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ABSTRACT 
ANALYSIS OF SENSOR SIGNALS AND QUANTIFICATION OF ANALYTES 

BASED ON ESTIMATION THEORY 
 
 

KARTHICK SOTHIVELR 
 

MARQUETTE UNIVERSITY, 2014 
 

 

Compact sensor systems for on-site monitoring of groundwater for trace organic 
compounds are currently under development. To permit near real-time analysis of 
samples containing multiple analytes, the present work investigates a sensor signal 
processing approach based on estimation theory, specifically using Kalman Filter and 
Extended Kalman Filter. As a first step towards the analysis of groundwater samples 
containing multiple compounds, the approach presented in this work permits estimation 
of analyte concentration(s) in binary mixtures and single analyte samples on-line, before 
the sensor response reaches steady-state. Sensor signals from binary mixtures and single 
analyte samples of BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) 
were analyzed in this work because these compounds are good indicators of accidental 
release of fuel and oil into groundwater. Based on those previous experimental results, 
models for the sensor response to binary mixtures and single analyte samples are 
developed. These sensor response models were transformed into state-space 
representation so that estimation theory can be used to estimate the sensor parameters.  

 
For the case of the single analyte system, one state-space form was developed and 

for the case of the two-analyte system, two different state-space forms were developed. 
These state-space forms were tested using the available measured data, and the results 
indicate that relatively accurate estimates of analyte concentration(s) could be obtained 
within a relatively short period of time (six minutes or less for the tested sensor system) 
well before the sensor response reaches steady-state. Also presented in this work are new 
techniques that enable correcting for linear baseline drift and outlier points in the 
measured data on-line. The linear baseline drift correction technique uses estimation 
theory (particularly Kalman Filter) to rapidly perform linear extrapolation and linear 
interpolation. The elimination of the outlier points in the sensor data was performed by 
using a combination of discrete low pass filter and Kalman Filter (or Extended Kalman 
Filter depending on the state-space form). These techniques were tested on measured data 
with linear baseline drift and outlier points and the results obtained indicate that these 
sensor signal pre-processing techniques are indeed capable of correcting for linear 
baseline drift and outlier points in real-time. 
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1. INTRODUCTION 

 

1.1 General Background 

 

Sensors are devices that allow the measurement of physical or chemical quantities 

and produce a signal that can be related to the quantity that the sensor is measuring. 

Typically, a sensor produces an electrical signal in response to the quantity that it is 

measuring. The electrical signal is then further processed by the signal processing unit, so 

that the electrical signal can be displayed in a way that is convenient to an observer. The 

signal processing unit can also be programmed to send a signal to a computer system or 

processor to take action if it senses any measurable change in the sensing environment. 

Basically, a sensor acts as a bridge between the real world and the electronic world. 

Sensors play a vital role in everyday life. Example of sensors used in everyday life 

include those used for monitoring the air quality in a room, monitoring the temperature in 

a room, checking the tire pressure, measuring the temperature of engine, and many more. 

 

Sensors can be classified into two categories, physical and chemical. Physical sensors 

are used to measure any physical quantities such as temperature, force, velocity, 

acceleration, pressure, etc. Chemical sensors are devices that are used to detect or 

measure the concentration of chemical(s) in either the liquid or gas phase [1]. In chemical 

sensors, a chemical interaction will cause a measurable change in a property of the 

sensor. This chemical interaction is facilitated by a polymer or other compound that is 

placed on the sensor. Chemical sensors can further be classified into several groups 
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depending on the technology used in the design and operation of the sensor. These 

include optical devices, electrochemical devices, micro-electromechanical systems 

(MEMS) and acoustic wave devices. In the optical chemical sensors, changes in the 

particular optical parameters such as index of refraction, amount of absorbance, or 

intensity of photoluminescense are monitored [2]. The interaction between the target 

analyte and the polymer coating placed on the optical sensor, will result in the changes in 

a particular optical parameter and this change in the optical parameter can be related to 

the concentration of analyte [1, 2]. In the electrochemical devices, the interaction 

between the analyte and electrode are monitored. The interaction between the analyte and 

electrode will produce a measurable signal (e.g. change in conductivity) that can be 

related to the concentration of analyte [2]. Electrochemical devices include voltammetric 

sensors, potentiometric sensors and conductimetry sensors.  In the MEMS devices, the 

properties of these micro-scaled devices are monitored and any changes observed in the 

mechanical or electrical properties of the device can be related to the concentration of 

analyte [3]. One of the most promising of the MEMS sensors is the microcantilever. A 

microcantilever is a diving-board-like structure usually only a few hundred microns in 

length. Microcantilever can be operated in the dynamic mode, where the resonant 

frequency and quality factor are monitored, or in the static mode, where the deflection of 

the microcantilever is monitored [4]. A microcantilever can be used as a chemical sensor 

when a polymer is placed on the surface of microcantilever. In dynamic mode, the 

analyte will interact with the polymer coating producing mass loading and stress effects 

which will change the resonant frequency and quality factor of the microcantilever. These 

changes can be related to the concentration of the analyte. On the other hand, in static 



3 
 

 

mode, the differential surface stress from analyte sorption causes the microcantilever to 

bend and the magnitude of the bending of the microcantilever can be related to the 

concentration of analyte. Acoustic wave devices use elastic waves at frequencies well 

above the audible range propagating in piezoelectric crystals. Typically, acoustic wave 

devices are operated between the frequencies of 1 MHz to slightly above 1000 MHz [5, 

6]. The acoustic wave devices that are commonly used for sensing applications are quartz 

crystal microbalance (QCM) also known as thickness shear mode (TSM) resonator, 

surface acoustic wave (SAW) device, shear horizontal surface acoustic wave (SH-SAW) 

device, acoustic plate mode (APM) device and the flexural plate wave (FPW) device. 

Chemical interactions between the analyte and the polymer coating on the acoustic wave 

sensors cause a perturbation in the propagation characteristics of the wave. The changes 

in the frequency and attenuation of the wave are often used for detection of analyte.   

 

As mentioned earlier, a chemical sensor is a sensor that is developed to detect the 

presence or measure the concentration of a chemical in either the liquid or gas phase. The 

detection of certain chemicals (or analytes) has become of great importance for human 

health. Leakages and spills from fuel and oil tanks, pipelines and other sources may 

contaminate groundwater, lakes, rivers and oceans posing a great threat to human health 

[7]. It is known that BTEX compounds (benzene, toluene, ethylbenzene and xylenes) are 

present in crude oil and its refined products [8] and in particular, benzene poses a great 

threat to human health. The United States Department of Health and Human Services 

(DHHS) classifies benzene as a human carcinogen [9]. Long-term exposure to significant 

levels of benzene could cause cancer, leukemia, and anemia. The current United States 
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Environmental Protection Agency (EPA) limit of benzene in  drinking water requires 

benzene concentration to not exceed five parts per billion (ppb) [10]. There are various 

sources of benzene in the environment such as cigarette smoke and car exhaust but one of 

the worrying sources of benzene is due to the leakages from underground gasoline 

storage tanks. Gasoline contains an average of 0.62% of benzene (with a maximum of 

1.3%) [11] and a leak can cause benzene to enter and contaminate soil and groundwater. 

Therefore, it is necessary to monitor the area around the gasoline storage tanks for any 

leakages to determine any presence of benzene and this can be done by using a chemical 

sensor. Extensive research is being conducted to develop an in-situ chemical sensor 

which can be used to monitor benzene concentration near the monitoring wells either 

continuously or frequently. In order to be used as an in-situ chemical sensor, the sensor 

must be able to respond rapidly to trace concentrations of benzene (that is on the order of 

five ppb as required by the EPA limit for drinking water). Such a chemical sensor can be 

made by using a shear horizontal surface acoustic wave (SH-SAW) device with a thin 

chemically selective coating [6]. The SH-SAW sensors made with the current sensing 

polymer layers respond quickly but have a limit of detection of 200 ppb [7]. Therefore, 

efforts are being made to increase the sensitivity of the SH-SAW sensor by investigating 

several polymers which could be used to detect smaller concentration of benzene than the 

current limit of detection of 200 ppb.  

 

Most chemical sensors rely on the chemical interaction between the polymer and 

analyte. It is the polymer which dictates the sensitivity and selectivity of the chemical 

sensor. Therefore the selection of the polymer is very important for a particular 
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application. However, in many cases, the chemical interaction between the analyte and 

polymer is not highly selective. Typically, polymer coatings will absorb more than one 

analyte, thus most chemical sensors are only partially selective. The problem of partial 

selectivity of chemical sensors can be rectified by two methods. Method one is the most 

obvious solution, that is to use a single chemical sensor and select a polymer which only 

responds to one target analyte. This method is successful for certain types of chemicals 

[12, 13]. Method two is to use an array of many partially selective sensors (sensor array) 

to improve the selectivity of the sensor. Each sensor in a sensor array will respond to a 

wide variety of chemicals, however, the group of sensors, as a whole, will respond 

uniquely to different chemicals [14]. Therefore, using sensor arrays helps to detect 

individual components in a mixture [5]. However, both methods are always accompanied 

by signal processing to analyze the sensor response and also to quantify the target 

analyte. In a single chemical sensor, the sensor response is subject to noise and baseline 

fluctuations due to changes in the environmental conditions and the sensor response must 

be processed to eliminate the noise and baseline drift. In a sensor array, each and every 

sensor in the array is subject to noise and baseline fluctuation. Thus, each sensor in the 

array has to be processed separately to eliminate noise and baseline drift in the sensor 

response. Moreover, in a sensor array, further signal processing is required to process the 

sensor array as a whole to identify and also to quantify the target analyte. Therefore, 

signal processing is an important part of the chemical sensing process. 
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1.2 Review of Sensor Signal Processing Methods 

 

From the previous section, it is obvious that sensor signal processing plays a major 

role in the chemical sensor system. The main purpose of signal processing is to analyze 

and to quantify the target analyte. This is true for single chemical sensor systems and also 

for chemical sensor arrays. In this section, a review of sensor signal processing methods 

will be given. Four types of sensor signal processing will be reviewed including baseline 

correction, time-to-detection (or steady-state information extraction), transient 

information extraction and sensor array processing (pattern recognition). 

 

1.2.1 Baseline Correction 

 

For most chemical sensor applications, a sample is collected from the 

environment and then transferred rapidly to a cell containing the sensors. When the flow 

of the sample to the sensor is sufficiently fast, concentration presented to the sensors, 

������, can be adequately represented by a step function as shown, 

 

������ � � ������������� 

     (1.1) 

 

where ����� represents the unit step function, �������� is the environmental analyte 

concentration at the time the sample is collected and � represents the concentrating effect 

of the collector (� = 1 if the collector does not change the concentration) [15]. A typical 



7 
 

 

sensor response is shown in Fig. 1.1. As can be seen from Fig. 1.1, upon analyte 

exposure, the sensor will respond rapidly at first and then slowly as the transients decay 

and approaches steady-state (equilibrium). In order to identify and quantify the analyte(s) 

in a sample, steady-state features are often used. There are various steady-state features 

and the choice of steady-state feature to be used is largely dependent on the sensor 

platform [16]. Table 1.1 shows some proposed steady-state features and their formulae. 

Note, the steady-state feature shown in Fig. 1.1 is the steady-state difference 

measurement, i.e. the difference between the response at the steady-state, ��� and the 

baseline response, ��. 

 

 

Figure 1.1: Typical chemical sensor response showing the difference measurement 
between the steady-state response and the baseline response [15]. 
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Steady-State Feature Formulae Sensor Types 

 
Difference 

 � �  ��� �  �� 
 

Acoustic Wave 
Metal-Oxide Resistor 

 
Relative 

 � �  ��� ��⁄  
 

Metal-Oxide Resistor 
Polymer Resistor 

 
Fractional Change 

 � �  ���� �  ��� ��⁄  
 

Metal-Oxide Resistor 
Polymer Resistor 

 
Log Relative 

 � �  ln���� ��⁄ � 
 

Metal-Oxide Resistor 
 

 

Table 1.1: List of various different steady-state features used for identification and 
quantification of chemical analytes [16]. 

 

There are two main issues with using the steady-state feature to identify and 

quantify the analyte(s) in a sample which includes baseline drift and time to detection. 

Baseline drift occurs due to fluctuations in environmental conditions such as changes in 

temperature and humidity. If the baseline measured just before the sensor is exposed to 

the analyte is used to calculate the steady-state feature, it will result in an incorrect 

measurement of the sensor response, as shown in Fig. 1.2. 

 

There are several baseline correction techniques that allow one to estimate the 

true baseline during the exposure to the analyte such as linear extrapolation, linear 

interpolation, cubic interpolation and using estimation theory to estimate the baseline. 

Linear extrapolation and linear interpolation are often used for sensors with short 

response time. Using these two techniques it is implicitly assumed that the baseline 

remains constant during exposure. Linear extrapolation technique has the advantage of 

only requiring the data obtained before the sensor is exposed to the analyte. On the other 
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hand, linear interpolation requires data obtained both before the analyte is added and after 

it has been flushed from the sensor. However, linear interpolation is usually more 

accurate than linear extrapolation at the expense of additional time required for the 

analyte to be flushed from the sensor before baseline can be estimated. For sensors with 

longer response time, linear extrapolation and linear interpolation could lead to a poor 

estimate of the baseline. This is due to the possibility of baseline drift rate or direction 

changes during a response. In the case of baseline drift changing rate or even direction, 

cubic interpolation function and estimation theory can be used. In most cases, as the 

complexity of the baseline correction techniques increases, it will yield a better result as 

depicted in Fig. 1.2. As can be seen from Fig. 1.2, cubic interpolation is able to 

approximate the true sensor baseline better than linear extrapolation or linear 

interpolation. More details on using estimation theory to correct for baseline drift are 

given in [17]. By using, estimation theory, one can actually do the baseline drift 

correction in real time as the measurement is recorded, which could drastically shorten 

the time required to quantify the analyte from the sensor response.  
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Figure 1.2: Illustration of several baseline correction techniques [15]. 

 

1.2.2 Time to Detection (Steady-State Information Extraction) 

 

As mentioned earlier, the second issue associated with using steady-state features 

to identify and quantify the analyte(s) in the sample is time to detection. If the steady-

state features are used identification and quantification of analyte(s) cannot be performed 

until the sensor response reaches its steady-state. In some cases, the sensor could take a 

fairly long time before it reaches steady-state. In these cases, if a dangerous chemical is 

present in the environment, the sensor would not be able to detect the dangerous chemical 

rapidly and the necessary remediation action could not be taken on time which could lead 

to undesirable outcome. Therefore, the time to detection is largely dependent on the 
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ability of the signal processing method used to rapidly extract the steady-state 

information from the sensor response. 

 

Steady-state information can be extracted rapidly, if one uses estimation theory to 

estimate the steady-state of the sensor response well before the sensor response actually 

reaches steady-state. More details on estimation theory used to estimate the steady-state 

of a sensor response are given in the subsequent chapters. 

 

Another approach to decrease the time required to quantify the analyte, is to use 

the initial derivative of sensor response instead of steady-state feature. By using initial 

derivative method, only the first few data points of the samples and an estimate of the 

initial derivative are required to quantify the analyte [15]. However, the initial derivative 

method is prone to flow effects (i.e. how quickly the sensor is exposed to the sample) and 

higher noise. 

 

1.2.3 Transient Information Extraction 

 

As mentioned earlier, the steady-state feature is commonly used to identify and to 

quantify the analyte. However, if one were to use the transient information together with 

the steady-state information, it will result in improved selectivity and increased 

recognition accuracy [18]. Therefore, transient information of a sensor response is vital in 

improving the identification of analyte. 

 



12 
 

 

One common approach to extract the transient information from the sensor 

response is by fitting the sensor response data with a single (or dual) exponential fit and 

determine the time constant from the exponential fit. This approach could take a long 

time because one has to wait until the response reaches steady-state before fitting the data 

to extract the transient information. In order to rapidly extract transient information, 

estimation theory can be used. By using estimation theory, one could actually estimate 

the transient information before the response reaches steady-state. 

 

Other approach to extract the transient information includes transient integrals and 

dynamic slope that attempt to capture the transient information. More details on these two 

methods are given in [19]. Moreover, there is also some research conducted to evaluate 

the feasibility of applying Wavelets and Wavelet Transform methods to extract the 

transient information [20].  

 

1.2.4 Sensor Array Processing 

 

In a sensor array, further signal processing is required to identify and quantify the 

analyte. Analyte identification and quantification can be performed using a pattern 

recognition technique. Some common pattern recognition techniques include Bayesian 

analysis, nearest neighbor algorithm, linear discriminant functions and neural networks. 

The purpose of performing pattern recognition is to maximize the ability of a sensor array 

to identify and quantify the chemical or chemical mixtures. The pattern recognition 

process is divided into two steps, training and classification. The training step involves 
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teaching the pattern recognition algorithm how the sensor array will react to a known 

analyte [4]. The classification step is where the information learned in training is used to 

determine the analyte that is most likely to have caused the given response [4]. 

 

The data collected from a sensor array is typically very large. Therefore, a 

preprocessing technique is often used to reduce the dimensionality of the sensor array 

data without any loss of useful information before performing pattern recognition. Some 

of the common preprocessing technique includes principal component analysis (PCA) 

and linear discriminant analysis (LDA). Both PCA and LDA are used to find a smaller set 

of variables that are linear combinations of the original variables. The linear 

combinations are chosen in such a way that the pertinent information from the original 

data is retained in the lower dimension transformed space [4].  

 

1.3 Problem Statement 

 

As stated in section 1.1, the detection of certain chemicals has become of great 

importance for human health. This is particularly true in the detection of benzene in the 

groundwater sample. Long-term exposure to significant levels of benzene could cause 

cancer, leukemia, and anemia. Benzene is a volatile organic chemical and it is formed 

through natural or industrial processes [21]. Benzene is also a natural part of gasoline and 

typically, gasoline is stored in underground storage tanks (USTs). According to the 

United States Environmental Protection Agency (EPA), there is about 590 000 federally 

regulated USTs in the United States alone and about 6 000 leaks are reported annually 
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[10]. So, there is a high risk of benzene leaking into the soil and contaminating the 

groundwater. Therefore, regular monitoring of the area around the USTs is crucial to 

detect the leakage of benzene into the groundwater.  

 

Currently, USTs are inspected at 2-3 year intervals and the groundwater samples 

collected at the monitoring wells have to be transported to a lab for analysis [10]. This 

current practice is time consuming and costly. Therefore, it is necessary to develop an in-

situ chemical sensor and signal processing methods that is capable of rapidly analyzing 

and quantifying benzene. The process of developing an in-situ chemical sensor are 

currently being investigated and SH-SAW devices coated with certain type of polymers 

are showing promise in detecting benzene in trace amounts. However, the challenge in 

quantifying benzene is that, groundwater samples usually contain mixtures of multiple 

analytes which are chemically similar to benzene and it is difficult to extract the sensor 

response due to benzene alone.  

 

In this work, efforts will be made to use estimation theory, in particular, Kalman 

Filter and Extended Kalman Filter (EKF) to analyze and to quantify benzene in binary 

mixtures of analyte. Although groundwater samples contain mixtures of multiple 

analytes, only binary mixtures of analytes will be considered in the present work. 

Furthermore, in this work only BTEX compounds (benzene, toluene, ethylbenzene and 

xylenes) and binary mixtures of BTEX compounds are considered. By using estimation 

theory (KF or EKF), it will be shown that the sensor parameters and concentrations of 

analyte(s) can be estimated in real-time well before the sensor response reaches steady-



15 
 

 

state, thus saving time required to wait for the sensor response to reach steady-state 

before analyzing and quantifying the target analyte. 

 

One of the challenges in using in-situ chemical sensors to monitor groundwater 

samples is the possibility of sensor baseline drift. Sensor baseline drift is a common 

problem that occurs in most chemical sensors; this is especially true for in-situ chemical 

sensors, where the sensor’s environment is not controlled and temperature and humidity 

can fluctuate drastically. These influences of environmental parameters will not only 

cause the sensor baseline to drift but also might introduce some outlier points in the 

sensor measurement. The problem of sensor baseline drift and outlier points in the 

measurement is also addressed in this thesis. It will be shown that baseline drift can be 

corrected by using estimation theory, in particular, Kalman Filter (KF) and the outlier 

points can be corrected by using Low Pass Filter (LPF). 

 

1.4 Organization of the thesis 

 

The organization of the thesis is presented in this section. This thesis is presented 

in six chapters; Chapter 1 gives an introduction to the chemical sensors in general and 

specifically explains the importance of using a chemical sensor and signal processing 

methods to monitor the groundwater sample. Moreover, the importance of signal 

processing is emphasized and a brief review on signal processing methods is given. 

Chapter 1 also defines the problem that this thesis is addressing. In Chapter 2, a review of 

sensor signal processing using estimation theory, specifically Kalman Filter and 
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Extended Kalman Filter are discussed. Both Kalman Filter and Extended Kalman Filter 

are derived in this section and the algorithm on how to use Kalman Filter and Extended 

Kalman Filter to perform estimation is explained. In Chapter 3, modelling of the sensor 

responses to single and binary mixtures of analytes is shown. The discrete-time model 

and state-space model of both single analyte sensor response and two-analyte sensor 

response are given. In Chapter 4, the specifics of the Shear Horizontal Surface Acoustic 

Wave (SH-SAW) sensors that were used to collect the data analyzed in this thesis and the 

process of data acquisition using the SH-SAW sensor are discussed. Also in this chapter, 

the data processing including the baseline drift correction and the elimination of outlier 

points in the sensor data are explained. In Chapter 5, the estimation results using the data 

collected from the SH-SAW sensor are shown and the estimation results are discussed to 

highlight the advantages of using estimation theory to analyze and quantify both single 

and two-analyte system. Finally, Chapter 6 provides a summary of the work performed in 

this thesis, and also gives some suggestions regarding the possible extensions of this 

work for future research in the area. 
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2. SENSOR SIGNAL PROCESSING USING ESTIMATION THEORY: A  
REVIEW  

 
 

2.1 Introduction 

 

As mentioned in Chapter 1, sensor signal processing is at the core of chemical 

sensor systems and the purpose of sensor signal processing is to extract the performance 

criteria of the sensor. Some of the essential performance criteria for a chemical sensor 

include sensitivity, selectivity, response time and reproducibility. Sensitivity dictates the 

minimum amount of the target analyte that can be detected by the chemical sensor. In 

many applications, it is desired that small amounts of target analyte produce large 

changes in the measured signal. Therefore, low sensitivity might result in difficulties in 

the detection of trace amounts of the target analyte. Response time is the time required 

for a chemical sensor to respond when it is exposed to the target analyte. If the response 

time is long, it will result in difficulties in rapidly quantifying the target analyte. 

Moreover, poor selectivity and reproducibility as well as sensor aging and drift caused by 

environmental influences can all result in difficulties in the detection of target analyte 

[15]. All these issues, which limit the applicability of chemical sensors, could be 

improved by incorporating an effective signal processing method such as estimation 

theory in analyzing the sensor data. 

 

Estimation theory is a branch of statistics and signal processing that deals with 

estimating the values of unknown parameters based on the measurement data [22, 23]. 

Basically, the estimation is done by using an estimator that attempts to approximate the 
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unknown parameters using the available measurements. There are three common 

problems in estimation, which consist of smoothing, filtering and prediction. Smoothing 

is a process where the past value of the unknown parameter is estimated using the 

available measurement data. Filtering is a process where the present value of the 

unknown parameter is estimated using the available measurement data and finally, 

prediction is a process where the future value of the unknown parameter is estimated 

using the available measurement data [15]. There are various forms of estimator and 

estimation methods which can be used to perform the estimation, and are Kalman Filter 

and its various derivatives, maximum likelihood estimators, Bayes Estimators, Cramer-

Rao Bound, Wiener Filter, Particle Filter and Markov Chain Monte Carlo (MCMC). 

Estimation theory is used in numerous fields as shown in Table 2.1. 

 
 
 
 

Area of application Example application 
 

Control Systems 
 
Estimation of the position of a powerboat for 
correcting navigation in the presence of sensor 
and environmental noise. 
 

 
Communications 

 
Estimation of the carrier frequency of a signal 
for demodulation to the baseband in the presence 
of degradation noise. 
 

 
Seismology 

 
Estimation of the underground distance of an oil 
deposit in the presence of noisy sound 
reflections. 
 

 
Biomedical 

 
Estimation of the heart rate of a fetus in the 
presence of environmental noise. 
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Image Processing 

 
Estimation of the position and orientation of an 
object from a camera image in the presence of 
lighting and background noise. 
 

 
Radar Communications 

 
Estimation of the delay in the received pulse 
echo in the presence of noise. 
 

 
Speech Signal Processing 

 
Estimation of the parameters of the speech 
model in the presence of speech variability and 
environmental noise. 
 

 
Sensor Signal Processing 

 
Estimation of the baseline drifts in the sensor 
response in the presence of noise. 
 

 
Table 2.1: Applications of estimation theory [23]. 

 

As mentioned in chapter 1, in the present work, estimation theory and in 

particular Kalman Filter (KF) and one of its derivatives, Extended Kalman Filter (EKF) 

will be used extensively as a means toward chemical sensor signal processing. Therefore 

in this chapter, KF and EKF will be discussed rigorously. Both KF and EKF will be 

derived in this chapter and the algorithms on how to apply KF and EKF to perform 

estimation are explained. In section 2.4, some typical applications of various forms of 

Kalman Filters are given. 

 

2.2 Kalman Filter 

 

Kalman Filter (KF) is a set of mathematical equations that provides an efficient 

recursive means to estimate the state of a process in a way that minimizes the mean of the 
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squared error [24]. Basically, KF is capable of estimating the present value of an 

unknown state given the available measurement data. Moreover, KF can also be used to 

estimate the past and future value of the unknown state by appropriate modifications to 

the filter. Therefore, KF is a very powerful algorithm that can be used to estimate past, 

present and future states of a system and it can do so even when the precise nature of the 

modeled system is unknown [24].  

 

Kalman Filter is named after R.E. Kalman, one of the primary developers of its 

theory. In 1960, R.E. Kalman first used Kalman Filter to obtain a recursive solution to the 

discrete-data linear filtering problem [24, 25]. Since then, there has been a tremendous 

research on Kalman Filter and today Kalman Filters are being used in many areas of 

applications, particularly in the area of assisted navigation. 

 

2.2.1 Kalman Filter Derivation 

 

Consider a general linear stochastic discrete-time system with internal states ��, 

outputs ��, inputs ��, and time-varying system matrices ��, ��, �� and !� as following, 

 

��"� �  ���� #  ���� # $�%� 

     (2.1a) 

�� �  ���� #  !��� # &�'� 

      (2.1b) 
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where, %� is the process or state noise with covariance (�, and '� represent the 

measurement noise with covariance )�. The cross covariance between the process and 

measurement noise is *�. For the sensor systems considered in the present work, the 

internal states, �� represent the parameters that need to be estimated such as time 

constant, steady-state value and concentration of analyte, the output, �� represents the 

sensor measurement data and the input, �� represents the unit step input. Assuming that 

the system in eq. 2.1 meets the detectability criteria (i.e. if all unstable modes of the 

system are observable) [26], then it is possible to estimate the unknown states, �� of the 

system by using only the available measurement data, �� [27]. 

 

The first step in the derivation of the Kalman Filter is to assume an estimator to 

estimate the new state of the system, �+�"�. In order to form an estimator, one should look 

at the type of information that is available at any time, �. Typically, one will have access 

to three sources of information at time, � which include the present value of the state 

estimates, �,�, the present value of the input, �� and the present value of the 

measurement, ��. By using this available information about the system, an estimator of 

the form given in eq. 2.2 can be formed [27]. 

 

�+�"� �  ���+� #  ���� #  -���� � �+�� 

    (2.2) 

 

where �+� is the estimate of the measurement given by eq. 2.3, 
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�+� �  ���+� #  !��� 

      (2.3) 

 

The goal is now to find the Kalman gain, -� which minimizes the variances of the error 

given by, 

 

.�"� �  ��"� �  �+�"� 

      (2.4) 

 

while the estimate of the unknown states remains unbiased ( i.e. /0.�"�1 � 0 ). Before 

finding the Kalman gain, -�, one has to find the error covariance, 

3�"� � /0�.�"���.�"��41 first. By substituting eq. 2.1(a), eq. 2.1(b), eq. 2.2 and eq. 2.3 

into eq. 2.4, eq. 2.5 will be obtained after some manipulation. 

