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ABSTRACT
This paper presents a novel fuzzy control design of continuous-time nonlinear systems with multi-
ple performance criteria. The purpose behind this work is to improve the traditional fuzzy controller
performance to satisfy several performance criteria simultaneously to secure quadratic optimality
with inherent stability property together with dissipativity type of disturbance reduction. The Tak-
agi–Sugeno fuzzymodel is used in our control system design. By solving the linearmatrix inequality
at each time step, the control solution can be found to satisfy the mixed performance criteria. The
effectiveness of the proposed technique is demonstrated by simulation of the control of the inverted
pendulum system.
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1. Introduction

Over the past two decades, fuzzy control systems have
obtained growing popularity in nonlinear system control
applications (Takagi & Sugeno, 1985; Tanaka and Sugeno,
1990; Tanaka, Ikeda, and Wang, 1996; Tanaka & Wang,
2001; Wang, 1994; Wang, Tanaka, & Griffin, 1996). The
Takagi–Sugeno (T–S) fuzzymodel can effectively approx-
imate a wide class of nonlinear systems. The T–S model
approach decomposes the task of nonlinear system con-
trol into a group of local linear controls based on a set
of design-specific model rules. It also provides a mech-
anism to blend all these local linear control problems
together to achieve overall control of the original non-
linear system. In general, the T–S fuzzy model represents
the nonlinear plant as an average of the weighted sum
of a set of local linear systems. This particular representa-
tion provides a favourable form for the stability analysis
and controller design by using the linear control tech-
niques. In this regard, the T–S fuzzy control technique has
a unique advantage over other kinds of nonlinear control
techniques.

Recent researchon fuzzy control systemdesignaims to
improve the optimality and robustness of the controller
performance by combining the advantage of modern
control theory with the T–S fuzzy model (Dong, Wang, &
Yang, 2009; Lam, Li, & Liu, 2013). Based on the T–S fuzzy
model framework, many systematic approaches for sta-
bility analysis, observer design, and control synthesis are
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studied in the literature. Particularly, the control synthesis
based on quadratic Lyapunov function approaches has
been extensively studied in Fang, Liu, Kau, Hong, & Lee
(2006); Kim & Lee (2000); Liu & Zhang (2003); Sala & Arino
(2007); Teixeira & Zak (1999); Teixeira, Assuncao, & Avellar
(2003); and Tuan, Apkarian, Narikiyo, & Yamamoto (2001).
Since a commonquadratic Lyapunov function is indepen-
dent of fuzzymembership functions, the results based on
a single Lyapunov functionmight be conservative. There-
fore, in order to address this issue, piecewise Lyapunov
functions (Feng, 2003; Johansson, Rantzer, & Arzen,
1999), parameter-dependent Lyapunov functions (fuzzy
Lyapunov functions) (Guerra & Vermeiren, 2004; Tanaka,
Hori, & Wang, 2003; Wang & Sun, 2005; Wang, Chen, &
Sun, 2007), and k-sample variation Lyapunov functions
(Kruszewski, Wang, & Guerra, 2008) have been proposed
for less conservative results. In the aforementionedworks,
the parallel distributed compensation control scheme,
that is, the controller shares the same fuzzy member-
ship rules with the fuzzy model, is extensively applied for
designing fuzzy controllers (Tanaka & Wang, 2001).

Meanwhile, it is important to consider not only the sta-
bility, but also some control performance requirements,
such as H∞ control performance and bounded cost con-
straints,whichhave alsobeenextensively exploited in the
recent literature. Among them, the linear matrix inequal-
ity (LMI)-based control design can be found in Lee, Jeung,
& Park (2001); Lo & Lin (2004); Tanaka (2001); and Tseng &
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Hwang (2007). The guaranteed cost control can be found
in Chen, Liu, Tong, & Lin (2007) and Wu (2004). The H∞
controlwithquadraticD stability constraints canbe found
in Nguang & Shi (2006).

