter and large values oflimensionless support stiffness are
presented.

4.2.1 Exact Solution for the In-Fluid Free-Vibration Responsein Lateral Flexure

The boundary value problem for the in-fluid, frelration of an elastically
supported cantilever beam is summarized in Segtl and is explicitly described by

Egs. (3-25) and (3-26a-d). For convenience, theggpus are restated here:

7!!!!(5, T)+ Al4 (14_%%] i[(é,z‘)-i— /1134/\/5 7(5 ,T): O, (4_1)
¥(0,7)= 0, (4-2a)

yOr)_

y(0,r)-2 =2=0, (4-2b)



40

y'L,7)=0, (4-2¢)

y"(1,7)=0. (4)2d
The solution methodology for this BVP consistsletermining the characteristic
equation (frequency equation), obtaining the natueguencies (eigenvalues) from the
roots of the characteristic equation, determinhegduality factors for each mode, and
determining the corresponding mode shapes (eigetiéuns). It will be assumed that the
free-vibration response of the beam in lateralutexwill admit the form

Y =g(Qe" =4( € =g( x & ¢, (4-3)

where ¢(x) is the unknown (possibly complex) mode shape @& fibration in fluid and
Q=w+id is the unknown complex natural frequency whosépes » is the unknown
damped natural frequency (frequency of oscillatiofiuid) and whose imaginary pad
is the unknown decay parameter. Now, the solutioriggs. (4-1) through (4-2a-d) are

sought in a dimensionless form analogous to E®)(4.€.,
V(E,7)= ()% =p(£) €7 = p(5) e™ &, (4-4)
where ¢(£)is the mode shape of free vibration in fluid expegbas a function of ; Q is

the unknown dimensionless complex natural frequea@nd d are dimensionless forms

of the damped natural frequency and decay paramete

ﬁz£=5+id_, (4-5a)
2

o= (4-5b)
Wy

g=4 (4-5¢)
Wq
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Substituting Eg. (4-4) into Egs. (4-1) and (4-Jaesults in the following eigenvalue

problem:
(&) - }(£) =0, (4-6)
$(0)=0, (4-72)
-0, (4-7b)
#(1)=0, (4-7¢)
¢"(1)=0, (4-7d)

where the unknown parameter is related to the fluid resistance parameter aad t

unknown free vibration response parameters through
a“z/114£1+£i_j(52+i2a_ﬂ—52)—/113§x/5(ia—a). (4-8)
W@
The general solution of EqQ. (4-6) may be written as
#(&)=Acosaé+ A sireé+ A coské+ A sini, (4-9)

where A, i =1, 2, 3, 4 are as yet undetermined constémisosing the BCs (4-7a-d) on

the general solution leads to the following systdrinear algebraic equations:

[e]{ A ={0}, (4-10)
where
1 0 1 0]
a kK -« k
[e]= . (4-11)
—C -S C S
E -C S C_
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A
A
A= (4-12)
A
A,
and
c=cosa ,C= cosle ,s= sik ,S= sinhk. (4-13a-d)

The following characteristic equation can be ol#diby setting the determinant of

matrix [e] equal to zero, which is necessary for Eq. (4-10)aee a non-trivial solution:
(24
1+ Cc:?(Cs— cS. (4-14)

The positive real roots of Eq. (4-14) will depenmdtbe dimensionless rotational stiffness

of the supportk , and shall be denoted by, n=1, 2, 3, ... withr, <o, < a;<... .

Natural Freguencies

For a specified value of dimensionless rotatiotiffhessk , the positive real

roots «,, can be determined numerically from Eq. (4-14),dng must still determine the
physically meaningful free-vibration response pagtars,®, and d,,, which correspond

to each of the real numbets,, n=1, 2, ... . Substituting the value af into Eq. (4-8) and

equating the real and imaginary parts of the regultquation leads to

214 = (T)n 2_d_n2 +ﬂ’134, CT)n anzan4' (4-15)
Larane

&JIU\

T (20,d,)-4°¢C®," = (4-16)

@Iw\
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Simplification of EqQ. (4-16) gives

d = ¢ o, (4-17)

g

Substituting Eq. (4-17) into Eq. (4-15) resultghe following equation:

@) + S () (@) - (@) - ~o. (@-18)

Equation (4-18) is a fifth-degree polynomial\/f&_Tn; thus, the square of the positive real
root of this polynomial is the dimensionless dampatliral frequencyy,, which

depends on the fluid resistance paraméteand the dimensionless rotational stiffness of
the supports . Once@, has been determined for a particular mogdeae corresponding
decay parameted, , may be obtained using Eq. (4-17).

Viscous Damping Ratios and Quality Factors

The form of the free-vibration response in Eq. J4s3dentical to that of a
viscously damped single-degree-of-freedom (SDOB)esy [e.g., Tedesco et al., 1999].
It may easily be shown that the viscous damping Gtthis equivalent SDOF system is

given by

o

& = (4-19)

n
— ~ 2
o,”+d,

;

Thus, Eq. (4-19) may be considered to representifteus damping ratio associated
with the ri" lateral flexural mode of a freely vibrating caetier with Stokes-type fluid

resistance. Substituting Eq. (4-17) into Eq. (44E3ults in
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(4-20)

The quality factorsQ,, defined here in terms of the reciprocal of thepetive damping

ratios, can be obtained using Eq. (4-20) as

Q. = 1 —‘a_)njd” —/11\/_ % @ 453';2. (4-212)

2& ] 2, g
Mode Shapes

Knowing the values o&,, from Eq. (4-14) and substituting them into Eq1@);

one may solve for the constai{s A,andA, in terms of A; thus, using Eq. (4-9), the

specific form of the mode shapes of free vibratioa viscous fluid may be written as

Cn+cn+2?”§ C+ (r;—zf” S
#.(£) =A| cosa, & — coslar & — K Sie, & + K sinh & |, (4-22a)
S+8§ SR
where
c,=coszx, ,C = coslr, ,s= sik, ,S= sinh. (4-22b-e)

HereA represents the arbitrary amplitude of the modesliianctions g, (&) . Itis to be

noted that these mode shapes are independent fidithparameters and thus are the
same as for the in-vacuum case.

4.2.2 Approximate Analytical Results for Small Fluid Resistance and Small Support
Compliance

In many cases of practical interest the fluid tasise parametef is expected to

be much smaller than 1. For example, for a silicantilever with dimensionisxbxh =
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(400x50x10umimmersed in watet; = 0.07. Also, for many practical cases the

normalized rotational support compliantgk , is expected to be much smaller than
unity. This provides the motivation to derive simplnalytical expressions for the results
derived earlier (dimensionless natural frequenay gunality factor) in those cases for
which the values of the fluid resistance paramaier rotational support compliance are
small. Since for most lateral-mode sensing appboatthe first lateral mode of vibration
is the most easily excited, this section will oobnsider the results for the fundamental

mode of lateral vibration.

To this end it will be assumed théb, may be expanded in a power serieg s

Ja, =+ e +O(¢") as (-0, (4-23)
where @, is the mode-1 dimensionless natural frequernggnd ¢, are coefficients which

may depend ot/ k and may be obtained by substituting Eq. (4-23) Edo (4-18) ,
expanding the left-hand side of Eq. (4-18), andssghently equating the coefficients on

like powers of up to the linear term. The coefficients are

_ % 1

C , =——. 4-24a-b
=7 %= (4-242-D)
The expression fap, is obtained by squaring Eq. (4-23) as follows:
@, =Cy>+2C,ce +0OK¢?) as ¢ —0. (4-25)

If the coefficients of Eq. (4-25) are subsequerttpanded in powers df/ k and all

higher-order terms (higher than first-order) aneoiged, the resulting bilinear
approximation fofo, is only moderately accurate whénk is in the vicinity of 0.1.

Therefore, to obtain an analytical result havindyeaccuracy, an alternative approach
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shall be taken. Recognizing that the first termthanright hand side of Eq. (4-25) (i.€/,
) represents the mode-1 dimensionless natural éremuin vacuum for the case of a
compliant supportp, .., this term may be approximated quite accuratelfitbgg the

curve of the exaci, , vs.1/k , obtained using Eq. (4-18) with= 0, instead of

1,vac
expanding analytically abolitk = 0. Figure 4-1 shows a plot of the exagt,, vs.1/k
for the first-mode lateral vibration and the cop@sding quadratic polynomial curve-fit.

The range ofl/k considered for the fit is 0 to 0.15, which is esgeel to include most

practical cases for the application of interest redsupport configuration considered. In

performing the fit, the value of normalized frequgiis forced to be 1 wheh/k = 0 in

order to agree with the perfectly fixed case. Traximum error of the fit over the range

of 1/k considered is 0.22%. The expressiondg(,.obtained from the quadratic curve-

fitting for the range ofL/k considered is
— 2 1 1 z
Bryee=Cy ~1-1.909=+ 341 =] . (4-26)

Substituting Eq. (4-26) into the first term on tight-hand side of Eq. (4-25) and Egs. (4-

24a-b) into the second term results in

_ 1 1V « ,
&, ~1-1.909=+ 3.41&) _2412“0(5 )Jas ¢ —0. (4-27)
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Figure 4-1: In-vacuum exact dimensionless natuegdency for fundamental lateral
mode and quadratic curve f(tog 1/k < 0.13

Equation (4-27) depends on the first positive reat of the characteristic

equation (Eq. (4-14)y, , which in turn depends on the dimensionless anafi
compliance of the suppott/k . If one assumes that, may be expanded in a power

series in terms df/ k ,, may be written as

a, =a,+ a{%)+ O{(%) ] as %—> 0, (4-28)

where g, and & are the coefficients to be determined. Substituigg(4-28) into Eq. (4-

14), expanding both sides of Eq. (4-14), and sulesetly equating the coefficients on

like powers ofl/k gives following two equations:
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1+ coshp, cos, = | (4-29a)
a,+a=0. (4-29b)
Equation (4-29a) is the characteristic equatiorttierfree vibration of a perfectly

supported (“fixed”) cantilever in vacuum and thespiwe real roots of this equation are

well known [e.g., Clough and Penzien, 2003]. Tingt fioot shall be denoted By, whose
value is listed below to 7-significant-figure acaay:

A,=1.87510¢. (4-30)
(Note that/, has been introduced previously in Eq. (3-13).)réfare, from Egs. (4-29a-
b), the coefficients are:

8y =4y (4-31a)

a=-1. (4-31b)

Substituting Eq. (4-31a-b) into Eq. (4-28) gives

alzﬂl{l—%+0(%j } as%—>0. (4-32)

Substituting Eq. (4-32) into Eq. (4-27) resultghe approximate expression for the
mode-1 dimensionless natural frequency of a ldiev#brating cantilever beam with
elastic support and Stokes-type fluid resistancétfe case. << 1 andl/k << 1 as

follows:

2
51z1—1.909%+ 3.41%%) ——1( 1&}5. (4-33)
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Placing the numerical value df from Eq. (4-30) into Eq. (4-33) gives
1 1Y’ 1
661z1—1.909E+ 3.41€?j - 0.26€£7 —1?j§. (4-34)

Now, the approximate expression for lateral modapHlity factor for the case

¢ << 1 andl/k << 1 can be obtained by substituting Eq. (4-33) B (4-21) to yield

A 1ot 10 ]
Q1~§\/1 1.91§+/11;. (4-35)

Here the terms of order 2 or higherdror in1/k , including their product, have been

ignored. After binomial expansion, Eq. (4-35) reglsito

Q ~ ﬁ(l— 0.95% +0'—75§j . (4-36)
g k 4
The last term is insignificant in many practicases, in which case it may be ignored,

resulting in
~A(q 1 -
Q= ; (1 O.95EJ ; (4-37)

which clearly and concisely indicates the mainuafices of the Stokes-type fluid
resistance and the support compliance on the visgoality factor.

It is to be noted that the difference between E486) and (4-37) is simply an
additive constant of 0.75 and, thus, this diffeeersconly significant for low quality
factors. But in most practical cases and in thesent study, large values of quality
factors are of primary interest and, thus, Eq. {3€an be used without significant error.
Also, the current theoretical model underestim#tesesistance offered by the viscous

fluid and therefore overestimates the actual quédittor values. Therefore, using Eq. (4-
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37) helps to compensate to some extent for the due to the underestimation of
viscous dissipation in the fluid.
4.3 Solution for the In-Fluid For ced-Vibration Response via Harmonic Relative
Rotation near Support in Lateral Flexure

Presented in this section is the derivation ofetkact solution for the in-fluid,
forced-vibration, lateral flexural response caulg@ harmonic relative rotation near the
support. The BVP governing this problem is sumneattim Section 3.5.2 and is
explicitly described by Egs. (3-27) and (3-28akhr convenience this BVP, involving a

partial differential equation, is restated here:

YD)+ A £1+%%j Ye.o+a’NayE)=0,  (4-38)

y(0,r)=0, (4-39a)
y'(0,7)- 7”(8’1) =60,e°" (4-39b)

y'Lz)=0, (4-39¢)

y"(L,7)=0. (4-39d)

Once this BVP is solved, i.e., after the displacetmesponse is determined, theoretical
frequency response plots may be generated, frorohathe resonant frequencies and
quality factors may be extracted. The quality festmay be determined, for example, by
using the -3dB bandwidth method [e.g., Meirovit2@01].

