Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Analysis of Sensor Signals and Quantification of
Analytes Based on Estimation Theory

Karthick Sothivelr
Marquette University

Recommended Citation

Sothivelr, Karthick, "Analysis of Sensor Signals and Quantification of Analytes Based on Estimation Theory" (2014). Master's Theses
(2009 -). Paper 264.
http://epublications.marquette.edu/theses_open/264


http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

ANALYSIS OF SENSOR SIGNALS AND QUANTIFICATION OF
ANALYTES BASED ON ESTIMATION THEORY

by

KARTHICK SOTHIVELR

A Thesis submitted to the Faculty of the Graduate &ool,
Marquette University,
in Partial Fulfillment of the Requirements for
the Degree of Masters of Science (Electrical and @guter Engineering).

Milwaukee, Wisconsin

August 2014



ABSTRACT
ANALYSIS OF SENSOR SIGNALS AND QUANTIFICATION OF ANLYTES
BASED ON ESTIMATION THEORY

KARTHICK SOTHIVELR

MARQUETTEUNIVERSITY, 2014

Compact sensor systems for on-site monitoring otigdwater for trace organic
compounds are currently under development. To gemaar real-time analysis of
samples containing multiple analytes, the preseotkwnvestigates a sensor signal
processing approach based on estimation theoryifispdly using Kalman Filter and
Extended Kalman Filter. As a first step towards #malysis of groundwater samples
containing multiple compounds, the approach presemt this work permits estimation
of analyte concentration(s) in binary mixtures antgle analyte samples on-line, before
the sensor response reaches steady-state. Sagsals Srom binary mixtures and single
analyte samples of BTEX compounds (benzene, toJuetig/lbenzene, and xylenes)
were analyzed in this work because these compoaredgood indicators of accidental
release of fuel and oil into groundwater. Basedhwse previous experimental results,
models for the sensor response to binary mixtures$ single analyte samples are
developed. These sensor response models were omaesf into state-space
representation so that estimation theory can be tesestimate the sensor parameters.

For the case of the single analyte system, one-staice form was developed and
for the case of the two-analyte system, two difiergate-space forms were developed.
These state-space forms were tested using theablaineasured data, and the results
indicate that relatively accurate estimates of @eatoncentration(s) could be obtained
within a relatively short period of time (six mimst or less for the tested sensor system)
well before the sensor response reaches steady-atab presented in this work are new
techniques that enable correcting for linear baeelirift and outlier points in the
measured data on-line. The linear baseline driftection technique uses estimation
theory (particularly Kalman Filter) to rapidly perin linear extrapolation and linear
interpolation. The elimination of the outlier pa@nn the sensor data was performed by
using a combination of discrete low pass filter &adman Filter (or Extended Kalman
Filter depending on the state-space form). Thedeiques were tested on measured data
with linear baseline drift and outlier points ar tresults obtained indicate that these
sensor signal pre-processing techniques are indepdble of correcting for linear
baseline drift and outlier points in real-time.
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1. INTRODUCTION

1.1 General Background

Sensors are devices that allow the measuremenhysigal or chemical quantities
and produce a signal that can be related to thatigudhat the sensor is measuring.
Typically, a sensor produces an electrical signatasponse to the quantity that it is
measuring. The electrical signal is then furthecpssed by the signal processing unit, so
that the electrical signal can be displayed in & that is convenient to an observer. The
signal processing unit can also be programmednd aesignal to a computer system or
processor to take action if it senses any measuidnge in the sensing environment.
Basically, a sensor acts as a bridge between thlewerld and the electronic world.
Sensors play a vital role in everyday life. Exampfesensors used in everyday life
include those used for monitoring the air qualityairoom, monitoring the temperature in

a room, checking the tire pressure, measuringetmgpérature of engine, and many more.

Sensors can be classified into two categories,ipélyand chemical. Physical sensors
are used to measure any physical quantities sucheraperature, force, velocity,
acceleration, pressure, etc. Chemical sensors evees that are used to detect or
measure the concentration of chemical(s) in ettivediquid or gas phase [1]. In chemical
sensors, a chemical interaction will cause a mehaseirchange in a property of the
sensor. This chemical interaction is facilitatedéyolymer or other compound that is

placed on the sensor. Chemical sensors can fubtherlassified into several groups



depending on the technology used in the design cpetation of the sensor. These
include optical devices, electrochemical devicescrorelectromechanical systems
(MEMS) and acoustic wave devices. In the opticaéncital sensors, changes in the
particular optical parameters such as index ofaotion, amount of absorbance, or
intensity of photoluminescense are monitored [Z)e Tinteraction between the target
analyte and the polymer coating placed on the absensor, will result in the changes in
a particular optical parameter and this changénéndptical parameter can be related to
the concentration of analyte [1, 2]. In the electmical devices, the interaction
between the analyte and electrode are monitoreelintaraction between the analyte and
electrode will produce a measurable signal (e.@ngk in conductivity) that can be
related to the concentration of analyte [2]. Eleciremical devices include voltammetric
sensors, potentiometric sensors and conductimetigass. In the MEMS devices, the
properties of these micro-scaled devices are m@utand any changes observed in the
mechanical or electrical properties of the deviea be related to the concentration of
analyte [3]. One of the most promising of the MERKhsors is the microcantilever. A
microcantilever is a diving-board-like structureualy only a few hundred microns in
length. Microcantilever can be operated in the dyisamode, where the resonant
frequency and quality factor are monitored, orhie static mode, where the deflection of
the microcantilever is monitored [4]. A microcaatier can be used as a chemical sensor
when a polymer is placed on the surface of microleaer. In dynamic mode, the
analyte will interact with the polymer coating pumihg mass loading and stress effects
which will change the resonant frequency and quédittor of the microcantilever. These

changes can be related to the concentration ohtia¢yte. On the other hand, in static



mode, the differential surface stress from anadgtetion causes the microcantilever to
bend and the magnitude of the bending of the marblever can be related to the
concentration of analyte. Acoustic wave devices eisstic waves at frequencies well
above the audible range propagating in piezoetectystals. Typically, acoustic wave
devices are operated between the frequencies ofiZ #d slightly above 1000 MHz [5,
6]. The acoustic wave devices that are commonly fsesensing applications are quartz
crystal microbalance (QCM) also known as thicknekear mode (TSM) resonator,
surface acoustic wave (SAW) device, shear horizansdace acoustic wave (SH-SAW)
device, acoustic plate mode (APM) device and teguflal plate wave (FPW) device.
Chemical interactions between the analyte and tiyer coating on the acoustic wave
sensors cause a perturbation in the propagatiomactesistics of the wave. The changes

in the frequency and attenuation of the wave aenaised for detection of analyte.

As mentioned earlier, a chemical sensor is a seiisdris developed to detect the
presence or measure the concentration of a chemiegher the liquid or gas phase. The
detection of certain chemicals (or analytes) haime of great importance for human
health. Leakages and spills from fuel and oil tankpelines and other sources may
contaminate groundwater, lakes, rivers and oceasm@ a great threat to human health
[7]. It is known that BTEX compounds (benzene, ¢ole, ethylbenzene and xylenes) are
present in crude oil and its refined products [8i & particular, benzene poses a great
threat to human health. The United States DepaittrokhRiealth and Human Services
(DHHS) classifies benzene as a human carcinogeh.¢@jg-term exposure to significant

levels of benzene could cause cancer, leukemiaaarthia. The current United States



Environmental Protection Agency (EPA) limit of bene in drinking water requires
benzene concentration to not exceed five partdblen (ppb) [10]. There are various
sources of benzene in the environment such asetigamoke and car exhaust but one of
the worrying sources of benzene is due to the pakdrom underground gasoline
storage tanks. Gasoline contains an average of®@2benzene (with a maximum of
1.3%) [11] and a leak can cause benzene to entec@rtaminate soil and groundwater.
Therefore, it is necessary to monitor the arearatdhe gasoline storage tanks for any
leakages to determine any presence of benzenéhencan be done by using a chemical
sensor. Extensive research is being conducted vela® an in-situ chemical sensor
which can be used to monitor benzene concentrategar the monitoring wells either
continuously or frequently. In order to be usedaasn-situ chemical sensor, the sensor
must be able to respond rapidly to trace conceatraof benzene (that is on the order of
five ppb as required by the EPA limit for drinkimgater). Such a chemical sensor can be
made by using a shear horizontal surface acoustieeWSH-SAW) device with a thin
chemically selective coating [6]. The SH-SAW sessprade with the current sensing
polymer layers respond quickly but have a limitdetection of 200 ppb [7]. Therefore,
efforts are being made to increase the sensitofithe SH-SAW sensor by investigating
several polymers which could be used to detectlsmabncentration of benzene than the

current limit of detection of 200 ppb.

Most chemical sensors rely on the chemical intevacbetween the polymer and
analyte. It is the polymer which dictates the sy and selectivity of the chemical

sensor. Therefore the selection of the polymer esy vimportant for a particular



application. However, in many cases, the chemig@raction between the analyte and
polymer is not highly selective. Typically, polymeoatings will absorb more than one
analyte, thus most chemical sensors are only fgrtalective. The problem of partial
selectivity of chemical sensors can be rectifiedy methods. Method one is the most
obvious solution, that is to use a single chensealsor and select a polymer which only
responds to one target analyte. This method isesstal for certain types of chemicals
[12, 13]. Method two is to use an array of manytiply selective sensors (sensor array)
to improve the selectivity of the sensor. Each sens a sensor array will respond to a
wide variety of chemicals, however, the group ofissgs, as a whole, will respond
uniquely to different chemicals [14]. Therefore,ings sensor arrays helps to detect
individual components in a mixture [5]. Howeverthbanethods are always accompanied
by signal processing to analyze the sensor respandealso to quantify the target
analyte. In a single chemical sensor, the sensporese is subject to noise and baseline
fluctuations due to changes in the environmentatimns and the sensor response must
be processed to eliminate the noise and baselifte ldra sensor array, each and every
sensor in the array is subject to noise and basdlictuation. Thus, each sensor in the
array has to be processed separately to eliminaite rand baseline drift in the sensor
response. Moreover, in a sensor array, furtherasigrocessing is required to process the
sensor array as a whole to identify and also tontifiyathe target analyte. Therefore,

signal processing is an important part of the clesahsensing process.



1.2Review of Sensor Signal Processing Methods

From the previous section, it is obvious that serssgnal processing plays a major
role in the chemical sensor system. The main p@pdsignal processing is to analyze
and to quantify the target analyte. This is truesiagle chemical sensor systems and also
for chemical sensor arrays. In this section, aenevof sensor signal processing methods
will be given. Four types of sensor signal proaggsvill be reviewed including baseline
correction, time-to-detection (or steady-state nmfation extraction), transient

information extraction and sensor array procesgiattern recognition).

1.2.1 Baseline Correction

For most chemical sensor applications, a samplecalected from the
environment and then transferred rapidly to a cefitaining the sensors. When the flow
of the sample to the sensor is sufficiently fasimaentration presented to the sensors,

C.mp(t), can be adequately represented by a step furaesishown,

Camp() =k Cenv(ts)us(t)

(1.1)

where u,(t) represents the unit step functiofy,,,(t;) is the environmental analyte
concentration at the time the sample is collectetlkarepresents the concentrating effect

of the collector k = 1 if the collector does not change the concéntra[15]. A typical



sensor response is shown in Fig. 1.1. As can be feen Fig. 1.1, upon analyte
exposure, the sensor will respond rapidly at farstl then slowly as the transients decay
and approaches steady-state (equilibrium). In a@tentify and quantify the analyte(s)
in a sample, steady-state features are often Uderte are various steady-state features
and the choice of steady-state feature to be usddrgely dependent on the sensor
platform [16]. Table 1.1 shows some proposed stssaly features and their formulae.
Note, the steady-state feature shown in Fig. 1.1the steady-state difference
measurement, i.e. the difference between the raegpah the steady-staig, and the

baseline responsg, .

Analyte t

Sensor Qutput

' |
0 100 200 300 400
Time [s]

Figure 1.1: Typical chemical sensor response shovgrihe difference measurement
between the steady-state response and the baseliasponse [15].



Steady-State Feature Formulae Sensor Types

Difference X = Yss — Vb Acoustic Wave
Metal-Oxide Resistor

Relative X = Yss/Vp Metal-Oxide Resistor
Polymer Resistor

Fractional Change x= Vss — Vb)/ Vb Metal-Oxide Resistor
Polymer Resistor

Log Relative x = In(yss/Vp) Metal-Oxide Resistor

Table 1.1: List of various different steady-statedatures used for identification and
guantification of chemical analytes [16].

There are two main issues with using the steade-dtature to identify and
guantify the analyte(s) in a sample which inclubaseline drift and time to detection.
Baseline drift occurs due to fluctuations in enmireental conditions such as changes in
temperature and humidity. If the baseline measjustibefore the sensor is exposed to
the analyte is used to calculate the steady-sedture, it will result in an incorrect

measurement of the sensor response, as shown.ih.Eig

There are several baseline correction techniquasatiow one to estimate the
true baseline during the exposure to the analytd |as linear extrapolation, linear
interpolation, cubic interpolation and using estiora theory to estimate the baseline.
Linear extrapolation and linear interpolation arielo used for sensors with short
response time. Using these two techniques it igligitlp assumed that the baseline
remains constant during exposure. Linear extrajpolaechnique has the advantage of

only requiring the data obtained before the seissexposed to the analyte. On the other



hand, linear interpolation requires data obtainetth before the analyte is added and after
it has been flushed from the sensor. However, tineterpolation is usually more
accurate than linear extrapolation at the experisadditional time required for the
analyte to be flushed from the sensor before bhaselan be estimated. For sensors with
longer response time, linear extrapolation andalinaterpolation could lead to a poor
estimate of the baseline. This is due to the pdsggibf baseline drift rate or direction
changes during a response. In the case of bagkiihe&hanging rate or even direction,
cubic interpolation function and estimation the@an be used. In most cases, as the
complexity of the baseline correction techniqueseaases, it will yield a better result as
depicted in Fig. 1.2. As can be seen from Fig. Ttuhic interpolation is able to
approximate the true sensor baseline better thaeaili extrapolation or linear
interpolation. More details on using estimationottyeto correct for baseline drift are
given in [17]. By using, estimation theory, one cactually do the baseline drift
correction in real time as the measurement is dexhrwhich could drastically shorten

the time required to quantify the analyte from ¢gle@sor response.
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5 Sensor Output
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Figure 1.2: lllustration of several baseline corretton techniques [15].

1.2.2 Time to Detection (Steady-State Information Extracion)

As mentioned earlier, the second issue associathdugsing steady-state features
to identify and quantify the analyte(s) in the s#mig time to detection. If the steady-
state features are used identification and quaatitin of analyte(s) cannot be performed
until the sensor response reaches its steady-ftaseme cases, the sensor could take a
fairly long time before it reaches steady-statethiese cases, if a dangerous chemical is
present in the environment, the sensor would netlbe to detect the dangerous chemical
rapidly and the necessary remediation action coatde taken on time which could lead

to undesirable outcome. Therefore, the time to dliete is largely dependent on the
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ability of the signal processing method used toidigpextract the steady-state

information from the sensor response.

Steady-state information can be extracted rapitiyne uses estimation theory to
estimate the steady-state of the sensor resporitéefere the sensor response actually
reaches steady-state. More details on estimatieoryhused to estimate the steady-state

of a sensor response are given in the subsequapterh.

Another approach to decrease the time requirediémtgfy the analyte, is to use
the initial derivative of sensor response instehdteady-state feature. By using initial
derivative method, only the first few data poinfsttee samples and an estimate of the
initial derivative are required to quantify the bie [15]. However, the initial derivative
method is prone to flow effects (i.e. how quickhetsensor is exposed to the sample) and

higher noise.

1.2.3 Transient Information Extraction

As mentioned earlier, the steady-state featuremsnconly used to identify and to
guantify the analyte. However, if one were to usetransient information together with
the steady-state information, it will result in iroped selectivity and increased
recognition accuracy [18]. Therefore, transiendinfation of a sensor response is vital in

improving the identification of analyte.
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One common approach to extract the transient irddon from the sensor
response is by fitting the sensor response dataavgingle (or dual) exponential fit and
determine the time constant from the exponenttalTinis approach could take a long
time because one has to wait until the responsitesasteady-state before fitting the data
to extract the transient information. In order &pidly extract transient information,
estimation theory can be used. By using estimat@ory, one could actually estimate

the transient information before the response resmsteady-state.

Other approach to extract the transient informaitn@tudes transient integrals and
dynamic slope that attempt to capture the transidotmation. More details on these two
methods are given in [19]. Moreover, there is asme research conducted to evaluate
the feasibility of applying Wavelets and Waveletafisform methods to extract the

transient information [20].

1.2.4 Sensor Array Processing

In a sensor array, further signal processing isired to identify and quantify the
analyte. Analyte identification and quantificatiman be performed using a pattern
recognition technique. Some common pattern recogntechniques include Bayesian
analysis, nearest neighbor algorithm, linear dimsgrant functions and neural networks.
The purpose of performing pattern recognition isnximize the ability of a sensor array
to identify and quantify the chemical or chemicaixtures. The pattern recognition

process is divided into two steps, training andsfacation. The training step involves
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teaching the pattern recognition algorithm how seasor array will react to a known
analyte [4]. The classification step is where thi@rimation learned in training is used to

determine the analyte that is most likely to haaesed the given response [4].

The data collected from a sensor array is typicakyy large. Therefore, a
preprocessing technique is often used to reducelithensionality of the sensor array
data without any loss of useful information befperforming pattern recognition. Some
of the common preprocessing technique includescipah component analysis (PCA)
and linear discriminant analysis (LDA). Both PCAJdrDA are used to find a smaller set
of variables that are linear combinations of thdgioal variables. The linear
combinations are chosen in such a way that thenpettinformation from the original

data is retained in the lower dimension transforisygate [4].

1.3 Problem Statement

As stated in section 1.1, the detection of cer@iemicals has become of great
importance for human health. This is particularlyetin the detection of benzene in the
groundwater sample. Long-term exposure to sigmfidavels of benzene could cause
cancer, leukemia, and anemia. Benzene is a volatganic chemical and it is formed
through natural or industrial processes [21]. Baeezs also a natural part of gasoline and
typically, gasoline is stored in underground sterdagnks (USTs). According to the
United States Environmental Protection Agency (ERBgre is about 590 000 federally

regulated USTs in the United States alone and ab@@0 leaks are reported annually
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[10]. So, there is a high risk of benzene leakintp ithe soil and contaminating the
groundwater. Therefore, regular monitoring of tlmeaaaround the USTs is crucial to

detect the leakage of benzene into the groundwater.

Currently, USTs are inspected at 2-3 year interaald the groundwater samples
collected at the monitoring wells have to be tramsu to a lab for analysis [10]. This
current practice is time consuming and costly. &fae, it is necessary to develop an in-
situ chemical sensor and signal processing mettiatsis capable of rapidly analyzing
and quantifying benzene. The process of developingin-situ chemical sensor are
currently being investigated and SH-SAW deviceseaavith certain type of polymers
are showing promise in detecting benzene in traceuats. However, the challenge in
guantifying benzene is that, groundwater samplemllys contain mixtures of multiple
analytes which are chemically similar to benzene iams difficult to extract the sensor

response due to benzene alone.

In this work, efforts will be made to use estimatitheory, in particular, Kalman
Filter and Extended Kalman Filter (EKF) to analymed to quantify benzene in binary
mixtures of analyte. Although groundwater samplestain mixtures of multiple
analytes, only binary mixtures of analytes will bensidered in the present work.
Furthermore, in this work only BTEX compounds (bemez, toluene, ethylbenzene and
xylenes) and binary mixtures of BTEX compounds @masidered. By using estimation
theory (KF or EKF), it will be shown that the sengarameters and concentrations of

analyte(s) can be estimated in real-time well befble sensor response reaches steady-
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state, thus saving time required to wait for thasse response to reach steady-state

before analyzing and quantifying the target analyte

One of the challenges in using in-situ chemicalsseen to monitor groundwater
samples is the possibility of sensor baseline .d8&nsor baseline drift is a common
problem that occurs in most chemical sensors;ishespecially true for in-situ chemical
sensors, where the sensor’s environment is notated and temperature and humidity
can fluctuate drastically. These influences of emunental parameters will not only
cause the sensor baseline to drift but also migttbduce some outlier points in the
sensor measurement. The problem of sensor basdfifteand outlier points in the
measurement is also addressed in this thesisllibavishown that baseline drift can be
corrected by using estimation theory, in particukéalman Filter (KF) and the outlier

points can be corrected by using Low Pass FiltBiH)L

1.4 Organization of the thesis

The organization of the thesis is presented indgb@dion. This thesis is presented
in six chapters; Chapter 1 gives an introductionh® chemical sensors in general and
specifically explains the importance of using amloal sensor and signal processing
methods to monitor the groundwater sample. Moreotee importance of signal
processing is emphasized and a brief review onakigrocessing methods is given.
Chapter 1 also defines the problem that this thesasldressing. In Chapter 2, a review of

sensor signal processing using estimation theopgcifically Kalman Filter and
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Extended Kalman Filter are discussed. Both KalmidterFrand Extended Kalman Filter
are derived in this section and the algorithm ow bo use Kalman Filter and Extended
Kalman Filter to perform estimation is explained.CGhapter 3, modelling of the sensor
responses to single and binary mixtures of analigeshown. The discrete-time model
and state-space model of both single analyte semsmonse and two-analyte sensor
response are given. In Chapter 4, the specifighefShear Horizontal Surface Acoustic
Wave (SH-SAW) sensors that were used to collect#ita analyzed in this thesis and the
process of data acquisition using the SH-SAW seasodiscussed. Also in this chapter,
the data processing including the baseline drifteztion and the elimination of outlier
points in the sensor data are explained. In Chdpttre estimation results using the data
collected from the SH-SAW sensor are shown ance#tienation results are discussed to
highlight the advantages of using estimation théorgnalyze and quantify both single
and two-analyte system. Finally, Chapter 6 provalesmmary of the work performed in
this thesis, and also gives some suggestions regatbe possible extensions of this

work for future research in the area.
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2. SENSOR SIGNAL PROCESSING USING ESTIMATION THEORY: A
REVIEW

2.1Introduction

As mentioned in Chapter 1, sensor signal processiraj the core of chemical
sensor systems and the purpose of sensor signadgsiag is to extract the performance
criteria of the sensor. Some of the essential pedace criteria for a chemical sensor
include sensitivity, selectivity, response time aadroducibility. Sensitivity dictates the
minimum amount of the target analyte that can kieated by the chemical sensor. In
many applications, it is desired that small amounitstarget analyte produce large
changes in the measured signal. Therefore, lowitsgtysmight result in difficulties in
the detection of trace amounts of the target aealgesponse time is the time required
for a chemical sensor to respond when it is exptsdhe target analyte. If the response
time is long, it will result in difficulties in radly quantifying the target analyte.
Moreover, poor selectivity and reproducibility aslixas sensor aging and drift caused by
environmental influences can all result in diffibe$ in the detection of target analyte
[15]. All these issues, which limit the applicabjliof chemical sensors, could be
improved by incorporating an effective signal pssieg method such as estimation

theory in analyzing the sensor data.

Estimation theory is a branch of statistics anaaligorocessing that deals with
estimating the values of unknown parameters basethe® measurement data [22, 23].

Basically, the estimation is done by using an esiimthat attempts to approximate the
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unknown parameters using the available measuremditsre are three common
problems in estimation, which consist of smoothifiiggring and prediction. Smoothing

is a process where the past value of the unknowanpeter is estimated using the
available measurement data. Filtering is a proceksere the present value of the
unknown parameter is estimated using the availabéasurement data and finally,
prediction is a process where the future valuehef unknown parameter is estimated
using the available measurement data [15]. Thesevarious forms of estimator and
estimation methods which can be used to perfornegienation, and are Kalman Filter
and its various derivatives, maximum likelihoodirasttors, Bayes Estimators, Cramer-
Rao Bound, Wiener Filter, Particle Filter and MarkGhain Monte Carlo (MCMC).

Estimation theory is used in numerous fields asvshio Table 2.1.

Area of application Example application

Control Systems Estimation of the position of a powerboat for
correcting navigation in the presence of sensor
and environmental noise.

Communications Estimation of the carrier frequency of a signhal
for demodulation to the baseband in the presence
of degradation noise.

Seismology Estimation of the underground distance of an oil
deposit in the presence of noisy sound
reflections.

Biomedical Estimation of the heart rate of a fetus in the

presence of environmental noise.
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Image Processing Estimation of the position and orientation of jan
object from a camera image in the presence of
lighting and background noise.

Radar Communications | Estimation of the delay in the received pulse
echo in the presence of noise.

Speech Signal Processing Estimation of the parameters of the speech
model in the presence of speech variability and
environmental noise.

Sensor Signal Processing Estimation of the baseline drifts in the sensor
response in the presence of noise.

Table 2.1: Applications of estimation theory [23].

As mentioned in chapter 1, in the present workjnegton theory and in
particular Kalman Filter (KF) and one of its detivas, Extended Kalman Filter (EKF)
will be used extensively as a means toward chersgasor signal processing. Therefore
in this chapter, KF and EKF will be discussed ramly. Both KF and EKF will be
derived in this chapter and the algorithms on howapply KF and EKF to perform
estimation are explained. In section 2.4, somectlpapplications of various forms of

Kalman Filters are given.

2.2Kalman Filter

Kalman Filter (KF) is a set of mathematical equagidhat provides an efficient

recursive means to estimate the state of a pracesway that minimizes the mean of the
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squared error [24]. Basically, KF is capable ofineating the present value of an
unknown state given the available measurement d&deeover, KF can also be used to
estimate the past and future value of the unknaate 9y appropriate modifications to
the filter. Therefore, KF is a very powerful algbm that can be used to estimate past,
present and future states of a system and it caodwen when the precise nature of the

modeled system is unknown [24].

Kalman Filter is named after R.E. Kalman, one & gnimary developers of its
theory. In 1960, R.E. Kalman first used Kalmanéfilb obtain a recursive solution to the
discrete-data linear filtering problem [24, 25]n& then, there has been a tremendous
research on Kalman Filter and today Kalman Filams being used in many areas of

applications, particularly in the area of assistadigation.

2.2.1 Kalman Filter Derivation

Consider a general linear stochastic discrete-system with internal states,

outputsyy, inputsu,, and time-varying system matricég, By, C;, andD,, as following,

Xk+1 — Akxk + Bkuk + Fkvk
(2.1a)
Yk = Cpxp + Diuy + Gewy

(2.1b)
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where, v, is the process or state noise with covaridfjceand w; represent the
measurement noise with covariaiigg. The cross covariance between the process and
measurement noise §3. For the sensor systems considered in the preserit, the
internal statex;, represent the parameters that need to be estinsateld as time
constant, steady-state value and concentratiomalyi@, the outputy, represents the
sensor measurement data and the inputepresents the unit step input. Assuming that
the system in eq. 2.1 meets the detectability raaité.e. if all unstable modes of the
system are observable) [26], then it is possiblestimate the unknown statesg, of the

system by using only the available measurement glat@7].

