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RESEARCH Open Access

Intention tremor and deficits of sensory feedback
control in multiple sclerosis: a pilot study
Megan Heenan1, Robert A Scheidt1,2,3,4, Douglas Woo3,5 and Scott A Beardsley1,4,6*

Abstract

Background: Intention tremor and dysmetria are leading causes of upper extremity disability in Multiple Sclerosis
(MS). The development of effective therapies to reduce tremor and dysmetria is hampered by insufficient
understanding of how the distributed, multi-focal lesions associated with MS impact sensorimotor control in the
brain. Here we describe a systems-level approach to characterizing sensorimotor control and use this approach to
examine how sensory and motor processes are differentially impacted by MS.

Methods: Eight subjects with MS and eight age- and gender-matched healthy control subjects performed
visually-guided flexion/extension tasks about the elbow to characterize a sensory feedback control model that
includes three sensory feedback pathways (one for vision, another for proprioception and a third providing an
internal prediction of the sensory consequences of action). The model allows us to characterize impairments in
sensory feedback control that contributed to each MS subject’s tremor.

Results: Models derived from MS subject performance differed from those obtained for control subjects in two
ways. First, subjects with MS exhibited markedly increased visual feedback delays, which were uncompensated by
internal adaptive mechanisms; stabilization performance in individuals with the longest delays differed most from
control subject performance. Second, subjects with MS exhibited misestimates of arm dynamics in a way that
was correlated with tremor power. Subject-specific models accurately predicted kinematic performance in a
reach and hold task for neurologically-intact control subjects while simulated performance of MS patients had
shorter movement intervals and larger endpoint errors than actual subject responses. This difference between
simulated and actual performance is consistent with a strategic compensatory trade-off of movement speed for
endpoint accuracy.

Conclusions: Our results suggest that tremor and dysmetria may be caused by limitations in the brain’s ability to
adapt sensory feedback mechanisms to compensate for increases in visual information processing time, as well as
by errors in compensatory adaptations of internal estimates of arm dynamics.

Keywords: Multiple sclerosis, Intention tremor, Dysmetria, Sensorimotor, Motor control, Neuromotor control

Introduction
Accurate arm and hand movements are the key to
performing many daily tasks, but in individuals with
Multiple Sclerosis (MS), the processes that control these
movements are disrupted due to demyelination of the
axonal projections that transmit information within and
between brain areas. Upper extremity motor dysfunction

in MS most often manifests as kinetic tremor (uncon-
trolled rhythmic motion of the joints during goal-directed
movements) or dysmetria (a lack of coordination of move-
ments typified by the under- or overshoot of the intended
position of the hand or arm). Up to seventy-five percent
of individuals with MS experience tremor in the arms and
hands, with as many as 27% of those reporting tremor-
related disability [1-4]. Drug therapies [5-9] and surgical
treatments [2,10-12] can mitigate some effects of tremor,
although their effectiveness decreases over time [13] (for
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review see [14]). Recently, rTMS has been used to reduce
tremor [15], however, the effects are short-lived.
Because neural lesions that develop in MS are distrib-

uted throughout the central nervous system, similar
movement deficits (i.e. tremor) may result from differing
impairments in the sensory feedback control pathways.
Consequently, the specific neuroanatomical etiology of
tremor and dysmetria remain unclear. Tremor and dys-
metria are most often associated with lesions in the
cerebellum and/or the thalamic nuclei, suggesting im-
pairment of the cortico-cerebellar sensorimotor control
loops used for the planning and adaptive control of
movement [16,17]; for review see Koch, et al. [4]. Recent
studies also implicate impairments of the predictive
mechanisms used to guide movement and/or degrad-
ation of the sensory information upon which such pre-
dictions are based, including impairment in sensory
transmission of information, which is lengthened in
those with MS [1,2,18-21]. The many-to-one mapping
of the source of impairment onto clinical symptoms
poses significant challenges for developing effective
therapies. For example, a therapy designed to compen-
sate for one patient’s dysmetria caused by increased sen-
sory processing delays may not be effective for another
patient whose dysmetria is due to impaired prediction
of limb dynamics.
Exercise-based rehabilitation strategies can improve

posture and movement control over the short-term, but
they have had less success in achieving significant long-
term reductions in motor incoordination generally, and
tremor or ataxia specifically (for review see Brown
and Kraft 2005) [22-28]. Recent studies by Feys and
colleagues have demonstrated that motor performance
in MS can be enhanced by exploiting the inherent
adaptability of sensorimotor control mechanisms. For
example, Feys, et al. (2001, 2006) have found that alter-
ing visual feedback information can reduce intention
tremor and improve performance on functional tasks
[22,23]. Other studies that use robotic devices to intro-
duce mechanical perturbations and practice correcting
erroneous movements, can improve movement control,
reduce tremor, and improve coordination [27-29].
However, the mechanisms by which these approaches
are able to improve functional performance remains
unclear.
In this study, we describe a systems-level computa-

tional model and an experimental technique that
parameterizes subject-specific deficits in sensory feed-
back control of the elbow joint [30-33] in individuals
diagnosed with MS. We used this approach to test the
hypothesis that tremor in MS results from subject-
specific impairments in the adaptive feedback processes
that guide movement. Specifically, we fit the parameters
of a dual-feedback, sensorimotor control model to the

kinematic data obtained from each subject’s responses to
perturbations during a series of continuous elbow flexion/
extension tasks [31,33]. We compared the parameters ob-
tained from subjects with MS to those of age- and
gender-matched, healthy control subjects to identify the
sensory and/or motor processes affected by MS, and the
extent to which they correlate with intention tremor.
Future studies could use this approach to characterize
changes in sensory feedback control induced by thera-
peutic intervention to advance understanding of how to
best mitigate individuals’ deficits of motor function as
they evolve with progression of the disease.

Methods
Subjects
Sixteen subjects participated in the study. Eight subjects
had clinical diagnoses of MS and exhibited mild to severe
tremor (ages 25–68 years old, 6 female, 7 right-handed).
Eight healthy participants served as age- (±7 yrs) and
gender-matched control subjects (ages 26–61 years old, 6
female, 8 right-handed). All participants provided written,
informed consent in accordance with the Declaration of
Helsinki and as approved by institutional review boards
at Marquette University and the Medical College of
Wisconsin.
Subjects with MS were assessed clinically in a session

conducted at the Medical College of Wisconsin prior to
participating in the primary study (Table 1). Disease dur-
ation ranged from 6 to 30 years. Six subjects with MS
had received disease-modifying therapy with either an
immune-modulator or immunosuppressant, with four
subjects continuing therapy at the time of the study. Se-
verity of disability on the Expanded Disability Status
Scale (EDDS) ranged from 1 to 7 (out of 10), with three
subjects confined to a wheelchair. All of the subjects ex-
hibited motor strength in the upper extremities of 4 or
greater on the Medical Research Council system of grad-
ing, and all demonstrated normal tone and normal pro-
prioceptive sensation on exam. Visual acuities were 20/
40 or better in all subjects. Scores on the Ataxia Scale
for Dysmetria and the Tremor Assessment Scale ranged
from 1 to 3 (out of 4).