The solution to Egs. (4-38) through (4-39a-d) isgdt in the form

V(& 1)=4(£)e™ (4-40)
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where ¢(&) is the shape of the vibrating beam under an impoeetplex harmonic

relative rotation near the support afdis the dimensionless form of the specified
exciting frequencyw, and, thus, also the dimensionless frequencyefteady-state

response, i.e.,

(4-41)

Substituting Eq. (4-40) into Eqgs. (4-38) and (4-89aesults in the following BVP,

which now involves an ordinary differential equatio

¢""'(&)-a'p(&)=0, (4-42)
#(0)=0, (4-43a)
¢'(0) —@ =6, (4-43b)
¢"(1) =0, (4-43c)
¢"(1)=0 . (4-43d)

where the known complex parameteiis related to the fluid resistance parameter and

the normalized forcing frequency through
at=1" (1+£i_J @i %o " (4-44)
W@
The general solution of Eq. (4-42) may be written a
#(&) = Acosaé + A sieé+ A cosié + A sinkié, (4-45)
whereA, i =1, 2, 3, 4, are as yet undetermined constémisosing BCs from Egs. (4-

43a-d) on Eqg. (4-45) gives the following complexgé of the vibrating beam under an

imposed complex harmonic relative rotatighe , near the support:
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6,| (Cs—cY(coshag — cosg)+( * Ce Spsinkg+( & Ce Pssimg
2 a[1+Cc—;(Cs— 03}

#(&) = . (4-46)
where
c=cosa ,C= cosle ,s= sik ,S= sinhk. (4-47a-d)

In practical sensing applications the beam resporesebe monitored in different
ways. Two of the most common methods of measugsgonse are optical (laser) and
piezorestive detection. In the optical method thelttip deflection or tip slope is
monitored (e.g., using a laser), while in the presestive method piezoresistive elements
near the support monitor the bending strain thatlte from the vibration. Thus, to
account for both types of detection methods, thplémndes of the both the tip
displacement and the bending strain at the rottebeam will be of particular interest
in this study and results in terms of both of thgsantities will therefore be presented.

The complex (normalized) displacement amplitudinattip is obtained by
evaluating Eq. (4-46) &t=1:

s+ S

o{1+ Cc—%(Cs— CQ} |

$D)=6 (4-48)

The modulus of this quantity may be scaled by iitasitstatic value, which corresponds

to a slowly applied harmonic rotation at the suppay,..(1) = ,, thereby resulting in the

following “dynamic magnification factor” for tip dplacemenDMF,; :

DMIF,, - [ =|¢(1)|=‘ S+ S ‘ (4-49)
Poaic@) O ‘0{1+CC—%(CS— 03”
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The maximum bending strais),,,(x, t) at any x and ton the beam is given by

b, = T ), (4-50)

where o, (X 1) is the maximum bending stress at positiat timet, and can be related

to the curvature ak(t) by

Mm% )b _ Ely'(x ) b

X, t) = 4-51
T X, 1) 2 1 2 (4-51)
Substituting Eq. (4-51) into Eq. (4-50) results in
, b
Emax(% ) = Y' (X t)E' (4-52)

Equation (4-52) can be written in terms of dimenkss deflection and dimensionless

coordinatest and r as

b
)=V (&, 7)—. 4-53
Enax(6:7)=Y'(S T)2|_ (4-53)
Using Egs. (4-40) and (4-53), the maximum bendtrgjrs at the root of the beam is
& max(0 T)_—b ¢"(0)e”" (4-54)
max 4 2|_ '

so that

b\
Emax, root = Z ¢ (O)| (4'55)

is the amplitude of the maximum bending strairhatroot. Substituting Eq. (4-46) into

EqQ. (4-55) results in

= _ Emax,root _ ¢”(O)| :‘ a(CS— CS ‘

Emax, root = -
Ol 2L 6, ‘[1+CC—%(CS— 05)”

: (4-56)
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where ¢

nax. rootdS the normalized amplitude of the maximum benditrgin at the root of
the beam.

Equation (4-49) represents the normalized beaporese as measured by the tip
displacement amplitude (e.g., an optical method)Ea. (4-56) corresponds to the
normalized beam response as detected by monittrégending strain amplitude at the
root of the beam (e.g., by piezoresistive detegtibhe dependence of these results on
the exciting frequency will be used in Chapter @lébermine the resonant frequencies
and quality factors for a microcantilever beam &atby a harmonic relative rotation
near the support. More specifically, the frequerasponse plots (plots of normalized
response vs. normalized exciting frequency) fodtgplacement amplitude and bending
strain amplitude at the root will be generated tedresonant frequencies shall be
extracted as the exciting frequencies at whichrélspective response quantities attain
their relative maximum values. Then one may usssamant frequency value and the
corresponding frequency response plot to extracatsociated quality factor using the -
3dB bandwidth method. Note that the frequency resp@lots and the associated

resonant frequency and quality factor values nexda the same for the two different

types of output signals that will be considered.
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CHAPTER S
QUANTIFICATION OF DIMENSIONL ESS SUPPORT STIFFNESS,
DIMENSIONLESS RESONANT FREQUENCY AND QUALITY FACTOR IN
TERMSOF SYSTEM PARAMETERS

5.1 Introductory Remarks

The main objective of this dissertation is to sttitky effects of support
compliance on the resonant behavior of lateral-nmoaeocantilevers operating in
viscous fluids. For this purpose, the BVPs andrtbelutions for different cases were

discussed in Chapters 3 and 4 with dimensionldssiooal stiffness of the support
k (or compliance 1k as a “specified” system parameter. However, taiakthe results

for the natural and resonant frequencies and gualttors for a particular practical
application, a rational means of determining thie@af this parameter is needed. This
chapter deals with the quantification lofn terms of cantilever dimensions, i.e, b and

h. In order to quantify the rotational stiffness oé thupport, finite element analysis
(FEA) will be used. Several three-dimensional (3fiDite element analyses will be
performed using the commercially available ANSY S01$bftware package [ANSYS
Inc., 2013] and the results will be used to detasran appropriate analytical expression
for k and, thus, fof./k . Then the expression far k will be used in conjunction with

the results for dimensionless frequencies and tyualctors obtained in Ch. 4 to obtain
analytical expressions fap, and Q,in terms of system parameters.
The chapter begins with the general descriptiothef3-D finite element

modeling/analysis approach taken in ANSYS, inclgduw the rotational support

stiffness is defined through the concept of worlieglence so that its value may be
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extracted from the ANSYS results. Then the BuckarghPi Theorem [e.g., Fox and
McDonald, 1993] is used to obtain the possible disnanless relationships betwekn
and the system parameters. Based on those resplisametric study is then performed
using ANSYS, the results of which are used in cogijion with the dimensional analysis
in order to rationally deduce a simple analytiogdression for the dimensionless
rotational stiffness and compliandeand1/k , respectively. Finally, the

stiffness/compliance expression permits one to edrthie previously obtained analytical
expressions foro, and Q, to formulae expressed explicitly in terms of thedamental

system parameters.

5.2 3-D Finite Element Modeling Approach

This section will include a statement of the asstiomg on which the FE model is
based, a brief description of the ANSYS modelinglgsis procedure, and an explanation
of how rotational support stiffness is defined aattulated using concept of work
equivalence.

5.2.1 Modeling Assumptions

In order to perform 3-D finite element modeling ardhlysis within ANSYS, the
following assumptions are made:
1) The cantilever beam and the “support block” are enafcthe same material and
that material is elastic and isotropic.
2) The SOLID187 element, which is a higher-order, 3tD;node tetrahedral

element, will be used to model both the beam aadstipport.



3)

4)

5)

6)

7)

8)
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The support block is assumed to be sufficientlgéan comparison to the beam
dimensions so that it is, for all practical purpgsenfinite” in that its dimensions
do not affect the support stiffness.

The length of the beam is large enough so thastrio influence on the rotational
stiffness of the support.

The outer surfaces of the support block that atead@acent to the supported end
of the beam are considered fixed; however, by gidtiassumption (3), the
details of the support conditions on these surfabesild not have an appreciable
effect on the characteristics of the support de&irom.

The beam is assumed to be loaded with a staticihgntoment applied at the
unsupported end of the cantilever. This momenisgiduted in the form of a
linear normal stress over the end cross-sectioa.oftentation of this moment is
such that it will cause the beam to bend in ther&dtdirection.

Since the geometry and the loading exhibit antitsytny, only half of the
geometry will be modeled. (See Fig. 5-1.)

In order to perform the ANSYS analysis, the supptwtk and cantilever
dimensions, material properties, and the applietherd magnitude are to be
specified. In this analysis following numerical we$ will be used for

aforementioned quantities:
Modulus of elasticity of materiak =0.1 N /jum® =100 GPa;

Poisson’s ratioy =0, 0.1, 0.2, 0.25, 0.3, and 0.4;

Support block dimension: length=10@0®, width=thickness= 500m;

Beam dimensiond:=300um, b= (10, 20, 50, 100, 20@n, h=10um;
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Applied moment magnitud@&1=0.01 Num.

5.2.2 ANSYS Modeling and Analysis Procedure

Three-dimensional models of one-half of the beappstt geometry were
created using SOLID187 elements. In all modelsstigport block dimensions and the
length and thickness of the cantilever were kepstant and only the width of the
cantilever and Poisson’s ratio were varied. Fiduda is an example of the 3-D ANSYS
model and Fig. 5-1b represents the top view ohtloelel. The models were meshed in
such a way that the local meshing of elements arear the interface of beam and
support was very fine relative to the mesh fartheay from this region. This is because
of the expected stress concentration in this regf@udden change in geometry and the
fact that the accuracy of the support stiffnessiwdation will be dependent on the

accuracy of the displacement and stress valuémanterface. (See section 5.2.3.) The

mesh fineness was increased until the desiredtresut was accurate to at least two
significant figures. It is to be noted that, in $keacases in which the beam was especially
thin (relative to the beam width), there were a Bament size warnings while meshing
within ANSYS; however, such warnings did not appeahe vast majority of the

meshes created.
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Figure 5-1: Finite-element model showing coordireates, dimensions, applied stress

and deflected shape: (a) 3-D model, (b) scheméticpoview.
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At the loaded face, the specified normal stressibligion o, is equivalent to a

resultant momer¥l being applied over the entire cross-section. Tagimum normal

stress on the loaded face is related to the reguttament through

o,=*

'\I/'—e , (5-1)

where | =hb®/12 is the moment of inertia of the total beam craastien about the
neutral axis (“strong” axis) an@ = b/ 2 is the distance from the neutral axis to the
“extreme fibers.”

On the plane of anti-symmetry, appropriate anti4setry boundary conditions
apply:

o,=0,u, =0, u =0, (5-2)

where the subscripts refer to the reference framevs in Fig. 5-1. Also, the three hidden
faces of the support block in Fig. 5.1a are fixagd£{ u, = u,=0 ).

After the application of the load and displacentamindary conditions, a linear
elastic analysis of the models was performed uBIN§YS. Via postprocessing of the
results, the work done by the bending stregat the beam-support interface was

determined and, as specified in the next sectised tio calculate the support stiffness as

defined using the concept of equivalent work.
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5.2.3 Deter mination of Effective Support Stiffness Using the Concept of Work
Equivalence

The work done by the bending stres# displacing the support at the beam-

support interface may be considered to be equalktoesultant moment on the interface

(M, by statics on the beam) acting through an “eiffeatotation”:

W = 2We, = 2 o,y dA= M, (5-3)

BSI

in which “BSI” refers to the beam-support interfaifehe finite-element model, is the

effective rotation of the beam-support interface] the factor 2 is present so that

W =2W.,, represents the work over ttatal interface, only half of which is modeled in

ANSYS. [The notation,, refers to the value of work obtained from thet@relement

model. Itis defined by the integral appearingm (5-3), which is evaluated
numerically within ANSYS.] Using the effective raéian to define the rotational support
stiffnesskyields

M
7

e

k= (5-4)

Using Eq. (5-3), one may eliminate the effectiviation from Eq. (5-4) to obtain the
support stiffness explicitly in terms of the worklculated within the finite-element

model:

MZ

k= ,
2VVFEM

(5-5)

Despite the appearanceMfin the numerator of Eq. (5-5), the stiffness doetdepend
on the value oM that is specified in the model, since the lingaoitthe model dictates

that the work appearing in the denominator wilbaie proportional t/ 2.
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5.3 Dimensional Analysisfor the Functional Relationship Between the Rotational
Support Stiffness and the System Parameters

In this section the Buckingham Pi Theorem [e.gx &od McDonald, 1993] is
used to obtain the possible dimensionless relatipssetweerk and the system
parameters. Of these, the most convenient reldtipivgill be chosen and used in Ch. 6
in conjunction with the results of Ch. 4 to relte dynamic response of the elastically
supported cantilever to the geometric and matpashmeters of the system.