The first step in the derivation of the Kalman é&iilts to assume an estimator to
estimate the new state of the systép,,;. In order to form an estimator, one should look
at the type of information that is available at &inye, k. Typically, one will have access
to three sources of information at time which include the present value of the state
estimatesy,, the present value of the inputy, and the present value of the
measurementy,. By using this available information about theteys, an estimator of

the form given in eq. 2.2 can be formed [27].

g1 = A + Brug + Ki(yie — Ji)

(2.2)

wherey, is the estimate of the measurement given by &q. 2.
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Yk = CpXy + Dyuy

(2.3)

The goal is now to find the Kalman gaik, which minimizes the variances of the error

given by,

€k+1 = Xk+1 — Xk+1

(2.4)

while the estimate of the unknown states remairsased ( i.eE{e,,,} = 0). Before
finding the Kalman gain, K;, one has to find the error covariance,
Pri1 = E{(er41)(ers1)T} first. By substituting eq. 2.1(a), eq. 2.1(b), 2 and eq. 2.3

into eq. 2.4, eq. 2.5 will be obtained after sonaipulation.

ex+1 = (A — K Cieg + Frvp — KiGwy
(2.5)

From eq. 2.5, one can find the error covariance

Pryq = E{(ek+1)(ek+1)T}
Pey1 = AP AL — AP CIKTI — K, C P AL + K C P .CFKF + F V. FF — K G STFT
— F Sk GIKT + K G W, GEKT

(2.6)
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Once the error covariance is found, the next stép find the Kalman gairik,.. Note that
the error covariance matyiR,,,; is a diagonal and symmetric matrix. Therefore,
minimizing the error covariance matrix is equivalemminimizing the trace P, (i.e.
Tr{P,,.}). Thus, the Kalman gairk},, can be found by taking the partial derivative of
Tr{P, ..} with respect td{, and solving it foiK;, by setting the resulting equation to zero

[28]. By taking the partial derivative dfr{P,.,} with respect t&,, eq. 2.7 will be

obtained as,
6 TriP,
% = —24,P,CT — 2F,S;GT + 2K, (CuPCT + G W,,GT)
k
(2.7)
Setting eq. 2.7 to zero and solving it f§yr, the following result will be obtained,
Ky = (AxPiCi + FiSiGi)(CiPiC + G Wi G ™
(2.8)

The Kalman gain obtained in eq. 2.8 is the valueth&f gain that would result in
minimum error covariance at any given timerhe error covariance equation as given in

eg. 2.6 can be further simplified using eq. 2.8,

Piyy = AxPiAy + FViFE — (AgPiCi + FiSGi)(CiPiCi + G Wi GE)™?
(CePLAY + Gk SEFD)

(2.9)
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If the process and measurement noise are white mdisch is usually the case for most
systems and also for the sensor system considerée ipresent work, then their values
will be uncorrelated with each other. Therefore ¢thoss-covariancg,, will be zero. If

the cross-covariance is zero, eg. 2.8 and eq.egh®e simplified to

Ky = AP Cf (Ci P C + G Wi Gt
(2.10)
Pyy1 = AxPiAl + F Vi — AP Ci (CPeCi + GeWi G (C P AY)

(2.11)

Finally, in the derivation of the Kalman Filter,etlstate update equation needs to be

found. The state update equation can be found bstisuting eq. 2.3 into eq. 2.2,

Xk+1 = A + Brug + K (v — [CiXi + Dyug])

(2.12)

The last three equations, i.e. eq. 2.10, eq. 2d4d,eq. 2.12 lead to a recursive algorithm
for updating the state estimate based on the measmt data. Since the estimation is
performed in a recursive manner, only the currestimete of the states and the latest
measurement value is required to update the sttitaate. Therefore, by using Kalman
Filter, the estimation can be performed in realktiomder strict memory requirements as

one does not have to store all the measurementsalu



25

2.2.2 Kalman Filter Algorithm

In the previous section, it has been establishatlet). 2.10, eq. 2.11 and eq. 2.12
lead to a recursive algorithm that can be usedottate and estimate the unknown states
based on the measurement data. In this sectionaltfmegithm on how to use Kalman

Filter in order to perform estimation is explained.

Kalman Filter algorithm works in a two-step processsisting of the prediction
step and correction step [24]. The prediction seesponsible for projecting the current
state estimate and error covariance forward in tonebtain a new state estimate and the
error covariance for the next time step. On thewottand, in the correction step, the new
state estimate will be updated or corrected usihegrtew measurement value with a
weighted average, where more weight is assignedttmates with higher certainty. Both

steps are implemented simultaneously by eq. 2d.®.&1 and eq. 2.12.

Before applying the Kalman Filter algorithm, ones ta assign a state variable to
the unknown parameters that need to be estimatel dmiermine the system
matrice,, By, C, andD,. One should also determine the measurement noise
covariance, W, and process noise covarianiée In applying the Kalman Filter
algorithm, the first step is to initialize the stagstimatgx, and error covariancg, at
time k = 0. If the uncertainty about the system is high, seheuld set the initial error
covarianceP, to be high as well [24]. For example, if the iaitvalue of the state is

completely unknown, one should make an educatedsgaled set a value for the initial



26

value of the state estimafg and should also set the initial error covariaRgdo a large
value. Once the initialization process is compl#ie,next step is to calculate the Kalman
gain K, at timek = 0. After that, by using the Kalman gaii; and the available
measurementy, at time,k = 0, update the state estimat,,.; and error covariance,
P,,1. Note that, after the update process, one wilhiobh new state estimate and a new
error covariance for timé& = 1. Next, increment the time o= 1 and by using the new
state estimate and error covariance obtained a kim 0, repeat the process again
starting with calculating the Kalman gaify. Repeat the process until the error
covariance becomes very small or until the new mnemsent is taken. Kalman Filter

algorithm is summarized in Fig. 2.1.



Initialize the state estimate and error
covariance
Xo = E{xo}

Py = E{(xog — %) (xo — %o)"}

Calculate Kalman gain
Ky = AP Cy (CPiCii + G Wi Gi)™

l

Increment k

Update state estimate
X1 = AxXp + Brug + K (i
— [Cx Xy + Dyux])

Measurement
data, y;,

l

Update the error covariance
Pes1 = AxPAi + FViF{

— AP Ci (CiPCy

+ G Wi Gi) ™ (CiPeAR)

Figure 2.1: Flowchart of Kalman Filter algorithm.
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2.3Extended Kalman Filter

In this section, one of the most important derixedi of the Kalman Filter, the
Extended Kalman Filter (EKF) will be discussed. described in section 2.2, Kalman
Filter addresses the problem of estimating the awknstates of a linear stochastic
discrete-time system. If the system is non-lineéhen some modifications need to be
made, so that the estimation of non-linear stat&spystems can be performed using
Kalman Filter. This modification is done in the rfoof Taylor series expansion about the
current state-estimate and neglecting the highgeraierms (i.e. terms higher than first
order) [29, 30]. Since this modification is just @xtension to the original Kalman Filter,

thus it is referred to as Extended Kalman FiltefFiE

2.3.1 Extended Kalman Filter Derivation

Consider a general non-linear stochastic discrate-tsystem with internal

statesy;, outputsy,, inputsu,, given by,

X1 = f (X, Uk, Vi)
(2.13)
Vi = h(xg, U, W)

(2.14)
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The non-linear system given in eq. 2.13 and ed! 2ah be linearized around the current
state estimate by performing the Taylor series egjoa and neglecting the higher order

terms (i.e. terms higher than first order), whidh igad to the following approximation,

PR _ of of
Xpr1 = f(Rpug, 7) + <£>i:§i ex + (%)izﬁi Vg
V=" V=V
(2.15)
A . oh oh
Vie = h(Z, u, w) + (a) i:ﬁ’; e + (%)izﬁi Wk
Wi=w Wi=w
(2.16)

Note that the partial derivatives are evaluatethatcurrent state estimate, known input
value and mean of noise. The partial derivatives actually time-varying Jacobian

matrices and can be redefined as shown,

of
4= (5o
u=

Uk
V=V

(2.17)

(2.18)
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of
F, = [=— )=z
k (617)1)5;3;
V=V
(2.19)
o = <6h>
<= v
Wi=w
(2.20)

For EKF, these Jacobian matrices will serve asstfs¢em matrices and can be used to
perform the estimation in a similar fashion as Katntilter by using eq. 2.10, eq. 2.11
and eq. 2.12. However, some changes need to be toadg. 2.10 to perform the

estimation of nonlinear systems. These changeasai@lowing,

Rir1 = f K ug, V) + K[y — h(Xy, ug, w)]

(2.21)

Therefore, for EKF, eq. 2.21, eq. 2.11 and eq. ¥illZlead to a recursive algorithm for
updating the state estimate based on the measurelaen It is important to note that
EKF is not an optimal filter because Gaussianityhaf probability distributions will not

be preserved under a non-linear transformationHéjwever, the EKF does give useful
estimates of the states and will demonstrate cgevee for certain conditions [31]. The
convergence of EKF is dependent on the initial @abfi the error covariance and the

value of process and measurement noise. Therdfmessure convergence in the sensor
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system considered in the present work, care musaken in setting the initial value of

the error covariance, value of the process noidevatue of the measurement noise.

2.3.2 Extended Kalman Filter Algorithm

In this section, the process on how to use Exteridaldhan Filter (EKF) is
explained. EKF works in a similar way as Kalmaridil The main difference is, for EKF
one extra step is required that is to linearizentwe-linear system about the current state
estimate. By linearizing the non-linear systemobgan matrices as given in eq. 2.17 to
eg. 2.20 can be found and these matrices will sas/ghe system matrices for the

estimation process.

Therefore, before applying the EKF algorithm, dmes to first assign state
variables to unknown parameters that need to beasid and find the general form of
Jacobian matrices. One should also determine tlasumement noise covariand, and
mean,w and also process noise covarianég,and meany. Similar to Kalman Filter
algorithm, the first step in applying the EKF algom is to initialize the state
estimatex, and error covariancg, at timek = 0. Once initialization is complete, the
next step is to evaluate the Jacobian matricesnatit = 0. After that, the Kalman gain,
K, at timek =0 is calculated. By using the Kalman gaik, and the available
measurementy, at timek = 0, one can update the state estimatg,; and error
covariancePy.,;. Once the update process is complete, one widliolstew state estimate

and new error covariance for the next time step, for timek = 1. Finally, the time is
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incremented t& =1 and by using the new state estimate and new eowariance
obtained earlier, the process is repeated agaitingfavith calculating the Kalman gain.

The Extended Kalman Filter algorithm is summarize#ig. 2.2.

~N
Initialize the state estimate and error
covariance
Xo = E{xo}
Py = E{(xg — Xo)(xg — fo)T}
\_ )

Calculate Kalman gain
Kie = AP Ci (CPiCif + G Wi Gi)™

l Increment k
Measureme Update state estimate
nt data, yy Xpr1 = f R wi, ©) + Kie[yie

- h()?k) Uy, M_/)]

l

Update the error covariance
Peyr = AkPAl + FViFy

— AP Cy (CPiC

+ G Wi G~ (CiePeAR)

Figure 2.2: Flowchart of Extended Kalman Filter algorithm.
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2.4 Applications of Kalman filter

In this section, some typical applications of vagdorm of Kalman Filter will be
reviewed. As mentioned earlier, since 1960, afteE RKalman published his
groundbreaking paper, Kalman Filter has been tlmdoof extensive research and
applications [24]. Today, Kalman Filter and itsidatives have found many applications
not only in the field of engineering and mathensatweit also in the field of economics.
Some typical application areas and example apmitatare listed in Table 2.2. In the
present work, it will be shown that Kalman FilterdeExtended Kalman Filter can also be

used in sensor signal processing.

Area of application Example applications

Navigation To control and assist the navigation of
automobiles, aircraft or spacecraft using the
measured sensor data in a noisy environment
[32].

Image processing Using various forms of Kalman Filter to
filter the noise out of the measured images.

Radar communications Estimating the distance of the target object.
Control system Active noise control in noisy systems [27].
Economics Parameter estimation of linear and non-lingar

econometric models [33].
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Speech signal processing

To estimate the parameters of the speech

model and also to filter the noise out of the

speech signal.

Forecasting

To estimate the parameters of the forecas
model using the measured data.

ling

Sensor signal processing

To perform the baseline drift correction, to
extract the transient information and to

predict the steady-state information from the

sensor response before the response reaghes

steady-state.

Table 2.2: Typical applications of various forms oKalman Filter.
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3. MODEL OF SENSOR RESPONSES TO SINGLE AND BINARY
MIXTURES OF ANALYTES

3.1Introduction

In this chapter, a model of the sensor responsedimgle analyte sample and a
model of the sensor response to a mixture of twalyses are discussed. In order to
model the sensor response for each case, sevesampsons were made and are
discussed in this chapter. Since the sensor dataidsyed in the present work are
collected at discrete-time instants, the discrimbetmodel of single analyte sensor
response and two-analyte sensor response were tounding the Euler's continuous
time approximation formula. The discrete-time moaliethe sensor response can also be
used for sensor systems which are implemented wsingcrocontroller for which the
sensors outputs are sampled at discrete-time isstslloreover, the transformation of the
discrete-time model of the sensor response to the-space model of the sensor
response is presented. Transforming the discnete-thodel of the sensor response into
the state-space model of the sensor response @tanp so that the unknown parameters
from the sensor response can be estimated usiogetisKalman Filter (KF) or discrete
Extended Kalman Filter (EKF) as discussed in thevipus chapter. For the single
analyte system, the unknown quantities that neebdetastimated include normalized
concentration of the analyte (ratio of the concaian of analyte in the coating at tinte,
to the product of the polymer-liquid partition cheent and maximum ambient
concentration), steady-state frequency shift amde ticonstant. For the two-analyte

system, two different models were developed, aineal model and a linear model. The



36

main difference between the models lies in the tdation of their state-space form. For
both models, it is assumed that the time constanbéth analytes is known (from the
single analyte experiments). For the nonlinear madbe unknown quantities that need to
be estimated are the normalized concentration oh emnalyte and the steady-state
frequency shift of each analyte. For the linear elpthe unknown quantities that need to
be estimated are the steady-state frequency dhiftecanalytes. This is because for the
linear model, the normalized concentrations of eathlyte were determined for every
time instant by using the known time constant & #malytes and the sensor response
model. The unknown quantities for both single atgalyystem and two-analyte system
can be estimated using estimation theory (partigulldF or EKF). It should also be
noted that the model of sensor responses presantais chapter can be used for most

sensor platforms.

3.2Single Analyte System

In order to model the single analyte system, it Ib@sn assumed that the single
analyte system obeys Henry’'s law (for concentratibalow 50 ppm [7, 34, 35]) and it
has been shown that this assumption is valid it847,35]. Typically, when the sensor is
exposed rapidly to an analyte of a given ambieniceatration, the sensor will respond
rapidly at first and then slowly as the system neacequilibrium (i.e. one can assume a
step profile in the concentration as a functiontiofe). This is true for single analyte
system and the process of analyte absorption caast@med to be first order and is

described by,
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(W=~ €O+ Coy)

(3.1)

where C(t) is the concentration of analyte in the coatingiee, t, C,mp(t) is the
ambient analyte concentration at tinter is the response time constant, ggdis the

polymer-liquid partition coefficient. For single @gte system, the measured frequency

shift at time t is given by,

Af(t) = —aC(t)

(3.2)

whereAf (t) is the frequency shift observed at timganda is the steady-state frequency
shift which is a function of the sensor platforime tsensor coating, and the analyte. Both
eg. 3.1 and eq. 3.2 were normalized by dividin\wjiC,,,,,. (WhereCy,q, represent the

maximum ambient concentration) and the followinga@pns were obtained,

€O _ 1.0 1Cam(®

Vp Cmax T Vp Cmax T Cmax

(3.3)
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AF(D) =~y Comase —2
= —qQ —_—
Vp max YpCmax
(3.4)
By defining new variables as follows,
C(t
m(o) = (®)
Vp Cmax
C t
us(t) — cémb( )
max
a = _aypcmax
eg. 3.3 and eq. 3.4 were rewritten as,
, 1 1
m(t) = —;m(t) + ;us(t)
(3.5
Af(t) = —am(t)
(3.6)

wherem(t) represent the normalized concentration of absodmadyte at timet, a is

the normalized steady-state frequency shift ap@) represents the unit step input (for
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t <0, Cynp =0 and fort > 0, Cump(t) = Chrax )- EQ. 3.5 and eq. 3.6 are the single

analyte normalized equations which were used teesgmt the single analyte absorption.
3.2.1 Discrete-Time Model

The frequency shifts of the single analyte systeenmaeasured at discrete-time
instants (i.et = kT, whereT is the sampling period). Therefore, it is necesdar
transform the continuous time model of the singlalge sensor response given in eq.
3.5 and eq. 3.6 into a discrete-time model. In otdediscretize the continuous time
model, Euler's continuous time approximation formmwas used. Based on Euler’s

formula, the first derivative of the normalized centration can be approximated by,

My — My

(3.7)

By applying Euler’'s approximation of the first deative of the normalized concentration

as given in eq. 3.7, the discrete-time model ofsingle analyte system is found to be,

T
Mgy = (1 — ?) my + ;us’k + (4%

(3.8)

Afk:amk+Wk

(3.9)
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where v, andw, are added to represent the process and measurawisat that are
present in the single analyte systemy &ndw, are uncorrelated white noise with zero

mean). By defining absorption rate constant as,

S

eg. 3.8 can be rewritten as,

My = (1= my + Sug + vy

(3.10)

In conclusion, eq. 3.9 and eq. 3.10 represent ig@eate-time model of the single analyte

system.

3.2.2 State-Space Model

The discrete-time model of the single analyte syssbould be transformed into
the state-space model, so that the unknown paresrieten the single analyte response
can be estimated using Extended Kalman Filter (EK¥S) mentioned earlier, for the
single analyte system, it is assumed that the narethconcentration of the analyte, the
steady-state frequency shift and the time consfabsorption rate) are the unknown
parameters. The normalized concentration is agtudpendent on the absorption rate,

thus by knowing the absorption rate, one could alstudetermine the normalized
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concentration or vice versa but need to wait uhi sensor response reaches steady-
state. Therefore, to perform the estimation in-tmaé before the response reaches
steady-state, one should assume both normalizezkntmation and absorption rate to be
unknown, so that both unknowns can be estimatedil&ineously. Note that if the
steady-state frequency shift is assumed to be kntvem only the other two unknowns,
the normalized concentration and the absorptiom cahstant need to be estimated (this

case is not considered in the present work).

In order to convert the discrete-time model inte #tate-space model, the first

step is to assign state variables to the unknowenpeters,

1)

Xk
my
x,gz) = [Sl
a
x®
and define the output as,
Ve = Afx

Eq. 3.9 and eq. 3.10 can be rewritten in termfi@de state variables,

1 ). 2
xion = (1= 22 )2 + P ugy + v

(3.11)
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Vi = x,g‘?’)x,((l) + wy

(3.12)

Since the absorption rat§, and the steady-state frequency shiftare constants, the

values of these parameters at tithe; 1 are equal to their values at tinke,

@ _ .@
Xp+1 = Xk

(3.13)

3 _ .03
Xe+1 = Xg

(3.14)

Eq. 3.11, eq. 3.12, eq. 3.13 and eq. 3.14 fornsthte-space model of the single analyte

system and can be rewritten as,

i) (=) + a0 s+ ]
Xpr1 = f O, Uk, V) = x,(j_)l = | x}(CZ)
ol | |
(3.15a)
Yie = h( e wi) = x0x80 + wy
(3.15h)

From eq. 3.15, it can be seen that the state-spackel describing the single analyte

sensor response is a nonlinear model. Thereforgetiorm the estimation, EKF should
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be used. In order to apply the EKF algorithm, tbalmear system described by eq. 3.15
has to be linearized using Taylor series expandtamn.the single analyte system, the

result of linearization were obtained as descrimgéq. 3.16,

Xier1 = [, ug, Vi) = f(Xg, U, Uy ) + Ap (X — Xi) + Frvg
(3.16a)
Vi = h(xg, up, wi) = h(Ry, ug, Wi) + Cp(x) — Xg) + Grwy

(3.16b)

where,

[(1-2)2" + 27 ug]
f (X, Ug, Ug) = i 3?,({2) J
2P

o _ ~(3) (1
h(Zy, wie, wy) = x,({ )x,(c )
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G= 5 0 5]

By using the linearization result described by 8d.6, EKF algorithm can be
applied to perform the estimation of the unknowrap@eters. The information on how to
apply the EKF algorithm was discussed in chapteand the EKF algorithm was

summarized in Fig. 2.2.

3.3Two-Analyte System

In order to model the two-analyte system, two nessumptions were made. The
first assumption is that the mixture obeys Fickw lof absorption which states that when
the mixture is extremely dilute, the sorption ofecanalyte into the polymer does not
interfere with the sorption of the second analyteany way. Free partitioning of the
analyte between polymer and aqueous phase is adsummgaicating that the sorption
process is reversible (i.e. only physisorption estuFick’'s law of absorption is only
valid for analyte concentrations below 50 ppm baseéxperimental observations [7, 34,
35]. From this assumption it follows that the camcation of the binary mixture in the
coating at any time, is actually the sum of the concentration of eaclividual analyte
in the mixture (i.eCpixture = Ca(t) + Cp(t) for any time,t where subscript A and B
represents two different analytes), and the prooéssalyte absorption can be assumed

to be first order and is given by,
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GO = = =GO+ 2 Campa®

(3.17a)
o = = Co @+ 22 om0

(3.17b)

whereCymp 4(t) and Cqppyyp p(t) are the ambient analyte concentration of analy&nd
analyte B at timet, respectivelyg, andty are the response time constant of analyte A
and analyte B respectively, apg,, andy, 5 are the polymer-liquid partition coefficient

of analyte A and analyte B respectively.

For the two-analyte system, it is also assumed ttmatsteady-state frequency
shifts are also mutually unaffected, that is tlegérency shift of the mixture at any time,
t, is the sum of the frequency shifts due to eadlysm in the mixture at any time,

Therefore, the frequency shift for the binary migtat any timet, is given by,

Af(t) = —a,Cy(t) — apCp(t)

(3.18)

whereAf (t) is the frequency shift of the two-analyte systdymsesved at time, a4 is the
steady-state frequency shift of analytead, is the steady-state frequency shift of analyte

B, C,(t) andCy(t) are the absorbed concentrations of the analyteddaaalyte B in the
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coating at timet, respectively. From this assumption, it followstthhe steady-state
frequency shift for the mixture will also be thenvsof the steady-state frequency shift of
each analyte in the mixture and the response tohtee analytes in the mixture will also
be the same as those obtained from the single tena@gasurements. Also note that this
assumption is true for sufficiently low analyte centrations in the range of parts per
million (ppm) to parts per billion (ppb) becausenHgs law can be applied for low
concentrations of analytes (the investigation am thlidity of Henry's law in the low
concentration range of ppm to ppb is shown in #,35]). Eg. 3.17a and eq. 3.17b were
normalized by dividing withy,, 4Crxa @Ndy, pCmax,s respectively (wher€,,,, » and
Cmax,p rEPresents the maximum ambient analyte concemtisatf analyte A and analyte

B correspondingly),

CA (t) - _ l CA (t) + i Camb,A (t)
)/p,A Cmax,A T4 Vp,A Cmax,A Ta Cmax,A
(3.19a)
CB (t) - _ i CB (t) i Camb.B (t)
Vp,B Cmax,B Tp Vp,B Cmax,B Tp Cmax,B
(3.19b)

By defining new variables as follows,

Ca(t)

my(t) =
4 )/p,A Cmax,A
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Cy(t
my(t) = &
Vp,BCmax,B
C t
max,A
C t
Ug (t) — 2mb,B( )
max,B
Oy = — aAYp,ACmax,A
p = — agY¥YpB Cmax,B
eg. 3.18 and eq. 3.19 were rewritten as,
. 1 1
my(t) = ——myu(t) + — uu(t)
T4 Ta
(3.20a)
. 1 1
mp(t) = ——mp(t) + — up(t)
Tp Tp
(3.20b)

Af(t) = aymy(t) + agmp(t)

(3.21)
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wheremy,(t) andmg(t) represent the normalized concentrations of absioabalyte A
and analyte B respectively at timg,a, and ap represent the normalized steady-state
frequency shift of analyte A and analyte B respetyi and u,(t) and ug(t) both
represent the unit step input for analyte A andyaed respectively. In conclusion, eq.
3.20 and eq. 3.21 are the two-analyte normalizedhtsans that were used to represent

the two-analyte absorption.

3.3.1 Discrete-Time Model

Similar to the single analyte system, the frequestujts for the binary mixtures
are also measured at discrete-time instantst(kekT, whereT is the sampling period).
Therefore, it is required to transform the contimsidme model of the two-analyte sensor
response given in eg. 3.20 and eq. 3.21 into aatestime model. Just as in the single
analyte case, Euler’'s continuous time approximafitwmula was used and based on the
Euler’s formula, the first derivative of the nornzald concentration of each analyte can

be approximated by,

Mpk+1 — My

my(t) = T

(3.22a)

Mpk+1 — Mpk
T

mp(t) =

(3.22b)
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By using Euler’'s approximation as given in eq. 312 discrete-time model of the two-

analyte system is found to be as given,

Maps1r = (1 — SpIMyy + Sallay + v

(3.23a)
Mpr+1 = (1 — Sp)Mpr + Spupi + Vi
(3.23b)
Afie = aamyy + apmpy + wy
(3.24)

where S, and S; are the absorption rate constant for analyte A andlyte B,

respectively, and are defined as,

S—T
A= T
s T
B_TB

The termsv, andw,, are added to represent the process and measureoigatthat are

present in the two-analyte system, (and w, are uncorrelated white noise with zero

mean). Eq. 3.23 and eq. 3.24 represent the disitnetéemodel of the two-analyte system.
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3.3.2 Nonlinear Model

Two different state-space models for the two-amabytstem were developed, one
being a nonlinear model and the other a linear indéiest, the formulation of the
nonlinear model will be presented and discussedn@stioned earlier, for the nonlinear
model of the two-analyte system, the normalizedceatration of each analyte and the
steady-state frequency shift of each analyte areuttknown parameters that need to be
estimated. Note that the absorption rate (or timestant) of each analyte does not have
to be estimated because it is assumed to be knmmmthe single analyte experiments. In
order to obtain the state-space form of the noalimeodel, state variables are assigned to

the unknown parameters that need to be estimated:

&Y}
] s
2 ’
|xk |: Mmp k
ol L
B
X
and define the output as,
Ve = Afy

By rewriting eq. 3.23 and eq. 3.24 in terms of éhesate variables, the following

equations are obtained,
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1
x,£+)1 = (1—SA)x,E1) + Saugp + vk

(3.25a)
x,£2+)1 = (1 —SB)x,((Z) + Spupy + Vi
(3.25b)
Vi = x,g‘?’)x,(cl) + x,&‘”x,(cz) + wy
(3.26)

Since the steady-state frequency shift of analyte,Aand steady-state frequency shift of
analyte B,ag, are a constant, the value of these parametéima@tk + 1 is equal to the

value of the parameter at tine,

3 _ .03
Xk+1

(3.27)

@ _ @
Xp+1 =

(3.28)

By combining eq. 3.25, eq. 3.26, eq. 3.27, and 328, the state-space form of the

nonlinear model can be rewritten as,
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x,&)l] [(1 —SA)x,((l) + S + vk
@3]

@)
X (1 - SB)x + SBuB'k + vk
X1 = f (o W, i) = | Ig)l = | * 3 |
xk+1J [ Xk J
(4) 4
Xk+1 Xk
(3.29a)
3) (1 4) (2
Vi = h(x, ug, wy) = xl(c )xl(c e xl(c )xl(c '+ Wk
(3.29b)

From eq. 3.29, it can be seen that the state-sjpaceis a nonlinear model; thus this
formulation of the state-space form of the two-geabkystem is known as the nonlinear
model and EKF should be used to estimate the unkrpasrameters. In order to apply the
EKF algorithm, the state-space form given in e§93as to be linearized using Taylor

series expansion. For the nonlinear model, thdtreklinearization is as follows,

X1 = [ U, Vi) = f(Rg, Uk, V) + A (xx — i) + Fevg
(3.30a)
Vi = h(xp, wp, wi) = h(Xy, wg, Wi) + Cr (X — X)) + Gewy,

(3.30b)

where,

[(1 — SR + SAuA,k]

o _ 1- 53)9?;((2) + Spupj

f B wpe, Uy) = | 3) '
X

K

[ &M

e
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h@ e, W) = 2025 + 2927

(1-15,) 0 0 0
4 = 0 (1-S;) 0 0
0 0 10
0 0 0 1
1
1
Fe = |,
0

Go= % %" 52 2]
Gr = [1]
By using the linearization result given in eq. 3.B&F algorithm can be applied
to perform the estimation of the unknown parametéhe information on how to apply

the EKF algorithm was discussed in chapter 2 aadEKF algorithm was summarized in

Fig. 2.2.