Other analysis techniques and fuzzy controllers based
on the T–S fuzzy model have also been studied. The cir-
cle criteria were studied to investigate the stability of
the fuzzy model-based control systems in Lu, Huang,
Gao, Ban, & Yin (2007). Model reference approaches were
developed so that the system states of the nonlinear
model are driven to follow the stable reference model
(Lam, Leung, & Tam, 2001). Sliding mode control tech-
niques were developed to analyse stability and controller
synthesis in Lam, Leung, and Tam (2002). Adaptive fuzzy
control schemes are proposed in Tong, He, and Zhang
(2009) and Tong, Liu, and Li (2010), in which the parame-
ters of a fuzzy controller are updated to stabilize the non-
linear system. The sampled data of fuzzy model-based
systems and time-delayed fuzzy control system are inves-
tigated inGao, Liu, and Lam (2009) and Lin,Wang, and Lee
(2005, 2006).

The aforementioned work is based on certain given
criteria. In order to provide a more flexible fuzzy model-
based controller design, we propose the robust multi-
criteria optimal fuzzy control design of continuous-time
nonlinear systems in this paper. We characterize the solu-
tionof thenonlinear continuous-timecontrol systemwith
the LMI, which provides a sufficient condition for satis-
fying various performance criteria. A preliminary inves-
tigation into the LMI approach to nonlinear fuzzy con-
trol systems can be found in Takagi & Sugeno (1985);
Tanaka & Sugeno (1990); and Wang (1994). The purpose
behind this novel approach is to convert a nonlinear sys-
tem control problem into a convex optimization problem
which is solved by an LMI at each time step. The recent
development in numerical techniques for convex opti-
mization provides efficient algorithms for solving LMIs. If
a solution can be expressed in an LMI form, then there
exist optimization algorithms providing efficient global
numerical solutions (Boyd, Ghaoui, Feron, & Balakrish-
nan, 1994). Therefore if the LMI is feasible, then the LMI
control technique provides globally stable solutions sat-
isfying the corresponding mixed performance criteria at
each time step (Huang & Lu, 1996; Mohseni, Yaz, & Ole-
jniczak, 1998; Wang & Yaz, 2010a, 2010b; Wang, Yaz, &
Jeong, 2010; Wang, Yaz & Yaz, 2010, 2011). Moreover,
we propose to employ the mixed performance criteria
to design the controller, guaranteeing quadratic sub-
optimalitywith inherent stabilityproperty in combination
with dissipativity type of disturbance attenuation.

The rest of the paper is organized as follows. In the
following section, we first describe the T–S fuzzy model.
We then introduce the mixed performance criteria in

Section 3. Then, the LMI control solution is derived to
characterize the optimal and robust fuzzy control of non-
linear systems. Finally, the inverted pendulum on a cart
control problem is used as an illustrative example. The
following notation is used in this work: x ∈ �n denotes n-
dimensional real vectorwith norm ‖ x ‖= (xTx)1/2, where
(·)T indicates transpose. A ≥ 0 for a symmetric matrix
denotes a positive semi-definite matrix. L2 is the space of
infinite sequences of finite dimensional random vectors
with finite energy:

∫∞
0 ‖ x(t)‖2 dt < ∞.

2. T–S systemmodel

The importance of the T–S fuzzy system model is that
it provides an effective way to decompose a compli-
cated nonlinear system into local dynamical relations and
express those local dynamics of each fuzzy implication
rule by a linear systemmodel. The overall fuzzy nonlinear
system model is achieved by fuzzy ‘blending’ of the lin-
ear system models, so that the overall nonlinear control
performance is achieved.