 

.�"� � ��� �  -����.� #  $�%� � -�&�'� 

    (2.5) 

    From eq. 2.5, one can find the error covariance, 

 

3�"� � /0�.�"���.�"��41 
3�"� �  ��3���4 �  ��3���4-�4 �  -���3���4 #  -���3���4-�4 #  $�(�$�4 �  -�&�*�4$�4 

� $�*�&�4-�4 #  -�&�)�&�4-�4 

     (2.6) 
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Once the error covariance is found, the next step is to find the Kalman gain, -�. Note that 

the error covariance matrix, 3�"� is a diagonal and symmetric matrix. Therefore, 

minimizing the error covariance matrix is equivalent to minimizing the trace of 3�"� (i.e. 

5603�"�1). Thus, the Kalman gain, -�, can be found by taking the partial derivative of 

5603�"�1 with respect to -� and solving it for -� by setting the resulting equation to zero 

[28]. By taking the partial derivative of 5603�"�1 with respect to -�, eq. 2.7 will be 

obtained as, 

 

7 5603�"�17 -� �  �2��3���4 �  2$�*�&�4 #  2-����3���4 #  &�)�&�4� 

   (2.7) 

 

Setting eq. 2.7 to zero and solving it for -�, the following result will be obtained, 

 

-� � ���3���4 #  $�*�&�4����3���4 #  &�)�&�4�9� 

   (2.8) 

 

The Kalman gain obtained in eq. 2.8 is the value of the gain that would result in 

minimum error covariance at any given time �. The error covariance equation as given in 

eq. 2.6 can be further simplified using eq. 2.8, 

 

3�"� �  ��3���4  #  $�(�$�4 �  ���3���4 #  $�*�&�4����3���4 #  &�)�&�4�9� 

���3���4 # &�*�4$�4� 

     (2.9) 
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If the process and measurement noise are white noise which is usually the case for most 

systems and also for the sensor system considered in the present work, then their values 

will be uncorrelated with each other. Therefore, the cross-covariance, *�, will be zero. If 

the cross-covariance is zero, eq. 2.8 and eq. 2.9 can be simplified to 

 

-� � ��3���4  ���3���4 #  &�)�&�4�9� 

    (2.10) 

3�"� �  ��3���4  # $�(�$�4 �  ��3���4 ���3���4 #  &�)�&�4�9����3���4� 

 (2.11) 

   

Finally, in the derivation of the Kalman Filter, the state update equation needs to be 

found. The state update equation can be found by substituting eq. 2.3 into eq. 2.2, 

 

�+�"� �  ���+� #  ���� #  -���� � :���+� #  !���;� 

   (2.12) 

 

The last three equations, i.e. eq. 2.10, eq. 2.11, and eq. 2.12 lead to a recursive algorithm 

for updating the state estimate based on the measurement data. Since the estimation is 

performed in a recursive manner, only the current estimate of the states and the latest 

measurement value is required to update the state estimate. Therefore, by using Kalman 

Filter, the estimation can be performed in real time under strict memory requirements as 

one does not have to store all the measurement values.   
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2.2.2 Kalman Filter Algorithm 

 

In the previous section, it has been established that eq. 2.10, eq. 2.11 and eq. 2.12 

lead to a recursive algorithm that can be used to update and estimate the unknown states 

based on the measurement data. In this section, the algorithm on how to use Kalman 

Filter in order to perform estimation is explained. 

 

Kalman Filter algorithm works in a two-step process consisting of the prediction 

step and correction step [24]. The prediction step is responsible for projecting the current 

state estimate and error covariance forward in time to obtain a new state estimate and the 

error covariance for the next time step. On the other hand, in the correction step, the new 

state estimate will be updated or corrected using the new measurement value with a 

weighted average, where more weight is assigned to estimates with higher certainty. Both 

steps are implemented simultaneously by eq. 2.10, eq. 2.11 and eq. 2.12. 

 

Before applying the Kalman Filter algorithm, one has to assign a state variable to 

the unknown parameters that need to be estimated and determine the system 

matrices ��, ��, �� and !�. One should also determine the measurement noise 

covariance, )� and process noise covariance, (�. In applying the Kalman Filter 

algorithm, the first step is to initialize the state estimate, �+< and error covariance, 3< at 

time, � � 0. If the uncertainty about the system is high, one should set the initial error 

covariance, 3< to be high as well [24]. For example, if the initial value of the state is 

completely unknown, one should make an educated guess and set a value for the initial 
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value of the state estimate, �+< and should also set the initial error covariance, 3< to a large 

value. Once the initialization process is complete, the next step is to calculate the Kalman 

gain, -� at time, � � 0. After that, by using the Kalman gain, -� and the available 

measurement, �� at time, � � 0, update the state estimate, �+�"� and error covariance, 

3�"�. Note that, after the update process, one will obtain a new state estimate and a new 

error covariance for time, � � 1. Next, increment the time to � � 1 and by using the new 

state estimate and error covariance obtained at time, � � 0, repeat the process again 

starting with calculating the Kalman gain, -�. Repeat the process until the error 

covariance becomes very small or until the new measurement is taken. Kalman Filter 

algorithm is summarized in Fig. 2.1.   
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�+< � /0�<1 
3< � /0��< �  �+<���< �  �+<�41 

Initialize the state estimate and error 
covariance 

 

 

-� � ��3���4 ���3���4 # &�)�&�4�9� 
Calculate Kalman gain 

�+�"� �  ���+� #  ���� #  -����� :���+� #  !���;� 

Update state estimate 

3�"� �  ��3���4  #  $�(�$�4�  ��3���4 ���3���4#  &�)�&�4�9����3���4� 

Update the error covariance 

Measurement 
data, >? 

Increment ? 

 

Figure 2.1: Flowchart of Kalman Filter algorithm. 
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2.3 Extended Kalman Filter 

 

In this section, one of the most important derivatives of the Kalman Filter, the 

Extended Kalman Filter (EKF) will be discussed. As described in section 2.2, Kalman 

Filter addresses the problem of estimating the unknown states of a linear stochastic 

discrete-time system. If the system is non-linear, then some modifications need to be 

made, so that the estimation of non-linear state-space systems can be performed using 

Kalman Filter. This modification is done in the form of Taylor series expansion about the 

current state-estimate and neglecting the higher order terms (i.e. terms higher than first 

order) [29, 30]. Since this modification is just an extension to the original Kalman Filter, 

thus it is referred to as Extended Kalman Filter (EKF).     

 

2.3.1 Extended Kalman Filter Derivation 

 

Consider a general non-linear stochastic discrete-time system with internal 

states ��, outputs ��, inputs ��, given by, 

 

��"� � @���, �� , %�� 

     (2.13) 

�� � A���, �� , '�� 

     (2.14) 
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The non-linear system given in eq. 2.13 and eq. 2.14 can be linearized around the current 

state estimate by performing the Taylor series expansion and neglecting the higher order 

terms (i.e. terms higher than first order), which will lead to the following approximation, 

 

��"�  B  @��+�, ��, %C� # DEF@F�GHIH+JKIKJ�JI�L
M .� #  DEF@F%GHIH+JKIKJ�JI�L

M %� 

   (2.15) 

��  B A��+�, ��, 'N� # DEFAF�G HIH+JKIKJOJION
M .� #  DEFAF'G HIH+JKIKJOJION

M '� 

   (2.16) 

 

Note that the partial derivatives are evaluated at the current state estimate, known input 

value and mean of noise. The partial derivatives are actually time-varying Jacobian 

matrices and can be redefined as shown, 

 

�� �  EF@F�GHIH+JKIKJ�JI�L
 

      (2.17) 

�� �  EFAF�G HIH+JKIKJOJION
 

      (2.18) 
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$� �  EF@F%GHIH+JKIKJ�JI�L
 

      (2.19) 

&� �  EFAF'G HIH+JKIKJOJION
 

      (2.20) 

 

For EKF, these Jacobian matrices will serve as the system matrices and can be used to 

perform the estimation in a similar fashion as Kalman Filter by using eq. 2.10, eq. 2.11 

and eq. 2.12. However, some changes need to be made to eq. 2.10 to perform the 

estimation of nonlinear systems. These changes are as following, 

 

�+�"� � @��+�, ��, %C� #  -�:�� �  A��+�, �� , 'N�; 
    (2.21) 

  

Therefore, for EKF, eq. 2.21, eq. 2.11 and eq. 2.12 will lead to a recursive algorithm for 

updating the state estimate based on the measurement data. It is important to note that 

EKF is not an optimal filter because Gaussianity of the probability distributions will not 

be preserved under a non-linear transformation [4]. However, the EKF does give useful 

estimates of the states and will demonstrate convergence for certain conditions [31]. The 

convergence of EKF is dependent on the initial value of the error covariance and the 

value of process and measurement noise. Therefore, to assure convergence in the sensor 
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system considered in the present work, care must be taken in setting the initial value of 

the error covariance, value of the process noise and value of the measurement noise.  

 

2.3.2 Extended Kalman Filter Algorithm 

 

In this section, the process on how to use Extended Kalman Filter (EKF) is 

explained. EKF works in a similar way as Kalman Filter. The main difference is, for EKF 

one extra step is required that is to linearize the non-linear system about the current state 

estimate. By linearizing the non-linear system, Jacobian matrices as given in eq. 2.17 to 

eq. 2.20 can be found and these matrices will serve as the system matrices for the 

estimation process. 

 

 Therefore, before applying the EKF algorithm, one has to first assign state 

variables to unknown parameters that need to be estimated and find the general form of 

Jacobian matrices. One should also determine the measurement noise covariance, )� and 

mean, 'N  and also process noise covariance, (� and mean, %C. Similar to Kalman Filter 

algorithm, the first step in applying the EKF algorithm is to initialize the state 

estimate, �+< and error covariance, 3< at time, � � 0. Once initialization is complete, the 

next step is to evaluate the Jacobian matrices at time � � 0. After that, the Kalman gain, 

-� at time, � � 0 is calculated. By using the Kalman gain, -� and the available 

measurement, �� at time, � � 0, one can update the state estimate, �+�"� and error 

covariance, 3�"�. Once the update process is complete, one will obtain new state estimate 

and new error covariance for the next time step, i.e., for time, � � 1. Finally, the time is 
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incremented to � � 1 and by using the new state estimate and new error covariance 

obtained earlier, the process is repeated again starting with calculating the Kalman gain. 

The Extended Kalman Filter algorithm is summarized in Fig. 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�+< � /0�<1 
3< � /0��< �  �+<���< �  �+<�41 

Initialize the state estimate and error 
covariance 

 

 

-� � ��3���4 ���3���4 # &�)�&�4�9� 
Calculate Kalman gain 

�+�"� � @��+�, �� , %C� #  -�:���  A��+�, �� , 'N�; 
Update state estimate 

3�"� �  ��3���4  #  $�(�$�4�  ��3���4 ���3���4#  &�)�&�4�9����3���4� 

Update the error covariance 

Measureme
nt data, >? 

Increment ? 

 

Figure 2.2: Flowchart of Extended Kalman Filter algorithm. 
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2.4 Applications of Kalman filter 

 

In this section, some typical applications of various form of Kalman Filter will be 

reviewed. As mentioned earlier, since 1960, after R.E Kalman published his 

groundbreaking paper, Kalman Filter has been the focus of extensive research and 

applications [24]. Today, Kalman Filter and its derivatives have found many applications 

not only in the field of engineering and mathematics but also in the field of economics. 

Some typical application areas and example applications are listed in Table 2.2. In the 

present work, it will be shown that Kalman Filter and Extended Kalman Filter can also be 

used in sensor signal processing. 

 
 
 
 
 

Area of application Example applications 
 

Navigation 
 
To control and assist the navigation of 
automobiles, aircraft or spacecraft using the 
measured sensor data in a noisy environment 
[32]. 
 

 
Image processing 

 
Using various forms of Kalman Filter to 
filter the noise out of the measured images. 
 

 
Radar communications 

 
Estimating the distance of the target object. 
 

 
Control system 

 
Active noise control in noisy systems [27]. 
 

 
Economics 

 
Parameter estimation of linear and non-linear 
econometric models [33]. 
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Speech signal processing 

 
To estimate the parameters of the speech 
model and also to filter the noise out of the 
speech signal. 
 

 
Forecasting 

 
To estimate the parameters of the forecasting 
model using the measured data. 
 

 
Sensor signal processing 

 
To perform the baseline drift correction, to 
extract the transient information and to 
predict the steady-state information from the 
sensor response before the response reaches 
steady-state. 
 

 

Table 2.2: Typical applications of various forms of Kalman Filter.  
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3. MODEL OF SENSOR RESPONSES TO SINGLE AND BINARY 
MIXTURES OF ANALYTES 

 
 

3.1 Introduction 

 

In this chapter, a model of the sensor response to a single analyte sample and a 

model of the sensor response to a mixture of two analytes are discussed. In order to 

model the sensor response for each case, several assumptions were made and are 

discussed in this chapter. Since the sensor data considered in the present work are 

collected at discrete-time instants, the discrete-time model of single analyte sensor 

response and two-analyte sensor response were found by using the Euler’s continuous 

time approximation formula. The discrete-time model of the sensor response can also be 

used for sensor systems which are implemented using a microcontroller for which the 

sensors outputs are sampled at discrete-time instants. Moreover, the transformation of the 

discrete-time model of the sensor response to the state-space model of the sensor 

response is presented. Transforming the discrete-time model of the sensor response into 

the state-space model of the sensor response is important so that the unknown parameters 

from the sensor response can be estimated using discrete Kalman Filter (KF) or discrete 

Extended Kalman Filter (EKF) as discussed in the previous chapter. For the single 

analyte system, the unknown quantities that need to be estimated include normalized 

concentration of the analyte (ratio of the concentration of analyte in the coating at time, � 

to the product of the polymer-liquid partition coefficient and maximum ambient 

concentration), steady-state frequency shift and time constant. For the two-analyte 

system, two different models were developed, a nonlinear model and a linear model. The 
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main difference between the models lies in the formulation of their state-space form. For 

both models, it is assumed that the time constant for both analytes is known (from the 

single analyte experiments). For the nonlinear model, the unknown quantities that need to 

be estimated are the normalized concentration of each analyte and the steady-state 

frequency shift of each analyte. For the linear model, the unknown quantities that need to 

be estimated are the steady-state frequency shift of the analytes. This is because for the 

linear model, the normalized concentrations of each analyte were determined for every 

time instant by using the known time constant of the analytes and the sensor response 

model. The unknown quantities for both single analyte system and two-analyte system 

can be estimated using estimation theory (particularly KF or EKF). It should also be 

noted that the model of sensor responses presented in this chapter can be used for most 

sensor platforms. 

 

3.2 Single Analyte System 

 

In order to model the single analyte system, it has been assumed that the single 

analyte system obeys Henry’s law (for concentrations below 50 ppm [7, 34, 35]) and it 

has been shown that this assumption is valid in [7, 34, 35]. Typically, when the sensor is 

exposed rapidly to an analyte of a given ambient concentration, the sensor will respond 

rapidly at first and then slowly as the system reaches equilibrium (i.e. one can assume a 

step profile in the concentration as a function of time). This is true for single analyte 

system and the process of analyte absorption can be assumed to be first order and is 

described by, 



37 
 

 

 

�P��� �  � 1Q ���� #  RSQ  ������ 

     (3.1) 

 

where ���� is the concentration of analyte in the coating at time, �, ������ is the 

ambient analyte concentration at time, �, Q is the response time constant, and RS is the 

polymer-liquid partition coefficient. For single analyte system, the measured frequency 

shift at time, � is given by, 

 

∆@��� �  �U���� 

      (3.2)   

  

where ∆@��� is the frequency shift observed at time, �, and U is the steady-state frequency 

shift which is a function of the sensor platform, the sensor coating, and the analyte. Both 

eq. 3.1 and eq. 3.2 were normalized by dividing with RS��H (where ��H represent the 

maximum ambient concentration) and the following equations were obtained, 

 

�P���RS��H �  � 1Q ����RS��H #  1Q ��������H  

     (3.3) 
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∆@��� �  �URS��H  ����RS��H 

      (3.4) 

 

By defining new variables as follows, 

 

V��� �  ����RS ��H 

         

����� �  ��������H  

        

� �  �URS��H 

       

eq. 3.3 and eq. 3.4 were rewritten as, 

 

VP ��� �  � 1Q V���  #  1Q ����� 

     (3.5) 

∆@��� �  �� V��� 

      (3.6) 

 

where V��� represent the normalized concentration of absorbed analyte at time, �, � is 

the normalized steady-state frequency shift and ����� represents the unit step input (for 
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� W 0, ��� � 0 and for � X 0, ������ �  ��H ). Eq. 3.5 and eq. 3.6 are the single 

analyte normalized equations which were used to represent the single analyte absorption.  

 

3.2.1 Discrete-Time Model 

 

The frequency shifts of the single analyte system are measured at discrete-time 

instants (i.e. � � �5, where 5 is the sampling period). Therefore, it is necessary to 

transform the continuous time model of the single analyte sensor response given in eq. 

3.5 and eq. 3.6 into a discrete-time model. In order to discretize the continuous time 

model, Euler’s continuous time approximation formula was used. Based on Euler’s 

formula, the first derivative of the normalized concentration can be approximated by, 

 

VP ��� �  V�"� � V�5  

      (3.7) 

 

By applying Euler’s approximation of the first derivative of the normalized concentration 

as given in eq. 3.7, the discrete-time model of the single analyte system is found to be, 

 

V�"� � E1 �  5QG V� #  5Q ��,� # %� 

     (3.8) 

∆@� � � V� # '� 

      (3.9) 
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where %� and '� are added to represent the process and measurement noise that are 

present in the single analyte system (%� and '� are uncorrelated white noise with zero 

mean). By defining absorption rate constant as, 

 

* �  5Q  

      

eq. 3.8 can be rewritten as, 

 

V�"� � �1 �  *�V� #  * ��,� # %� 

     (3.10) 

 

In conclusion, eq. 3.9 and eq. 3.10 represent the discrete-time model of the single analyte 

system. 

 

3.2.2 State-Space Model 

 

The discrete-time model of the single analyte system should be transformed into 

the state-space model, so that the unknown parameters from the single analyte response 

can be estimated using Extended Kalman Filter (EKF). As mentioned earlier, for the 

single analyte system, it is assumed that the normalized concentration of the analyte, the 

steady-state frequency shift and the time constant (absorption rate) are the unknown 

parameters. The normalized concentration is actually dependent on the absorption rate, 

thus by knowing the absorption rate, one could actually determine the normalized 
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concentration or vice versa but need to wait until the sensor response reaches steady-

state. Therefore, to perform the estimation in real-time before the response reaches 

steady-state, one should assume both normalized concentration and absorption rate to be 

unknown, so that both unknowns can be estimated simultaneously. Note that if the 

steady-state frequency shift is assumed to be known, then only the other two unknowns, 

the normalized concentration and the absorption rate constant need to be estimated (this 

case is not considered in the present work).  

 

In order to convert the discrete-time model into the state-space model, the first 

step is to assign state variables to the unknown parameters, 

 

D�����
�����
�����M �  YV�*� Z 

 

and define the output as, 

 

�� �  ∆@� 

 

Eq. 3.9 and eq. 3.10 can be rewritten in terms of these state variables, 

 

��"���� � [1 � �����\�����  #  ����� ��,� # %� 

    (3.11) 
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�� � ����������  # '� 

      (3.12) 

 

Since the absorption rate, * and the steady-state frequency shift, � are constants, the 

values of these parameters at time, � # 1 are equal to their values at time, �. 

 

��"���� �  ����� 
      (3.13)  

��"���� �  ����� 
      (3.14) 

 

Eq. 3.11, eq. 3.12, eq. 3.13 and eq. 3.14 form the state-space model of the single analyte 

system and can be rewritten as, 

 

��"� �  @���, �� , %�� �  D��"����
��"����
��"���� M �  ]̂

_̂[1 � �����\�����  #  ����� ��,� # %������
����� àa

b
 

   (3.15a) 

�� � A���, �� , '�� �  ���������� #   '� 

     (3.15b) 

 

From eq. 3.15, it can be seen that the state-space model describing the single analyte 

sensor response is a nonlinear model. Therefore, to perform the estimation, EKF should 
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be used. In order to apply the EKF algorithm, the nonlinear system described by eq. 3.15 

has to be linearized using Taylor series expansion. For the single analyte system, the 

result of linearization were obtained as described by eq. 3.16, 

 

��"� � @���, �� , %�� c @��+�, ��, %C�� #  ����� � �+�� # $�%� 

   (3.16a) 

�� � A���, �� , '�� c A��+�, �� , 'N�� #  ����� � �+�� # &�'� 

   (3.16b) 

 

where, 

 

@��+�, ��, %C�� � ]̂
_̂[1 � �+����\�+����  #  �+���� ��,��+����

�+���� àa
b
 

 

A��+�, �� , 'N�� �  �+�����+���� 
 

�� �  d[1 � �+����\ ��+���� #  ��,� 00 1 00 0 1e 

 

$� �  f100g 
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�� �  h �+���� 0 �+����i 
 

&� �  :1; 
 

By using the linearization result described by eq. 3.16, EKF algorithm can be 

applied to perform the estimation of the unknown parameters. The information on how to 

apply the EKF algorithm was discussed in chapter 2 and the EKF algorithm was 

summarized in Fig. 2.2. 

 

3.3 Two-Analyte System 

 

In order to model the two-analyte system, two main assumptions were made. The 

first assumption is that the mixture obeys Fick’s law of absorption which states that when 

the mixture is extremely dilute, the sorption of one analyte into the polymer does not 

interfere with the sorption of the second analyte in any way. Free partitioning of the 

analyte between polymer and aqueous phase is assumed, implicating that the sorption 

process is reversible (i.e. only physisorption occurs). Fick’s law of absorption is only 

valid for analyte concentrations below 50 ppm based on experimental observations [7, 34, 

35]. From this assumption it follows that the concentration of the binary mixture in the 

coating at any time, �, is actually the sum of the concentration of each individual analyte 

in the mixture (i.e. �
H�Kj� �  �k��� #  �l��� for any time, � where subscript A and B 

represents two different analytes), and the process of analyte absorption can be assumed 

to be first order and is given by, 
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�Pk��� �  � 1Qk �k��� #  RS,kQk  ���,k��� 

    (3.17a) 

�Pl��� �  � 1Ql �l��� #  RS,lQl  ���.l��� 

    (3.17b) 

 

where ���,k��� and  ���.l��� are the ambient analyte concentration of analyte A and 

analyte B at time, �, respectively, Qk and Ql are the response time constant of analyte A 

and analyte B respectively, and RS,k and RS,l are the polymer-liquid partition coefficient 

of analyte A and analyte B respectively. 

 

For the two-analyte system, it is also assumed that the steady-state frequency 

shifts are also mutually unaffected, that is the frequency shift of the mixture at any time, 

�, is the sum of the frequency shifts due to each analyte in the mixture at any time, �. 

Therefore, the frequency shift for the binary mixture at any time, �, is given by, 

 

∆@��� � �Uk�k��� � Ul�l��� 

     (3.18) 

 

where ∆@��� is the frequency shift of the two-analyte system observed at time, �, Uk is the 

steady-state frequency shift of analyte A, Ul is the steady-state frequency shift of analyte 

B, �k��� and �l��� are the absorbed concentrations of the analyte A and analyte B in the 
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coating at time, �, respectively. From this assumption, it follows that the steady-state 

frequency shift for the mixture will also be the sum of the steady-state frequency shift of 

each analyte in the mixture and the response times of the analytes in the mixture will also 

be the same as those obtained from the single analyte measurements. Also note that this 

assumption is true for sufficiently low analyte concentrations in the range of parts per 

million (ppm) to parts per billion (ppb) because Henry’s law can be applied for low 

concentrations of analytes (the investigation on the validity of Henry’s law in the low 

concentration range of ppm to ppb is shown in [7, 34, 35]). Eq. 3.17a and eq. 3.17b were 

normalized by dividing with RS,k��H,k and RS,l��H,l respectively (where ��H,k and 

��H,l represents the maximum ambient analyte concentrations of analyte A and analyte 

B correspondingly), 

 

�Pk���RS,k ��H,k �  � 1Qk
�k���RS,k ��H,k #  1Qk  ���,k�����H,k  

     (3.19a) 

 

�Pl���RS,l ��H,l �  � 1Ql
�l���RS,l ��H,l #  1Ql  ���.l�����H,l  

     (3.19b) 

 

By defining new variables as follows, 

 

Vk��� �  �k���RS,k��H,k 
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Vl��� �  �l���RS,l��H,l 

 

�k��� �  ���,k�����H,k  

 

�l��� �  ���,l�����H,l  

 

�k �  � UkRS,k��H,k 

 

�l �  � UlRS,l��H,l 

 

eq. 3.18 and eq. 3.19 were rewritten as, 

 

VP k��� �  � 1Qk Vk��� #  1Qk  �k��� 

    (3.20a) 

VP l��� �  � 1Ql Vl��� #  1Ql  �l��� 

    (3.20b) 

∆@��� � �kVk��� #  �lVl��� 

    (3.21) 
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where Vk��� and Vl��� represent the normalized concentrations of absorbed analyte A 

and analyte B respectively at time, �, �k and �l represent the normalized steady-state 

frequency shift of analyte A and analyte B respectively and �k��� and �l��� both 

represent the unit step input for analyte A and analyte B respectively. In conclusion, eq. 

3.20 and eq. 3.21 are the two-analyte normalized equations that were used to represent 

the two-analyte absorption.  

 

3.3.1 Discrete-Time Model 

 

Similar to the single analyte system, the frequency shifts for the binary mixtures 

are also measured at discrete-time instants (i.e. � � �5, where 5 is the sampling period). 

Therefore, it is required to transform the continuous time model of the two-analyte sensor 

response given in eq. 3.20 and eq. 3.21 into a discrete-time model. Just as in the single 

analyte case, Euler’s continuous time approximation formula was used and based on the 

Euler’s formula, the first derivative of the normalized concentration of each analyte can 

be approximated by, 

 

VP k��� �  Vk,�"� � Vk,�5  

      (3.22a) 

VP l��� �  Vl,�"� � Vl,�5  

      (3.22b) 
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By using Euler’s approximation as given in eq. 3.22, the discrete-time model of the two-

analyte system is found to be as given, 

 

Vk,�"� � �1 �  *k�Vk,� #  *k�k,� # %� 

    (3.23a) 

Vl,�"� � �1 �  *l�Vl,� #  *l�l,� # %� 

    (3.23b) 

∆@� � �kVk,� #  �lVl,� #  '� 

     (3.24) 

 

where *k and *l are the absorption rate constant for analyte A and analyte B, 

respectively, and are defined as, 

 

*k �  5Qk 

 

*l �  5Ql 

 

The terms %� and '� are added to represent the process and measurement noise that are 

present in the two-analyte system (%� and '� are uncorrelated white noise with zero 

mean). Eq. 3.23 and eq. 3.24 represent the discrete-time model of the two-analyte system. 
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3.3.2 Nonlinear Model 

 

Two different state-space models for the two-analyte system were developed, one 

being a nonlinear model and the other a linear model. First, the formulation of the 

nonlinear model will be presented and discussed. As mentioned earlier, for the nonlinear 

model of the two-analyte system, the normalized concentration of each analyte and the 

steady-state frequency shift of each analyte are the unknown parameters that need to be 

estimated. Note that the absorption rate (or time constant) of each analyte does not have 

to be estimated because it is assumed to be known from the single analyte experiments. In 

order to obtain the state-space form of the nonlinear model, state variables are assigned to 

the unknown parameters that need to be estimated: 

 

]̂̂
^̂_
�����
�����
�����
���n�àaa

ab �  DVk,�Vl,��k�l
M 

  

and define the output as, 

 

�� �  ∆@� 

  

By rewriting eq. 3.23 and eq. 3.24 in terms of these state variables, the following 

equations are obtained, 
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��"����  �  �1 � *k������ #  *k�k,� #  %� 

    (3.25a) 

��"����  �  �1 � *l������ # *l�l,� #  %� 

    (3.25b) 

�� �  ���������� #  ���n������ #  '� 

     (3.26) 

 

Since the steady-state frequency shift of analyte A, �k, and steady-state frequency shift of 

analyte B, �l, are a constant, the value of these parameters at time, � # 1 is equal to the 

value of the parameter at time, �. 