3.3.3 Linear Model

In this section the formulation of the state-spfmen of the linear model of the

two-analyte system will be presented. As mentioeadier, for the linear model of the
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two-analyte system, the unknown parameters thatl neebe estimated are only the
steady-state frequency shifts of the analytes. mbenalized concentration of each
analyte does not have to be estimated becauseityy the known time constant of each
analyte from the single analyte experiment anBeZf3, the normalized concentration for
each analyte can be determined for every discheie-instant. As a result, a simplified
linear model can be obtained and the estimatiothefunknown parameters can be
performed using KF. In order to obtain the stataespform of the linear model, state

variables are assigned to the unknown parametaraéed to be estimated,
[xl(cl)] _ [“A]
xlgz) — lag
and define the output as,
Vi = Afy
Since the steady-state frequency shift of analyterA and the steady-state frequency

shift of analyte Bpg, is a constant, the value of these parameteimatk + 1 is equal

to the value of the parameter at tirke,

¢D) (€]
[xk+1] _ [xk ]

2 @3]
Xk+2 Xk

(3.31)
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By rewriting eq. 3.24 and eq. 3.31 in terms of shege variables, the state-space form of

the linear model can be obtained as follows,

® (1)
[xk+1 — 4 Xk ]
@ | @
Xk+2 Xk
(3.32a)
e
}’k = Ck 2 + GWk
Xk
(3.32b)
where,
1 o
A= 1

Cp = [Mar Mpk]

G =[1]

represent the system matrices.

Eq. 3.32 represents the state-space form of tleardimodel of the two-analyte

system and from eq. 3.32, it can be seen thatt#te-space form is a linear model; thus
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this formulation of the state-space form of the ‘avalyte system is known as the linear
model. In this case, to estimate the unknown pasieKF can be used. It should be
noted that the time-varying system matri&, is dependent on the values of the
normalized concentration for each analyte (i.elyt@aA and analyte B) which can be

determined for each discrete-time instanhy using eq. 3.23. In conclusion, by using the
system matrices and the state-space form of treardimodel given in eq. 3.32, KF

algorithm can be applied to perform the estimatodrthe unknown parameters. The
information on how to apply the KF algorithm wasalissed in chapter 2 and the KF

algorithm was summarized in Fig. 2.1.
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4. CHEMICAL SENSOR DATA ACQUISITION

4.1 Introduction

In this chapter, the specifics of the shear hotialosurface acoustic wave (SH-
SAW) device that was used to collect the sensa datlyzed in the present work are
discussed. The physics of the SH-SAW devices aeudsed in detail. The SH-SAW
sensor platform has been chosen to collect theatatlyzed in the present work because
it has been shown in [7, 34-36], that SH-SAW has gbtential of being used as an in-
situ chemical sensor to quantify BTEX compounds! the preparations of the
experimental setup and data collection were perdrim the Microsensor Research
Laboratory, Marquette University. The details ofe tlexperimental setup and data
collection will also be discussed in this chapfEne information on the types of the
polymers used in the present work to detect thgetaanalytes is also given. The polymer
films were coated on the sensor platform to enhémeeensitivity and to provide partial

selectivity for the target analytes.

Moreover, data pre-processing techniques that see in the present work are
also discussed in this chapter. The data pre-psougsliscussed includes linear baseline
drift correction and the elimination of outlier pts in the sensor data. The linear baseline
drift correction technique discussed in this chapiges estimation theory (particularly
Kalman Filter) to rapidly perform linear extrapatat and linear interpolation. The

techniques discussed were tested on the actuatievgreal data and the results obtained



58

are shown. The elimination of the outlier pointstihve sensor data were performed by
using a combination of discrete low pass filter &aman Filter (KF) (or Extended
Kalman Filter (EKF)). The proposed technique wasete on the experimental data with
outlier points to illustrate the effectiveness b€ tproposed technique and the results
obtained are shown. Note that the data pre-praugésid to be performed first before the

data is used to perform the estimation of the da@dyin the sample.

4.2 Shear Horizontal Surface Acoustic Wave (SH-SAW) Deages

Shear horizontal surface acoustic wave (SH-SAW)adsvare a specific type of
sensor platform which can be used for biochemi@ékction in liquid environments.
Compared to other types of acoustic wave devicashmban be used for liquid-phase
sensing applications (such as thickness shear nsbday horizontal acoustic plate mode,
and flexural plate wave), SH-SAW are preferred heeasurface waves are more
sensitive to surface perturbations. Moreover, dss/ivith high quality factor can be
obtained. SH-SAW devices are also small, robudd, easy to incorporate into on-line
low cost systems [36, 37]. SH-SAW devices are Gated with a specific crystal
structure that is rotated so that the wave in ¢hystal only supports the shear horizontal
component of the surface wave [38]. Therefore, $¥Scan be used effectively for

liquid-phase sensing applications.

Compared to surface acoustic wave (SAW), also knawiriRayleigh wave, the

SH-SAW often propagates slightly deeper within sbhbstrate [39, 40], hence preventing
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the implementation of high-sensitivity detectoroowéver, the sensitivity of SH-SAW
sensors can be increased by using a thin guidyey lan the device surface which will
trap the acoustic energy near the sensing surfélcerefore, SH-SAW sensors are
typically modeled as a multilayered structure [4lfje structure used in this investigation
is a three-layer structure as shown in Fig. 4.1s Three-layer structure consists of the
piezoelectric substrate with input and output idigital transducers (IDTs) arranged in a
delay line configuration, a polymer layer and auidy layer. The purpose of the
piezoelectric substrate is to convert the eledtsagnal into a mechanical signal (strain)
(i.e. the acoustic wave) and also to serve as pastfor the entire device. The polymer
layer has a finite thicknesi, and is assumed to have a lower shear wave veltaty
the substrate (the latter is a precondition for ¢cbefinement of the SH-SAW to the
surface). For the three-layer structure, the polylager serves as both a wave guiding
layer and a chemically sensitive layer [42-44]. Tilid layer is assumed to be a
Newtonian fluid because the solution(s) being tesiee dilute aqueous solutions, and is
used for transport of analyte molecules. Sincepiblgmer layer is of thickness, the
polymer layer is considered as a finite layer wiile substrate and the liquid layer are
considered as semi-infinite layers [42]. Note tlsatice the guided SH-SAW propagates
in thex; direction and the particle displacement is parédi¢hex, direction, the device

is known as ‘shear-horizontal surface acoustic wiaxace’.
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Figure 4.1: Three-layer structure and coordinate sgtem. The guided SH-SAW wiill
propagate in thexdirection, x, is in the direction of the acoustic wave particle
displacement, andx; is normal to the sensing surface [43].

In order to eliminate the common environmentalriatdons (such as temperature
and pressure), a dual delay line configurationgedufor the SH-SAW sensor design
where one line serves as a sensing line and ther ath a reference line. This design
allows for the common environmental interactionsdorcing the responses from both
lines to be eliminated by subtraction (i.e. diffetal measurement) [37, 43]. A thin metal
layer is also used between the two IDTs (input angput IDTS), to create an electrical
short so that acoustoelectric interactions withltael can be eliminated [37, 43]. This is
done in order to eliminate all electrical load maigtions, so that only mechanical loading
is present. Therefore, only sensing caused by nmézddaloading (i.e. changes in the

mechanical properties of the polymer coating) issidered in this work.
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4.3 Data Acquisition

The sensor data analyzed in this work was colleatgdg the 36° YX-LiTa@
guided SH-SAW device as the sensing platform [3§-Bbis device was fabricated with
10/80-nm-thick Cr/Au split finger pairs IDTs havitige periodicity of 40pum, which will
produce an operating frequency of 103MHz for thecoated device [34-36]. As
mentioned earlier, dual delay line configuratiomswesed with a metalized path between
the IDTs to eliminate the acoustoelectric intex@actwith the load. The sensing line was
coated with the sorbent polymer coatings. The tyggsolymer coatings which are used
to interact with the analytes of interest and tbecd the sensor data include poly(ethyl
acrylate) (PEA), poly(epichlorohydrin) (PECH), anably(isobutylene) (PIB), all
purchased from Sigma-Aldrich. The polymers wereoddpd on the sensing line from a
solution by spin coating and baking for 15 minuae$0°C which results in thicknesses,
1.0 um for PEA, 0.6 um for PECH, and 0.8 pum for.PBe reference lines were coated
with poly(methyl methacrylate) and baked for 12(ates at 180°C, which will result in
a glassy, non-sorbent coating so that the referineevill not absorb any analyte (i.e. it
is chemically insensitive). All the BTEX analytesed in the experiment were purchased

from Sigma-Aldrich and had purities of at least398.

The experimental set-up used to collect the sedata consisted of a network
analyzer (Agilent 8753ES) and a switch/control eyst(Agilent 3499A) to switch
between the two SH-SAW delay lines. Note that fome measurements, an Agilent

E5061B network analyzer and an Agilent 34980A dwdontrol system were used. In
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order to perform the experiment, the SH-SAW sengas placed inside a flow cell
(which was designed at Marquette University Micres®s Laboratory) and a pump
(Eppendorf EVA, in later experiments: Ismatec Rdgigital MS) was used to pump the
solutions into the flow cell. The solutions werenmed at sample flow rate of 0.4
ml/min. Before pumping the analyte solution intee thlow cell for detection by the
sensor, a reference solution (DI water) was punifpstl The reference solution was
pumped until the output signal was stable. Wherothtiput was stable, an analyte sample
was pumped into the flow cell for detection by #ensor. After the sensor response
reaches the steady-state (or equilibrium), thereefe solution was pumped again into
the system to flush the flow cell and cause théyém#o desorb from the polymer coating
on the sensor. This process was repeated peritydfcaldifferent analyte samples and
concentrations. The above procedures are well itbestin the literature [34-36]. The
experiment was performed in an environment in whightemperature was held constant
at 22.0 £ 0.1°C. The experiments were performed using the sangataining single
analyte and also using the samples containing yimaixtures of analytes. The
measurements were performed on the single analgtaples to determine the
sensitivities, ¢ (in Hz/ppm) and the response time constant(in s) for each
coating/analyte combination considered in this woBy using the values of the
sensitivity, o, of each analyte from the single analyte measun&nethe analyte
concentration(s) can readily be extracted by dngdsteady-state frequency shidt, by
the average value of sensitivity, [35]. The values of response time constamnt,
determined from the single analyte experimentshEansed in the estimation process of

the two-analyte system. Multiple single analyte sugaments were performed and both
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the values for the sensitivity;,, and time constant, are determined and are listed as
average values for various coating/analyte comimnst in tables 4.1 and 4.2,

respectively.

POlymer Openzene Otoluene aethylbenzene
1.0 um PEA 244 (£27) 690 (+160) 2240 (+460)
0.6 pm PECH 109 (+9) 435 (+25) 1450 (+240)
0.8 um PIB 63 (+5) 344 (+43) 1670 (+£10)

Table 4.1: Measured average sensitivities, (in Hz/ppm) from multiple single
analyte experiment for three different polymer coaings to various BTEX analytes.
The standard errors (68% confidence interval) are tyen in parentheses [35].

POIymer Thenzene Ttoluene Tethylbenzene
1.0 um PEA 36.1 (+10.0) 76.7 (+£6.0) 204 (£4.5)
0.6 pm PECH 26.5 (+8.4) 77.6 (+2.8) 175 (£13)
0.8 um PIB 29.3 (+7.8) 84.2 (+6.5) 245 (+14)

Table 4.2: Measured average response times(in s) from multiple single analyte
experiment for three different polymer coatings tovarious BTEX analytes. The
standard errors (68% confidence interval) are giverin parentheses [35].

All the sensor data collected were recorded andd#ta collected exhibit linear
baseline drift during the response. Therefore,oeessing had to be done first in order
to correct the data for baseline drift and to ehiaté any outlier points in the data before
using the data to perform the estimation procesguentify the analytes in the binary

mixture (or single analyte sample).
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4.4 Data Processing

As mentioned in the previous section, the raw datkected from the experiment
exhibits a linear baseline drift. Therefore, thev rdata has to be corrected for baseline
drift before the data can be used to perform th@naeson process to quantify the
analytes in the binary mixture. The general apgrdacgperform baseline drift correction
is given in [17]. The baseline drift correction apgch presented in [17] is based on
Extended Kalman Filter (EKF) and works for botheln and nonlinear baseline drift.
Since the sensor responds rapidly to the targdytenand the baseline drift observed in
the data collected for the analysis in the presamk exhibit a linear baseline drift, a
simplified model of baseline drift correction methes proposed in this section. The
linear baseline drift correction technique discdsse this section uses Kalman Filter
(KF) to perform linear extrapolation and linearergolation rapidly and can be viewed as
a special case of the baseline drift correctiomrneqe presented in [17]. One should
note that, the baseline correction technique ptedemm this section will only work for
linear baseline drift and for sensors which resgorapidly to the target analyte. The
proposed techniques were tested on the experimgati@iwith linear drift and the results

obtained are shown.

Occasionally, outlier points will be observed ire theasurement data and these
outlier points have to be eliminated or correctedider to get an accurate result when
one performs the estimation process to quantify ahalyte(s) present in the sample.

Outlier points will be recorded if the measuremeaise is very high, sometimes during
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the start of a new measurement, or if any changéisel boundary conditions occur, e.g.
if the pump is briefly stopped when switching tmm@wv sample. In this section, a new
technique which is based on a combination of discl@v pass filter and EKF will be
presented in order to eliminate the outlier pointdhe measurement data rapidly (in real-
time). One should note that, the correction ofieuthoints can only be performed after
the data point has been corrected for baseline @t proposed technique was tested on
the experimental data with outlier points to ilhasé the effectiveness of the proposed

technique and the results obtained are shown.

4.4.1 Baseline Drift Correction

As mentioned earlier, linear baseline drift con@tttechnique discussed in this
section uses Kalman Filter (KF) to perform lineatrapolation or linear interpolation

rapidly. Technigues to perform linear extrapolatimmng KF are explained first.

In order to perform linear extrapolation using Kfaly the data obtained before
the sensor is exposed to the analyte are usede $iecbaseline drifts linearly in the

present case, the baseline drift can be modeladiest-order curve given by,

y_baseline, = a + bk + wy,

(4.1)
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where a represent the y-intercepb, is the slope of the baseline; represent the
measurement noise arid represent the discrete time instant at which thgeline is
measured. By using the measurement data recordect lee analyte is introduced to the
sensor, one could actually estimate the constargadb. Then by using the estimated
value of the constantg andb, one could extrapolate the baseline during thes@en
response (i.e. after the analyte has been intradwcethe sensor) and perform the
baseline drift correction by subtracting the bamselirift from the sensor response while
measurements are taken. In order to estimate th&tanttsa andb in real-time by using
KF, the baseline drift model given in eq. 4.1 wasns$formed into the state-space model

by assigning a state-variable to the parametensdb,

(4.2)

Since the parameters that need to be estimatetbastants, the values of the parameters

cannot be changing in time. This can be represdmted
1 €3]
[xk+1] _ [xk ]
(2) ()
Xie+2 Xk
(4.3)

Then, the linear baseline drift model in the stgiace form can be written as follows:
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Xkt2 0 1 Xk

(4.4a)

(1)

x
ye = [1 k][’fz) + wy
Xk

(4.4b)

By using the state-space model of the baseling dnél the measurement data before
analyte exposure, KF algorithm as presented intehdp can be used to estimate the
constantsz andb. Once the values of constantsandb are estimated, the baseline can
then be extrapolated during the sensor resporseafter the analyte is introduced) in
order to correct the measurement data for basdiifiewhile measurements are taken.
The baseline corrected measurement can be foursdilityacting the baseline value at a

particular instant in time from the recorded meament data at that same instant in time,

y_corrected, = y_measurement;, — y_baseliney

(4.5)

Since the linear extrapolation only requires theaadtained before the analyte exposure

to estimate the baseline, linear extrapolationtmperformed in real-time.

If several samples are measured consecutivelydrctlurse of one experiment,
linear interpolation using KF can be used to edinthe baseline to obtain a more

accurate estimate. In order to perform linear patation using KF, data obtained both
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before the analyte is added and after it has beshdd from the sensor are used. Both
these data are used to determine the conktashiich represents the slope of the baseline.
The constantg, which represents the y-intercept of the basaingetermined by using
the data obtained before the analyte is addedc8agione can use the same state-space
model given in eq. 4.4 to perform linear interpmat However, for linear interpolation,
the linear baseline drift needs to be estimatedewone by using the data obtained before
the analyte exposure and another baseline estimasong the data obtained after the
analyte has been flushed from the sensor. Thers|dipe of the baseliné, is determined

by taking the average between the slopes of the Wagelines and as for the y-
intercepta, one can assign the same value obtained for théescept of the baseline
estimated using the data obtained before analyiesexe. Once the constaateindb are
determined, the baseline during the sensor respoasebe determined and subtracted
from the measurement data to obtained the correntsburement data, as illustrated by
eg. 4.5. Since linear interpolation requires ddteioned both before the analyte is added
and after it has been flushed from the sensortimate the baseline, linear interpolation
cannot be performed in real-time as the measurenaattaken. This is because one has
to wait until the data after the analyte has bdashkd from the sensor are collected
before estimating the baseline. However, lineagrpdlation can yield a more accurate

result compared to linear extrapolation [17].

In order to prove the validity of the proposed &ndaseline drift correction
techniques explained in this section, the techriqueere tested on the actual

experimental data collected in the Microsensor Be$e Laboratory at Marquette
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University. Here, the baseline drift correctionuks obtained by using data from two
different experiments will be presented and disedsFEirst, the results obtained by using
the raw experimental data collected by using PEAymer coatings with thickness
1.0pm as shown in Fig. 4.2 are presented. As caseée in Fig. 4.2, there is a baseline
drift in the experimental data and the baselinéglinearly for each individual sample.
Therefore, the proposed baseline drift correctitehniques can be used. The result
obtained by performing linear extrapolation is shawFig 4.3 and the result obtained by

performing linear interpolation is shown in Fig 4.4
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Figure 4.2: Raw experimental data with linear basehe drift. The experimental data
shows the sensor response of a series of four diflat samples which are mixtures of
benzene and ethylbenzene at different concentratisras specified in the figure
above. In the figure, ppb stands for parts per bilon (ug/L).
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Figure 4.3: Baseline corrected result obtained bygrforming linear extrapolation

using Kalman Filter on the raw experimental data slown in Fig. 4.2.
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Figure 4.4: Baseline corrected result obtained bygrforming linear interpolation

using Kalman Filter on the raw experimental data slown in Fig. 4.2.

As can be seen in Fig. 4.3 and Fig. 4.4, the rapeemental data from Fig. 4.2
has been corrected for the baseline drift by usinegbaseline drift correction techniques

presented in this section. It should be noted thatexpected, the result obtained by
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performing linear interpolation as shown in Figd 4 more accurate compared to the

result obtained by performing linear extrapolat@shown in Fig. 4.3.

Fig. 4.5 shows another example of raw experimatdatd which were collected by
using PECH polymer coatings with thickness 0.6ura.can be seen in Fig. 4.5, the
experiment consists of a series of four samplegravthe first three samples consist of
binary mixtures of benzene and toluene and thetHosaimple just consists of benzene,
which are measured consecutively in the coursenefexperiment. All the samples have
different concentrations as indicated in Fig. £&m Fig. 4.5, it can be noticed that there
is a baseline drift in the experimental data anel llaseline drifts linearly for each
individual sample. Therefore, the proposed basdiiri correction techniques can be
used. The result obtained by performing linearagpdlation is shown in Fig 4.6 and the

result obtained by performing linear interpolatisrshown in Fig 4.7.
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Figure 4.5: Raw experimental data with linear baseéhe drift. The experimental data
shows the sensor response of a series of four difat samples (the first three
samples are binary mixtures of benzene and toluenand the fourth sample is a
single analyte sample of benzene) at different coactrations as specified in the
figure above.
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Figure 4.6: Baseline corrected result obtained bygrforming linear extrapolation

using Kalman Filter on the raw experimental data slown in Fig. 4.5.
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Figure 4.7: Baseline corrected result obtained bygrforming linear interpolation
using Kalman Filter on the raw experimental data slown in Fig. 4.5.

As can be seen in Fig. 4.6 and Fig. 4.7, the rapeemental data from Fig. 4.5
has been corrected for the baseline drift. Basedthenbaseline corrections results
obtained by using the techniques presented insinision, it can be concluded that the

proposed baseline correction techniques are inadegehble of correcting for linear
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baseline drift. Also, based on the results obtaihezhn be clearly seen that the result
obtained by performing linear interpolation is maecurate compared to the result
obtained by performing linear extrapolation. Howevéor use in the real-world
application, linear extrapolation using KF can Isedito correct for the baseline drift, so
that the drift correction can be performed in rg@le. Note that real groundwater
samples might contain many compounds, some of whigiht show very long response
times; in that case, it might not be practical taitwor the signal to return to baseline.
Also in real-world applications, the sensor systamay be installed in a fixed location,
thus in the course of one experiment, only one $amvpl be tested. In that case, linear
extrapolation can be used and can yield a suffisieaccurate result. Therefore,
depending on the application, linear interpolatorinear extrapolation using KF can be
used to correct for the baseline drift. In con@usithe proposed baseline correction
techniques presented in this section can be usedrtect for linear baseline drift of the

measurement data.

4.4.2 Correction of Qutlier Points in Sensor Data

As stated earlier, outlier points in the experinakfata are observed due to high
measurement noise, sometimes when the sensorasexpo the analyte(s) and also due
to irregular changes in the boundary conditionse ®htlier points can be eliminated or
corrected in real-time by using a combination dfimple first-order discrete low-pass

filter and KF (or EKF).
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In order to design a simple discrete first-ordev [mass filter, the transfer function
of a low-pass filter has to be discretized [45]n€ider the transfer function of a first-

order low-pass filter as given in eq. 4.6,

RO

=50~ s+ dp

(4.6)

where,t represent the time constant of the filter, thale:ﬂa/f is the cut-off frequency of
the filter, Y(s) represent the output isrdomain andU(s) represent the input is-

domain. The transfer function of the low-pass filigiven in eq. 4.6), can be rewritten as

sY(s) + Y (s) = U(s)

(4.7)

By taking the inverse Laplace transform of bothesidof eq. 4.7, the following

differential equation can be obtained:

ty(t) +y() = u(t)

(4.8)

where y(t) represent the output in time-domain an@) represent the input in time-

domain. In order to discretize eq. 4.8, Euler’'s Beard Differentiation method was
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used. Based on the Euler's Backward Differentiafmmula, the first derivative of the

output,y(t) can be approximated by,

. Yk = Yk-1
)~ — 2
y(t) T

(4.9)

whereT is the sampling period. By applying the Eulerpmaximation as given in eq.

4.9, the discrete-time model of the low-pass fiiseiound to be

Vi = (r : T)”"+ ; J: ) Vit

(4.10)

By defining a new variabley, as

T+ T

(4.11)

eg. 4.10 can be rewritten as,

Vi = aug + (1 — a)yy—q

(4.12)
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where the variabley is known as the filter parameter because of ifseddence on the
time constant. Eg. 4.12 denotes a recursive relation betweenothput,y, and the
input, u,. Therefore, by knowing the previous output valyg,; and the current input
value,u,, the current output valug;, can be calculated. It should be noted that thetinp
u; represent the data point that need to be filtemed the time constant of the filter,
should be set to be equal to the time constarfteosystem that need to be filtered. Thus,
for the single analyte system, time constant offilter, T should be set to be equal to the
value of the time constant of the analyte respoReethe two-analyte system, there will
be two time constants which correspond to eachysmnahd one of the analyte will have
a higher time constant than the other. Since therge of time constant can be related to
the frequency of the analyte, one of the analytié lveive a smaller frequency than the
other. Specifically, the analyte with the highemei constant will have the smaller
frequency. It is known that the cut-off frequendytioe two-analyte system should be
smaller than the smallest frequency (i.e. highiesé¢ ttonstant) of the analyte responses.
Therefore, as an approximation, for the two-anadytetem, time constant of the filter,
can be set to be equal to the time constant oaitiadyte with the highest time constant
value. Note that, the process of finding the tinoastant of the two-analyte system is
cumbersome; thus, the approximation that the tiomstant of the two-analyte system is

equal to the time constant of the analyte withihigiest time constant value can be used.

In order to implement the correction of outlier misi in real-time, the discrete
low-pass filter should be implemented together Wi KF or EKF algorithm using the

state-space model presented in chapter 3. Theebbigsing KF or EKF is dependent on
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the state-space model used as discussed in clgaptér (or EKF) will be used as a one-
step ahead predictor to predict the next measureda¢a point. If the difference between
the predicted measurement value and the actualumemasnt value is above a certain
threshold set by the user (e.g. 0.01), the actwslsarement point will be selected to be
fillered by using the discrete low-pass filter.tlfe difference between the predicted
measurement value and the actual measurement igala¢hin the threshold set by the
user, the actual measurement point will not beriitl using the discrete low-pass filter.
By using this method only the actual outlier poimghe measurement will be filtered.
Therefore, outlier points can be eliminated anete estimate of the sensor parameters

can be rapidly obtained in real-time.