Dimensional analysis performed by applying the Bagkam Pi Theorem [e.g.,
Fox and McDonald, 1993] to the present problem @qjpx B) results in the following
candidate forms for the dimensionless relationsinqong rotational support stiffness,

system geometry, and system material properties:

ELb?‘ _ fl(% ,vj , (5-6a)
E‘;g _t, (E ,vj, (5-6b)
ﬁkbz =1, (% : vj, (5-6¢)
e, (lt‘) ,vj. (5-60)

These four candidate forms are equivalent repratiens, but they involve different
dimensionless functions, each dependent on the-s@dion’s aspect ratib/ b, and the
Poisson’s ratio; , of the device material. In the following sectitve most convenient of
these four will be selected to yield the simplesdlgtical expression based on curve-

fitting the results of an FEA parametric studyhe forms listed in Egs. (5-6a-d).
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5.4 Parametric Study for Rotational Stiffness of Support Based on 3-D Finite
Element Analysis

For a particular beam geometry the rotationalrsest of the support, as defined
in the Section 5.2.3, may be obtained by perfornaitiigiite element analysis
(summarized in Section 5.2.2) and substitutingvidae of the interface work from the
analysis into Eq. (5-5). Performing several anaysethis type enables one to determine
numerically how normalized support stiffness degend system parameters. The results
of such a parametric study are shown in Tablei&-ivhich the numerical values of
rotational support stiffnesk for different aspect ratiosh( b) and different Poisson’s
ratios(v) are listed.

It can be concluded from the numerical results #hdécreases significantly with
an increase in th@/ bratio, i.e., with a decrease lirfor a fixedh. Sinceh is fixed in the
models, smalleb results in a smaller beam-support interface anélathus, for a given
transferred moment, a larger rotation of the supmsulting in smallek . The table also
indicates that the dependenceanv is quite weak, with the trend (increasing or

decreasing) depending on the aspect ratio.



Weewm k
Wb | v (N-qm) | (N-pm/rad)
0 2.265E-09 22073
0.1 2.300E-09 21735
0.05 0.2 2.320E-09 21555
0.25 2.323E-09 21521
0.3 2.323E-09 21525
0.4 2.310E-09 21646
0 1.213E-08 4121.9
0.1 1.235E-08 4049.8
0.1 0.2 1.250E-08 4000.9
' 0.25 1.255E-08 3984.4
0.3 1.258E-08 3973.2
0.4 1.261E-08 3966.2
0 6.089E-08 821.19
0.1 6.183E-08 808.64
0.2 0.2 6.248E-08 800.20
' 0.25 6.270E-08 797.43
0.3 6.284E-08 795.61
0.4 6.290E-08 794.94
0 4.696E-07 106.47
0.1 4.731E-07 105.69
05 0.2 4.734E-07 105.62
' 0.25 4.723E-07 105.86
0.3 4.704E-07 106.29
0.4 4.637E-07 107.83
0 2.090E-06 23.918
0.1 2.095E-06 23.870
1 0.2 2.080E-06 24.042
0.25 2.065E-06 24.219
0.3 2.044E-06 24.462
0.4 1.985E-06 25.192
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Table 5-1: Rotational stiffness of support based3eb finite element analysis witk
= 0.1 N/pnf, L = 300 um, andh = 10 pm.

5.5 Deter mination of Analytical Expressionsfor Dimensionless Rotational Stiffness

of Support

After obtaining the numerical results for the raiatl stiffness of the suppokt,

using work equivalence and 3-D finite-element modghas explained in the preceding
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sections, an analytical expression foiin terms of the problem parameters (beam
dimensions and material properties) may be obtaidsiohg the numerical values fdr
from Table 5-1 and the corresponding values of lgeralparameters, the dimensionless

functions f, (h/b, v)in Egs. (5-6a-d) can be determined and plottecureig5-2a-d

show the plots of these dimensionless functionttgdoversus the aspect ratid b for
fixed values of Poisson’s ratio over the rangessmmared. From the plots it is obvious

that the dependence enis weak, as observed earlier in Table 5-1. Alse,flots for the

dimensionless function in Fig. 5-2a, i.g(h/b, v)=k/ Eb, are nearly linear and, for

this reason, the form of Eq. (5-6a) will be choserharacterize the desired
dimensionless relationship. In addition, sincedbpendence on is very weak, only the
plot for v =0.25will be considered in determining an analyticaifioof this relationship.
The plot in Fig. 5-2a for = 0.25is fitted by a straight line, as shown in Fig. 58,
obtain the following linear equation relatirky Eb’ to h/b:

k3 :0.225&h+ 0.017.. (5-7)
Eb b

Thus, the expression for the (dimensional) rotatictiffness of the support is

k= Eb3(0.2258[)—]+ 0.017} (5-8)

Now the relative rotational stiffness of the sugpuith respect to the beam’s flexural
stiffness, as defined in Chapter 3 and given by(Bd.9), is

‘% . (5-9)

k
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Figure 5-2: Values of dimensionless functidr{k/b, v) for in-plane static bending of
microcantilevers of rectangular cross-sectionHg) (5-6a), (b) Eq. (5-6b), (c) Eq. (5-
6¢), (d) Eqg. (5-6d). (Results are based on 3-D F&sAllts for rotational support stiffness
calculation using the work equivalence method.)

Substituting Eq. (5-9) into Eq. (5-8) with=hb®/12 results irk explicitly in terms of

system geometry:
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E:59(0.2088+ ziloj , (5-10)
bh b/ h

The corresponding compliandé k , becomes

1 1

1 (5-11)

k Lb(0.2088+ 2'710)
b h b/ h

Equations (5-10) and (5-11) are restricted to #mge0.05< h /b< 1since the fit (Fig. 5-

3) was performed over this range.

0.30

0.25

B 00 k/EEF= 0.2258t/b)+ 0.0174 /

1 \
-~ 0.15 /4
0.10 ~

0.05 / e v=0.25
« —Linear fit ¢=0.25)

0.00 | |
0 0.2 0.4 0.6 0.8 1

h/b

Figure 5-3: Linear fit of dimensionless functiéri Eb’vs. h/ bforv =0.25,
0.05<h /b<1

k/E

f,(h/by

5.6 Deter mination of Analytical Expressionsfor Dimensionless Frequency and
Quality Factor in Termsof System Parameters

Having determined an analytical expressionifok , the approximate

expressions for the dimensionless natural frequandyquality factor for the first lateral
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mode, derived in Ch. 4, can now be expressed ettplic terms of system parameters.

The approximate expressions [EQs. (4-34) and (4483 Ch. 4 are

1 1Y 1
alz1—1.909E+ 3.41&} - 0.266(7 4%;, (5-12)

(5-13)

Q~187% 0.95=1j.
‘ K

The fluid resistance parametér,in Eq. (3-15a) can be written in the form

L L b ]
5_2.632\/% b\fh, (5-14)

2 2
Py (5-15)

Ep,’

where

L, =

has unit of length and may be interpreted as aratharistic material length” which is

constant for a given fluid and beam material. Stistg Eq. (5-11) into Egs. (5-12) and

(5-13) and making use of Eq. (5-14) results in,
3.417

_ 1.909
R 2710) ’
—==10.2088+ =" | | Lb[50gg, 2:710
bh( (b/ h)j [b h( ' (b/ h)
, (5-16)
~0.7019 + 1 \/%% %
LBl g 2088 2710
b h (bl )
o~ 07124 |, 0.95 | (517
LL[| Lb 2.710
== 21 =2 02088 5
hbVhl bh (b/ h)
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Equations (5-16) and (5-17) are valid for

b

152520, (5-18a)
03%: 1 <015 or, %z ! . (5-18b)
Lb 2.710 b 2.710
Lb[.2088 2710 0.152| 0.2088 2719
b h[ (b/ h)j h( (b/ h)j

L L [b
=2.63 —0—\ﬁ<<1 . 5-18c
4 n VT (5-18c)

Similarly, the displacement response due to forkdbration via relative rotation near the
support, as described in Ch. 4 by Eqgs. (4-49) drsb(), can be rewritten in terms of
system parameters using Eqgs. (5-11) and (5-14}rerdthe corresponding results for
resonant frequency and quality factor can alsodterchined in terms of system
parameters. Those results are not listed explibighe; however, in most cases of
practical interest we expect that the analyticaifiolae based on free vibration — Egs. (5-
16) and (5-17) — will give excellent approximatidnghe corresponding resonant
guantities associated with forced vibration of thedel.

The analytical results obtained in this chaptemfatural frequency and quality
factor for the first lateral mode of vibration wilerve as the basis for a parametric study
to be performed in the following chapter. The pagtio study of the first lateral mode
resonant frequency and quality factor for the fdre#oration case will also be performed

and discussed in Ch. 6.
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CHAPTER 6
NUMERICAL RESULTSAND DISCUSSION

6.1 Introductory Remarks

In this chapter a parametric study based on thdtsesbtained in Chs. 4 and 5 is
presented and discussed. First the results fantfieid free-vibration case, namely, the
natural frequencies, quality factors, and mode shape presented. This is followed by
the results for the in-fluid forced-vibration cdee an imposed relative rotation near the
support. These include frequency spectra for tepaese amplitude, resonant
frequencies, quality factors, and vibrational slsa®r the forced-vibration case, the
results are presented for both the tip displacememmonse and the bending strain
response at the root. In addition the results &ural/resonant frequencies and quality
factors are compared to experimental data. Thiptehguantifies the impact of support
compliance, fluid resistance and microcantilevenetisions on the dynamic response of
lateral-mode microcantilevers.

6.2 Parametric Study: Free Vibration with Stokes-Type Fluid Resistance

In this section the parametric study of the nattrexjuencies, quality factors and
mode shapes for the case of in-fluid free vibratiom presented. The effects of support
compliance and fluid resistance on natural freqigsnand quality factors are presented
for multiple lateral modes of vibration using résutom Ch. 4. Then the results of Ch. 5
are used to relate the support compliance to thenb#imensions so that a detailed study

may be performed to show how the natural frequemtymode shape of the fundamental
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lateral mode depend on the device dimensions. Uihgaimental mode is the focus since
it is the most easily excited.

6.2.1 Natural Frequencies

The impact of support compliandék , fluid resistance;, and beam geometry
on the natural frequencies is examined in this@ecThe parametric study of the natural
frequencies, obtained by solving tHE-@egree frequency equation given by Eq. (4-18),
in terms ofl/k and ¢ for the first three modes of in-fluid lateral vilicn is presented
in Fig. 6-1. This figure clearly indicates, as ecyeel, that the natural frequencies
decrease with increases in support compliaihde, and fluid resistance,. For the

range of{ considered, the natural frequency varies almosglily in £ but nonlinearly in

1/k . Also, the curves for differerit/ k are parallel to each other indicating that the
effects of support compliance and fluid resistamecaatural frequency are somehow
independent of each other. For the first mode anthie ranges of support compliance
and fluid resistance considered, the support effexdy cause up to a 21% drop in natural
frequency, while the fluid resistance may causéoug 25% drop in natural frequency.
For second mode the relative change in naturat&eqgy due to support effects and fluid
effects might reach 16% and 11% respectively dvemptarameter ranges considered. For
mode 3 the drop in natural frequency may reach @@eoto support effects and 7% due
to fluid effects. As mentioned earlier, since thistfmode of lateral vibration is the most
easily excited lateral mode and thus the most waldateral mode for sensors
applications, the relative decrease in naturalfesgy due to support compliance and

fluid resistance, which could be quite significastdemonstrated here, must be dealt with
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properly to achieve reasonable theoretical estisn&enversely, if higher modes can be
excited, the adverse effects of support compliamzkfluid resistance will be less
significant.

Figure 6-2 shows the comparison of the approxiraatdytical results for the
fundamental natural frequency, obtained from Ee34% with the exact results presented

in Fig. 6-1a. Over the practical range of supporhpliance,1/k [0, 0.15, considered,
the approximate results compare quite well withekact results for small values ¢t

More specifically, for the considered range of smppgompliance the percentage error of

the approximate results is less that 2%4as [0, 0.6].
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Figure 6-1: Dimensionless natural frequency forftret three modes of lateral vibration
of a microcantilever beam in a viscous fluid [E4+18)]: (a) first mode, (b) second mode,
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Figure 6-2: Comparison of exact [EQ. (4-18)] angdragimate [EqQ. (4-34)] dimensionless
natural frequency for the fundamental mode of &Eteibration of a microcantilever
beam in viscous fluid.

The effects of beam dimensions on the fundameataitdl natural frequency can

be studied using the analytical expression giveidpy(5-16), repeated here for

convenience:

_ 1.909 3.417
011 Lb 2.710)
="| 0.2088+ 5=~ Lb 0.2088+ 2.710
bh( (b/ h)J [b h( (b/ h)
, (6-1)
~0.7019 - \/; b\f
L b( 5 90ggs 2710
bh (b/ h)

The second and third terms on the right-hand sidggo(6-1) represent the decrease in

natural frequency due to support compliance in-uatuwvhile the last term involvek,
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and thus represents the decrease in natural fregulre to fluid effects. The support
compliance effect is also present in the last teiathe negative term inside the
parentheses. For Eq. (6-1) to be valid, it mussfathe limits for the various parameters
given by Egs. (5-18a-c). In particular, the comitthat{ << 1 [Eq. (5-18c)] shall be
interpreted ag < 0.6 as it has already been noted that this consteaisiires no more

than a 2% error in the natural frequency (relatovéhe exact results of the model) over

the range of support compliance of interest. Thigeu limit on/ , i.e., 0.6, enables Eq.