 

��"���� �  ����� 
       (3.27)  

��"��n� �  ���n� 
       (3.28) 

 

By combining eq. 3.25, eq. 3.26, eq. 3.27, and eq. 3.28, the state-space form of the 

nonlinear model can be rewritten as,  
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��"� �  @���, �� , %�� �  
]̂̂
^̂_
��"����
��"����
��"����
��"��n� àaa

ab �  
]̂̂
^̂_
�1 � *k������ #  *k�k,� #  %�  �1 � *l������ # *l�l,� #  %������

���n� àaa
ab
 

  (3.29a) 

�� � A���, ��, '�� �  ���������� #  ���n������ #  '� 

    (3.29b) 

 

From eq. 3.29, it can be seen that the state-space form is a nonlinear model; thus this 

formulation of the state-space form of the two-analyte system is known as the nonlinear 

model and EKF should be used to estimate the unknown parameters. In order to apply the 

EKF algorithm, the state-space form given in eq. 3.29 has to be linearized using Taylor 

series expansion. For the nonlinear model, the result of linearization is as follows, 

 

��"� � @���, �� , %�� c @��+�, ��, %C�� #  ����� � �+�� # $�%� 

   (3.30a) 

�� � A���, �� , '�� c A��+�, �� , 'N�� #  ����� � �+�� # &�'� 

   (3.30b) 

 

where, 

 

@��+�, ��, %C�� �  
]̂̂
^̂_
�1 � *k��+���� #  *k�k,� �1 � *l��+���� #  *l�l,��+����
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A��+�, �� , 'N�� �  �+�����+���� #  �+��n��+���� 
 

��  �  D�1 � *k� 0 0 00 �1 � *l� 0 00 0 1 00 0 0 1M 

 

$� �  D1100M 

 

�� �  h�+���� �+��n� �+���� �+����i 
 

&� � :1; 
 

By using the linearization result given in eq. 3.30, EKF algorithm can be applied 

to perform the estimation of the unknown parameters. The information on how to apply 

the EKF algorithm was discussed in chapter 2 and the EKF algorithm was summarized in 

Fig. 2.2. 

 

3.3.3 Linear Model 

 

In this section the formulation of the state-space form of the linear model of the 

two-analyte system will be presented. As mentioned earlier, for the linear model of the 
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two-analyte system, the unknown parameters that need to be estimated are only the 

steady-state frequency shifts of the analytes. The normalized concentration of each 

analyte does not have to be estimated because by using the known time constant of each 

analyte from the single analyte experiment and eq. 3.23, the normalized concentration for 

each analyte can be determined for every discrete-time instant. As a result, a simplified 

linear model can be obtained and the estimation of the unknown parameters can be 

performed using KF. In order to obtain the state-space form of the linear model, state 

variables are assigned to the unknown parameters that need to be estimated, 

 

f�����
�����g �  o�k�lp 

  

and define the output as, 

 

�� �  ∆@� 

 

Since the steady-state frequency shift of analyte A, �k, and the steady-state frequency 

shift of analyte B, �l, is a constant, the value of these parameters at time, � # 1 is equal 

to the value of the parameter at time, �, 

 

f��"����
��"���� g �  f�����

�����g 
     (3.31) 
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By rewriting eq. 3.24 and eq. 3.31 in terms of the state variables, the state-space form of 

the linear model can be obtained as follows, 

 

f��"����
��"���� g  �  � f�����

�����g 
     (3.32a) 

 

��  �  �� f�����
�����g  #  &'� 

    (3.32b) 

 

where, 

 

� �  o1 00 1p 
 

�� �  :Vk,� Vl,�; 
 

& � :1; 
 

represent the system matrices.  

 

Eq. 3.32 represents the state-space form of the linear model of the two-analyte 

system and from eq. 3.32, it can be seen that the state-space form is a linear model; thus 
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this formulation of the state-space form of the two-analyte system is known as the linear 

model. In this case, to estimate the unknown parameters, KF can be used. It should be 

noted that the time-varying system matrix, �� is dependent on the values of the 

normalized concentration for each analyte (i.e. analyte A and analyte B) which can be 

determined for each discrete-time instant, � by using eq. 3.23. In conclusion, by using the 

system matrices and the state-space form of the linear model given in eq. 3.32, KF 

algorithm can be applied to perform the estimation of the unknown parameters. The 

information on how to apply the KF algorithm was discussed in chapter 2 and the KF 

algorithm was summarized in Fig. 2.1. 
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4. CHEMICAL SENSOR DATA ACQUISITION 

 

4.1 Introduction 

 

In this chapter, the specifics of the shear horizontal surface acoustic wave (SH-

SAW) device that was used to collect the sensor data analyzed in the present work are 

discussed. The physics of the SH-SAW devices are discussed in detail. The SH-SAW 

sensor platform has been chosen to collect the data analyzed in the present work because 

it has been shown in [7, 34-36], that SH-SAW has the potential of being used as an in-

situ chemical sensor to quantify BTEX compounds. All the preparations of the 

experimental setup and data collection were performed in the Microsensor Research 

Laboratory, Marquette University. The details of the experimental setup and data 

collection will also be discussed in this chapter. The information on the types of the 

polymers used in the present work to detect the target analytes is also given. The polymer 

films were coated on the sensor platform to enhance the sensitivity and to provide partial 

selectivity for the target analytes.  

 

Moreover, data pre-processing techniques that are used in the present work are 

also discussed in this chapter. The data pre-processing discussed includes linear baseline 

drift correction and the elimination of outlier points in the sensor data. The linear baseline 

drift correction technique discussed in this chapter uses estimation theory (particularly 

Kalman Filter) to rapidly perform linear extrapolation and linear interpolation. The 

techniques discussed were tested on the actual experimental data and the results obtained 
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are shown. The elimination of the outlier points in the sensor data were performed by 

using a combination of discrete low pass filter and Kalman Filter (KF) (or Extended 

Kalman Filter (EKF)). The proposed technique was tested on the experimental data with 

outlier points to illustrate the effectiveness of the proposed technique and the results 

obtained are shown. Note that the data pre-processing had to be performed first before the 

data is used to perform the estimation of the analyte(s) in the sample.  

 

4.2 Shear Horizontal Surface Acoustic Wave (SH-SAW) Devices 

 

Shear horizontal surface acoustic wave (SH-SAW) devices are a specific type of 

sensor platform which can be used for biochemical detection in liquid environments. 

Compared to other types of acoustic wave devices which can be used for liquid-phase 

sensing applications (such as thickness shear mode, shear horizontal acoustic plate mode, 

and flexural plate wave), SH-SAW are preferred because surface waves are more 

sensitive to surface perturbations. Moreover, devices with high quality factor can be 

obtained. SH-SAW devices are also small, robust, and easy to incorporate into on-line 

low cost systems [36, 37]. SH-SAW devices are fabricated with a specific crystal 

structure that is rotated so that the wave in this crystal only supports the shear horizontal 

component of the surface wave [38]. Therefore, SH-SAW can be used effectively for 

liquid-phase sensing applications.  

 

Compared to surface acoustic wave (SAW), also known as Rayleigh wave, the 

SH-SAW often propagates slightly deeper within the substrate [39, 40], hence preventing 
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the implementation of high-sensitivity detectors. However, the sensitivity of SH-SAW 

sensors can be increased by using a thin guiding layer on the device surface which will 

trap the acoustic energy near the sensing surface. Therefore, SH-SAW sensors are 

typically modeled as a multilayered structure [41]. The structure used in this investigation 

is a three-layer structure as shown in Fig. 4.1. This three-layer structure consists of the 

piezoelectric substrate with input and output interdigital transducers (IDTs) arranged in a 

delay line configuration, a polymer layer and a liquid layer. The purpose of the 

piezoelectric substrate is to convert the electrical signal into a mechanical signal (strain) 

(i.e. the acoustic wave) and also to serve as a support for the entire device. The polymer 

layer has a finite thickness, A and is assumed to have a lower shear wave velocity than 

the substrate (the latter is a precondition for the confinement of the SH-SAW to the 

surface). For the three-layer structure, the polymer layer serves as both a wave guiding 

layer and a chemically sensitive layer [42-44]. The liquid layer is assumed to be a 

Newtonian fluid because the solution(s) being tested are dilute aqueous solutions, and is 

used for transport of analyte molecules. Since the polymer layer is of thickness, A, the 

polymer layer is considered as a finite layer while the substrate and the liquid layer are 

considered as semi-infinite layers [42]. Note that, since the guided SH-SAW propagates 

in the �� direction and the particle displacement is parallel to the �� direction, the device 

is known as ‘shear-horizontal surface acoustic wave device’. 
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Figure 4.1: Three-layer structure and coordinate system. The guided SH-SAW will 
propagate in the qrdirection, qs is in the direction of the acoustic wave particle 
displacement, and qt is normal to the sensing surface [43]. 

 

 

In order to eliminate the common environmental interactions (such as temperature 

and pressure), a dual delay line configuration is used for the SH-SAW sensor design 

where one line serves as a sensing line and the other as a reference line. This design 

allows for the common environmental interactions producing the responses from both 

lines to be eliminated by subtraction (i.e. differential measurement) [37, 43]. A thin metal 

layer is also used between the two IDTs (input and output IDTs), to create an electrical 

short so that acoustoelectric interactions with the load can be eliminated [37, 43]. This is 

done in order to eliminate all electrical load interactions, so that only mechanical loading 

is present. Therefore, only sensing caused by mechanical loading (i.e. changes in the 

mechanical properties of the polymer coating) is considered in this work.       
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4.3 Data Acquisition 

 

The sensor data analyzed in this work was collected using the 36° YX-LiTaO3 

guided SH-SAW device as the sensing platform [34-36]. This device was fabricated with 

10/80-nm-thick Cr/Au split finger pairs IDTs having the periodicity of 40µm, which will 

produce an operating frequency of 103MHz for the uncoated device [34-36]. As 

mentioned earlier, dual delay line configuration was used with a metalized path between 

the IDTs to eliminate the acoustoelectric interaction with the load. The sensing line was 

coated with the sorbent polymer coatings. The types of polymer coatings which are used 

to interact with the analytes of interest and to collect the sensor data include poly(ethyl 

acrylate) (PEA), poly(epichlorohydrin) (PECH), and poly(isobutylene) (PIB), all 

purchased from Sigma-Aldrich. The polymers were deposited on the sensing line from a 

solution by spin coating and baking for 15 minutes at 60°C which results in thicknesses, 

1.0 µm for PEA, 0.6 µm for PECH, and 0.8 µm for PIB. The reference lines were coated 

with poly(methyl methacrylate) and baked for 120 minutes at 180°C, which will result in 

a glassy, non-sorbent coating so that the reference line will not absorb any analyte (i.e. it 

is chemically insensitive). All the BTEX analytes used in the experiment were purchased 

from Sigma-Aldrich and had purities of at least 98.5%. 

 

The experimental set-up used to collect the sensor data consisted of a network 

analyzer (Agilent 8753ES) and a switch/control system (Agilent 3499A) to switch 

between the two SH-SAW delay lines. Note that for some measurements, an Agilent 

E5061B network analyzer and an Agilent 34980A switch/control system were used. In 
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order to perform the experiment, the SH-SAW sensor was placed inside a flow cell 

(which was designed at Marquette University Microsensors Laboratory) and a pump 

(Eppendorf EVA, in later experiments: Ismatec Reglo Digital MS) was used to pump the 

solutions into the flow cell. The solutions were pumped at sample flow rate of 0.4 

ml/min. Before pumping the analyte solution into the flow cell for detection by the 

sensor, a reference solution (DI water) was pumped first. The reference solution was 

pumped until the output signal was stable. When the output was stable, an analyte sample 

was pumped into the flow cell for detection by the sensor. After the sensor response 

reaches the steady-state (or equilibrium), the reference solution was pumped again into 

the system to flush the flow cell and cause the analyte to desorb from the polymer coating 

on the sensor. This process was repeated periodically for different analyte samples and 

concentrations. The above procedures are well described in the literature [34-36]. The 

experiment was performed in an environment in which the temperature was held constant 

at 22.0 u 0.1°C. The experiments were performed using the samples containing single 

analyte and also using the samples containing binary mixtures of analytes. The 

measurements were performed on the single analyte samples to determine the 

sensitivities, v (in Hz/ppm) and the response time constant, τ (in w) for each 

coating/analyte combination considered in this work. By using the values of the 

sensitivity, v, of each analyte from the single analyte measurements, the analyte 

concentration(s) can readily be extracted by dividing steady-state frequency shift, α, by 

the average value of sensitivity, v [35]. The values of response time constant, τ, 

determined from the single analyte experiments can be used in the estimation process of 

the two-analyte system. Multiple single analyte measurements were performed and both 
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the values for the sensitivity, v, and time constant, τ, are determined and are listed as 

average values for various coating/analyte combinations in tables 4.1 and 4.2, 

respectively. 

 

Polymer xyz{|z{z x}~��z{z xz}�>�yz{|z{z 
1.0 µm PEA 244 �u27� 690 �u160� 2240 �u460� 

0.6 µm PECH 109 �u9� 435 �u25� 1450 �u240� 
0.8 µm PIB 63 �u5� 344 �u43� 1670 �u10� 

 
Table 4.1: Measured average sensitivities, σ (in Hz/ppm) from multiple single 
analyte experiment for three different polymer coatings to various BTEX analytes. 
The standard errors (68% confidence interval) are given in parentheses [35]. 

 
 

Polymer �yz{|z{z �}~��z{z �z}�>�yz{|z{z 
1.0 µm PEA 36.1 �u10.0� 76.7 �u6.0� 204 �u4.5� 

0.6 µm PECH 26.5 �u8.4) 77.6 �u2.8� 175 �u13� 
0.8 µm PIB 29.3 �u7.8� 84.2 �u6.5� 245 �u14� 

 

Table 4.2: Measured average response times, τ (in s) from multiple single analyte 
experiment for three different polymer coatings to various BTEX analytes. The 
standard errors (68% confidence interval) are given in parentheses [35]. 

 

All the sensor data collected were recorded and the data collected exhibit linear 

baseline drift during the response. Therefore, pre-processing had to be done first in order 

to correct the data for baseline drift and to eliminate any outlier points in the data before 

using the data to perform the estimation process to quantify the analytes in the binary 

mixture (or single analyte sample).    
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4.4 Data Processing 

 

As mentioned in the previous section, the raw data collected from the experiment 

exhibits a linear baseline drift. Therefore, the raw data has to be corrected for baseline 

drift before the data can be used to perform the estimation process to quantify the 

analytes in the binary mixture. The general approach to perform baseline drift correction 

is given in [17]. The baseline drift correction approach presented in [17] is based on 

Extended Kalman Filter (EKF) and works for both linear and nonlinear baseline drift. 

Since the sensor responds rapidly to the target analyte and the baseline drift observed in 

the data collected for the analysis in the present work exhibit a linear baseline drift, a 

simplified model of baseline drift correction method is proposed in this section. The 

linear baseline drift correction technique discussed in this section uses Kalman Filter 

(KF) to perform linear extrapolation and linear interpolation rapidly and can be viewed as 

a special case of the baseline drift correction technique presented in [17]. One should 

note that, the baseline correction technique presented in this section will only work for 

linear baseline drift and for sensors which responds rapidly to the target analyte. The 

proposed techniques were tested on the experimental data with linear drift and the results 

obtained are shown. 

 

Occasionally, outlier points will be observed in the measurement data and these 

outlier points have to be eliminated or corrected in order to get an accurate result when 

one performs the estimation process to quantify the analyte(s) present in the sample. 

Outlier points will be recorded if the measurement noise is very high, sometimes during 
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the start of a new measurement, or if any changes in the boundary conditions occur, e.g. 

if the pump is briefly stopped when switching to a new sample. In this section, a new 

technique which is based on a combination of discrete low pass filter and EKF will be 

presented in order to eliminate the outlier points in the measurement data rapidly (in real-

time). One should note that, the correction of outlier points can only be performed after 

the data point has been corrected for baseline drift. The proposed technique was tested on 

the experimental data with outlier points to illustrate the effectiveness of the proposed 

technique and the results obtained are shown. 

 

4.4.1 Baseline Drift Correction 

 

As mentioned earlier, linear baseline drift correction technique discussed in this 

section uses Kalman Filter (KF) to perform linear extrapolation or linear interpolation 

rapidly. Techniques to perform linear extrapolation using KF are explained first.  

 

In order to perform linear extrapolation using KF, only the data obtained before 

the sensor is exposed to the analyte are used. Since the baseline drifts linearly in the 

present case, the baseline drift can be modeled as a first-order curve given by, 

 

�_�Uw.���.� � U # �� #  '� 

     (4.1) 
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where U represent the y-intercept, � is the slope of the baseline, '� represent the 

measurement noise and � represent the discrete time instant at which the baseline is 

measured. By using the measurement data recorded before the analyte is introduced to the 

sensor, one could actually estimate the constants U and �. Then by using the estimated 

value of the constants U and �, one could extrapolate the baseline during the sensor 

response (i.e. after the analyte has been introduced to the sensor) and perform the 

baseline drift correction by subtracting the baseline drift from the sensor response while 

measurements are taken. In order to estimate the constants U and � in real-time by using 

KF, the baseline drift model given in eq. 4.1 was transformed into the state-space model 

by assigning a state-variable to the parameters U and �, 

 

f�����
�����g �  oU�p   

      (4.2) 

 

Since the parameters that need to be estimated are constants, the values of the parameters 

cannot be changing in time. This can be represented by, 

 

f��"����
��"���� g �  f�����

�����g 
     (4.3) 

 

Then, the linear baseline drift model in the state-space form can be written as follows: 

 



67 
 

 

f��"����
��"���� g �  o1 00 1p f�����

�����g 
    (4.4a) 

�� �  :1 �; f�����
�����g #  '� 

    (4.4b) 

 

By using the state-space model of the baseline drift and the measurement data before 

analyte exposure, KF algorithm as presented in chapter 2 can be used to estimate the 

constants U and �. Once the values of constants U and � are estimated, the baseline can 

then be extrapolated during the sensor response (i.e. after the analyte is introduced) in 

order to correct the measurement data for baseline drift while measurements are taken. 

The baseline corrected measurement can be found by subtracting the baseline value at a 

particular instant in time from the recorded measurement data at that same instant in time, 

 

�_��66.��.�� �  �_V.Uw�6.V.��� �  �_�Uw.���.� 

  (4.5)  

 

Since the linear extrapolation only requires the data obtained before the analyte exposure 

to estimate the baseline, linear extrapolation can be performed in real-time. 

 

If several samples are measured consecutively in the course of one experiment, 

linear interpolation using KF can be used to estimate the baseline to obtain a more 

accurate estimate. In order to perform linear interpolation using KF, data obtained both 
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before the analyte is added and after it has been flushed from the sensor are used. Both 

these data are used to determine the constant � which represents the slope of the baseline. 

The constant, U, which represents the y-intercept of the baseline is determined by using 

the data obtained before the analyte is added. Basically, one can use the same state-space 

model given in eq. 4.4 to perform linear interpolation. However, for linear interpolation, 

the linear baseline drift needs to be estimated twice, one by using the data obtained before 

the analyte exposure and another baseline estimation using the data obtained after the 

analyte has been flushed from the sensor. Then, the slope of the baseline, �, is determined 

by taking the average between the slopes of the two baselines and as for the y-

intercept, U, one can assign the same value obtained for the y-intercept of the baseline 

estimated using the data obtained before analyte exposure. Once the constants U and � are 

determined, the baseline during the sensor response can be determined and subtracted 

from the measurement data to obtained the corrected measurement data, as illustrated by 

eq. 4.5. Since linear interpolation requires data obtained both before the analyte is added 

and after it has been flushed from the sensor to estimate the baseline, linear interpolation 

cannot be performed in real-time as the measurements are taken. This is because one has 

to wait until the data after the analyte has been flushed from the sensor are collected 

before estimating the baseline. However, linear interpolation can yield a more accurate 

result compared to linear extrapolation [17]. 

 

In order to prove the validity of the proposed linear baseline drift correction 

techniques explained in this section, the techniques were tested on the actual 

experimental data collected in the Microsensor Research Laboratory at Marquette 
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University. Here, the baseline drift correction results obtained by using data from two 

different experiments will be presented and discussed. First, the results obtained by using 

the raw experimental data collected by using PEA polymer coatings with thickness 

1.0µm as shown in Fig. 4.2 are presented. As can be seen in Fig. 4.2, there is a baseline 

drift in the experimental data and the baseline drifts linearly for each individual sample. 

Therefore, the proposed baseline drift corrections techniques can be used. The result 

obtained by performing linear extrapolation is shown in Fig 4.3 and the result obtained by 

performing linear interpolation is shown in Fig 4.4.  
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Figure 4.2: Raw experimental data with linear baseline drift. The experimental data 
shows the sensor response of a series of four different samples which are mixtures of 
benzene and ethylbenzene at different concentrations as specified in the figure 
above. In the figure, ppb stands for parts per billion (µg/L). 
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Figure 4.3: Baseline corrected result obtained by performing linear extrapolation 
using Kalman Filter on the raw experimental data shown in Fig. 4.2. 
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Figure 4.4: Baseline corrected result obtained by performing linear interpolation 
using Kalman Filter on the raw experimental data shown in Fig. 4.2. 

 

As can be seen in Fig. 4.3 and Fig. 4.4, the raw experimental data from Fig. 4.2 

has been corrected for the baseline drift by using the baseline drift correction techniques 

presented in this section. It should be noted that, as expected, the result obtained by 
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performing linear interpolation as shown in Fig. 4.4 is more accurate compared to the 

result obtained by performing linear extrapolation as shown in Fig. 4.3.    

 

Fig. 4.5 shows another example of raw experimental data which were collected by 

using PECH polymer coatings with thickness 0.6µm. As can be seen in Fig. 4.5, the 

experiment consists of a series of four samples, where the first three samples consist of 

binary mixtures of benzene and toluene and the fourth sample just consists of benzene, 

which are measured consecutively in the course of one experiment. All the samples have 

different concentrations as indicated in Fig. 4.5. From Fig. 4.5, it can be noticed that there 

is a baseline drift in the experimental data and the baseline drifts linearly for each 

individual sample. Therefore, the proposed baseline drift correction techniques can be 

used.  The result obtained by performing linear extrapolation is shown in Fig 4.6 and the 

result obtained by performing linear interpolation is shown in Fig 4.7.  
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Figure 4.5: Raw experimental data with linear baseline drift. The experimental data 
shows the sensor response of a series of four different samples (the first three 
samples are binary mixtures of benzene and toluene and the fourth sample is a 
single analyte sample of benzene) at different concentrations as specified in the 
figure above.  
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Figure 4.6: Baseline corrected result obtained by performing linear extrapolation 
using Kalman Filter on the raw experimental data shown in Fig. 4.5. 
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Figure 4.7: Baseline corrected result obtained by performing linear interpolation 
using Kalman Filter on the raw experimental data shown in Fig. 4.5. 

 

As can be seen in Fig. 4.6 and Fig. 4.7, the raw experimental data from Fig. 4.5 

has been corrected for the baseline drift. Based on the baseline corrections results 

obtained by using the techniques presented in this section, it can be concluded that the 

proposed baseline correction techniques are indeed capable of correcting for linear 
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baseline drift. Also, based on the results obtained it can be clearly seen that the result 

obtained by performing linear interpolation is more accurate compared to the result 

obtained by performing linear extrapolation. However, for use in the real-world 

application, linear extrapolation using KF can be used to correct for the baseline drift, so 

that the drift correction can be performed in real-time. Note that real groundwater 

samples might contain many compounds, some of which might show very long response 

times; in that case, it might not be practical to wait for the signal to return to baseline. 

Also in real-world applications, the sensor system may be installed in a fixed location, 

thus in the course of one experiment, only one sample will be tested. In that case, linear 

extrapolation can be used and can yield a sufficiently accurate result. Therefore, 

depending on the application, linear interpolation or linear extrapolation using KF can be 

used to correct for the baseline drift. In conclusion, the proposed baseline correction 

techniques presented in this section can be used to correct for linear baseline drift of the 

measurement data. 

 

4.4.2 Correction of Outlier Points in Sensor Data 

 

As stated earlier, outlier points in the experimental data are observed due to high 

measurement noise, sometimes when the sensor is exposed to the analyte(s) and also due 

to irregular changes in the boundary conditions. The outlier points can be eliminated or 

corrected in real-time by using a combination of a simple first-order discrete low-pass 

filter and KF (or EKF).  
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In order to design a simple discrete first-order low pass filter, the transfer function 

of a low-pass filter has to be discretized [45]. Consider the transfer function of a first-

order low-pass filter as given in eq. 4.6, 

 

��w� �  ��w���w� �  �1 Q� �w # �1 Q� � 

     (4.6) 

 

where, Q represent the time constant of the filter, therefore, 1 Q�  is the cut-off frequency of 

the filter, ��w� represent the output in w-domain and ��w� represent the input in w-

domain. The transfer function of the low-pass filter (given in eq. 4.6), can be rewritten as 

 

Qw��w� # ��w� � ��w� 

     (4.7) 

 

By taking the inverse Laplace transform of both sides of eq. 4.7, the following 

differential equation can be obtained: 

 

Q�P ��� # ���� � ���� 

      (4.8) 

 

where ���� represent the output in time-domain and ���� represent the input in time-

domain. In order to discretize eq. 4.8, Euler’s Backward Differentiation method was 
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used. Based on the Euler’s Backward Differentiation formula, the first derivative of the 

output, ���� can be approximated by, 

 

�P ��� c  �� � ��9�5  

      (4.9) 

 

where 5 is the sampling period. By applying the Euler’s approximation as given in eq. 

4.9, the discrete-time model of the low-pass filter is found to be 

 

�� �  E 5Q #  5G �� #  [ QQ #  5\ ��9� 

    (4.10) 

 

By defining a new variable, �, as 

 

� �  5Q # 5 

      (4.11) 

 

eq. 4.10 can be rewritten as, 

 

�� �  ��� #  �1 �  ����9� 

     (4.12) 
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where the variable, � is known as the filter parameter because of its dependence on the 

time constant, Q. Eq. 4.12 denotes a recursive relation between the output, �� and the 

input, ��. Therefore, by knowing the previous output value, ��9� and the current input 

value, ��, the current output value, �� can be calculated. It should be noted that the input, 

�� represent the data point that need to be filtered and the time constant of the filter, Q 

should be set to be equal to the time constant of the system that need to be filtered. Thus, 

for the single analyte system, time constant of the filter, Q should be set to be equal to the 

value of the time constant of the analyte response. For the two-analyte system, there will 

be two time constants which correspond to each analyte and one of the analyte will have 

a higher time constant than the other. Since the inverse of time constant can be related to 

the frequency of the analyte, one of the analyte will have a smaller frequency than the 

other. Specifically, the analyte with the higher time constant will have the smaller 

frequency. It is known that the cut-off frequency of the two-analyte system should be 

smaller than the smallest frequency (i.e. highest time constant) of the analyte responses. 

Therefore, as an approximation, for the two-analyte system, time constant of the filter, Q 

can be set to be equal to the time constant of the analyte with the highest time constant 

value. Note that, the process of finding the time constant of the two-analyte system is 

cumbersome; thus, the approximation that the time constant of the two-analyte system is 

equal to the time constant of the analyte with the highest time constant value can be used. 

 

In order to implement the correction of outlier points in real-time, the discrete 

low-pass filter should be implemented together with the KF or EKF algorithm using the 

state-space model presented in chapter 3. The choice of using KF or EKF is dependent on 
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the state-space model used as discussed in chapter 3. KF (or EKF) will be used as a one-

step ahead predictor to predict the next measurement data point. If the difference between 

the predicted measurement value and the actual measurement value is above a certain 

threshold set by the user (e.g. 0.01), the actual measurement point will be selected to be 

filtered by using the discrete low-pass filter. If the difference between the predicted 

measurement value and the actual measurement value is within the threshold set by the 

user, the actual measurement point will not be filtered using the discrete low-pass filter. 

By using this method only the actual outlier points in the measurement will be filtered. 

Therefore, outlier points can be eliminated and a better estimate of the sensor parameters 

can be rapidly obtained in real-time. 

 

The proposed outlier point’s correction technique was tested on the experimental 

data with outlier points to prove the feasibility of the proposed technique to correct the 

outlier points in the measurement data. The experimental data used to test the proposed 

technique to correct the outlier points were collected in the Microsensor Research 

Laboratory, at Marquette University. These data do not contain any outlier points. 

Therefore, in order to test the proposed technique, outlier points were introduced 

manually in the measurement data. It should be noted that the proposed technique was 

tested on multiple measurement data; however, in this section only a sample result will be 

presented. Additional outlier points correction results are presented in the Appendix A. 

