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ABSTRACT 
AN EXPERIMENTAL AND FINITE ELEMENT STUDY OF A WELDED 

JOINT OF A SNOWPLOW BLADE 

 

George E. Selburg Jr. 

Marquette University 2014 

This study describes a method to evaluate the fatigue life of a welded joint of 

a snowplow.  Fatigue specimens were fabricated, which simulated the joint and 

its loading characteristics. The joint in the specimens was characterized by 

measuring the geometry of the weld and the hardness of the parent material, 

weld material, and heat affected zone.  It was determined that the fatigue crack 

that developed in the joint was exposed to mode I fracture forces in the normal 

plane of the crack.  The specimens were then tested in a hydraulic closed looped 

system to determine the mechanism of fatigue for the welded joint and the 

fatigue crack propagation parameters.  A finite element model was then 

generated with a pre-crack mesh in a location determined from the experimental 

and field data on crack growth.  The crack parameters were estimated from 

examining the test specimens after the test was completed.  The FEA results 

were then compared to the experimentally determined stress intensity factors. 
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1 INTRODUCTION 

1.1 Background 

The commercial snowplow industry is faced with designing products for an ever lighter 

commercial vehicle.  The driving force for vehicle manufacturers is the federal mandate 

for higher gas mileage for vehicles.  The major trend over the past 15 years is to design 

vehicles which are lighter and this in turn usually reduces the front axle rating of the 

vehicle.  The lighter front end of vehicles then leads snowplow designers and engineers 

to reduce the weight of the snowplow.  They are then limited to an overall snowplow 

weight that can safely attach to the front of the vehicle. This results in challenges in the 

design of the snowplows.  The snowplows must maintain current performance and yet 

meet the weight restrictions of the vehicle. 

Fatigue has been an increasing issue in snowplow design.  The requirements for 

greater fuel economy and lighter suspensions of mid-size vehicles have forced snowplow 

designers to decrease the weight of the equipment and yet maintain or improve the 

overall performance.  The reduction in weight inherently requires that service loading, 

dynamic responses, and other service parameters be well understood by designers and 

analysts.  The more complete the analysis, the greater the chance that intelligent 

decisions will be made to modify the structure without compromising structural integrity.  

This knowledge will also aid in optimizing the strength to weight ratio of the structure, 

which is a major obstacle. 

Fatigue crack initiation and propagation in the joint chosen for this study (Figure 1) 

has recently become an issue because of unexpected failures observed in the field.  

These failures have been occurring after approximately 150 to 200 hours of service, 

which has been deemed to be an unacceptable product life. 
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Figure 1.  View of the snowplow and the fatigue failure site location. 

The failure that results from the fatigue of the welded joint renders the product 

unusable.  To date extensive lab and field-testing has been performed on the snowplow 

to extract service loading histories experienced by the product.  Data has been collected 

by placing strain gauges, accelerometers, and pressure transducers at key points on the 

snowplow.  The data has been collected and analyzed, and time history profiles have 

been developed to determine the forces associated with the plowing events that affect 

the fatigue of this particular joint. 

1.2 Literature Review 

The study of fatigue has been of significant interest since Wilhelm Albert published his 

article in 1837 that outlined a test machine for conveyor chains used in the Clausthal 

mines[1].  It is estimated that fatigue of metal structures cost consumers an estimated 

3% of the GDP in premature or unexpected failures each year[2].  The understanding of 

http://en.wikipedia.org/wiki/Conveyor
http://en.wikipedia.org/wiki/Clausthal-Zellerfeld
http://en.wikipedia.org/wiki/Mining
http://en.wikipedia.org/wiki/Mining
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fatigue mechanisms and the ability to predict fatigue life accurately and consistently is a 

large undertaking and requires vast amounts of research.  Fortunately, there is an 

analytical tool that provides an invaluable method of predicting fatigue in a structure. 

This is the finite element method (FEM), which has been used since its inception in the 

early 1940's.[3] 

1.2.1 Definitions 

While actual fatigue loading may be quite complex, fatigue testing is usually performed 

using sinusoidal loads at various mean stresses [Figure 2].  The quantities involved are 

the stress range, which is the difference between the maximum stress, max, and the 

minimum stress, min.  The mean stress is the sum of the max andmin divided by two, 

and the stress amplitude is half the stress range, /2. The stress ratio, R, is the ratio of 

min /max, and A is the amplitude ratio a/m.  

                       
           

 
              

  

 
     [ ] 

   
    

    

               
  

  

                                                                 [ ] 
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 Figure 2. Constant amplitude cycling and the associated nomenclature.  Case (a) is 

completely reversed stressing, m = 0, (b) has a nonzero mean stress m, and (c) is 

zero to tension stressing, min = 0.[1] 

1.2.2 General Observations 

There are two main methods to study the fatigue of a material or engineering 

component. One involves stress or load controlled testing.  The other involves strain or 

displacement controlled testing.  The method used for this analysis followed the stress 

based approach to verify the FEM results.  The stress based method involves developing 

a stress life (S-N) curve for the material, which is a plot of the stress amplitude versus 

the number of cycles to failure for a standard specimen or component.  An S-N curve for 

A517 steel is shown in Figure 3. 
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 Figure 3. Rotating bending S-N curve for unnotched specimens of ASTM A517 steel 
with a distinct fatigue limit. [1] 

The general process of fatigue in metals requires cyclic loading, tensile stresses, and 

plastic strain on each cycle; otherwise it will not progress to failure[1].  The process has 

three stages in homogenous components.  Figure 4 shows the three stages of fatigue.  

The first stage is crack initiation, which involves the nucleation of microscopic cracks.  

The second stage is crack propagation (growth), which involves the slow growth of the 

crack with each stress cycle.  This process proceeds until the third stage or final fracture 

stage which results in component failure.  The final fracture occurs because the crack 

length has reached a critical length and the remaining material can no longer carry the 

input load.  At the point where the crack has reached a critical length a brittle or ductile 

fracture occurs as seen in Figure 5. 
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Figure 4. Schematic diagram showing the three stages of fatigue.  

 

 Figure 5. Fatigue fracture surface associated with the fatigue fracture of ½ inch 

diameter retaining pin under unidirectional bending at a high nominal stress.  Note the 
crack initiation accounts for a negligible part of the fracture surface. 

1.2.3 Fatigue Process 

Fatigue is the process of cumulative damage in a benign environment that is caused 

by repeated fluctuating loads.  The number of cycles required to initiate a fatigue crack is 

Fatigue Crack 

Line of separation 

between Propagation 
and Final Fracture 

regions. 

Final Fracture 
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the fatigue-crack-initiation life.  The number of cycles required to propagate a fatigue 

crack to a critical size is called the fatigue-crack-propagation life.  The total fatigue life is 

the sum of these two quantities. 

The crack initiation usually takes place on the surface of the metal in the vicinity of a 

notch or defect that acts as a stress concentration. The mechanism is explained by a slip 

band mechanism at the microscopic level and is driven by the maximum shear stress 

parallel to the slip bands.  When the load is applied, some grains will be subjected to 

plastic deformation involving slip on some of the slip planes.  The mechanism is limited 

to a few grains where these slip planes have a favorable orientation for slip with respect 

to the local maximum shear stresses.[1] When the load is reversed, the planes will not 

slide back to their initial position due to the cyclic stain hardening effect. Hence, in the 

reversed part of the load cycle, it is the neighboring planes that will suffer yielding by 

sliding in the opposite direction. The final result is microscopic extrusions and intrusions 

on the metal surface. The intrusions act as micro-cracks for further crack extension 

during the subsequent loading cycles.  After crack initiation has occurred within a few 

grains, subsequent microscopic growth will extend the crack past several grain 

boundaries. When the crack front extends over several grains, the crack will continue to 

grow in a direction perpendicular to the largest tensile principal stress.  It is important to 

realize that while the initiation phase is related to the surface condition of the metal and 

governed by the cyclic shear stresses, the crack growth depends on the bulk mechanical 

properties of the material, and the crack growth is driven by the cyclic principal stresses. 

In the growth phase, the crack growth process is explained by a mechanism involving 

crack front opening and front blunting followed by crack front closing and sharpening 

during each load cycle (Figure 6). After one complete cycle, the crack front has advanced 
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a small increment, which may be traced by electron microscopy of the fatigue surface.  

The crack advancement corresponding to one load cycle is the distance between two so 

called striations (Figure 7). The advancement depends on the range of the stress 

intensity factor (SIF).  The final fracture will take place when the fatigue crack becomes 

so large that the remaining cross section is too small to support the peak load cycle or 

when the local stresses and strains at the crack front initiate a local brittle or ductile 

fracture. In the first case, it is the net section average stresses that are the driving force 

for the fracture. In the second case, it is a local failure that is driven by the maximum 

stress intensity factor (SIF). This factor uniquely characterizes the magnitude of the 

stress field at the crack front under linear elastic conditions.[2] 

 

Figure 6. Schematic diagram showing the mechanism of fatigue crack growth 
microscopic scale. 
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Figure 7. Scanning electron micrograph showing fatigue crack striations in an aluminum  

alloy (X7,600). 