(5-18c) to be rearranged to yield an upper limit.éb, while a lower limit onL/bis
given by Eqg. (5-18b). Therefore, the restrictionlohb for Eq. (6-1) to be valid is given
by the following inequality:

1 _L_02280 (6.2

015 0.2088 2710) P [Lob
h (b/ h) h h

In addition the validity of Eq. (6-1) is limited the range of cross-sectional aspect ratio,
b/ h, over which the FEA results of Ch. 5 were fittétlis inequality was specified in

Eq. (5-18a), repeated here for convenience:

1<— < 20. (6-3)

>|o

Examining Eq. (6-1), one sees that, for a givembesaterial and a specified

fluid, L,is determined, so that if the thickness of the besaatso specified, the first

mode natural frequency may be expressed in ternks' bf and b/ h only. These results
will be valid provided that./b and b/ h satisfy the constraints given by Egs. (6-2) and
(6-3) listed above. For example, Eq. (6-1) mawpplied for the case of beams made of

silicon (E=169 GPa ang,=2330 kg/m) with thicknessel = [5, 10, 15, 20] um
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vibrating in water f =0.001 Pes, p, =1000 kg/n). The results may be cast in the form

of the relative decrease in natural frequency dube effects of support compliance and
fluid resistance, which are plotted versud for differentb/ h ratios in Fig. 6-3. From
the figure it is clear that, with an increase iickinessh, the reduction in natural

frequency becomes smaller. This is because theeStikid resistance parameter

decreases with an increasdinvhich is manifested through thé ,/'h termin Eq. (6-

1). For microcantilevers that are short relativéhteir width (smalleL. /b) and for the
values ofb/ hconsidered, Fig. 6-3 illustrates that support coamgle effects dominate
and fluid resistance effects are very small, whscWwhy the effect of thickneds(i.e., the
last term in Eq. (6-1)) is negligible. But for maiender microcantilevers (largef b)

the fluid resistance effects are large and thuslépendence omfor given value ofb/ h

is more prominent, i.e., the second and third tamisg. (6-1) become negligible and the
fourth term becomes linearlin' b. The starting value ok / bfor each curve corresponds
to 1/k = 0.15(upper limit of support compliance) and the endiatue to = 0.6 (upper
limit of fluid resistance parameter). The relatdecrease in natural frequency at the
starting value ofL / bfor all curves is about 0.21% and is about 0.16%aending

value of L/b. For a fixedh value, it is also clear that for smaller bratios the natural
frequency drop decreases with an increade/in because the relative support
compliancel/k , decreases ds/ h increases. [See Eq. (5-11).] Conversely, for large
L /bratios, the fluid resistance effect becomes dontiaad, as indicated by the
definition given by Eq. (5-14) and the last ternEiq. (6-1), an increase in/ hwill

increase and thus will also increase the relative naturedfrency change. Because of
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the two competing effects, the plots of Fig. 6-8 aot monotonic. For each curve there is
a value of thé./bratio for which the frequency drop has a relativeimum. When the

L /bratio is very large the relative frequency droprapghesd / 24, which is in

agreement with the SDOF results for a perfectlgdixantilever beam [Heinrich et al.,
2010a]. The drop in natural frequency from the dixantilever model [Heinrich et al.,
2010a] to the current elastic support model is 2dfthe startind. / bvalue for each
value ofb/ hconsidered. For the range bf hconsidered, the difference between the
two models is negligible (percent change in natfregjuencyis less that 4%) if / b >15.
(This limiting value ofL/bis governed by the results fof h=2.) It is important to note
that at smaller values bf/ b, not only are the support compliance effects irtgrtiras
indicated here, but other effects that have begtented in the present Euler-Bernoulli
beam model — namely, the “Timoshenko beam effasftshear deformation and rotatory
inertia — will also be important. Thus, one shouse the results of Fig. 6-3 at smaller
values ofL /bwith caution; to obtain more accurate values is tAinge the results of Ch.
5 could be used to specify appropriate boundargitions in the Timoshenko beam
model of Schultz (2012) to generate improved vabfdke relative frequency change,
which would be expected to be larger due to theegmed flexibility and inertia of a
Timoshenko beam relative to its Bernoulli-Euler otaspart.

6.2.2 Quality Factors

The impact of support compliandék , fluid resistance; and beam geometry

parameters on the quality factors are presentéusrsection. The parametric study of

the "exact” quality factor furnished by the modeit the free-vibration case, given by Eq.
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(4-21), in terms ofL/k and ¢ for the first three modes of in-fluid lateral viltien is
presented in Fig. 6-4. This figure clearly indicatieat the quality factors decrease with
increases in support complianték and fluid resistance;. It is also clear from the

figure that the quality factor increases with modenber, a trend that has also been
observed in theoretical and experimental studiesansverse-mode microcantilevers
[e.g.,Van Eysden and Sader, 20@hatkesar et al., 2008]. The quality factor is ligav

dependent on fluid resistance parameteespecially at small values. In contrast the

guality factor dependence on support compliancgiite small.
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Figure 6-4: Quality factor for the first three medsased on lateral free vibration of a
microcantilever beam in a viscous fluid [Eq. (4]21)
Figure 6-5a shows the comparison of the approxirmasdytical result for quality

factor, given by Eq. (4-36), with the exact respitssented in Fig. 6-4, based on Eq. (4-
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21), for the case of the fundamental lateral mddelwation. For the practical ranges of

support compliance/k [0, 0.15, and fluid resistance; [0,0.6], the approximate

results compare quite well with the exact resger these ranges the percentage error
of the approximate results is less that 5%. Figafb shows the comparison of the

approximate analytical result for quality factoiven by Eq. (4-37), with the exact results
presented in Fig. 6-4, based on Eq. (4-21), forctse of the fundamental lateral mode of

vibration. For the same ranges of support compéidrid [0,0.19, and fluid
resistance( e [0,0.6] , the maximum error in this case is 25%. HoweVss,dase for

utilizing the simpler form foQ given by Eg. (4-37) may be made on three poini{sTk
simpler form of Eq. (4-37) will permit a very coseidescription of the dependence&of
on the geometric and material parameters, as witlibcussed shortly. (2) While the
accuracy level of Eg. (4-37) appears to be muclsetnan that of Eq. (4-36), the latter
equation differs from the former only by an additsonstant of 0.75. (See previous
discussion in Sect. 4.2.2.) Thus, the larger nedagirror of Eq. (4-37) is only significant
at lowerQ values, i.e., for devices/fluids that are not dérest here since they are not
viable candidates for liquid-phase sensing appbaoat (One of the primary motivations
of this study is to achieve higDin liquids by exploiting the lateral mode.) (3) Bese
the Stokes-type fluid resistance model tends toestenate the viscous quality factor,
the fact that Eq. (4-37) yields a smaller valu€®dhan Eq. (4-36) will slightly
compensate for some of the error inherent in thie flesistance model. Thus, for these
reasons Eq. (4-37) [or equivalent forms of it, sastEq. (5-17)] will be used hereafter

when presenting and discussing analytical resaitgiie quality factor.
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When the results of Ch. 5 are used to relate stigponpliance to beam
dimensions, one may use Eq. (5-17) to directlyteglae mode-1 viscous quality factor to
beam geometry. To present these results in a degeta&fficient, manner the quality

factor as given by the analytical Eq. (5-17), ismalized by/h/ L, so that the resulting

analytical expression for the quality factor,

Q 0712 0.95
\f Lb 0.2088+ 2710
bh (b/ )

can be used to generate plots that are applicabknfy value of thickne$sand any

(6-4)

material and fluid, provided that the parametegeaoonstraints [Egs. (5-18a-c) or,
equivalently, Egs. (6-2) and (6-3)] are not viotht&his normalized quality factor is

plotted against thé /b ratio for differentb/ hvalues and fok /b €[0, 20]as shown in

Fig. 6-6. From the figure it is clear that, for sijeed values of thicknes$( and material
properties (o) and a fixed widthlf), the quality factor increases with a decreadength
L. This figure may be used to graphically deterntiveequality factor for a lateral-mode
microcantilever of specified geometry and givenrbeand fluid properties. Note that the
starting points of the curves in Fig. 6-6 are ditisby the lower bound of the constraint
given by Eq. (6-2). It is also important to notattkig. 6-6 should NOT be applied for

L /b ratios in excess of the upper bound listed in BeR)( although the entire curves of

Fig. 6-6 are applicable in many practical instan€es example, if the beam material is

silicon (E =169 GPa,p,=2330 kg/m) and the fluid is water;{=0.001 Pa.gp, =1000

kg/m®), then Fig. 6-6 is valid in its entirety providetht h>3.3um.
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Figure 6-6: Normalized mode-1 viscous quality fadtoterms of beam geometry for
lateral vibration of a cantilever beam in an adrigrviscous fluid. Results of current
compliant-support model based on analytical formblp (6-4). This figure should NOT
be applied fot./ bratios in excess of the upper bound listed in BeR)( (Dashed curves
are based on the fixed-support model of Heinrichl.e2010a.)

The quality factor results for a perfectly fixedae [Heinrich et al., 2010a] are
also shown in Fig. 6-6 in order to clearly dispthg impact of support compliance on the
quality factor. It can be seen that the impactugfsrt compliance is negligible for large
L /bvalues but for smalldr/bvalues becomes more important. The drop in quality
factor from the fixed cantilever model [Heinrichadt, 2010a] to the current elastic
support model is 14% for the startibgb value for each value di/ hconsidered. For
the range ob/ hconsidered, the difference between the two modategligible (percent
change i is less that 2%) ilL /b >15. (This limiting value ofL/bis governed by the
results fob/ h=2.) Itis also to be noted that for lowlef b values the Timoshenko beam
effects might play an important role. These efféetge not been considered in this study

but have been studied recently for the case offeqéy fixed cantilever [Schultz et al.,

2013a, b].
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6.2.3 M ode Shapes

The impact of support compliandé k , on the mode shapes are presented in this
section. (Recall that these mode shapes corredpdmath an in-vacuum free vibration
and a free vibration in a viscous fluid providinpl&es-type resistance.) The first three
mode shapes given by Eq. (4-22a) have been nomuldby their absolute maximum
values and are presented in Fig. 6-7a-c. Theseefigtlearly show the effect of the

support compliance parameter on the mode shapes. fparfectly fixed cantilever, i.e.,
1/k =0, the slope of the mode shapes are zero at fipostifor all three modes, as

expected, but whel'k = 0 the mode shapes reflect the support compliancaigir a
non-zero slope at the support. The vibrational sddemodes 2 and 3 depend weakly on

the support compliance.
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Figure 6-7: Mode shapes for the lateral vibratibarelastically supported
microcantilever in a viscous fluid: (a) first mosleape, (b) second mode shape, (c) third
mode shape, (d) mode-1 “bending-only” mode shape,first mode shape with rigid
rotation removed.

For the first mode, if the rigid rotation dueth@ support rotation is subtracted

out, then for all of the values af/ k considered the resulting “bending-only” mode
shapes are virtually identical to that of a peifefiked cantilever as shown in Fig. 6-7d.
However, this is not true for the higher mode slsape
6.3 Parametric Study: Forced Vibration Dueto Harmonic Relative Rotation
Imposed Near the Support

In this section the results for the lateral vibwatdf a microcantilever in a viscous

fluid will be presented for the case of an apphegdmonic relative rotation near the
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support. As noted earlier (Sects. 1.4 and 3.43,tilpe of loading is of practical interest
since it simulates the electrothermal excitatidmesce that has been employed in lateral-
mode cantilevers and cantilever-based sensors{Blear et al., 2010a,b; Heinrich et al.,
2010b; Beardslee et al., 2012]. The theoreticallte$o be presented and discussed
include frequency response plots, resonant frequequality factor and vibrational beam
shapes. The frequency response plots (plots of aled response amplitude vs.
normalized exciting frequency) will be determined fwo types of “output signals”: the
tip displacement amplitude and the bending straiplaude at the root of the beam.
These correspond to two common response deteatimnges used in microcantilever
applications: optical methods and piezoresistivéhoas, respectively. From these
frequency response plots the resonant frequenmesx#racted, these being defined as
the exciting frequencies at which the respectigpoase quantities attain their relative
maximum values. Also extracted from the frequeresponse plots are the quality factors
associated with resonant peaks; these are detetrhinemploying the -3dB bandwidth
method (also known as the half-power method) [&girovitch, 2001]. While the
frequency response plots are generated over adneguange that includes the first three
modes of lateral vibration, the resonant charasties will only be determined for the

first lateral mode of vibration as it is the moasiy excited and most widely used mode
in lateral-mode sensing applications. The impacupiport compliance, fluid resistance
and beam geometry on the beam response resulti@nelsonant characteristics are

presented.
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6.3.1 Frequency Response

The frequency response plots for the tip displacgramplitude are generated by
plotting the dynamic magnification factor for tipsdlacement, given by Eq. (4-49),
against the dimensionless exciting frequency awsho Fig. 6-8. Similarly, the
frequency response plots for bending strain anmbditat the root are generated by
plotting the normalized amplitude of the maximunmdbie@g strain at the root of the beam,
given by Eq. (4-56), as shown in Fig. 6-9. Figuf@abshows frequency response plots for
tip displacement amplitude over a frequency rahgeincludes the first three lateral
modes, while Fig. 6-8b provides a clearer viewhef first-mode response. Figure 6-9
shows analogous information when the bending saaiplitude at the root is used as the
theoretical output signal.

Figure 6-8a indicates a reduction in resonant @eaglitudes at the higher
resonances for the tip displacement signal, thdieating that the first resonant mode
may be the most suitable of the lateral flexuratlesfor sensing applications using a
response detection method that tracks the tip ctéte (or tip slope), e.g., optical.

Figure 6-8a also shows the expected decreasednaesfrequencies and resonant peak
amplitudes as the values of support complianceflaidiresistance parameter are
increased. Similar trends are seen in Fig. 6-3femroot bending strain amplitude, with
the exception that the resonant peak amplitndeeasesas the mode number increases.