Fig. 4.8 shows the result obtained after the correction of the outlier points co-plotted 

together with the measurement data with outlier points. Also shown in the figure is the 

fitted curve and fitted data expression for both data with outlier points and filtered data. 
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Note that both unfiltered data and filtered data were fitted by using dual-exponential fit 

and the fitting expression for both unfiltered data and filtered data is shown explicitly in 

Fig. 4.8. The measurement data used to test the proposed technique were obtained for a 

binary mixture sample which contains benzene and ethylbenzene with the concentration 

of 500 ppb and 800 ppb respectively. The data were collected for experiments performed 

using PEA polymer coatings with thickness 1.0µm and the raw data obtained had already 

been corrected for the baseline drift. 

 

 

Figure 4.8: Outlier points corrected data co-plotted together with the measurement 
data with outlier points. The data are shown in two different colors where blue 
represents the measurement data with outlier points (unfiltered data) and red 
represents the outlier points corrected measurement data (filtered data). Both the 
data points and the curve fit for the data points are shown in the figure above. Also 
shown in the figure is the fitted data expression for both data with outlier points and 
filtered data.    
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As can be seen in Fig. 4.8, the measurement data (in blue) contains some outlier 

points and in the outlier points corrected data (in red) the outlier points have been filtered. 

Based on the result shown in Fig. 4.8, it can be observed that the proposed technique in 

this section is capable of eliminating any outlier points in the measurement data. 

Moreover, the concentrations of the analytes determined by using the fitted parameters of 

the filtered data are closer to the actual concentrations of the analytes compared to the 

concentrations of the analytes determined by using the fitted parameters of the unfiltered 

data as shown in Table 4.3. Note that the concentrations of the analytes were extracted by 

using the parameters obtained by fitting the data with dual-exponential fit and average 

values of the sensitivities of the single analytes given in Table 4.1. Also shown in Table 

4.3 are the percentage differences between the estimated and the actual concentrations of 

the analytes. 

 

 
Analytes 

 
Nominal 

Concentration 
(ppb) 

 
Estimated 

Concentration using 
Unfiltered Data (ppb) 

 
(% difference with 

nominal concentration) 

 
Estimated 

Concentration using 
Filtered Data (ppb) 

 
(% difference with 

nominal concentration) 
 

 
Benzene 

 

 
500 

 
164 (67.2 %) 

 
492 (1.6 %) 

 
Ethylbenzene 

 

 
800 

 
1259 (57.4 %) 

 
1223 (53 %) 

 
Table 4.3: Nominal concentration of the analytes, estimated concentration of the 
analytes using unfiltered data and estimated concentration of the analytes using 
filtered data obtained by using the measurement data for a binary mixture of 
benzene and ethylbenzene. Also shown in the table are the percentage differences 
between the estimated concentrations and nominal concentrations of the analytes. 
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As can be seen from Table 4.3, the estimated concentrations of the analytes 

determined from the unfiltered data fit do not agree well with the actual concentrations of 

benzene and ethylbenzene with percentage difference of 67.2% for benzene and 57.4% 

for ethylbenzene. For the outlier points corrected measurement data (filtered data), the 

concentrations of benzene and ethylbenzene are found to be closer to the actual 

concentration of benzene and ethylbenzene with percentage difference of 1.6% for 

benzene and 53% for ethylbenzene. Therefore, the concentrations of the analytes 

determined from the filtered data fit are much closer to the actual values of the 

concentrations of benzene and ethylbenzene compared to those from the unfiltered data. 

It should be noted that the discrepancies between estimated and actual concentrations of 

the analytes are to be expected due to the error introduced by the inaccuracy of the 

manual sample mixing procedure [35].  Based on the result obtained, it can be concluded 

that the outlier points corrected data could yield a more accurate estimate of the analyte 

concentrations compared to the measurement data with outlier points. This emphasizes 

the importance of eliminating outlier points in the measurement data.  

 

Since the corrections of outlier points were performed by using a combination of 

discrete low-pass filter and KF (or EKF), the correction process can be performed in real-

time as the measurements are being recorded. In conclusion, the proposed outlier points 

correction techniques presented in this section can be used to eliminate any outlier points 

in the measurement data in real-time and consequently, could yield a more accurate 

estimation results. 
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5. ESTIMATION RESULTS AND DISCUSSION 

 

5.1 Introduction 

 

In this chapter, the estimation results obtained for both single and two-analyte 

systems by using the models developed in chapter 3 are presented. The estimation 

process was performed on the sensor data collected in the Microsensor Research 

Laboratory at Marquette University using the SH-SAW sensor. The process of data 

acquisition had already been discussed in chapter 4. Before the data collected were used 

to perform the estimation process by using Kalman Filter (KF) or Extended Kalman 

Filter (EKF) to estimate the unknown parameters, the data were first pre-processed to 

correct the data for any baseline drift and also to eliminate the outlier points in the data 

using the techniques presented in chapter 4. The signal-processing steps that the data has 

to undergo before the estimate of the unknown parameters could be obtained are 

summarized in the block diagram shown in Fig. 5.1. Note that, all the signal-processing 

steps shown in the block diagram of Fig. 5.1 can be performed simultaneously in real-

time. 

 

 

 

 

 

 

Raw Data Processed Data  
Extracted Sensor 

Parameters 

Baseline 
Correction 

Outlier 
Points 

Filtering 

Sensor 
Parameters 
Estimation 

Figure 5.1: Block diagram showing the steps that the data has to undergo before the 
estimate of the unknown parameters can be obtained. 
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The estimation results presented in this chapter include plots showing the 

estimated sensor response co-plotted together with the measured sensor response. The 

plots also will contain pertinent information about the estimated parameters and the 

parameters obtained by fitting the measurement data. Note that for the single analyte 

system, the measurement data were fitted with single exponential fits and for the two-

analyte system, the measurement data were fitted with dual-exponential fits. Both the 

estimated parameters and the fitted parameters are shown in the plot, so that the estimated 

parameters can be readily compared to the fitted parameters. By using the estimated 

steady-state frequency shift (or steady-state frequency shift determined by fitting the 

measurement data) and measured average sensitivities, v (in Hz/ppm) values for various 

coating/analyte combinations as presented in Table 4.1, the analyte concentration(s) in 

the sample can be determined by using the following equations, 

 

�	
� � �	
�v  

      (5.1) 

���� �  ����v  

      (5.2) 

 

where, �	
� represents the concentration of the analyte(s) determined by using 

steady-state frequency shift obtained by fitting the measurement data, �	
�, and ���� 
represents the concentration of the analyte(s) determined by using the estimated steady-

state frequency shift, ����. �	
� and ���� are compared to each other to validate the 
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estimation results obtained. It should be noted that for most cases, the values of ���� and 

�	
� will be different than the actual ambient concentration, ��� because of the error 

introduced during the sample preparations and also due to the volatility of the 

hydrocarbon analytes. Such discrepancies have been found from independent 

measurements of the prepared and tested samples to be as high as 13% [35]. Moreover, 

the chapter also includes a discussion on how rapidly the estimation results could be 

obtained. Several estimated sensor responses obtained after a specific amount of time are 

compared to determine the minimum time required to obtain a good estimate of the 

unknown parameters.  

 

5.2 Single Analyte Estimation Results 

 

In this section, the single analyte estimation results are presented. The single analyte 

state-space model developed in chapter 3 is used to perform the estimation by using EKF 

algorithm. For this system, there are three unknown parameters that were estimated 

which include normalized concentration of the analyte, adsorption rate (i.e. inverse of 

time constant) and steady-state frequency shift. Note that by using eq. 5.2, the estimated 

concentrations of the analyte, ���� are determined. 

 

Single analyte estimations were tested on various single analyte measurement data, 

however, in this section only the estimation results obtained for three different 

measurement data are presented and discussed. For all cases, three types of estimation 

result figures will be presented and discussed. One of the figures will contain the 
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information about the estimated sensor response, estimated sensor parameters, 

measurement data, and measurement data fitting (with the fitting parameters). Note that 

the single analyte measurement data were fitted using single exponential fits. The second 

figure will contain the information about the estimated normalized concentration of the 

analyte along with the theoretical normalized concentration of the analyte. The theoretical 

normalized concentration of the analyte was determined by using the average time 

constants values of the analyte/coating pair given in Table 4.2 and the following 

equation, 

 

V��� � �1 �  .9 ��� 

     (5.3) 

 

where V��� represents the normalized concentration of absorbed analyte at time, � and Q 

represents the time constant of the analyte. Note that eq. 5.3 was obtained by solving the 

normalized concentration differential equation as given by eq. 3.5. The final figure will 

show several estimated sensor responses obtained after a certain number of minutes 

plotted along with the measurement data and measurement data fitting. Following this 

figure is a table which shows the estimated parameters corresponding to the estimated 

sensor responses shown in the final figure along with the percentage difference between 

these estimated parameters and the parameters obtained from experimental data fitting. 

This is done to determine the minimum time required to obtain a good estimate of the 

sensor parameters. 
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First, the estimation results obtained by using the measurement data of the sensor 

response of an SH-SAW sensor coated with 1.0µm PEA to 1000 ppb ethylbenzene are 

discussed and Fig. 5.2 through Fig. 5.4 show the estimation results obtained by using this 

data. In Fig. 5.2, the measurement data (blue asterisk), measurement data fitting (blue 

curve) and the estimated sensor response (red curve) are shown. Also shown in Fig. 5.2 

are the estimated sensor parameters along with the parameters determined by fitting the 

measurement data. As can be seen from Fig. 5.2, both the estimated steady-state 

frequency shift and adsorption rate are in close agreement (i.e. less than u1% difference) 

with the steady-state frequency shift and adsorption rate determined by fitting the 

measurement data. By using eq. 5.1 and eq. 5.2, �	
� and ���� are found to be around 813 

ppb and 808 ppb, respectively. The values for ���� and �	
� are also in good agreement 

(i.e. less than u1% difference) with each other; this result should be expected because 

their steady-state frequency shifts are in good agreement as well. The estimation result 

obtained for the normalized concentration of ethylbenzene versus time (in red) is shown 

in Fig. 5.3. Also shown in Fig. 5.3 is the theoretical normalized concentration of 

ethylbenzene (in blue). Based on Fig. 5.3, it can be seen that the estimated normalized 

concentration of ethylbenzene is in very good agreement with the theoretical normalized 

concentration of ethylbenzene and it approaches a value of one as time increases. Note 

that normalized concentration is the ratio of concentration of the analyte in the coating at 

time, � to the maximum ambient concentration of the analyte and as time increases the 

ratio should approach a value of one (i.e. the analyte concentration in the coating and 

maximum ambient concentration times the partition coefficient are equal) as observed in 

Fig. 5.3. Finally in Fig. 5.4, three estimated sensor responses obtained using the 
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measurement data collected for the first 2, 3 and 4 minutes after the analyte has been 

introduced to the sensor are shown. Also shown in Fig. 5.4 are the measurement data, 

measurement data fitting and the estimated sensor response using all the data points. The 

estimated sensor parameters obtained using the measurement data collected for the first 2, 

3 and 4 minutes after the analyte has been introduced to the sensor are given in Table 5.1. 

Based on Table 5.1 and Fig. 5.4, it can be seen that the estimated sensor response and 

sensor parameters obtained using the measurement data collected for the first 3 minutes 

(and above) agree well (i.e. less than u10% difference) with the measurement data and 

measurement data fitting. Therefore, the data collected for the first 3 minutes are 

sufficient to obtain a good estimate of the unknown parameters using the EKF algorithm. 

This means that, by using single analyte estimation technique presented in this work, one 

could quantify the analyte well before the sensor response reaches steady-state. 
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Figure 5.2: Response of a SH-SAW sensor coated with 1.0µm PEA to 1000 ppb 
ethylbenzene (blue curve) along with the estimated sensor response (red curve). Also 
shown in the figure are the estimated sensor parameters along with the parameters 
determined by fitting the measurement data. 
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Figure 5.3: Estimated normalized concentration of ethylbenzene co-plotted with the 
theoretical normalized concentration of ethylbenzene for 1.0µm PEA. 
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Figure 5.4: Estimated sensor response of 1000 ppb ethylbenzene (for 1.0µm PEA 
coating) obtained using the measurement data collected for the first 2, 3 and 4 
minutes after the analyte has been introduced to the sensor co-plotted together with 
the measurement data, measurement data fitting and also the estimated sensor 
response using all the measurement data points. 
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Estimated Sensor 

Parameters 
(Measurement Data 

1) 

 
Steady-State Frequency Shift, �z�} (kHz) 

 
(% difference with ���}) 

 

 
Time Constant, �z�} (s) 

 
(% difference with ���}) 

 
After 2 minutes 

 

 
-1.63 (10.53 %) 

 
196.08 (3.20 %) 

 
After 3 minutes 

 

 
-1.71 (6.31 %) 

 
197.07 (2.36 %) 

 
After 4 minutes 

 

 
-1.76 (3.49 %) 

 
202.02 (0.17 %) 

 
Using all data points 

 

 
-1.82 (0.55 %) 

 
206.19 (1.86 %) 

 

Table 5.1: Estimated sensor parameters of 1000 ppb ethylbenzene (for 1.0µm PEA 
coating) obtained using the measurement data collected for the first 2, 3 and 4 
minutes after the analyte has been introduced to the sensor along with the estimated 
sensor parameters obtained using all the data points. Also given in the table are the 
percentage differences between the estimated sensor parameters and sensor 
parameters determined by fitting the measurement data. 

 

Next, the estimation results obtained by using the measurement data for the sensor 

response of a SH-SAW sensor coated with 0.6µm PECH to 1000 ppb benzene are 

discussed. The following figures, Fig. 5.5, Fig. 5.6 and Fig. 5.7 and Table 5.2 show the 

estimation results obtained for this case. 
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Figure 5.5: Response of a SH-SAW sensor coated with 0.6µm PECH to 1000 ppb 
benzene (blue curve) along with the estimated sensor response (red curve). Also 
shown in the figure are the estimated sensor parameters along with the parameters 
determined by fitting the m measurement data. 
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Figure 5.6: Estimated normalized concentration of benzene co-plotted with the 
theoretical normalized concentration of benzene for 0.6µm PECH. 
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Figure 5.7: Estimated sensor response to 1000 ppb benzene (for 0.6µm PECH 
coating) obtained using the measurement data collected for the first 1, 2 and 3 
minutes after the analyte has been introduced to the sensor co-plotted together with 
the measurement data, measurement data fitting and also the estimated sensor 
response using all the data points. 
 

 

 

 

 

0 1 2 3 4 5 6
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Time (min)

F
re

qu
en

cy
 S

hi
ft

, ∆∆ ∆∆
f (

kH
z)

 

 

Experimental data
Experimental data fitting
Estimated Sensor Response after 1 minutes
Estimated Sensor Response after 2 minutes
Estimated Sensor Response after 3 minutes
Estimated Sensor Response using all data points



98 
 

 

 

 
Estimated Sensor 

Parameters 
(Measurement Data 

2) 

 
Steady-State Frequency Shift, �z�} (kHz) 

 
(% difference with ���}) 

 

 
Time Constant, �z�} (s) 

 
(% difference with ���}) 

 
After 1 minutes 

 

 
-0.1943 (7.48 %) 

 
35.74 (1.64 %) 

 
After 2 minutes 

 

 
-0.2042 (2.76 %) 

 
35.82 (1.87 %) 

 
After 3 minutes 

 

 
-0.2143 (2.05 %) 

 
35.94 (2.20 %) 

 
Using all data points 

 

 
-0.21 (0 %) 

 
35.91 (2.11 %) 

 

Table 5.2: Estimated sensor parameters for 1000 ppb benzene (for 0.6µm PECH 
coating) obtained using the measurement data collected for the first 1, 2 and 3 
minutes after the analyte has been introduced to the sensor along with the estimated 
sensor parameters obtained using all the data points. Also given in the table are the 
percentage differences between the estimated sensor parameters and sensor 
parameters determined by fitting the measurement data. 

 

As can be seen from Fig. 5.5, both the estimated steady-state frequency shifts and 

adsorption rate for the second case are also in agreement (i.e. less than u2% difference) 

with the steady-state frequency shift and absorption rate determined by fitting the 

measurement data. Both �	
� and ���� are found to be equal to 817 ppb. In Fig. 5.6, the 

estimation result obtained for the normalized concentration of benzene versus time is 

shown along with the theoretical normalized concentration of benzene for 0.6µm PECH 

coating. As depicted in Fig 5.6, the estimated normalized concentration and theoretical 

normalized concentration are in good agreement with each other. This further validates 
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the estimation results obtained for this second case. Also note that from Fig. 5.6, the 

normalized concentration of benzene reaches the value of one much faster than the 

normalized concentration of ethylbenzene shown in Fig.5.3. This is because benzene has 

a much faster response time (smaller time constant) compared to ethylbenzene. Fig. 5.7 

shows the estimated sensor responses and Table 5.2 shows the estimated sensor 

parameters obtained using the measurement data collected for the first 1, 2 and 3 minutes 

after the analyte has been introduced to the sensor. Based on Table 5.2 and Fig. 5.7, it can 

be seen that the estimated sensor response and sensor parameters obtained using the 

measurement data collected for the first 1 minutes (and above) agree well (i.e. less than 

u10% difference) with the measurement data and measurement data fitting. Therefore, 

the data collected for one minute are sufficient to obtain a good estimate of the unknown 

parameters using the EKF algorithm. These results indicate that the sensor parameters 

could be estimated long before the sensor response reaches steady-state. Therefore, once 

again it can be concluded that by using the state-space model of single analyte and EKF 

algorithm presented in the present work, the analyte could be quantified well before the 

sensor response reaches steady-state. 

 

Finally for the third case, the estimation results obtained by using the 

measurement data for the sensor response of a SH-SAW sensor coated with 0.8µm PIB to 

1000 ppb toluene are discussed. Fig. 5.8 through Fig 5.10 and Table 5.3 show the 

estimation results obtained for this third case. 
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Figure 5.8: Response of a SH-SAW sensor coated with 0.8µm PIB to 1000 ppb 
toluene (blue curve) along with the estimated sensor response (red curve). Also 
shown in the figure are the estimated sensor parameters along with the parameters 
determined by fitting the measurement data. 
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Figure 5.9: Estimated normalized concentration of toluene co-plotted with the 
theoretical normalized concentration of toluene for 0.8µm PIB. 
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Figure 5.10: Estimated sensor response to 1000 ppb toluene (for 0.8µm PIB coating) 
obtained using the measurement data collected for the first 3, 4 and 5 minutes after 
the analyte has been introduced to the sensor co-plotted together with the 
measurement data, measurement data fitting and also the estimated sensor response 
using all the data points. 
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Estimated Sensor 

Parameters 
(Measurement Data 

3) 

 
Steady-state Frequency Shift, �z�} (kHz) 

 
(% difference with ���}) 

 

 
Time Constant, �z�} (s) 

 
(% difference with ���}) 

 
After 3 minutes 

 

 
-0.5299 (5.38 %) 

 
78.74 (1.13 %) 

 
After 4 minutes 

 

 
-0.5428 (3.07 %) 

 
79.00 (0.80 %) 

 
After 5 minutes 

 

 
-0.5501 (1.77 %) 

 
79.26 (0.46 %) 

 
Using all data points 

 

 
-0.56 (0 %) 

 
79.58 (0.07 %) 

 
Table 5.3: Estimated sensor parameters for 1000 ppb toluene (for 0.8µm PIB 
coating) obtained using the measurement data collected for the first 3, 4 and 5 
minutes after the analyte has been introduced to the sensor along with the estimated 
sensor parameters obtained using all the data points. Also given in the table are the 
percentage differences between the estimated sensor parameters and sensor 
parameters determined by fitting the measurement data. 
 
 

As indicated in Fig. 5.8, the estimated steady-state frequency shift and absorption rate for 

the third case are also in conformity (i.e. less than u1% difference) with the steady-state 

frequency shift and absorption rate determined by fitting the measurement data. Since the 

estimated steady-state frequency shift and steady-state frequency shift determined by 

fitting the measurement data closely match each other, �	
� and ���� are also expected to 

be in close agreement. In fact, for this third case both the values of �	
� and ���� are 

approximately equal to 1447 ppb. Next in Fig. 5.9, the estimation result obtained for the 

normalized concentration of toluene versus time is depicted along with the theoretical 
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normalized concentration of toluene for 0.8µm PIB coating. Based on Fig. 5.9, it can be 

seen that the estimated normalized concentration and theoretical normalized 

concentration are in good agreement with each other and this further validates the 

estimation results obtain for the third case. Also note that in Fig. 5.9, the normalized 

concentration of toluene reaches the value of one much faster than the normalized 

concentration of ethylbenzene as shown in Fig.5.3 but slower than the normalized 

concentration of benzene as shown in Fig. 5.6. This should be expected because the 

response time of toluene is between those of benzene and ethylbenzene. Fig. 5.10 shows 

the estimated sensor responses and Table 5.3 shows the estimated sensor parameters 

obtained using the measurement data collected for the first 3, 4 and 5 minutes after the 

analyte has been introduced to the sensor. Based on Table 5.3 and Fig. 5.10, it can be 

seen that the estimated sensor response and sensor parameters obtained using the 

measurement data collected for the first 4 minutes (and above) agree well (i.e. less than 

u10% difference) with the measurement data and measurement data fitting. Therefore, 

the data collected for the first 4 minutes are sufficient to obtain a good estimate of the 

unknown parameters using the EKF algorithm. Again this third case also proves that by 

using the single analyte estimation process presented in the present work, the sensor 

parameters of single analyte could be estimated well before the sensor response reaches 

steady-state. 

 

All the estimated sensor parameters along with the maximum percentage 

difference with the sensor parameters determined by fitting the measurement data for all 

the three cases are summarized in Table 5.4. It should be noted that the observed 
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discrepancies between �	
� and ���� with the actual concentration can be attributed to the 

error in the sample preparations as well as volatility of the hydrocarbon analytes. From 

Table 5.4, it can be seen that all the estimated sensor parameters agree well (i.e. less than 

u10% difference) with the sensor parameters determined by fitting the measurement 

data. Therefore, one could obtain the same result either by fitting the measurement data 

or by using the estimation technique for the single analyte sample presented in this work. 

Although both methods produce approximately the same results, the advantage of the 

method presented in this thesis lies in the fact that only the measurement data collected 

for the first few minutes (i.e. around 1-4 minutes) are needed to quantify the analyte with 

sufficient accuracy. This means that the sensor parameters could be estimated in less than 

half the time required for the sensor response to reach steady-state. Therefore, one could 

obtain an accurate estimate of the sensor parameters of single analyte well before the 

sensor response reaches steady-state. 
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Data Polymer Steady-State 
Frequency 
Shift (kHz) 

Time Constant 
(s) 

Concentration 
(ppb) 

Percentage 
Difference 
(with the 

fitting 
parameters) 

���} �z�} ���} �z�} ���} �z�} 
 

1: 1000 ppb 
ethylbenzene 

 
1.0µm 
PEA 

 

 
-1.82 

 
-1.81 

 
202.36 

 
204.08 

 
813 

 
808 

 
0.85% 

 
2: 1000 ppb 

benzene 
 

 
0.6µm 
PECH 

 
-0.21 

 
-0.21 

 
35.15 

 
35.91 

 
817 

 
817 

 
2.16% 

 

 
3: 1000 ppb 

toluene 
 

 
0.8µm 
PIB 

 
-0.56 

 
-0.56 

 
79.63 

 
84.21 

 
1447 

 
1447 

 
5.75% 

 
Table 5.4: Estimated sensor parameters (steady-state frequency shift and time 
constant) and concentration along with sensor parameters and concentration 
determined from measurement data fit. Also given is the maximum percentage 
difference between the estimated sensor parameters and sensor parameters 
determined by fitting the measurement data with single exponential fit. 
 
 
 
5.3 Two-Analyte Estimation Results 

 

In this section, the two-analyte estimation results are presented. The two-analyte 

state-space models (i.e. both nonlinear and linear model) presented in chapter 3 are used 

to perform the estimation by using EKF or KF algorithm depending on the state-space 

model used. For the nonlinear model, EKF algorithm was used to perform the estimation 

and for the linear model, KF algorithm was used. Estimations of binary mixtures using 

both state-space models were performed on various measurement data; however, in this 

section only the estimation results obtained for two different measurement data are 

presented and discussed. Also it should be noted that, in order to compare the different 
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models (i.e. nonlinear and linear model), the same measurement data were used for both 

models to estimate the unknown parameters. After the results obtained for each model are 

discussed, comparisons between the two models are made.  

 

5.3.1 Nonlinear Model 

 

For the nonlinear model, there are four unknown quantities that were estimated 

which include the normalized concentrations of each analyte and the steady-state 

frequency shifts of each analyte. The time constants of each analyte are not estimated 

because it is assumed that the values of the time constants for each analyte are known 

from the single analyte measurement. For the present work, the average time constants 

for various coating/analyte pair given in Table 4.2 (in chapter 4) were used as the time 

constant of the corresponding analytes. As mentioned earlier, only the estimation results 

obtained from two different measurement data (i.e. two different cases) will be presented 

and discussed. For these two cases, four types of estimation result figures will be 

presented and discussed. The first figure will contain the information about the estimated 

sensor response, estimated sensor parameters, measurement data, and measurement data 

fitting (with the fitting parameters). Note that the two-analyte measurement data were 

fitted using dual-exponential fits. Next, the following two figures will show the result 

obtained for the estimated normalized concentration of each analyte in the binary mixture 

sample along with its theoretical normalized concentration determined by using eq. 5.3. 

Finally, the fourth figure will show several estimated sensor responses determined after a 

certain number of minutes plotted along with the measurement data and measurement 



108 
 

 

data fitting. Following this figure is a table which shows the estimated parameters 

corresponding to the estimated sensor responses shown in the fourth figure along with the 

percentage difference between these estimated parameters and the parameters obtained 

from experimental data fitting. This is done to determine the minimum time required to 

obtain a good estimate of the sensor parameters. 

 

First, the estimation results obtained by using the measurement data of the sensor 

response of SH-SAW sensor coated with 1.0µm PEA to binary mixture of 500 ppb 

benzene and 200 ppb ethylbenzene are discussed. The following figures, Figs. 5.11 – 5.14 

and Table 5.5, show the estimation results obtained by using this binary mixture data and 

the nonlinear model. Fig. 5.11 shows the measurement data (blue asterisk), measurement 

data fitting (blue curve) and the estimated sensor response (red curve). Also shown in 

Fig. 5.11 are the estimated steady-state frequency shifts along with the steady-state 

frequency shifts determined by fitting the measurement data. As can be seen from Fig. 

5.11, the estimated steady-state frequency shift for each analyte is in agreement (i.e. less 

than u6 % difference) with the steady-state frequency shift of the analytes determined by 

fitting the measurement data. Note that, the measurement data were fitted by using dual-

exponential fits to extract the steady-state frequency shift of each analyte in the binary 

mixture sample. Moreover, by using eq. 5.1 and eq. 5.2, �	
� and ���� for both analytes 

are found to be around 285 ppb and 303 ppb, respectively, for the concentration of 

benzene and 280 ppb and 283 ppb, respectively for the concentration of ethylbenzene. 