Sensory feedback control model
Sensory feedback control includes adaptive feedforward
and feedback mechanisms. Based on the work of Peterka
[30], and McRuer [34,35], we have developed a
closed-loop model of sensory feedback control during
goal-directed movement and have used it previously
to describe sensorimotor responses to environmental
perturbations and distortions of visual feedback
(Figure 1) [31,33]. In the current study, we use the sen-
sory feedback control model to examine how MS
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impacts feedback control. In the model, angular pos-
ition error of the elbow joint (i.e. performance error)
is calculated as the difference between desired position
(θd) and the weighted sum of visual and proprioceptive
estimates of the actual arm position (θa) [30-33,36]. The
weights of the visual and proprioceptive paths are repre-
sented by Kv and Kp, respectively. Delays in visual and
proprioceptive processing are modeled separately (Tv and

Tp , respectively) to account for the overall response delay
in each sensory path; these lumped-parameter terms com-
bine feedback delays due to signal conduction and sensory
information processing. In the forward path, actual
performance error is compared to the predicted conse-
quences of the intended action (i.e. the output of a for-
ward model) to yield an instantaneous prediction error,
which gives rise to a set of muscle activations through

Table 1 Clinical characteristics of MS subjects including disease type (RR: relapsing remitting, PP: primary progressive,
SP: secondary progressive, PR: progressive relapsing), expanded disability status scale (EDSS), tremor and ataxia
scores obtained during a separate clinical evaluation

Subject # Age Gender Dominant hand MS Type EDSS Tremor score* Ataxia score* NHPT* (sec)

1 45 F R RR 2 1 1 27.9

2 57 F R PP 7 1 1 18.9

3 31 F R RR 2 2 1 27.0

4 29 F R SP 7 2 2 81.6

5 55 F R - 6 2 2 DNC

6 25 M R PR 7 3 2 75.1

7 41 M R RR 6 3 2 77.2

8 68 F L RR 1 3 3 141.0

Nine Hole Peg Test (NHPT) times were obtained the day of testing (* indicates right hand only; DNC: did not complete in time allotted).

Figure 1 Multisensory feedback model of sensorimotor control. The model consists of a feed-forward motor control path and three nested
feedback paths. The outermost feedback path accounts for sensory (visual and proprioceptive) feedback. In the forward path, neural processing
associated with the correction of state errors (i.e. the difference between desired, θd, and observed, θa, elbow angles) is modeled generically by a
PID controller (inverse model) containing separate proportional, integral, and derivative gains. Motor noise in the generation of torques is modeled by
a multiplicative noise (α). Corrective torque is converted to angular position of the arm using a 2nd order model characterizing the inertia, viscosity,
and stiffness about the elbow. In each branch of the outer-most feedback path, arm position is delayed (T) and weighted (K) to provide a combined
sensory estimate of arm position. The forward model provides predictive compensation of the arm dynamics and delays via the inner feedback loops.
Dext denotes external perturbations applied to the perceived visual and/or proprioceptive (i.e. physical) feedback of arm position.
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the action of a neural feedback controller, which for
simplicity we model using a Proportional-plus-Integral-
plus-Derivative (PID) controller, C(s):

C sð Þ ¼ Kdsþ Kpr þ Ki

s
: ð1Þ

This generic controller, which has previously been
used to model movement control [30], contains separ-
ate derivative (Kd) proportional (Kpr) and integral (Ki)
gains to allow the controller to minimize transient re-
sponse errors as well as steady state errors. The output
of the controller is a scalar quantity representing the
intended net muscle activations, which in turn act
through the musculoskeletal geometry (muscle attach-
ment points and moment arms) to give rise to a net
torque applied to the physical plant (the forearm/hand
pivoting about the elbow). Note that we have simpli-
fied our model of the physical plant by discounting
muscle activation/contraction dynamics, which are as-
sumed to be dominated by the second-order passive
dynamics of the arm. We do, however, account for var-
iations in muscle fiber recruitment [37] by reducing
the precision of the intended torque by a multiplicative
motor noise (α).
The arm’s dynamical response to the applied torque is

estimated using a second-order model, P(s),

P sð Þ ¼ 1
Js2 þ Bsþ K

ð2Þ

This model simulates the passive mechanical proper-
ties of the forearm and hand about the elbow via separ-
ate inertia (J), viscosity (B), and stiffness (K) terms.

The sensory feedback control model also includes
an internal feedback path (referred to here as a for-
ward model), which provides predictions of movement
kinematics and the sensory consequences of those ac-
tions based on efference copy of the intended motor
actions and internal estimates of the sensory gains
(Kv*, Kp*), system delays (Tv*, Tp*), and limb dynam-
ics (Plant* - Eq. 4). One important effect of the for-
ward model is to compensate for the long-latency
feedback loops (>100 ms) associated with sensory
processing.

Experiment setup
All subjects participated in a single, two-hour experi-
mental session wherein they performed a series of five
compensatory tracking tasks to characterize sensory
feedback control about the elbow. Tasks and analysis are
summarized in Table 2. All subjects also performed a
spiral tracing task to quantify tremor frequency and
amplitude [38]. Subjects with MS additionally performed
the 9-hole peg test (9HPT) at the beginning of the ex-
perimental session for comparison with clinical assess-
ments (9HPT, EDSS [39], ataxia and tremor scores [40]).
Elbow angle and joint torque data collected during per-
formance of four single-joint tracking tasks were used
to obtain an individualized (best-fit) estimate of the
sensory feedback control model depicted in Figure 1.
Data collected from the fifth single-joint tracking task
was used for model validation. The order of task
presentation was counterbalanced across subjects. In
order to account for potential task-related variations in
subjects’ responses, all model parameters (aside from
the physiological parameters: sensory delays and muscle

Table 2 Experimental tasks and analysis

Task Input Parameter measured Analysis method

Spiral tracing Line tracing ft, Mt Tremor frequency and magnitude Power spectrum analysis

Task 1 Low frequency visual perturbation Tv Visual response delay Cross correlation of subject response
with input

Tv
* Predictive response delay

Task 2 Low-frequency torque
perturbation

Tp Proprioceptive response delay Cross correlation of subject response
with input

Tp
* Predictive proprioceptive response

delay

Task 3 Fixed levels of isometric
torque

α Multiplicative motor noise Linear fit of variance vs. average torque

Task 4 High-frequency visual
perturbation

J, B, K Inertia, viscosity, stiffness of arm Bootstrapped model fit to the subject’s
measured frequency response function
(FRF)J*, B*, K* Predictive inertia, viscosity, stiffness

of arm

Kv, Kp, Kv
*, Kp

* , Kd,
Kpr, Ki

Sensory and Controller gains

Task 5 Visual offset RMSE Movement error Kinematic analysis

* indicates predictive values.
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noise) were measured simultaneously during a single
compensatory tracking task performed in the presence
of high-frequency position perturbations (“task 4”, de-
scribed below).
During single-joint tracking tasks, subjects held the

handle of a 1-D robotic manipulandum with their right
hand (Figure 2); the robot’s axis of rotation was aligned
with that of the elbow joint such that the subjects’ arms
were supported at an angle of approximately 90° of
adduction. Details of the robot implementation and
control can be found in [41]. Rotation of the manipu-
landum about the elbow (limited to ±40° relative to the
sagittal plane) was yoked to the horizontal position of a
cursor (a red ring) displayed on a 19-inch computer
monitor. The monitor was placed perpendicular to the
line of sight at a distance of 60 cm, which resulted in a
cursor diameter of 0.67°. During the tasks, a stationary
target (a black circle 0.33° in diameter) was also dis-
played on the screen. Direct view of the arm was
blocked using an opaque barrier such that the cursor
provided the sole visual cue of arm position. Rigid
supports were placed on either side of the subject’s
upper arm to minimize shoulder and/or upper arm
movements.
Continuous, visual or torque perturbations were ap-

plied to the cursor or arm, respectively, during the 1-D
target tracking tasks described below. Subjects were

asked to compensate for low- or high-frequency pertur-
bations (low-frequency: 0-1Hz, band-limited white noise;
high-frequency: 0-10Hz, band-limited white noise, low-
pass filtered at 1 Hz) by returning the cursor or arm
back to the desired target location as quickly and accur-
ately as possible. Subjects performed between 10 and
25 trials per task. Trial lengths varied by task and
ranged from 8–32 seconds, with 15–30 seconds of rest
between trials. During the rest period, the screen dis-
played the instruction “relax”. Two seconds before the
start of the next trial, subjects were cued to “get ready”.
The trial then began when the cursor and target ap-
peared on the screen.