The responses based on the two different detestibemes are exhibited more clearly in

Fig. 6-10 for a particular system having a supporhpliance ofl/k = 0.05 and a fluid

resistance parameter®dt 0.2. In contrast to tip-tracking detection scheme#)df

higher modes can be excited, strain-based detecteihods (e.g., piezoresistive) may
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Figure 6-8: Frequency response plots of normaligedisplacement amplitude for the
lateral vibration of a microcantilever in fluid csed by relative harmonic rotation near

the support: (ajo €[0, 20](including first three modes), (i €[0,1.6](including first

mode).
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Figure 6-9: Frequency response plots of normalesting strain amplitude at the root
of a cantilever for lateral vibration in fluid cadgby relative harmonic rotation near the

support: (a)o €[0, 22](including first three modes), (liy [0,1.8] (including first

mode).
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have advantages at higher modes due to the streiggerd amplitude at higher modes in
comparison to the fundamental lateral mode. Alivearin Fig. 6-8 (and the solid curve in
Fig. 6-10) start at 1 because at low frequenciesathplitude of tip displacement
approaches the quasi-static value associated withdarotation of the beam. The curves
in Fig. 6-9 (and the dashed curve in Fig. 6-10)t stzero because, when the load is
applied quasi-statically (i.e., at a very low freguay), there is no bending strain in the
beam since the beam undergoes only a rigid rotatitso, it is noted that, faf =0, the
maximum strain amplitude is zero at some excithegjdiencies, indicating that the
vibrational shape at those frequencies has zemature at the supported end. In other

words, it indicates that the beam shape is in itiansrom one mode shape to the next.
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Figure 6-10: Comparison of frequency response twtaormalized tip displacement
amplitude and normalized bending strain amplitatiéne root for a cantilever excited

laterally by a relative harmonic rotation near siipport (/k = 0.05, £ =0.2).
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6.3.2 Resonant Frequency

The resonant frequency can be obtained from tlypiénecy response plots as it is
by definition the exciting frequency at which tlesponse attains a relative maximum.
Even though the higher mode resonant frequenciedeaxtracted from the frequency
response plots discussed in previous section, thelyirst-mode resonant frequency is
extracted and discussed in this section.

In Fig. 6-11 the first-mode resonant frequency daseboth tip displacement
amplitude and maximum bending strain amplitudénatroot is presented in terms of

support compliance and the fluid resistance paramEtom Fig. 6-11 it is clear that, as

expected, the fundamental lateral resonant frequéacreases with an increaselink

and ¢ . It is also clear that this resonant frequencgetected by the maximum bending

strain signal is greater than that for the tip Bispment response, with the difference

being negligible at smaller values g{less than 2% fot” [0, 0.4]) but approaching 8%
as ¢ approaches 1. As sensitivity is directly proporéibto the resonant frequency

[Dufour et al., 2007a, b] it can be concluded thatsensor devices that detect resonant
response by monitoring the bending strain at tl¢ @bthe cantilever will be more
sensitive than ones whose output signal is basdrhoking the tip displacement, and this
advantage will become more evident at higher vatdiése fluid resistance parameter.
Figure 6-12 compares the resonant frequency atrésenance, as detected by
both the tip displacement response and the bersdiag response, to the first-mode
natural frequency obtained from the analytical espion given by Eq. (4-34). From Fig.

6-12 it is clear that the natural frequency clogelsembles the resonant frequency for the

ranges ofl/k and ¢ considered, especially for small valueg @iess than 1% error for
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¢ €[0,0.3]). Thus, the same analytical expressions for tts¢-fnode dimensionless

natural frequency given by Eqs. (4-34) and (5-X8) be utilized to predict the impact of
support compliance, fluid resistance parametertsmain geometric parameters on
resonant frequency at the first resonance foruidflateral vibration of the cantilever via
harmonic relative rotation near the support. Tlee fribration analytical result predicts
the resonant frequency based on tip displacemétariiban that based on maximum

bending strain at the root.
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Figure 6-11: Comparison of resonant frequencyrst fateral resonance for tip
displacement response and maximum bending straponse at the root of a cantilever
in a viscous fluid caused by relative harmonic tiotanear the support. (Resonant
frequency extracted from frequency response curves.
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6.3.3 Quality Factor

The quality factor is extracted from the frequenesponse plots using the -3dB
bandwidth method. The quality factor estimate frtws method is valid for small levels
of damping. i.e., for small values of the fluidistance parameter. In the -3dB bandwidth
method the quality factor is calculated as theorafithe resonant frequency to the -3dB
bandwidth of the resonant peak of the frequengyarse [Meirovitch, 2001]. The
quality factor at the first resonant peak is cadtedl by applying this method to both the

tip displacement response and the bending straporese and is shown in Fig. 6-13.
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From Fig. 6-13 it is clear that the quality factlecreases with an increase in the fluid

resistance parameter and support compliance. Tal@yfactor is extremely sensitive to
¢ at small values of . The effect ofl/k is relatively weak compared to that ¢f Also
for small values ot/", the quality factor based on maximum bending istrasponse at

the root is nearly equal to that obtained via thaltsplacement response. For larger

values of¢ , the tip displacement response quality factoréatgr than its bending—strain
counterpart. But as mentioned earlier, for largeesiof { the -3dB bandwidth method

does not accurately estimate quality factor.
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quality factor at first resonance

Q:
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Figure 6-13: Comparison of quality factor (bandwidtethod) at first resonance based
on tip displacement response and maximum bendragsesponse at the root of the
cantilever for lateral vibration in fluid caused kgfative harmonic rotation near the
support.
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Figure 6-14: Comparison of first-mode quality fadisandwidth method) for lateral
excitation via harmonic relative rotation near sapgboth via tip displacement response
and maximum bending strain response at the roah) tve first-mode quality factor
obtained via analytical expression [Eq. (4-37)]l&deral free vibration case.

Figure 6-14 compares the quality factor at firsoreance for the forced vibration
case, as detected by the two output signals mediabove, with the first-mode quality
factor obtained from the simple analytical expresgor the free vibration case [EQ. (4-

37)]. The figure shows that the analytical freeration quality factor compares quite

well with those based on the forced vibration dasesmall £ values, i.e., those yielding
relatively largeQ values. The percent error is large for largeralues, but as explained
earlier (Sect. 6.2.2) this study is mainly focusadobtaining higher quality factors, i.e.,
smaller{ values. Thus, the same analytical expressionsuality factor, i.e., Eq. (4-37)

and Eq. (5-17), can be used to predict the implstipport compliance, fluid resistance

parameter and beam geometry parameters on quatityrfat the first lateral resonance.
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6.3.4 Vibrational Beam Shapes

The time-dependent vibrational shapes for forcédation via relative harmonic

rotation near the support are presented in Figh.6Flhese shapes are plotted for

1/k =0.15, ¢ =0.2 and @ = 0.7447(fundamental lateral resonant frequency) and are
based on a real forcing function of the fat(a) = Re[d,€“* ]. Thus, what is plotted in

Fig. 6-15 isRe[y (£,7)]/6,, wherey(¢&,7) is given by Egs. (4-40) and (4-46). The figure
clearly shows how the deflected position of therhehanges throughout one complete
cycle of steady-state vibration. For the considetaldes ofl/k ,¢ , and@, the

vibrational shape (if normalized) is essentiallyst@ant over time. (The exceptions are
nearwr =0, 7, 2r, at which times the beam is passing through aengisdly

undeformed configuration.) The maximum values efthleam deflection appear to occur
nearwr =7/2 and wr =37 /2. Note that the beam positions indicated in tharg are
consistent with the concept that, at resonancesetsionse should lag the input by

approximately 90 degrees.
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6.4 Comparisons with Experimental Data

The purpose of this section is to compare the ptemgalytical results for the in-
fluid lateral-mode resonant frequency and quabigtdr to experimental data [Beardslee
et al., 2010a; Beardslee et al., 2012]. The miarbleaver devices used in the experiments
were excited electrothermally near the supporttaedbeam motion was detected via
piezoresistive elements positioned near the “extrébers” of the cross section near the
support. Thus, the most appropriate theoreticalltesf this study are those based on the
forced-vibration model excited by an imposed rgkatiotation near the support with the
output signal being the maximum bending straihatrbot of the cantilever. However, as
explained earlier (Sects. 6.3.2 and 6.3.3), atmasce the forced vibration results are
very close to the free vibration results and, thlis,analytical formulae based on the free
vibration results will be used here in making conguns with the experimental data.

For the experiments the microcantilever beam wadef silicon and the liquid
used was water. The experimental data were cotldotefour sets of nominal cantilever
thicknesshnom= (5, 8, 12, 200km and each thickness consisted of five cantilevegtles,

L = (200, 400, 600, 800, 100@n, and four cantilever width$,= (45, 60, 75, 9Q)m.

The silicon cantilever was coated with several pasi®n layers, consisting of thermal
oxide, PECVD silicon oxide and PECVD silicon nigi{Beardslee et al., 2012]. In
comparing theoretical results with experimentahd#te average total thickness is used
in the theoretical models instead of the nominizkitess. These total thickness values
were obtained by taking the average Si thicknedsaalding the corresponding
passivation thickness. The average total thickmekges for each nominal thickness set

are listed in Table 6.1. As explained above, thenibes not homogeneous but made of
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different layers of different materials. Thus, thaterial properties of the composite
beam, especially the effective Young's modutisvill be different than that of pure
silicon. The theoretical model is based on a homegas beam and, thus, an effective
value ofE for the composite beam must be specified in thdeh&ince it is difficult to
specify the appropriate value of effective Youngisdulus, its value is determined by
performing a least-squares fit of existing resorie@guency data for the in-air case with
the in-vacuum, perfectly fixed cantilever modeleéSAppendix C.) In performing the fit,
it is assumed that the air resistance is negligibié only the data fok = (800 ,1000um
are considered for the fit. This is because thgelalength specimens are not expected to
exhibit support-compliance and Timoshenko beancteffeso that these complicating
effects will be negligible so that the fit will ytba reasonable estimate of the effective
modulus. Also, the density of the composite beaassimed to be the same as that of
silicon p,=2330 kg/ni. The best fit values fdE for the different nominal thickness sets
are listed in Table 6-2. The results show a vergest dependence on the cantilever
thickness; thus, the average Young’s modulus cfetieur thickness set§=142 GPa,
will be used as the effective Young’'s modulus imoalthe theoretical calculations in this
section. Other input values to be specified intHeoretical model include the properties

of water, given byp, =1000 kg/ni and 7 =0.001 Pa-s , and the specimen geometries as
specified byh = (7.009, 10.32, 14.48, 22.34), L = (200, 400, 600, 800, 100&), and
b = (45, 60, 75, 9Q)m. The present theoretical results will also be caregavith the

results obtained from the Euler-Bernoulli modelheiit support compliance effects

[Heinrich et al., 2010a].
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Nominal | Average Silicon| Passivation Layer Average Total
Thickness Thickness Thickness Thickness
Pnom(1m) hs (pm) Npas (um) he (um)

5 5.169 1.84 7.009

8 8.48 1.84 10.32

12 12.61 1.87 14.48

20 20.47 1.87 22.34

Table 6-1: Average total thickness for each nomihigkness set [Beardslee and Brand,
2010].

Nominal Thickness Young's Modulus vy Av'erage
hnom(1m) E (GPa) oung’s Modulus
E(GPa)
5 138.97
8 141.07 141 81
12 138.67 ~142
20 148.52

Table 6-2: Effective Young’s modulus based onrfgtlateral-mode in-vacuum, perfectly
fixed model to in-air experimental lateral frequgmiata.