Therefore, �	
� and ���� found for both analytes are within u6 % difference. Fig. 5.12 

and Fig. 5.13 show the estimation results obtained for the normalized concentration of 
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each analyte versus time along with its theoretical normalized concentration determined 

by using eq. 5.3. As can be seen from Fig. 5.12 and Fig. 5.13, both the estimated 

normalized concentration of each analyte (i.e. benzene and ethylbenzene) are in 

conformity with its theoretical normalized concentration. This further validates the 

estimation results obtained for this case. Fig. 5.14 shows the estimated sensor responses 

and Table 5.5 shows the estimated steady-state frequency shifts obtained using the 

measurement data collected for the first 2, 3 and 4 minutes after the binary mixture has 

been introduced to the sensor. Based on Table 5.5 and Fig. 5.14, it can be seen that the 

estimated sensor response and sensor parameters obtained using the measurement data 

collected for the first 3 minutes (and above) agree well (i.e. less than u20% difference) 

with the measurement data and measurement data fitting. Therefore, the steady-state 

frequency shifts of the analytes could be estimated even before the sensor response 

reaches steady-state and thus, the analytes in the binary mixture can be quantified rapidly 

by using the nonlinear model of the two-analyte system.   
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Figure 5.11: Response of a SH-SAW sensor coated with 1.0µm PEA to a binary 
mixture of 500 ppb benzene and 200 ppb ethylbenzene (blue curve) along with the 
estimated sensor response using the nonlinear model of the two-analyte system (red 
curve). Also shown in the figure are the estimated steady-state frequency shifts 
along with the steady-state frequency shifts determined by fitting the measurement 
data using dual-exponential fit. 
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Figure 5.12: Estimated normalized concentration of benzene using the nonlinear 
model of two-analyte system co-plotted with the theoretical normalized 
concentration of benzene for 1.0µm PEA. 
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Figure 5.13: Estimated normalized concentration of ethylbenzene using the 
nonlinear model of two-analyte system co-plotted with the theoretical normalized 
concentration of ethylbenzene for 1.0µm PEA. 
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Figure 5.14: Estimated sensor response to a binary mixture of 500 ppb benzene and 
200 ppb ethylbenzene (with 1.0µm PEA coating) using the nonlinear model of two-
analyte system obtained using the measurement data collected for the first 2, 3 and 4 
minutes after the binary mixture sample has been introduced to the sensor co-
plotted together with the measurement data, measurement data fitting and also the 
estimated sensor response using all the data points. 
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Estimated Steady-
State Frequency 

Shift (Measurement 
Data 1) 

 
Steady-State Frequency Shift 

of Benzene, �z�} (kHz) 
 

(% difference with ���}) 
 

 
Steady-State Frequency 

Shift of Ethylbenzene, �z�} 
(kHz) 

 
(% difference with ���}) 

 
 

After 2 minutes 
 

 
-0.1809 (13.06 %) 

 
-0.6699 (23.88 %) 

 
After 3 minutes 

 

 
-0.1678 (4.88 %) 

 
-0.8594 (2.34 %) 

 
After 4 minutes 

 

 
-0.1647 (2.94 %) 

 
-0.9080 (3.18 %) 

 
Using all data points 

 

 
-0.1652 (3.25 %) 

 
-0.8896 (1.09 %) 

 
Table 5.5: Estimated steady-state frequency shifts for a binary mixture of 500 ppb 
benzene and 200 ppb ethylbenzene (with 1.0µm PEA coating) using the nonlinear 
model of two-analyte system obtained using the measurement data collected for the 
first 2, 3 and 4 minutes after the binary mixture sample has been introduced to the 
sensor along with the estimated steady-state frequency shifts obtained using all the 
data points. Also given in the table are the percentage differences between the 
estimated steady-state frequency shifts and steady-state frequency shifts determined 
by fitting the measurement data. 
 
 
 

Next for the second case, the estimation results obtained by using the 

measurement data of the sensor response of SH-SAW sensor coated with 0.6µm PECH to 

binary mixture of 1000 ppb benzene and 500 ppb toluene are discussed. Figs. 5.15 - 5.18 

and Table 5.6 show the estimation results obtained by using the nonlinear model for this 

second measurement data. 
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Figure 5.15: Response of a SH-SAW sensor coated with 0.6µm PECH to a binary 
mixture of 1000 ppb benzene and 500 ppb toluene (blue curve) along with the 
estimated sensor response using the nonlinear model of two-analyte system (red 
curve). Also shown in the figure are the estimated steady-state frequency shifts 
along with the steady-state frequency shifts determined by fitting the measurement 
data using dual-exponential fit. 
 

 

 

 

 

 

0 2 4 6 8 10 12
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (min)

F
re

qu
en

cy
 S

hi
ft

, ∆∆ ∆∆
f (

kH
z)

 

 

Experimental data
Experimental data fitting
Estimated Sensor Response

Experimental data fitting expression: ∆∆∆∆f = -0.32*[1-exp(-0.0289t)] + -0.26*[1-exp(-0.0108t)]

Estimated fitting expression: ∆∆∆∆f = -0.28*[1-exp(-0.0289t)] + -0.3*[1-exp(-0.0108t)]



116 
 

 

 

 

 

 

Figure 5.16: Estimated normalized concentration of benzene using the nonlinear 
model of two-analyte system co-plotted with the theoretical normalized 
concentration of benzene for 0.6µm PECH. 
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Figure 5.17: Estimated normalized concentration of toluene using the nonlinear 
model of two-analyte system co-plotted with the theoretical normalized 
concentration of toluene for 0.6µm PECH. 
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Figure 5.18: Estimated sensor response to a binary mixture of 1000 ppb benzene and 
500 ppb toluene (with 0.6µm PECH coating) using the nonlinear model of two-
analyte system obtained using the measurement data collected for the first 4, 5 and 6 
minutes after the binary mixture sample has been introduced to the sensor co-
plotted together with the measurement data, measurement data fitting and also the 
estimated sensor response using all the data points. 
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Estimated Steady-
State Frequency 

Shift (Measurement 
Data 2) 

 
Steady-State Frequency Shift 

of Benzene, �z�} (kHz) 
 

(% difference with ���}) 
 

 
Steady-State Frequency 

Shift of Toluene, �z�} (kHz) 
 

(% difference with ���}) 
 

 
After 4 minutes 

 

 
-0.2936 (8.25 %) 

 
-0.3125 (20.19 %) 

 
After 5 minutes 

 

 
-0.2869 (10.34 %) 

 
-0.3045 (17.11 %) 

 
After 6 minutes 

 

 
-0.2763 (13.66 %) 

 
-0.2935 (12.88 %) 

 
Using all data points 

 

 
-0.2843 (11.16 %) 

 
-0.3015 (15.96 %) 

 
Table 5.6: Estimated steady-state frequency shifts for a binary mixture of 1000 ppb 
benzene and 500 ppb toluene (with 0.6µm PECH coating) using the nonlinear model 
of two-analyte system obtained using the measurement data collected for the first 4, 
5 and 6 minutes after the binary mixture sample has been introduced to the sensor 
along with the estimated steady-state frequency shifts obtained using all the data 
points. Also given in the table are the percentage differences between the estimated 
steady-state frequency shifts and steady-state frequency shifts determined by fitting 
the measurement data.  
 
 
 
As depicted in Fig. 5.15, the estimated steady-state frequency shift for each analyte for 

this second case is also in agreement (i.e. less than u15 % difference) with the steady-

state frequency shift of the analytes determined by fitting the measurement data. The 

values of �	
� and ���� for both analytes in the sample are found to be equal to 1245 ppb 

and 1090 ppb, respectively, for the concentration of benzene and 349 ppb and 402 ppb, 

respectively, for the concentration of toluene. Note that, �	
� and ���� found for both 

analytes are within u15 % difference. It should be noted that ���� are closer to the actual 
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concentration values. Fig. 5.16 and Fig. 5.17 show the estimation results obtained for the 

normalized concentration of each analyte versus time along with its theoretical 

normalized concentration determined by using eq. 5.3. As can be seen from Fig. 5.16 and 

Fig. 5.17, both the estimated normalized concentration of each analyte (i.e. benzene and 

toluene) are in conformity with its theoretical normalized concentration. This further 

validates the estimation results obtained for this second case. Fig. 5.18 shows the 

estimated sensor responses and Table 5.6 shows the estimated steady-state frequency 

shifts obtained using the measurement data collected for the first 4, 5 and 6 minutes after 

the binary mixture has been introduced to the sensor. Based on Table 5.6 and Fig. 5.18, it 

can be seen that the estimated sensor response and sensor parameters obtained using the 

measurement data collected for the first 5 minutes (and above) agree well (i.e. less than 

u20% difference) with the measurement data and measurement data fitting. Therefore, 

again it has been shown that the steady-state frequency shifts of the analytes could be 

estimated even before the sensor response reaches steady-state using the nonlinear model 

of two-analyte system. 

 

5.3.2 Linear Model 

 

For the linear model, there are only two unknown quantities that were estimated 

which are the steady-state frequency shifts of each analyte. The time constants of each 

analyte are not estimated because it is assumed that they are known from the single 

analyte measurement. As stated earlier, for this present work the average time constants 

for various coating/analyte pairs given in Table 4.2 (in chapter 4) were used as the time 
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constant of the corresponding analyte. Similar to the previous section, only the estimation 

results obtained from two different measurement data (i.e. two different cases) will be 

presented and discussed. In fact, the same measurement data were used so that the 

efficiency of both models can be compared. For these two cases, two types of estimation 

result figures will be presented and discussed. The first figure will contain the 

information about the estimated sensor response, estimated sensor parameters, 

measurement data, and measurement data fitting (with the fitting parameters). Note that 

the two-analyte measurement data were fitted using dual-exponential fits. The second 

figure will show several estimated sensor responses determined after a certain number of 

minutes plotted along with the measurement data and measurement data fitting. 

Following this figure is a table which shows the estimated steady-state frequency shifts 

corresponding to the estimated sensor responses shown in the second figure along with 

the percentage difference between these estimated steady-state frequency shifts and the 

steady-state frequency shifts obtained from experimental data fitting. This is done to 

determine the minimum time required to obtain a good estimate of the sensor parameters. 

 

First, the estimation results obtained by using the measurement data of the sensor 

response of SH-SAW sensor coated with 1.0µm PEA to binary mixture of 500 ppb 

benzene and 200 ppb ethylbenzene are discussed. Fig. 5.19, Fig. 5.20 and Table 5.7 show 

the estimation results obtained by using this binary mixture data and the linear model of 

the two-analyte system. As can be seen from Fig. 5.19, the estimated steady-state 

frequency shift for each analyte is in agreement (i.e. less than u6 % difference) with the 

steady-state frequency shift of the analytes determined by fitting the measurement data. 
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Moreover, by using eq. 5.1 and eq. 5.2, �	
� and ���� for both analytes are found to be 

around 285 ppb and 303 ppb, respectively for the concentration of benzene and 280 ppb 

and 277 ppb, respectively for the concentration of ethylbenzene. Therefore, �	
� and ���� 
found for both analytes are within u6 % difference. Fig. 5.20 shows the estimated sensor 

responses and Table 5.7 shows the estimated sensor parameters obtained using the 

measurement data collected for the first 4, 5 and 6 minutes after the binary mixture has 

been introduced to the sensor. Based on Table 5.7 and Fig. 5.20, it can be seen that the 

estimated sensor response and steady-state frequency shifts obtained using the 

measurement data collected for the first 6 minutes (and above) agree well (i.e. less than 

u20% difference) with the measurement data and measurement data fitting. Therefore, 

the steady-state frequency shifts of the analytes could be estimated even before the sensor 

response reaches steady-state and thus, the analytes in the binary mixture can be 

quantified rapidly by using the linear model of the two-analyte system. 
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Figure 5.19: Response of a SH-SAW sensor coated with 1.0µm PEA to a binary 
mixture of 500 ppb benzene and 200 ppb ethylbenzene (blue curve) along with the 
estimated sensor response using the linear model of the two-analyte system (red 
curve). Also shown in the figure are the estimated steady-state frequency shifts 
along with the steady-state frequency shifts determined by fitting the measurement 
data using dual-exponential fit. 
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Figure 5.20: Estimated sensor response to a binary mixture of 500 ppb benzene and 
200 ppb ethylbenzene (with 1.0µm PEA coating) using the linear model of two-
analyte system obtained using the measurement data collected for the first 5, 6 and 7 
minutes after the binary mixture sample has been introduced to the sensor co-
plotted together with the measurement data, measurement data fitting and also the 
estimated sensor response using all the data points. Note that the green dashed line 
(estimated sensor response after 6 minutes) coincides with the light blue dashed line 
(estimated sensor response after 7 minutes). 
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Estimated Steady-
State Frequency 

Shift (Measurement 
Data 1) 

 
Steady-State Frequency Shift 

of Benzene, �z�} (kHz) 
 

(% difference with ���}) 
 

 
Steady-State Frequency 

Shift of Ethylbenzene, �z�} 
(kHz) 

 
(% difference with ���}) 

 
 

After 5 minutes 
 

 
-0.1973 (23.31 %) 

 
-0.7968 (9.45 %) 

 
After 6 minutes 

 

 
-0.1817 (13.56 %) 

 
-0.8372 (4.86 %) 

 
After 7 minutes 

 

 
-0.1829 (14.31 %) 

 
-0.8343 (5.19 %) 

 
Using all data points 

 

 
-0.1652 (3.25 %) 

 
-0.8688 (1.27 %) 

 
Table 5.7: Estimated steady-state frequency shifts for a mixture of 500 ppb benzene 
and 200 ppb ethylbenzene (with 1.0µm PEA coating) using the linear model of two-
analyte system obtained using the measurement data collected for the first 5, 6 and 7 
minutes after the binary mixture sample has been introduced to the sensor along 
with the estimated steady-state frequency shifts obtained using all the data points. 
Also given in the table are the percentage differences between the estimated steady-
state frequency shifts and steady-state frequency shifts determined by fitting the 
measurement data.  
 
 
 

For the second case, the estimation results obtained by using the measurement 

data of the sensor response of SH-SAW sensor coated with 0.6µm PECH to binary 

mixture of 1000 ppb benzene and 500 ppb toluene are discussed. Fig. 5.21, Fig. 5.22 and 

Table 5.8 show the estimation results obtained by using the linear model of the two-

analyte system for this second measurement data. 
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Figure 5.21: Response of a SH-SAW sensor coated with 0.6µm PECH to a binary 
mixture of 1000 ppb benzene and 500 ppb toluene (blue curve) along with the 
estimated sensor response using the linear model of the two-analyte system (red 
curve). Also shown in the figure are the estimated steady-state frequency shifts 
along with the steady-state frequency shifts determined by fitting the measurement 
data using dual-exponential fit. 
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Estimated fitting expression: ∆∆∆∆f = -0.28*[1-exp(-0.0289t)] + -0.3*[1-exp(-0.0108t)]
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Figure 5.22: Estimated sensor response to a binary mixture of 1000 ppb benzene and 
500 ppb toluene (with 0.6µm PECH coating) using the linear model of the two-
analyte system obtained using the measurement data collected for the first 4, 5 and 6 
minutes after the binary mixture sample has been introduced to the sensor co-
plotted together with the measurement data, measurement data fitting and also the 
estimated sensor response using all the data points. 

 

 

 

0 2 4 6 8 10 12
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Time (min)

F
re

qu
en

cy
 S

hi
ft

, ∆∆ ∆∆
f (

kH
z)

 

 

Experimental data
Experimental data fitting
Estimated Sensor Response after 4 minutes
Estimated Sensor Response after 5 minutes
Estimated Sensor Response after 6 minutes
Estimated Sensor Response using all data points



128 
 

 

 

 
Estimated Steady-
State Frequency 

Shift (Measurement 
Data 2) 

 
Steady-State Frequency Shift 

of Benzene, �z�} (kHz) 
 

(% difference with ���}) 
 

 
Steady-State Frequency 

Shift of Ethylbenzene, �z�} 
(kHz) 

 
(% difference with ���}) 

 
 

After 4 minutes 
 

 
-0.2868 (10.38 %) 

 
-0.3143 (20.88 %) 

 
After 5 minutes 

 

 
-0.2849 (10.97 %) 

 
-0.3058 (17.62 %) 

 
After 6 minutes 

 

 
-0.2785 (12.97 %) 

 
-0.2961 (13.88 %) 

 
Using all data points 

 

 
-0.2814 (12.06 %) 

 
-0.2988 (14.92 %) 

 
Table 5.8: Estimated steady-state frequency shifts for a binary mixture of 1000 ppb 
benzene and 500 ppb toluene (with 0.6µm PECH coating) using the linear model of 
two-analyte system obtained using the measurement data collected for the first 4, 5 
and 6 minutes after the binary mixture sample has been introduced to the sensor 
along with the estimated steady-state frequency shifts obtained using all the data 
points. Also given in the table are the percentage differences between the estimated 
steady-state frequency shifts and steady-state frequency shifts determined by fitting 
the measurement data.  
 
 
 
As can be seen from Fig. 5.21, the estimated steady-state frequency shift for each analyte 

for this second case is also in agreement (i.e. less than u15 % difference) with the 

steady-state frequency shift of the analytes determined by fitting the measurement data. 

The values for �	
� and ���� for both analytes in the sample are found to be equal to 1245 

ppb and 1090 ppb, respectively for the concentration of benzene and 349 ppb and 402 

ppb, respectively for the concentration of toluene. Note that, �	
� and ���� found for both 

analytes are within u15 % difference. It should be noted that the values of ���� are closer 
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to the actual concentrations of the analytes. Fig. 5.22 shows the estimated sensor 

responses and Table 5.8 shows the estimated steady-state frequency shifts obtained using 

the measurement data collected for the first 4, 5 and 6 minutes after the binary mixture 

has been introduced to the sensor. Based on Table 5.8 and Fig. 5.22, it can be seen that 

the estimated sensor response and sensor parameters obtained using the measurement 

data collected for the first 5 minutes (and above) agree well (i.e. less than u20% 

difference) with the measurement data and measurement data fitting. Therefore, again it 

has been shown that the steady-state frequency shifts of the analytes could be estimated 

even before the sensor response reaches steady-state using the linear model of the two-

analyte system. 

 

5.3.3 Summary on Two-Analyte Estimation Results 

 

In this section, the summary of the two-analyte estimation results attained by 

using the nonlinear and linear model are presented. All estimation results obtained by 

using these two different models are summarized in Table 5.9 through Table 5.11. It 

should be noted that the observed discrepancies between �	
� and ���� with the actual 

concentrations can be attributed to the error in the sample preparations as well as 

volatility of the hydrocarbon analytes. 
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 Measurement Data 1 
(500 ppb benzene + 200 ppb 
ethylbenzene)  (1.0 μm PEA) 

Measurement Data 2 
(1000 ppb benzene + 500 ppb 

toluene) 
(0.6 μm PECH) 

Benzene 
(kHz) 

Ethylbenzene 
(kHz) 

Benzene (kHz) Toluene (kHz) 

���} �z�} ���} �z�} ���} �z�} ���} �z�} 
 

Nonlinear 
Model 

 

 
-0.16 

 
-0.17 (6 

%) 

 
-

0.8
8 

 
-0.89 
(1 %) 

 
-0.32 

 
-0.28 

(13 %) 

 
-0.26 

 

 
-0.30 

(15 %) 

 
Linear 
Model 

 

 
-0.16 

 
-0.17 

(6 %)) 

 
-

0.8
8 

 
-0.87 
(1 %) 

 
-0.32 

 
-0.28 

(13 %) 

 
-0.26 

 
-0.30 

(15 %) 

 
Table 5.9: Estimated steady-state frequency shift, �z�}, and steady-state frequency 
shift obtained by measurement data fit, ���} for the two different measurement 
data. Note that the estimated steady-state frequency shift attained by using the two 
different models of the two-analyte system is presented. Given in parentheses are 
the percentage difference between the estimated steady-state frequency shifts and 
the steady-state frequency shifts obtained by measurement data fit. 
 
 

 Measurement Data 1 
(500 ppb benzene + 200 ppb 
ethylbenzene)  (1.0 µm PEA) 

Measurement Data 2 
(1000 ppb benzene + 500 ppb toluene) 

(0.6 µm PECH) 
Benzene 

(ppb) 
Ethylbenzene 

(ppb) 
Benzene (ppb) Toluene (ppb) 

���} �z�} ���} �z�} ���} �z�} ���} �z�} 
 

Nonlinear 
Model 

 

 
285 

 
303 

(6 %) 

 
280 

 
283 

(1 %) 

 
1245 

 
1090 

(12 %) 

 
349 

 
402 

(15 %) 

 
Linear 
Model 

 

 
285 

 
303 

(6 %) 

 
280 

 
277 

(1 %) 

 
1245 

 
1090 

(12 %) 

 
349 

 
402 

(15 %) 

 
Table 5.10: Estimated concentration, �z�}, and concentration determined from 
measurement data fit, ���} for the two different measurement data. Note that the 
estimated concentration attained by using the two different models of the two-
analyte system is given. Given in parentheses are the percentage difference between 
the estimated concentration and the concentration determined from measurement 
data fit. 
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Measurement Data 1 

(1000 ppb benzene + 1000 ppb 
ethylbenzene)  (1.0 µm PEA) 

 

 
Measurement Data 2 

(1000 ppb benzene + 500 ppb toluene) 
(0.6 µm PECH) 

 
Minimum Estimation Time 

(minute) 
 

 
Minimum Estimation Time (minute) 

 
Nonlinear 

Model 
 

 
3 

 
5 

 
Linear 
Model 

 

 
6 

 
5 

 
Table 5.11: Minimum estimation time required to obtain a good estimate of sensor 
response (or parameters) for the two different models using the two different 
measurement data. Note that the results shown in the table are not absolute, and 
could be further improved by minimizing the measurement noise. 
 
 
 

Based on Table 5.9 and Table 5.10, it can be seen that the estimated steady-state 

frequency shift and concentration of the analytes by using the nonlinear and linear model 

of the two-analyte system agree well (i.e. less than u15 % difference) with the steady-

state frequency shift and concentration of analytes determined from fitting the 

measurement data. Therefore, it can be concluded that almost the same results can be 

attained either by using the estimation techniques for the binary mixture sample presented 

in this work or by fitting the measurement data. However, it should be noted that the 

advantage of using estimation theory to quantify the analytes lies in the fact that the 

analytes could be quantified well before the sensor-response reaches steady-state. From 

Table 5.11, it can be seen that by using the estimation techniques presented in this work, 
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the time required to quantify the analytes in the binary mixture is about 3-6 minutes 

which is less than half the time required for the sensor response to reach steady-state. As 

a result of using estimation theory, one could obtain an accurate estimate of the steady-

state frequency shift of the analytes in the binary mixture even before the sensor response 

reaches steady-state. Note that from Tables 5.9 - 5.11, it can be seen that for the two-

analyte system, the percentage difference and the minimum time required for estimation 

are larger than for the single analyte system; this is to be expected because quantifying 

the two analytes requires accurate evaluation of the deviations of the response to the 

analytes from a single exponential curve, and these deviations can be small if the two 

analytes have response time constants in the same order of magnitude. 

 

Moreover, from the estimation results presented in Tables 5.9 - 5.11, it can be 

inferred that both nonlinear and linear model of the two-analyte system presented in this 

thesis perform equally well. Both the models are capable of producing estimates of the 

steady-state frequency shift well before the sensor response reaches steady-state. 

Although, both models performs equally well, the linear model is slightly better than the 

nonlinear model because, for the linear model, the estimation is performed by using KF 

which is an optimal filter (i.e. the convergence of the unknown quantities to their actual 

values are guaranteed if the system meets detectability criteria). For the linear model, 

there are only two unknown quantities that are being estimated. Another advantage of the 

linear model is that, its state space model can be readily extended to the case of multiple 

analytes (three or more analytes in the sample), so that the steady-state frequency shift of 

multiple analytes can be estimated. 
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6. SUMMARY, CONCLUSIONS AND FUTURE WORK 

  

6.1 Summary 

 

The objective of this work was to use estimation theory, in particular Kalman Filter 

(KF) and Extended Kalman Filter (EKF) to analyze and to quantify the analyte(s) in 

binary mixtures and single analyte samples of BTEX compounds (benzene, toluene, 

ethylbenzene and xylenes) in real-time. Also discussed in this work were the process of 

linear baseline drift correction using KF and the process of correcting for outlier points in 

the sensor data using a combination of discrete low pass filter and KF (or EKF depending 

on the model used). Note that both linear baseline drift correction and outlier points 

correction techniques presented in this thesis can be performed in real-time. Since KF and 

EKF are used extensively as a means toward signal processing in this thesis, the theory of 

KF and EKF were reviewed first. Under this review, the formulation of KF and EKF 

were presented. Also discussed were the algorithms on how to apply KF and EKF to 

estimate the unknown parameters. 

 

Next, the models for the sensor responses to single and binary mixtures of analytes 

were discussed. For the case of the single analyte system, the sensor response model was 

developed by assuming that the single analyte system obeys Henry’s law for 

concentrations of analyte below 50 ppm [7, 34, 35]. On the other hand, for the case of 

binary mixtures of analytes, the sensor response model was developed by first assuming 

Henry’s law and by also assuming that the mixture obeys Fick’s law of absorption which 
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states that when the mixture is extremely dilute, the sorption of one analyte into the 

polymer does not interfere with the sorption of the second analyte in any way. Free 

partitioning of the analyte between polymer and aqueous phase is assumed, implicating 

that the sorption process is reversible (i.e. only physisorption occurs). It is also assumed 

that the steady-state frequency shifts of each analyte in the binary mixture are additive. 

Moreover, since the sensor data considered in the present work are collected at discrete-

time instants, the discrete-time model of the single analyte system and two-analyte 

system were found by using Euler’s continuous time approximation formula. In order to 

apply estimation theory, the discrete-time version of the single analyte and two-analyte 

systems were transformed into the state-space form. For the case of the single analyte 

system, only one state-space model was developed and for the case of the two-analyte 

system, two different state-space models were developed where one is known as the 

nonlinear model because its state-space model is nonlinear and the other is known as 

linear model because its state-space model is linear. Note that the state-space models are 

dependent on the unknown parameters that need to be estimated. For the single analyte 

system, it is assumed that the normalized concentration of the analyte, steady-state 

frequency shift and time constant are unknown and based on these unknown quantities, 

the state-space model turns out to be nonlinear. Therefore, for the single analyte system, 

EKF algorithm has to be used to estimate the unknown parameters. For the nonlinear 

model of the two-analyte system, it is assumed that the normalized concentration of each 

analyte and the steady-state frequency shift of each analyte are unknown and must be 

estimated using EKF algorithm. For the linear model of the two-analyte system, it is 

assumed that the steady-state frequency shift of each analyte is unknown and must be 
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estimated using KF. Note that for the linear model of the two-analyte system, the 

normalized concentration of the analytes can be determined for each time instant by using 

the sensor response model and the known time constant of the analytes.   

 

In order to show the validity of the estimation theory (in particular KF and EKF) to 

estimate the unknown parameters of the sensor response to single analyte samples and 

binary mixture samples, the proposed state-space models were tested on the measured 

data collected in the Microsensor Research Laboratory at Marquette University using a 

shear horizontal surface acoustic wave (SH-SAW) sensor coated with various chemically 

sensitive polymers. Before discussing the estimation results obtained for the single 

analyte system and the two-analyte system, the fundamentals of SH-SAW sensors and the 

process of data acquisition were first reviewed. Note that the types of polymers used to 

perform the experiments were also indicated. It has been noticed that the measured data 

collected in the lab exhibit a linear baseline drift and also in some cases, outlier points 

have been observed in the measured data (note that actual data collected in the field may 

also exhibit linear baseline drift and might produce some outlier points). Therefore, 

before using the measured data to perform the estimation process, the data have to be 

corrected for the linear baseline drift and the outlier points. In this work, it has been 

proposed to use a simplified technique of linear baseline drift correction using KF which 

is based on the baseline drift correction technique presented in [17]. For the correction of 

outlier points, a new technique has been proposed using a discrete low pass filter and KF 

(or EKF depending on the state-space model of the system). The data pre-processing 

techniques (i.e. linear baseline drift correction and the elimination of outlier points in the 
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measured data) were tested on the measured data and the results obtained are presented to 

prove the validity of the proposed technique. Also, it should be noted that since the 

proposed data pre-processing techniques uses estimation theory, the data pre-processing 

can be done in real time as the data are recorded.      

 

Finally, the estimation results obtained for the single analyte system and for the two-

analyte system using both nonlinear and linear model were presented and discussed. Also 

for the two-analyte system, the performance of the two different models was compared. 

For all models (i.e. one single analyte state-space model and two different state-space 

models of the two-analyte system), the estimated sensor response was co-plotted with the 

measured data and measured data fit so that the estimated response can be readily 

compared to the measured response. Based on the estimation results obtained, all the 

estimated sensor responses for all models showed a good agreement with the actual 

sensor responses. Furthermore, the estimated sensor parameters were also in conformity 

with the sensor parameters determined by fitting the measurement data. It has also been 

shown that the sensor parameters could be estimated in less than half the time required 

for the sensor response to reach steady-state. Therefore, by using the estimation technique 

presented in this thesis, the analyte(s) could be quantified rapidly. Moreover, based on the 

estimation results obtained for the two-analyte system using both nonlinear and linear 

models, it has been shown that both models perform equally well and are capable of 

estimating the unknown parameters rapidly. 
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6.2 Conclusions 

 

One state-space model for the single analyte system and two different state-space 

models for the two-analyte system were developed which enables estimation theory to be 

applied to estimate the unknown parameters of the sensor response to BTEX compounds 

using a SH-SAW sensor. Based on the accurate estimation results obtained by using these 

state-space models, it can be concluded that the models developed were accurate 

mathematical representations of the systems (i.e. one analyte and two-analyte system).  