The ith rule of the T–S fuzzy model can be expressed
by the following forms:

MODEL RULE i:
IF ϕ1(t) isMi1, ϕ2(t) isMi2, . . . , and ϕp(t) isMip,
THEN, the input-affine continuous-time fuzzy system

equation is:{
ẋ(t) = Aix(t) + Biu(t) + Fiw(t)

y(t) = Cix(t) + Diu(t) + Ziw(t)
i = 1, 2, 3, . . . , r,

(1)
where x(t) ∈ �n is the state vector; u(t) ∈ �m is the con-
trol input vector; y(t) ∈ �q is the performance output
vector; w(t) ∈ �s is the L2 type of disturbance; r is the
total number of the model rules; Mij is the fuzzy set; Ai ∈
�n×n, Bi ∈ �n×m, Fi ∈ �n×s, Ci ∈ �q×n, Di ∈ �q×m, Zi ∈
�q×s are the coefficient matrices; and ϕ1, . . . , ϕp are the
known premise variables which can be functions of state
variables, external disturbance, and time.

It is assumed that the premises are not the function
of the input vector u(t), which is needed to avoid the
defuzzification process of the fuzzy controller. If we use
ϕ(t) to denote the vector containing all the individual
elementsϕ1(t), . . . , ϕp(t), then the overall fuzzy system is

ẋ(t) =
∑r

i=1 gi(ϕ(t))(Aix(t) + Biu(t) + Fiw(t))∑r
i=1 gi(ϕ(t))

=
∑r

i=1
hi(ϕ(t)){Aix(t) + Biu(t) + Fiw(t)}, (2)

y(t) =
∑r

i=1 gi(ϕ(t)){Cix(t) + Diu(t) + Ziw(t)}∑r
i=1 gi(ϕ(t))

=
∑r

i=1
hi(ϕ(t)){Cix(t) + Diu(t) + Ziw(t)}, (3)
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where

ϕ(t) = [ϕ1(t), ϕ2(t), . . . , ϕp(t)], (4)

gi(ϕ(t)) =
p∏

j=1

Mij(ϕj(t)), (5)

hi(ϕ(t)) = gi(ϕ(t))∑r
i=1 gi(ϕ(t))

(6)

for all time t. The termMij(ϕj(t)) is the grade member-
ship of ϕj(t) inMij.

Since
r∑

i=1

gi(ϕ(t)) > 0,

gi(ϕ(t)) ≥ 0, i = 1, 2, 3, . . . , r,

(7)

we have
r∑

i=1

hi(ϕ(t)) = 1,

hi(ϕ(t)) ≥ 0, i = 1, 2, 3, . . . , r

(8)

for all time t.
It is assumed that the state is available for feedbackand

the nonlinear state feedback control input is given by

u(t) = −
r∑

i=1

hi(ϕ(t))Kix(t). (9)

Substituting this into the systemandperformanceout-
put equations, we have

ẋ(t) =
r∑

i=1

r∑
j=1

hi(ϕ(t))hj(ϕ(t)){Ai − BiKj}x(t)

+
r∑

i=1

hi(ϕ(t))Fiw(t), (10)

y(t) =
r∑

i=1

r∑
j=1

hi(ϕ(t))hj(ϕ(t)){Ci − DiKj}x(t)

+
r∑

i=1

hi(ϕ(t))Ziw(t). (11)

Using the notation

Gij = Ai − BiKj, (12)

Hij = Ci − DiKj (13)

then the system equation becomes

ẋ(t) =
r∑

i=1

r∑
j=1

hi(ϕ(t))hj(ϕ(t)) · Gij · x(t)

+
r∑

i=1

hi(ϕ(t))Fiw(t), (14)

y(t) =
r∑

i=1

r∑
j=1

hi(ϕ(t))hj(ϕ(t)) · Hij · x(t)

+
r∑

i=1

hi(ϕ(t))Ziw(t). (15)

3. General performance criteria

Consider the quadratic Lyapunov function

V(t) = xT(t)Px(t) > 0 (16)

for the following differential inequality

V̇(t) + xT(t)Qx(t) + uT(t)Ru(t) + α · yT(t)y(t)
− β · yT(t)w(t) + γ · wT(t)w(t) ≤ 0 (17)

with Q > 0, R > 0 functions of x.
Note that upon integration over time from 0 to Tf ,