1.2.4 Low Cycle and High Cycle Fatigue 

There are two ways to characterize the fatigue behavior of a material.  One depends 

on the number of cycles to failure, and the other depends on the fatigue stress versus 

yield stress ratio.  High cycle fatigue is characterized by fatigue stresses much less than a 

material’s yield point and a total fatigue life of greater than 10,000 cycles.  Low cycle 

fatigue is characterized by fatigue stresses close to the materials yield point and a total 

fatigue life of less than 10,000 cycles.[7] [8] 

The determination of a high cycle fatigue S-N curve such as that in Figure 3 requires 

load control and keeping the stress to less than two-thirds the materials yield point.  The 

stress is elastic on a gross scale but there will be local plasticity.  The experimental 

Fatigue striations 
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determination of a low cycle fatigue S-N curve uses displacement control to control the 

elastic and plastic strains.[4] 

1.2.5 Fatigue Crack Propagation and Paris' Law 

A great deal of experimental evidence supports the view that crack growth rate can be 

correlated with the cyclic variation in the stress intensity factor range (K) according to 

Paris’ law, 

  

  
        ,  

where a is the length of a fatigue crack, N is the number of cycles, and C and n are 

experimental constants.  da/dN is the fatigue crack growth rate per cycle, K = Kmax – 

Kmin is the stress intensity factor range during a cycle and     √   .  a and N depend 

on the material, environment, frequency, temperature, and stress ratio.  A typical log-log 

plot of the dependencies of da/dN versus K is shown in Figure 8.  Paris’ law is valid for 

the linear part of the plot.  The fatigue crack threshold (Kth) is the stress intensity 

range below which a crack will not grow.  
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 Figure 8. Typical plot of fatigue crack growth rate, (da/dN) versus stress intensity 

factor range (K).[5] 

1.2.6 Fatigue in Welded Structures 

  Fatigue in welded structures may be analyzed with standard stress-life, strain-life and 

crack growth methods. However, use of these methods is difficult because of the 

inherent uncertainties in a welded joint. For example, what is the local stress 

concentration factor for a weld (Figure 9) when the local weld toe radius is not known? 

Similarly, what are the material properties of the heat affected zone where the crack will 

eventually nucleate? One way to overcome these limitations is to test welded joints 
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rather than traditional material specimens and use this information for the safe design of 

a welded structure.[2] 

 

Figure 9. Stress concentrations. Left: plate with edge notches.  Right: butt weld 
joint.[2] 

The most common method of joining steel structures is the welding process.  There 

are many types of welding processes available, with each having its benefits and 

drawbacks.  There is MIG [Metal Inert Gas] welding, stick welding, and TIG [Tungsten 

Inert Gas] welding.  Each process has its own parameters that must be used to produce 

quality joints.  However, regardless of the welding process pre-cracks are inherently 

introduced into the joint. The vast majority of information on fatigue of welded structures 

concedes the initiation phase of the fatigue cycle and uses the crack propagation phase 

to determine fatigue life.  Various stages of the crack growth in a fillet-welded joint is 

illustrated in Figure 10.  The welding process by nature creates a defect that acts as an 

initiation site.[5] 
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Figure 10.  Various stages of crack growth in the fillet welded joint.[2] 

1.2.7 Finite Element Method [Fracture Mechanics] 

As computing hardware and algorithms have advanced making solution times shorter 

and more accurate, the finite element method incorporating fracture mechanics has been 

used more extensively to calculate the fatigue life of components and structures.  

Standard FEA techniques have been developed using the FEA method:  British Standards 

Institution Standard BS 7608 (BSI 1993), ASTM F 722-82, and AWS Structural Welding 

Code, AWS D1.1.   

Fatigue crack analysis is now widely used to predict component failure caused by 

preexisting small cracks like those found in welded joints, allowing one to take 

Fatigue Crack Nucleation 

Fatigue Crack  

Final Fracture 

Fatigue Crack  
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precautions to prevent further crack growth or to determine the remaining life of the 

structure. There are many techniques that incorporate FEA to determine component life, 

and each has its strengths for a particular fatigue process, such as delamination of 

composite materials.  This fatigue process uses the virtual crack closure technique 

(VCCT) which was initially developed to calculate the energy-release rate of a cracked 

body. It has since been widely used in the interfacial crack growth simulation of laminate 

composites, with the assumption that crack growth is always along a predefined path.  

The most common use of FEA for determining component life is to calculate the stress 

intensity factors.  The stress intensity factors (SIFs) must be evaluated accurately and 

because it is difficult to determine accurate SIFs using a closed-form analytical solution 

for cracks in complex structures, finite-element analysis is used instead. 

Two approaches are available for evaluating SIFs, the interaction integral method and 

the displacement extrapolation method.  The interaction integral method performs the 

SIF calculation during the solution phase of the analysis and stores the results for later 

post processing.  The displacement extrapolation method performs the SIF calculation 

during post processing. This method is limited to problems involving linear elasticity with 

homogeneous, isotropic materials near the crack region.[3] 

The fracture mechanics method analyzes a material’s resistance to fracture using solid 

mechanics principals based on elasticity and plasticity.  The analysis uses a fit of the 

nodal displacements in the vicinity of the crack (Figure 11). The actual displacements at 

and near a crack for linear elastic materials were determined by Paris and Sih to be[5]: 
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where 

u, v, w = displacements in a local Cartesian coordinate system as shown in Figure 11. 

r, θ = coordinates in a local cylindrical coordinate system also shown in the figure. 

 

Figure 11. Local Coordinates Measured From a 3-D Crack Front.[3] 

G = shear modulus 

KI, KII, KIII = stress intensity factors relating to deformation shapes shown in 

Figure 9. 
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ν = Poisson's ratio 

0(r) = terms of order r or higher 

 

Figure 12. The Three Basic Modes of Fracture. 

The stress intensity factors for the three basic modes of fracture shown in Figure 12 

are calculated from the nodal displacements using the following equations for no 

symmetry: 
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where Δv, Δu, and Δw are the motions of one crack face with respect to the other.  
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Figure 13. Nodes used for the approximate crack tip displacements.[3] 

1.3 Objective of Research 

It was the objective of this study to develop a FEM model to predict the fatigue crack 

growth in a welded joint of a snowplow during normal service loading.  Experimental 

methods were used to validate the FEM fracture results.  This technique is intended to 

aid in predicting the performance of welded joints in snowplows using the finite element 

method and thus reducing the time and resources required to predict fatigue failure.  The 

study involved investigating the processes involved in the manufacturing, the loading, 

and the response of a welded joint in a snowplow.  This research should lead to a 

reliable and repeatable procedure for predicting fatigue crack failure for a given joint 

design, which can be applied to any similarly characterized welded joint. 

The study was divided into two major parts, an experimental section in which empirical 

data about the fatigue life of the particular welded joint of interest were collected and 

the second section in which the finite element method with fracture mechanics was used 

to develop a model that aides in predicting crack propagation the joint life accurately. 



18 

 

 

The experimental section of this study involved fabricating a model of the joint of 

interest using current production methods at Douglas Dynamics and documenting the 

critical parameters of the joint.  This joint is in a section of a snowplow in which issues 

with fatigue failures have been reported.  The issue was chosen because of the large 

number of incidences and the failure mode. 

The experimental section of the study was based on the procedure presented in the 

ASTM E 647, and the welded structure method presented by Lassen.[2]  The analytical 

part of the study required the development of a section model that utilized fracture 

mechanics to compute the stress intensity factor for various crack lengths.  The model 

assumes that there are crack like defects in the welded joints that the crack initiation 

phase of the process can be neglected. [2]        

The test specimens were fabricated using the current processes and materials used in 

the manufacturing of the product.  Each specimen was inspected for compliance with the 

SOW's (Standard of Work).  The fatigue test was developed to replicate the failures seen 

in the field units.  Field load and displacement data was then used to create a load profile 

for the test.  Crack length typical of experimental values were then used to calculate 

stress intensity factors, KI using FEM to see how well FEM could predict fatigue crack 

growth. 

A proposed design was then developed to increase the fatigue life of the joint using 

the afore mentioned process.  The design was then implemented and is currently being 

evaluated by the Manufacturing Group for feasibility and retooling costs. 
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2 EXPERIMENTAL PROCEDURE 

2.1 Fatigue Crack Growth Testing 

Since the joint of interest was failing by fatigue, fatigue specimens were developed 

which duplicated the geometry of the failed snowplow section and provided for fatigue 

loading in a hydraulic closed loop test system, which simulated actual loading conditions.  

2.1.1 Assembly Details 

The type of snowplow used for this study is characterized as an expandable-hinged 

type snowplow assembly.  There are two wings (Figure 14) attached to the outer edges 

of the blade that translate and pivot to provide multiple positions of the wings.  Each 

wing acts independently, providing multiple configurations of the plow.  Each wing is 

powered by a double-acting hydraulic cylinder, and an extension spring assembly.  The 

snowplow blade width varies from 8-1/2’ to 10’.  The blade can pivot about the center in 

either direction 30 degrees.  The full snowplow assembly in the “scoop” configuration is 

shown in Figure 14 and the “retracted” configuration is shown in Figure 15. 