The proposed outlier point’s correction techniquesvested on the experimental
data with outlier points to prove the feasibilitiy tbe proposed technique to correct the
outlier points in the measurement data. The exparial data used to test the proposed
technique to correct the outlier points were caddcin the Microsensor Research
Laboratory, at Marquette University. These datamid contain any outlier points.
Therefore, in order to test the proposed techniquelier points were introduced
manually in the measurement data. It should bedntitat the proposed technique was
tested on multiple measurement data; however isnstiction only a sample result will be
presented. Additional outlier points correctionules are presented in the Appendix A.
Fig. 4.8 shows the result obtained after the ctioecof the outlier points co-plotted
together with the measurement data with outlien{goiAlso shown in the figure is the

fitted curve and fitted data expression for botbadaith outlier points and filtered data.
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Note that both unfiltered data and filtered dataemMéted by using dual-exponential fit
and the fitting expression for both unfiltered datal filtered data is shown explicitly in
Fig. 4.8. The measurement data used to test thmged technique were obtained for a
binary mixture sample which contains benzene ahyllgnzene with the concentration
of 500 ppb and 800 ppb respectively. The data wellected for experiments performed
using PEA polymer coatings with thickness 1.0um #edraw data obtained had already

been corrected for the baseline drift.

* Experimental data
2} ——— Experimental data fitting 7
° Filtered data
------- Filtered data fitting
;r\:l 1+ Experimental data fitting expression:Af = -0.04*[1-exp(-0.0243t)] + -2.82*[1-exp(-0.0048t |-
= Filtered data fitting expression: Af = -0.12*[1-exp(-0.0243t)] + -2.74*[1-exp(-0.0049t
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Figure 4.8: Outlier points corrected data co-plottel together with the measurement
data with outlier points. The data are shown in twodifferent colors where blue
represents the measurement data with outlier pointqunfiltered data) and red

represents the outlier points corrected measurementata (filtered data). Both the

data points and the curve fit for the data points & shown in the figure above. Also
shown in the figure is the fitted data expressionoir both data with outlier points and

filtered data.



As can be seen in Fig. 4.8, the measurement datalye) contains some outlier
points and in the outlier points corrected data€uh) the outlier points have been filtered.
Based on the result shown in Fig. 4.8, it can bseoked that the proposed technique in
this section is capable of eliminating any outl@sints in the measurement data.
Moreover, the concentrations of the analytes detexthby using the fitted parameters of
the filtered data are closer to the actual conedéintis of the analytes compared to the
concentrations of the analytes determined by uthiaditted parameters of the unfiltered
data as shown in Table 4.3. Note that the condsmtisaof the analytes were extracted by
using the parameters obtained by fitting the data dual-exponential fit and average
values of the sensitivities of the single analyge®n in Table 4.1. Also shown in Table

4.3 are the percentage differences between theastl and the actual concentrations of
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the analytes.
Analytes Nominal Estimated Estimated
Concentration | Concentration using Concentration using
(ppb) Unfiltered Data (ppb) Filtered Data (ppb)
(% difference with (% difference with
nominal concentration) | nominal concentration)

Benzene 500 164 (67.2 %) 492 (1.6 %)
Ethylbenzene 800 1259 (57.4 %) 1223 (53 %)

Table 4.3: Nominal concentration of the analytes, stimated concentration of the
analytes using unfiltered data and estimated concémation of the analytes using
filtered data obtained by using the measurement dat for a binary mixture of
benzene and ethylbenzene. Also shown in the tableeathe percentage differences
between the estimated concentrations and nominal moentrations of the analytes.
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As can be seen from Table 4.3, the estimated cimatems of the analytes
determined from the unfiltered data fit do not &gwneell with the actual concentrations of
benzene and ethylbenzene with percentage differeh6&.2% for benzene and 57.4%
for ethylbenzene. For the outlier points correateeasurement data (filtered data), the
concentrations of benzene and ethylbenzene aredfaanbe closer to the actual
concentration of benzene and ethylbenzene withepéage difference of 1.6% for
benzene and 53% for ethylbenzene. Therefore, theeotrations of the analytes
determined from the filtered data fit are much eftoso the actual values of the
concentrations of benzene and ethylbenzene compardmdse from the unfiltered data.
It should be noted that the discrepancies betwseemated and actual concentrations of
the analytes are to be expected due to the ertoydunced by the inaccuracy of the
manual sample mixing procedure [35]. Based orrd¢kalt obtained, it can be concluded
that the outlier points corrected data could yilchore accurate estimate of the analyte
concentrations compared to the measurement daltaowitier points. This emphasizes

the importance of eliminating outlier points in tineasurement data.

Since the corrections of outlier points were perfed by using a combination of
discrete low-pass filter and KF (or EKF), the cotren process can be performed in real-
time as the measurements are being recorded. klusion, the proposed outlier points
correction techniques presented in this sectionbeansed to eliminate any outlier points
in the measurement data in real-time and conselyuartuld yield a more accurate

estimation results.
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5. ESTIMATION RESULTS AND DISCUSSION

5.1Introduction

In this chapter, the estimation results obtained Hoth single and two-analyte
systems by using the models developed in chaptare3presented. The estimation
process was performed on the sensor data colldctethe Microsensor Research
Laboratory at Marquette University using the SH-SA&hsor. The process of data
acquisition had already been discussed in chaptBetbre the data collected were used
to perform the estimation process by using Kalmdter-(KF) or Extended Kalman
Filter (EKF) to estimate the unknown parameters, diata were first pre-processed to
correct the data for any baseline drift and alseltminate the outlier points in the data
using the techniques presented in chapter 4. gmalksprocessing steps that the data has
to undergo before the estimate of the unknown perars could be obtained are
summarized in the block diagram shown in Fig. Bldte that, all the signal-processing
steps shown in the block diagram of Fig. 5.1 carpé&dormed simultaneously in real-

time.

Baseline |51 Outlier Sensor
Correction | Points Parameters
Filtering Estimation Parameters

Figure 5.1: Block diagram showing the steps that # data has to undergo before the
estimate of the unknown parameters can be obtained.



86

The estimation results presented in this chaptetudte plots showing the
estimated sensor response co-plotted together ttvthmeasured sensor response. The
plots also will contain pertinent information abaie estimated parameters and the
parameters obtained by fitting the measurement. déiée that for the single analyte
system, the measurement data were fitted with siegponential fits and for the two-
analyte system, the measurement data were fittéd dvial-exponential fits. Both the
estimated parameters and the fitted parameteishaken in the plot, so that the estimated
parameters can be readily compared to the fittednpeters. By using the estimated
steady-state frequency shift (or steady-state &rqu shift determined by fitting the
measurement data) and measured average sengtiwiti;m Hz/ppm) values for various
coating/analyte combinations as presented in Tdldlethe analyte concentration(s) in

the sample can be determined by using the followopgations,

Crie = Arit

(5.1)
Cest = %

(5.2)

where, C¢;; represents the concentration of the analyte(sgrafémed by using
steady-state frequency shift obtained by fitting tmeasurement datay;;, and Ce;
represents the concentration of the analyte(sym@ted by using the estimated steady-

state frequency shiftg,.s. Cr;; and C,;, are compared to each other to validate the
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estimation results obtained. It should be noted fitramost cases, the values@f; and
Crie Will be different than the actual ambient concatn, Cg,,,, because of the error
introduced during the sample preparations and ase to the volatility of the
hydrocarbon analytes. Such discrepancies have HWeend from independent
measurements of the prepared and tested sampbesas high as 13% [35]. Moreover,
the chapter also includes a discussion on how Isapite estimation results could be
obtained. Several estimated sensor responses ethtafter a specific amount of time are
compared to determine the minimum time requiredltain a good estimate of the

unknown parameters.

5.2Single Analyte Estimation Results

In this section, the single analyte estimation ltesare presented. The single analyte
state-space model developed in chapter 3 is uspérform the estimation by using EKF
algorithm. For this system, there are three unkngarameters that were estimated
which include normalized concentration of the ateglydsorption rate (i.e. inverse of
time constant) and steady-state frequency shifte Mwat by using eq. 5.2, the estimated

concentrations of the analyi@,; are determined.

Single analyte estimations were tested on varicugles analyte measurement data,
however, in this section only the estimation resuttbtained for three different
measurement data are presented and discussedll Eases, three types of estimation

result figures will be presented and discussed. Ohe¢he figures will contain the
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information about the estimated sensor responsémaised sensor parameters,
measurement data, and measurement data fitting (et fitting parameters). Note that
the single analyte measurement data were fittatusngle exponential fits. The second
figure will contain the information about the estited normalized concentration of the
analyte along with the theoretical normalized comicgion of the analyte. The theoretical
normalized concentration of the analyte was detsedhiby using the average time
constants values of the analyte/coating pair giuenTable 4.2 and the following

equation,

m) = (1— e™7)

(5.3)

wherem(t) represents the normalized concentration of absoabalyte at timet, andt
represents the time constant of the analyte. Natkeeq. 5.3 was obtained by solving the
normalized concentration differential equation ase by eq. 3.5. The final figure will
show several estimated sensor responses obtaited aaicertain number of minutes
plotted along with the measurement data and measuntedata fitting. Following this
figure is a table which shows the estimated parareatorresponding to the estimated
sensor responses shown in the final figure alorif thie percentage difference between
these estimated parameters and the parametersabt@om experimental data fitting.
This is done to determine the minimum time requit@abtain a good estimate of the

sensor parameters.
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First, the estimation results obtained by using rii@asurement data of the sensor
response of an SH-SAW sensor coated with 1.0um #ER000 ppb ethylbenzene are
discussed and Fig. 5.2 through Fig. 5.4 show thisnagon results obtained by using this
data. In Fig. 5.2, the measurement data (blue islsfemeasurement data fitting (blue
curve) and the estimated sensor response (red)camveshown. Also shown in Fig. 5.2
are the estimated sensor parameters along witparemeters determined by fitting the
measurement data. As can be seen from Fig. 5.2y thwt estimated steady-state
frequency shift and adsorption rate are in clogeegent (i.e. less thahl1% difference)
with the steady-state frequency shift and adsamptiate determined by fitting the

measurement data. By using eq. 5.1 and eq(p2andC,,. are found to be around 813
ppb and 808 ppb, respectively. The valuesdgf and(y;, are also in good agreement

(i.e. less thant1% difference) with each other; this result shouldexpected because

their steady-state frequency shifts are in goo@@gent as well. The estimation result
obtained for the normalized concentration of etagltene versus time (in red) is shown
in Fig. 5.3. Also shown in Fig. 5.3 is the thearali normalized concentration of

ethylbenzene (in blue). Based on Fig. 5.3, it carséen that the estimated normalized
concentration of ethylbenzene is in very good agesg with the theoretical normalized

concentration of ethylbenzene and it approachesl@e\vof one as time increases. Note
that normalized concentration is the ratio of conicgion of the analyte in the coating at
time, t to the maximum ambient concentration of the aealyid as time increases the
ratio should approach a value of one (i.e. theydmatoncentration in the coating and
maximum ambient concentration times the partitioafficient are equal) as observed in

Fig. 5.3. Finally in Fig. 5.4, three estimated snsesponses obtained using the
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measurement data collected for the first 2, 3 andidutes after the analyte has been
introduced to the sensor are shown. Also shownign 3:4 are the measurement data,
measurement data fitting and the estimated semsponse using all the data points. The
estimated sensor parameters obtained using theuneeasnt data collected for the first 2,
3 and 4 minutes after the analyte has been intextltecthe sensor are given in Table 5.1.
Based on Table 5.1 and Fig. 5.4, it can be sednthlaestimated sensor response and
sensor parameters obtained using the measurem@ntalkected for the first 3 minutes
(and above) agree well (i.e. less thah0% difference) with the measurement data and
measurement data fitting. Therefore, the data c@te for the first 3 minutes are
sufficient to obtain a good estimate of the unknganameters using the EKF algorithm.
This means that, by using single analyte estimagohnique presented in this work, one

could quantify the analyte well before the sengsponse reaches steady-state.
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Figure 5.2: Response of a SH-SAW sensor coated wittDum PEA to 1000 ppb
ethylbenzene (blue curve) along with the estimatesensor response (red curve). Also
shown in the figure are the estimated sensor pararters along with the parameters
determined by fitting the measurement data.
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Figure 5.3: Estimated normalized concentration of #aylbenzene co-plotted with the
theoretical normalized concentration of ethylbenzea for 1.0um PEA.
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Figure 5.4: Estimated sensor response of 1000 ppthglbenzene (for 1.0um PEA
coating) obtained using the measurement data collesd for the first 2, 3 and 4
minutes after the analyte has been introduced to #hsensor co-plotted together with
the measurement data, measurement data fitting andlso the estimated sensor
response using all the measurement data points.
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Estimated Sensor Steady-State Frequency Shift, | Time Constant, ., (S)
Parameters g (KHZ)
(Measurement Data (% difference with zz;)
1) (% difference with ay;;)
After 2 minutes -1.63 (10.53 %) 196.08 (3.20 %)
After 3 minutes -1.71 (6.31 %) 197.07 (2.36 %)
After 4 minutes -1.76 (3.49 %) 202.02 (0.17 %)
Using all data points -1.82 (0.55 %) 206.19 (1.86 %)

Table 5.1: Estimated sensor parameters of 1000 pmthylbenzene (for 1.0um PEA
coating) obtained using the measurement data colleal for the first 2, 3 and 4
minutes after the analyte has been introduced to thsensor along with the estimated
sensor parameters obtained using all the data poist Also given in the table are the
percentage differences between the estimated sengarameters and sensor
parameters determined by fitting the measurement dia.

Next, the estimation results obtained by usingtieasurement data for the sensor
response of a SH-SAW sensor coated with 0.6um PECHOO0 ppb benzene are
discussed. The following figures, Fig. 5.5, Figo @nd Fig. 5.7 and Table 5.2 show the

estimation results obtained for this case.
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Figure 5.5: Response of a SH-SAW sensor coated witlt6pum PECH to 1000 ppb
benzene (blue curve) along with the estimated sengesponse (red curve). Also
shown in the figure are the estimated sensor pararters along with the parameters
determined by fitting the m measurement data.
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Figure 5.6: Estimated normalized concentration of bnzene co-plotted with the
theoretical normalized concentration of benzene fod.6pum PECH.
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Figure 5.7: Estimated sensor response to 1000 pplkrzene (for 0.6um PECH
coating) obtained using the measurement data colled for the first 1, 2 and 3
minutes after the analyte has been introduced to #hsensor co-plotted together with
the measurement data, measurement data fitting andlso the estimated sensor
response using all the data points.
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Estimated Sensor Steady-State Frequency Shift, | Time Constant, ., (S)
Parameters g (KHZ)
(Measurement Data (% difference with zz;)
2) (% difference with ay;;)
After 1 minutes -0.1943 (7.48 %) 35.74 (1.64 %)
After 2 minutes -0.2042 (2.76 %) 35.82 (1.87 %)
After 3 minutes -0.2143 (2.05 %) 35.94 (2.20 %)
Using all data points -0.21 (0 %) 35.91 (2.11 %)

Table 5.2: Estimated sensor parameters for 1000 ppienzene (for 0.6um PECH
coating) obtained using the measurement data colled for the first 1, 2 and 3
minutes after the analyte has been introduced to thsensor along with the estimated
sensor parameters obtained using all the data poist Also given in the table are the
percentage differences between the estimated sengarameters and sensor
parameters determined by fitting the measurement dia.

As can be seen from Fig. 5.5, both the estimateddststate frequency shifts and
adsorption rate for the second case are also geawgnt (i.e. less thah2% difference)
with the steady-state frequency shift and absamptiate determined by fitting the
measurement data. Both;, andC,,, are found to be equal to 817 ppb. In Fig. 5.6, the
estimation result obtained for the normalized cotedion of benzene versus time is
shown along with the theoretical normalized conegitn of benzene for 0.6um PECH
coating. As depicted in Fig 5.6, the estimated radized concentration and theoretical

normalized concentration are in good agreement eatth other. This further validates
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the estimation results obtained for this seconce.cA$so note that from Fig. 5.6, the
normalized concentration of benzene reaches theevaf one much faster than the
normalized concentration of ethylbenzene shownigibE3. This is because benzene has
a much faster response time (smaller time constamt)pared to ethylbenzene. Fig. 5.7
shows the estimated sensor responses and Tableshb®s the estimated sensor
parameters obtained using the measurement daecteallfor the first 1, 2 and 3 minutes
after the analyte has been introduced to the seBased on Table 5.2 and Fig. 5.7, it can
be seen that the estimated sensor response anor gErameters obtained using the
measurement data collected for the first 1 min(aesl above) agree well (i.e. less than
+10% difference) with the measurement data and measuredata fitting. Therefore,
the data collected for one minute are sufficienbibdtain a good estimate of the unknown
parameters using the EKF algorithm. These resntgate that the sensor parameters
could be estimated long before the sensor respaaehes steady-state. Therefore, once
again it can be concluded that by using the staéees model of single analyte and EKF
algorithm presented in the present work, the asatpuld be quantified well before the

sensor response reaches steady-state.

Finally for the third case, the estimation resutibtained by using the
measurement data for the sensor response of a IMseAsor coated with 0.8um PIB to
1000 ppb toluene are discussed. Fig. 5.8 through5FL0 and Table 5.3 show the

estimation results obtained for this third case.
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Figure 5.8: Response of a SH-SAW sensor coated widkBum PIB to 1000 ppb
toluene (blue curve) along with the estimated sensesponse (red curve). Also
shown in the figure are the estimated sensor pararters along with the parameters
determined by fitting the measurement data.



101

0.8

Normalized Concentration
(@»)
[@))

—Theoretical Normalized Concentration
===Estimated Normalized Concentration

—
]
P g
-

4 5 6 7 8 9 IC
Time (min)

Figure 5.9: Estimated normalized concentration ofa@luene co-plotted with the
theoretical normalized concentration of toluene fol0.8um PIB.
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Figure 5.10: Estimated sensor response to 1000 ppiluene (for 0.8um PIB coating)
obtained using the measurement data collected fohe first 3, 4 and 5 minutes after
the analyte has been introduced to the sensor cogpled together with the
measurement data, measurement data fitting and alsthe estimated sensor response
using all the data points.
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Estimated Sensor Steady-state Frequency Shift, | Time Constant, T (S)
Parameters g (KHZ)
(Measurement Data (% difference with zz;)
3) (% difference with ay;;)
After 3 minutes -0.5299 (5.38 %) 78.74 (1.13 %)
After 4 minutes -0.5428 (3.07 %) 79.00 (0.80 %)
After 5 minutes -0.5501 (1.77 %) 79.26 (0.46 %)
Using all data points -0.56 (0 %) 79.58 (0.07 %)

Table 5.3: Estimated sensor parameters for 1000 ppioluene (for 0.8um PIB
coating) obtained using the measurement data collea for the first 3, 4 and 5
minutes after the analyte has been introduced to thsensor along with the estimated
sensor parameters obtained using all the data poist Also given in the table are the
percentage differences between the estimated sengarameters and sensor
parameters determined by fitting the measurement dia.

As indicated in Fig. 5.8, the estimated steadyesi&quency shift and absorption rate for
the third case are also in conformity (i.e. lesntf1% difference) with the steady-state
frequency shift and absorption rate determineditting the measurement data. Since the
estimated steady-state frequency shift and stetadg-$requency shift determined by
fitting the measurement data closely match eachrpfh;, andC,,, are also expected to
be in close agreement. In fact, for this third cheéh the values off;; and C,, are

approximately equal to 1447 ppb. Next in Fig. 5@ estimation result obtained for the

normalized concentration of toluene versus timeapicted along with the theoretical
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normalized concentration of toluene for 0.8um Pdteng. Based on Fig. 5.9, it can be
seen that the estimated normalized concentratiom #meoretical normalized
concentration are in good agreement with each o#imer this further validates the
estimation results obtain for the third case. Afge that in Fig. 5.9, the normalized
concentration of toluene reaches the value of omehnfaster than the normalized
concentration of ethylbenzene as shown in Fig.5u8 dlower than the normalized
concentration of benzene as shown in Fig. 5.6. Fhisuld be expected because the
response time of toluene is between those of benaed ethylbenzene. Fig. 5.10 shows
the estimated sensor responses and Table 5.3 dghewsstimated sensor parameters
obtained using the measurement data collectechéofitst 3, 4 and 5 minutes after the
analyte has been introduced to the sensor. Baselhble 5.3 and Fig. 5.10, it can be
seen that the estimated sensor response and spasameters obtained using the
measurement data collected for the first 4 min(aesl above) agree well (i.e. less than
+10% difference) with the measurement data and measuredata fitting. Therefore,
the data collected for the first 4 minutes areisight to obtain a good estimate of the
unknown parameters using the EKF algorithm. Aghis third case also proves that by
using the single analyte estimation process predeint the present work, the sensor
parameters of single analyte could be estimated ve¢bre the sensor response reaches

steady-state.

All the estimated sensor parameters along with m@ximum percentage
difference with the sensor parameters determinefittonyg the measurement data for all

the three cases are summarized in Table 5.4. ltuldhioe noted that the observed
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discrepancies betweeh;, andC,, with the actual concentration can be attributetheo
error in the sample preparations as well as valaof the hydrocarbon analytes. From
Table 5.4, it can be seen that all the estimatedmsegrarameters agree well (i.e. less than
+10% difference) with the sensor parameters determimeditting the measurement
data. Therefore, one could obtain the same reghkreby fitting the measurement data
or by using the estimation technique for the siragialyte sample presented in this work.
Although both methods produce approximately the esaesults, the advantage of the
method presented in this thesis lies in the faat ¢mly the measurement data collected
for the first few minutes (i.e. around 1-4 minutasg needed to quantify the analyte with
sufficient accuracy. This means that the sensameters could be estimated in less than
half the time required for the sensor responseaah steady-state. Therefore, one could
obtain an accurate estimate of the sensor parasnetesingle analyte well before the

Sensor response reaches steady—state.
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Data Polymer | Steady-State] Time Constant | Concentration | Percentage
Frequency (s) (ppb) Difference
Shift (kHz) (with the
Uit Xest Trit Test Cfit Cest fitting
parameters)
1: 1000 ppb | 1.0pm | -1.82 | -1.81| 202.36 | 204.08 | 813 808 0.85%

ethylbenzene| PEA

2:1000 ppb | 0.6pm | -0.21| -0.21| 35.15 | 35.91 817 817 2.16%
benzene PECH

3:1000 ppb | 0.8um | -0.56| -0.56 | 79.63 | 84.21 | 1447 | 1447 5.75%
toluene PIB

Table 5.4: Estimated sensor parameters (steady-stafrequency shift and time
constant) and concentration along with sensor paraeters and concentration
determined from measurement data fit. Also given ishe maximum percentage
difference between the estimated sensor parametesind sensor parameters
determined by fitting the measurement data with sigle exponential fit.

5.3 Two-Analyte Estimation Results

In this section, the two-analyte estimation resalts presented. The two-analyte
state-space models (i.e. both nonlinear and lineadel) presented in chapter 3 are used
to perform the estimation by using EKF or KF alggam depending on the state-space
model used. For the nonlinear model, EKF algorithias used to perform the estimation
and for the linear model, KF algorithm was usediniaions of binary mixtures using
both state-space models were performed on vari@asuanement data; however, in this
section only the estimation results obtained foo tdifferent measurement data are

presented and discussed. Also it should be nott] ith order to compare the different
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models (i.e. nonlinear and linear model), the samasurement data were used for both
models to estimate the unknown parameters. Afeerébults obtained for each model are

discussed, comparisons between the two models @ale.m

5.3.1 Nonlinear Model

For the nonlinear model, there are four unknownntjtias that were estimated
which include the normalized concentrations of eafalyte and the steady-state
frequency shifts of each analyte. The time constafteach analyte are not estimated
because it is assumed that the values of the tonstants for each analyte are known
from the single analyte measurement. For the pteserk, the average time constants
for various coating/analyte pair given in Table 4r2 chapter 4) were used as the time
constant of the corresponding analytes. As menti@slier, only the estimation results
obtained from two different measurement data tive. different cases) will be presented
and discussed. For these two cases, four typesstohaion result figures will be
presented and discussed. The first figure will aomthe information about the estimated
sensor response, estimated sensor parameters,remaast data, and measurement data
fitting (with the fitting parameters). Note thatethiwo-analyte measurement data were
fitted using dual-exponential fits. Next, the fallmg two figures will show the result
obtained for the estimated normalized concentratiogach analyte in the binary mixture
sample along with its theoretical normalized comicgion determined by using eq. 5.3.
Finally, the fourth figure will show several estited sensor responses determined after a

certain number of minutes plotted along with theasugement data and measurement
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data fitting. Following this figure is a table whicshows the estimated parameters
corresponding to the estimated sensor responsesishdhe fourth figure along with the
percentage difference between these estimated pteesrand the parameters obtained
from experimental data fitting. This is done toetatine the minimum time required to

obtain a good estimate of the sensor parameters.