Equation (17) yields

V(Tf ) +
∫ Tf

0
[xT(t)Qx(t) + uT(t)Ru(t)]dt +

∫ Tf

0
[α

· yT(t)y(t) − β · yT(t)w(t) + γ · wT(t)w(t)] dt ≤ V(0)
(18)

for all Tf > 0.
By properly specifying the value of theweighingmatri-

ces Q, R, Ci, Di, Zi, and α, β , γ , the mixed performance
criteria can be used in nonlinear control design, which
yields amixedNonlinear Quadratic Regulator (NLQR) (Wu
& Cai, 2004) in combination with the dissipativity type
performance indexwithdisturbance reduction capability.
For example, if we take α = 1, β = 0, γ < 0, Equation
(18) yields

V(Tf ) +
∫ Tf

0
[xT(t)Qx(t) + uT(t)Ru(t) + yT(t)y(t)] dt

≤ V(0) − γ ·
∫ Tf

0
[wT(t)w(t)] dt, (19)

which is themixed suboptimal NLQR-H∞ design (Wang &
Yaz, 2010a, 2010b; Wang, Yaz, & Jeong, 2010; Wang, Yaz,
& Yaz, 2010, 2011).

Other possible performance criteriawhich can be used
in this framework with various design parameters α, β , γ

are given in Table 1. By satisfying the NLQR objective,
the controller is designed to minimize the quadratic cost
function. By satisfying the H∞ performance objective
(Basar & Bernhard, 1995; Van der Shaft, 1993), the syn-
thesized controller achieves stabilization with robust dis-
turbance suppression. By satisfying the passivity perfor-
mance objective, the closed loop system is stable in an
input–output sense (Khalil, 2002; Vidyasagar, 2002).
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Table 1. Various performance criteria in a general framework.

α β γ Performance criteria

1 0 < 0 Suboptimal NLQR-H∞ design
0 1 0 NLQR-passivity design
0 1 > 0 NLQR-input strict passivity design
> 0 1 0 NLQR-output strict passivity design
> 0 1 > 0 NLQR-very strict passivity

4. Fuzzy LMI control with general performance
criteria

The following theorem summarizes the main results of
the paper:

Theorem 1: Given the system model (10), performance
output (11) and control input (9), if there exist matrices S =
P−1 > 0 for all t ≥ 0, such that the following LMI holds:⎡

⎢⎢⎢⎢⎣
�11 �12 �13 �14 �15

∗ �22 �23 0 0
∗ ∗ I 0 0
∗ ∗ ∗ R−1 0
∗ ∗ ∗ ∗ I

⎤
⎥⎥⎥⎥⎦ ≥ 0, (20)

where

�11 = −1
2

[
SATi − MjB

T
i + SATj − MT

i B
T
j + AiS − BiMj

+ AjS − BjMi
]
,

�12 = −1
2
(Fi + Fj) + β

4

[
SCTi − MT

j D
T
i + SCTj − MT

i D
T
j

]
,

�13 = 1
2
α1/2[SCTi − MT

j D
T
i + SCTj − MT

i D
T
j

]
,

�14 = 1
2
(MT

i + MT
j ),

�15 = SQT/2

�22 = −γ I + 1
2
β · (Zi + Zj)

T,

�23 = 1
2
α1/2[Zi + Zj]T (21)

using the notation

Mi = KiP
−1 = KiS (22)

then inequality (19) is satisfied.