The joint of interest for this study is located at the outer edges of the blade assembly 

and is an interface between the wing assembly and the blade assembly.  There are four 

main components and three minor components that make up this joint.  The detailed 

dimensional drawing and weld drawing for the blade assembly is shown in Figures 16 

and 17 respectively.  The fatigue area is shown in both the figures. 
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Figure 14. View of the hinged style blade assembly in the scoop mode. 

 

Figure 15. View of the hinge style blade assembly in the retracted mode. 

Wing Assembly 

 

Blade Assembly 

Fatigue Area 
Hydraulic Cylinders 
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Figure 16. The component position drawing for the hinge snowplow main blade. 

Fatigue Area 
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Figure 17. The weld drawing for the hinge snowplow main blade showing the fatigue 

area. 

Fatigue Area 
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2.1.2 Specimen Details 

The test specimen design incorporates the five components where the joint of interest 

is located and simplifies other components, so that the specimen fits into the MTS 

machine’s load frame and yet maintains the proper load path.  The specimens were 

manufactured using the current Douglas Dynamics, Inc. Standard Operational Procedures 

(SOP).  The detailed SOPs are located in the Appendices.  A model of the assembly 

showing the 5 components is presented in Figure 18.  Material specifications for the 

components are given in Table 1.  A total of seven specimens were manufactured for this 

study.  The specimens were welded with the parameters given in Table 2, and then each 

specimen was inspected for dimensional and material compliance before testing.  The 

chemical compositions and mechanical properties of component materials are given in 

Table 3.  Specimens 3, 4, and 5 were stress relieved before testing at a temperature of 

220C for 2 hours. 
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 Figure 18.  View of the test specimen overall dimensions, and direction of load. (1) 

formed plate, (2) 5-bend box, (3) outer rib, (4) formed plate, (5) blade sheet. 

Table 1. List of specimen component material specifications. 

Item ID Component Description Material Specification

1 Formed Plate ASTM A 36

2 5 Bendbox 
ASTM A 1011-01A

CS TYPE B

3 Outer Rib ASTM A 36

4 Formed Plate ASTM A 36

5 Blade Sheet
ASTM A 1011-01A

CS TYPE B  
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Dimensions 
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Table 2. Welding parameters for the test specimens. 

1 2 3 4 5 6 7

Wire Size 

[in]
0.035 0.045 0.045 0.035 0.035 0.035 0.045

Voltage [V] 23.5 19.0 23.5 17.3 23.5 19.0 19.0

Amps [A] 400 550 310 200 550 310 175

Wire Speed 

[in/min]
450 220 220 450 450 450 220

Gas Mix 

[C02/Ar]

Wire 

Material

N N N N Y Y Y

95/5

ER70S-6

0.25

Specimen No.

Welding 

Parameters

Stress Relieved? Y/N

Weld Size
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Table 3. Chemical composition and mechanical properties for component materials. 

C Mn P S Al Si Cu Ni Cr Mo V Cb Ti N

0.25 1.35 0.035 0.04   0.2 0.2 0.15 0.06 0.008 0.008 0.025 

50 [340] 66 [450]

C Mn P S Al Si Cu Ni Cr Mo V Cb Ti N

0.06-

0.15

1.40-

1.85
0.025 0.035 

0.80-

1.15
0.5 0.15 0.15 0.15 0.03   

80-85
[550-

586]
85-90

[586-

620]

C Mn P S Al Si Cu Ni Cr Mo V Cb Ti N

0.06-

0.15

1.40-

1.85
0.025 0.035 

0.80-

1.15
0.5 0.15 0.15 0.15 0.03   

36

Yield Strength
Tensile 

Strength % Elongation in2 in 

[50mm]

ksi [Mpa] min ksi [Mpa] min

17

Weld Material ER70S-6 Chemistry

% Heat Analysis, Element Maximum unless otherwise shown

ASTM A36 Chemistry

% Heat Analysis, Element Maximum unless otherwise shown

Mechanical Properties

ksi [Mpa] min % for Thicknessksi [Mpa] min

% Elongation in2 in 

[50mm]

Tensile 

Strength

Steel ASTM A1011 Grade 50 Chemistry

% Heat Analysis, Element Maximum unless otherwise shown

Mechanical Properties

Yield Strength

28

Mechanical Properties

Yield Strength
Tensile 

Strength % Elongation in2 in 

[50mm]

ksi [Mpa] min ksi [Mpa] min
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2.1.3 Test Specimen Inspection 

Each specimen was inspected for compliance with the production material and 

dimensional values.  The following values were recorded: 

 The steel type, chemical composition, and mechanical properties. 

 Welding procedure, method, electrodes, number and sequences of passes, 

heat input. 

 Global specimen geometry and local weld geometry, axial or angular 

distortion. 

 Estimate of residual stresses in the specimens. 

 Microscopy of the heat-affected zone [HAZ]. 

Several welding process variables were varied to determine their impact on the fatigue 

life of the joint.  These variables were the wire size, weld voltage, weld amperage, feed 

rate, and stress relief.  All other variables were held constant in the manufacturing of the 

specimens.  Seven test specimens were fabricated and tested in this investigation.  The 

welding parameters are presented in Table 2. 

The weld geometry of each specimen was characterized on cross sections through 

welds after fatigue testing near the location at which fatigue cracks developed.  The 

location of the cross section is shown in Figure 18.  The cross sections of welds were cut 

from this location with a vertical band saw and then sectioned with a LECO CM15 cut off 

wheel.  The cross sections were mounted in plastic (LECOSET 100) and then polished 

and etched for metallographic examination.  The specimens were polished through 1.0 

µm Al2O3 and etched with 3% Nital for about 5 seconds.  Macro photos were then 

obtained with a Canon XT Rebel camera equipped with a Canon macro lens.  Figure 19 
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presents a macro photo of the cross section from Specimen 6 showing the four weld 

measurements (weld toe radius, horizontal leg length, and vertical leg length) obtained.  

A total of 28 measurements of the toe radii and a total of 14 measurements of each leg 

length were made using an Olympus PME3 metallograph and a Spot Insight camera with 

software for making measurements of the radii and leg lengths.  Figure 20 presents a 

photomicrograph showing a typical measurement of a toe radius.  A summary of the 

measurements is presented in Table 4. 

 

Figure 19. Weld toe measurement locations for specimen 6. 
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Figure 20.  Typical weld toe section showing measurement of the radius. 

Table 4. Statistical results from local geometry measurements of a fillet weld. 

Weld Toe Radius, 

Horiz. Leg [mm]

Weld Toe Radius, 

Vert. Leg [mm]

Weld Vert. Leg 

Length [in]

Weld Horz. Leg 

Length [in]

Number of 

recordings
28 28 14 14

Min value 2.70 0.40 0.118 0.199

Max vaule 5.40 1.60 0.290 0.280

Mean Value 4.15 0.96 0.215 0.245

Std Dev. 1.04 0.52 0.054 0.028

COV 0.25 0.54 0.250 0.116
 

The mechanical properties of the various parts of the weld cross sections were 

characterized using Rockwell B measurements.  Figure 21 presents a macrophoto of a 

cross section showing the locations of the measurements.  A single measurement was 

Weld Material Parent Material 

Toe Radius 
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made for each location using a Wilson Rockwell Series 500 bench top hardness tester.  

The results are summarized in Table 5.  These values are consistent with the yield and 

tensile strengths reported in Table 3 for the materials involved. 

 

Figure 21.  View of the hardness measurement locations for specimen 4. 

Table 5. Summary of the hardness measurements for the test specimens. 

Spot HRB [Averaged]

Parent 1 65

Parent 2 67

Weld 1 92

HAZ 1 97

HAZ 2 97
 

  

P1 

P2 

W1 

HAZ1 

HAZ2 
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2.2 Fatigue Test Machine 

Tests were performed in a 20,000 lbf MTS system using tensile-tensile sinusoidal 

loading at a frequency of 20 Hz applied to the specimens through pin connection fixtures.  

Cyclic loads were applied until a crack was initiated.  Then crack growth was followed 

with a traveling microscope.  The full set up is shown in Figure 22. 

 

Figure 22.  View of the full MTS set up. 
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2.3 Fixture Design 

One of the fixtures for connecting the test specimens to the MTS Hydraulic closed loop 

test system is shown in Figure 23. These fixtures were designed to produce the load 

seen by the joint during normal service.  The side and top plates in the figure were made 

from ASTM A 1011 Grade 50 steel; the 0.25” diameter pins were standard dowel pins; 

and the 3/8 socket head screws were standard screws. The specimens were held in place 

with 1-5X6 SAE Grade 8 heavy hex bolts and the corresponding hex nuts, and 1" 

hardened washers.  Spiral washers were used to rigidly attach the fixtures to the load cell 

and actuator of the testing machine. 
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Figure 23.  The top test fixture designed for the closed loop hydraulic test system. 