First, the estimation results obtained by usingmfeasurement data of the sensor
response of SH-SAW sensor coated with 1.0um PEAinary mixture of 500 ppb
benzene and 200 ppb ethylbenzene are discussedblidvang figures, Figs. 5.11 — 5.14
and Table 5.5, show the estimation results obtalryedsing this binary mixture data and
the nonlinear model. Fig. 5.11 shows the measuredsa (blue asterisk), measurement
data fitting (blue curve) and the estimated semesponse (red curve). Also shown in
Fig. 5.11 are the estimated steady-state frequehdfys along with the steady-state
frequency shifts determined by fitting the measwetrdata. As can be seen from Fig.
5.11, the estimated steady-state frequency shiftdch analyte is in agreement (i.e. less
than+6 % difference) with the steady-state frequency sifithe analytes determined by
fitting the measurement data. Note that, the measent data were fitted by using dual-
exponential fits to extract the steady-state fregyeshift of each analyte in the binary
mixture sample. Moreover, by using eq. 5.1 and5®,.Cr;; andC,,, for both analytes
are found to be around 285 ppb and 303 ppb, raspbgtfor the concentration of
benzene and 280 ppb and 283 ppb, respectivelyhtoiconcentration of ethylbenzene.
Therefore,Cr;; and C,,: found for both analytes are withih6 % difference. Fig. 5.12

and Fig. 5.13 show the estimation results obtafioedhe normalized concentration of
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each analyte versus time along with its theoretimamalized concentration determined
by using eq. 5.3. As can be seen from Fig. 5.12 Rigd 5.13, both the estimated
normalized concentration of each analyte (i.e. brazand ethylbenzene) are in
conformity with its theoretical normalized concetion. This further validates the
estimation results obtained for this case. Figd Shhows the estimated sensor responses
and Table 5.5 shows the estimated steady-stateidney shifts obtained using the
measurement data collected for the first 2, 3 amdirites after the binary mixture has
been introduced to the sensor. Based on Tablerel3-gy. 5.14, it can be seen that the
estimated sensor response and sensor parametamedbtising the measurement data
collected for the first 3 minutes (and above) agrved (i.e. less thant20% difference)
with the measurement data and measurement data fitherefore, the steady-state
frequency shifts of the analytes could be estimaeen before the sensor response
reaches steady-state and thus, the analytes Inrthey mixture can be quantified rapidly

by using the nonlinear model of the two-analytdesys
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Figure 5.11: Response of a SH-SAW sensor coated lwit.Oum PEA to a binary
mixture of 500 ppb benzene and 200 ppb ethylbenzefiglue curve) along with the
estimated sensor response using the nonlinear mod#lthe two-analyte system (red
curve). Also shown in the figure are the estimatedteady-state frequency shifts
along with the steady-state frequency shifts determed by fitting the measurement
data using dual-exponential fit.
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Figure 5.12: Estimated normalized concentration obenzene using the nonlinear
model of two-analyte system co-plotted with the tharetical normalized
concentration of benzene for 1.0um PEA.
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Figure 5.13: Estimated normalized concentration oéthylbenzene using the
nonlinear model of two-analyte system co-plotted \th the theoretical normalized
concentration of ethylbenzene for 1.0um PEA.
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Figure 5.14: Estimated sensor response to a binangixture of 500 ppb benzene and
200 ppb ethylbenzene (with 1.0um PEA coating) usiriye nonlinear model of two-
analyte system obtained using the measurement datallected for the first 2, 3 and 4
minutes after the binary mixture sample has been imoduced to the sensor co-
plotted together with the measurement data, measuneent data fitting and also the
estimated sensor response using all the data points
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Estimated Steady-
State Frequency
Shift (Measurement
Data 1)

Steady-State Frequency Shift
of Benzeneg,,, (kHz)

(% difference with a;;)

Steady-State Frequency
Shift of Ethylbenzene,a,;
(kHz)

(% difference with a;,)

After 2 minutes

-0.1809 (13.06 %)

-0.6699 (23.88 %)

After 3 minutes

-0.1678 (4.88 %)

-0.8594 (2.34 %)

After 4 minutes

-0.1647 (2.94 %)

-0.9080 (3.18 %)

Using all data points

-0.1652 (3.25 %)

-0.8896 (1.09 %)

Table 5.5: Estimated steady-state frequency shifter a binary mixture of 500 ppb
benzene and 200 ppb ethylbenzene (with 1.0um PEAatmng) using the nonlinear
model of two-analyte system obtained using the maa®ment data collected for the
first 2, 3 and 4 minutes after the binary mixture smple has been introduced to the
sensor along with the estimated steady-state frequey shifts obtained using all the
data points. Also given in the table are the perceéage differences between the
estimated steady-state frequency shifts and steadyate frequency shifts determined
by fitting the measurement data.

Next for the second case, the estimation resultmimdd by using the

measurement data of the sensor response of SH-&A¥dIscoated with 0.6pum PECH to
binary mixture of 1000 ppb benzene and 500 pplet@uare discussed. Figs. 5.15 - 5.18

and Table 5.6 show the estimation results obtaedsing the nonlinear model for this

second measurement data.
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Figure 5.15: Response of a SH-SAW sensor coated @l.6um PECH to a binary
mixture of 1000 ppb benzene and 500 ppb toluene (@ curve) along with the
estimated sensor response using the nonlinear mod#ltwo-analyte system (red
curve). Also shown in the figure are the estimatedteady-state frequency shifts
along with the steady-state frequency shifts determed by fitting the measurement
data using dual-exponential fit.
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Figure 5.16: Estimated normalized concentration obenzene using the nonlinear
model of two-analyte system co-plotted with the tharetical normalized
concentration of benzene for 0.6um PECH.
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Figure 5.17: Estimated normalized concentration ofoluene using the nonlinear
model of two-analyte system co-plotted with the tharetical normalized
concentration of toluene for 0.6um PECH.
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Figure 5.18: Estimated sensor response to a binargixture of 1000 ppb benzene and
500 ppb toluene (with 0.6um PECH coating) using theonlinear model of two-
analyte system obtained using the measurement datallected for the first 4, 5 and 6
minutes after the binary mixture sample has been itnoduced to the sensor co-
plotted together with the measurement data, measuneent data fitting and also the
estimated sensor response using all the data points
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Estimated Steady- | Steady-State Frequency Shift  Steady-State Frequency
State Frequency of Benzeneg,,; (kHz) Shift of Toluene,a,,; (kHz)
Shift (Measurement
Data 2) (% difference with ay;;) (% difference with ay;;)
After 4 minutes -0.2936 (8.25 %) -0.3125 (20.19 %)
After 5 minutes -0.2869 (10.34 %) -0.3045 (17.11 %)
After 6 minutes -0.2763 (13.66 %) -0.2935 (12.88 %)
Using all data points -0.2843 (11.16 %) -0.3015 (15.96 %)

Table 5.6: Estimated steady-state frequency shiffer a binary mixture of 1000 ppb
benzene and 500 ppb toluene (with 0.6pum PECH coaghusing the nonlinear model
of two-analyte system obtained using the measuremietiata collected for the first 4,
5 and 6 minutes after the binary mixture sample haveen introduced to the sensor
along with the estimated steady-state frequency dts obtained using all the data
points. Also given in the table are the percentagdifferences between the estimated
steady-state frequency shifts and steady-state fragncy shifts determined by fitting
the measurement data.

As depicted in Fig. 5.15, the estimated steadyedt@igquency shift for each analyte for
this second case is also in agreement (i.e. less4h5 % difference) with the steady-
state frequency shift of the analytes determinedittiypng the measurement data. The
values ofCs;; andC,, for both analytes in the sample are found to heaketp 1245 ppb
and 1090 ppb, respectively, for the concentratibbemzene and 349 ppb and 402 ppb,
respectively, for the concentration of toluene. eNthat, Cr;; and C,, found for both

analytes are withia-15 % difference. It should be noted th@t, are closer to the actual
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concentration values. Fig. 5.16 and Fig. 5.17 stimestimation results obtained for the
normalized concentration of each analyte versuse tialong with its theoretical
normalized concentration determined by using €2}. As can be seen from Fig. 5.16 and
Fig. 5.17, both the estimated normalized concentraif each analyte (i.e. benzene and
toluene) are in conformity with its theoretical malized concentration. This further
validates the estimation results obtained for thegond case. Fig. 5.18 shows the
estimated sensor responses and Table 5.6 showsstimated steady-state frequency
shifts obtained using the measurement data cotldotethe first 4, 5 and 6 minutes after
the binary mixture has been introduced to the geased on Table 5.6 and Fig. 5.18, it
can be seen that the estimated sensor responseasol parameters obtained using the
measurement data collected for the first 5 min(aesl above) agree well (i.e. less than
+20% difference) with the measurement data and measuredata fitting. Therefore,
again it has been shown that the steady-state dreyushifts of the analytes could be
estimated even before the sensor response reaelaey-state using the nonlinear model

of two-analyte system.

5.3.2 Linear Model

For the linear model, there are only two unknowardities that were estimated
which are the steady-state frequency shifts of eadlyte. The time constants of each
analyte are not estimated because it is assumedhég are known from the single
analyte measurement. As stated earlier, for thesgat work the average time constants

for various coating/analyte pairs given in Tabl2 dn chapter 4) were used as the time
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constant of the corresponding analyte. Similahtogrevious section, only the estimation
results obtained from two different measuremena dae. two different cases) will be
presented and discussed. In fact, the same measniretata were used so that the
efficiency of both models can be compared. Fordle® cases, two types of estimation
result figures will be presented and discussed. Tihs figure will contain the
information about the estimated sensor responsémaised sensor parameters,
measurement data, and measurement data fitting (et fitting parameters). Note that
the two-analyte measurement data were fitted udung-exponential fits. The second
figure will show several estimated sensor respodsésrmined after a certain number of
minutes plotted along with the measurement data amehsurement data fitting.
Following this figure is a table which shows the¢iraated steady-state frequency shifts
corresponding to the estimated sensor responsemsinothe second figure along with
the percentage difference between these estim&tadysstate frequency shifts and the
steady-state frequency shifts obtained from expamntad data fitting. This is done to

determine the minimum time required to obtain adyestimate of the sensor parameters.

First, the estimation results obtained by usingmfeasurement data of the sensor
response of SH-SAW sensor coated with 1.0um PEAinary mixture of 500 ppb
benzene and 200 ppb ethylbenzene are discussed.Fig Fig. 5.20 and Table 5.7 show
the estimation results obtained by using this lyimaixture data and the linear model of
the two-analyte system. As can be seen from Fi§j9,5the estimated steady-state
frequency shift for each analyte is in agreemest (ess thar-6 % difference) with the

steady-state frequency shift of the analytes detenby fitting the measurement data.
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Moreover, by using eq. 5.1 and eq. %2, andC,, for both analytes are found to be
around 285 ppb and 303 ppb, respectively for thceotration of benzene and 280 ppb

and 277 ppb, respectively for the concentratioetbf/lbenzene. Therefor€;;; andC,;

found for both analytes are within6 % difference. Fig. 5.20 shows the estimated sensor
responses and Table 5.7 shows the estimated sepasameters obtained using the
measurement data collected for the first 4, 5 amdirutes after the binary mixture has
been introduced to the sensor. Based on Tablertal #gy. 5.20, it can be seen that the
estimated sensor response and steady-state frgquemfis obtained using the
measurement data collected for the first 6 min(aesl above) agree well (i.e. less than
+20% difference) with the measurement data and measuredata fitting. Therefore,
the steady-state frequency shifts of the analytesdde estimated even before the sensor
response reaches steady-state and thus, the anatytthe binary mixture can be

guantified rapidly by using the linear model of t-analyte system.
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Figure 5.19: Response of a SH-SAW sensor coated hvit.Oum PEA to a binary
mixture of 500 ppb benzene and 200 ppb ethylbenzerfplue curve) along with the
estimated sensor response using the linear model tfe two-analyte system (red
curve). Also shown in the figure are the estimatedteady-state frequency shifts
along with the steady-state frequency shifts determed by fitting the measurement
data using dual-exponential fit.
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Figure 5.20: Estimated sensor response to a binangixture of 500 ppb benzene and
200 ppb ethylbenzene (with 1.0um PEA coating) usine linear model of two-
analyte system obtained using the measurement datallected for the first 5, 6 and 7
minutes after the binary mixture sample has been imoduced to the sensor co-
plotted together with the measurement data, measument data fitting and also the
estimated sensor response using all the data pointdote that the green dashed line
(estimated sensor response after 6 minutes) coineislwith the light blue dashed line
(estimated sensor response after 7 minutes).
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Estimated Steady- | Steady-State Frequency Shiff  Steady-State Frequency

State Frequency of Benzeneg,,, (kHz) Shift of Ethylbenzene,a;
Shift (Measurement (kHz)
Data 1) (% difference with ay;;)

(% difference with a;,)

After 5 minutes -0.1973 (23.31 %) -0.7968 (9.45 %)
After 6 minutes -0.1817 (13.56 %) -0.8372 (4.86 %)
After 7 minutes -0.1829 (14.31 %) -0.8343 (5.19 %)
Using all data points -0.1652 (3.25 %) -0.8688 (1.27 %)

Table 5.7: Estimated steady-state frequency shiffer a mixture of 500 ppb benzene
and 200 ppb ethylbenzene (with 1.0um PEA coating)sing the linear model of two-
analyte system obtained using the measurement datallected for the first 5, 6 and 7
minutes after the binary mixture sample has been itnoduced to the sensor along
with the estimated steady-state frequency shifts édined using all the data points.
Also given in the table are the percentage differares between the estimated steady-
state frequency shifts and steady-state frequencyiéts determined by fitting the
measurement data.

For the second case, the estimation results olotdigeusing the measurement
data of the sensor response of SH-SAW sensor caeitbd0.6um PECH to binary
mixture of 1000 ppb benzene and 500 ppb toluendiapeissed. Fig. 5.21, Fig. 5.22 and
Table 5.8 show the estimation results obtained sigguthe linear model of the two-

analyte system for this second measurement data.
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Figure 5.21: Response of a SH-SAW sensor coated w@l.6um PECH to a binary
mixture of 1000 ppb benzene and 500 ppb toluene (@ curve) along with the
estimated sensor response using the linear modeltbe two-analyte system (red
curve). Also shown in the figure are the estimatedteady-state frequency shifts
along with the steady-state frequency shifts determed by fitting the measurement
data using dual-exponential fit.
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Figure 5.22: Estimated sensor response to a binargixture of 1000 ppb benzene and
500 ppb toluene (with 0.6pum PECH coating) using thinear model of the two-
analyte system obtained using the measurement datallected for the first 4, 5 and 6
minutes after the binary mixture sample has been itnoduced to the sensor co-
plotted together with the measurement data, measuneent data fitting and also the
estimated sensor response using all the data points
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Estimated Steady- | Steady-State Frequency Shiff  Steady-State Frequency

State Frequency of Benzeneg,,, (kHz) Shift of Ethylbenzene,a;
Shift (Measurement (kHz)
Data 2) (% difference with ay;;)

(% difference with a;,)

After 4 minutes -0.2868 (10.38 %) -0.3143 (20.88 %)
After 5 minutes -0.2849 (10.97 %) -0.3058 (17.62 %)
After 6 minutes -0.2785 (12.97 %) -0.2961 (13.88 %)
Using all data points -0.2814 (12.06 %) -0.2988 (14.92 %)

Table 5.8: Estimated steady-state frequency shifter a binary mixture of 1000 ppb
benzene and 500 ppb toluene (with 0.6um PECH coagihusing the linear model of
two-analyte system obtained using the measuremenath collected for the first 4, 5
and 6 minutes after the binary mixture sample has éen introduced to the sensor
along with the estimated steady-state frequency g8 obtained using all the data
points. Also given in the table are the percentagdifferences between the estimated
steady-state frequency shifts and steady-state fragncy shifts determined by fitting
the measurement data.

As can be seen from Fig. 5.21, the estimated ststadg frequency shift for each analyte
for this second case is also in agreement (i.es tean+15 % difference) with the
steady-state frequency shift of the analytes deteanby fitting the measurement data.
The values foCy;; andC,, for both analytes in the sample are found to hektp 1245
ppb and 1090 ppb, respectively for the concentnatibbenzene and 349 ppb and 402

ppb, respectively for the concentration of tolueNete that,Cr;; andC,,, found for both

analytes are withig=15 % difference. It should be noted that the value6.gf are closer
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to the actual concentrations of the analytes. Bi@2 shows the estimated sensor
responses and Table 5.8 shows the estimated sséateéyfrequency shifts obtained using
the measurement data collected for the first 4nd & minutes after the binary mixture
has been introduced to the sensor. Based on Tablendl Fig. 5.22, it can be seen that
the estimated sensor response and sensor pararobtamsed using the measurement
data collected for the first 5 minutes (and aboagjee well (i.e. less tha#20%
difference) with the measurement data and measumetia¢a fitting. Therefore, again it
has been shown that the steady-state frequenag siithe analytes could be estimated
even before the sensor response reaches steadyisiag) the linear model of the two-

analyte system.

5.3.3 Summary on Two-Analyte Estimation Results

In this section, the summary of the two-analytanestion results attained by
using the nonlinear and linear model are preseddestimation results obtained by
using these two different models are summarizedahle 5.9 through Table 5.11. It
should be noted that the observed discrepanciegebetCs;; and C,;; with the actual
concentrations can be attributed to the error i@ shmple preparations as well as

volatility of the hydrocarbon analytes.
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Measurement Data 1 Measurement Data 2
(500 ppb benzene + 200 ppb (1000 ppb benzene + 500 ppb
ethylbenzene) (1.am PEA) toluene)
(0.6 pum PECH)
Benzene Ethylbenzene | Benzene (kHz) Toluene (kHz)
(kHz) kHZz)
Uit Aest Uit Xest Uit Xest Uit Aest
Nonlinear | -0.16| -0.17 (6| - -0.89 | -0.32| -0.28 -0.26 -0.30
Model %) 08| (1%) (13 %) (15 %)
8
Linear |-0.16| -0.17 - -0.87 | -0.32| -0.28 -0.26 -0.30
Model (6%)) | 0.8 | (1 %) (13 %) (15 %)
8

Table 5.9: Estimated steady-state frequency shift,.,;, and steady-state frequency
shift obtained by measurement data fitas;, for the two different measurement
data. Note that the estimated steady-state frequepnshift attained by using the two
different models of the two-analyte system is presged. Given in parentheses are
the percentage difference between the estimated aty-state frequency shifts and
the steady-state frequency shifts obtained by measment data fit.

Measurement Data 1 Measurement Data 2
(500 ppb benzene + 200 ppkh (1000 ppb benzene + 500 ppb toluene)
ethylbenzene) (1.am PEA) (0.6 pm PECH)
Benzene | Ethylbenzene| Benzene (ppb) Toluene (ppb)
(ppb) (Ppb)
Cfit Cest Cfit Cest Cfit Cest Cfit Cest
Nonlinear | 285 | 303 | 280| 283 1245 | 1090 349 402
Model (6 %) (1 %) (12 %) (15 %)
Linear 285 | 303 |280| 277 1245 | 1090 349 402
Model (6 %) (1 %) (12 %) (15 %)

Table 5.10: Estimated concentration( g, and concentration determined from
measurement data fit,Cy;, for the two different measurement data. Note thathe
estimated concentration attained by using the twoitferent models of the two-
analyte system is given. Given in parentheses areet percentage difference between
the estimated concentration and the concentrationetermined from measurement
data fit.
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Measurement Data 1 Measurement Data 2
(1000 ppb benzene + 1000 ppb (1000 ppb benzene + 500 ppb tolueneg)
ethylbenzene) (1.Gam PEA) (0.6 pm PECH)

Minimum Estimation Time Minimum Estimation Time (minute)

(minute)
Nonlinear 3 5
Model
Linear 6 5
Model

Table 5.11: Minimum estimation time required to obtin a good estimate of sensor
response (or parameters) for the two different mods using the two different
measurement data. Note that the results shown in ¢htable are not absolute, and
could be further improved by minimizing the measurenent noise.

Based on Table 5.9 and Table 5.10, it can be de#rtlie estimated steady-state
frequency shift and concentration of the analytesiding the nonlinear and linear model
of the two-analyte system agree well (i.e. less tha5 % difference) with the steady-
state frequency shift and concentration of analytesermined from fitting the
measurement data. Therefore, it can be concludsdalimost the same results can be
attained either by using the estimation technidaethe binary mixture sample presented
in this work or by fitting the measurement data.wduwer, it should be noted that the
advantage of using estimation theory to quantify #malytes lies in the fact that the
analytes could be quantified well before the semssponse reaches steady-state. From

Table 5.11, it can be seen that by using the esbm&chniques presented in this work,
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the time required to quantify the analytes in thealty mixture is about 3-6 minutes
which is less than half the time required for tkasor response to reach steady-state. As
a result of using estimation theory, one could iobtan accurate estimate of the steady-
state frequency shift of the analytes in the bimarmyture even before the sensor response
reaches steady-state. Note that from Tables 5.9, % can be seen that for the two-
analyte system, the percentage difference and thinoim time required for estimation
are larger than for the single analyte system; ighi® be expected because quantifying
the two analytes requires accurate evaluation efdéviations of the response to the
analytes from a single exponential curve, and tliEseations can be small if the two

analytes have response time constants in the sateeaf magnitude.

Moreover, from the estimation results presentedables 5.9 - 5.11, it can be
inferred that both nonlinear and linear model & two-analyte system presented in this
thesis perform equally well. Both the models arpatde of producing estimates of the
steady-state frequency shift well before the sensmponse reaches steady-state.
Although, both models performs equally well, theelr model is slightly better than the
nonlinear model because, for the linear model,esgtemation is performed by using KF
which is an optimal filter (i.e. the convergencetloé unknown quantities to their actual
values are guaranteed if the system meets detlstatviteria). For the linear model,
there are only two unknown quantities that are dpestimated. Another advantage of the
linear model is that, its state space model carebdily extended to the case of multiple
analytes (three or more analytes in the samplehaathe steady-state frequency shift of

multiple analytes can be estimated.
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6. SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1 Summary

The objective of this work was to use estimatiogotly, in particular Kalman Filter
(KF) and Extended Kalman Filter (EKF) to analyzed ao quantify the analyte(s) in
binary mixtures and single analyte samples of BT&tnpounds (benzene, toluene,
ethylbenzene and xylenes) in real-time. Also disedsin this work were the process of
linear baseline drift correction using KF and thegess of correcting for outlier points in
the sensor data using a combination of discreteplass filter and KF (or EKF depending
on the model used). Note that both linear basdlin# correction and outlier points
correction techniques presented in this thesidbegperformed in real-time. Since KF and
EKF are used extensively as a means toward sigaeégsing in this thesis, the theory of
KF and EKF were reviewed first. Under this reviaiwe formulation of KF and EKF
were presented. Also discussed were the algoritimbow to apply KF and EKF to

estimate the unknown parameters.

Next, the models for the sensor responses to sarglebinary mixtures of analytes
were discussed. For the case of the single ansygiem, the sensor response model was
developed by assuming that the single analyte systbeys Henry's law for
concentrations of analyte below 50 ppm [7, 34, &%).the other hand, for the case of
binary mixtures of analytes, the sensor responsgeimeas developed by first assuming

Henry’s law and by also assuming that the mixtureys Fick's law of absorption which
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states that when the mixture is extremely dilube sorption of one analyte into the
polymer does not interfere with the sorption of gerond analyte in any way. Free
partitioning of the analyte between polymer andeamys phase is assumed, implicating
that the sorption process is reversible (i.e. gatlysisorption occurs). It is also assumed
that the steady-state frequency shifts of eachysah the binary mixture are additive.
Moreover, since the sensor data considered in ribgept work are collected at discrete-
time instants, the discrete-time model of the @nghalyte system and two-analyte
system were found by using Euler's continuous tapproximation formula. In order to
apply estimation theory, the discrete-time versibrihe single analyte and two-analyte
systems were transformed into the state-space fBanthe case of the single analyte
system, only one state-space model was developddoarthe case of the two-analyte
system, two different state-space models were dpedl where one is known as the
nonlinear model because its state-space modelnbBnear and the other is known as
linear model because its state-space model isrlingde that the state-space models are
dependent on the unknown parameters that need éstheated. For the single analyte
system, it is assumed that the normalized condemraof the analyte, steady-state
frequency shift and time constant are unknown aaskd on these unknown quantities,
the state-space model turns out to be nonlinearefbre, for the single analyte system,
EKF algorithm has to be used to estimate the unknparameters. For the nonlinear
model of the two-analyte system, it is assumedtti@normalized concentration of each
analyte and the steady-state frequency shift oh eamalyte are unknown and must be
estimated using EKF algorithm. For the linear modkekthe two-analyte system, it is

assumed that the steady-state frequency shift di aaalyte is unknown and must be



135

estimated using KF. Note that for the linear modglthe two-analyte system, the
normalized concentration of the analytes can berdehed for each time instant by using

the sensor response model and the known time curadtéhe analytes.

In order to show the validity of the estimationdhe (in particular KF and EKF) to
estimate the unknown parameters of the sensor mespt® single analyte samples and
binary mixture samples, the proposed state-spaaeinhavere tested on the measured
data collected in the Microsensor Research LaboratbMarquette University using a
shear horizontal surface acoustic wave (SH-SAW3}@eooated with various chemically
sensitive polymers. Before discussing the estimatiesults obtained for the single
analyte system and the two-analyte system, theafmedtals of SH-SAW sensors and the
process of data acquisition were first reviewedteNbat the types of polymers used to
perform the experiments were also indicated. Itlen noticed that the measured data
collected in the lab exhibit a linear baselinetdaild also in some cases, outlier points
have been observed in the measured data (notadtetl data collected in the field may
also exhibit linear baseline drift and might produsome outlier points). Therefore,
before using the measured data to perform the astm process, the data have to be
corrected for the linear baseline drift and thelieutpoints. In this work, it has been
proposed to use a simplified technique of lineaekine drift correction using KF which
is based on the baseline drift correction technjgn@sented in [17]. For the correction of
outlier points, a new technique has been proposed)@a discrete low pass filter and KF
(or EKF depending on the state-space model of yisées). The data pre-processing

techniques (i.e. linear baseline drift correctiowl ghe elimination of outlier points in the
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measured data) were tested on the measured dathearebults obtained are presented to
prove the validity of the proposed technique. Algoshould be noted that since the
proposed data pre-processing techniques uses @efintlacory, the data pre-processing

can be done in real time as the data are recorded.

Finally, the estimation results obtained for thegk analyte system and for the two-
analyte system using both nonlinear and linear inedes presented and discussed. Also
for the two-analyte system, the performance oftiine different models was compared.
For all models (i.e. one single analyte state-spaodel and two different state-space
models of the two-analyte system), the estimated@eresponse was co-plotted with the
measured data and measured data fit so that theaest response can be readily
compared to the measured response. Based on theatest results obtained, all the
estimated sensor responses for all models showgdod agreement with the actual
sensor responses. Furthermore, the estimated seaisoneters were also in conformity
with the sensor parameters determined by fittirggrtteasurement data. It has also been
shown that the sensor parameters could be estinrateds than half the time required
for the sensor response to reach steady-stateefdherby using the estimation technique
presented in this thesis, the analyte(s) coulduaamtified rapidly. Moreover, based on the
estimation results obtained for the two-analytetesysusing both nonlinear and linear
models, it has been shown that both models peregoally well and are capable of

estimating the unknown parameters rapidly.
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6.2 Conclusions

One state-space model for the single analyte systedntwo different state-space
models for the two-analyte system were developeidiwdnables estimation theory to be
applied to estimate the unknown parameters of ¢he@ response to BTEX compounds
using a SH-SAW sensor. Based on the accurate ggimrasults obtained by using these
state-space models, it can be concluded that thdelsadeveloped were accurate

mathematical representations of the systems fi@analyte and two-analyte system).