Proof: By applying system models (10) and (14), perfor-
mance outputs (11) and (15), and state feedback input (9),
the performance index inequality (17) becomes⎡
⎣ r∑

i=1

r∑
j=1

hi(φ(t))hj(φ(t)) · Gij · x(t)

+
∑r

i=1
hi(φ(t))Fiw(t)

⎤
⎦
T

· P · x(t)

+ xT(t) · P ·
⎡
⎣ r∑

i=1

r∑
j=1

hi(φ(t))hj(φ(t)) · Gij · x(t)

+
r∑

i=1

hi(φ(t))Fiw(t)

⎤
⎦+ xT(t)Qx(t)

+
[
−

r∑
i=1

hi(φ(t))Kix(t)

]T
R

[
−

r∑
i=1

hi(φ(t))Kix(t)

]

+ α

⎡
⎣ r∑

i=1

r∑
j=1

hi(φ(t))hj(φ(t)) · Hij · x(t)

+
r∑

i=1

hi(φ(t))Ziw(t)

⎤
⎦
T

·
⎡
⎣ r∑

i=1

r∑
j=1

hi(φ(t))hj(φ(t)) · Hij · x(t)

+
r∑

i=1

hi(φ(t))Ziw(t)

⎤
⎦

− β

⎡
⎣ r∑

i=1

r∑
j=1

hi(φ(t))hj(φ(t)) · Hij · x(t)

+
r∑

i=1

hi(φ(t))Ziw(t)

⎤
⎦
T

· w(t)

+ γ · wT(t)w(t) ≤ 0. (23)

Inequality (23) is equivalent to

[xT(t) wT(t)]
[
�11 �12

∗ �22

] [
x(t)
w(t)

]
≤ 0, (24)

where

�11 =
⎛
⎝∑

i

∑
j

hihjGij

⎞
⎠

T

P + P

⎛
⎝∑

i

∑
j

hihjGij

⎞
⎠+ Q

+
[∑

i

hiKi

]T
R

[∑
i

hiKi

]

+ α ·
⎡
⎣∑

i

∑
j

hihjHij

⎤
⎦
T⎡
⎣∑

i

∑
j

hihjHij

⎤
⎦ ,

�12 = P

(∑
i

hiFi

)
+ α ·

⎡
⎣∑

i

∑
j

hihjHij

⎤
⎦
T [∑

i

hiZi

]

− β

2
·
⎡
⎣∑

i

∑
j

hihjHij

⎤
⎦
T



SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL 63

�22 = γ I + α ·
[∑

i

hiZi

]T [∑
i

hiZi

]
− β ·

[∑
i

hiZi

]T
.

(25)

Inequality (24) can be rewritten as

[
	11 	12

∗ 	22

]
− α ·

⎡
⎢⎢⎢⎢⎣

[∑
i

∑
j
hihjHij

]T
[∑

i
hiZi

]T

⎤
⎥⎥⎥⎥⎦

×
[[∑

i

∑
j
hihjHij

] [∑
i
hiZi

]]
≥ 0, (26)

where

	11 = −
⎛
⎝∑

i

∑
j

hihjGij

⎞
⎠

T

P − P

⎛
⎝∑

i

∑
j

hihjGij

⎞
⎠− Q

−
[∑

i

hiKi

]T
R

[∑
i

hiKi

]

	12 = −P

(∑
i

hiFi

)
+ β

2
·
⎡
⎣∑

i

∑
j

hihjHij

⎤
⎦
T

	22 = −γ I + β ·
[∑

i

hiZi

]T
.

(27)

By applying the Schur complement to inequality (26), we
have

⎡
⎢⎢⎢⎢⎢⎢⎣

	11 	12 α1/2

[∑
i

∑
j
hihjHij

]T

∗ 	22 α1/2
[∑

i
hiZi

]T
∗ ∗ I

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 0. (28)

Similarly, inequality (28) can also be written as

⎡
⎢⎢⎢⎢⎢⎢⎣


11 
12 α1/2

[∑
i

∑
j
hihjHij

]T

∗ 
22 α1/2
[∑

i
hiZi

]T
∗ ∗ I

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣
[∑

i
hiKi

]T
0
0

⎤
⎥⎥⎥⎦

× R

[[∑
i
hiKi

]
0 0

]
≥ 0, (29)

where


11 = −
⎛
⎝∑

i

∑
j

hihjGij

⎞
⎠

T

P − P

⎛
⎝∑

i

∑
j

hihjGij

⎞
⎠− Q


12 = −P

(∑
i

hiFi

)
+ β

2
·
⎡
⎣∑

i

∑
j

hihjHij

⎤
⎦
T


22 = −γ I + β ·
[∑

i

hiZi

]T
.