 

Typically, the sensor response of analyte(s) (in particular BTEX compounds) may 

take several minutes in the liquid phase to reach steady-state. However, by using the 

estimation techniques demonstrated in this thesis, in particular KF (or EKF depending on 

the state-space model), the analyte(s) could be quantified rapidly. Therefore, using the 

estimation techniques, sensor parameters can be accurately estimated well before the 

sensor response reaches steady-state and this can significantly improve the time to 

quantification of the analyte(s). In this research, it has been shown that the time to 

quantification of the analyte(s) could be reduced to about less than half the time required 

for the sensor response to reach steady-state. This means that the concentration of the 

analyte(s) in the sample can be determined rapidly and based on this concentration level 

of the analyte(s) in the sample, mitigation plans could be carried out earlier. Shortening 

sensor exposure times may also improve accuracy, repeatability, and coating longevity. 
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This research also demonstrated new data pre-processing techniques which are 

capable of correcting for linear baseline drift and outlier points in the measurement data. 

The linear baseline drift correction technique is based on KF so that the baseline drift can 

be corrected in real-time. Normally, the raw measured data collected in the field for the 

sensor responses to BTEX compounds will exhibit linear baseline drift as well as a rapid 

response time. Therefore, the linear baseline drift correction technique demonstrated 

could be employed to correct the linear baseline drift in real-time. The outlier points 

correction technique is based on a combination of discrete low pass filter and KF (or 

EKF) so that the outlier points can be eliminated rapidly (in real-time) as soon as these 

outlier points are detected in the measured data. Note that the outlier points have to be 

removed from the measured data to obtain an accurate estimate of the sensor parameters. 

Outlier points will be recorded if the measurement noise is very high, sometimes during 

the start of a new measurement, or if any changes in the boundary conditions at the 

device surface occur. Therefore, the outlier points correction technique demonstrated 

could be employed to filter out the outlier points in measured data in real-time. 

 

Since all the sensor signal processing techniques presented in this thesis could be 

performed in real-time, these techniques can be used in real world applications to rapidly 

quantify the analyte(s) in samples. All the signal processing techniques presented can be 

implemented in a single microcontroller or in a smart sensor system. Such a sensor 

system will have the capability of correcting the measured data for any linear baseline 

drift, correcting the measured data for any outlier points and, at the same time, use the 

corrected measured data to estimate the sensor parameters rapidly (in real-time). 
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Moreover, such a compact sensor signal processing system will reduce the cost of 

chemical sensing as the data could be processed immediately in the field with minimum 

manpower. There are various potential applications for a compact sensor signal 

processing system. One such possible application will be in monitoring of spill clean-ups. 

In this case, the level of remaining contamination should be regularly checked and by 

using a compact sensor signal processing system, the groundwater contamination level 

could be monitored remotely and the result could be transmitted to the company which 

performs the clean-up. Other applications could be the legally required periodic 

groundwater monitoring around underground storage tanks, or the monitoring of the 

plume in a sub-surface marine oil spill [46]. 

 

Finally, it should be pointed out that the sensor signal processing techniques 

presented in this thesis can be generalized to any type of chemical sensor platforms used 

to detect single analytes or binary mixtures of analytes, and are not specific to the SH-

SAW sensor platform. The techniques should work equally well on sensor data collected 

using other sensor platforms such as microcantilever-based sensors, optical chemical 

sensors and other acoustic wave-based sensors. 

 

6.3 Future Work 

 

The work presented in thesis could be expanded in many ways. Further improvements 

in the sensor signal processing may be possible. In this section, a few possible future 

research proposals are listed. 
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(a) 

 

 In this thesis, the state-space models for the two-analyte system were developed 

by assuming that the time constant of each analyte in the binary mixture are known. 

However in some applications, the time constants of each analyte in the mixture will be 

unknown. Therefore, as a possible extension, this assumption could be relaxed in order to 

obtain a more general state-space model for the two-analyte system so that the state-space 

model obtained can be used in more applications. If this extension were made, one does 

not have to know the time constants of each analyte in the binary mixture beforehand as 

the generalized state-space model can be used to estimate the time constant of each 

analyte together with its steady-state frequency shift. This general state-space model also 

could be used to perform estimation on any unknown binary mixture sample. 

 

 (b)  

 

 In the present work, only the case of quantification of single analyte and two 

analytes in a sample using estimation theory were considered. However, many real world 

applications require the ability of a sensor system to quantify several analytes in a 

complex mixture. Therefore, this work could be naturally expanded to the case of 

quantification of multiple analytes in a complex mixture (i.e. more than two analytes). In 

particular, the linear model of the two-analyte system presented in this thesis could be 

easily modified so that the multiple analytes in a mixture could be quantified. 
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(c) 

 

As mentioned in the problem statement (chapter 1) of this work, the ultimate goal 

of this research is to quantify benzene in groundwater samples which typically contain 

mixtures of multiple analytes. As a first step towards this goal, in this thesis it has been 

shown that benzene in a binary mixture sample could be quantified. The case considered 

could be expanded so that benzene in multiple analyte samples could also be quantified 

(i.e. benzene in mixtures of three or more analytes could be quantified). Therefore, future 

work could consist of extracting only benzene data from the sensor response of samples 

containing multiple analytes. 

 

(d) 

 

The sensor signal processing presented focused mainly on the quantification of 

the analyte(s) in a sample. Another aspect of sensor signal processing which is the 

identification of the analyte(s) in the sample could also be explored. Generally it is of 

interest to identify as well as quantify the analyte(s) that are present in a sample. 

Quantification aspect of the analyte(s) in the sample can be performed by using the 

techniques presented in this thesis. As for the identification of the analyte(s) in an 

unknown sample, a new approach using estimation theory could be investigated so that 

both identification and quantification of the analyte(s) could be performed rapidly. In 

order to perform identification, a sensor array with different coatings had to be used so 

that the target analyte could be identified more accurately. The use of estimation theory 
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in the identification process will enable the responses of these multiple sensors to be 

processed simultaneously and by using pattern recognition, the target analyte can be 

identified in real-time. 

 

(e) 

 

The sensor signal processing techniques presented in this thesis uses estimation 

theory in particular, Kalman Filter (KF) and Extended Kalman Filter (EKF) to quantify 

the analytes in real time. Besides KF and EKF, there are some other estimation theories 

that could have been used to perform the sensor signal processing. Therefore, as a future 

work in this area, one could investigate the feasibility of using other estimation theories 

to quantify the analytes. A comparison of the various approaches will then determine 

which of these estimation theories is best suited for the quantification of the analyte(s) in 

a given sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

 

REFERENCES 

 
 
[1]    A.Hulanicki, S.Glab and F.Ingman, “Chemical Sensors Definitions and 

Classification,” Pure & Appl. Chem., Vol. 63, No.9, pp. 1247-1250, 1991. 
 
[2]    A.Lobnik, M.Turel, and S.K. Urek, “Optical Chemical Sensors: Design and 

Applications,” in Advances in Chemical Sensors, W.Wen, Ed. ISBN: 978-953-
307-792-5, InTech, DOI: 10.5772/31534. [Online] 2012, 
http://www.intechopen.com/books/advances-in-chemical-sensors/optical-
chemical-sensors-design-and-applications (Accessed: 14 September 2013). 

 
[3]    N.Lavrik, M.J.Sepaniak, and P.G. Datskos, “Cantilever transducers as a 

platform for chemical and biological sensors,” Review of Scientific 
Instruments. Vol. 75, no.7, pp. 2229-2253, July 2004. 

 
[4]    M.J. Wenzel, “Modelling the Transient Response of Microcantilever Sensors 

and Analyte Classification Using Estimation Theory,” M.S. Thesis, Marquette 
University, Milwaukee, WI, U.S.A, Nov 2006. 

 
[5]    S.Shah, “Principal Component Analysis of APM Sensor Signals for 

Identification of Dilute Metal Ion solutions,” M.S. Thesis, Marquette University, 
Milwaukee, WI, U.S.A, May 1999.   

 
[6]    D.S. Ballantine, R.M. White, S.J. Martin, et al., Acoustic Wave Sensors, Theory, 

Design, and Physico-Chemical Applications, Academic Press, 1997. 
 
[7]    F.Josse, et al., “Quantification of Benzene in Groundwater using SH-Surface 

Acoustic Wave sensors,” in The 14th International Meeting on Chemical Sensors, 
Nuremberg, Germany, pp. 473-476, 2012. 

 
[8]    J.S. Arey, P.M. Gschwend, Estimating Partition Coefficients for Fuel-Water 

Systems: Developing Linear Solvation Energy Relationships Using Linear 
Solvent Strength Theory To Handle Mixtures, Environ. Sci. Technol. 39, pp. 
2702-2710. 

 
[9]    U.S. Department of Health and Human Services, "Toxicological Profile for 

Benzene," pp. 1-377, 2007. 
 
[10]    U.S. Environmental Protection Agency, FY 2011 Annual Report On The 

Underground Storage Tank Program (2012); EPA-510-R-12-001, pp.1-6, March 
2012. 

 



144 
 

 

[11]    American Cancer Society, “Benzene,” Internet: 
http://www.cancer.org/cancer/cancercauses/othercarcinogens/intheworkplace/be
nzene , [September 26, 2013].  

 
[12]    Xiong, Weizhen and Kale, Girish M., “Novel high-selectivity NO2 sensor 

incorporating mixed-oxide electrode” Sensors and Actuators B, vol. 114, pp. 
101-108, 2006. 

 
[13]    Price, Gareth J. and Drake, Philip L., “Potassium selective quartz crystal 

microbalance chemical sensors using functionalized copolymer coatings” 
Sensors and Actuators B, vol. 114, pp. 466-472, 2006. 

 
[14]    Albert, Keith J., Lewis, Nathan S., Schauer, Caroline L., Sotzing, Gregory A., 

Stitzel, Shannon E., Vaid, Thomas P., and Walt, David R. “Cross-Reactive 
Chemical Sensor Arrays” Chemical Reviews, vol. 100, pp. 2595-2626, 2000. 

 
[15]    M.J. Wenzel, “Polymer-Coated and Polymer-Based Microcantilever Chemical 

Sensors: Analysis and Sensor Signal Processing,” Ph.D. Dissertation, Marquette 
University, Milwaukee, WI, U.S.A, 2009. 

 
[16]    J. W. Gardner and P. N. Bartlett, “Electronic Noses: Principles and 

Applications,” (Oxford University Press, New York, 1999). 
 
[17]    M.J. Wenzel, A.M. Brown, F.Josse, and E.Yaz, “Online Drift Compensation for 

Chemical Sensors Using Estimation Theory,” IEEE Sensors Journal, Vol.11, No. 
1, pp.225-232, January 2011. 

 
[18]    A.Bermak, S.B.Belhouari, S.Minghua, D.Martinez, “Pattern Recognition 

Techniques for Odor Discrimination in Gas Sensor Array,” Encyclopedia of 
Sensors, Vol. X, pp.1-17, 2006. 

 
[19]    S.B.Belhouari, A.Bermak, W.Guangfen, P.C.H.Chan, “On the Use of the 

Transient Information for Gas Identification using Microelectronic Gas 
Sensor,” EEE Department, Hong Kong University of Science and Technology, 
Kowloon, Hong Kong, pp. 693-696, 2004. 

 
[20]    K.B.Jagler, “Wavelet Signal Processing for Transient Feature Extraction,” 

prepared for Air Force Office of Scientific Research, pp. 1-79, March 15, 1992. 
 
[21]    U.S. Environmental Protection Agency, “Basic Information about Benzene in 

Drinking Water,” 21 5 2012. [Online]. Available: 
http://water.epa.gov/drink/contaminants/basicinformation/benzene.cfm 
[Accessed 9/12/2012]. 

 
[22]    S.M.Kay, “Fundamentals of Statistical Signal Processing: Estimation Theory,” 

Upper Saddle River, NJ: Prentice Hall, 1993. 



145 
 

 

 
[23]    T.Roberto (2005, August 30), “Estimation Theory for Engineers,” Available: 

http://www.ee.uwa.edu.au/~roberto/teach/Estimation_Theory.pdf [Accessed: 
September 20, 2013].  

 
[24]    W.Greg, B.Gary (2001), “An Introduction to the Kalman Filter”, University of 

North Carolina, Chapel Hill, NC Available: http://www.cs.unc.edu/~welch 
[September 21, 2012]. 

 
[25]    Kalman, R. E., “A New Approach to Linear Filtering and Prediction Problems” 

Transactions of the ASME - Journal of Basic Engineering, vol. 82, pp. 35-45, 
1960. 

 
[26]    E. Costa, J. do Val, and M.Fragoso, “A New Approach to Detectability of 

Discrete-Time Infinite Markov Jump Linear Systems,” SIAM J. Control Optim., 
Vol. 43, No. 6, pp. 2132-2156, 2005. 

 
[27]    E. Yaz, EECE 6340, Class Lecture, Topic: “Kalman Filter,” Faculty of 

Electrical and Computer Engineering, Marquette University, Milwaukee, WI, 
February 2013. 

 
[28]    R.G. Brown, P.Y.C. Hwang, “Introduction to Random Signals and Applied 

Kalman Filtering,” 2nd Ed. New York: John Wiley and Sons, Inc, 1992. 
 
[29]    E. Yaz, EECE 6340, Class Lecture, Topic: “Extended Kalman Filter,” Faculty 

of Electrical and Computer Engineering, Marquette University, Milwaukee, WI, 
April 2013. 

 
[30]    D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches, (Wiley, 

New York, 2006).  
 
[31]    K. Reif, S. Günther, E. Yaz, and R. Unbehauen, “Stochastic stability of the 

discrete-time extended Kalman filter,” IEEE Transactions on Automatic 
Control, vol. 44 (4), pp. 714-728, April 1999. 

 
[32]    T.Dursun, “Kalman Filter and Its Applications in Navigation,” M.S. Thesis, 

California State University, Northridge, CA, December 2012. 
 
[33]    A.Michael, “The Importance of Kalman Filtering Methods for Economic 

Systems” in Annals of Economic and Social Measurement, Volume 3, number 1, 
1974, pp.49-64 Available: http://www.nber.org/chapters/c9994.pdf [September 
22, 2013]. 

 
[34]    F.Bender, F.Josse, A.J.Ricco. “Influence of Ambient Parameters on the 

Response of Polymer-Coated SH-Surface Acoustic Wave Sensors to Aromatic 
Analytes in Liquid-Phase Detection,” Joint Conference of the IEEE International 
Frequency Control & The European Frequency & Time Forum, pp. 1-6, 2011. 



146 
 

 

 
[35]    F.Bender, R.E.Mohler, A.J.Ricco, and F.Josse. “Identification and 

Quantification of Aqueous Aromatic Hydrocarbons Using SH-Surface Acoustic 
Wave Sensors,” Analytical Chem., vol. 86, pp. 1794-1799, January 2014. 

 
[36]    F.Bender, F.Josse, R.E.Mohler, and A.J.Ricco. “Design of SH-Surface Acoustic 

Wave Sensors for Detection of ppb Concentrations of BTEX in Water,” Joint 
UFFC, EFTF and PFM Symposium, pp. 628-631, 2013. 

 
[37]    F.Josse, F.Bender, and R.W.Cernosek. “Guided Shear Horizontal Surface 

Acoustic Wave Sensors for Chemical and Biochemical Detection in Liquids,” 
Analytical Chem., vol. 73. No. 24, pp. 5937-5944, Dec 2001. 

 
[38]    R. Lenisa, “Chemically Sensitive Polymer Coatings for SH-Surface Acoustic 

Wave Sensors for The Detection of Benzene in Water,” M.S. Thesis, Marquette 
University, Milwaukee, WI, U.S.A, August 2013. 

 
[39]    D.L.Lee. “Analysis of energy trapping effects for SH-type waves on rotated Y-

cut quartz,” IEEE Trans. Son. Ultrason., SU-28, pp. 330-341, 1981. 
 
[40]    F.Josse and D.L.Lee. “Analysis of excitation, interaction and detection of 

surface and bulk acoustic waves on piezoelectric substrates,” IEEE Trans. Son. 
And Ultrason., SU-29, pp. 262-273, 1982. 

 
[41]    T. Zhou, “Theoretical Modeling of Acoustic Waves in Layered Structure 

Chemical Sonsors and Biosensors,” M.S. Thesis, Marquette University, 
Milwaukee, WI, 1992. 

 
[42]    Z.H.Li, Y.Jones, J.Hossenlopp, R.Cernosek, and F.Josse, “Analysis of liquid-

phase chemical detection using guided shear horizontal-surface acoustic wave 
sensors,” Analytical Chem., vol. 77, No. 14, pp. 4595-4603, July 2005. 

 
[43]    A.K.Mensah-Brown, D.Mlambo, F.Josse, S.C.Schneider. “Analysis of the 

Detection of Organophosphate Pesticides in Aqueous Solutions Using 
Hydrogen-Bond Acidic Coating on SH-SAW Devices,” IEEE Sensors Journal, 
vol. 12, No. 5, pp. 893-903, May 2012. 

 
[44]    A.K.Mensah-Brown. “Analysis of the Detection of Organophosphate Pesticides 

in Aqueous Solutions Using Polymer-Coated SH-SAW Devices,” Ph.D. 
Dissertation, Marquette University, Milwaukee, WI, U.S.A, 2010. 

 
[45]    F.Haugen. “Derivation of a Discrete-Time Lowpass Filter,” TechTeach, 

Norwegian Institute of Technology, Trondheim, Norway, pp. 1-3, March 2008. 
 



147 
 

 

[46]    R.N.Conmy, et al., “Submersible Optical Sensors Exposed to Chemically 
Dispersed Crude Oil: Wave Tank Simulations for Improved Oil Spill Monitoring,” 
Environ. Sci. Technol., pp. 1803-1810 February 2014. 

  

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 
 

 

APPENDIX A: ADDITIONAL OUTLIER POINTS CORRECTION RE SULTS 

 
  

 
 
Figure A. 1: Outlier points corrected data co-plotted together with the measurement 
data with outlier points. The data are shown in two different colors where blue 
represents the measurement data with outlier points (unfiltered data) and red 
represents the outlier points corrected measurement data (filtered data). Both the 
data points and the curve fit for the data points are shown in the figure above. 
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Figure A. 2: Outlier points corrected data co-plotted together with the measurement 
data with outlier points. The data are shown in two different colors where blue 
represents the measurement data with outlier points (unfiltered data) and red 
represents the outlier points corrected measurement data (filtered data). Both the 
data points and the curve fit for the data points are shown in the figure above. 
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APPENDIX B: MATLAB CODES 

 
 
B.1 MATLAB Code for Outlier Points Filtering 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Author: KARTHICK SOTHIVELR  
% File Name: outlier_correction_con.m  
% Date (Created): 02-27-2013  
% Date (Modified): 02-17-2014  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Description:  
% Program to implement discrete first-order low pas s filter to 
eliminate  
% the outlier points in the measurement data.  
% Discrete Low-Pass Filter are implemented together  with KF using the  
% Linear Model of the Two-Analyte System.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Cleaning  
clear all  
close all  
clc  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Open and read the measurement file  
FID = fopen( 'op_thesis2.ini' , 'r' ); % 121211PEABEJ3binaryCor  
data = textscan(FID, '%f %f' );  
fclose(FID);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Order the data (Based on Analyte)  
y1 = data{2}(80:154); yb1 = data{2}(75:79);        % Benzene (800ppb)  
y2 = data{2}(231:305); yb2 = data{2}(226:230);     % Benzene (200ppb)  
% y3 = data{2}(375:456); yb3 = data{2}(370:374);     % Benzene (200ppb)  
% y4 = data{2}(525:605); yb4 = data{2}(520:524);     % Benzene + 
Ethylbenzene (500ppb + 1000ppb)  
 
% Sampling Period:  
T = 12; % in seconds  
  
% Time Constants ( in sec) from Averaged Single Ana lyte Table:  
tauA = 36.1+5; % Benzene  
tauB = 204+1.5; % Ethylbenzene  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Select the case to be analyzed  
y = y1; yb = yb1;  
kmax = length(y); % Length of the measurement data points  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
ssA = 0.244; % Benzene  
ssB = 2.24; % Toluene  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Introducing Outlier Points in the Data  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
y(8)=y(8)+ 0.5;  
y(15)=y(15)+0.7;  
y(25)=y(25)-0.5;  
y(35)=y(35)+0.9;  
y(45)=y(45)-0.8;  
y(50)=y(50)-0.5;  
y(70)=y(70)+0.7;  
y_ori = y;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Discrete Low-Pass Filter Parameter  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
tau = tauB; % Select the time constant value (largest value)  
alpha = T/(tau + T); diff=0;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Initialize Kalman Filter variables  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
yhat = zeros(1,kmax); x = zeros(2,kmax+1); P = zero s(2,2,kmax+1);  
x(:,1) = [0; 0]; % Initial state vector (Initial state estimate)  
P(:,:,1) = diag([1000, 1000]); % Initial error covariance Matrix     
W = 10; V = 0; % Covariance of Measurement and process noise  
G = [1]; % Matrix G (1 by 1 Matrix)  
U = ones(kmax,1); % Step Input  
m_A=0; m_B=0; % Initial value of the normalized Concentration  
% System Matrices (A and F)  
A = eye(2);  
F = [1;1];  
% Adsorption Rate Constant:  
Sa=(T/tauA); % Benzene  
Sb=(T/tauB); % Ethylbenzene  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%************** Correction of Outlier Points and KF  Scheme 
****************  
% Loop to evaluate each instant in time  
for  i=1:kmax  
    C = [m_A(i) m_B(i)]; % C Matrix  
    % Simulate the normalized concentration values:  
    m_A = (1 - Sa)*m_A + Sa*U;  
    m_B = (1 - Sb)*m_B + Sb*U;  
    % Estimated measurement  
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    yhat(i)=C*x(:,i);  
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Discrete Low-Pass Filter Scheme:  
    if  i==1  
        y(i) = alpha*y(i);  
    end  
    if  i>1  
        diff = abs(y(i) - yhat(i));  
    end  
    if  diff>=0.3  
        y(i) = alpha*y(i) + (1-alpha)*y(i-1);  
    end  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    K = (A*P(:,:,i)*C')/((C*P(:,:,i)*C' + G*W*G')) ;  % Kalman Gain  
    x(:,i+1) = A*x(:,i) + K*(y(i)-C*x(:,i)); % State Update Equation  
    % Error Covariance Update Equation:  
    P(:,:,i+1) = (A-K*C)*P(:,:,i)*(A-K*C)' + K*G*W* G'*K' + F*V*F';     
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Plot and Analysis  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
vk=0:kmax-1;  
vt=(0:0.1:kmax-1)';  
  
% Experimental Data Fitting  
fun = [ 'a*(1-exp('  num2str(-(T/tauA)) '*x))+b*(1-exp('  num2str(-
(T/tauB)) '*x))' ];  
hfit = fit((0:kmax-1)',y_ori,fun, 'StartPoint' ,[1 1]);  
% Steady-State Sensitivity  
a = round(hfit.a * 1e2)/1e2; % Analyte A  
b = round(hfit.b * 1e2)/1e2; % Analyte B  
vfit = a*(1-exp(-(T/tauA).*vt)) + b*(1-exp(-(T/tauB ).*vt));  
  
% Filtered Data Fitting  
fun2 = [ 'fa*(1-exp('  num2str(-(T/tauA)) '*x))+fb*(1-exp('  num2str(-
(T/tauB)) '*x))' ];  
hfit2 = fit((0:kmax-1)',y,fun2, 'StartPoint' ,[1 1]);  
% Steady-State Sensitivity  
fa = round(hfit2.fa * 1e2)/1e2; % Analyte A  
fb = round(hfit2.fb * 1e2)/1e2; % Analyte B  
vfil = fa*(1-exp(-(T/tauA).*vt)) + fb*(1-exp(-(T/ta uB).*vt));  
  
% Converting time step number to minutes and add ba selines  
y_ori = [yb(1:5);y_ori]; y=[yb(1:5);y];  
vfit=[((0:0.1:4.9)'*0);vfit]; vfil=[((0:0.1:4.9)'*0 );vfil];  
vk=((0:length(y_ori)-1)')*(T/60); vt=(0:0.1:length( y)-1)'*(T/60);  
  
% Plot  
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figure(1)  
% Plot of Frequency Shift vs Time step  
h=plot(vk, y_ori, '*b' ,vt, vfit, '-b' , vk, y, 'or' , vt, vfil, '--r' );  
%title ('Frequency Shift vs Time','FontSize',24)  
LineWidth = [1];  
xlabel( 'Time,t (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift \Deltaf 
(kHz)' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , 'Experimental data fitting' , ...  
        'Filtered data' , 'Filtered data fitting' );  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
axis([0 16 -3.5 1.5])  
annotation( 'textbox' , [0.2,0.4,0.1,0.1], ...  
           'String' , [ 'Experimental data fitting expression: \Deltaf = 
' , ...  
        num2str(a) '*[1-exp(-'  num2str(round((1/tauA)*1e4)/1e4) 't)] + 
'  ...  
        num2str(b) '*[1-exp(-'  num2str(round((1/tauB)*1e4)/1e4) 
't)]' ]);  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% End of Program 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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B.2 MATLAB Code for Linear Baseline Drift Correctio n 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Author: KARTHICK SOTHIVELR  
% File Name: baseline_corr_li.m  
% Date (Created): 02-27-2013  
% Date (Modified): 02-17-2014  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Description:  
% Program to implement baseline drift correction us ing Kalman Filter  
% Linear Interpolation Using KF are used to correct  for baseline drift  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Cleaning  
clear all  
close all  
clc  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Open file and read the data from the file  
FID = fopen( 'newset.ini' , 'r' ); % 110620Pibbett2  
data = textscan(FID, '%f %f' );  
fclose(FID);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%****************** Specify the Number of Responses  
***********************  
N_single = 1;       % Total number of single analyte response  
N_mixture = 3;      % Total number of binary mixture response  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Measurement Information:  
T = 12; % Sampling Period (in seconds)  
W  = 100; % Measurement noise variance  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%************************* Single Analyte 
*********************************  
tau_res_single = [29.78]; % Time constant for the single analyte 
responses  
  
analyte_in_single = [650 714]; % Point of analyte in or the end point  
analyte_out_single = [681]; % Point of analyte out  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%***************** Binary Mixture 
****************************************  
% Time constant for the binary mixture  
tau_res_mixture = [29.78 82.88 179]; % Benzene, Toluene, Ethylbenzene  
  
analyte_in_mixture = [199 353 503]; % Point of analyte in or the end 
point  
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analyte_out_mixture = [253 403 556]; % Point of analyte out  
%************************************************** ********************
***  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%************************ Linear Interpolation Info  
***********************  
% Number of points that need to be averaged on base line  
avg_points = 15;  
% Number of points to check to determine the best f it(Check Starting 
Point)  
points = 5;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%***************************** Counters 
***********************************  
ff=0; hh=0; gg=1; ll=0; bestfit=0; kk=1;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% ********************* Sorting the analytes 
******************************  
analyte_in = sort([analyte_in_single analyte_in_mix ture]);  
% Single Analyte Response will be analyzed first, t hen two analyte 
response  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%************************** Reset the Counters 
****************************  
ll=0; bestfit=0; kk=1; pp=1; % Counters  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%************************ Binary Mixture Section 
**************************  
while  (kk<=N_mixture)  
     
  while  (pp<=4)  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %******************* Linear Interpolation Section 
*********************  
    % Baseline before the response  
  yfir = data{2}(analyte_in_mixture(kk)-
avg_points:analyte_in_mixture(kk));  
     



156 
 

 

    % Determine the baseline after the response  
    for  jj=1:length(analyte_in) % To determine the second baseline  
        if  analyte_in(jj)>analyte_in_mixture(kk)  
            break  
        end  
    end  
     
    % Baseline after the response  
    ysec = data{2}(analyte_in(jj)-avg_points:analyt e_in(jj));  
     
    % Response  
    y1 = data{2}(analyte_in_mixture(kk):analyte_out _mixture(kk));  
     
    % Average of baseline before the response  
    avg1 = sum(yfir)/length(yfir);  
    % Average of baseline after the response  
    avg2 = sum(ysec)/length(ysec);  
     
    % Slope of the baseline drift  
    b = (avg2-avg1)/(analyte_in(jj) - analyte_in_mi xture(kk));   
    % y-intercept of the baseline drift  
    a = (avg1);  
  
    % Added Part  
    if  kk==1  
        change = 15;  
    else  
        change = 10;  
    end  
     