Target tracking tasks
2D spiral tracing task
A digitized spiral tracing task (adapted from Feys and
colleagues) [38], was used to characterize the temporal
frequency and signal power of each subject’s tremor.
During the task, subjects used a digital pen to trace
the line of an Archimedes spiral (center-out) overlaid
on a Wacom digital tablet (12×18.2 inch drawing sur-
face; Wacom Technology Corporation, Vancouver, WA).
Throughout the task, subjects self-supported their
arm against gravity and were instructed not to rest
their arm or hand on the table while they traced the
spiral in the transverse plane. Pen location data was
collected at 200 samples/second in Matlab ver. 8.2
using the Cogent 2000 toolbox (Laboratory of Neuro-
biology, University College London, London, UK).
The spiral was labeled with tick marks every 3 cm.
To prevent the adoption of strategies that would
compensate for tremor during the task, subjects were
instructed to adjust their tracing speed according to
a metronome such that they crossed one tick mark
per beat, while keeping the movement as smooth as
possible. Metronome speeds were adjusted based on
the subject’s ability to maintain the target speed, and
ranged from 60 bpm (3 cm/sec) to 240 bpm (12 cm/
sec). Prior to the task, subjects performed five prac-
tice trials to familiarize themselves with the task and
timing requirements. The first two practice trials were
completed at the subjects’ self-selected speeds without the
metronome. In the remaining practice trials, subjects
performed the task with the metronome, starting at
60 bpm and increasing the metronome speed by an add-
itional 40 bpm in each subsequent trial to identify a
comfortable base speed. Following the practice trials,
subjects completed ten “test” trials limited to 20 seconds
each. During the first eight test trials, task difficulty was
increased from the base speed on every second trial by
incrementing the metronome speed an additional
40 bpm (2 cm/sec) until the subjects’ tracing speed fell
below 90% of the metronome speed. During the last two

Figure 2 Experimental setup. Subjects held the handle of a 1-D
manipulandum while seated in front of a computer display. The
position of a cursor (red ring) was manipulated by rotating the
manipulandum handle about the elbow joint. The cursor (or arm)
was continuously perturbed (upper right inset) with a zero-mean,
band-limited disturbance, and the subject was asked to compensate
by bringing the cursor to a target (black circle) presented in the
center of the display. The arm was occluded by an opaque screen
(shaded region) so that the cursor provided the only visual cue of
arm movement.
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trials, subjects were told to move as quickly as possible
while accurately tracing the entire spiral.

1-D target tracking
Tasks 1 and 2: compensatory tracking with low-
frequency perturbations Visual (Tv , Tv*) and proprio-
ceptive (Tp , Tp*) delays were characterized in separate
compensatory tracking tasks. Subjects performed 10 tri-
als per task and trial duration was 20 seconds in each
case. In the first task (Task 1), visual response delays
(Tv , Tv*) were characterized by applying continuous
pseudorandom visual displacements (0.05 – 1 Hz; RMS
= 10° visual angle) to the cursor position while subjects
applied counter movements to the manipulandum so as
to maintain the cursor on a stationary target presented
at the center of the display.
In the second task (Task 2), proprioceptive response

delays (Tp , Tp*) were characterized by applying continu-
ous pseudorandom torque perturbations (0.05 – 1 Hz;
RMS = 0.3 Nm) to the manipulandum while subjects
applied counter torques to keep the manipulandum
aligned parallel to their sagittal plane. No visual feed-
back of arm position was provided during the torque
perturbations so as to constrain sensory feedback to the
proprioceptive path.
Subjects’ internal prediction of their visual and proprio-

ceptive response delays (Tv
*, Tp

*) were estimated based on
the timing and duration of corrective submovements in
Tasks 1 & 2 respectively. Computationally, submovements
have been associated with a discretization of corrective
movements that minimize movement error and energy
expenditure during closed-loop sensorimotor control
[42-45]. Analysis of corrective submovements can also
provide an estimate of the visual response delay [46]
along with other neurocomputational processes associ-
ated with movement planning and execution during a
corrective movement.
To account for passive dynamics of the arm in the

measured torque response during the second task, an
additional five “control” trials (30 sec. each) were col-
lected during which subjects were instructed not to
apply corrective torques (i.e. subjects were instructed to
maintain the same posture and level of stiffness as in the
other tasks, but to not otherwise interfere with the task).
During these trials, a high frequency torque perturbation
was applied to the arm (0-30Hz, first-order zero-phase
Butterworth filter with 1Hz cutoff ). The contribution of
the passive mechanical impedance of the arm to the
measured torque was estimated from the least-squares
linear regression between the measured and applied
torques during the passive trials (R2 > 0.75). The contri-
bution of the passive mechanical impedance of the arm
was then subtracted from the measured torque to

estimate subjects’ voluntary corrective torque during
proprioceptive task trials.

Task 3: Pursuit tracking of step torque Signal-
dependent motor variability (“motor noise”), was assessed
using an isometric task adapted from Jones et al. [37],
which measured joint torque variability as a function of
average joint torque. During the task, the manipulandum
position was fixed parallel to the subject’s sagittal plane
while subjects produced several isometric torque con-
tractions. Displacement of the cursor from the center of
the screen scaled in proportion to the torque applied to
the manipulandum. The subject was required to place
the cursor on one of five targets (desired elbow joint
torques of 4, 6, 8, 10, and 12 Nm flexion) by applying
the appropriate isometric contraction. Five trials were
collected at each of the five torque levels (25 trials total).
During each eight-second trial, visual feedback of the
target and cursor was shown for the first three seconds.
Visual feedback was then removed, while subjects
attempted to maintain the specified torque level for
remaining five seconds.

Task 4: Compensatory tracking with high-frequency
perturbations A high-frequency compensatory tracking
task was used to characterize the remaining elements of
the sensory feedback control model including the con-
troller gains (Kd , Kpr , Ki), visual and proprioceptive
feedback gains (Kv , Kp), and arm dynamics (J, B, K) to-
gether with their internal estimates (Kv

*, Kp
*, J*, B*, K*),

vis-à-vis the forward model. During the task, high fre-
quency, continuous, pseudorandom displacements (0–
10 Hz, RMS = 20° visual angle, first-order zero-phase But-
terworth filter with 1 Hz cutoff) were applied to the
cursor. Subjects were instructed to make corrective move-
ments as quickly and accurately as possible so as to main-
tain the cursor on a central stationary target. Ten 32-
second trials were obtained for each subject.

Task 5: Pursuit tracking of step displacements A step
displacement task was used to characterize the func-
tional impact of subjects’ deficits during a reach and
hold task and compare target capture movements in-
voked by the subjects to those predicted by the sen-
sory feedback control model of Figure 1. Subjects
performed ten trials of the task. Each 10-second trial
started with the target and cursor located at the same
screen position. After a one second delay, the target
was randomly displaced to the left or right by a randomly
selected distance ranging ±24.4 cm along the horizontal
midline of the display (corresponding to ±11.5 degrees
of visual angle). Subjects were instructed to center the
cursor on the target as quickly and accurately as
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possible and to maintain the cursor position until the
end of the trial.