(30)

By applying the Schur complement again to Equation
(29), we have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


11 
12 α1/2

(∑
i

∑
j
hihjHij

)T [∑
i
hiKi

]T

∗ 
22 α1/2
[∑

i
hiZi

]T
0

∗ ∗ I 0
∗ ∗ ∗ R−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0.

(31)
Equivalently, we have

∑
i

∑
j

hihj ·

⎡
⎢⎢⎣

�11 �12 �13 �14

∗ �22 �23 0
∗ ∗ I 0
∗ ∗ ∗ R−1

⎤
⎥⎥⎦ ≥ 0, (32)

where

�11 = −1
2
[(Ai − BiKj) + (Aj − BjKi)]T · P

− 1
2
P · [(Ai − BiKj) + (Aj − BjKi)] − Q

�12 = −1
2
P(Fi + Fj) + β

4
[(Ci − DiKj) + (Cj − DjKi)]T

�13 = 1
2
α1/2[(Ci − DiKj) + (Cj − DjKi)]T

�14 = 1
2
(Ki + Kj)

T

�22 = −γ I + 1
2
β · (Zi + Zj)

T

�23 = 1
2
α1/2[Zi + Zj]T. (33)

Therefore, we have the following LMI⎡
⎢⎢⎣

�11 �12 �13 �14

∗ �22 �23 0
∗ ∗ I 0
∗ ∗ ∗ R−1

⎤
⎥⎥⎦ ≥ 0. (34)

Bymultiplyingboth sidesof the LMI aboveby theblock
diagonal matrix diag{S, I, I, I}, where S = P−1, and using
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the notation

Mi = KiP
−1 = KiS, (35)

we obtain ⎡
⎢⎢⎣

�11 �12 �13 �14

∗ �22 �23 0
∗ ∗ I 0
∗ ∗ ∗ R−1

⎤
⎥⎥⎦ ≥ 0, (36)

where

�11 = −1
2

[
SATi − MjB

T
i + SATj − MT

i B
T
j + AiS − BiMj + AjS

− BjMi
]− SQS

�12 = −1
2
(Fi + Fj) + β

4

[
SCTi − MT

j D
T
i + SCTj − MT

i D
T
j

]
�13 = 1

2
α1/2[SCTi − MT

j D
T
i + SCTj − MT

i D
T
j

]
�14 = 1

2
(MT

i + MT
j )

�22 = −γ I + 1
2
β · (Zi + Zj)

T

�23 = 1
2
α1/2[Zi + Zj]T. (37)

By applying the Schur complement again, the final LMI is
derived

⎡
⎢⎢⎢⎢⎣

�11 �12 �13 �14 �15

∗ �22 �23 0 0
∗ ∗ I 0 0
∗ ∗ ∗ R−1 0
∗ ∗ ∗ ∗ I

⎤
⎥⎥⎥⎥⎦ ≥ 0, (38)

where

�11 = −1
2

[
SATi − MjB

T
i + SATj − MT

i B
T
j + AiS − BiMj

+ AjS − BjMi
]

�12 = −1
2
(Fi + Fj) + β

4

[
SCTi − MT

j D
T
i + SCTj − MT

i D
T
j

]
�13 = 1

2
α1/2[SCTi − MT

j D
T
i + SCTj − MT

i D
T
j

]
�14 = 1

2
(MT

i + MT
j )

�15 = SQT/2

�22 = −γ I + 1
2
β · (Zi + Zj)

T

�23 = 1
2
α1/2[Zi + Zj]T. (39)

Hence, if LMI (38) holds, inequality (19) is satisfied. This
concludes the proof of the theorem. �

Remark 1: For the chosen performance criterion, LMI
(38) needs tobe solved each time to findmatrices S, M; by
using relation (18), we can find the feedback control gain.
Therefore, the feedback control can be found to satisfy
the chosen criterion.