    % Response to be baseline corrected  
    yy = data{2}(analyte_in_mixture(kk)-change:anal yte_in(jj)-70);  
     
    % Section to identify and select the time constant of the analytes  
    tau=tau_res_mixture; % Sorption time constant  
    % Case of Benzene + Toluene  
    if  (pp==1)  
        tauA=tau(1); tauB=tau(2);  
    end  
    % Case of Benzene + Ethylbenzene  
    if  (pp==2)  
        tauA=tau(1); tauB=tau(3);  
    end  
    % Case of Benzene + Toluene  
    if  (pp==3)  
        tauA=tau(1); tauB=tau(2);  
    end  
    % Select the Correct Case (Based on Best Curve Fit)  
    if  (pp==4)  
        [rr,place]=min(err_store);  
        if  (place==1)  
            tauA=tau(1); tauB=tau(2);  
        end  
        if  (place==2)  
            tauA=tau(1); tauB=tau(3);  
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        end  
        if  (place==3)  
            tauA=tau(2); tauB=tau(3);  
        end  
         
        vk2 = 0:length(yy)-1;  
         
        % Interpolate the Linear Baseline drift  
        yfit = a + b*vk2;  
         
        % Linear Baseline Drift Correction  
        yy2 = yy - yfit';  
         
        %If the starting point produces the best curve fit store the 
result  
        if  (bestfit==1)  
            for  j=1:length(yy2) % Keep track of all correction  
                hh=hh+1;  
                yall(hh)=yy2(j);  
                yall2(hh)=yy(j);  
            end  
        end  
    end  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %**********************Select the best curve 
fit***********************  
    if  (bestfit==1)  
        pp = pp+1;  
        bestfit=2;  
        analyte_in_mixture(kk)=ori;  
    end  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %*****************************EKF 
Section******************************  
    % EKF to estimate the concentration/s.s. sensitivit y  
    y = y1; ymeas=y1;  
    kmax = length(y);  
     
    % Adsorption Rate  
    Sa=(T/tauA); Sb=(T/tauB); % Analyte A and B   
     
    % Start EKF Scheme  
    x = zeros(4,kmax+1); P = zeros(4,4,kmax+1); yha t = zeros(1,kmax);  
    % Initial state vector  
    x(:,1) = [0; 0; 0; 0];  
    % Initial error covariance Matrix  
    P(:,:,1) = diag([0.01, 0.01, 25000, 100000]);  
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    V = 3*eye(2); % Covariance matrix of process noise v  
    G = [1]; % Matrix G (dh/dw)  (1 by 1 Matrix)  
    U = ones(kmax,1); % Step Input  
     
    % Loop to evaluate each instant in time  
    for  i=1:kmax  
    C = [x(3,i) x(4,i) x(1,i)  x(2,i)]; % C Matrix (dh/dx)  
    h = [x(3,i)*x(1,i) + x(4,i)*x(2,i)]; % h Matrix  
    y(i) = y(i) - a - b*(i-1); % Baseline Corrected Measurement  
                     
    %*****************Measurement Update 
Equations**********************  
    x1 = x(:,i); P1 = P(:,:,i);  
    x(:,i+1) = x1 + P1*C'*(inv((C*P1)*C' + G*W*G'))  * [y(i) - h];  
    P(:,:,i+1) = P1 - P1*C'*(inv(C*P1*C' + G*W*G')) *C*P1;  
    yhat(1,i) = h;  
     
    %**********************Time Update 
Equation**************************  
    % f matrix  
f = [(1-Sa)*x(1,i+1)+Sa*U(i); (1-Sb)*x(2,i+1)+Sb*U( i); x(3,i+1); 
x(4,i+1)];  
    % A matrix (df/dx)  
    A = [1-Sa 0 0 0; 0 1-Sb 0 0; 0 0 1 0; 0 0 0 1];   
    % F matrix (df/dv)  
    F = [1 0;0 1;0 0;0 0];  
     
    x(:,i+1) = f; % Time update the state estimate  
  
    P1 = P(:,:,i+1);  
    P(:,:,i+1) = A*P1*A' + F*V*F'; % Time update the error covariance  
    end  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %*********************** Analysis and Plot 
****************************  
    % Time vector  
    vk=(0:kmax-1)'; vt=(0:0.1:kmax-1)';  
     
    % Experimental Data Curve fitting to find S and alp ha 
    fun = [ 'a*(1-exp('  num2str(-Sa) '*x))+b*(1-exp('  num2str(-Sb) 
'*x))' ];  
    hfit = fit((0:kmax-1)',y,fun, 'StartPoint' ,[1 1]);  
     
    % Steady-state sensitivity  
    x03 = round(hfit.a * 1e4)/1e4; % Analyte A  
    x04 = round(hfit.b * 1e4)/1e4; % Analyte B  
     
    % Experimental Data Fitting  
    vfit = x03*(1-exp(-Sa.*vt)) + x04*(1-exp(-Sb.*v t));  
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    % Estiamted Steady-state sensitivity (Analyte A)  
    Ea = round(x(3,kmax)*1e4)/1e4;  
    % Estimated Steady-state sensitivity (Analyte B)  
    Eb = round(x(4,kmax)*1e4)/1e4;  
     
    % Estimated Frequency Shift  
    vest_test = Ea*(1-exp(-Sa.*vk)) + Eb*(1-exp(-Sb .*vk));  
     
    
%************************************************** ********************  
    %~~~~~~~~~~~~~~~~~~~~~~Section to find the 
bestfit~~~~~~~~~~~~~~~~~~~~~  
    error = abs(y - vest_test);  
     
    if  bestfit==0  
        ll = ll + 1;  
        if  (ll==1)  
            ori=analyte_in_mixture(kk);  
        end  
        mean_err(ll) = mean(error);  
        analyte_in_mixture(kk)=analyte_in_mixture(k k) + 1;  
                 
        if  (ll==points)  
            [err,index]=min(mean_err);  
            analyte_in_mixture(kk)=ori + (index-1);  
            bestfit=1;  
            err_store(pp) = err;  
        end  
    end  
    