Typically, the sensor response of analyte(s) (irtipdar BTEX compounds) may
take several minutes in the liquid phase to redehdy-state. However, by using the
estimation techniques demonstrated in this thesisarticular KF (or EKF depending on
the state-space model), the analyte(s) could betied rapidly. Therefore, using the
estimation techniques, sensor parameters can headely estimated well before the
sensor response reaches steady-state and thisigraficantly improve the time to
guantification of the analyte(s). In this researithhas been shown that the time to
guantification of the analyte(s) could be reduaealiout less than half the time required
for the sensor response to reach steady-state.méams that the concentration of the
analyte(s) in the sample can be determined rapidt/based on this concentration level
of the analyte(s) in the sample, mitigation plansld be carried out earlier. Shortening

sensor exposure times may also improve accuraggatability, and coating longevity.
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This research also demonstrated new data pre-iagesechniques which are
capable of correcting for linear baseline drift andlier points in the measurement data.
The linear baseline drift correction techniqueasdd on KF so that the baseline drift can
be corrected in real-time. Normally, the raw meadulata collected in the field for the
sensor responses to BTEX compounds will exhibgdmbaseline drift as well as a rapid
response time. Therefore, the linear baseline doftrection technique demonstrated
could be employed to correct the linear baseliné or real-time. The outlier points
correction technique is based on a combinationisdrete low pass filter and KF (or
EKF) so that the outlier points can be eliminatadialy (in real-time) as soon as these
outlier points are detected in the measured dabée kthat the outlier points have to be
removed from the measured data to obtain an aecesdtmate of the sensor parameters.
Outlier points will be recorded if the measuremeaise is very high, sometimes during
the start of a new measurement, or if any changethe boundary conditions at the
device surface occur. Therefore, the outlier pordsrection technique demonstrated

could be employed to filter out the outlier poiittsneasured data in real-time.

Since all the sensor signal processing techniguesepted in this thesis could be
performed in real-time, these techniques can bd umseeal world applications to rapidly
quantify the analyte(s) in samples. All the sigpaicessing techniques presented can be
implemented in a single microcontroller or in a simgensor system. Such a sensor
system will have the capability of correcting theasured data for any linear baseline
drift, correcting the measured data for any outliemts and, at the same time, use the

corrected measured data to estimate the sensomeis rapidly (in real-time).
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Moreover, such a compact sensor signal processistera will reduce the cost of
chemical sensing as the data could be processeédmtaly in the field with minimum
manpower. There are various potential applicatidois a compact sensor signal
processing system. One such possible applicatibribgin monitoring of spill clean-ups.
In this case, the level of remaining contaminatshiould be regularly checked and by
using a compact sensor signal processing systemgribundwater contamination level
could be monitored remotely and the result couldraesmitted to the company which
performs the clean-up. Other applications could the legally required periodic
groundwater monitoring around underground storagikd, or the monitoring of the

plume in a sub-surface marine oil spill [46].

Finally, it should be pointed out that the sensmna processing techniques
presented in this thesis can be generalized taygeyof chemical sensor platforms used
to detect single analytes or binary mixtures oflgea, and are not specific to the SH-
SAW sensor platform. The techniques should worka#guvell on sensor data collected
using other sensor platforms such as microcantibased sensors, optical chemical

sensors and other acoustic wave-based sensors.

6.3 Future Work

The work presented in thesis could be expandedamynwvays. Further improvements

in the sensor signal processing may be possibl¢ghitnsection, a few possible future

research proposals are listed.
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(@)

In this thesis, the state-space models for theamalyte system were developed
by assuming that the time constant of each anatytine binary mixture are known.
However in some applications, the time constantsagh analyte in the mixture will be
unknown. Therefore, as a possible extension, gsaraption could be relaxed in order to
obtain a more general state-space model for theatvadyte system so that the state-space
model obtained can be used in more applicationhidfextension were made, one does
not have to know the time constants of each anatytee binary mixture beforehand as
the generalized state-space model can be usedtitoats the time constant of each
analyte together with its steady-state frequendy. skhis general state-space model also

could be used to perform estimation on any unknbimary mixture sample.

(b)

In the present work, only the case of quantifamatof single analyte and two
analytes in a sample using estimation theory wensidered. However, many real world
applications require the ability of a sensor systmquantify several analytes in a
complex mixture. Therefore, this work could be mally expanded to the case of
guantification of multiple analytes in a complexxtare (i.e. more than two analytes). In
particular, the linear model of the two-analyteteys presented in this thesis could be

easily modified so that the multiple analytes miature could be quantified.
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(€)

As mentioned in the problem statement (chapteif 1his work, the ultimate goal
of this research is to quantify benzene in grouridvaamples which typically contain
mixtures of multiple analytes. As a first step todsthis goal, in this thesis it has been
shown that benzene in a binary mixture sample cbalduantified. The case considered
could be expanded so that benzene in multiple smamples could also be quantified
(i.e. benzene in mixtures of three or more analgtedd be quantified). Therefore, future
work could consist of extracting only benzene detan the sensor response of samples

containing multiple analytes.

(d)

The sensor signal processing presented focusedynwnthe quantification of
the analyte(s) in a sample. Another aspect of sesgmal processing which is the
identification of the analyte(s) in the sample cbalso be explored. Generally it is of
interest to identify as well as quantify the ane{g) that are present in a sample.
Quantification aspect of the analyte(s) in the dangan be performed by using the
techniques presented in this thesis. As for thentifieation of the analyte(s) in an
unknown sample, a new approach using estimatiooryheould be investigated so that
both identification and quantification of the artalg) could be performed rapidly. In
order to perform identification, a sensor arrayhwdifferent coatings had to be used so

that the target analyte could be identified moreusately. The use of estimation theory
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in the identification process will enable the respes of these multiple sensors to be
processed simultaneously and by using pattern néog, the target analyte can be

identified in real-time.

(€)

The sensor signal processing techniques presemtdusi thesis uses estimation
theory in particular, Kalman Filter (KF) and ExtendKalman Filter (EKF) to quantify
the analytes in real time. Besides KF and EKF,el@e some other estimation theories
that could have been used to perform the senspalspgocessing. Therefore, as a future
work in this area, one could investigate the fabsilof using other estimation theories
to quantify the analytes. A comparison of the vasi@approaches will then determine
which of these estimation theories is best suitedHe quantification of the analyte(s) in

a given sample.
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APPENDIX A: ADDITIONAL OUTLIER POINTS CORRECTION RE SULTS
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Figure A. 1: Outlier points corrected data co-ploted together with the measurement
data with outlier points. The data are shown in twadifferent colors where blue
represents the measurement data with outlier pointgunfiltered data) and red
represents the outlier points corrected measuremertata (filtered data). Both the
data points and the curve fit for the data points e shown in the figure above.
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Figure A. 2: Outlier points corrected data co-ploted together with the measurement
data with outlier points. The data are shown in twadifferent colors where blue
represents the measurement data with outlier pointgunfiltered data) and red
represents the outlier points corrected measuremerttata (filtered data). Both the
data points and the curve fit for the data points ee shown in the figure above.



150

APPENDIX B: MATLAB CODES

B.1 MATLAB Code for Outlier Points Filtering

%%%% % %% %% %% % % %% % % %% % % %% % % %% % % %% % % % %R808808008080020080800200808080¢
%%%%

% Author: KARTHICK SOTHIVELR

% File Name: outlier_correction_con.m

% Date (Created): 02-27-2013

% Date (Modified): 02-17-2014

%%%% % %% %% %% % % %% % % %% % % %% % % %% % % %% % % Y %808808008080080080808200008080¢
%%%%

% Description:

% Program to implement discrete first-order low pas s filter to

eliminate

% the outlier points in the measurement data.

% Discrete Low-Pass Filter are implemented together with KF using the

% Linear Model of the Two-Analyte System.

%%%% %% %% %% %% % %% % % %% % % %% % % %% %% %% % % %9
%%%%

% Cleaning

clear all

close all

clc

%%%% % %% %% %% % % %% % % %% % % %% % % %% % % %% % % % %808808008080080080898200008080¢
%%%%

% Open and read the measurement file

FID = fopen(  'op_thesis2.ini' , '), % 121211PEABEJ3binaryCor

data = textscan(FID, '%f %f" );

fclose(FID);

%%%% % %% %% %% %% %% % % %% % % %% % % %% % % %% % % % %808808008080020080808200008080¢
%%%%

% Order the data (Based on Analyte)

y1 = data{2}(80:154); yb1l = data{2}(75:79); % Benzene (800ppb)

y2 = data{2}(231:305); yb2 = data{2}(226:230); % Benzene (200ppb)

% y3 = data{2}(375:456); yb3 = data{2}(370:374); % Benzene (200ppb)

% y4 = data{2}(525:605); yb4 = data{2}(520:524); % Benzene +

Ethylbenzene (500ppb + 1000ppb)

80%0%%

80%%%

0%%%

80%0%%

80%0%%

% Sampling Period:
T=12; % in seconds

% Time Constants (in sec) from Averaged Single Ana lyte Table:

tauA = 36.1+5; % Benzene

tauB = 204+1.5; % Ethylbenzene

%%% %% %% %% %% % % %% %% %% %% %% %% % %% % % %% % % %R808088048080880800808808008988080%0% %
%%%%

% Select the case to be analyzed

y=yl;yb=ybl;

kmax = length(y); % Length of the measurement data points



%%%% %% %% % %% %% %% % % %% %% %% %% %% %% %% % % %9
%%%%

SSA = 0.244, % Benzene

ssB = 2.24; % Toluene

%%%% % %% %% %% %% %% % % %% %% %% % % %% %% %% % % %9
%%%%

% Introducing Outlier Points in the Data

%%%% % %% %% %% %% %% %% %% %% % %% % % %% % % %% % %0 %R8080880480808808008088080080800%
%%%%

y(8)=y(8)+ 0.5;

y(15)=y(15)+0.7;

y(25)=y(25)-0.5;

y(35)=y(35)+0.9;

y(45)=y(45)-0.8;

y(50)=y(50)-0.5;

y(70)=y(70)+0.7;

y_ori=y;

%%%

0%%%

%%%

%%%%%%0%% %% %% %0 %% %% % %% %% % %% %% %0 %% % %% %00
%%%%
% Discrete Low-Pass Filter Parameter

0%%%

%69%%%%%%%%%%%% %% %% % % % % %% %% %% %% %% % % %0 %0808889808008080808006000008080890%0%%
%%%%
tau = tauB; % Select the time constant value (largest value)

alpha = T/(tau + T); diff=0;

%9%%%%% %% %% %% %% %% %% % % %% %% %% %% %% %% %0 %69
%%%%

% Initialize Kalman Filter variables
%9%%6%6%6%%%%% %% %% %% %% % % %% %% %% %% %% % % %0 %0 %080888080080808080200000000008000
%%%%

yhat = zeros(1,kmax); x = zeros(2,kmax+1); P = zero s(2,2,kmax+1);

x(:,1) = [0; OF; % Initial state vector (Initial state estimate)

P(:,:,1) = diag([1000, 1000]); % Initial error covariance Matrix

W=10;V=0; % Covariance of Measurement and process noise

G=1[1]; % Matrix G (1 by 1 Matrix)

U = ones(kmax,1); % Step Input

m_A=0; m_B=0; % Initial value of the normalized Concentration

% System Matrices (A and F)

A = eye(2);

F=[11];

% Adsorption Rate Constant:

Sa=(T/tauA); % Benzene

Sb=(T/tauB); % Ethylbenzene

0%%%

%%%

£.0000000000000006000000000000000 0

%0%%%%%0%0% %% %% %% % %% % %% %% % %% % %% %% %% % %00
%%%%
Qprrrxixkrkixixk Correction of Outlier Points and KF Scheme
*kkkkkkkkkkkkkkk
% Loop to evaluate each instant in time
for i=1:kmax
C =[m_A() m_B(®i)]; % C Matrix
% Simulate the normalized concentration values:
m_A=(1-Sa)*m_A + Sa*U;
m_B = (1 - Sh)*m_B + Sb*U;
% Estimated measurement

80%0%%



152

yhat(i)=C*x(:,i);

%%%0%% %% %% %% % %% % %% %% % %% % %% % %% % %% %% %09
% Discrete Low-Pass Filter Scheme:
if i==1
y(i) = alpha*y(i);
end
if i>1
diff = abs(y(i) - yhat(i));
end
if diff>=0.3
y(i) = alpha*y(i) + (1-alpha)*y(i-1);
end

0%%%

%9%6%6%6%6%%%%% %% %% %% %% % % % %% %% %% %% %% %% %0 %%%
K = (A*P(,:,I)*CY((C*P(:,:,i)*C' + G*W*G")) 7 % Kalman Gain
X(:,i+1) = A*X(:,D) + K*(y(i)-C*x(:,D)); % State Update Equation
% Error Covariance Update Equation:
P(,:,i+1) = (A-K*C)*P(:,:,I)*(A-K*C)' + K*G*W* G"*K' + F*V*F
end

%%%% %% %% %% %% % %% % % %% % % %% %% %% %% %% % % %9
%%%%

% Plot and Analysis

%%%% % %% % % %% % % %% % % %% % % %% % % %% % % %% % % %
%%%%

vk=0:kmax-1;

vt=(0:0.1:kmax-1)";

0%%%

%%%

% Experimental Data Fitting

fun=[ ‘'a*(l-exp( num2str(-(T/tauA)) *x))+b*(1-exp(' numa2str(-
(T/tauB)) )

hfit = fit((0:kmax-1)',y_ori,fun, 'StartPoint' 1 1]);

% Steady-State Sensitivity

a = round(hfit.a * 1e2)/1e2; % Analyte A

b = round(hfit.b * 1e2)/1e2; % Analyte B

vfit = a*(1-exp(-(T/tauA).*vt)) + b*(1-exp(-(T/tauB ).*wt));

% Filtered Data Fitting

fun2=[ ‘fa*(1l-exp( num2str(-(T/tauA)) "*x))+fb*(1-exp(’ num2str(-
(T/tauB)) )

hfit2 = fit((0:kmax-1)",y,fun2, 'StartPoint' 1 1]);

% Steady-State Sensitivity

fa = round(hfit2.fa * 1e2)/1e2; % Analyte A

fb = round(hfit2.fb * 1e2)/1e2; % Analyte B

Vil = fa*(1-exp(-(T/tauA).*vt)) + fb*(1-exp(-(T/ta uB).*vt));

% Converting time step number to minutes and add ba selines

y_ori = [yb(1:5);y_ori]; y=[yb(1:5);y];

vfit=[((0:0.1:4.9)*0);vfit]; vfil=[((0:0.1:4.9)*0 );Vfil];
vk=((0:length(y_ori)-1))*(T/60); vt=(0:0.1:length( y)-1)*(T/60);

% Plot
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figure(1)
% Plot of Frequency Shift vs Time step
h=plot(vk, y_ori, b v, Vit “b' o, vk, Y, ‘or' i, Vfil, rt )

%title (‘Frequency Shift vs Time','FontSize',24)
LineWidth = [1];

xlabel(  "Time,t (min)' , 'FontSize'  ,14); ylabel( 'Frequency Shift \Deltaf

(kHz)' , 'FontSize' ,14)

h_legend = legend( 'Experimental data' , 'Experimental data fitting' ,
'Filtered data’ , 'Filtered data fitting' );

set(h_legend, 'FontSize' ,15);
set(h, ‘LineWwidth' ,3)

axis([0 16 -3.5 1.5])

annotation(  ‘'textbox' , [0.2,0.4,0.1,0.1],

'String' ,[ 'Experimental data fitting“éxpression: \Deltaf =
' ’ ”r.1um25tr(a) *[1-exp(-' numz2str(round((1/tauA)*1le4d)/1ed) 't)] +
numa2str(b) "*[1-exp(-' num2str(round((1/tauB)*1e4)/1e4)
oD
%9%%%%% %% %% %% %% %% %% % % %% %% %% %% %% %% %0 %69 0%%%
%%%%

%% %% %% %% %% %% %% %% %% %% %% %% %% End of Program
%%%%% %% %% %% % %% %% %% %% % %% %% %% % %% %% %
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B.2 MATLAB Code for Linear Baseline Drift Correctio n

£.000000000000000000000000000000 0

%%%%%% %% %% %% %% %% %% %% %% %% % %% % % %% % % %09
%%%%

% Author: KARTHICK SOTHIVELR

% File Name: baseline_corr_li.m

% Date (Created): 02-27-2013

% Date (Modified): 02-17-2014

80%0%%

%%%%%%% % %% % % %% % % %% %% %% % %% %% % % %% % % % %08088008080080080808800008088080800%6% %
%%%%

% Description:

% Program to implement baseline drift correction us ing Kalman Filter

% Linear Interpolation Using KF are used to correct for baseline drift

%9%%%%% % %% %% %% %% % %% %% %% %% % %% %% %% %% % %08804886800880088008008008800880R
%%%%

%%%

% Cleaning

clear all

close all

clc

%%%9%%%% %% %% %% %% % %% %% %% %% % %% % % %% % % %9 0%%%
%%%%

% Open file and read the data from the file

FID = fopen(  'newset.ini’ T ), % 110620Pibbett2

data = textscan(FID, '%f %f' );

fclose(FID);

%%%9%%%% %% %% %% %% %% %% % %% %% % %% % % %% % % %9 0%%%
%%%%

Qpr**rrrrrikkirekiik Specify the Number of Responses

kkkkkkkkkhkkkhkhkhhhhhhhhk

N_single = 1; % Total number of single analyte response

N_mixture = 3; % Total number of binary mixture response

%%%9%%%% %% %% %% %% %% %% % %% %% % %% % % %% % % %9 0%%%

%0%%%

% Measurement Information:

T=12; % Sampling Period (in seconds)

W =100; % Measurement noise variance

96%%%% %% %% %% % %% %% % %% %% %% % %% %% %% % % % %Y
%0%%%

%************************* Slngle Analyte

* * * * * * *

0%%%

tau_res_single = [29.78]; % Time constant for the single analyte

responses

analyte_in_single = [650 714]; % Point of analyte in or the end point

analyte_out_single = [681]; % Point of analyte out

%%%%%% %% %% % %% %% % %% %% %% % %% %% % %% % % % % %08088008080080080808800008088080800% %%

%%%%

%***************** Blnary Mlxture

% Time constant for the binary mixture

tau_res_mixture =[29.78 82.88 179]; % Benzene, Toluene, Ethylbenzene

analyte_in_mixture = [199 353 503]; % Point of analyte in or the end
point
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analyte_out_mixture = [253 403 556]; % Point of analyte out

@6 * * * * * * * * * * * * * *

*kk

%%%%%%% % %% % %% %% % %% %% %% % % %% % %% %% % % %% 80%%%
%%%%

%%%%%%% % %% %% %% % % %% % %% %% % %% % %% %% % % %% 30%%%
%%%%

Qo*** Rk Linear Interpolation Info

% Number of points that need to be averaged on base line

avg_points = 15;

% Number of points to check to determine the best f it(Check Starting

Point)

points = 5;

%%%%%%% % %% %% %% %% %% % %% %% % %% % %% %% % % %% B96%%%
%%%%

%%%%%%% % %% % %% %% % %% %% %% % % %% % %% %% % % %% B96%%%
%%%%

Yo*** AR AR xRk Counters

ff=0; hh=0; gg=1; II=0; bestfit=0; kk=1;
%%%%%%%%% %% %% % % % %% %% %% %% %% %% %% % % % %098
%%%%

O *xFFkrxrikkkkrkkkkkxx Sorting the analytes

* * * * *

880%0%%

analyte_in = sort([analyte_in_single analyte_in_mix ture]);

% Single Analyte Response will be analyzed first, t hen two analyte

response

%%%%% %% %% %% %% % %% %% %% %% %% %% %% %% % %% %Y 0%%%

%%%%

%%%%%% %% % %% %% %% %% % %% %% %% %% % %% %% %% %9
%%%%

%************************** Reset th e CO u nte rs
kkkkkkkkkhkkkkhkkkhhkkkhkhkkkhkkkk

0%%%

[1=0; bestfit=0; kk=1; pp=1; % Counters
%%%%%% %% %% %%% % %% %% %% %% %% %% %% %% % %% %Y 0%%%
%%%%

%%%%%% %% % %% %% %% %% % %% %% %% %% % %% %% %% %9
%%%%

%************************ Blnary MIXtUI’e Sect|0n
kkkkkkkkkhkkkkhkkkhkhkkkhkhkkkhkk

while (kk<=N_mixture)

0%%%

while (pp<=4)

%%%%%%% %% %% %% %% % %% %% %% %% % %% % % %% %% %9
Qp*** FRkkkxkksx | inear Interpolation Section
kkkkkkkkhkhkkhkhkkkkkkkkx
% Baseline before the response
yfir = data{2}(analyte_in_mixture(kk)-
avg_points:analyte_in_mixture(kk));

0%%%




% Determine the baseline after the response
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for jj=1l:length(analyte_in) % To determine the second baseline

if analyte_in(jj)>analyte_in_mixture(kk)
break
end
end

% Baseline after the response
ysec = data{2}(analyte_in(jj)-avg_points:analyt

% Response
y1 = data{2}(analyte_in_mixture(kk):analyte_out

% Average of baseline before the response
avgl = sum(yfir)/length(yfir);

% Average of baseline after the response
avg2 = sum(ysec)/length(ysec);

% Slope of the baseline drift

b = (avg2-avgl)/(analyte_in(jj) - analyte_in_mi
% y-intercept of the baseline drift

a = (avgl);

% Added Part
if kk==1
change = 15;
else

change = 10;
end

% Response to be baseline corrected
yy = data{2}(analyte_in_mixture(kk)-change:anal

% Section to identify and select the time constant
tau=tau_res_mixture; % Sorption time constant
% Case of Benzene + Toluene
if (pp==1)
tauA=tau(1); tauB=tau(2);
end
% Case of Benzene + Ethylbenzene
it (pp==2)
tauA=tau(1); tauB=tau(3);
end
% Case of Benzene + Toluene
if  (pp==3)
tauA=tau(1); tauB=tau(2);
end
% Select the Correct Case (Based on Best Curve Fit)
it (pp==4)
[rr,place]=min(err_store);
if (place==1)
tauA=tau(l); tauB=tau(2);
end
if (place==2)
tauA=tau(l); tauB=tau(3);

e_in(j);

_mixture(kk));

xture(kk));

yte_in(jj)-70);

of the analytes
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end

if (place==3)
tauA=tau(2); tauB=tau(3);

end

vk2 = O:length(yy)-1;

% Interpolate the Linear Baseline drift
yfit = a + b*vk2;

% Linear Baseline Drift Correction

yy2 =yy - yfit’
%If the starting point produces the best curve fit store the
result
if (bestfit==1)
for j=1:length(yy2) % Keep track of all correction
hh=hh+1,;

yall(hh)=yy2(j);
yall2(hh)=yy(j);
end
end
end

%%%

%%%%% %% %% %% %% % %% %% %% %% % %% %% %% %% % %%

%%9%%% %% %% %% %% % %% %% %% %% % %% %% %% %% % %% 0%%%
Qp*** rxxkixxkSelect the best curve
firess *
if (bestfit==1)
pp = pp+1;
bestfit=2;
analyte_in_mixture(kk)=ori;
end

0%%%

%%%%% %% %% %% % %% %% %% %% % %% %% %% %% % %% % %00

%%%

%%0%%% %% %% %% %% % %% %% %% %% % %% %% %% %% % %%
%*****************************EKF
Section** *
% EKF to estimate the concentration/s.s. sensitivit y
y =vy1; ymeas=y1,
kmax = length(y);

% Adsorption Rate
Sa=(T/tauA); Sb=(T/tauB); % Analyte A and B

% Start EKF Scheme

X = zeros(4,kmax+1); P = zeros(4,4,kmax+1); yha t = zeros(1,kmax);
% Initial state vector

x(;,1) =[0; 0; 0; O;
% Initial error covariance Matrix

P(:,:,1) = diag([0.01, 0.01, 25000, 100000));



V = 3*eye(2);
G =[1];
U = ones(kmax,1);

% Matrix G (dh/dw) (1 by 1 Matrix)
% Step Input

% Loop to evaluate each instant in time
for i=1l:kmax
C = [x(3,i) x(4,i) x(1,i) x(2,)];
h = [x(3,i)*x(1,1) + x(4,i)*x(2,D)];
y(i) = y(i) - a - b*(i-1);

QprrrrrkirrriiiirkkMeasurement Update
Eq u atl Ons**********************
x1 = x(:,i); PL = P(,:,0);
X(:,i+1) = x1 + P1*C*(inv((C*P1)*C' + G*W*G"))
P(,:,i+1) = P1 - P1*C*(inv(C*P1*C' + G*W*G"))
yhat(1,i) = h;

%**********************Ti me U pdate
E q u atl on khkkkkkkkkkkkkkkkkkkkkkkkk

% f matrix
f = [(1-Sa)*x(1,i+1)+Sa*U(i); (1-Sb)*x(2,i+1)+Sb*U(
x(4,i+1)];

% A matrix (df/dx)
A=[1-Sa000;01-Sb00;0010;0001J;
% F matrix (df/dv)
F=[10;01;00;00];

X(Litl) =f; % Time update the state estimate
P1 = P(,.,i+1);
P(,,i+1) = A*P1*A" + F*V*F";

end

%%%%% %% %% %% %% % %% %% %% %% % %% %% %% %% % %%

%%%%% %% %% %% %% % %% %% %% %% % %% %% %% %% % %%

%*********************** AnalySIS and Plot

*

% Time vector
vk=(0:kmax-1)"; vt=(0:0.1:kmax-1)’;

% Experimental Data Curve fitting to find S and alp
fun=[ ‘a*(1-exp(' num2str(-Sa)
") ]
hfit = fit((0:kmax-1)',y,fun, 'StartPoint'

% Steady-state sensitivity
x03 = round(hfit.a * 1e4)/1e4;
x04 = round(hfit.b * 1e4)/1e4;

% Analyte A
% Analyte B

% Experimental Data Fitting
vfit = x03*(1-exp(-Sa.*vt)) + x04*(1-exp(-Sb.*v

) HbH(L-exp(
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% Covariance matrix of process noise v

% C Matrix (dh/dx)
% h Matrix
% Baseline Corrected Measurement

*[y(@) - hl;
*C*P1;

i); X(3,i+1);

% Time update the error covariance

%%%

0%%%

ha
num2str(-Sb)

J[11]);

1);



% Estiamted Steady-state sensitivity (Analyte A)
Ea = round(x(3,kmax)*1e4)/1e4;

% Estimated Steady-state sensitivity (Analyte B)
Eb = round(x(4,kmax)*1e4)/1e4;

% Estimated Frequency Shift
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vest_test = Ea*(1-exp(-Sa.*vk)) + Eb*(1-exp(-Sb *vk));
%************************************************** ** **k *kkkkkkhkk
% Section to find the
bestfit~~~~~~~~~~~~~~~~~~
error = abs(y - vest_test);
if bestfit==
h=1+1;
if (l==1)
ori=analyte_in_mixture(kk);
end
mean_err(ll) = mean(error);
analyte_in_mixture(kk)=analyte in_mixture(k k) + 1;
if (ll==points)
[err,index]=min(mean_err);
analyte_in_mixture(kk)=ori + (index-1);
bestfit=1,
err_store(pp) = err;
end
end
%
%
%
Yo~~~~~~ Identify the Analyte in the Mixture and Plo t the Result
if (pp<=4)&&(bestfit==2)
bestfit=0;
[1=0;
end
if (bestfit==2)
if (place==1)
fprintf( \nResponse %d :' ,(kK))
fprintf( ' Benzene & Toluene\n\n' );
end
if (place==2)
fprintf( \nResponse %d :' ,(KK))
fprintf( ' Benzene & Ethylbenzene\n\n' );
end
if (place==3)

fprintf( \nResponse %d :' ,(kK))
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fprintf( ' Toluene & Ethylbenzene\n\n' );
end