Figures 6-16a-d show the comparison of resonaqtiéecy from the current
model [Eq. (6-1)] and the experimental data (inexpator each nominal thickness set.
Also shown are the results from the Euler-Berndidkd cantilever model. From the
figures it is evident that the frequencies from ¢herent model are closer to the
experimental data than the perfectly fixed cangtemodel based on Euler Bernoulli
theory without support effects [Heinrich et al. 12@]. But the current model still
overestimates the experimental data, especiallthivshorter and wider beams. This
might be because of Timoshenko beam effects (sfefarmation and rotatory inertia
effects) which have not been considered in thegotesiodel. The other reason for the
overestimation, especially for larger thicknesggimibe that the pressure effects of water

on the side faces of the beam are not negligible bsing assumed in the present model.
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Figures 6-17a-d show the quality factor comparisetween the current model
[Eq. (5-17) or, equivalently, Eq. (6-4)] and thepermental data for the various nominal
thickness sets. Also shown are the results of &nkee fixed-cantilever model [Heinrich
et al., 2010a]. It is evident from the figures ttied quality factors from the current model
are closer to experimental data than the resuttedan the perfectly fixed cantilever
model of Heinrich et al., 2010a. For the thinnez@mens (nominal thicknesses qfrb
and 8um) the results of the present model provide verydggeantitative estimates f
(as does the earlier model); however, for the #riddleams (nominal thicknesses of 12
umand 2Qum) the present results consistently overestimatexiperiment data. This is
most likely due to the fact that the Stokes-typidfiresistance assumption becomes
worse as thickness increases. Also, the softerifegteredicted by the model at higher
Jb/ Lvalues is not as pronounced as that exhibited &yl#ta. This indicates that other
softening effects not considered here are comitigptay. As explained earlier, these
effects might include the Timoshenko beam effettshear deformation and rotatory
inertia. Such effects have been included in a mpdgdosed recently [Schultz, 2012;

Schultz et al., 2013a, b].
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50

45

40

35

30

25

Quiality Factor

10

70

60 —1

50 1

ey
o

Quality Factor

20

10

104

(b)

\ \ \ [
® Present Theoretical Model 1 1 1
-/ o Experiment, L=200um *"""i ******* i"""ﬁ"" B
& Experiment, L=400um ; ; ! .
~—-| © Experiment,L=600um -~ oo e i
+ Experiment, L=800um l l ° o
--| * Experiment, L=1000pm | ----- 1o it e
Fixed Cantilever [Heinrich et al., 2010a] 1 ° i i
******* E R e e B> = M i S
7777777
777777773 7777777 3777777 Tif&ffhfi 7777777 hnominal Spm hactual 7.009 um 1
******* T ;+"D*"f"""#""” Beam Material Properties: I
; T ; ; E=142 GPa , pb—2330 kg/m
fffffff - 1------1------1{ Water Properties:
! ! ! ! n=0.001 Pa-s , p=1000 kg/m3
1 1 1 1 ! ! ! !
0 5 10 15 20 25 30 35 40 45
1/2 -1/2
b™"/L (m™")
(a)
I I I I I I I
® Present Theoretical Model | | |
| | © Experiment L=200pm | L L ‘,,,,2,,
A Experiment, L=400pum 1 1 ‘
0O  Experiment, L=600um i | . i
| | + Experiment, L=800ym | . o [
* Experiment, L=1000um | o |
Fixed Cantllever [Heinrich et al 20104q] ‘ o |
l l l e l l l l
”””” LA <4
| | A |
IR A I St Nromina=8 HM -+ Mo =10-32 um
| e |
| = | | Beam Material Properties:
,,,,,,, R e E=142 GPa , p =2330 kg/m®
o 1 1 1 Water Properties:
! ! ! ! n=0.001 Pa-s , p=1000 kg/m*
1 1 1 1
0 5 10 15 20 2‘5 3‘0 3‘5 4‘0 45
1/2 -1/2
b™"/L(m %)



105

110 T T T T T T T T
® Present Theoretical Model | | 1 1
001 o Experiment, L=200um B R R b
A~ Experiment, L=400um 1 1 1 ‘
%1 O Experiment, L=600um ”i”””i’ ***** " ”*i”’**
+ Experiment, L=800um ! ! : °
. 81+ Experiment, L=1000pum N Vs ."; 777777 S N
S Fixed Cantilever [Heinrich et al., 2010a] | ! ! !
70+ — - — — o T - — — — — = 4 - 1
& | | | | | s | o
LL | | | | | | | |
> T . C T T R [ R 7]
T l : l : ‘ l © l l
35 50------ A - - - - o= |———=--- T””.’\ ****** qH- - T === === T —
04 l l l A l l l l
a0f - e P A — 1 P - I -
| | | | VAN _ _
3077777773777777377777 : 77777 *A*i**A****i*** nominal_lzum ’ hactu::ll_:l'4"48Mm |
| | VN | |
20,,,,,,,1 ,,,,, =i S R __ | Beam Material Properties: 3
; S50 ; ; E=142 GPa , p, =2330 kg/m
ol A S S __ | Water Properties:
Lo* ! ! ! ! n=0.001 Pa-s , pf =1000 kg/m®
| | | | |
00 ‘5 l‘O 1‘5 2‘0 2‘5 3‘0 3‘5 40 4‘5 50
1/2 1/2
b'4/L ( )
(©)
10— T R T T AR L — T T
1oLl ® Present Theoretical Model ,,,,,,i ,,,,,,, i,,,,,,,,},,, o
1301 © Experiment, L=200pm | o o “ i
A Experiment, L=400um ; ; ; °®
120} o Experiment, L=600pm [~ 7° AT 7 e T N
10| *+ Experiment, L=800pm e Ll _
* Experiment, L=1000pum l 1 1
100f¢  _obmir o m eI e —
o Fixed Cantllever [Helnnch et aI 2010a] ‘ | |
& 90— -—-—-——— e —_ g [ 1 _
S l l l l l l l l ©
I T C T . A DT T C T T N
P T T N N e I R -
% | | | L4 | | | |
S eop--ooodooo- e S T R St AR .
OJ | | | | AN | | |
[ - _ _ L~ _ _ _ | -
50 | | ‘ ! h =20 um , h 22.34 ym
A nominal actual
40p------ IR % ARRETEEEEE R i
30F------ S P ——;———E"f——A—ﬂﬂl ffffff Beam Material Properties: I
| P B | E=142 GPa , p,=2330 kg/m
20p------ S Toooooe - - b
‘ A+ ! ! Water Properties:
N Ha)” < e il n=0.001 Pa-s , p~=1000 kg/m® ||
| | | |
OO ‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 45
1/2 -1/2
/L (m ™)
(d)

Figure 6-17: Fundamental lateral quality factor pamnisons: current model, fixed

cantilever model [Heinrich et al., 2010a], and ekpental data for several nominal Si

thicknesses: (a) pm; (b) 8um; (c) 12um; (d) 20um.
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6.5 Moded Verification

To verify the accuracy of the results obtained fitbva current model, the
solutions of the boundary value problems (BVPs)ifee vibration and forced vibration,
the latter via relative harmonic support rotati@anthe support, are compared to
numerical solutions obtained via the MATLAB bvp4ier [Mathworks Inc., 2010]. For
the free-vibration case the mode shapes (up tthitemode) are generated by solving
the eigenvalue problem defined by Egs. (4-6) anda4l) using bvp4c. (The value of the
eigenvaluex was specified in Eq. (4-6) and determined by nirady obtaining the
first three positive real roots of the charactéristjuation given by Eq. (4-14) for a
specified value oL/ k .) Similarly, for the forced-vibration case the qulex vibrational
shape is generated near the first resonance peasiy bvp4c to solve the forced
vibration BVP defined by Egs. (4-42) and (4-43aid)e resulting mode shapes and
vibrational shapes from MATLAB are then comparethviheir counterparts obtained
from the theoretical modeling using Eqgs. (4-22a) @46) respectively to verify the
validity of the analytical solutions obtained hereThe MATLAB programs used to
generate these results are included in Appendix D.

Figure 6-18 shows the comparison of the normalirede shapes for up to the
third mode, obtained by using Eq. (4-22a) and leyMIATLAB bvp4c solver for
1/k [0, 0.15]. The two methods show consistent agreement antehemify the
accuracy of the analytical free-vibration solutaitained using the current theoretical
model. Figures 6-19a and 6-19b, respectively, sth@weal and imaginary parts of the
complex vibrational shape for the forced-vibratease, obtained via Eq. (4-46) and via

the MATLAB bvp4c solver. There is complete agreenhi@miween the vibrational shapes
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obtained via the two methods, thus verifying thehadology used in this work to obtain

the solutions for the present theoretical model.
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Figure 6-18: Normalized mode shapes for the latgkahtion of an elastically supported
microcantilever in a viscous fluid. (Mode shapesiadependent of the fluid resistance
parametet .)
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Figure 6-19: Vibrational shape for the lateral aifiwn of an elastically supported

microcantilever in a viscous fluid due to an impbselative harmonic rotation near the

support: (a) real part; (b) imaginary part.
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CHAPTER 7
APPLICATION OF RESULTSTO MICROCANTILEVER-BASED CHEMICAL
SENSORS

7.1 Introductory Remarks

In Ch. 6 the results for resonant frequency andityuactor were presented and
the impact of support compliance and fluid resiséaon these resonant characteristics
was studied. These results for resonant frequendygaality factor can be related to the
performance metrics of microcantilever-based sensaramely, mass sensitivity,
chemical sensitivity, and limit of detection (LODM). this chapter these sensor
performance metrics are defined and related togbenant characteristics, and the
practical implications are discussed with the nfaous being on impact of support
compliance on sensor performance.

7.2 Mass Sensitivity

The resonant frequency of a microcantilever chamgdsthe change in its mass
and this change in resonant frequency can be nreditd he degree to which a resonant
sensor changes its resonant frequency upon maaseuistknown as the mass sensitivity
of the sensor. In general, the mass sensitivitlygsratio of the shift in resonant frequency
to the change in mass of the sensor caused bytarslgorption/absorption. Thus, the
mass sensitivity can be defined mathematicallyN@sducci et al., 2008]

afres
%

om

, (7-1)

wheref = the resonant frequency (Hz) and= the total mass of the cantilever. Thus,
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the mass sensitivity as defined by Eqg. (7-1) regmmtssthe rate of change of resonant

frequency with respect to sorbed analyte mass.

Using Eq. (3-13) for the fundamental natural fregrein vacuum for a perfectly

fixed lateral-mode cantilever, the dimensionlessirad (circular) frequency for first

resonance, given by Eq. (6-1), can be written imgeof resonant frequency (in units of

Hz). Assuming that the resonant frequency may Ipeceqimated by the natural

frequency, this gives

b | E 1 1.909 . 3.417
T or P\ 120, |
T 2p,, L b(O 2088+ 2. 710} Lb 0.2088+ 2710
b h (b/B) bh (b/ )
-0.7019 1 \/: \f
Lbly, 2088+ﬂ)
bh (b/ h)

(7-2)

Placing Eq. (7-2) into EqQ. (7-1) results in thddaling expression for mass sensitivity,

which is based on the assumption that the added mamiformly distributed along the

length of the beam:

E 1 1 —0.080
S‘n p—

1.909 3.417

Lb

bh

ST
b)\h) | bVh

+

2.710
[ozos& b/hJ Lb( 5 2088, 2710
(b/B) |bh (b/ H

+o.1415§/% r =
Lb( 2088, 2710
bh (b/h

N

(7-3)
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It is important to note that Eq. (7-2) and, thug, &-3) are valid only if they satisfy the
inequalities forL /b andb/ h given by Egs. (6-2) and (6-3), respectively. The
expression (7-3) clearly shows that the mass seitgiinay be increased if the Young’s
modulus of beam material is increased or if thekihess of the beam or the density of
the beam material is decreased. Moreover, therbkgk of the beam has the greatest
impact on mass sensitivity followed by the densityhe beam material and then the
Young’'s modulus of the beam material. Also, forxad thickness the first-order
behavior of the mass sensitivity decreases witimarease in the./b andb/ h ratios.
Note that it is clear from Eq. (7-3) that, to fisder, the mass sensitivity increases by

four orders of magnitude for every one order of miagle for which the dimensions are
. . E 1 . .
scaled down. Equation (7-3) can be normalize %F to obtain the following
Py

expression for normalized mass sensitivity in teahthe relative size of the cantilever

dimensions and the characteristic material length:

S, 1 —-0.080 1 1.909 N 3.417

E 1 sz(bjm L\F Lb 2.710) (Lp 2.710\)
[E 1 (LY(bY"/L b ="l 02088+~ =~| |LDb £ (20
> h (b h) | b\h b h (b/h bh(0'2088+(b/ h)j
+o.141§/5 1 ! . (7-4)
h Lb( 2.710)

0.2088+———
(b/ 1

bh

As an illustrative example, consider the case irctvkhe cantilever is made of

silicon (E=169 GPa ang, =2330 kg/r), has a thicknedse [5, 20]um, and is

operating in water 6, =1000 kg/ni, =0.001 Pa-s). Then the valuewgﬂf_0 /h is very
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small (,/L, /h =0.0021forh=5um) and, thus, for many geometries of practical ieser

the second term in Eq. (7-4) becomes negligiblepared to the first term. This means
that the mass sensitivity is insensitive to the&# of the surrounding liquid (water in

this example). Ignoring this term, Eq. (7-4) carsbeplified as

S, -0.0808 1.909 3.417

E 1 |(LY(bY| Lb 2710) [ Lb 2710\ )
3 =]+ —-|0.2088+ =005 | LD :
\/p; h* (bj (hj b h( (b/ h)] [b h[0'2088+(b/ h)D

This normalized mass sensitivity expression is applicable for a silicon beam in

(7-5)

water, provided thah > 5 umand the parameter range constraints [EQs. (6-2) &3]

are not violated. (It should also be relevant fanyother beam materials and liquids.)
The normalized mass sensitivity for a perfectlyetixantilever can be obtained by

setting the term within large parentheses to unity,

Sm, fixed 00808
E 1 (L)(bj
pb3 h* b h

The normalized mass sensitivity for both the coamlsupport case and the

(7-6)

limiting case of a fixed support are plotted in.Figl versu. /b for differentb/ h
values. From the plot it can be seen that the nlizethmass sensitivity is larger for the
perfectly fixed case, as expected, due to its lighsonant frequency. At largerb
ratios, the mass sensitivity decreases toward lzecause the resonant frequency is
becoming smaller as the beam becomes more fledblemallerL /b ratios, i.e., stiffer
cantilevers, the mass sensitivity becomes largé agident from the figure and the

associated analytical expression. Also, as eviftent Eq. (7-5), the mass sensitivity
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Figure 7-1: Normalized mass sensitivity of laterafibrating silicon microcantilevers
E 1

with h>5um in water: (a)S,,/

3
b

FE[O,

E h—ﬁe[o,o.00012j

3
b

0.0011; (b) S, /

(zoomed view). These figures should NOT be apgied / bratios in excess of the

upper bound listed in Eq. (6-2).
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decreases with an increase in theh ratio. Figure 7-2 shows the percent decreaseein th
mass sensitivity of silicon cantilevers operatingvater having thickne$s> 5 umdue to
the support compliance effects, according to E€h)(7he curves indicate a 21%
decrease in mass sensitivity at the lower limitd.ébfor all b/ h ratios considered. The
percent drop due to support compliance decreagbsawiincrease in thie/ h ratio. For

the range ob/ h considered, the difference$) between the fixed and compliant-

support cases is less that 4% itb >15. (This limiting value ofL /b is governed by the
results fob/ h=2.) It is also to be noted that for lowlefb values the Timoshenko
beam effects, which have not been considered heght play an important role. Even
more complex effects associated with 2-D and 3-fdrdeations of the structure may

come into play as the structure becomes so shatrtttmay no longer behave as a

“beam.”
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% decrease in S due to su

N S

L/b
Figure 7-2: Percent decrease in mass sensitivikgtefally vibrating microcantilever-
based sensors made of silicon operating in watertalthe support compliance effect.
This figure should NOT be applied fdr/ bratios in excess of the upper bound listed in
Eq. (6-2).
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7.3 Chemical Sensitivity

Chemical sensitivity is another important sensmfgrmance metric. It is the
ratio of the change in resonant frequency to tlangk in analyte concentration in the
surrounding environment. It can be defined as [&gfour et al., 2004; Cox, 2011,

Schultz, 2012]

of

res

oC,

: (7-7)

C

where C, is the ambient concentration of analyte.