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~  
    
%************************************************** ********************  
     
    
%************************************************** ********************  
    %~~~~~~ Identify the Analyte in the Mixture and Plo t the Result 
~~~~~~~  
    if  (pp<=4)&&(bestfit==2)  
        bestfit=0;  
        ll=0;  
    end  
     
    if  (bestfit==2)  
         
        if  (place==1)  
            fprintf( '\nResponse %d :' ,(kk))  
            fprintf( ' Benzene & Toluene\n\n' );  
        end  
        if  (place==2)  
            fprintf( '\nResponse %d :' ,(kk))  
            fprintf( ' Benzene & Ethylbenzene\n\n' );  
        end  
        if  (place==3)  
            fprintf( '\nResponse %d :' ,(kk))  
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            fprintf( ' Toluene & Ethylbenzene\n\n' );  
        end  
         
        % Estimated Frequency Shift  
        vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb. *vt));  
         
        % Add the baseline (First 5 points)  
        ynew = [yy2(1:5);y]; yhatnew=[yy2(1:5);yhat '];  
        vfit=[((0:0.1:4.9)'*0);vfit]; vest=[((0:0.1 :4.9)'*0);vest];  
         
        % Convert time to minutes  
        vvk=((0:length(ynew)-1)')*(T/60);  
        vvt=(0:0.1:length(ynew)-1)'*(T/60);  
  
        % Plot of Frequency Shift vs Time  
        figure(ff+1)  
        plot(vvk, ynew, '*b' , vvt, vfit, '-b' , vvk, yhatnew, 'or' , vvt, 
vest, '--r' )  
        title ( 'Frequency Shift vs Time' )  
        xlabel( 'Time (min)' ); ylabel( 'Frequency Shift \Deltaf [kHz]' )  
        legend( 'Experimental data' ,    [ 'Experimental data Fitting: 
\Deltaf=' , ...  
            num2str(x03) '*[1-exp(-'  num2str(Sa) 'k)] + '  ...  
            num2str(x04) '*[1-exp(-'  num2str(Sb) 'k)]' ], ...  
           'Direct Estimation' , [ 'Estimated Expression: \Deltaf='  ...  
           num2str(Ea) '*[1-exp(-'  num2str(Sa) 'k)] + '  ...  
           num2str(Eb) '*[1-exp(-'  num2str(Sb) 'k)]' ]);  
         
        % Update the counters  
        ff=ff+1;  
        kk=kk+1;  
        bestfit=0;  
        ll=0;  
    end  
    
%************************************************** ********************  
  end  
  pp=1;  
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%************************** Reset the Counters 
****************************  
ll=0; bestfit=0; kk=1; pp=1; % Counters  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%********************** Single Analyte Response 
***************************  
while  (kk<=N_single)  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %******************* Linear Interpolation Section 
*********************  
    % Baseline before the response   
    yfir = data{2}(analyte_in_single(kk)-
avg_points:analyte_in_single(kk));  
    % Determine the baseline after the response  
    for  jj=1:length(analyte_in)  
        if  analyte_in(jj)>analyte_in_single(kk)  
            break  
        end  
    end  
     
    % Baseline after the response  
    ysec = data{2}(analyte_in(jj)-avg_points:analyt e_in(jj));  
     
    % Response (Data points)  
    y1 = data{2}(analyte_in_single(kk):analyte_out_ single(kk));  
     
    % Average of the points in baseline before the resp onse  
    avg1 = sum(yfir)/length(yfir);  
    % Average of the points in baseline after the respo nse  
    avg2 = sum(ysec)/length(ysec);  
     
    % Slope of the baseline drift  
    b = (avg2-avg1)/(analyte_in(jj) - analyte_in_si ngle(kk));  
    % y-intercept of the baseline drift  
    a = (avg1);  
     
    % Determine the Response (Data points) to be baseli ne corrected  
    yy = data{2}(analyte_in_single(kk)-10:analyte_i n(jj)-10);  
     
    vk2 = 0:length(yy)-1; % Specify the discrete-time instant  
    % Linear drift  
    yfit = a + b*vk2; % Linear Interpolation  
     
    % Baseline Drift correction  
    yy2 = yy - yfit';  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % If the starting point produces the best curve fit  store the 
result  
    if  bestfit==1  
        for  j=1:length(yy2) % Keep track of all correction  
            hh=hh+1;  
            yall(hh)=yy2(j);  
            yall2(hh)=yy(j);  
        end  
        bestfit=2;  
    end  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %**************************** EKF Section 
*****************************  
    % EKF to estimate the concentration/s.s. sen sensit ivity  
    y = y1; ymeas=y1;  
    tau=tau_res_single(kk); % Sorption time constant  
    kmax = length(y);  
  
    x02 = T/tau; % S (Initial Estimate of Adsorption Rate)  
    x03 = -1; % alpha (Initial Estimate of Steady-State Sensitivi ty)  
         
    % Start EKF Scheme  
    x = zeros(3,kmax+1); P = zeros(3,3,kmax+1); yha t = zeros(1,kmax);  
    x(:,1) = [0; x02+0.1; x03]; % Initial state vector  
    P(:,:,1) = diag([0.01, 100, 10000]); % Initial error covariance 
Matrix  
  
    V = [1]; % Covariance matrix of process noise v (1 by 1 Matr ix)  
    G = [1]; % Matrix G (dh/dw)  (1 by 1 Matrix)  
    U = ones(kmax,1); % Step Input  
     
    % Loop to evaluate each instant in time  
    for  i=1:kmax  
        C = [x(3,i) 0 x(1,i)]; % C Matrix (dh/dx)  
        h = [x(3,i)*x(1,i)]; % h Matrix  
        y(i) = y(i) - a - b*(i-1); % Baseline Corrected Measurement  
  
        %*****************Measurement Update 
Equations*********************  
        x1 = x(:,i); P1 = P(:,:,i);  
        x(:,i+1) = x1 + P1*C'*(inv((C*P1)*C' + G*W* G')) * [y(i) - h];  
        P(:,:,i+1) = P1 - P1*C'*(inv(C*P1*C' + G*W* G'))*C*P1;  
  
        yhat(1,i) = h;  
  
        %**********************Time Update 
Equation************************  
        % f matrix  
        f = [(1-x(2,i+1))*x(1,i+1)+x(2,i+1)*U(i); x (2,i+1); x(3,i+1)];  
        % The A matrix (df/dx)  
        A = [1-x(2,i+1) U(i)-x(1,i+1) 0; 0 1 0; 0 0  1];  
        % F matrix (df/dv)  
        F = [1; 0; 0];  
  
        x(:,i+1) = f; % Time update the state estimate  
        P1 = P(:,:,i+1);  
        P(:,:,i+1) = A*P1*A' + F*V*F'; % Time update the error 
covariance  
    end  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %************************** Analysis and Plot 
*************************  
    % Time vector  
    vk=(0:kmax-1)'; vt=(0:0.1:kmax-1)';  
     
    % Experimental Data Curve fitting to find S and alp ha 
    hfit = fit((0:kmax-1)',y, 'a*(1-exp(-S*x))' , 'StartPoint' ,[1 1]);  
    x02 = round(hfit.S * 1e4)/1e4; % S 
    x03 = round(hfit.a * 1e4)/1e4; % alpha  
    vfit = x03*(1-exp(-x02.*vt)); % Experimental Data Fitting  
     
    
%************************************************** ********************  
    % ~~~~~~~~~~~~~~~~~~~~Section to find the 
bestfit~~~~~~~~~~~~~~~~~~~~~~  
    vfit_test = x03*(1-exp(-x02.*vk));  
    error = abs (y - vfit_test); % Error in the fit  
    % Checking the Starting Point  
    if  bestfit==0  
        ll = ll + 1;  
        if  ll==1  
            ori=analyte_in_single(kk);  
        end  
        mean_err(ll) = mean(error);  
        analyte_in_single(kk)=analyte_in_single(kk)  + 1;  
                 
        if  ll==points  
            [err,index]=min(mean_err);  
            analyte_in_single(kk)=ori + (index-1);  
            bestfit=1;  
        end  
    end  
    % 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~  
    
%************************************************** ********************  
     
    
%************************************************** ********************  
    % If the starting point produces best curve fit Plo t the Results  
    if  (bestfit==2)  
        ES = round(x(2,kmax)*1e4)/1e4; % Estimated adsorption rate (S)  
        % Estimated Steady-state sensitivity (alpha)  
        Ea = round(x(3,kmax)*1e4)/1e4;  
        % Estimated Frequency Shift  
        vest = Ea*(1-exp(-ES.*vt));  
   
        % Adding some baseline  
        ynew = [yy2(1:5);y]; yhatnew=[yy2(1:5);yhat ']; % The first 5 
points  
        vfit=[((0:0.1:4.9)'*0);vfit]; vest=[((0:0.1 :4.9)'*0);vest];  
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        % Convert time to minutes  
        vvk=((0:length(ynew)-1)')*(T/60); vvt=(0:0. 1:length(ynew)-
1)'*(T/60);  
         
        % Plot the result  
        figure(ff+1)  
        % Plot of Frequency Shift vs Time step  
        plot(vvk, ynew, '*b' , vvt, vfit, '-b' , vvk, yhatnew, 'or' , vvt, 
vest, '--r' )  
        title ( 'Frequency Shift vs Time' )  
        xlabel( 'Time (min)' ); ylabel( 'Frequency Shift \Deltaf [kHz]' )  
        legend( 'Experimental data' ,    [ 'Experimental data Fitting: 
\Deltaf=' , ...  
            num2str(x03) '*[1-exp(-'  num2str(x02) 't)]' ], ...  
           'Direct Estimation' , [ 'Estimated Expression: \Deltaf='  ...  
           num2str(Ea) '*[1-exp(-'  num2str(ES) 't)]' ]);  
         
        % Update the Counters  
        ff=ff+1;  
        kk=kk+1;  
        bestfit=0;  
        ll=0;  
    end  
    
%************************************************** ********************  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%********************** Baseline Corrected Plot 
***************************  
% Time vector  
vk = 0:length(yall)-1; vk = vk.*(12/60);  
  
% Plot the Baseline Corrected Result  
figure(ff+1)  
h=plot(vk,yall);  
set(h, 'LineWidth' ,1.5)  
%title('Frequency Shift','FontSize',16)  
xlabel( 'Time (min)' , 'FontSize' ,16)  
ylabel( 'Frequency Shift (kHz)' , 'FontSize' ,16)  
grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
  
figure(ff+2)  
h=plot((data{1}(1:713)),(data{2}(1:713)));  
set(h, 'LineWidth' ,1.5)  
%title('Frequency Shift of RAW Data (With Baseline 
Drift)','FontSize',16)  
xlabel( 'Time (min)' , 'FontSize' ,16)  
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ylabel( 'Frequency Shift (kHz)' , 'FontSize' ,16)  
grid on 
  
vk = 0:length(yall2)-1; vk = vk.*(12/60);  
figure(ff+3)  
h=plot(vk,yall2);  
set(h, 'LineWidth' ,1.5)  
%title('Frequency Shift of RAW Data (With Baseline 
Drift)','FontSize',16)  
xlabel( 'Time (min)' , 'FontSize' ,16)  
ylabel( 'Frequency Shift (kHz)' , 'FontSize' ,16)  
grid on 
axis([0 80 -0.4 1.4])  
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B.3 MATLAB Code for Single Analyte Estimation 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Author: KARTHICK SOTHIVELR  
% File Name: Single_Analyte.m  
% Date (Created): 02-27-2013  
% Date (Modified): 02-17-2014  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Description:  
% Program to estimate steady-state sensitivity, tim e constant and  
% concentration of the analyte using the single ana lyte model. 
Estimation  
% were performed using Extended Kalman Filter.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Cleaning  
clear all  
close all  
clc  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Open and read the measurement file  
FID = fopen( 'BE_PEA_1st.ini' , 'r' ); % BE_PEA 1st (old one)  
data = textscan(FID, '%f %f' );  
fclose(FID);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Order the data (Based on Analyte)  
y1 = data{2}(80:155); yb1 = data{2}(75:79);        % Ethylbenzene 
(1000ppb)  
y2 = data{2}(229:306); yb2 = data{2}(224:228);     % Ethylbenzene 
(1000ppb)  
%y3 = data{2}(377:410); yb3 = data{2}(217:221);     % Benzene + Toluene 
(500ppb + 500ppb)  
 
% Sampling Period:  
T = 12; % in seconds  
  
% Time Constants ( in sec) from Averaged Single Ana lyte Table:  
tauA = 204; % Ethylbenzene  
  
% Steady-State Sensitivity from Averaged Single Ana lyte Table:  
ssA = 2.24; % Ethylbenzene  
  
% Adsorption Rate Constant:  
Sa=(T/tauA); % Benzene  
Sa = round(Sa*1e4)/1e4; % Analyte A  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Select the case to be analyzed  
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y = y2; yb = yb2;  
kmax = length(y); % Length of the measurement data points  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Initialize Extended Kalman Filter variables  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
yhat = zeros(1,kmax); x = zeros(3,kmax+1); P = zero s(3,3,kmax+1);  
x(:,1) = [0; Sa+0.001; -1]; % Initial state vector (Initial estimate)  
P(:,:,1) = diag([1,1,100000]); % Initial error covariance Matrix  
V = 0.00001; % Covariance matrix of process noise v  
G = [1]; % Matrix G (dh/dw)  (1 by 1 Matrix)  
U = ones(kmax,1); % Step Input  
W = 100; % Covariance of Measurement noise  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%******************** Extended Kalman Filter Scheme  
***********************  
% Loop to evaluate each instant in time  
for  i=1:kmax  
    % System Matrices  
    C = [x(3,i) 0 x(1,i)]; % C Matrix (dh/dx)  
    h = [x(3,i)*x(1,i)]; % h Matrix  
    % f matrix  
    f = [(1-x(2,i))*x(1,i)+x(2,i)*U(i); x(2,i); x(3 ,i)];  
    % The A matrix (df/dx)  
    A = [1-x(2,i) U(i)-x(1,i) 0; 0 1 0; 0 0 1];  
    % F matrix (df/dv)  
    F = [1; 0; 0];  
  
    % Estimated measurement  
    yhat(i)=h;  
     
    % Setting the first measurement value to be 0  
%     if i==1  
%         y(i) = y(i)*0;  
%     end  
                 
    K = (A*P(:,:,i)*C')/((C*P(:,:,i)*C' + G*W*G')) ;  % Kalman Gain  
    x(:,i+1) = f + K*(y(i)-h); % State Update Equation  
    % Error Covariance Update Equation:  
    P(:,:,i+1) = (A-K*C)*P(:,:,i)*(A-K*C)' + K*G*W* G'*K' + F*V*F';    
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Plot and Analysis  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Time vector  
vk=(0:kmax-1)'; vt=(0:0.1:kmax-1)';  
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% Experimental Data Curve fitting to find S and alp ha 
hfit = fit((0:kmax-1)',y, 'a*(1-exp(-S*x))' , 'StartPoint' ,[1 1]);  
S = round(hfit.S * 1e4)/1e4; % S 
a = round(hfit.a * 1e2)/1e2; % alpha  
vfit = a*(1-exp(-S.*vt)); % Experimental Data Fitting  
  
% Estimated adsorption rate (S)  
ES = round(x(2,kmax)*1e4)/1e4;  
% Estimated Steady-state sensitivity (alpha)  
Ea = round(x(3,kmax)*1e2)/1e2;  
% Estimated Frequency Shift  
vest = Ea*(1-exp(-ES.*vt));  
   
% Adding some baseline  
y = [yb(1:5);y]; yhat=[yb(1:5);yhat']; % The first 5 points  
vfit=[((0:0.1:4.9)'*0);vfit]; vest=[((0:0.1:4.9)'*0 );vest];  
         
% Convert time to minutes  
vk=((0:length(y)-1)')*(T/60); vt=(0:0.1:length(y)-1 )'*(T/60);  
  
% Plot of Frequency Shift  
figure(1)  
h=plot(vk, y, '*b' , vt, vfit, '-w' ,vt, vfit, '-b' , vt, vest, '--w' , vt, 
vest, '--r' );  
xlabel( 'Time, t (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
[kHz]' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , [ 'Experimental data fitting 
expression: \Deltaf = ' , ...  
num2str(a) '*[1-exp(-'  num2str(S/T) 't)]' ], ...  
'Experimental data fitting' , ...  
[ 'Estimated fitting expression: \Deltaf = '  ...  
num2str(Ea) '*[1-exp(-'  num2str(ES/T) 't)]' ], ...  
'Estimated Sensor Response' );  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
  
% Estimated Concentration  
Con = abs(a)/(ssA);  
Con_A = abs(Ea)/(ssA);  
  
  
fprintf( 'The estimated concentration of Analyte A (in ppm) is \n' )  
disp(Con_A)  
fprintf( 'The concentration of Analyte A (in ppm) (from fitt ing 
parameter) is \n' )  
disp(Con)  
  
figure(2)  
h=plot(vk, y, '*b' , vt, vfit, '-b' , vt, vest, '--r' );  
xlabel( 'Time, t (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
(kHz)' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , 'Experimental data fitting' , ...  
'Estimated Sensor Response' );  
set(h_legend, 'FontSize' ,15);  
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set(h, 'LineWidth' ,3)  
annotation( 'textbox' , [0.2,0.4,0.1,0.1], ...  
    'String' , [ 'Experimental data fitting expression: \Deltaf = ' , ...  
    num2str(a) '*[1-exp(-'  num2str(round((S/T)*1e5)/1e5) 't)]' ...  
    'Estimated fitting expression: \Deltaf = '  ...  
num2str(Ea) '*[1-exp(-'  num2str(ES/T) 't)]' ]);  
  
% ['Experimental data fitting expression: \Deltaf =  ', ...  
% num2str(a) '*[1-exp(-' num2str(S/T) 't)]'], ...  
  
%['Estimated fitting expression: \Deltaf = ' ...  
%num2str(Ea) '*[1-exp(-' num2str(ES/T) 't)]'], ...  
% round((1/tauA)*1e4)/1e4  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Normalized Concentration  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
vk=(0:kmax)'; vt=(0:0.1:kmax)'; % Time  
  
mA = (1 - exp(-Sa.*vt)); % Normalized Analyte A Concentration  
mApoint = (1 - exp(-Sa.*vk));  
  
% Estimated Normalized Concentration of Analyte A  
EmA = x(1,:);  
mAfit = fit((0:kmax)',EmA', 'EAa*(1-exp(-mAS*x))' , 'StartPoint' ,[1 1]);  
CA = mAfit.EAa;  
mSA = mAfit.mAS;  
EmmA = CA*(1 - exp(-mSA.*vt));  
  
vk=vk*(T/60); vt=vt*(T/60); % Convert time to minute  
  
% Plot of Normalized Concentration  
figure(3)  
h=plot(vt, mA, '-b' , vt, EmmA, '--w' , vt, EmmA, '--r' );  
xlabel( 'Time, t (min)' , 'FontSize' ,14); ylabel( 'Normalized 
Concentration' , 'FontSize' ,14)  
h_legend = legend([ 'Theoretical Normalized Concentration: m = ' ...  
num2str(1) '*[1-exp(-'  num2str(Sa/T) '*t)]' ], ...  
[ 'Estimated Norm. Con. Expression: m = '  ...  
num2str(CA) '*[1-exp(-'  num2str(mSA/T) '*t)]' ], ...  
'Estimated Normalized Concentration' );  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
  
  
figure(4)  
h=plot(vt, mA, '-b' , vt, EmmA, '--r' );  
xlabel( 'Time, t (min)' , 'FontSize' ,14); ylabel( 'Normalized 
Concentration' , 'FontSize' ,14)  
h_legend = legend( 'Theoretical Normalized Concentration' , ...  
'Estimated Normalized Concentration' );  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Time Analysis (Time to quantification)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
% Time vector  
vk=(0:kmax-1)'; vt=(0:0.1:kmax-1)';  
  
% Several Estimated adsorption rate (S)  
ES1 = round(x(2,10)*1e4)/1e4 % after 2 minutes  
ES2 = round(x(2,15)*1e4)/1e4 % after 3 minutes  
ES3 = round(x(2,20)*1e4)/1e4 % after 4 minutes  
ES4 = round(x(2,25)*1e4)/1e4; % after 5 minutes  
ES5 = round(x(2,30)*1e4)/1e4; % after 6 minutes  
  
% Several Estimated Steady-state sensitivity (alpha )  
Ea1 = round(x(3,10)*1e4)/1e4 % after 4 minutes  
Ea2 = round(x(3,15)*1e4)/1e4 % after 5 minutes  
Ea3 = round(x(3,20)*1e4)/1e4 % after 6 minutes  
Ea4 = round(x(3,25)*1e4)/1e4; % after 10 minutes  
Ea5 = round(x(3,30)*1e4)/1e4; % after 12 minutes  
  
% Several Estimated Frequency Shift  
vest1 = Ea1*(1-exp(-ES1.*vt)); % after 4 minutes  
vest2 = Ea2*(1-exp(-ES2.*vt)); % after 6 minutes  
vest3 = Ea3*(1-exp(-ES3.*vt)); % after 8 minutes  
vest4 = Ea4*(1-exp(-ES4.*vt)); % after 10 minutes  
vest5 = Ea5*(1-exp(-ES5.*vt)); % after 12 minutes  
  
vest1=[((0:0.1:4.9)'*0);vest1];  
vest2=[((0:0.1:4.9)'*0);vest2];  
vest3=[((0:0.1:4.9)'*0);vest3];  
vest4=[((0:0.1:4.9)'*0);vest4];  
vest5=[((0:0.1:4.9)'*0);vest5];  
  
pd1 = ((ES1-S)/S)*100  
pd2 = ((ES2-S)/S)*100  
pd3 = ((ES3-S)/S)*100  
pd4 = ((ES4-S)/S)*100  
pd5 = ((ES5-S)/S)*100  
  
pda1 = ((Ea1-a)/a)*100  
pda2 = ((Ea2-a)/a)*100  
pda3 = ((Ea3-a)/a)*100  
pda4 = ((Ea4-a)/a)*100  
pda5 = ((Ea5-a)/a)*100  
  
pd = ((ES-S)/S)*100  
pda = ((Ea-a)/a)*100  
  
% Change time to minutes  
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vt=(0:0.1:length(y)-1)'*(T/60); vk=((0:length(y)-1) ')*(T/60);  
  
% Plot  
figure(5)  
h=plot(vk, y, '*b' , vt, vfit, '-b' , vt, vest1, '--r' , vt, vest2, '--g' , 
vt, vest3, '--c' , vt, vest, '--k' );  
xlabel( 'Time, t (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
(kHz)' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , ...  
'Experimental data fitting' , ...  
'Estimated Sensor Response after 2 minutes' , ...  
'Estimated Sensor Response after 3 minutes' , ...  
'Estimated Sensor Response after 4 minutes' , ...  
'Estimated Sensor Response using all data points' );  
  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%% End of Program 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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B.4 MATLAB Code for Two-Analyte Estimation (Nonlinear Model) 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Author: KARTHICK SOTHIVELR  
% File Name: Two_Analyte.m  
% Date (Created): 02-27-2013  
% Date (Modified): 02-17-2014  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Description:  
% Program to estimate the steady-state sensitvity a nd concentrations of 
the  
% binary mixture using the two analyte system model . Estimation  
% were performed using Extended Kalman Filter.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Cleaning  
clear all  
close all  
clc  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Open and read the measurement file  
FID = fopen( 'thesis_BT_2nd.ini' , 'r' ); % 2nd new one  
data = textscan(FID, '%f %f' );  
fclose(FID);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Order the data (Based on Analyte)  
y1 = data{2}(53:78); yb1 = data{2}(48:52);         % Benzene (1000ppb)  
y2 = data{2}(127:175); yb2 = data{2}(122:126);     % Benzene + Toluene 
(1000ppb + 500ppb)  
y3 = data{2}(222:271); yb3 = data{2}(217:221);     % Benzene + Toluene 
(500ppb + 500ppb)  
y4 = data{2}(367:417); yb4 = data{2}(362:366);     % Benzene + Toluene 
(200ppb + 500ppb)  
  
% Sampling Period:  
T = 12; % in seconds  
  
% Time Constants ( in sec) from Averaged Single Ana lyte Table:  
tauA = 34.6; % Benzene  
tauB = 92.6; % Toluene  
  
% Steady-State Sensitivity from Averaged Single Ana lyte Table:  
ssA = 0.257; % Benzene  
ssB = 0.746; % Toluene  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Select the case to be analyzed  
y = y2; yb = yb2;  
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kmax = length(y); % Length of the measurement data points  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Initialize Extended Kalman Filter variables  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
yhat = zeros(1,kmax); x = zeros(4,kmax+1); P = zero s(4,4,kmax+1);  
x(:,1) = [0; 0; 0; 0]; % Initial state vector (Initial estimate)  
P(:,:,1) = diag([0.1,0.1,500,1000]); % Initial error covariance Matrix  
V = 10; % Covariance matrix of process noise v  
G = [1]; % Matrix G (dh/dw)  (1 by 1 Matrix)  
U = ones(kmax,1); % Step Input  
W = 100; % Covariance of Measurement noise  
  
% Adsorption Rate Constant:  
Sa=(T/tauA); % Benzene  
Sb=(T/tauB); % Ethylbenzene  
Sa = round(Sa*1e4)/1e4; % Analyte A  
Sb = round(Sb*1e4)/1e4; % Analyte B  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%******************** Extended Kalman Filter Scheme  
***********************  
% Loop to evaluate each instant in time  
for  i=1:kmax  
    % System Matrices  
    C = [x(3,i) x(4,i) x(1,i)  x(2,i)]; % C Matrix (dh/dx)  
    h = [x(3,i)*x(1,i) + x(4,i)*x(2,i)]; % h Matrix  
    % f matrix  
    f = [(1-Sa)*x(1,i)+Sa*U(i); (1-Sb)*x(2,i)+Sb*U( i); x(3,i); x(4,i)];  
    A = [1-Sa 0 0 0; 0 1-Sb 0 0; 0 0 1 0; 0 0 0 1];  % The A matrix 
(df/dx)  
    F = [1 1 0 0]; % The F matrix (df/dv)  
  
    % Estimated measurement  
    yhat(i)=h;  
     
    % Setting the first measurement value to be 0  
%     if i==1  
%         y(i) = y(i)*0;  
%     end  
                 
    K = (A*P(:,:,i)*C')/((C*P(:,:,i)*C' + G*W*G')) ;  % Kalman Gain  
    x(:,i+1) = f + K*(y(i)-h); % State Update Equation  
    % Error Covariance Update Equation:  
    P(:,:,i+1) = (A-K*C)*P(:,:,i)*(A-K*C)' + K*G*W* G'*K' + F*V*F';     
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Plot and Analysis  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
vk=0:kmax-1;  
vt=(0:0.1:kmax-1)';  
  
% Experimental Data Fitting  
fun=[ 'a*(1-exp('  ...  
    num2str(-(T/tauA)) '*x))+b*(1-exp('  num2str(-(T/tauB)) '*x))' ];  
hfit = fit((0:kmax-1)',y,fun, 'StartPoint' ,[1 1]);  
  
% Steady-State Sensitivity  
a = round(hfit.a * 1e2)/1e2; % Analyte A  
b = round(hfit.b * 1e2)/1e2; % Analyte B  
vfit = a*(1-exp(-(T/tauA).*vt)) + b*(1-exp(-(T/tauB ).*vt));  
  
% Estimated Steady-State Sensitivity  
Ea = round(x(3,kmax)*1e4)/1e4; % Analyte A  
Eb = round(x(4,kmax)*1e4)/1e4; % Analyte B  
% Estimated Frequency Shift  
vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb.*vt));  
  
% Converting time step number to minutes and add ba selines  
y = [yb(1:5);y]; yhat = [yb(1:5);yhat'];  
vfit=[((0:0.1:4.9)'*0);vfit]; vest=[((0:0.1:4.9)'*0 );vest];  
vk=((0:length(y)-1)')*(T/60); vt=(0:0.1:length(y)-1 )'*(T/60);  
  
% Plot  
figure(1)  
plot(vk, y, '*b' , vt, vfit, '-b' , vt, vest, '--r' )  
title ( 'Frequency Shift vs Time' )  
xlabel( 'Time (min)' ); ylabel( 'Frequency Shift \Deltaf [kHz]' )  
legend( 'Experimental data' ,    [ 'Experimental data Fitting: \Deltaf=' , 
...  
num2str(a) '*[1-exp(-'  num2str(Sa) 'k)] + '  ...  
num2str(b) '*[1-exp(-'  num2str(Sb) 'k)]' ],[ 'Estimated data 
Fitting:\Deltaf='  ...  
num2str(Ea) '*[1-exp(-'  num2str(Sa) 'k)] + '  ...  
num2str(Eb) '*[1-exp(-'  num2str(Sb) 'k)]' ]);  
  
  
figure(2)  
% Plot of Frequency Shift vs Time step  
h=plot(vk, y, '*b' , vt, vfit, '-w' ,vt, vfit, '-b' , vt, vest, '--w' , vt, 
vest, '--r' );  
%title ('Frequency Shift vs Time','FontSize',24)  
%LineWidth = [3];  
xlabel( 'Time, t (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
[kHz]' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , [ 'Experimental data fitting 
expression: \Deltaf = ' , ...  
        num2str(a) '*[1-exp(-'  num2str(round((Sa/T)*1e4)/1e4) 't)] + '  
...  
        num2str(b) '*[1-exp(-'  num2str(round((Sb/T)*1e5)/1e5) 't)]' ], 
...  
        'Experimental data fitting' , ...  
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        [ 'Estimated fitting expression: \Deltaf = '  ...  
        num2str(Ea) '*[1-exp(-'  num2str(round((Sa/T)*1e4)/1e4) 't)] + '  
...  
        num2str(Eb) '*[1-exp(-'  num2str(round((Sb/T)*1e5)/1e5) 't)]' ], 
...  
        'Estimated Sensor Response' );  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
  
figure(3)  
% Plot of Frequency Shift vs Time step  
h=plot(vk, y, '*b' , vt, vfit, '-b' , vt, vest, '--r' );  
%title ('Frequency Shift vs Time','FontSize',24)  
%LineWidth = [3];  
xlabel( 'Time (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
(kHz)' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , 'Experimental data fitting' , ...  
            'Estimated Sensor Response' );  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
annotation( 'textbox' , [0.2,0.4,0.1,0.1], ...  
    'String' , [ 'Experimental data fitting expression: \Deltaf = ' , ...  
        num2str(a) '*[1-exp(-'  num2str(round((Sa/T)*1e4)/1e4) 't)] + '  
...  
        num2str(b) '*[1-exp(-'  num2str(round((Sb/T)*1e5)/1e5) 't)]' ...  
        'Estimated fitting expression: \Deltaf = '  ...  
        num2str(Ea) '*[1-exp(-'  num2str(round((Sa/T)*1e4)/1e4) 't)] + '  
...  
        num2str(Eb) '*[1-exp(-'  num2str(round((Sb/T)*1e5)/1e5) 't)]' ]);  
  
  
% Estimated Concentration  
Con_A = abs(Ea)/(ssA);  
Con_B = abs(Eb)/(ssB);  
  
ConA = abs(a)/(ssA);  
ConB = abs(b)/(ssB);  
  
  
fprintf( 'The estimated concentration of Analyte A (in ppm) is \n' )  
disp(Con_A)  
  
fprintf( 'The estimated concentration of Analyte B (in ppm) is \n' )  
disp(Con_B)  
  
fprintf( 'The concentration of Analyte A (in ppm) (from fitt ing 
parameter) is \n' )  
disp(ConA)  
  
fprintf( 'The concentration of Analyte B (in ppm) (from fitt ing 
parameter) is \n' )  
disp(ConB)  
  
  
%Info  
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%plot(vk, y, '*b', vt, vfit, '-b', vk, yhat, 'or', vt, vest, '--r')  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Normalized Concentration  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
vk=(0:kmax)'; vt=(0:0.1:kmax)'; % Time  
  
mA = (1 - exp(-Sa.*vt)); % Normalized Analyte A Concentration  
mApoint = (1 - exp(-Sa.*vk));  
  
mB = (1 - exp(-Sb.*vt)); % Normalized Analyte B Concentration  
mBpoint = (1 - exp(-Sb.*vk));  
  
% Estimated Normalized Concentration of Analyte A  
EmA = x(1,:);  
mAfit = fit((0:kmax)',EmA', 'EAa*(1-exp(-mAS*x))' , 'StartPoint' ,[1 1]);  
CA = mAfit.EAa;  
mSA = mAfit.mAS;  
EmmA = CA*(1 - exp(-mSA.*vt));  
  
% Estimated Normalized Concentration of Analyte A  
EmB = x(2,:);  
mBfit = fit((0:kmax)',EmB', 'EBb*(1-exp(-mBS*x))' , 'StartPoint' ,[1 1]);  
CB = mBfit.EBb;  
mSB = mBfit.mBS;  
EmmB = CB*(1 - exp(-mSB.*vt));  
  
vk=vk*(T/60); vt=vt*(T/60); % Convert time to minute  
  
% Plot of Normalized Concentration  
% Analyte A  
% figure(4)  
% h=plot(vt, mA, '-b', vt, EmmA, '--w', vt, EmmA, ' --r');  
% xlabel('Time, t (min)','FontSize',14); ylabel('No rmalized 
Concentration','FontSize',14)  
% h_legend = legend(['Theoretical Normalized Concen tration: m = '...  
% num2str(1) '*[1-exp(-' num2str(Sa/T) '*t)]'], ...  
% ['Estimated Norm. Con. Expression: m = ' ...  
% num2str(CA) '*[1-exp(-' num2str(mSA/T) '*t)]'], . ..  
% 'Estimated Normalized Concentration');  
% axis([0 12 0 1.25])  
% set(h_legend,'FontSize',15);  
% set(h,'LineWidth',3)  
  
figure(4)  
h=plot(vt, mA, '-b' , vt, EmmA, '--r' );  
xlabel( 'Time (min)' , 'FontSize' ,14); ylabel( 'Normalized 
Concentration' , 'FontSize' ,14)  
h_legend = legend( 'Theoretical Normalized Concentration' , ...  
'Estimated Normalized Concentration' );  
axis([0 12 0 1.25])  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
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% Analyte B  
% figure(5)  
% h=plot(vt, mB, '-b', vt, EmmB, '--w', vt, EmmB, ' --r');  
% xlabel('Time, t (min)','FontSize',14); ylabel('No rmalized 
Concentration','FontSize',14)  
% h_legend = legend(['Theoretical Normalized Concen tration: m = '...  
% num2str(1) '*[1-exp(-' num2str(Sb/T) '*t)]'], ...  
% ['Estimated Norm. Con. Expression: m = ' ...  
% num2str(CB) '*[1-exp(-' num2str(mSB/T) '*t)]'], . ..  
% 'Estimated Normalized Concentration');  
% axis([0 12 0 1.25])  
% set(h_legend,'FontSize',15);  
% set(h,'LineWidth',3)  
  
figure(5)  
h=plot(vt, mB, '-b' , vt, EmmB, '--r' );  
xlabel( 'Time (min)' , 'FontSize' ,14); ylabel( 'Normalized 
Concentration' , 'FontSize' ,14)  
h_legend = legend( 'Theoretical Normalized Concentration' , ...  
'Estimated Normalized Concentration' );  
axis([0 12 0 1.25])  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Time Analysis (Time to quantification)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
% Time vector  
vk=(0:kmax-1)'; vt=(0:0.1:kmax-1)';  
  
% Several Estimated Steady-state sensitivity (Analy te A)  
Ea1 = round(x(3,20)*1e4)/1e4; % after 2 minutes  
Ea2 = round(x(3,25)*1e4)/1e4; % after 3 minutes  
Ea3 = round(x(3,30)*1e4)/1e4; % after 4 minutes  
Ea4 = round(x(3,35)*1e4)/1e4; % after 7 minutes  
Ea5 = round(x(3,40)*1e4)/1e4; % after 8 minutes  
  
% Several Estimated Steady-state sensitivity (Analy te B)  
Eb1 = round(x(4,20)*1e4)/1e4; % after 4 minutes  
Eb2 = round(x(4,25)*1e4)/1e4; % after 5 minutes  
Eb3 = round(x(4,30)*1e4)/1e4; % after 6 minutes  
Eb4 = round(x(4,35)*1e4)/1e4; % after 7 minutes  
Eb5 = round(x(4,40)*1e4)/1e4; % after 8 minutes  
  
% Several Estimated Frequency Shift  
vest1 = Ea1*(1-exp(-Sa.*vt)) + Eb1*(1-exp(-Sb.*vt)) ;  
vest2 = Ea2*(1-exp(-Sa.*vt)) + Eb2*(1-exp(-Sb.*vt)) ;  
vest3 = Ea3*(1-exp(-Sa.*vt)) + Eb3*(1-exp(-Sb.*vt)) ;  
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vest4 = Ea4*(1-exp(-Sa.*vt)) + Eb4*(1-exp(-Sb.*vt)) ;  
vest5 = Ea5*(1-exp(-Sa.*vt)) + Eb5*(1-exp(-Sb.*vt)) ;  
  
vest1=[((0:0.1:4.9)'*0);vest1];  
vest2=[((0:0.1:4.9)'*0);vest2];  
vest3=[((0:0.1:4.9)'*0);vest3];  
vest4=[((0:0.1:4.9)'*0);vest4];  
vest5=[((0:0.1:4.9)'*0);vest5];  
  
pda1 = ((Ea1-a)/a)*100  
pda2 = ((Ea2-a)/a)*100  
pda3 = ((Ea3-a)/a)*100  
pda4 = ((Ea4-a)/a)*100  
pda5 = ((Ea5-a)/a)*100  
  
pdb1 = ((Eb1-b)/b)*100  
pdb2 = ((Eb2-b)/b)*100  
pdb3 = ((Eb3-b)/b)*100  
pdb4 = ((Eb4-b)/b)*100  
pdb5 = ((Eb5-b)/b)*100  
  
pda = ((Ea-a)/a)*100  
pdb = ((Eb-b)/b)*100  
  
% Change time to minutes  
vt=(0:0.1:length(y)-1)'*(T/60); vk=((0:length(y)-1) ')*(T/60);  
  
% Plot  
figure(6)  
h=plot(vk, y, '*b' , vt, vfit, '-b' , vt, vest1, '--r' , vt, vest2, '--g' , 
vt, vest3, '--c' , vt, vest, '--k' );  
xlabel( 'Time (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
(kHz)' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , ...  
'Experimental data fitting' , ...  
'Estimated Sensor Response after 4 minutes' , ...  
'Estimated Sensor Response after 5 minutes' , ...  
'Estimated Sensor Response after 6 minutes' , ...  
'Estimated Sensor Response using all data points' );  
  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%% End of Program 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 

 



179 
 

 

B.5 MATLAB Code for Two-Analyte Estimation (Linear Model) 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Author: KARTHICK SOTHIVELR  
% File Name: alternative_2Analyte.m  
% Date (Created): 02-27-2013  
% Date (Modified): 02-17-2014  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Description:  
% Program to estimate the steady-state sensitvity a nd concentrations of 
the  
% binary mixture using the alternative two analyte system model. 
Estimation  
% were performed using Kalman Filter.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Cleaning  
clear all  
close all  
clc  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Open and read the measurement file  
FID = fopen( 'thesis_BT_2nd.ini' , 'r' ); % 121211PEABEJ3binaryCor  
data = textscan(FID, '%f %f' );  
fclose(FID);  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Order the data (Based on Analyte)  
y1 = data{2}(53:78); yb1 = data{2}(48:52);         % Benzene (1000ppb)  
y2 = data{2}(127:175); yb2 = data{2}(122:126);     % Benzene + Toluene 
(1000ppb + 500ppb)  
y3 = data{2}(222:271); yb3 = data{2}(217:221);     % Benzene + Toluene 
(500ppb + 500ppb)  
y4 = data{2}(367:417); yb4 = data{2}(362:366);     % Benzene + Toluene 
(200ppb + 500ppb)  
  
% Sampling Period:  
T = 12; % in seconds  
  
% Time Constants ( in sec) from Averaged Single Ana lyte Table:  
tauA = 34.6; % Benzene  
tauB = 92.6; % Toluene  
  
% Steady-State Sensitivity from Averaged Single Ana lyte Table:  
ssA = 0.257; % Benzene  
ssB = 0.746; % Toluene  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Select the case to be analyzed  
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y = y2; yb = yb2;  
kmax = length(y); % Length of the measurement data points  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Initialize Kalman Filter variables  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
yhat = zeros(1,kmax); x = zeros(2,kmax+1); P = zero s(2,2,kmax+1);  
x(:,1) = [0; 0]; % Initial state vector (Initial state estimate)  
P(:,:,1) = diag([1000, 500]); % Initial error covariance Matrix     
W = 10; V = 1; % Covariance of Measurement and process noise  
G = [1]; % Matrix G (1 by 1 Matrix)  
U = ones(kmax,1); % Step Input  
m_A=0; m_B=0; % Initial value of the normalized Concentration  
% System Matrices (A and F)  
A = eye(2);  
F = [1;1];  
% Adsorption Rate Constant:  
Sa=(T/tauA); % Benzene  
Sb=(T/tauB); % Ethylbenzene  
Sa = round(Sa*1e4)/1e4; % Analyte A  
Sb = round(Sb*1e4)/1e4; % Analyte B  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%************************* Kalman Filter Scheme 
***************************  
% Loop to evaluate each instant in time  
for  i=1:kmax  
    C = [m_A(i) m_B(i)]; % C Matrix  
    % Simulate the normalized concentration values:  
    m_A = (1 - Sa)*m_A + Sa*U;  
    m_B = (1 - Sb)*m_B + Sb*U;  
    % Estimated measurement  
    yhat(i)=C*x(:,i);  
     
    K = (A*P(:,:,i)*C')/((C*P(:,:,i)*C' + G*W*G')) ;  % Kalman Gain  
    x(:,i+1) = A*x(:,i) + K*(y(i)-C*x(:,i)); % State Update Equation  
    % Error Covariance Update Equation:  
    P(:,:,i+1) = (A-K*C)*P(:,:,i)*(A-K*C)' + K*G*W* G'*K' + F*V*F';     
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Plot and Analysis  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
vk=0:kmax-1;  
vt=(0:0.1:kmax-1)';  
  
% Experimental Data Fitting  
fun = [ 'a*(1-exp('  num2str(-(T/tauA)) ...  
    '*x))+b*(1-exp('  num2str(-(T/tauB)) '*x))' ];  
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hfit = fit((0:kmax-1)',y,fun, 'StartPoint' ,[1 1]);  
% Steady-State Sensitivity  
a = round(hfit.a * 1e2)/1e2; % Analyte A  
b = round(hfit.b * 1e2)/1e2; % Analyte B  
vfit = a*(1-exp(-(T/tauA).*vt)) + b*(1-exp(-(T/tauB ).*vt));  
  
% Estimated Steady-State Sensitivity  
Ea = round(x(1,kmax)*1e4)/1e4; % Analyte A  
Eb = round(x(2,kmax)*1e4)/1e4; % Analyte B  
% Estimated Frequency Shift  
vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb.*vt));  
  
% Converting time step number to minutes and add ba selines  
y = [yb(1:5);y]; yhat = [yb(1:5);yhat'];  
vfit=[((0:0.1:4.9)'*0);vfit]; vest=[((0:0.1:4.9)'*0 );vest];  
vk=((0:length(y)-1)')*(T/60); vt=(0:0.1:length(y)-1 )'*(T/60);  
  
% Plot  
figure(1)  
plot(vk, y, '*b' , vt, vfit, '-b' , vt, vest, '--r' )  
title ( 'Frequency Shift vs Time' )  
xlabel( 'Time (min)' ); ylabel( 'Frequency Shift \Deltaf [kHz]' )  
legend( 'Experimental data' ,    [ 'Experimental data Fitting: \Deltaf=' , 
...  
num2str(a) '*[1-exp(-'  num2str(Sa) 'k)] + '  ...  
num2str(b) '*[1-exp(-'  num2str(Sb) 'k)]' ],[ 'Estimated data 
Fitting:\Deltaf='  ...  
num2str(Ea) '*[1-exp(-'  num2str(Sa) 'k)] + '  ...  
num2str(Eb) '*[1-exp(-'  num2str(Sb) 'k)]' ]);  
  
figure(2)  
% Plot of Frequency Shift vs Time step  
h=plot(vk, y, '*b' , vt, vfit, '-w' ,vt, vfit, '-b' , vt, vest, '--w' , vt, 
vest, '--r' );  
%title ('Frequency Shift vs Time','FontSize',24)  
%LineWidth = [3];  
xlabel( 'Time, t (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
[kHz]' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , [ 'Experimental data fitting 
expression: \Deltaf = ' , ...  
        num2str(a) '*[1-exp(-'  num2str(round((Sa/T)*1e4)/1e4) 't)] + '  
...  
        num2str(b) '*[1-exp(-'  num2str(round((Sb/T)*1e5)/1e5) 't)]' ], 
...  
        'Experimental data fitting' , ...  
        [ 'Estimated fitting expression: \Deltaf = '  ...  
        num2str(Ea) '*[1-exp(-'  num2str(round((Sa/T)*1e4)/1e4) 't)] + '  
...  
        num2str(Eb) '*[1-exp(-'  num2str(round((Sb/T)*1e5)/1e5) 't)]' ], 
...  
        'Estimated Sensor Response' );  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
% annotation('textbox', [0.2,0.4,0.1,0.1],...  
%            'String', 'Estimated Concentration: Be nzene (1743 ppb) and 
Toluene (897 ppb)');  
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figure(3)  
% Plot of Frequency Shift vs Time step  
h=plot(vk, y, '*b' , vt, vfit, '-b' , vt, vest, '--r' );  
%title ('Frequency Shift vs Time','FontSize',24)  
%LineWidth = [3];  
xlabel( 'Time (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
(kHz)' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , 'Experimental data fitting' , ...  
            'Estimated Sensor Response' );  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
annotation( 'textbox' , [0.2,0.4,0.1,0.1], ...  
    'String' , [ 'Experimental data fitting expression: \Deltaf = ' , ...  
        num2str(a) '*[1-exp(-'  num2str(round((Sa/T)*1e4)/1e4) 't)] + '  
...  
        num2str(b) '*[1-exp(-'  num2str(round((Sb/T)*1e5)/1e5) 't)]' ...  
        'Estimated fitting expression: \Deltaf = '  ...  
        num2str(Ea) '*[1-exp(-'  num2str(round((Sa/T)*1e4)/1e4) 't)] + '  
...  
        num2str(Eb) '*[1-exp(-'  num2str(round((Sb/T)*1e5)/1e5) 't)]' ]);  
  
  
% Estimated Concentration  
Con_A = abs(Ea)/(ssA);  
Con_B = abs(Eb)/(ssB);  
  
ConA = abs(a)/(ssA);  
ConB = abs(b)/(ssB);  
  
  
fprintf( 'The estimated concentration of Analyte A (in ppm) is \n' )  
disp(Con_A)  
  
fprintf( 'The estimated concentration of Analyte B (in ppm) is \n' )  
disp(Con_B)  
  
fprintf( 'The concentration of Analyte A (in ppm) (from fitt ing 
parameter) is \n' )  
disp(ConA)  
  
fprintf( 'The concentration of Analyte B (in ppm) (from fitt ing 
parameter) is \n' )  
disp(ConB)  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Time Analysis (Time to quantification)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
% Time vector  
vk=(0:kmax-1)'; vt=(0:0.1:kmax-1)';  
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% Several Estimated Steady-state sensitivity (Analy te A)  
Ea1 = round(x(1,20)*1e4)/1e4; % after 4 minutes  
Ea2 = round(x(1,25)*1e4)/1e4; % after 5 minutes  
Ea3 = round(x(1,30)*1e4)/1e4; % after 6 minutes  
Ea4 = round(x(1,35)*1e4)/1e4; % after 7 minutes  
Ea5 = round(x(1,40)*1e4)/1e4; % after 8 minutes  
  
% Several Estimated Steady-state sensitivity (Analy te B)  
Eb1 = round(x(2,20)*1e4)/1e4; % after 4 minutes  
Eb2 = round(x(2,25)*1e4)/1e4; % after 5 minutes  
Eb3 = round(x(2,30)*1e4)/1e4; % after 6 minutes  
Eb4 = round(x(2,35)*1e4)/1e4; % after 7 minutes  
Eb5 = round(x(2,40)*1e4)/1e4; % after 8 minutes  
  
% Several Estimated Frequency Shift  
vest1 = Ea1*(1-exp(-Sa.*vt)) + Eb1*(1-exp(-Sb.*vt)) ;  
vest2 = Ea2*(1-exp(-Sa.*vt)) + Eb2*(1-exp(-Sb.*vt)) ;  
vest3 = Ea3*(1-exp(-Sa.*vt)) + Eb3*(1-exp(-Sb.*vt)) ;  
vest4 = Ea4*(1-exp(-Sa.*vt)) + Eb4*(1-exp(-Sb.*vt)) ;  
vest5 = Ea5*(1-exp(-Sa.*vt)) + Eb5*(1-exp(-Sb.*vt)) ;  
  
vest1=[((0:0.1:4.9)'*0);vest1];  
vest2=[((0:0.1:4.9)'*0);vest2];  
vest3=[((0:0.1:4.9)'*0);vest3];  
vest4=[((0:0.1:4.9)'*0);vest4];  
vest5=[((0:0.1:4.9)'*0);vest5];  
  
pda1 = ((Ea1-a)/a)*100  
pda2 = ((Ea2-a)/a)*100  
pda3 = ((Ea3-a)/a)*100  
pda4 = ((Ea4-a)/a)*100  
pda5 = ((Ea5-a)/a)*100  
  
pdb1 = ((Eb1-b)/b)*100  
pdb2 = ((Eb2-b)/b)*100  
pdb3 = ((Eb3-b)/b)*100  
pdb4 = ((Eb4-b)/b)*100  
pdb5 = ((Eb5-b)/b)*100  
  
pda = ((Ea-a)/a)*100  
pdb = ((Eb-b)/b)*100  
  
  
% Change time to minutes  
vt=(0:0.1:length(y)-1)'*(T/60); vk=((0:length(y)-1) ')*(T/60);  
  
% Plot  
figure(5)  
h=plot(vk, y, '*b' , vt, vfit, '-b' , vt, vest1, '--r' , vt, vest2, '--g' , 
vt, vest3, '--c' , vt, vest, '--k' );  
xlabel( 'Time, t (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf 
(kHz)' , 'FontSize' ,14)  
h_legend = legend( 'Experimental data' , ...  
'Experimental data fitting' , ...  
'Estimated Sensor Response after 4 minutes' , ...  
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'Estimated Sensor Response after 5 minutes' , ...  
'Estimated Sensor Response after 6 minutes' , ...  
'Estimated Sensor Response using all data points' );  
  
set(h_legend, 'FontSize' ,15);  
set(h, 'LineWidth' ,3)  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%% End of Program 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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