2.4 Test Procedure 

The test procedure developed for this study was a combination of the ASTM E 647-05 

test for measuring crack growth in component specimens and the procedure described in 

“Fatigue Life Analyses of Welded Structures”[2].  Following this procedure the MTS was fit 

up with the test fixtures and cycled under displacement control to verify proper 

positioning of the fixtures.  The specimen was then attached using the 1-8 heavy hex 

SAE Grade 8 bolts, hardened washers, and nuts as shown in Figure 23.  The MTS was 
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then put into load control and the specimen checked for proper alignment.  The 

microscope to follow and measure the crack propagation and the fiber optic light source 

were then set up and checked as shown in Figure 24.  The MTS was then set to cycle at 

20 Hz with the loads given in Table 6 and the loads verified using the oscilloscope. The 

crack length (a) was then taken to be the distance from the first visible crack to the point 

where the structure could no longer take a load.  A growing crack is shown in Figure 25.  

The point “A” is the lead end of the crack when it just became visible, and point “B” is 

the lead end of the crack after N cycles.   

 

Figure 24.  View of the specimen set up in the MTS machine at the start of the test. 
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Table 6.  The MTS Settings for the Fatigue Test. 

Pmax [lbf] Pmin [lbf] Pa [lbf]
Frequency 

[Hz]

1000 50 950 20  

2.5 Running the Test 

The test was started after all checks were made to assure that the proper loading was 

achieved.  The specimen was checked every 1000 cycles until a crack was observed, and 

then the crack length was measured every 5000 cycles until the specimen could no 

longer carry any load.  All cracks were observed to nucleate at the joint between the 

outer rib and 5-bend box as shown in Figure 26. 

Figure 25 shows a close up view of a fatigue crack which initiated at point A and 

propagated to point B.  The end of the test was defined when the components could no 

longer hold the input load. 
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Figure 25. Typical fatigue crack growing from A to B. 

2.6 Data Analysis 

The crack length (a) and number of cycles (N) were recorded and used to calculate 

the stress intensity factors [SIF] using the secant method described in ASTM A 647-05 

Standard for Measurement of Fatigue Crack Growth Rates.[13] section X1.1.  Using the 

calculated data a curve was developed to determine the stress intensity factors.  The 

data from the specimen inspections and the calculated SIFs were tabulated and 

correlations examined to obtain a set of crack parameters for use in the FEM study.  The 

crack growth rate, da/dN, and stress intensity range, K, were calculated and plotted on 

a log-log graph. 

A B 
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3 FINITE ELEMENT PROCEDURE 

3.1 Methodology 

The fracture mechanics method was used to study the fatigue life of the welded joint 

specimens described in the experimental section.  The method involved the following 

steps: 

 CAD Model creation 

 Elastic stress analysis of the pre-cracked geometry 

 Creation of the crack 

 Crack parametric study 

 Crack propagation 

 Calculation of stress intensity factors 

 Interpretation of results 

This type fracture analysis is widely used to predict component failure caused by 

preexisting small cracks, allowing one to take precautions to prevent further crack 

growth or to determine the remaining life of the structure. 

The 3D solid CAD geometry for the test specimen design (Figure 26) was used in the 

finite element package ANSYS utilizing the fracture mechanics module.  The welds were 

modeled as solid bodies and meshed with tetrahedron quadratic elements.  To obtain the 

fracture damage, stress intensity factors (SIFs) had to be evaluated accurately. Because 

it is difficult to determine accurate SIFs using a closed-form analytical solution for cracks 

in complex structures, finite-element analysis was used instead. 

There are two approaches are available for evaluating SIFs: 

 The interaction integral method, which performs the SIF calculation during the 

solution phase of the analysis and stores the results for later postprocessing. 
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 The displacement extrapolation method which performs the SIF calculation 

during postprocessing.  This method is limited to problems involving linear 

elasticity with homogeneous, isotropic materials near the crack region. 

The interaction integral method is suitable for a wide range of applications.  In a finite 

element analysis, this method is suitably accurate for evaluating mixed mode SIFs and is 

also a robust tool for heterogeneous models with continuous, discontinuous, or nonlinear 

material properties. This method yields more accurate results because the contour 

integral is evaluated at points far away from the crack-tip.[6] 

3.1.1 CAD Model 

The CAD geometry for the study shown in Figure 26 was developed from the 

snowplow blade geometry obtained from the manufacturing design.  The component 

descriptions and material specifications are shown Figure 18 and in Table in 1 in Section 

2.1.1.  Figure 26 shows the CAD geometry.  
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 Figure 26. The CAD geometry used to generate the finite element model for the 

fracture mechanics analysis. 

3.1.2 Development of the crack model 

The crack geometry was developed using the fatigue testing data collected in the 

experimental part of the study.  This part of the study showed that the cracks started 

either at location A on the top outside radius of the 5-bend box (Figure 27) or at location 

B on the top outside weld of the 5-bend box to rib (Figure28).  Figure 29 shows actual 

fatigue cracks that formed at these two locations.  Crack parameters required for the FEA 

are the major and minor radii, the crack opening and the crack location. The crack 
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parameters are given in Table 7, and the detailed diagram of the crack geometry is 

shown in Figure 30.  

The Mode 1 Stress Intensity Factor (K1) is computed along the crack front using the 

interaction integral method.  The interaction integral method for the stress intensity 

factor calculation applies volume integration for 3D problems and area integration for 2D 

problems.  The traditional displacement extrapolation method is less accurate and 

requires greater mesh requirements than the interaction integration method. 

The interaction integral is defined as: 

    ∮
    (        
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∫     
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            are the stress, strain and displacement, 

   
       

       
     are the stress, strain, and displacement of the auxiliary field, and qi is 

the crack extension vector. 

 The interaction integral is associated with the stress intensity factor as 
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where Ki (i = 1, 2, 3) are mode I, II, III, stress intensity factors, and Ki
aux (i = 1, 2, 3) are 

auxiliary mode I, II, III, stress intensity factors.  E* = E for plane stress and  
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E* = E / (1 - 2) for plane strain, E is the Young’s modulus,  is the Poisson ratio, and µ 

is the shear modulus. 

 

Figure 27.  Meshed geometry including crack mesh for location [A]. 

 

Figure 28. Meshed geometry including crack mesh for location [B].  
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Figure 29. Fatigue cracks at the two locations of crack initiation, [A] 5 bend box, [B]   

top weld toe. 

 

Figure 30.  Details of the crack model. 
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Table 7.  Crack parameters. 

Crack Location A B

Major Radius [in] 0.0150 0.03

Minor Radius [in] 0.0115 0.01

Fractrure Affected Zone Height [in] 0.0150 0.05

Largest Contour Radius [in] 0.0025 0.001

Circumferential Divisions 16 16

Mesh Contours 20 20

Crack Front Divisions 20 20
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3.1.3  ANSYS Database 

The software used for this study was ANSYS Mechanical Release 14.5.1.  The process 

to develop the database to solve the stress intensity range involves importing the CAD 

geometry via Design Modeler, a software CAD module that works inside the Workbench 

environment.  Once inside ANSYS the CAD geometry was developed to generate an 

acceptable mesh (Figure 31) that was checked using the quality factor algorithm.  The 

quality factor is computed for each element of a model (excluding line and point 

elements). The element quality option provides a composite quality metric that ranges 

between 0 and 1. This metric is based on the ratio of the volume to the edge length for a 

given element. A value of 1 indicates a perfect cube or square while a value of 0 

indicates that the element has a zero or negative volume.  Figure 32 shows the element 

quality plot for the mesh.  A quality factor is computed for each element of a model 

(excluding line and point elements).  The minimum element quality ratio for acceptable 

results is a value of 0.6 in the region of interest. 

The parametric study was used to determine the stress intensity factors for the 

particular crack length.  From the experimental data, the initial crack length was 

determined to be approximately 0.03” [1.0 mm].  The crack length was increase by 0.05” 

until a maximum length that would allow a converged solution.  The parameter values 

are shown in Table 8.  
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Figure 31.  Meshed CAD model with the crack generated. 

Crack location A 
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Figure 32. Element quality graph.  

Table 8.  Parametric Study Variables. 

Parameter

Crack 

Location 

A

Crack 

Location B

0.05 0.05

0.10 0.08

0.15 0.10

0.18 0.12

Major Radius

 

The recommended element type for 3-D models for cracks is SOLID186 (Figures 27, 

28, and 31), the 20-node brick element, as shown in Figure 33.  The first row of 

elements around the crack front should be singular elements. Notice that the element is 
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wedge-shaped, with the KLPO face collapsed into the line KO.  Stress and deformation 

fields around the crack tip generally have high gradients. The precise nature of these 

fields depends on the material, geometry, and other factors. To capture the rapidly 

varying stress and deformation fields, a refined mesh in the region around the crack tip. 

 

Figure 33. Singularity at the crack tip. 

Element size recommendations are the same as for 2-D models. In addition, aspect 

ratios should not exceed approximately 4 to 1 in all directions.  For curved crack fronts, 

the element size along the crack front depends on the amount of local curvature. A 

general guideline is to have at least one element every 15° to 30° along a circular crack 

front.  All element edges should be straight, including the edge on the crack front.  