Data analysis
Intention tremor frequency and power
Tremor frequency and power were quantified using each
subject’s performance during the spiral drawing task. For
each spiral trace, we performed a least-squared-error
linear regression of the pen-tip trace angle vs. radial
distance from the spiral’s center (Matlab command:
polyfit) to remove the linear increase in angular position
associated with the spiral. The best-fit regression was
subtracted from the pen-tip data to obtain the variation
in the subject’s movement about the spiral trajectory.
The power spectrum of the residual pen-tip data was
calculated for each trace and the best-fit (1/f ) frequency
spectrum was subtracted to account for low-frequency
(<1 Hz) drift and to isolate the spectral power due to
tremor. Tremor frequency was defined as the frequency
that contained the maximum power in each trial; fre-
quencies were averaged across trials to estimate the
average tremor frequency. Tremor amplitude was de-
fined as the maximum power in the tremor frequency
range (2–6 Hz) for the trial performed at each subject’s
fastest speed; this frequency range was chosen from the
distribution of upper limb tremor frequencies associated
with kinetic tremor [2].

Model parameter estimation
Sensory delays (Tasks 1 & 2) We used cross correl-
ation analysis to estimate delays in the visual and pro-
prioceptive feedback-driven responses to band-limited
low-frequency perturbations applied in the two low-
frequency compensatory tracking tasks (Tasks 1 & 2).
The visual response delay, Tv, was estimated as the trial-
wise average of the temporal offset (lag) between the
perturbations in cursor position applied in Task 1 and
the subject’s corrective responses measured by the
robot’s handle position. The proprioceptive response
delay was obtained by correlating the subject’s voluntary
corrective torque response in Task 2 with the applied
torque perturbations. The proprioceptive response delay,
Tp, was estimated as the trial-wise average of the temporal
lag between the continuous torque perturbations applied
to the arm in Task 2 and the subject’s voluntary corrective
responses.
We estimated each subject’s internal prediction of

their visual and proprioceptive response delays (Tv
*, Tp

*)
using the average interval between successive corrective
submovements measured in Tasks 1 & 2, respectively.
Submovement intervals were defined as the times
between zero-crossings of the elbow angular velocity.
We accounted for event detection failures in each task

(i.e. overestimation of submovement intervals) using a
Gaussian mixture model fit to the distribution of sub-
movement intervals across trials. In each task, the
means (and variances) of the component Gaussians in
the mixture model were constrained to be integer multi-
ples of the primary (i.e. shortest) interval, thus reflecting
a doubling and tripling of interval durations (and vari-
ability in their estimates). The internal estimate of the
visual and proprioceptive response delays were taken as
the means of the primary distributions of submove-
ments in Tasks 1 & 2, respectively.

Signal-dependent motor noise (Task 3) The gain of
the multiplicative (signal-dependent) motor noise, α, was
estimated using the torques measured during Task 3,
which involved pursuit tracking of step torque targets.
For each target torque level, the mean and variance in
the applied torque was measured during the last five sec-
onds of each trial (i.e. after visual feedback was removed).
The gain of the multiplicative noise α was estimated as
the slope of the linear regression between the mean and
the variance of the trial-averaged torque as a function of
target torque level.

Frequency response analysis (Task 4) For each subject,
we estimated the remaining model parameters (Kd , Kpr ,
Ki , Kv , Kp , J, B, K), together with the internal estimates
(Kv

*, Kp
*, J*, B*, K*) using a two-stage frequency response

analysis, which related the experimentally-imposed
cursor and torque perturbations to compensatory
changes in arm position. During the analysis, each sub-
ject’s sensory delays and motor noise parameters were
held constant at values derived during the analysis of
data from the first three tasks. The remaining model
parameters were fit to each subject’s responses in the
frequency domain using the simplex method (Matlab:
fminsearch).
In the first stage of the analysis, the second-order

model of musculoskeletal dynamics (Eq. 2) was fit to the
magnitude of the frequency response function (FRF) re-
lating the subject’s arm position to the applied torque.
To reduce measurement noise prior to the model fit,
FRFs were computed for all pair-wise combinations of
trials as the ratio of the trial-wise differences between
the applied torque (τ) and measured arm position (θa)
(see Appendix), and then averaged:

FRF sð Þ ¼ 1
M

XN

i¼1

X
j ¼ 2
j > i

N θai sð Þ−θaj sð Þ
τi sð Þ−τj sð Þ :

where N is the number of trials and M is the total num-
ber of trial-wise pairs.
In the second stage of the analysis, the remaining

model parameters were estimated from the closed-loop
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transfer function relating the applied visual perturbation
(Dext) and measured arm position (θa):

where,

P� sð Þ ¼ 1
J�s2 þ B�sþ K � ð4Þ

characterizes the forward model prediction of arm
kinematics. The closed-loop model (Eq. 3) was fit to a
separate FRF formed from the ratio of trial-wise differ-
ences between the applied perturbation (Dext) and mea-
sured arm position (θa) computed for all pair-wise
combinations of trials (See Appendix). Visual and pro-
prioceptive feedback gains (Kv

*, Kp
* ) were assigned using

the subject’s fitted sensory gains (Kv, Kp). Motor noise

(α), visual Tv;T �
v

� �
and proprioceptive Tp;T �

p

� �
re-

sponse delays were fixed at the mean values estimated
from tasks 1–3.
Phase data was excluded from the model fit due to the

noise in FRF phase estimates, particularly at higher
(>2 Hz) frequencies where the power of both the input
signal and the subject response were attenuated. For fre-
quencies below two hertz, the model and FRF phase
profiles were driven primarily by the visual delay in the
system, which was more accurately estimated using the
cross-correlation between the applied perturbations and
the subject’s corrective response.
We performed bootstrap analysis for each stage of

analysis to quantify uncertainty in our estimates of the
FRF and to quantify sensitivity of parameter estimates to
measurement noise and model initial conditions. For
each bootstrap, 10,000 model fits were performed (with
random sampling of the initial conditions for each par-
ameter and of the FRF data points included in each fit):
Initial conditions for each parameter were selected from
a uniform distribution spanning one order of magnitude
centered on nominal values estimated across subjects in
a previous analysis [33]; Three hundred data points were
selected randomly with replacement across the three-
decade range of the FRF. Model fits that did not con-
verge to a solution within 400 iterations due to poor ini-
tial parameter estimates (~10% of cases) were discarded
from subsequent analysis. For the remaining fits, the
mean and standard deviation of the fitted parameters
were used to estimate the nominal best-fit value and
magnitude of uncertainty in the model parameters. For
the second-stage bootstrap, plant parameter triplets (J, B

and K) were randomly sampled from the first-stage FRF
analysis to propagate the accumulated error across se-
quential model fits. During the second stage fits, these
triplets were held constant.
For completeness, model and FRF phases for each sub-

ject were compared post-hoc using the best-fit model
parameters to the FRF magnitude. Due to the noise in
FRF phase estimates at higher frequencies, phase profiles
could not be reliably “unwrapped” using a one sample
unwrapping procedure. Instead, a multi-sample unwrap-
ping procedure was implemented using a linear regression
of phase estimates across the preceding 20 frequency sam-
ples to generate a 95% confidence interval around the lo-
cation of the next “unwrapped” phase value. The FRF
phase was then unwrapped by adding or subtracting mul-
tiples of 2π until the estimate fell within the confidence
interval. In cases were the phase estimate could be un-
wrapped to two or more locations within the confidence
interval, the median was chosen. Uncertainty in the phase
profile resulting from the interaction between the
unwrapping procedure and the occurrence of multiple
phase estimates for confidence intervals exceeding 2π
were quantified using a bootstrap analysis. During the
bootstrap analysis, the unwrapping procedure was ap-
plied to the FRF phase estimates 1000 times, randomly
sampling the phase at each frequency containing two or
more unwrapped phase estimates within the confidence
interval. The 95% confidence interval associated with
the unwrapped phase profile was defined at each fre-
quency from the distribution of samples obtained from
the bootstrap analysis.