5. Application to the inverted pendulum on a
cart

The inverted pendulumon a cart problem is a benchmark
control problem used widely to test control algorithms.
A pendulum beam attached at one end can rotate freely
in the vertical two-dimensional plane. The angle of the
beam with respect to the vertical direction is denoted at
angle θ . The external force u is desired to set the angle of
the beam θ and angular velocity θ̇ to zerowhile satisfying
the mixed performance criteria. A model of the inverted
pendulumon a cart problem is given by Baumann&Rugh
(1986) and Tanaka & Wang (2001):

ẋ1 = x2 + ε1 · w

ẋ2 = g sin(x1)− amLx22 · sin(2x1)/2− a cos(x1)u

4L/3− amL cos2(x1)
+ ε2 ·w,

(40)

where x1 is the angle of the pendulum from the vertical
direction; x2 is the angular velocity of the pendulum; g is
the gravity constant; m is the mass of the pendulum; is
the mass of the cart; is the length to the pendulum cen-
tre ofmass, length of the pendulumequals; is the external
force, control input to the system; w is the L2 type of dis-
turbance; a is a constant, a = 1/(m + M); and ε1, ε2 are
the weighting coefficients of the disturbance.

Due to the system nonlinearity, we approximate the
system using the following two-rule fuzzy model:

RULE 1:
IF |x1| is close to zero,
THEN ẋ(t) = A1x(t) + B1u(t) + F1w(t).
RULE 2:
IF |x1| is close to π/2,
THEN ẋ(t) = A2x(t) + B2u(t) + F2w(t).

where

A1 =
⎡
⎣ 0 1

g

4L/3 − amL
0

⎤
⎦ , B1 =

⎡
⎣ 0

− a

4L/3 − amL

⎤
⎦ ,

F1 =
[
ε1

ε2

]

A2 =
⎡
⎣ 0 1

2g
π(4L/3 − amLδ2)

0

⎤
⎦ ,
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B2 =
⎡
⎣ 0

− aδ

4L/3 − amLδ2

⎤
⎦ ,

F2 =
[
ε1

ε2

]
with δ = cos(80◦).

The following values are used in our simulation:

m = 2 kg, M = 8 kg, L = 0.5m, g = 9.8m/s2,

ε1 = 1, ε2 = 0

sampling time T = 0.001, x1(0) = π/6, x2(0) = −π/6 as
the initial conditions. The membership functions of Rules
1 and 2 are shown in Figure 1.

The following design parameters are chosen to satisfy:
Mixed NLQR-H∞criteria: Mixed NLQR-passivity criteria:

Themixed criteria control performance results are shown
in Figures 2–4. From these figures, we find that the novel
fuzzy LMI control has a satisfactory performance. The
new technique controls the inverted pendulum very well
under the effect of finite energy disturbance. It should
also be noted that the LMI fuzzy control with mixed per-
formance criteria satisfies global asymptotic stability.

Figure 1. Membership functions of Rules 1 and 2.

Figure 2. Angle trajectory of the inverted pendulum.

Figure 3. Angular velocity trajectory of the inverted pendulum.

Figure 4. Control input applied to the inverted pendulum.

6. Conclusions

This paper presents a novel fuzzy control approach for
continuous-time nonlinear systems based on LMI solu-
tions. The T–S fuzzy model is applied to decompose the
nonlinear system. Multiple performance criteria are used
to design the controller and the relative weightingmatri-
ces of these criteria canbe achievedby choosingdifferent
coefficient matrices. The optimal control can be obtained
by solving the LMI at each time step. The inverted pen-
dulum is used as an example to demonstrate its effec-
tiveness. The simulation studies show that the proposed
method provides a satisfactory alternative to the existing
nonlinear control approaches.
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