The model was loaded between the holes connecting the test specimens to the MTS 

closed loop system.  The cyclic load parameters were defined as:   Pmax = 1000 lbf, Pmin 
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= 50 lbf, P = 950lbf, Pa = 475 lbf, Pm = 525 lbf. The lower hole was held with one 

displacement normal to the outside surface of the rib and a cylindrical restraint on the 

hole surface (Figure 35).  The force was applied to the top hole surface (Figure 34), and 

a displacement normal to the outside surface of the rib (Figure 35).  The lower restraint 

was modeled using a displacement normal to the outside surface of the rib (Figure 36) 

and a cylindrical restraint applied to the top hole surface, with the radial DOF set to 

“fixed”, the axial and tangential DOF were set to “free” (Figure 37). 

 

Figure 34. Force applied to the inside surface of the top hole of the specimen. 

Input Force 
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Figure 35. Zero Displacement applied to the surface of the rib at the top hole. 

 

Figure 36. Zero Displacement applied to the surface of the rib at the bottom hole. 
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Figure 37. Cylindrical restraint at the lower hole, radial DOF is fixed, axial and 

tangential DOFs are free. 

3.1.4 Solution Procedure 

The first step to determine the stress intensity factors was to create a crack in the 

areas of initiation, of which there were two (Figures 17, 28 and 29) observed during 

testing, both in the field and in the lab.  The next step was to apply the restraints and 

force to the correct surfaces.  The washers were represented as zero displacements 

normal to the outer rib, the lower fastener was represented by a cylindrical restraint with 

the radial DOF set to fixed, and the axial and tangential DOF’s set to free.  The solution 

settings are given in Table C2. 

  

Cylindrical Restraint 
Surface 
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4 RESULTS 

4.1  Fatigue Testing Results 

As pointed out in Section 3 fatigue cracks initiated at one of the two locations shown in 

Figure 29, either at the top inside formed edge of the 5 bend box (Location A) or at the top 

corner weld toe (Location B).  For the seven specimens cracks initiated at Location A in five and 

at Location B in two.  The initiation of the crack was fairly fast compared to the total life cycle of 

the joint.  The number of cycles required for crack initiation was a very small percentage of the 

total fatigue life.  The average fatigue life of a test specimen was approximately 177,000 cycles, 

and the average number of cycles until a crack was observed was 11,000 cycles or approximately 

6%. This is consistent with the assumption that, as pointed out in Section 1.2.6, crack initiation 

can be neglected in the determination of fatigue life and that the number of cycles to propagate 

a crack to failure determines the fatigue life.   

The basic fatigue crack growth data of crack length (a) and numbers of cycles (N) for each 

test specimen are tabulated in Table 9 and are graphically presented in Figures 38 – 46.  Figure 

45 shows all of the data plotted on a single graph.  As can be seen the crack growth rates 

(slopes of the plots) increase as the cracks get longer.  Figure 45 also shows that the crack 

growth behavior is about the same for all specimens.  From this crack growth data the ASTM A 

647-05 secant method was used to calculate the crack growth rate, da/dN.  The secant method 

uses a point to point technique, 

(
  

  
)  

(     
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                                                                         [  ] 
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where a is the crack length and N is the number of cycles.  The variable ai is the crack length 

measured at cycle Ni, and ai+1 is the crack length measured at cycle Ni+1. 

The stress intensity factor range, ΔK was calculated using the average crack size,  ̅ , over the 

interval of cycles, ΔN using 

     
  

 
√
    

  
*   (

   

 
)+                                                                [  ] 

   
  ̅ 

 
                                                                                                      [  ] 

 ̅   
    

   

 
                                                                                          [  ] 

ΔP is the load range, (Pmax – Pmin), B is the thickness , W is the width of the plate , and αi is the 

crack length at N cycles. 

                                                                                  [  ] 

                                                                                            [  ] 

The force ratio is the algebraic ratio of the minimum to maximum force in a cycle, 

   
    

    

                                                                                                    [  ] 

The force ratio was equal to 0.048, Thus, from Equation 14 ΔKI  = (1 – R)Kmax  or (0.952)Kmax.  

  Table 10 shows the calculated da/dN and ΔKI values for all seven tests and Figures 46 

through 52 present the individual da/dN versus ΔK curves for the seven test specimens, and 

Figure 53 shows all of the data on one graph.   As can be seen in this figure, the data falls in a 
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broad band which shows similar crack growth in all of the test specimens. This suggests that the 

variation in the welding parameters and stress relief had no significant effect on the overall 

fatigue life of the joint.  This is most likely due to the fact that the existence of a crack in the 

weld area is much more significant than the weld parameters.   
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Table 9. Experimental Crack Length and Number of Cycles Data. 

Reading 

No.

Crack 

Length, a 

[mm]

Number 

of Cycles, 

N

Crack 

Length, a 

[mm]

Number 

of Cycles, 

N

Crack 

Length, a 

[mm]

Number 

of Cycles, 

N

Crack 

Length, a 

[mm]

Number 

of Cycles, 

N

1 1.03 10100 1.09 10020 1.00 10120 1.20 12120

2 1.25 20050 1.26 20120 1.16 19800 1.36 22800

3 1.50 30200 1.41 30300 1.35 30120 1.45 31120

4 1.75 40050 1.65 40050 1.55 41050 1.65 45050

5 2.00 50060 2.10 51000 2.00 50090 2.40 54090

6 2.36 60300 2.46 62300 2.36 61300 2.66 64300

7 2.98 70200 3.18 70130 2.80 70090 2.80 72090

8 4.00 80040 4.10 82050 3.71 81050 3.79 81050

9 6.00 90100 6.20 90230 6.20 91030 6.20 87030

10 9.00 100050 8.76 103020 9.00 101080 9.70 104080

11 12.50 110030 11.97 110080 12.25 110060 12.50 118060

12 17.10 120100 16.99 120500 17.21 121500 17.21 123500

13 22.00 130050 22.25 131000 20.00 131020 20.36 139020

14 25.90 140300 24.60 140200 24.90 140200 24.90 148200

15 29.50 150040 30.25 152000 27.50 145500 29.50 155500

16 33.60 160020 35.10 163000 35.60 154700 38.60 165700

17 37.35 170115 38.33 161948

18 42.19 179980 42.78 175136

19 47.03 189995 48.30 192324

Reading 

No.

Crack 

Length, a 

Number 

of Cycles, 

Crack 

Length, a 

Number 

of Cycles, 

Crack 

Length, a 

Number 

of Cycles, 

1 1.30 10700 1.20 10120 1.16 10120

2 1.45 20200 1.36 19800 1.21 21120

3 1.64 31000 1.41 30120 1.31 32300

4 1.75 42900 1.65 41050 1.45 40850

5 1.92 51800 2.20 50290 1.90 53000

6 2.26 60200 2.46 61300 2.46 62305

7 2.58 71000 2.80 71090 3.18 70135

8 3.17 80300 3.51 81250 4.15 82050

9 5.02 90056 5.20 91030 6.29 90230

Specimen 7Specimen 5

Specimen 1 Specimen 2 Specimen 3 Specimen 4

Specimen 6
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Table 10. Summary ΔK and da/dN values for Fatigue Tests. 

K

[ksiin]

da/dN 

[mm/cycle]

K

[ksiin]

da/dN 

[mm/cycle]

K

[ksiin]

da/dN 

[mm/cycle]

K

[ksiin]

da/dN 

[mm/cycle]

16.5 2.21E-05 16.8 1.68E-05 16.1 1.65E-05 17.5 1.50E-05

18.2 2.46E-05 17.9 1.47E-05 17.3 1.84E-05 18.4 1.08E-05

19.7 2.54E-05 19.2 2.46E-05 18.6 1.83E-05 19.3 1.44E-05

21.2 2.50E-05 21.2 4.11E-05 20.6 4.98E-05 22.0 8.30E-05

22.9 3.52E-05 23.4 3.19E-05 22.9 3.21E-05 24.7 2.55E-05

25.3 6.26E-05 26.0 9.20E-05 24.9 5.01E-05 25.6 1.80E-05

29.0 1.04E-04 29.6 7.72E-05 28.0 8.30E-05 28.2 1.10E-04

34.8 1.99E-04 35.4 2.57E-04 34.7 2.49E-04 34.8 4.03E-04

43.0 3.02E-04 42.9 2.00E-04 43.3 2.79E-04 44.3 2.05E-04

52.2 3.51E-04 51.2 4.55E-04 51.9 3.62E-04 53.1 2.00E-04

62.9 4.57E-04 62.0 4.82E-04 62.7 4.34E-04 63.0 8.66E-04

75.5 4.92E-04 75.6 5.01E-04 72.9 2.93E-04 73.4 2.03E-04

88.2 3.80E-04 86.6 2.55E-04 83.7 5.34E-04 84.2 4.95E-04

100.7 3.70E-04 99.7 4.79E-04 95.4 4.91E-04 98.9 6.30E-04

116.1 4.11E-04 121.4 4.41E-04 116.1 8.80E-04 128.4 8.92E-04

136.5 3.71E-04 146.1 3.77E-04

168.8 4.91E-04 176.6 3.37E-04

237.0 4.83E-04 259.6 3.21E-04

452.9 4.28E-04

K

[ksiin]

da/dN 

[mm/cycle]

K

[ksiin]

da/dN 

[mm/cycle]

K

[ksiin]

da/dN 

[mm/cycle]