Pursuit tracking of step target displacements (Task 5)
We evaluated the ability of each subject’s best-fit model
to characterize sensory feedback control in a separate
task that required pursuit tracking in response to step
displacements (task 5). For each subject, the trial-wise
measures of target acquisition time and mean squared
endpoint error were calculated. Target acquisition time
was calculated as the time required for the subject to
move within two degrees of the target. Endpoint error
was calculated as the mean-square error (MSE) from the
moment of target acquisition to the end of the trial.
Target acquisition time and endpoint error were then

θa sð Þ ¼ −
KvC sð ÞP sð Þe−Tvs

1þ C sð ÞP� sð Þ−C sð ÞP� sð Þ � K �
ve

−T�
v s þ K �

pe
−T�

ps
� �

þ C sð ÞP sð Þ Kve−Tvs þ Kpe−Tps
� �

2
4

3
5Dext sð Þ ð3Þ
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compared with those of the best fit model to determine
the extent to which subject performance was constrained
by limitations of sensory feedback control as identified by
the model of Figure 1.

Statistical testing Healthy subjects were matched to
patients by age and gender to control for differences in
movement control due to factors unrelated to MS.
Group differences in the measurements of visual and
proprioceptive response delays, submovement intervals,
motor noise, and best-fit estimates of the model param-
eters were tested for statistical significance using a
paired, two-sample t-test. Within-subject comparisons
of the parameters characterizing internal (predicted)
and actual passive limb dynamics were tested for statis-
tical significance using the paired samples z-score of
the bootstrap distributions to evaluate the distribution
difference from zero (i.e., no difference between distri-
bution means). Pearson’s correlation coefficient was ap-
plied across participants with MS to identify significant
linear relationships (p < 0.05) between all combinations
of best-fit model parameters and the quantitative clin-
ical assessments of movement performance (e.g. 9HPT,
TAS). Post-hoc analysis of the relationship between
spiral tremor power and the difference between the in-
ternal (predicted) and actual passive limb dynamics was
characterized empirically using a least-squares fit to a
saturating exponential function of the form

Δ pð Þ ¼ C � 1−e−r�xð Þ

where C is a scaling factor, r is a constant, and x is
tremor power.

Results
Tremor frequency and power
Figure 3A shows selected spiral traces (insets) and corre-
sponding power spectra for a subject with MS (Subject
6; TAS = 3) and an age-matched control subject. In the
spiral drawing task, tremor frequencies for subjects with
MS ranged from 2.36-5.01 Hz (mean ± SD: 3.38 ± 0.91Hz).
Within the 2–6 Hz range associated with tremor, max-
imum power increased with the speed of movement (data
not shown) and ranged from 0.22-5.31 cm2-s (mean ± SD:
1.48 ± 1.82 cm2-s) across MS subjects for their fastest trac-
ings (Figure 3B). The power in the 2–6 Hz band corre-
sponded roughly with TAS, with subjects 5 (TAS = 2) and
8 (TAS = 3) exhibiting the worst tremor and subjects 1, 2
(TAS = 1), and 4 (TAS = 2), exhibiting the least tremor
on the day of testing. Tremor power was significantly
correlated with 9HPT score on the day of testing (r =
0.80; p = 0.006).

Visual and proprioceptive response delays (Tasks 1 & 2)
Figure 4A and B show the average visual and proprio-
ceptive response delays for individual subjects with MS
and the corresponding range (±SD) for control subjects
(shaded bands). The average visual response delay mea-
sured across subjects (Figure 4A-left), was significantly
higher in subjects with MS (647.1 ± 192.3 ms), compared
with control subjects (450.9 ± 38.2 ms) (t(7) = 2.63, p
= .034). In contrast, the average proprioceptive response
delay (Figure 4B-right) did not differ significantly be-
tween groups (MS: 201.7 ± 56.5 ms; Controls: 175.1 ±
31.9 ms) (t(6) = 1.39, p = 0.21). In four of the eight MS
subjects with elevated TAS scores (subjects 4, 5, 6, and
8), visual response delays were >3σ above the range of
control subjects. Across subjects, visual response delay

Figure 3 Tremor assessment using the spiral drawing task. (A) Power spectra (with low-frequency drift removed) and sample spiral drawings
(inset) for Subject 6 with MS (red; TAS = 3) and an age-matched control subject (blue). The shaded area highlights the range of frequencies
associated with the subject’s tremor. (B) Maximum power within the 2–5 Hz frequency range for subjects with MS together with their
corresponding tremor assessment score (TAS).
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times were not significantly correlated with either TAS
or spiral tracing performance (p > 0.25), likely due to the
“outlier effect” of subject 7 on the small population
sample. Individual proprioceptive response delays for
subjects with MS fell within the control group range -
excepting subject 4, whose proprioceptive delay was >2σ
from the control average.
Figure 5 shows representative single-trial velocity pro-

files within trial and the distributions of visual and pro-
prioceptive submovement intervals across trials for a
representative subject with MS in Task 1 (left), which in-
cluded visual perturbations and in Task 2 (right), which
included physical perturbations. For all subjects, distri-
butions were well fit by the Gaussian mixtures model
(r2 > 0.70 p < 0.001 with 3 Gaussians) wherein the mean
of each Gaussian was centered at an integer multiple of
the interval associated with the primary distribution. For
each subject, internal (predicted) visual and propriocep-
tive response delays were estimated as the mean sub-
movement interval of the primary distribution.
Figure 6A shows the average visual and proprioceptive

submovement intervals across subjects. Proprioceptive
submovement intervals did not differ significantly be-
tween the MS and age-matched control groups (t(6) =
1.88, p = 0.11). Visual submovement intervals tended to
be shorter in subjects with MS compared to controls,
however, the difference did not reach statistical signifi-
cance (t(7) = −1.92, p = 0.097). Figure 6B compares the
duration of visual and proprioceptive response delays for
each participant with their corresponding submovement
intervals. Proprioceptive submovement intervals and re-
sponse delays were approximately equal for both control
and MS subjects (t(9) < 1.6, p > 0.05). Similarly, visual re-
sponse delays and submovement intervals did not differ
for control subjects (t(9) < 1.4, p > 0.05). By contrast, four
of the eight MS subjects exhibited a dramatic mismatch

between their visual submovement interval and corre-
sponding visual response delay. In these subjects, visual
response delays increased markedly compared to control
subjects, resulting in a significant group difference be-
tween visual response delay and visual submovement
interval (t(7) = 2.55 p = 0.038).

Motor noise (Task 3)
One subject with MS (Subject 5) was unable to complete
the task due to time constraints. For the remaining sub-
jects, the scaling of elbow torque variability with mean
elbow torque showed no significant differences between
groups (control subjects: 0.021 ± 0.010; subjects with
MS: 0.025 ± 0.011; paired samples: t(6) = 0.72, p = 0.48).