% Estimated Frequency Shift

vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb. *wt));

% Add the baseline (First 5 points)
ynew = [yy2(1:5);y]; yhatnew=[yy2(1:5);yhat T;
vit=[((0:0.1:4.9)"™*0);vfit]; vest=[((0:0.1 :4.9)*0);vest];

% Convert time to minutes
vvk=((0:length(ynew)-1)")*(T/60);
vvt=(0:0.1:length(ynew)-1)*(T/60);

% Plot of Frequency Shift vs Time

figure(ff+1)
plot(vvk, ynew, *b' v, Vit, “b" , vk, yhatnew, 'or' , wt,
vest, --r' )
title ( 'Frequency Shift vs Time' )
xlabel( "Time (min)' ); ylabel( 'Frequency Shift \Deltaf [kHz]' )
legend( 'Experimental data' | 'Experimental data Fitting:
\Deltaf=" , ..
num2str(x03) *[1-exp(-' numz2str(Sa) K]+
numa2str(x04) "*[1-exp(-' num2str(Sh) 1,
'‘Direct Estimation' ,[ 'Estimated Expression: \Deltaf='
numz2str(Ea) *[1-exp(-' numz2str(Sa) K]+
numa2str(Eb) "*[1-exp(-' num2str(Sh) D
% Update the counters
ff=ff+1,
kk=kk+1;
bestfit=0;
[1=0;
end
% * * * * * * * *
end
pp=1;
end
%%%%%% %% %% %% %% %% %% % % % %% %% %% %% %% % %0 %69 0%%%
%%%%

%%9%%%%%%% %% % %% %% %% %% % %% %% %% % %% %% % %09 0%%%
%%%%

%************************** Reset the Counters

kkkkkkkkkhkkkkhkhkkhkhkkkkkkkkkkkx

[1=0; bestfit=0; kk=1; pp=1,; % Counters
%9%6%6%6%6%6%%%% %% %% %% %% % % % %% %% %% %% %% %% %00 %%%
%%%%

%%9%%%%%%% %% % %% %% %% %% %% %% % %% % %% %% % %00 0%%%
%%%%
%********************** Slngle Analyte Response

kkkkkkkkkhkhkhkkkkkkkkkkkkkkkx

while (kk<=N_single)
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%%%% %% %% %% %% %% %% %% %% %% %% % % %% % % %% %0 %%
Qprrrkrkirrkikkikkiik | inear Interpolation Section
kkkkkkkkkkkkkkkkkkkkk
% Baseline before the response
yfir = data{2}(analyte_in_single(kk)-
avg_points:analyte_in_single(kk));
% Determine the baseline after the response
for jj=1l:length(analyte_in)
if analyte_in(jj)>analyte_in_single(kk)
break

0%%%

end
end

% Baseline after the response
ysec = data{2}(analyte_in(jj)-avg_points:analyt e_in(j));

% Response (Data points)

y1 = data{2}(analyte_in_single(kk):analyte_out_ single(kk));
% Average of the points in baseline before the resp onse
avgl = sum(yfir)/length(yfir);
% Average of the points in baseline after the respo nse

avg2 = sum(ysec)/length(ysec);

% Slope of the baseline drift

b = (avg2-avgl)/(analyte_in(jj) - analyte_in_si ngle(kk));
% y-intercept of the baseline drift
a = (avgl);
% Determine the Response (Data points) to be baseli ne corrected
yy = data{2}(analyte_in_single(kk)-10:analyte_i n(jj)-10);
vk2 = O:length(yy)-1; % Specify the discrete-time instant
% Linear drift
yfit = a + b*vk2; % Linear Interpolation

% Baseline Drift correction
yy2 =yy - yfit’;

%%%%% %% %% %% % %% %% %% %% % %% %% %% %% % %% % %008

0%%%

%%%% %% %% %% %% %% %% %% %% %% %% % % %% % % %% %0 %0 %R
% If the starting point produces the best curve fit store the
result
if bestfit==1
for j=1:length(yy2) % Keep track of all correction
hh=hh+1;
yall(hh)=yy2(j);
yall2(hh)=yy());
end
bestfit=2;
end

0%%%
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%%09%%%%%%% %% % % %% % %% %% %% %% % %% % %% %% % %09

0%%%

%%09%%%%%%% %% %% %% % %% %% % %% %% %% % %% %% % %09

%**7\'************************* EKF SeCtIOﬂ

0%%%

kkkkkkkkkkkkhhkhkhhhhkhhkkkkhkkkx

% EKF to estimate the concentration/s.s. sen sensit ivity
y =yl; ymeas=y1,
tau=tau_res_single(kk); % Sorption time constant

kmax = length(y);

x02 = T/tau; % S (Initial Estimate of Adsorption Rate)
x03 = -1; % alpha (Initial Estimate of Steady-State Sensitivi ty)
% Start EKF Scheme
X = zeros(3,kmax+1); P = zeros(3,3,kmax+1); yha t = zeros(1,kmax);
x(:,1) = [0; x02+0.1; x03]; % Initial state vector
P(:,:,1) = diag([0.01, 100, 10000]); % Initial error covariance
Matrix
V =[1]; % Covariance matrix of process noise v (1 by 1 Matr iX)
G =[1]; % Matrix G (dh/dw) (1 by 1 Matrix)
U = ones(kmax,1); % Step Input

% Loop to evaluate each instant in time
for i=1l:kmax

C =[x(3,i) 0 x(1,))]; % C Matrix (dh/dx)
h = [x(3,i)*x(1,))]; % h Matrix
y(i) = y(i) - a - b*(i-1); % Baseline Corrected Measurement

QprrrkrkrrriiiikrkkMeasurement Update

Equations ek
x1 = x(:,i); P1 = P(,:,0);
X(;,i+1) = x1 + P1*C*(inv((C*P1)*C' + G*W* G") * [y(i) - h];
P(:,:;,i+1) = P1 - P1*C™*(inv(C*P1*C' + G*W* G")*C*P1;
yhat(1,i) = h;

%**********************Ti me U pdate
Eq u atl On************************

% f matrix

f = [(1-x(2,i+1))*x(1,i+1)+x(2,i+1)*U(i); x (2,i+1); x(3,i+1)];
% The A matrix (df/dx)

A =[1-x(2,i+1) U(i)-x(1,i+1) 0;010; 00 1];
% F matrix (df/dv)

F=1[1;0; 0]

X(:,i+1) =f; % Time update the state estimate

P1 = P(;,:,i+1);

P(:,:,i+1) = A*P1*A" + F*V*F, % Time update the error
covariance

end

%%9%%%%%%% %% % %% %% %% %% %% %% % %% % %% %% % %00

0%%%
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0%%%

%%%% % %% %% %% %% %% % % %% % %% %% % %% %% %% % % %9
% * Analysis and Plot
% Time vector
vk=(0:kmax-1)"; vt=(0:0.1:kmax-1)’;

% Experimental Data Curve fitting to find S and alp ha
hfit = fit((0:kmax-1)",y, '‘a*(1-exp(-S*x))' , 'StartPoint' 1 1]);
x02 = round(hfit.S * 1e4)/1e4; %S
x03 = round(hfit.a * 1e4)/1e4; % alpha
Vit = Xx03*(1-exp(-x02.*vt)); % Experimental Data Fitting
g@************************************************** kkkkhkkkkhkhkkkhkhkkkkhkkk
% Section to find the
bestfit~~~~~~~~~~~~~~~~~~
vit_test = x03*(1-exp(-x02.*vK));
error = abs (y - vfit_test); % Error in the fit
% Checking the Starting Point
if bestfit==
h=1+1;
if I==1
ori=analyte_in_single(kk);
end
mean_err(ll) = mean(error);
analyte_in_single(kk)=analyte_in_single(kk) +1;
if ll==points

[err,index]=min(mean_err);
analyte_in_single(kk)=ori + (index-1);

bestfit=1;
end

end

%
96************************************************** kkkkkkkkkkkkkkkkhkkkk
96************************************************** kkkkkkkkkkkkkkkkhkkkk

% If the starting point produces best curve fit Plo t the Results

if (bestfit==2)

ES = round(x(2,kmax)*1e4d)/1e4; % Estimated adsorption rate (S)

% Estimated Steady-state sensitivity (alpha)
Ea = round(x(3,kmax)*1ed)/1le4;

% Estimated Frequency Shift
vest = Ea*(1-exp(-ES.*wt));

% Adding some baseline
ynew = [yy2(1:5);y]; yhatnew=[yy2(1:5);yhat T, % Thefirst5
points
vit=[((0:0.1:4.9)"™*0);vfit]; vest=[((0:0.1 :4.9)*0);vest];
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% Convert time to minutes

vvk=((0:length(ynew)-1)")*(T/60); vvt=(0:0. 1:length(ynew)-
1)*(T/60);
% Plot the result
figure(ff+1)
% Plot of Frequency Shift vs Time step
plot(vvk, ynew, b, v, Vit, “b" , vk, yhatnew, 'or' , wt,
vest, --r' )
title ( 'Frequency Shift vs Time' )
xlabel( "Time (min)' ); ylabel( 'Frequency Shift \Deltaf [kHz]' )
legend( 'Experimental data' | 'Experimental data Fitting:
\Deltaf=" , ..
num2str(x03) *[1-exp(-' numz2str(x02) D1,
'Direct Estimation' ,[ 'Estimated Expression: \Deltaf='
numa2str(Ea) "*[1-exp(-' num2str(ES) D D
% Update the Counters
ff=ff+1;
kk=kk+1;
bestfit=0;
[1=0;
end
%************************************************** kkkkkkkkhkhkkkhkhkkkkhkkk

%%%%%%0%% %% %% %0 %% %% % %% %% % %% %% %0 %% % %% %00 ©%%%
end

%0%%%%%0%0% % % %% %% % % % %% %0 %% % % % %% %0 % % % % % %0 %880/808088880800000000888888890809800%% %
%%%%

%0%%%%%0%0 %% % %% %% % % % %% %0 %% % % % %% % % % % % % %0 %8808080888808000000008888888908089800%% %
%%%%

Ofp*** Aok Baseline Corrected Plot

* * * *

% Time vector
vk = O:length(yall)-1; vk = vk.*(12/60);

% Plot the Baseline Corrected Result
figure(ff+1)

h=plot(vk,yall);

set(h, ‘'LineWidth' ,1.5)
%title('"Frequency Shift','FontSize',16)

xlabel(  "Time (min)' , 'FontSize'  ,16)
ylabel( 'Frequency Shift (kHz)' , 'FontSize'  ,16)
grid on

%%9%%%%%%% %% % %% %% %% %% %% %% % %% %% %% %% %09
%%%%

HHRHRHRHBIBLBLBLBLBIBHBHEHERERA 6%%%

figure(ff+2)
h=plot((data{1}(1:713)),(data{2}(1:713)));

set(h, ‘'LineWidth' ,1.5)

%title('Frequency Shift of RAW Data (With Baseline
Drift)','FontSize',16)

xlabel(  'Time (min)' , 'FontSize"  ,16)



ylabel( 'Frequency Shift (kHz)' , 'FontSize'

grid on

vk = O:length(yall2)-1; vk = vk.*(12/60);

figure(ff+3)

h=plot(vk,yall2);

set(h, ‘'Linewidth' ,1.5)

%title('"Frequency Shift of RAW Data (With Baseline
Drift)','FontSize',16)

xlabel(  'Time (min)' , 'FontSize'  ,16)
ylabel( 'Frequency Shift (kHz)' , 'FontSize'
grid on

axis([0 80-0.4 1.4])

16)

16)
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B.3 MATLAB Code for Single Analyte Estimation

%%%%%% %% %% % % %% % % %% % % %% % % %% % % %% % % % %0 %08 80480808808008088080080800800¢
%%%%

% Author: KARTHICK SOTHIVELR

% File Name: Single_Analyte.m

% Date (Created): 02-27-2013

% Date (Modified): 02-17-2014

%%%%%%% % %% % % %% % % %% %% %% %% %% % % %% % % % % %08088008080880000808800008088000R
%%%%

% Description:

% Program to estimate steady-state sensitivity, tim e constant and

% concentration of the analyte using the single ana lyte model.

Estimation

% were performed using Extended Kalman Filter.

80%0%%

%%%

%%%9%%%% %% %% %% %% % %% %% %% %% % %% % % %% % % %09 0%%%
%%%%

% Cleaning

clear all

close all

clc

%%%%%%% %% %% %% %% %% %% %% %% % % %% % % %% %% %9 0%%%
%%%%

% Open and read the measurement file

FID = fopen( 'BE_PEA_ 1st.ini' , ' ); % BE_PEA 1st (old one)

data = textscan(FID, '%f %f" );

fclose(FID);

%%%%%%% % %% % % %% % % %% %% %% % % %% %% % %% % % % %08888008080080080808800008088080800% %%
%%%%

% Order the data (Based on Analyte)

y1 = data{2}(80:155); yb1 = data{2}(75:79); % Ethylbenzene

(1000ppb)

y2 = data{2}(229:306); yb2 = data{2}(224:228); % Ethylbenzene

(1000ppb)

%y3 = data{2}(377:410); yb3 = data{2}(217:221); % Benzene + Toluene

(500ppb + 500ppb)

% Sampling Period:
T=12; % in seconds

% Time Constants ( in sec) from Averaged Single Ana lyte Table:
tauA = 204; % Ethylbenzene

% Steady-State Sensitivity from Averaged Single Ana lyte Table:
SSA = 2.24; % Ethylbenzene

% Adsorption Rate Constant:
Sa=(T/tauA); % Benzene
Sa = round(Sa*le4)/1e4; % Analyte A

0

%% %% %% %% %% %% % % %% %% %% %% %% %% %% %% % %% %Y
%%%%
% Select the case to be analyzed

%%%

(=)
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y =y2;yb =yb2;

kmax = length(y); % Length of the measurement data points

%0%0%0%%% %% % %% % %%0% %% %% %% % %% %% %% % % % % % %0 %848088882862888880000000000008088880%0%%
%%%%

%%%

%9%%6%6%6%%%%% %% %% %% %% % % %% %% %% %% %% % % %0 %0 %080888080880808080202000000008000
%%%%

% Initialize Extended Kalman Filter variables

%9%%%%% %% %% %% %% %% %% % % % %% %% %% %% %% % %0 %69
%%%%

yhat = zeros(1,kmax); x = zeros(3,kmax+1); P = zero 5(3,3,kmax+1);
x(;,1) = [0; Sa+0.001; -1]; % Initial state vector (Initial estimate)

P(:,:,1) = diag([1,1,100000)); % Initial error covariance Matrix

V = 0.00001; % Covariance matrix of process noise v

G=1[1]; % Matrix G (dh/dw) (1 by 1 Matrix)

U = ones(kmax,1); % Step Input

W =100; % Covariance of Measurement noise

%%%

80%0%%

%9%%%% %% %% %% % %% % %% % %% % %% %% % %% % %% % % %0 0R8880608800088800088880088800088¢
%%%%
Ofp*** rxkkx Extended Kalman Filter Scheme

* * * *

% Loop to evaluate each instant in time
for i=1l:kmax
% System Matrices

C =[x(3,i) 0 x(1,))]; % C Matrix (dh/dx)
h = [x(3,i)*x(1,))]; % h Matrix
% f matrix
f = [(1-x(2,i))*x(1,1)+x(2,)*U(i); x(2,i); x(3 DI

% The A matrix (df/dx)
A = [1-x(2,i) U(i))-x(1,i) 0; 01 0; 00 1];
% F matrix (df/dv)

F=1[1;0; 0];
% Estimated measurement
yhat(i)=h;
% Setting the first measurement value to be 0
% ifi==1
% y(i) = y(i)*0;
% end
K = (A*P(:,:,I)*CY((C*P(:,:,i)*C' + G*W*G")) 7 % Kalman Gain
X(:,i+1) = f + K*(y(i)-h); % State Update Equation
% Error Covariance Update Equation:
P(,:,i+1) = (A-K*C)*P(:,:,I)*(A-K*C)' + K*G*W* G"*K' + F*V*F;
end

%%%

%9%6%6%%%%%%% %% %% %% %% % % %% %% %% %% %% % % %0 %0 %080888080080808080208000000008000
%%%%

% Plot and Analysis

%9%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %0 %09
%%%%

% Time vector

vk=(0:kmax-1)"; vt=(0:0.1:kmax-1)’;

0%%%
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% Experimental Data Curve fitting to find S and alp ha

hfit = fit((0:kmax-1)",y, '‘a*(1-exp(-S*x))' , 'StartPoint' 1 1]);
S = round(hfit.S * 1e4)/1e4; %S

a = round(hfit.a * 1e2)/1e2; % alpha

Vit = a*(1-exp(-S.*vt)); % Experimental Data Fitting

% Estimated adsorption rate (S)

ES = round(x(2,kmax)*1e4)/1e4;

% Estimated Steady-state sensitivity (alpha)
Ea = round(x(3,kmax)*1e2)/1e2;

% Estimated Frequency Shift

vest = Ea*(1-exp(-ES.*vt));

% Adding some baseline

y = [yb(1:5);y]; yhat=[yb(1:5);yhat7; % The first 5 points
vfit=[((0:0.1:4.9)"*0);vfit]; vest=[((0:0.1:4.9)*0 );vest];

% Convert time to minutes

vk=((0:length(y)-1)")*(T/60); vt=(0:0.1:length(y)-1 )*(T/60);

% Plot of Frequency Shift

figure(1)

h=plot(vk, y, b, v, VAit, “w' v, VAit, “b" , vt, vest, W', v,
vest, - );

xlabel(  "Time, t (min)' , 'FontSize'  ,14); ylabel( 'Frequency Shift, \Deltaf
[kHz]" ,'FontSize' ,14)

h_legend = legend( 'Experimental data' ,[ 'Experimental data fitting
expression: \Deltaf =" A

num2str(a)  "*[1-exp(-' numz2str(S/T) D1,

'Experimental data fitting' A

[ 'Estimated fitting expression: \Deltaf ="
num2str(Ea)  “*[1-exp(-' num2str(ES/T) D1,
'Estimated Sensor Response' );

set(h_legend, 'FontSize' ,15);

set(h, 'LineWidth® ,3)

% Estimated Concentration
Con = abs(a)/(ssA);
Con_A = abs(Ea)/(ssA);

fprintf( "The estimated concentration of Analyte A (in ppm) is\n" )
disp(Con_A)

fprintf( 'The concentration of Analyte A (in ppm) (from fitt ing
parameter) is \n' )

disp(Con)

figure(2)

h=plot(vk, y, b, v, VAit, “b" , vt, vest, rt )

xlabel(  "Time, t (min)' , 'FontSize'  ,14); ylabel( 'Frequency Shift, \Deltaf
(kHz)' , 'FontSize' ,14)

h_legend = legend( 'Experimental data' , 'Experimental data fitting' ,
‘Estimated Sensor Response' );

set(h_legend, 'FontSize' ,15);
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set(h, ‘'LineWidth' ,3)
annotation(  'textbox' , [0.2,0.4,0.1,0.1],

'String' N Expenmental data fitting expressmn \Deltaf =" ,
num2str(a) "*[1-exp(-' numZstr(round((S/T)*1e5)/185) D]’
'Estimated fitting expression: \Deltaf =
num2str(Ea)  "*[1-exp(-' numz2str(ES/T) D D;

% ['Experimental data fitting expression: \Deltaf = -
% num2str(a) *[1-exp(-' num2str(S/T) '], ...

%['Estimated fitting expression: \Deltaf =" ...
%num2str(Ea) *[1-exp(-' num2str(ES/T) 't)]1, ...
% round((1/tauA)*1ed)/1e4d

%0%%%%%0%0% %% %% %% % % %% %% %% % %% %% %% % % %% %
%%%%

% Normalized Concentration

%0%% %% %% %% %% %% %% %% % %% %% % %% % %% %% % %% %
%%%%

vk=(0:kmax)"; vt=(0:0.1:kmax)'; % Time

0%%%

%%%

mA = (1 - exp(-Sa.*wt)); % Normalized Analyte A Concentration
mApoint = (1 - exp(-Sa.*vk));

% Estimated Normalized Concentration of Analyte A

EmA = x(1,:);
mAfit = fit((0:kmax)',EmA’, 'EAa*(1-exp(-mAS*x))' , 'StartPoint' 1 1]);
CA = mAfit.EAa;

MSA = mAfit. mAS;
EmmA = CA*(1 - exp(-mSA.*vt));

vk=vk*(T/60); vt=vt*(T/60); % Convert time to minute

% Plot of Normalized Concentration

figure(3)

h=plot(vt, mA, “b" , vt, EmmA, —-w', vt, EmmA, rt )
xlabel(  'Time, t (min)' , 'FontSize' ,14); ylabel( 'Normalized
Concentration’ , 'FontSize'  ,14)

h_legend = legend([ "Theoretical Normalized Concentration: m ="
num2str(l)  "[1-exp(-' numz2str(Sa/T) )]’ 1s

[ 'Estimated Norm. Con. Expression: m ="

num2str(CA)  “*[1-exp(-' num2str(mSA/T) )]’ 1
‘Estimated Normalized Concentration' );

set(h_legend, 'FontSize' ,15);
set(h, ‘'LineWidth' ,3)

figure(4)

h=plot(vt, mA, b, vt, EmmA, er' ;

xlabel(  'Time, t (min)' , 'FontSize'  ,14); ylabel( 'Normalized
Concentration’ , 'FontSize'  ,14)

h_legend = legend( "Theoretical Normalized Concentration' -
‘Estimated Normalized Concentration' );

set(h_legend, 'FontSize' ,15);

set(h, 'LineWidth' ,3)



%%09%%%%%%% %% %% %% % %% %% %% %% % %% % %% %% % %09
%%%%

0%%%

%9%%%%% %% %% %% %% %% %% % % % %% %% %% %% %% % %0 %69
%%%%

% Time Analysis (Time to quantification)
%9%%6%%%%%%% %% %% %% % % % % %% %% %% %% %% %% %0 %0 %
%%%%

0%%%

%%%

% Time vector
vk=(0:kmax-1)'; vt=(0:0.1:kmax-1)";

% Several Estimated adsorption rate (S)

ES1 = round(x(2,10)*1e4)/1e4 % after 2 minutes
ES2 = round(x(2,15)*1e4)/1e4 % after 3 minutes
ES3 = round(x(2,20)*1e4)/1e4 % after 4 minutes
ES4 = round(x(2,25)*1e4)/1e4; % after 5 minutes
ES5 = round(x(2,30)*1e4)/1e4; % after 6 minutes
% Several Estimated Steady-state sensitivity (alpha )
Eal = round(x(3,10)*1e4)/1e4 % after 4 minutes
Ea2 = round(x(3,15)*1e4)/1e4 % after 5 minutes
Ea3 = round(x(3,20)*1e4)/1e4 % after 6 minutes
Ea4 = round(x(3,25)*1e4)/1e4; % after 10 minutes
Ea5 = round(x(3,30)*1e4)/1e4; % after 12 minutes
% Several Estimated Frequency Shift

vestl = Eal*(1-exp(-ES1.*vwt)); % after 4 minutes
vest2 = Ea2*(1-exp(-ES2.*wt)); % after 6 minutes
vest3 = Ea3*(1-exp(-ES3.*wt)); % after 8 minutes
vestd = Ead*(1-exp(-ES4.*vt)); % after 10 minutes
vest5 = Ea5*(1-exp(-ES5.*wt)); % after 12 minutes

vest1=[((0:0.1:4.9)*0);vest1];
vest2=[((0:0.1:4.9)*0);vest2];
vest3=[((0:0.1:4.9)*0);vest3];
vest4=[((0:0.1:4.9)"*0);vest4];
vest5=[((0:0.1:4.9)"*0);vest5];

pd1 = ((ES1-S)/S)*100
pd2 = ((ES2-S)/S)*100
pd3 = ((ES3-S)/S)*100
pd4 = ((ES4-S)/S)*100
pd5 = ((ES5-S)/S)*100

pdal = ((Eal-a)/a)*100
pda2 = ((Ea2-a)/a)*100
pda3 = ((Ea3-a)/a)*100
pda4 = ((Ea4-a)/a)*100
pda5 = ((Ea5-a)/a)*100

pd = ((ES-S)/S)*100
pda = ((Ea-a)/a)*100

% Change time to minutes
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vt=(0:0.1:length(y)-1)*(T/60); vk=((0:length(y)-1) *(T/60);

% Plot

figure(5)

h=plot(vk, vy, b, i, VAit, “b" , vt, vestl, -r', vt, vest2, g,
vt, vest3, --c' vt vest, k)

xlabel(  'Time, t (min)' , 'FontSize'  ,14); ylabel( 'Frequency Shift, \Deltaf
(kHz)' , 'FontSize' ,14)

h_legend = legend( 'Experimental data’' ,

'Experimental data fitting' I

‘Estimated Sensor Response after 2 minutes' .
'Estimated Sensor Response after 3 minutes' ,
'Estimated Sensor Response after 4 minutes' -
'Estimated Sensor Response using all data points' );

set(h_legend, 'FontSize' ,15);
set(h, ‘'LineWidth' ,3)

%%09%%%%%%% %% % % %% % %% %% %% %% % %% % %% %% % %09 %%%
%%%%

%

%%%%% %% %% %% % %% %% %% %% % %% %% %% % %% %% %% 08008400880800880088008800800800880%0% %
%%%%

% %9%%%%%%%%%%% %% %% %% %% %% %% %% End of Program
%%9%%% %% %% %% % %% %% %% %% %% % %% %% % %% %% %
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B.4 MATLAB Code for Two-Analyte Estimation (Nonlinear Model)

%%%6%6%%%%%% %% %% %% %% % % %% %% %% %% %% %% %0 %0 %5888080080 80800 0204000000008080¢
%%%%

% Author: KARTHICK SOTHIVELR

% File Name: Two_Analyte.m

% Date (Created): 02-27-2013

% Date (Modified): 02-17-2014
%9%6%6%6%6%%%%% %% %% %% %% % % % %% %% %% %% %% % %0 %0 %080888080880808080202000000008000
%%%%

% Description:

% Program to estimate the steady-state sensitvity a nd concentrations of

the

% binary mixture using the two analyte system model . Estimation

% were performed using Extended Kalman Filter.