18.2 1.58E-05 17.5 1.65E-05 16.9 4.55E-06

19.3 1.76E-05 18.2 4.84E-06 17.4 8.94E-06

20.2 9.24E-06 19.2 2.20E-05 18.2 1.64E-05

21.0 1.91E-05 21.5 5.95E-05 20.0 3.70E-05

22.4 4.05E-05 23.7 2.36E-05 22.9 6.02E-05

24.1 2.96E-05 25.1 3.47E-05 26.0 9.20E-05

26.3 6.34E-05 27.6 6.99E-05 29.7 8.14E-05

31.5 1.90E-04 32.5 1.73E-04 35.6 2.62E-04

37.0 1.03E-04 40.0 2.61E-04 43.3 1.68E-04

41.3 1.75E-04 49.3 4.15E-04 50.8 4.21E-04

48.4 2.88E-04 60.4 4.12E-04 59.7 6.49E-04

61.6 8.00E-04 71.6 3.98E-04 71.5 8.72E-04

81.5 9.33E-04 83.7 4.02E-04 82.9 4.79E-04

98.9 2.60E-03 93.8 1.20E-04 92.1 2.41E-04

116.1 5.60E-04 116.1 1.91E-03 105.7 7.29E-04

142.9 8.77E-04 189.1 1.91E-03 131.7 1.22E-03

194.1 1.06E-03 178.7 1.22E-03

328.7 8.48E-04 354.8 1.15E-03

Specimen 1 Specimen 2 Specimen 3 Specimen 4

Specimen 5 Specimen 6 Specimen 7
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Figure 38. Plot of a versus N for Specimen 1. 

 

Figure 39. Plot of a versus N for Specimen 2. 
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Figure 40. Plot of a versus N for Specimen 3. 

 

Figure 41. Plot of a versus N for Specimen 4. 
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Figure 42. Plot of a versus N for Specimen 5. 

 

Figure 43. Plot of a versus N for Specimen 6. 
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Figure 44. Plot of a versus N for Specimen 7. 

 

Figure 45. Plot of a versus N for all Specimens. 
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Figure 46. Plot of the calculated da/dN vesus ΔK data Specimen 1. 

 

Figure 47. Plot of the calculated da/dN vesus ΔK data Specimen 2. 
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Figure 48. Plot of the calculated da/dN vesus ΔK data Specimen 3. 

 

Figure 49. Plot of the calculated da/dN vesus ΔK data Specimen 4. 
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Figure 50. Plot of the calculated da/dN vesus ΔK data Specimen 5. 

 

Figure 51. Plot of the calculated da/dN vesus ΔK data Specimen 6. 
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Figure 52. Plot of the calculated da/dN vesus ΔK data Specimen 7. 

 

Figure 53. Plot of the calculated da/dN vesus ΔK data All Specimens. 
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4.2  Finite Element Method 

Presented in Figures 54 – 63 are the results for the crack analysis for Location A.  Figure 54 

presents the von Mises stress plot for the general area of the crack.  This figure shows that the 

von Mises stress in the general area of the crack is approximately 5.0 ksi, well below the yield of 

the parent material, which is 50 ksi.  But at the crack tip and crack front the von Mises stresses 

are in excess of 90 ksi.  Figure 55 presents the detailed crack mesh and major diameter (Crack 

Length) at Location A.  Figure 56 presents the detailed crack profile on the face of the inside 

radius of the 5-bend box.  The contours for the fracture affected zone are also shown in this 

figure.  Figure 57 presents the cross section of the crack mesh at Location A.  The minor radius 

(depth of crack) is shown in the figure.  Figure 58 presents a top cross section of the crack mesh 

at Location A showing the minor radius and fracture affected zone.  Figure 59 presents the von 

Mises stress plot for the cross sectional profile of the crack front.   Notice the zero stress at the 

crack opening.  Figure 60 presents the von Mises stress plot for the cross sectional profile of the 

crack showing the butterfly pattern associated with a crack front.  Figure 61 shows the von Mises 

stress plot for the inside crack tip area, it also has the butterfly pattern of stress.  Figure 62 

presents the KI (SIF) plot of the crack front.  The highest KI is located at the inside inner most 

contour of the crack mesh.  Figure 63 shows Specimen 3 at approximately 100,000 cycles with 

the crack formed at the radius of the 5-bend box.  The large heat affected zone in the area of the 

crack is associated with the weld of the rib to the 5-bend box. 

Presented in Figures 64 – 72 are the results for the crack analysis for Location B.  Figure 64 

presents the von Mises stress plot for the general area of the crack.  This figure shows that the 

von Mises stress in the area of the crack is approximately 5.0 ksi, well below the yield of the 

parent material which is 50 ksi.  Figure 65 presents the detailed crack mesh and major diameter 

(Crack Length) at Location B.  Figure 66 presents the detailed crack profile on the face of the rib.  
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The contours for the fracture affected zone are also shown in this figure.  Figure 67 presents the 

cross section of the crack mesh at Location B.  The minor radius (depth of crack) is shown in the 

figure.  Figure 68 presents a top cross section of the crack mesh at Location B showing the minor 

radius and fracture affected zone.  Figure 69 presents the von Mises stress plot for the cross 

sectional profile of the crack front.   Notice the zero stress at the crack opening.  Figure 70 

presents the von Mises stress plot for the cross sectional profile of the crack showing the 

butterfly pattern associated with a crack front.  Figure 70 shows the von Mises stress plot for the 

inside crack tip area, it also has the butterfly pattern of stress.  Figure 71 presents the KI (SIF) 

plot of the crack front.  The highest KI is located at the inner most contour of the crack mesh.  

Figure 72 shows Specimen 6 at approximately 125,000 cycles with the crack formed at the weld 

toe between the 5-bend box and outer face of the rib. 

Figures 73 – 75 show the experimental ΔK and finite element KI results versus the crack 

length.  The crack length calculation for the FEA were selected from the experimental range of 

values.  The major radius for the crack mesh is the crack length and the minor radius is the 

depth of the crack.  The experimental ΔK values were determined by using the data points from 

the crack length versus the number of cycles (a vs N) data presented in Figures 38 – 45 and the 

da/dN versus ΔK data points presented in Figures 46 – 53.  The load ratio, R, was assumed to be 

1, which allows for the assumption that ΔK is equal to Kmax. 

As can be seen in Figure 73 the KI values calculated by the FEA of the minor radius 

correlated well with the experimental values although they are about 50% higher as can be seen 

in Figure 74.  Better agreement might be obtained by plotting the distance from the major axis at 

the crack in Figure 62 to the location of the maximum KI.  Figure 74 for location B shows the KI 

values for the minor radius extrapolates well to the experimental ΔK values.  Figure 75 shows all 

the curves for the experimental ΔK’s and the FEA KI values plotted versus the crack length, a.  
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The plots show that the minor radius direction of crack growth correlates well with both 

locations.  
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Figure 54. The von Mises stress plot for the general area of the crack at Location A. 

 

Location of Crack.  Von Mises 
stress in this location is 

<5.0ksi 
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Figure 55. The detailed crack mesh and major diameter (Crack Length) at Location A. 

 

Figure 56. The detailed crack profile on the face of the inside radius of the 5-bend box. 
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(Crack Length) 

Fracture Affected 
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Figure 57.   The cross section of the crack mesh at Location A.  The minor radius (depth of crack) 
is shown in the figure. 

 

Figure 58.  A top cross section of the crack mesh at Location A showing the minor radius and 
fracture affected zone. 
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Figure 59. The von Mises stress plot for the cross sectional profile of the crack front. 

 

Figure 60.  The von Mises stress plot for the cross sectional profile of the crack showing the 
butterfly pattern associated with a crack front. 
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Figure 61.  The von Mises stress plot for the inside crack tip area showing the butterfly pattern of 

stress. 

 

Figure 62.  Plot of the KI for the crack front showing the maximum KI at the inside edge of the 

crack front. 
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Figure 63.  Specimen 3 at approximately 100,000 cycles with the crack formed at the radius of 
the 5-bend box.  Notice the large heat affected zone in the area of the crack. 
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Figure 64. von Mises stress plot of the 0.12” crack length at Location B. 

 

Figure 65. View of the mesh of the crack at the weld toe at Location B. 

Crack Mesh 

 

Location B  von Mises stress 
in this location is <5.0ksi 
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Figure 66. Side section view of the crack mesh at Location B. 

 

Figure 67. Top section view of the crack mesh at location B. 
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Figure 68. von Mises stress plot of the crack front and crack corner at Location B. 

 

Figure 69. von Mises stress plot of the crack corner at Location B. 
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Figure 70. von Mises stress plot of the crack front at Location B. 

 

Figure 71. Plot of KI for the crack length of 0.12” at Location B. 
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Figure 72.  Specimen 6 with the top weld toe crack initiation point at Location B. 
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Figure 73.  Plots of the crack length (a) versus the experimentally determined ΔK values for the 

specimens with cracks in Location A and plots of FEA calculated KI values for both the 
major and minor crack radii. 
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Figure 74.  Plots of the crack length (a) versus the experimentally determined ΔK values for the 
specimens with cracks in Location B and plots of FEA calculated KI values for both the 

major and minor crack radii. 
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Figure 75.  Plots of all curves presented in Figures 73 – 74.  Showing that the experimental 
growth of the cracks is the same regardless of the origin of the crack. 
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5 DISCUSSION 

The crack nucleation locations and resultant propagation were consistent with the field failure 

incidents as shown in Figures F1 – F4.  The crack propagation for both initiation locations were 

also consistent with the field failure reports. 