Frequency response analysis (Task 4)
The frequency response functions (and corresponding
best-fit models) relating corrective changes in arm pos-
ition to the perturbation of cursor position are shown in
Figure 7 for subject 4 with MS (right) and the corre-
sponding age-matched control (left). For subject 4, the
empirical frequency response function and corresponding
model fit both contain a marked resonance peak between
2–4 Hz, closely approximating the tremor frequency ob-
served in the subject’s spiral tracing task (i.e., 2.4-5 Hz).
The peak frequency identified in the compensatory track-
ing task was slightly lower than in the spiral tracing task,
likely due to the additional inertia of the manipulandum
handle and robot, which would act to reduce the resonant
frequency of the combined arm + robot system. The mag-
nitude of the FRFs for all subjects (control and MS) were
well approximated by the model of Figure 1 (R2 > 0.80 in
every case). The phase of the FRF was well approximated
by the model until approximately 2Hz and 6Hz in the MS
patients and control subjects respectively. Within this
range, the phase profile was dominated by the phase lag

Figure 4 Visual and proprioceptive response delays for control subjects (blue) and subjects with MS (red). (A) Group visual response
delays are shown on the left. Visual response delays for individual subjects with MS are shown on the right together. (B) Group proprioceptive
response delays are shown on the left. Proprioceptive response delays for subjects with MS are shown individually on the right. Error bars
denote ± SD for group and individual measures respectively. Shaded regions denote the corresponding ranges (±SD) for the control group.
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associated with the visual delay (Figure 7B – gray line). At
higher frequencies, phase estimates became too noisy to
unwrap reliably, however, model responses fell within the
95% confidence interval of possible phase profiles un-
wrapped from the FRF phase.
Of the thirteen parameters estimated using the fre-

quency responses analysis, significant differences between
groups were observed only for the integral and derivative

gains of the generic feedback controller. Subjects with
MS exhibited higher integral gains than control subjects
(6.86 ± 4.71 vs. 4.71 ± 2.39 Nm/deg-s; t(7) = −3.62, p <
0.01) and higher derivative gains than control subjects
(8.3×10−3 ± 3.8 ×10−3 vs. 3.3 ×10−3 ± 1.8 ×10−3 Nm-s/
deg; t(7) = −3.38, p < 0.05). In control subjects, the
derivative gain was significantly correlated with integral
gain, musculoskeletal viscosity, and musculoskeletal

Figure 6 Comparison of submovement intervals and task response delays. (A) Group average internal visual response delay (±SD) for
control subjects (blue) and subjects with MS (red). (B) Visual (filled circles) and proprioceptive (open triangles) response delays (±SD) as a function
of submovment interval for control subjects (blue) and subjects with MS (red). The diagonal line (black) represents equivalency between response
delay and submovement interval.

Figure 5 Characterization of visual and proprioceptive submovement intervals. (A) Movement velocity profiles used to calculate visual (left)
and proprioceptive (right) submovment intervals for Subject 4 (MS, TAS = 2). Examples of individual submovements are highlighted (gray) (B)
Distribution of submovement intervals across trials for vision (left) and proprioception (right) for a representative subject with MS (Subject 4). The
submovement interval for each subject was characterized by the mean and standard deviation of the best-fit gaussian mixtures model (red line)
formed from successive gaussian functions whose means and variances are constrained to be integer multiples of the primary distribution (black lines).
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stiffness (r = 0.81, 0.71, and 0.75 respectively; p < 0.05).
In subjects with MS, these correlations were absent; de-
rivative gain was not correlated with actual (or pre-
dicted) musculoskeletal viscosity or stiffness and it was
not correlated with tremor assessment score and tremor
amplitude measured by the spiral tracing task (r < 0.50;
p > 0.25). Instead, the best-fit derivative gain was signifi-
cantly correlated with visual response delay in subjects
with MS (r = 0.77; p = 0.024). This shift in coupling from
the plant (in controls) to the visual delay (in subjects
with MS) is interesting in light of the derivative gain’s
traditional role in modulating the transient response of
the system. This finding suggests the increased visual
processing delay seen in MS may play a central role in
causing subjects to alter the effective closed-loop dynamic
response of the arm during goal-directed movement.
We next analyzed the best-fit sensory feedback control

models from subjects with MS to identify systematic
covariations between model parameters and clinical per-
formance measures. We found that subjects with MS
displayed a consistent mismatch between the model pa-
rameters characterizing predictive arm dynamics (Eq. 4)
and the actual arm dynamics (Eq. 2). The degree of

parameter mismatch - quantified by the mismatch mag-
nitude normalized by the corresponding parameter value
from the actual arm dynamics - varied systematically
with tremor assessment score (TAS). Mismatches in all
three dynamical parameters (J, B and K) increased with
tremor severity, although mismatches in the effective
viscosity were evident only in subjects with severe tremor
(TAS = 3), (Figure 8A). By contrast, control subjects
showed no mismatch between the parameters characteriz-
ing internal and actual passive joint dynamics (two-tailed
Z < 1.9, p > .05 for each parameter).
Mismatches in inertia and stiffness also varied system-

atically with tremor power characterized using the spiral
tracing task (Figure 8B); In both cases, the relationship
was well approximated by a saturating exponential func-
tion (R2 > 0.73). By contrast, no systematic relationship
was observed between mismatches in viscosity and tremor
power (Figure 8B).

Pursuit tracking of step target displacements
We required subjects to perform a final tracking task to
characterize the impact of sensory feedback control defi-
cits on a reach and hold task similar to transporting a

Figure 7 Subject frequency response functions (FRFs) and model fits. (A) Magnitude of the FRF (colored traces) relating applied cursor
perturbation to corrective change in arm position for subject 4 with MS (TAS = 2; right) and the age-matched control subject (left). The best-fit
model for each subject is denoted by the solid black line. (B) Phase of the FRF (colored traces) with 95% confidence intervals (grey shading) for
subject 4 with MS (right) and age-matched control subject (left). The solid black line denotes the best-fit model to the subject’s magnitude FRF.
The grey line denotes the phase profile associated with the subject’s visual delay.

Heenan et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:170 Page 12 of 19
http://www.jneuroengrehab.com/content/11/1/170



cup of water along a tabletop. The task also enabled us
to compare movements generated by the subjects to
those predicted by the sensory feedback control model
of Figure 1. Subject and model performance were exam-
ined using measures of target acquisition time from the
onset of the step displacement and steady-state endpoint
error following the displacement. Control subjects’ per-
formance tended to cluster into one of two general task
strategies characterized by either larger endpoint errors
and faster response times or smaller endpoint errors and
slower (and more variable) response times (Figure 9;
note the two distinct peaks in the bivariate distribution
of control subjects’ performance represented by the dark
shading). For responses emphasizing speed of movement
(higher error, lower response time), 95% of trials took
less than 1200 ms to reach the target (Figure 9, top
shaded distribution) and resulted in an endpoint MSE’s
up to 0.02 degrees2. For responses emphasizing endpoint
accuracy, 95% of trials were completed within 2000 ms
with endpoint MSE’s less that 0.008 degrees2 (Figure 9,
bottom shaded distribution).

Subjects with MS exhibited similar trends in step-
tracking performance, with the exception that the four
subjects with high visual delays (Figure 9, dark red circles)
exhibited performances that fell outside the 95% confi-
dence interval bounds of the bivariate distribution of the
response times and endpoint MSEs exhibited by control
subjects. The subjects with high visual delays all had high
TAS and high tremor power. Three of the four subjects
(S4, S5, and S6) had significantly higher response times
when performing the step-tracking task. Endpoint MSE
was also increased, falling within the range of control
responses emphasizing speed over accuracy. The
fourth subject (S8) showed the reverse pattern with
an increase in endpoint MSE but no apparent in-
crease in response time. For all subjects with MS, the
corresponding performance of the best-fit model,
averaged across trials, is shown for comparison
(Figure 9, triangles). In all cases, model-predictions
underestimated actual response times and in all but
two cases, model-predictions over-estimated actual
terminal mean-squared errors.