The chemical sensitivity can be related to the nsassitivity [e.g., Cox, 2011;

Schultz, 2012] as
S =KVS, (7-8)
whereK is the partition coefficient of the particular co@fanalyte combination in the

particular operational medium, avids the volume of the chemically sensitive layer.
Thus, if K is known, then the expression frcan be obtained by multiplying Eq. (7-3)
by KV,. A similar study on the impact of beam paramet&S, may be done as was
illustrated in the previous section §r, but will not be performed here. It is importaot t

note thaV,is dependent on cantilever geometry and, thusntpect of the dimensions

on chemical sensitivity will differ from that on s sensitivity presented in Sect. 7-2.
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7.4 Limit of Detection

Another important metric of sensor performancéesresolution of the sensor,
i.e., its limit of detection (LOD). The limit of dection is defined as the ambient analyte
concentration corresponding to a frequency shifiaétp three times the frequency noise
of the system measurement [e.g., Lochon et al5RAMus, LOD can be expressed as

LOD = % : (7-9)

C

whereAf . is the frequency noise of the system. When opegati an oscillator

feedback loop configuration, the frequency noisthefsystem is proportional to the ratio
of the resonant frequency to the quality factog.[e.ochon et al., 2005; Cox, 2011;
Schultz, 2012]:

Afnoiseoc f(rSS . (7-10)

It follows from Eqgs. (7-9) and (7-10) that the L@&directly proportional td,..and

inversely proportional tQ andS, :

LOD oc _tes &Y (7-11)
Q5 dx

Using Eq. (5-17) fo@, Eq. (7-2) forf., and Eq. (7-8) fob, , an expression for the LOD

dependence may be obtained and a parametric stuthrmed. However, such a study is

deemed outside the scope of the present work.
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CHAPTER 8
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

8.1 Summary

An improved continuous-system analytical model lbeen derived for the lateral
(in-plane) vibration of a microcantilever beam imiscous fluid, incorporating the effects
of support compliance and fluid properties. Thigkwyas motivated by the fact that the
there were discrepencies between the ideally cldmpatilever models and experimental
measurements and these discrepancies were moreupiced for those geometries that
have the most promise for sensing applicationsn8aty value problems (BVPs) were
formulated for the in-fluid free-vibration case ahe in-fluid forced-vibration case in
which the latter involved excitation caused by enanic relative rotation imposed near
the support. This load type was considered amitilsites electrothermal excitation of the
type that was employed in associated experimeeséihg. The fluid effects were
incorporated in the model via a Stokes-type fliadistance assumption.

Exact solutions to the BVPs were obtained in aiedl/form and from these
solutions approximate analytical expressions ferrthtural/resonant frequency and
quality factor were derived. For the forced viboatcase, the results were obtained by
considering two methods of vibration detectionp-deflection and bending strain at the
root of beam. Resonant frequencies were obtaireed fhe frequency response curves as
were the quality factors via the -3dB bandwidthefnactical utility of the solutions

derived was enhanced by quantifying the rotatistiéfhess of the support in terms of
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system parameters by performing a combination medsional analysis, 3-D finite
element analysis, and curve-fitting of the simalatresults.

The impact of the fluid resistance and the beanmgdxy on the natural/resonant
frequency and quality factor of the beam, including influence of support compliance,
was studied in detail. The theoretical frequenay qumality factor predictions from the
new model were compared to the previously derivedets found in the literature and
with experimental data spanning a broad range ofaacale dimensions for laterally
vibrating microcantilevers in water. The deriveclgtical results were also related to the
performance metrics (mass sensitivity, chemicasisieity and limit of detection) of
laterally excited microcantilever-based liquid-phagnsors. An analytical expression
was obtained for mass sensitivity, which clearlgwsbd the impact of beam geometry,
including the effects of support compliance anddfiesistance. Analogous expressions
for chemical sensitivity and LOD may easily be ofea as noted at the end of Ch. 7.

8.2 Conclusions

The following conclusions may be drawn from theeggsh work presented in this

dissertation:

1) For the ranges of support compliandéK [0, 0.15)) and fluid resistance
parameter { [0, 1]) considered, the support compliance effects mageap
to a 21% decrease in the fundamental lateral-matigal/resonant frequency,
while the fluid resistance may cause up to a 25&bedese in the fundamental
lateral-mode natural/resonant frequency. The magdaibf these decreases in

natural frequency is reduced with an increaseemtiode number. For
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example, for the third mode the maximum drop inuredtfrequency was found
to be only 12% due to support effects and 7% dukii effects. The model
also shows that the quality factor increases witinédasing mode number.
Thus, if higher modes can be excited, the advdfsets of support
compliance and fluid resistance will be less sigaiit.

For the practical ranges of parameters giveh/lrye [0, 0.15], ¢ [0, 0.6],
b/h=[2, 20], he[5, 20]um, the model indicates that, at smalléib values,
support compliance may reduce the lateral-modeitgdfattorQ by up to
~14% and the lateral-mode resonant frequefagyoy up to ~21% compared to
the fixed cantilever model of Heinrich et al. (2@).0Both of these values
occur at the smallest value bf h considered, i.eh/ h=2. Conversely, for

L /b>15the support compliance effects may decréaé¥g no more than 2%
andf.es by no more than 4%. Thus, fo/ b > 15, the support effects can be
ignored and the fixed cantilever model can be used.

For smallL /b values the support compliance effect is dominariteafbr large
L /bvalues the fluid resistance effect is dominant. Buthe existence of
these two regimes, the resonant frequency dropttiee combined effects of
support compliance and fluid resistance) acquirega minimum at a
particularL /b value while transitioning from one regime to aresth

The fundamental lateral resonant frequency as tktdxy the maximum
bending strain signal is nearly equal to that at#divia the tip displacement
response for small-to-moderate values of fluidstasice parameter (less than

2% difference ford [0, 0.4]), with the resonant frequency detected via the
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bending strain response being greater than thahéotip displacement signal.
Similarly, the quality factor obtained from the twetection methods are
essentially the same over this rangegfwith the tip displacement response
yielding a slightly largef value.

Even though the two detection methods give sinfdgaral-mode resonant
characteristics for small-to-moderate fluid resisg@values, the frequency
response curves are different for the two deteatiethods and the resonant
peak amplitudes exhibit different trends. For fpedieflection response, the
resonant peak amplitudes tend to decrease at higb@nances, thus indicating
that the first resonant mode may be the most deitaftthe lateral flexural
modes for sensing applications that utilize a &fl&ttion monitoring scheme.
In contrast to the tip detection scheme, the mogigonses for strain-based
detection methods show stronger signal amplitutieggaer modes, thus
indicating that, if the higher modes can be exgited method of detection
may have advantages at higher modes in compaiosthre ftundamental lateral
mode.

The fundamental lateral-mode resonant frequencgioéd via both maximum
bending strain detection at the root of the beadhtha tip displacement

closely resembles fundamental natural frequencgriuall values ot (less
than 1% error fof €[0,0.3]). The lateral-mode quality factor for the free

vibration case also compares quite well with thedd vibration quality
factors obtained via both detection methods. Tthesanalytical expressions

for fundamental natural frequency and fundamentality factor expressions
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can be used to estimate the fundamental resoreqnidncy and fundamental

quality factor for smaller values @fon which the present work is mainly

focused.

The Euler-Bernoulli model with fixed support [Heich et al., 2010a, b]
overestimates the lateral-mode resonant frequendyyaality factor for wider
and shorter cantilevers as compared to experimdatal Comparison with
experimental measurements shows that the curredéin@hich accounts for
support compliance, predicts resonant frequencygaiadity factor better than
the previous ideally clamped cantilever model far tases of “stubbier” beam
geometries.

The analytical expression derived for the laterademass sensitivity shows
that it may be increased by increasing the Youngislulus of the beam and/or
by decreasing any of the following (in order of cesing effectiveness):
thickness of beam, length-to-width or width-to-#tness ratio of the beam, and
mass density of the beam.

For a silicon beam operating laterally in waterhathie thickness range of

he[5,20]um considered, the effect of water on mass sensitigityegligible

compared to the effect of support compliance. Thonsistent with the fact
that a change in stiffness will influence the naltnesonant frequency of a

dynamic system more than a change in the dampiefficient.

10)The support compliance effect may cause a decadageto 21% in the mass

sensitivity of a lateral-mode silicon microcantiéeun water over the range

he[5,20]um, with the larger influence occuring at smalléibratios. For
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increasing values @f/ b, the influence of support compliance on mass

sensitivity decreases; far/ b > 15, the drop in mass sensitivity is less than 4%

compared to the fixed cantilever result.
It is important to emphasize that the above comnchsswere based on a theoretical
model that was based on (a) Bernoulli-Euler beaanhand (b) a Stokes-type fluid
resistance model. Thus, the model does not acdoumtmoshenko beam effects
(shear deformation and rotatory inertia), warpifigross sections or other three-
dimensional deformation patterns in the cantilevethe pressure and edge effects
associated with the beam/fluid interaction. Becahsse neglected effects become
more significant at lowdr/band b/ hratios, the above conclusions should not be
used without regard for the limitations imposediy model’s underlying
assumptions, i.e., they should be interpretediest-hrder guidelines” at the lower
end of thd./bandb/ hranges considered.

8.3 Recommendations for Future Work

The following recommendations for future work arada to expand upon the
present study:

1) While showing marked improvement over previous nliadeefforts based on
perfectly clamped cantilevers, the resonant frequemd quality factor
predicted by the current model overpredict expenitalemeasurements for
shorter and wider beams. In addition to exhibisngport compliance effects,
beams with these geometries tend to have largar sledormation and
rotational inertia effects, which were not consatkmn the present model.

Thus, it is recommended that the support compli@xpeession derived herein
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be incorporated into a Timoshenko beam model sa¢hat recently
developed by Schultz (Schultz, 2012; Schultz e28l13a, b). This will permit
both support compliance and Timoshenko effectsetadrounted for and the
relative contributions of these effects to be dateed.

In this study the fluid effects have been modeliedavStokes-type fluid
resistance assumption which ignores the pressteetedf the fluid on the
smaller sides of the beam and edge effects inltine $hear stress near the
corners of the beam cross section. This assumfgiexpected to become less
valid as the beam thickness increases (relativlegtovidth) as is evident from
the larger discrepencies for smabiéhvalues between the analytical results
and experimental measurements for resonant freguerd; to an even greater
extent, for quality factor. Thus, incorporating m@ccurate hydrodynamic
functions, such as those derived by Brumley g28110) and Cox et al. (2012),
to model the fluid effects on the beam will accofantthe fluid effects that
have been neglected here and, thus, yield lowere mocurate resonant
frequency and quality factor values in liquids floe geometries in question.
The increase in resonant peak amplitudes at higloeles based on use of a
bending strain signal is of potential interest.sTimethod of detection is used in
piezoresistive read-out methods. Furthur investganto higher lateral
modes, especially experimental work to activates¢hmodes, might give rise
to some significant improvements in lateral-moderodantilever-based

sensor performance.
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4) This dissertation included a derivation of a dethiéxpression showing the
dependence of mass sensitivity on device geomathsgstem (beam and
liquid) material properties. Similar expressionsyrba easily derived
(following the roadmap suggested in Sect. 7.2cfemical sensitivity and
limit of detection in order to better understand #ifects of support
compliance and fluid resistance on these very itgobisensor performance
metrics. These expressions, including that for ssassitivity included here,
would provide the basis for a through parametuicigto be performed in

order to provide more detailed guidelines for latenode sensor design.
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APPENDIX A
ADDED MASS AND DAMPING COEFFICIENT, DUE TO FLUID RESISTANCE,
ON FINITELY WIDE PLATE VIBRATING
FREELY IN VISCOUSFLUID

Z
A
fluid
<«——»Vvibratior
[©) ——» X
y
| b/2 | b/2 R

Figure A-1: Schematic of thin, infinitely long bearhfinite width b oscillating along-
direction.

The plate with widttb is vibrating along-axis as shown in Fig. A-1. It will be
assumed that the displacement of the fluid duelteaam of finite width is the same as

that obtained with a beam of infinite width.