The crack propagation in the test specimens was very similar as seen in the plots of crack 

length (a) versus number of cycles (N) in Figures 38 – 45.  This indicates that the welding 

parameters in Table 2 had little effect on fatigue in these specimens.  The ΔK values calculated 

from the experimental data was also consistent between specimens and gives a high confidence 

level in the results.   

The FEA predictions for the KI values are conservative but that should be expected because the 

solutions were based on linear elastic behavior.  A more accurate solution would involve including 

nonlinearities in the material properties for the crack region.  The experimental plots show that 

the maximum KI for the crack range was between 10 ksiin and 50 ksiin for the crack growth 

phase of the process. 

The simulation model could be refined by studying the properties of the heat affected zone.  

The amount of variation can be attributed to the welding process used to manufacture the joint.  

The material selection and process becomes critical when there is no preheat or post process 

stress relief performed on the structure.  Although this study found no direct correlation to post 

process stress relief, it is strongly believed that if tighter controls on manufacturing where held, 

post process stress relief would be of a benefit. 
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The KI values for the minor axis correlate well with the experimental values as shown in 

Figures 73 – 74.  The KI values for the major axis do not correlate as well as the minor axis 

values.    This may be attributed to crack growing in the direction of the minor axis. 
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6 CONCLUSIONS 

The experimental fatigue test resulted in fractures which simulated actual field failures.  The 

experimental results were very consistent for all seven specimens from which it can be conclude 

that the location of crack initiation had little effect on the final crack growth path.  The wire 

speed, voltage, gas mixture, and stress relief did not show any significant changes in the overall 

crack growth process.  This leads to the conclusion that the presence of a crack created during 

the welding process was far more detrimental to fatigue life than the variations in the welding 

process.  

The FEA results confirm that the crack growth path does progress to the rib, and that there is 

significant energy to propagate a crack.  The results could be refined and more accurate if 

nonlinear material parameters and meshing techniques, such as life-death of elements were 

used. 
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Appendix A. Experimental Crack Growth Photos 

 

Figure A1. Photo of the final crack length of a test specimen. 
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Figure A2. Photo of the end of test for Specimen 1. 

 

Figure A3. Photo of the end of test for Specimen 2. 
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Figure A4. Photo of the crack sectioned at the end of test of Specimen 1. 

 

Figure A5. Photo of the crack sectioned at the end of test of Specimen 2. 
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Figure A6. Photo of the crack sectioned at the end of test of Specimen 3. 

 

Figure A7. Photo of the crack sectioned at the end of test of Specimen 4. 
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Figure A8. Photo of the crack sectioned at the end of test of Specimen 5. 

 

Figure A9. Photo of the crack sectioned at the end of test of Specimen 6. 
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Appendix B.  Weld Joint Geometry and Data 

 

Figure B1. Weld toe measurement of a test specimen. 

 

Figure B2. Weld toe measurement of a test specimen. 
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Figure B3. Weld toe measurement of a test specimen. 

 

Figure B4. Weld toe measurement of a test specimen. 
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Figure B5. Weld toe measurement of a test specimen.  
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Appendix C.  Finite Element Study 

 

Figure C1. Plot of the von Mises stress at the crack tip. 

 

Figure C2. Displacement plot for Location A 
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Figure C3. von Mises stress plot for Location A viewing from the opposite side. 

 

Figure C4. Plot of the mesh quality. 
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Table C1. Maximum KI values for the Crack Profile. 

Major 

Radius

Minor 

Radius

Major 

Radius

Minor 

Radius

Crack 

Length 

[mm]

Crack 

Length 

[mm]

Crack 

Length 

[mm]

Crack 

Length 

[mm]

27.41787 4.572 0.50800 12.03982 3.048 0.0150

26.80596 4.445 0.40005 11.89683 2.921 0.0086

23.96091 3.810 0.34290 11.77071 2.794 0.0083

21.19337 3.175 0.28575 11.65198 2.667 0.0079

20.76423 3.048 0.27432 11.51845 2.540 0.0075

19.46342 2.540 0.22860 11.33703 2.413 0.0071

18.68117 2.159 0.19431 11.18257 2.286 0.0068

17.63170 1.651 0.14859 9.935465 1.270 0.0038

17.21420 1.270 0.11430

Maximum 

KI [ksiin

Maximum 

KI [ksiin

Location A Location B
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Table C2.  Solution Settings. 

Number Of Steps 1

Current Step Number 1

Step End Time 1. s

Auto Time Stepping On

Define By Substeps

Initial Substeps 1

Minimum Substeps 1

Maximum Substeps 10

Solver Type Direct

Weak Springs Program Controlled

Large Deflection Off

Inertia Relief Off

Fracture On

Generate Restart Points Manual

Load Step Last

Substep Last

Retain Files After Full Solve Yes

Force Convergence Program Controlled

Moment Convergence Program Controlled

Displacement Convergence Program Controlled

Rotation Convergence Program Controlled

Ste p Controls

Solve r Controls

Re sta rt Controls

Nonline a r Controls
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Appendix D.  ANSYS Solver Output for the Fracture Mechanics  
Solution 

 

         *****  ANSYS COMMAND LINE ARGUMENTS  ***** 

  BATCH MODE REQUESTED (-b)    = NOLIST 

  INPUT FILE COPY MODE (-c)    = COPY 
     4 PARALLEL CPUS REQUESTED 

  START-UP FILE MODE           = NOREAD 
  STOP FILE MODE               = NOREAD 

 00352168          VERSION=WINDOWS x64     RELEASE= 14.5     UP20120918 

 CURRENT JOBNAME=file  14:33:49  JUN 18, 2014 CP=      1.544 
 PARAMETER _DS_PROGRESS =     999.0000000     

 /INPUT FILE= ds.dat  LINE=       0 
 MAXIMUM NUMBER OF DATA SETS ON RESULT FILE(NRES)=      10 

 DO NOT WRITE ELEMENT RESULTS INTO DATABASE 

 *GET  _WALLSTRT  FROM  ACTI  ITEM=TIME WALL  VALUE=  14.5636111     
 TITLE=  

 FRACTURE_MECHANICS_1--Static Structural (A5)                                   
 SET PARAMETER DIMENSIONS ON  _WB_PROJECTSCRATCH_DIR 

  TYPE=STRI  DIMENSIONS=      248        1        1 
 PARAMETER _WB_PROJECTSCRATCH_DIR(1) = D:\!1Share\THESIS 

MODELS\_ProjectScratch\ScrCF58\ 

 SET PARAMETER DIMENSIONS ON  _WB_SOLVERFILES_DIR 
  TYPE=STRI  DIMENSIONS=      248        1        1 

 PARAMETER _WB_SOLVERFILES_DIR(1) = D:\!1Share\THESIS 
MODELS\FRACTURE_MECHANICS_1_files\dp0\SYS\MECH\ 

 SET PARAMETER DIMENSIONS ON  _WB_USERFILES_DIR 

  TYPE=STRI  DIMENSIONS=      248        1        1 
 PARAMETER _WB_USERFILES_DIR(1) = D:\!1Share\THESIS 

MODELS\FRACTURE_MECHANICS_1_files\user_files\ 
 --- Data in consistent BIN units. 

 U.S. CUSTOMARY INCH UNITS SPECIFIED FOR INTERNAL     
  LENGTH      = INCHES (IN) 

  MASS        = LBF-S**2/IN  

  TIME        = SECONDS (SEC)   
  TEMPERATURE = FAHRENHEIT 

  TOFFSET     = 460.0 
  FORCE       = LBF 

  HEAT        = IN-LBF 

  PRESSURE    = PSI (LBF/IN**2) 
  ENERGY      = IN-LBF 

  POWER       = IN-LBF/SEC 
 INPUT  UNITS ARE ALSO SET TO BIN  

1 
FRACTURE_MECHANICS_1--Static Structural (A5)                                   

          ***** ANSYS ANALYSIS DEFINITION (PREP7) ***** 
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 *********** Nodes for the whole assembly *********** 
 *********** Elements for Body 1 "Boss-Extrude9" *********** 

 *********** Elements for Body 2 "Sweep1" *********** 
 *********** Elements for Body 4 "Boss-Extrude7" *********** 

 *********** Elements for Body 5 "Boss-Extrude10[1]" *********** 

 *********** Elements for Body 6 "Boss-Extrude10[2]" *********** 
 *********** Elements for Body 7 "Boss-Extrude13" *********** 

 *********** Elements for Body 8 "Boss-Extrude11" *********** 
 *********** Elements for Body 9 "Boss-Extrude12" *********** 

 *********** Elements for Body 10 "Split Line2" *********** 

 *********** Elements for Body 11 "Boss-Extrude8" *********** 
 *********** Send User Defined Coordinate System(s) *********** 

 *********** Set Reference Temperature *********** 
 *********** Send Materials *********** 

 *********** Create Face-Face MPC Contacts for "Crack" *********** 
             Real Contact Set For Above Contact Is 13 & 12 

 *********** Start Creating Assist Nodes For Crack Calculation *********** 

 *********** Done Creating Assist Nodes For Crack Calculation *********** 
 *********** Fixed Supports *********** 

 ******* Constant Zero Displacement X ******* 
 *********** Define Force Using Surface Effect Elements *********** 

 ***** ROUTINE COMPLETED *****  CP =         3.588 

 --- Number of total nodes = 153066 
 --- Number of contact elements = 1108 

 --- Number of spring elements = 0 
 --- Number of bearing elements = 0 

 --- Number of solid elements = 75163 
 --- Number of total elements = 76271 

 *GET  _WALLBSOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  14.5636111     

 *****  ANSYS SOLUTION ROUTINE  ***** 
PERFORM A STATIC ANALYSIS 

  THIS WILL BE A NEW ANALYSIS 
 NEW SOLUTION CONTROL OPTION IS ACTIVATED, 

 THE FOLLOWING COMMANDS ARE RESET TO NEW DEFAULTS:  

 AUTOTS, DELTIM, NSUB, CNVTOL, LNSRCH, PRED, NROPT, 
 TINTP, CUTCONTROL, OPNCONTROL, MONITOR, NEQIT, SSTIF, KBC. 