Figure 8 Mismatch between predictive and actual limb dynamics. (A) Percent mismatch between predictive versus actual estimates of
passive joint dynamics (inertia, viscosity, stiffness) as a function of tremor severity (TAS score) in subjects with MS. The mismatch between actual
and predicted limb dynamics increased with tremor assessment score. Error bars denote ± SD of the bootstrap distribution. (B) Percent mismatch
between the parameters characterizing internal (predicted) and actual passive joint dynamics for subjects with MS (±SD), plotted against tremor
power characterized using the spiral-tracing task. Percent mismatch increased as a saturating function of with tremor magnitude (red) for inertia
and stiffness (R2 > 0.70; p < 0.01) but not for viscosity (R2 = 0.16; p = 0.32).
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Functional impact of mismatch between actual and
predictive limb dynamics
We examined the functional consequence of the mis-
match between actual and predictive arm dynamics in a
subsequent, post-hoc simulation analysis. For each MS
subject we performed two forward dynamic simulations
that characterized the model’s performance on the step
displacement task using (a) the best-fit model parameters,
including mismatches between actual and predictive limb
dynamics; and (b) “corrected” model parameters wherein
the predictive limb dynamics of the forward model were
forced to match the actual limb dynamical parameters.
Figure 10 shows representative results for a subject
with MS with moderate tremor (TAS = 2). Note how
the mismatch in limb dynamics actually decreased the
time to target acquisition and resulted in lower end-
point error.

Discussion
We used a multisensory model of sensory feedback con-
trol to individually characterize sources of sensorimotor
dysfunction in subjects with MS performing a series of
goal-directed stabilization and movement tasks about
the elbow. In contrast to the initial supposition that MS
might impact sensory feedback control uniquely in each
subject, the results suggest that upper extremity tremor

and dysmetria may result from systematic changes in
sensory feedback control. Specifically, subjects with mod-
erate to severe tremor (TAS ≥ 2) exhibited increased visual
response delays relative to normal control subjects. They
also exhibited systematic mismatches between predictions
of arm dynamics (vis-à-vis the forward model) and actual
arm dynamics which were not present in normal control
subjects; the degree of mismatch in subjects with MS cor-
related with tremor signal power measured in our spiral
tracing task. We also observed group-wise differences in
the integral and derivative gains of a generic model of the
neural feedback controller. Whereas the controller gain
parameters covaried with the dynamic properties (i.e.,
apparent viscosity and stiffness) of the musculoskeletal
system in normal control subjects, the derivative gain par-
ameter in subjects with MS correlated instead with the
visual delay. A comparison of actual and simulated
responses to step changes in desired performance
suggests that the apparent mismatch between subject
predictions of arm dynamics and actual arm dynamics
may actually serve to improve response times in sub-
jects with MS, despite their long visual delays. Taken
together, our results suggest that tremor and dysme-
tria in MS may be caused by a combination of two
factors: an inability of the brain to adequately adapt
to increases in the time required to process visual

Figure 9 Steady state error (degrees) vs. response time (ms) during a reach and hold task (step displacement). Shaded regions (dark,
medium, and light gray) denote the 50, 90, and 95% confidence intervals estimated from a mixture of Gaussians fit to control subjects’ response
across all trials. For subjects with MS, trial-averaged response times and MSEs are shown individually for clarity (filled circles). Dark red symbols
denote MS subjects with “high” (>3SD above the control mean) visual delays, and pink symbols denote MS subjects with “low” (<3SD) visual
delays. The average best-fit model performance to the same trials is also shown for each subject (filled triangles). Four subjects (all with “low”
visual delays) lie within the 95% CI for control subjects. Four subjects (all with “high” visual delays) lie outside the 95% CI for control subjects. In
all cases, the best-fit sensory feedback control model for subjects with MS (filled triangles) reacted more quickly to a target perturbation than the
subjects’ actual responses (filled circles).
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information related to movement and by compensa-
tory – but maladaptative – errors in predictions of
arm dynamics.
An increased visual delay such as the one observed

here is consistent with reductions in the conduction
speed of action potentials due to disease-induced demye-
lination in MS [47] and it agrees well with the increased
time required by MS subjects to perceive visual informa-
tion and perform visually-guided tasks [47-49]. Proprio-
ceptive conduction time in the lower extremities has
also been shown to increase in MS [50], although we did
not find a corresponding increase in proprioceptive re-
sponse delay for the upper extremity. This may be due to
the longer path length in the spinal cord for the transmis-
sion of motor control signals to the lower extremities.
Interestingly, the increased visual response delay in sub-

jects with MS was not accompanied by an increase in the
latency of submovements (i.e. their submovement inter-
val). Submovements have been used previously to study
impairments in movement control [51,52]. Current theor-
ies of intermittent control during goal-directed movement
associate individual submovements with discretization of
sensorimotor control, such that each submovement repre-
sents a complete “primitive” movement profile comprised
of movement planning, movement execution and sensory
feedback phases [42-45]. For the purpose of characterizing
feedback control in MS, we have assumed that the com-
bined time delays associated with these three submove-
ment phases form the basis of the expected response

delays characterized by the model (Figure 1). Correspond-
ingly, the submovement intervals measured experimen-
tally in response to corrective movements mediated by
visual or proprioceptive motion cues (Exp. 1a and 1b re-
spectively) reflect internal estimates of the open-loop sen-
sory processing delays. This interpretation is supported by
the consistent match in control subjects between visual
and proprioceptive response delays and the measured sub-
movement intervals (Figure 6B).
In subjects with MS, submovement interval and visual

response delay differed significantly in four of the eight
subjects, suggesting that they failed to adjust (or were
unable to adjust) their expectations of visual processing
delays to compensate for the full increase in visual pro-
cessing time resulting from the disease. A previous
study by Miall and Jackson has demonstrated that it is
possible to adapt to increases in extrinsic feedback de-
lays [46]. However, the visual delays seen here in sub-
jects with MS were markedly larger than those that
Miall and Jackson used to adapt their neurologically intact
subjects (<300 ms). Moreover, the delays experienced by
MS subjects reflect intrinsic, rather than extrinsic sources.
It is possible that intrinsic sources of delay may not en-
gage adaptive mechanisms that respond to task-specific
changes in the environment (cf. [53]).
Although continuous control models, such as the one

used here, make simplifying assumptions that neglect
the impact of intermittent feedforward control actions,
continuous control models have been shown to