The Navier-Stokes equation for incompressible f((Wva = O) is

de dy
— —_VP+p V%0, 2, A-1
Pi dt n " dx (A-1)
where
Up =U i+U, ¢ j+U, (K (A-2)

is the velocity field of the fluid at all pointB,is the pressure, and, and, are the

density and dynamic viscosity of the fluid, respesdy. Equation (A-1) can be written as

P %(ux,fhuy,fﬂuz,f'z) :_[2_57+‘2_;’]+2_F2’|2j+,7[(vz% Ji+(Vau, ) 1+ (V7u, ) @
(A-3)
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Comparing the same unit vectors in left hand sitergght hand side, Eq. (A-3) can be

written into following three different equations:

du, oP L& f L& f, LL f
—=——1 + , A-4
du, _ P, w w uy
y, f f f f
=—— + , A-4b
dl’E f oP uz f z f 82 uz f
—=——1 : Ad-c
P oz [ y2 (Ad-c)
The Boundary Conditions
Let the plate is vibrating ir-direction with velocity
Uy plate = U ém = U e’ e, (A-5)

where,U, is the amplitude of plate excitation velocityxirection, Q= @+id is the

complex frequency with real pa#t and imaginary pard. At surface of platez = 0, the

boundary conditions are:

U (2=0)= U = Uy €' €, (A-6a)
u,¢(z=0)=0 , (A-6b)
u,;(z=0)=0 . (A-6c)

It has been assumed that fluid in contact withptlage will have the same velocity as the
plate because of nonslip condition.ZAt> « , the boundary conditions are:
ux,f(z_)oo)zw,f(z_“)o)z Li,f( z> ©)=0, (A-6d)
P(z>x)=R. (A-6e)

Assume that the velocity of fluid and pressureiadependent ok and y direction. Then,
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U ; =U (z1),
uy’f = UZ’f = 0, (A-7a-C)
P=P(z 9.

Using Egs. (A-7a-c) in Eq. (A-4a-c) gives

du (29 3°u,(z)
p =1 ,

A-8a
Tt OX (A-8a)
0=0 |, (A-8b)
P29 _ o p(z, 1= P(1)
0z
(A-8c)
P(eo,t)=P()= B
where P, is the atmospheric pressure.
Solution for u, ,
U (zt="f(2 ™= f(3 &' & (A-9)
Substituting Eq. (A-9) in to Eq.(A-8a) results in
2
012 _pf(z=0, (A-10)
0z

with

a= [(io—d)2 (A-11)
7

wherea is the square root cﬂa)—d)& with positive real part.
n

The general solution of Eq. (A-10) is:



f(z=Ce**+Ce?” .
Now the boundary conditions are:
f(0)=U,,
f(0)=0.

Substituting Eq. (A-13a,b) in to Eq. (A-12) giv€s=0 andC, =U,, .

Therefore, Eq. (A-12) reduces to
f(z2)=U,e?".
Substituting Eq. (A-14) in to Eq. (A-9) results in
u,(zt)=U,e?” e’ &*

Substituting Eq. (A-11) in to Eq. (A-15) gives

~fi@+id) 2t 2
u (zH=U.e T gt go
1+i

Using \/i_zﬁ in Eq. (A-16) gives

u . (zf=U, e g”'e

Shear stressat the surface of plate

Shear stress at a distarzdeom plate is

P .
Zt . —|(@+id)—— (1+)
(@=n BV eviat s g2 @ry el

dz

At z=0, i.e., shear stress on the surface of the Hate

£ =2(0)=—nU, e ' |(w+ io|)’0—2;7 L+ ) .

- a)+id)%f7 (1+i)z
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(A-12)

(A-13a-b)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)



Shear force acting on the surface of the plate
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Shear force per unit length acting on plate canlidained by integrating shear

stress over the width of plate as

b/2

() =2 [ zdx=-U, e* & \J2p, Blo+ id) 1+ 1) .

-b/2

Using \/i_zﬂ in Eq. (A-20) gives

J2
F ) =-20e" " np 5 (- d.
Let Viom—d = p+iq, then,
1 2 2 _ _i 2 2
p_ﬁ\/q/(—d) ol ) = Jrwi-d ,

1 2 2 [ :i 2 2
q_ﬁ\/x/(—d) 0l (-l = J 0%+ d

Therefore, Eq. (A-21) becomes

(A-20)

(A-21)

(A-22a)

(A-22b)

Fs(t)=[—ﬁuo Jno b JWd? +@? - d= W2 U, \fnp, 0NN d?+ 0%+ d) elt Bt (A-23)

This shear force can also be written as

du  (0) _
Fs(t)z—mf%—cfwo,t).

Substituting Eqg. (A-17) in to Eq. (A-24) results in
Fo(t) = [ U, (dm, -5 ) - iUom | e* &

HereMm; andC; are real.

Comparing Eq. (23) and Eq. (24) results in

(A-24)

(A-25)
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b* 2
m; :\/277%\/ %+1+g, (A-26a)

_ s~ d | [ d o? d
T, =20, b JE{;\/ —Hle—r [ — (A-26b)

Egs. (A-26a, b) are the exact results for addedsraad added damping coefficient for

infinitely wide plate vibrating under harmonicatigcaying excitation on viscous fluid. If

there is no decaying of oscillation, théx0 and Eqgs. (A-26a, b) reduce to

m; :—“‘Zn\/ﬁb , (A-27a)
w

T, =./27p, Vo . (A-27b)
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APPENDIX B
DIMENSIONAL ANALYSISTO OBTAIN THE POSSIBLE DIMENSIONLESS
RELATIONSHIPSBETWEEN ROTATIONAL SUPPORT STIFFNESSAND THE
PROBLEM PARAMETERS
The dimensional analysis is performed using Budkamg Pi Theorem [e.g., Fox
and McDonald, 1993]. The theorem states that fetla@en parameters in a problem and
these parameters contamprimary dimensions (for example L, T) the equation

relating all the variables will have{n) independent dimensionless ratios (

parameters), expressible in functional form as
or . (B-1)

The rotational stiffness of suppdkt can be assumed to be the function of material
propertiesE, v and beam cross-sectional dimensiph and can be written in the form of
Eq. (B-1) as
k=f(Ebhv). (B-2)

There are five problem parameters involded, b, h, andv .Thereforemis 5. IfF, L, T
are primary dimensions for force, length and tithe,dimensions of each parameter are

k=FL, E=F/1®, b=L, h=L, v=1 (B-3)
Therefore, the number of primary dimensiomg 2. So the number of dimensionless

groups (1parameters) is fm=5-2=3). Parametels andb are chosen as repeating

parameters. Now setting up dimensional equations

I, = Eabbkz(%) (D" (FD= P LT, (B-4a)
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I, = Eb’ h:(%) (D" (D= PLT, (B-4b)

I —E%b'y (H (D' W= FLT (B-4c)

and equating the exponentsFofl. , andT in Egs. (B-4a-c) results m=-1, b=-3, c=0,

d=-1, e=0, andf=0. Therefore, the Pi functions become

Hl Zﬁ ) (B'Sa)
h

H = — y B'5b

2= (B-5b)

I[I,=v . (B-5¢)

Now the functional relationship in Eq. (B-1) became

Kk h
X, (E ,Vj. (B-62)

But theT1 parameters are not unique, so the functionalioglstip could also have

following forms:

Kk h Y. _
-t (B ,vj, (B-6b)
k h )
EhE (_b’ Vj’ (8:59)

% , vj. (B-6d)
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APPENDIX C
DETERMINATION OF EFFECTIVE MODULUSOF ELASTICITY

The effective Young’s modulug,, is determined by fitting the in-vacuum

results for perfectly fixed case to in-air expenta data based on least squared error

method. Recall that the in-vacuum natural frequas@jven by Eq. (3-13) as

=17 b (C-1)
2 12,0b

Converting the circular frequency in radians taunaltfrequency in Hz results in

f, = _A bz / (C-2)
27r 27 P\ 120,

If f,, is the experimental frequency data in air thensima of squared errerbetween

the this frequency and in-vacuum frequency is

e= i( £ f ) , (C-3)

where
N = number of data point,
i=1,2,3,...N.

Substituting Eq. (C-2) into Eq. (C-3) results in

e= Z[ fair,i _i \/ 12pb \/aj (C-4)

The minimization of the total squared error regsiitteat the derivative @ with respect

to E,, be zero, i.e.,

de

E 0. (C-5)
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Substituting Eq. (C-4) into Eg. (C-5) results in

Differentiating and simplifying Eq. (C-6) gives

o B) 1 A1 a(pY_ _
zi(fm Lizj = 27,1/12%; Lizj 0. c-7)
[ zj

£ "L

(C-6)

(C-8)

Equation (C-8) is used to determine the effectiwvalulus of elasticity of a composite
microcantilever. Only.= (800, 1000) um experimental data set are usee $ar these

lengths the support compliance effects and Timdshéeam effects are negligible.
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Figure C-1: Best curve fit of experimental fundatattrateral frequency data in air for
L= (800, 1000) pm: (&)non= 5 uM, (B)non= 8 pm, (C)hnon= 12 pm, (dhnon= 20 pm.



APPENDIX D
MATLAB CODESUSING BVP4C SOLVER

FreeVibration

144

%This program provides the solution for eigenvaueblem of cantileverbeam with

%elastic support in fluid

function bvp4free

%Specify nodes of the mesh and initial guess ferstiution
solinit = bvpinit(linspace(0,1,10000),[1 0 0 0]);
%Solution using bvp4c

sol = bvp4c(@bvp4ode, @bvp4bc,solinit);

x = linspace(0,1);

y = deval(sol,x);

ymax=max(abs(y(1,)));

ybar=(y(1,:)/ymax);
plot(x,ybar,'-r','LineWidth',2.5);

xlabel('\xi")

ylabel("\phi_{bar}(\xi)")

%Differential Equation Definition and Evaluation
function dxdy = bvp4ode(x,y)

%ocalculation of eigenvalue(root for alpha from aweristic equation)
% specify 1/kbar value
K=0.15; %%% K=1/kbar

%specify range of alpha based on mode to be solved
%calculate root of alpha for first mode
alphamin=0;
alphamax=2;
nalphainc=101,
alpha=linspace(alphamin,alphamax,nalphainc);
% Now insert "for loop" here to calculate f atalbha values.
for jalpha=1:nalphainc;

ALPHA=alpha(jalpha);

f(jalpha)=1+cosh(ALPHA)*cos(ALPHA)-
(K*ALPHA*((cosh(ALPHA)*sin(ALPHA))-(sinh(ALPHA)*cos(ALPHA))));

fFixed(jalpha)=(1+cosh(ALPHA)*cos(ALPHA));
end;
%Next find the root for alpha.
for jalpha=1:nalphainc

if (jalpha==1);
continue
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else
% Now we will will omit the roots for perfectly fed cantilever.
if (fGalpha)*f(jalpha-1)<=0);
% If a sign change has occurred, determine walgha value corresponds to the f value
% that is closer to zero.
fmagprevious=abs(f(jalpha-1));
fmagcurrent=abs(f(jalpha));
fmaglocal=[fmagcurrent fmagprevigus]
[fmagmin,Iminlocal]=min(fmaglocal);
% Note that if Iminlocal equals 1, then the indexalpharoot is jalpha; if Iminlocal is
% 2, then the index for alpharoot is jalpha-1, iB@eneral, the index for alpharoot may
% be written as jalpha+1-Iminlocal.
alpharoot=alpha(jalpha+1-Iminlocal)
end
end
end
dxdy=[y(2) y(3) y(4) alpharoot"4*y(1)];

% Boundary Condition

function res = bvp4bc(ya,yb)

K=0.15; %%%% Kk bar
res=[ya(1) ya(2)-ya(3)*K yb(3) yb(4)];

Forced Vibration

%This program provides the solution for boundary&aroblem of cantileverbeam with
%elastic support in fluid excited via relative hamic rotation near support

function bvp4forced

% Specify nodes of the mesh and initial guessHersolution
solinit = bvpinit(linspace(0,1,10000),[1 0 0 0]);
%Solution using bvp4c

sol = bvp4c(@bvp4ode, @bvp4bc,solinit);

x = linspace(0,1);

y = deval(sol,x);

figure(1)
plot(x,real(y(1,:)),--b’,'LineWidth',2.5);
xlabel("\xi")

ylabel('Re[\phi(\xi)]/\theta_0")

figure(2)

plot(x,imag(y(1,:)),--b','LineWidth',2.5);
xlabel("\xi")

ylabel('Im[\phi(\xi)]/\theta_0")

%Differential Equation Definition and Evaluation
function dxdy = bvp4ode(x,y)



%Specify known parameters

zeta=0.2; % fluid resistance parameter

omegabar=0.75; % omegabar near first resonance
lambdal=1.875104;
alpha=(lambdal”4*(1+(zeta/(lambdal*sgrt(omegabggmegabar"2-
li*lambdal”~3*zeta*omegabar”1.5)"0.25;

dxdy=[y(2) y(3) y(4) alpha”4*y(1)];

% Boundary Condition

function res = bvp4bc(ya,yb)

K=0.15; %%%% K=1/k_basigpport compliance
res=[ya(1) ya(2)-ya(3)*K-1 yb(3) yb(4)];

146



	Effect of Support Compliance on the Resonant Behavior of Microcantilever-Based Sensors in Viscous Fluids
	Recommended Citation

	Microsoft Word - 210096_supp_undefined_F74800BE-B413-11E2-8065-3065EF8616FA.docx