 CONTACT TIME PREDICTIONS ARE BASED ON ELEMENT KEYOPT(7) SPECIFIED  
 USE SPARSE MATRIX DIRECT SOLVER 

 CONTACT INFORMATION PRINTOUT LEVEL    1 

 *********** Start Sending CINT Commands For All Cracks *********** 
 PARAMETER _IASSISTNODE =     153188.0000     

 PARAMETER _SIFS =     1.000000000     
  START CRACK INTEGRATION DATA SET    1 

  SET CINT TYPE TO SIFS 
  COMPONENT NS_CRACK_FRONT 

      DESIGNATES CRACK EXTENSION NODES FOR SET    1 

  SET NUMBER OF CONTOURS FOR CRACK INTEGRATION SET    1 TO 20 
  ASSIGN CRACK SURFACE NORMAL FOR SET 1 

      TO COORDINATE SYSTEM 12 Y DIRECTION 
 PARAMETER _JINT =     2.000000000     
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  START CRACK INTEGRATION DATA SET    2 
  SET CINT TYPE TO JINT 

  COMPONENT NS_CRACK_FRONT 
      DESIGNATES CRACK EXTENSION NODES FOR SET    2 

  SET NUMBER OF CONTOURS FOR CRACK INTEGRATION SET    2 TO 20 

  ASSIGN CRACK SURFACE NORMAL FOR SET 2 
      TO COORDINATE SYSTEM 12 Y DIRECTION 

 *********** Done Sending CINT Commands For All Cracks *********** 
 NLDIAG: Nonlinear diagnostics CONT option is set to ON.  

         Writing frequency : each ITERATION. 

 DEFINE RESTART CONTROL FOR LOADSTEP LAST 
 AT FREQUENCY OF LAST AND NUMBER FOR OVERWRITE IS    0 

 WRITE MULTIFRAME RESTART FILES EVEN 
 WHEN IT IS A LINEAR STATIC ANALYSIS 

 DELETE RESTART FILES OF ENDSTEP 
 **************************************************** 

 ******************* SOLVE FOR LS 1 **************** 

 SELECT       FOR ITEM=TYPE COMPONENT=     
  IN RANGE      14 TO       14 STEP        1 

       66  ELEMENTS (OF    76271  DEFINED) SELECTED BY  ESEL  COMMAND. 
 SELECT      ALL NODES HAVING ANY ELEMENT IN ELEMENT SET. 

      174 NODES (OF   153066  DEFINED) SELECTED FROM 

       66 SELECTED ELEMENTS BY NSLE COMMAND. 
 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  1   KVAL = 1 

      SET ACCORDING TO TABLE PARAMETER = _LOADVARI84X                     
 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  2   KVAL = 1 

      SET ACCORDING TO TABLE PARAMETER = _LOADVARI84Y                     
 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  3   KVAL = 1 

      SET ACCORDING TO TABLE PARAMETER = _LOADVARI84Z                     

 ALL SELECT   FOR ITEM=NODE COMPONENT=     
  IN RANGE       1 TO   153188 STEP        1 

   153066  NODES (OF   153066  DEFINED) SELECTED BY NSEL  COMMAND. 
 ALL SELECT   FOR ITEM=ELEM COMPONENT=     

  IN RANGE       1 TO    76482 STEP        1 

    76271  ELEMENTS (OF    76271  DEFINED) SELECTED BY  ESEL  COMMAND. 
 PRINTOUT RESUMED BY /GOP 

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP 
 USE      10 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM 

 FOR AUTOMATIC TIME STEPPING: 

   USE     10 SUBSTEPS AS A MAXIMUM 
   USE     10 SUBSTEPS AS A MINIMUM 

 
 TIME=  1.0000     

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE. 
 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE 

   FOR ALL APPLICABLE ENTITIES 

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  
   FOR ALL APPLICABLE ENTITIES 

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  
   FOR ALL APPLICABLE ENTITIES 
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 WRITE NLOA ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  
   FOR ALL APPLICABLE ENTITIES 

 WRITE STRS ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  
   FOR ALL APPLICABLE ENTITIES 

 WRITE EPEL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR ALL APPLICABLE ENTITIES 
 WRITE EPPL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR ALL APPLICABLE ENTITIES 
 WRITE MISC ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR ALL APPLICABLE ENTITIES 

 WRITE CINT ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  
   FOR ALL APPLICABLE ENTITIES 

 NONLINEAR STABILIZATION CONTROL: 
 KEY=OFF  

 *GET  ANSINTER_  FROM  ACTI  ITEM=INT        VALUE=  0.00000000     
 

 *IF  ANSINTER_                         ( =   0.00000     )  NE   

      0                                 ( =   0.00000     )  THEN     
 *ENDIF 

 *****  ANSYS SOLVE    COMMAND  ***** 
 

 *** WARNING ***                         CP =       3.916   TIME= 14:33:49 

 Element shape checking is currently inactive.  Issue SHPP,ON or          
 SHPP,WARN to reactivate, if desired.                                     

 *** WARNING ***                         CP =       3.978   TIME= 14:33:49 
 SOLID186 wedges are recommended only in regions of relatively low stress gradients.                                                        

 *** NOTE ***                            CP =       4.103   TIME= 14:33:50 
 The model data was checked and warning messages were found.              

  Please review output or errors file ( D:\!1Share\THESIS                 

 MODELS\_ProjectScratch\ScrCF58\file.err ) for these warning messages.    
 *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** 

      --- GIVE SUGGESTIONS AND RESET THE KEY OPTIONS --- 
 ELEMENT TYPE    1 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 

 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 

NEEDED. 
 

 ELEMENT TYPE    2 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 

NEEDED. 

 
 ELEMENT TYPE    3 IS SOLID186. KEYOPT(2)=0 IS SUGGESTED AND HAS BEEN RESET. 

  KEYOPT(1-12)=    0    0    0    0    0    0    0    0    0    0    0    0 
 

 ELEMENT TYPE    4 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 

NEEDED. 

 
 ELEMENT TYPE    5 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 

 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 
NEEDED. 
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 ELEMENT TYPE    6 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 

 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 
NEEDED. 

 

 ELEMENT TYPE    7 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 

NEEDED. 
 

 ELEMENT TYPE    8 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 

 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 
NEEDED. 

 
 ELEMENT TYPE    9 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 

 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 
NEEDED. 

 

 ELEMENT TYPE   10 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS 

NEEDED. 
 

 ELEMENT TYPE   11 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE 

 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS NEEDED 
1 

 ***** ANSYS - ENGINEERING ANALYSIS SYSTEM  RELEASE 14.5     ***** 
 ANSYS Structural                                   

 00352168          VERSION=WINDOWS x64   14:33:50  JUN 18, 2014 CP=      4.165 
 FRACTURE_MECHANICS_1--Static Structural (A5)                                   

 

                       S O L U T I O N   O P T I O N S 
 

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D                   
   DEGREES OF FREEDOM. . . . . . UX   UY   UZ   

   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE) 

   OFFSET TEMPERATURE FROM ABSOLUTE ZERO . . . . .  459.67     
   EQUATION SOLVER OPTION. . . . . . . . . . . . .SPARSE              

   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC   
MAKE COMPONENTS FOR CRACK DATA SET    1 

 MAKE COMPONENTS FOR CRACK DATA SET    2 

                      L O A D   S T E P   O P T I O N S 
   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1 

   TIME AT END OF THE LOAD STEP. . . . . . . . . .  1.0000     
   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON 

      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .    10 
      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10 

      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10 

   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO 
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT 

   DATABASE OUTPUT CONTROLS 
      ITEM     FREQUENCY   COMPONENT  
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Appendix E. Field Failure Photos 

 

Figure D1.  View of a typical field failure (inner surface of rib) 

 

Figure D2.  View of a typical field failure (outer surface of rib) 
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Figure D3. View of a typical field failure (inner surface of rib) 

 

Figure D4. View of a typical field failure (outer surface of rib). 
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