Figure 10 Step response of the best-fit sensory feedback control model for subject 4 with moderate tremor (TAS = 2). Response for the
best-fit model containing a mismatch between the actual and expected elbow kinematics (black line) and for a model in which the actual and
expected kinematics are matched (gray line).
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accurately predict human performance in a variety of
single joint motor tasks that minimize the predictability
of environmental or target perturbations [30-33]. Add-
itional simplifications of our model include the use of a
1-D task to characterize movement control and the use
of a second-order musculoskeletal plant model. These
simplifications were made because the plant model of
the arm becomes much more complicated with the in-
clusion of additional joints or by including higher-order
models of muscle activation contraction dynamics [54].
We believe these simplifications are justified because the
bandwidth limitations of the plant are dominated by the
effects of the arm’s inertia and mechanical viscoelasticity
rather than by low-pass filter properties of the activa-
tion/contraction dynamics - at least in quasi-isometric
conditions such as the stabilization tasks studied here.
For subjects with MS, the pattern of mismatch in the

limb dynamics (stiffness and inertia) co-varied with tremor
assessment score and tremor power calculated from the
spiral-tracing task (Figure 8). This was despite marked dif-
ferences in task design; the model was characterized using
single-joint compensatory tracking movements with the
arm supported against gravity whereas the clinical assess-
ments and spiral tracing required the subject to generate
motion at multiple joints without arm support. Corres-
pondence in the results of these disparate tasks is to be ex-
pected; a disease-related increase in visual processing time
is expected to impact motor performance in any visuo-
motor task. The simulation results of Figure 10 suggest
that the observed mismatch between internal estimates of
plant dynamics and actual plant dynamics may actually
help subjects with moderate tremor reduce steady-state
movement error despite an inability to compensate for
long visual delays. This form of compensation would not
be unreasonable, particularly for adaptive mechanisms in
the brain that seek to minimize discrepancy between the
predicted and realized sensory consequences of actions
(cf. [55]). Uncompensated increases in visual delay would
yield lagged perceptions of arm position, compromising
limb state estimation [20]. Considering that a delay in the
limb’s response to descending motor commands also oc-
curs when the hand grasps an object that is heavier than
expected, an uncompensated lag in the visual perception
of limb motion could be misconstrued as an unexpected
increase in limb inertia. Therefore, increasing the internal
estimate of limb inertia (Figure 10) could, within narrow
limits, partially compensate the functional impact of in-
accurate predictions of sensory delay. Beyond those
limits, changes in the estimated limb dynamics could
lead to increased joint torque production (intended to
overcome an environmental load that is not in fact
present) and inappropriate compensatory responses to
the perceived error. This notion is consistent with the
suggestion that intention tremor in MS is due, in part,

to inaccurate voluntary corrections to errors in position
[48]. From a neurological standpoint, cerebellar damage,
which has been linked with tremor in previous studies
([16,17,56,57]), could degrade pathways necessary for ef-
fective sensorimotor adaptations, causing inappropriate
compensatory responses to become more likely, and ex-
acerbate tremor severity.
During the reach-and-hold task, subjects with MS

tended to move more slowly than the control subjects.
They also moved more slowly than the performance pre-
dicted by best-fit models of Figure 1. These results are
consistent with a favoring of accuracy over speed in the
pursuit tracking of step changes in target location and
may reflect a strategic choice by subjects to minimize
endpoint errors associated with delay and kinematic
mismatches. This bias toward accurate (rather than fast)
movements is not surprising since in many daily activ-
ities (e.g. eating, dressing) it is more important to bring
the hand accurately to a desired spatial location than to
do so with speed.
Our results suggest a possible reinterpretation of re-

sults of prior studies seeking to reduce tremor in MS.
Tasks which force subjects to adapt to novel force fields
or to perturbations [27-29] could allow subjects to “re-
set” maladaptive models and form a new model that is
better able to compensate for long visual delays. Our
results also suggest novel rehabilitative strategies for
reducing intention tremor in subjects with MS. We envi-
sion at least two possibilities: one approach would
require subjects to hold the handle of a rehabilitation
robot while making goal directed movements within a
simple virtual-reality environment. As training progresses,
subjects would be required to adapt to slowly-increasing
visuomotor delays while the robot would simulate mech-
anical loads that vary unpredictably from trial to trial, thus
discouraging compensatory mal-adaptation of musculo-
skeletal property estimates. We speculate that providing
practice in compensating for visuomotor delays while dis-
couraging adaptation of limb dynamics will favor appro-
priate adaptive compensations for physiological visual
processing delays, thereby mitigating tremor.
A second approach centers on the idea that the brain’s

effort to minimize performance error hinders the ability
to adapt to changes in the physiological visual delay.
That is, we speculate the presence of a non-monotonic
relationship between performance error and increases in
predictive delay such that small increases in predictive
delay would lead to increased errors, while large changes
in expected delay could lead to optimal performance.
This non-linear relationship may preclude the inherent
adaptive mechanisms from matching the predictive delay
to the true physiological delay. Rehabilitation under this
approach would involve using the feedback control
model (Figure 1) to identify and tailor the visual
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feedback to gradually shift the minimum performance
error to the actual visual delay [58].

Conclusion
The preliminary findings presented here demonstrate that
systems identification techniques provide an informative
framework for investigating how neuromotor disease af-
fects motor control and the neuromotor causes of motor
disability. Specifically, we have done so by examining defi-
cits in the neural processes underlying upper extremity
motor dysfunction in a small cohort of individuals with
clinical diagnoses of Multiple Sclerosis. We found evi-
dence that tremor and dysmetria may be caused by an in-
ability of the brain to adequately adapt to increases in the
time required to process visual information related to
movement as well as by compensatory mal-adaptations of
internal estimates of arm dynamics. Future studies should
seek to confirm the findings reported here with a larger
cohort of individuals with MS. Subsequent studies could
then seek effective ways to reduce intention tremor by
identifying strategies that mitigate motor instability due to
slowed visual processing caused by MS.

Appendix 1. Subtraction Analysis
A subtraction analysis was used to reduce the impact of
noise on the estimate of the subjects’ frequency response
function (FRF). For each trial, the relationship between
the input to the sensorimotor control system and joint
angle output can be expressed as:

θa sð Þ ¼ H sð Þ � X sð Þ þ N sð Þ
where X(s) is the power spectrum of the input – either
the torque or external perturbation – and N(s) is the
power spectrum of all noise sources combined. H(s)
is the transfer function relating the input X(s) to the
output θa(s). The sum of noise sources n(t) is as-
sumed to be zero mean and characterized by a nom-
inal spectrum N(s). In the frequency domain, the
addition of noise results in a frequency dependent
offset from the “true” FRF. This offset can be charac-
terized as a random variable Ni(s) with variance σn

2(s),
whose mean corresponds to the average noise
spectrum. To eliminate this offset, individual esti-
mates of the FRF were obtained by pair-wise subtrac-
tion of the trial-wise input and output spectra. For a
pair of trials,

θa1 sð Þ ¼ H sð Þ � X1 sð Þ þ N1 sð Þ
θa2 sð Þ ¼ H sð Þ � X2 sð Þ þ N2 sð Þ

subtraction yields

θa1 sð Þ−θa2 sð Þ ¼ H sð Þ � X1 sð Þ−X2 sð Þð Þ þ N1 sð Þ−N2 sð Þð Þ

so that the nominal noise spectrum is removed and the
variance is now centered around 0. Rearranging this
equation, we get:

H sð Þ ¼ θa1 sð Þ−θa2 sð Þ
X1 sð Þ−X2 sð Þ þ

N2 sð Þ−N1 sð Þ
X1 sð Þ−X2 sð Þ

where the first term characterizes the difference FRF of
the system and second reflects the contribution due to
noise. The frequency response due to noise has zero
mean and variance σ2n=σ

2
X .

The transfer function for the system, H(s), was esti-
mated by taking the average of the difference FRFs across
all pair-wise trial combinations (i, j),

H sð Þ≅FRF sð Þ ¼ 1
M

XN
i¼1

X
j ¼ 2
j > i

N θai sð Þ−θaj sð Þ
Xi sð Þ−Xj sð Þ

where M is the number of pairwise trial combinations
and the contribution of the (zero-mean) noise spectrum
decreases as the inverse square root of M.
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