80%0%%

%%%

%%%% % %% %% %% %% %% % % %% %% %% % %% %% % %% % % %9 0%%%
%%%%

% Cleaning

clear all

close all

clc

%%%% %% %% %% %% % %% % % %% %% %% % % %% %% %% % % %9 0%%%
%%%%

% Open and read the measurement file

FID = fopen(  'thesis BT _2nd.ini' , ' ); % 2nd new one

data = textscan(FID, '%f %f" );

fclose(FID);

%%%% % %% %% %% % % %% %% %% %% %% %% % %% % % %% % %0 %R808088040080880800808808008988080%0% %
%%%%

% Order the data (Based on Analyte)

y1 = data{2}(53:78); yb1l = data{2}(48:52); % Benzene (1000ppb)

y2 = data{2}(127:175); yb2 = data{2}(122:126); % Benzene + Toluene

(1000ppb + 500ppb)

y3 = data{2}(222:271); yb3 = data{2}(217:221); % Benzene + Toluene

(500ppb + 500ppb)

y4 = data{2}(367:417); yb4 = data{2}(362:366); % Benzene + Toluene

(200ppb + 500ppb)

% Sampling Period:
T=12; % in seconds

% Time Constants (in sec) from Averaged Single Ana lyte Table:
tauA = 34.6; % Benzene
tauB = 92.6; % Toluene
% Steady-State Sensitivity from Averaged Single Ana lyte Table:

ssA = 0.257; % Benzene
ssB = 0.746; % Toluene

%%%%% %% %% %% %% % %% %% %% %% %% % %% %% %% % % % %R8R0R68608080808080020800808080
%%%%

% Select the case to be analyzed

y =y2;yb =yb2;

80%0%%
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kmax = length(y); % Length of the measurement data points
%%%%%%%0 % %% %% %% % %% %% %% %% %% % %% %% % %% %00 0%%%
%%%%

%%%% %% %% % %% %% %% %% %% % %% %% % %% %% %% % % %9
%%%%

% Initialize Extended Kalman Filter variables

%%%%% %% %% %% %% %% % %% %% %% %% %% %% %% %% % %9
%%%%

yhat = zeros(1,kmax); x = zeros(4,kmax+1); P = zero s(4,4,kmax+1);
x(:,1) = [0; O; 0; 0]; % Initial state vector (Initial estimate)

P(:,:,1) = diag([0.1,0.1,500,1000]); % Initial error covariance Matrix
V =10; % Covariance matrix of process noise v

G=1[1]; % Matrix G (dh/dw) (1 by 1 Matrix)

U = ones(kmax,1); % Step Input

W =100; % Covariance of Measurement noise

0%%%

0%%%

% Adsorption Rate Constant:

Sa=(T/tauA); % Benzene

Sb=(T/tauB); % Ethylbenzene

Sa = round(Sa*le4)/1e4; % Analyte A
Sbh = round(Sh*1e4)/1e4; % Analyte B

%%%%%%0%% %% %% %0 %% %% % %% %% % %% %% %0 %% % %% %00
%%%%
Qprrrrrirkirixixkiaix Extended Kalman Filter Scheme

kkkkkkkkkhkkhkhkhhhhhhhhk

BRHBRBRABEYBH0R 6%%6%

% Loop to evaluate each instant in time
for i=l:kmax
% System Matrices

C = [x(3,i) x(4,i) x(1,i) x(2,)]; % C Matrix (dh/dx)
h = [x(3,i)*x(1,1) + x(4,i)*x(2,D)]; % h Matrix
% f matrix
f = [(1-Sa)*x(1,i)+Sa*U(i); (1-Sb)*x(2,i)+Sb*U( i); X(3,0); x(4,)];
A=[1-Sa000;01-Sh00;0010;0001]; % The A matrix
(df/dx)
F=[1100] % The F matrix (df/dv)
% Estimated measurement
yhat(i)=h;
% Setting the first measurement value to be 0
% ifi==1
% y(i) = y(i)*0;
% end
K = (A*P(,5,I)*CY((C*P(:,:,i)*C' + G*W*G")) ;% Kalman Gain
X(:,i+1) = f + K*(y(i)-h); % State Update Equation
% Error Covariance Update Equation:
P(:,:,i+1) = (A-K*C)*P(:,:,i)*(A-K*C)' + K*G*W* G"*K' + F*V*F",
end

%%9%%% %% %% %% % %% %% %% % %% %% %% %% % %% %% %% 08008400800880880088008800800800880%0% %
%%%%

% Plot and Analysis



%9%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %0 %
%%%%

vk=0:kmax-1;

vt=(0:0.1:kmax-1)’;

0%%%

% Experimental Data Fitting
fun=[ 'a*(1-exp(’

num2str(-(ThauA)) ")) +b*(1-exp( num2str(-(T/tauB)) )
hfit = fit((0:kmax-1)",y,fun, 'StartPoint' 1 1]);
% Steady-State Sensitivity
a = round(hfit.a * 1e2)/1e2; % Analyte A
b = round(hfit.b * 1e2)/1e2; % Analyte B
Vit = a*(1-exp(-(T/tauA).*vt)) + b*(1-exp(-(T/tauB ).*vt));
% Estimated Steady-State Sensitivity
Ea = round(x(3,kmax)*1ed)/1e4; % Analyte A
Eb = round(x(4,kmax)*1e4)/1e4; % Analyte B

% Estimated Frequency Shift
vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sh.*wt));

% Converting time step number to minutes and add ba selines

y = [yb(1:5);y]; yhat = [yb(1:5);yhat’;

vfit=[((0:0.1:4.9)"*0);vfit]; vest=[((0:0.1:4.9)*0 );vest];
vk=((0:length(y)-1)")*(T/60); vt=(0:0.1:length(y)-1 )*(T/60);

% Plot

figure(1)

plot(vk, y, b, v, VAit, “b" , vt, vest, )

title ( 'Frequency Shift vs Time' )

xlabel(  'Time (min)' ); ylabel( 'Frequency Shift \Deltaf [kHz]' )

legend( 'Experimental data' | 'Experimental data Fitting: \Deltaf=" ,
num2str(a)  "*[1-exp(-' numz2str(Sa) K]+ v

num2str(b)  "*[1-exp(-' numz2str(Sh) 'K)]' ][ 'Estimated data

Fitting:\Deltaf='

num2str(Ea)  “*[1-exp(-' num2str(Sa) 'K)] +

num2str(Eb)  “*[1-exp(-' num2str(Sh) 1D

figure(2)

% Plot of Frequency Shift vs Time step

h=plot(vk, y, b, v, Vit “w' v, Vit b, vt, vest, W' i,
vest, ‘--r' )

%title (‘Frequency Shift vs Time','FontSize',24)
%LineWidth = [3];

xlabel(  'Time, t (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf
[kHz]" ,'FontSize' ,14)
h_legend = legend( 'Experimental data' ,[ 'Experimental data fitting
expression: \Deltaf =" I
num2str(a) *[1-exp(-' numz2str(round((Sa/T)*1e4)/1e4) ']+
numa2str(b) "*[1-exp(-' num2str(round((Sb/T)*1e5)/1e5) D1,

'Experimental data fitting' ,
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[ 'Estimated fitting expression: \Deltaf =

numz2str(Ea) *[1-exp(-' num23tr(round((Sa/T)*1e4)/1e4) ']+

numa2str(Eb) "*[1-exp(-' num2str(round((Sb/T)*1e5)/1e5) D1,
'Estimated Sensor Response' );

set(h_legend, 'FontSize' ,15);
set(h, ‘'Linewidth' ,3)

figure(3)
% Plot of Frequency Shift vs Time step
h=plot(vk, v, b v, Vit, b, wt, vest, oy ):

%title (‘Frequency Shift vs Time','FontSize',24)
%LineWidth = [3];

xlabel(  "Time (min)' , 'FontSize'  ,14); ylabel( 'Frequency Shift, \Deltaf

(kHz)'" , 'FontSize' ,14)

h_legend = legend( 'Experimental data' , 'Experimental data fitting' ,
'Estimated Sensor Response' );

set(h_legend, 'FontSize' ,15);
set(h, ‘'Linewidth' ,3)
annotation(  ‘'textbox' , [0.2,0.4,0.1,0.1],

'String' N Expenmental data fitting expressbn \Deltaf = ,

num2str(a) *[1-exp(-' num23tr(round((Sa/T)*1e4)/1e4) ']+

numa2str(b) "*[1-exp(-' numZStr(round((Sb/T)*leS)/leS) ']’
‘Estimated fitting expression: \Deltaf =

numa2str(Ea) "*[1-exp(-' numZStr(round((Sa/T)*1e4)/1e4) ']+

num2str(Eb) *[1-exp(-' num2str(round((Sh/T)*1e5)/1e5) DD

% Estimated Concentration
Con_A = abs(Ea)/(ssA);
Con_B = abs(Eb)/(ssB);

ConA = abs(a)/(ssA);
ConB = abs(b)/(ssB);

fprintf( 'The estimated concentration of Analyte A (in ppm) is\n" )
disp(Con_A)

fprintf( 'The estimated concentration of Analyte B (in ppm) is\n" )
disp(Con_B)

fprintf( "The concentration of Analyte A (in ppm) (from fitt ing
parameter) is \n' )

disp(ConA)

fprintf( "The concentration of Analyte B (in ppm) (from fitt ing
parameter) is \n' )

disp(ConB)

%Info
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%plot(vk, y, *b', vt, Vfit, -b', vk, yhat, ‘or’, vt, vest, '--r')

%9%6%6%6%6%6%%%% %% %% %% %% % %% %% %% %% %% %% %% %00
%%%%

% Normalized Concentration
%69%%%%%%%%%%%% %% %% % % % % %% %% %% %% %% %% %0
%%%%

vk=(0:kmax)"; vt=(0:0.1:kmax)"; % Time

0%%%

%%%

mMA = (1 - exp(-Sa.*vt)); % Normalized Analyte A Concentration
mApoint = (1 - exp(-Sa.*vk));

mB = (1 - exp(-Sb.*vt)); % Normalized Analyte B Concentration
mBpoint = (1 - exp(-Sb.*vk));

% Estimated Normalized Concentration of Analyte A

EmA = x(1,:);
mAfit = fit((0:kmax)',EmA’, 'EAa*(1-exp(-mAS*x))' , 'StartPoint' 1 1]);
CA = mAfit.EAa;

MSA = mAfit. mAS;
EmmA = CA*(1 - exp(-mSA.*vt));

% Estimated Normalized Concentration of Analyte A

EmB = x(2,:);
mBfit = fit((0:kmax)',EmB", 'EBb*(1-exp(-mBS*x))' , 'StartPoint' 1 1]);
CB = mBfit.EBb;

mSB = mBfit. mBS;
EmmB = CB*(1 - exp(-mSB.*vt));

vk=vk*(T/60); vt=vt*(T/60); % Convert time to minute

% Plot of Normalized Concentration
% Analyte A

% figure(4)

% h=plot(vt, mA, "-b', vt, EmmA, '--w', vt, EmmA, ' -r');

% xlabel('Time, t (min)','FontSize',14); ylabel('No rmalized
Concentration','FontSize',14)

% h_legend = legend(['Theoretical Normalized Concen tration: m="...

% num2str(1) *[1-exp(-' num2str(Sa/T) *H)]1], ...
% ['Estimated Norm. Con. Expression: m =" ...

% num2str(CA) *[1-exp(-' num2str(mSA/T) *t)]17, .
% 'Estimated Normalized Concentration');

% axis([0 12 0 1.25])

% set(h_legend,'FontSize',15);

% set(h,'LineWidth',3)

figure(4)

h=plot(vt, mA, “b" , vt, EmmA, rt )

xlabel(  "Time (min)' , 'FontSize'  ,14); ylabel( 'Normalized
Concentration’ , 'FontSize'  ,14)

h_legend = legend( "Theoretical Normalized Concentration’ .
‘Estimated Normalized Concentration' );

axis([0 12 0 1.25])
set(h_legend, 'FontSize' ,15);
set(h, ‘'Linewidth' ,3)



177

% Analyte B

% figure(5)

% h=plot(vt, mB, "-b', vt, EmmB, '--w', vt, EmmB, ' -r');

% xlabel('Time, t (min)','FontSize',14); ylabel('No rmalized
Concentration','FontSize',14)

% h_legend = legend(['Theoretical Normalized Concen tration: m="...

% num2str(1) *[1-exp(-' num2str(Sb/T) *t)]1, ...
% ['Estimated Norm. Con. Expression: m =" ...

% num2str(CB) *[1-exp(-' num2str(mSB/T) *t)]17, .
% 'Estimated Normalized Concentration');

% axis([0 12 0 1.25])

% set(h_legend,'FontSize',15);

% set(h,'LineWidth',3)

figure(5)

h=plot(vt, mB, “b" , vt, EmmB, rt )

xlabel(  'Time (min)' , 'FontSize' ,14); ylabel( 'Normalized
Concentration’ , 'FontSize'  ,14)

h_legend = legend( "Theoretical Normalized Concentration’ Y
'Estimated Normalized Concentration' );

axis([0 12 0 1.25])
set(h_legend, 'FontSize' ,15);
set(h, ‘'Linewidth' ,3)

%%%%% %% %% %% % %% %% %% %% % %% %% %% %% % %% % %09
%%%%

0%%%

%%%%% %% %% % %% % %% %% %% %% %% % %% %% %% % % % %09
%%%%

% Time Analysis (Time to quantification)

%%%%% %% % %% %% % %% %% %% %% %% %% %% %% %% %% %Y
%%%%

%%%

%%%

% Time vector
vk=(0:kmax-1)'; vt=(0:0.1:kmax-1)";

% Several Estimated Steady-state sensitivity (Analy te A)
Eal = round(x(3,20)*1e4)/1e4; % after 2 minutes
Ea2 = round(x(3,25)*1e4)/1e4; % after 3 minutes
Ea3 = round(x(3,30)*1e4)/1e4; % after 4 minutes
Ea4 = round(x(3,35)*1e4)/1e4; % after 7 minutes
Ea5 = round(x(3,40)*1e4)/1e4; % after 8 minutes
% Several Estimated Steady-state sensitivity (Analy te B)
Eb1 = round(x(4,20)*1e4)/1e4; % after 4 minutes
Eb2 = round(x(4,25)*1e4)/1e4; % after 5 minutes
Eb3 = round(x(4,30)*1e4)/1e4; % after 6 minutes
Eb4 = round(x(4,35)*1e4)/1e4; % after 7 minutes
Eb5 = round(x(4,40)*1e4)/1e4; % after 8 minutes

% Several Estimated Frequency Shift

vestl = Eal*(1-exp(-Sa.*vt)) + Eb1*(1-exp(-Sb.*vt)) ;
vest2 = Ea2*(1-exp(-Sa.*vt)) + Eb2*(1-exp(-Sb.*vt)) ;
vest3 = Ea3*(1-exp(-Sa.*vt)) + Eb3*(1-exp(-Sb.*vt)) ;
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vestd = Ead*(1-exp(-Sa.*vt)) + Eb4*(1-exp(-Sb.*vt)) ;
vest5 = Eab5*(1-exp(-Sa.*vt)) + Eb5*(1-exp(-Sbh.*vt)) ;

vest1=[((0:0.1:4.9)"*0);vestl];
vest2=[((0:0.1:4.9)"*0);vest2];
vest3=[((0:0.1:4.9)*0);vest3];
vest4=[((0:0.1:4.9)"*0);vest4];
vest5=[((0:0.1:4.9)"*0);vest5];

pdal = ((Eal-a)/a)*100
pda2 = ((Ea2-a)/a)*100
pda3 = ((Ea3-a)/a)*100
pda4 = ((Ea4-a)/a)*100
pda5 = ((Ea5-a)/a)*100

pdbl = ((Eb1-b)/b)*100
pdb2 = ((Eb2-b)/b)*100
pdb3 = ((Eb3-b)/b)*100
pdb4 = ((Eb4-b)/b)*100
pdb5 = ((Eb5-b)/b)*100

pda = ((Ea-a)/a)*100
pdb = ((Eb-b)/b)*100

% Change time to minutes

vt=(0:0.1:length(y)-1)*(T/60); vk=((0:length(y)-1) *(T/60);

% Plot

figure(6)

h=plot(vk, y, b, v, Vit, “b" vt vestl, --r' vt vest2, g,
vt, vest3, --c' vt vest, k)

xlabel(  "Time (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf

(kHz)' , 'FontSize' ,14)

h_legend = legend( 'Experimental data' ,

'Experimental data fitting' A

‘Estimated Sensor Response after 4 minutes' .
'Estimated Sensor Response after 5 minutes' ,
'Estimated Sensor Response after 6 minutes' -
‘Estimated Sensor Response using all data points' );

set(h_legend, 'FontSize' ,15);
set(h, ‘'Linewidth' ,3)

%%%%%%%%% %% % %% %% %% %% % %% %% %% %% %% %% %008 %%%
%%%%

%

%%%%% %% %% %% % %% %% %% %% % %% %% %% %% % %% % %008 %%%
%%

% %%%%%%% %% %% %% %% %% %% %% %% % %% End of Program
%%%%% %% %% %% %% % %% %% %% %% % %% %% %% %%
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B.5 MATLAB Code for Two-Analyte Estimation (Linear Model)

%%%6%6%%%%%% %% %% %% %% % % %% %% %% %% %% %% %0 %0 %5888080080 80800 0204000000008080¢
%%%%

% Author: KARTHICK SOTHIVELR

% File Name: alternative_2Analyte.m

% Date (Created): 02-27-2013

% Date (Modified): 02-17-2014
%9%6%6%6%6%%%%% %% %% %% %% % % % %% %% %% %% %% % %0 %0 %080888080880808080202000000008000
%%%%

% Description:

% Program to estimate the steady-state sensitvity a nd concentrations of

the

% binary mixture using the alternative two analyte system model.

Estimation

% were performed using Kalman Filter.

%9%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %0 %69
%%%%

80%0%%

%%%

0,00/060060000000000 0%%%

% Cleaning

clear all

close all

clc

%%% %% %% %% %% % % %% %% %% %% %% %% % %% % % %% % %0 %R808088048080880800808808008988080%0% %
%%%%

% Open and read the measurement file

FID = fopen(  'thesis BT _2nd.ini' , ' ); % 121211PEABEJ3binaryCor

data = textscan(FID, '%f %f" );

fclose(FID);

%%%% % %% % %% %% % %% %% %% %% %% %% % %% % % %% % %0 %R808088048080880800808808008988080%0% %
%%%%

% Order the data (Based on Analyte)

y1 = data{2}(53:78); yb1l = data{2}(48:52); % Benzene (1000ppb)

y2 = data{2}(127:175); yb2 = data{2}(122:126); % Benzene + Toluene

(1000ppb + 500ppb)

y3 = data{2}(222:271); yb3 = data{2}(217:221); % Benzene + Toluene

(500ppb + 500ppb)

y4 = data{2}(367:417); yb4 = data{2}(362:366); % Benzene + Toluene

(200ppb + 500ppb)

% Sampling Period:
T=12; % in seconds

% Time Constants (in sec) from Averaged Single Ana lyte Table:
tauA = 34.6; % Benzene
tauB = 92.6; % Toluene
% Steady-State Sensitivity from Averaged Single Ana lyte Table:

ssA = 0.257; % Benzene
ssB = 0.746; % Toluene

%%%%% %% %6 %% %% % %% %% %% %% %% %% %% %% %% %% %09
%%%%
% Select the case to be analyzed

0,00/0606060000000000 0%%%
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y =y2;yb =yb2;

kmax = length(y); % Length of the measurement data points

%0%0%%%% %% %% % % %%0% %% %% %% % %% %% %% % % % % % % %84888882882888880000000080080080888280%0% %
%%%%

%%%

%%%% %% %% %% %% % %% %% %% % %% %% % % %% % % %% % %0 %28080880480808802008088080080800%
%%%%

% Initialize Kalman Filter variables

%%%% %% %% % %% %% %% % % %% %% %% % % %% %% %% % % %9
%%%%

yhat = zeros(1,kmax); x = zeros(2,kmax+1); P = zero s(2,2,kmax+1);
x(:,1) = [0; OF; % Initial state vector (Initial state estimate)

P(:,:,1) = diag([1000, 500]); % Initial error covariance Matrix

W=10;V =1, % Covariance of Measurement and process noise

G=1[1]; % Matrix G (1 by 1 Matrix)

U = ones(kmax,1); % Step Input

m_A=0; m_B=0; % Initial value of the normalized Concentration

% System Matrices (A and F)

A =eye(2);

F=[11];

% Adsorption Rate Constant:

Sa=(T/tauA); % Benzene

Sb=(T/tauB); % Ethylbenzene

Sa = round(Sa*le4)/1e4; % Analyte A

Sb = round(Sb*1e4)/1e4; % Analyte B

%%%

%%%%%%0%% %% %% %0 %% %% % %% %% % %% %% %0 %% % %% %00 ©%%%
%%%%
%************************* Kalman Fllter SCheme
kkkkkkkkkkkkkkkkhhkkkkhkkhkkkkkk
% Loop to evaluate each instant in time
for i=1:kmax
C =[m_A() m_B(®i)]; % C Matrix
% Simulate the normalized concentration values:
m_A =(1 - Sa)*m_A + Sa*U;
m_B = (1 - Sh)*m_B + Sb*U;
% Estimated measurement
yhat(i)=C*x(:,i);

K = (A*P(.,5,I)*CY((C*P(:,:,i)*C' + G*W*G')) ;% Kalman Gain
X(:,i+1) = A*X(:,D) + K*(y(i)-C*x(:,D)); % State Update Equation
% Error Covariance Update Equation:
P(,:i+1) = (A-K*C)*P(:,:,)*(A-K*C)' + K*G*W* G"*K' + F*V*F",
end

%9%6%6%%%6%%%%%%% %% % %% % %% %% %% %% %% %% %% %00 0%%%
%%%%

% Plot and Analysis

%69%6%%%%%%%% %% %% %% %% % % %% %% %% %% %% %% % %0 %88888888008080808080000000008080¢
%%%%

vk=0:kmax-1;

vt=(0:0.1:kmax-1)";

80%0%%

% Experimental Data Fitting
fun=[ ‘'a*(l-exp( num2str(-(T/tauA))
"*x))+b*(1-exp(’ num2str(-(T/tauB)) *x)



hfit = fit((0:kmax-1)",y,fun, 'StartPoint' 1 1]);

% Steady-State Sensitivity

a = round(hfit.a * 1e2)/1e2; % Analyte A

b = round(hfit.b * 1e2)/1e2; % Analyte B

vfit = a*(1-exp(-(T/tauA).*vt)) + b*(1-exp(-(T/tauB ).*wt));
% Estimated Steady-State Sensitivity

Ea = round(x(1,kmax)*1le4d)/1e4; % Analyte A

Eb = round(x(2,kmax)*1e4d)/1e4; % Analyte B

% Estimated Frequency Shift
vest = Ea*(1-exp(-Sa.*vt)) + Eb*(1-exp(-Sb.*vt));

% Converting time step number to minutes and add ba selines

y = [yb(1:5);y]; yhat = [yb(1:5);yhatT;

vfit=[((0:0.1:4.9)*0);vfit]; vest=[((0:0.1:4.9)*0 );vest];
vk=((0:length(y)-1)")*(T/60); vt=(0:0.1:length(y)-1 )*(T/60);

% Plot

figure(1)

plot(vk, y, b, v, VAit, “b" , vt, vest, )

title ( 'Frequency Shift vs Time'

xlabel(  "Time (min)' ); ylabel( 'Frequency Shift \Deltaf [kHz]' )
legend( 'Experimental data' | 'Experimental data Fitting: \Deltaf="
num2str(a)  "*[1-exp(-' numz2str(Sa) K]+ v

num2str(b)  *[1-exp(-' num2str(Sh) 'K)' 1[ 'Estimated data
Fitting:\Deltaf='

num2str(Ea)  “*[1-exp(-' num2str(Sa) 'K)] +

num2str(Eb)  *[1-exp(-' numz2str(Sh) O D;

figure(2)

% Plot of Frequency Shift vs Time step

h=plot(vk, y, b, v, Vit, “w' v, VAit, “b" , vt, vest, W' v,
vest, ‘- );

%title (‘Frequency Shift vs Time','FontSize',24)
%LineWidth = [3];

xlabel(  "Time, t (min)' , 'FontSize'  ,14); ylabel( 'Frequency Shift, \Deltaf
[kHz]" , 'FontSize' ,14)
h_legend = legend( 'Experimental data' ,[ 'Experimental data fitting
expression: \Deltaf = A
num2str(a) *[1-exp(-' numz2str(round((Sa/T)*1e4)/1e4) ']+
num2str(b) *[1-exp(-' num2str(round((Sb/T)*1e5)/1e5) D1,
'Experimental data fitting' A
[ 'Estimated fitting expression: \Deltaf =
numz2str(Ea) *[1-exp(-' numz2str(round((Sa/T)*1e4)/1e4) ']+
numa2str(Eb) "*[1-exp(-' num2str(round((Sb/T)*1e5)/1e5) D1,
'Estimated Sensor Response' );

set(h_legend, 'FontSize' ,15);

set(h, 'LineWidth® ,3)

% annotation('textbox’, [0.2,0.4,0.1,0.1]....

% 'String', 'Estimated Concentration: Be nzene (1743 ppb) and
Toluene (897 pph));
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figure(3)
% Plot of Frequency Shift vs Time step
h=plot(vk, y, b, v, VAit, “b" , vt, vest, rt )

%title (‘Frequency Shift vs Time','FontSize',24)
%LineWidth = [3];

xlabel(  "Time (min)' , 'FontSize' ,14); ylabel( 'Frequency Shift, \Deltaf

(kHz)' , 'FontSize' ,14)

h_legend = legend( 'Experimental data’' , 'Experimental data fitting' ,
'Estimated Sensor Response' );

set(h_legend, 'FontSize' ,15);
set(h, ‘'Linewidth' ,3)
annotation(  'textbox’ , [0.2,0.4,0.1,0.1], .

'String' ,[ 'Experimental data fitting expressioﬁ: \Deltaf =" -

num2str(a) *[1-exp(-' numz2str(round((Sa/T)*1e4)/1e4) ']+

numa2str(b) "*[1-exp(-' num2str(round((Sb/T)*1e5)/1e5) ']’
'Estimated fitting expression: \Deltaf =

num2str(Ea) *[1-exp(-' numz2str(round((Sa/T)*1e4)/1e4) ']+

numa2str(Eb) "*[1-exp(-' num2str(round((Sb/T)*1e5)/1e5) DD

% Estimated Concentration
Con_A = abs(Ea)/(ssA);
Con_B = abs(Eb)/(ssB);

ConA = abs(a)/(ssA);
ConB = abs(b)/(ssB);

fprintf( "The estimated concentration of Analyte A (in ppm) is\n" )
disp(Con_A)

fprintf( "The estimated concentration of Analyte B (in ppm) is\n" )
disp(Con_B)

fprintf( "The concentration of Analyte A (in ppm) (from fitt ing
parameter) is \n' )

disp(ConA)

fprintf( "The concentration of Analyte B (in ppm) (from fitt ing
parameter) is \n' )

disp(ConB)

%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% % % %Y
%%%%

% Time Analysis (Time to quantification)

%%%%%% %% % %% %% % %% % %% %% %% %% %% %% %% %% %
%%%%

0%%%

0%%%

% Time vector
vk=(0:kmax-1)"; vt=(0:0.1:kmax-1)’;
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% Several Estimated Steady-state sensitivity (Analy te A)
Eal = round(x(1,20)*1e4)/1e4; % after 4 minutes
Ea2 = round(x(1,25)*1e4)/1e4; % after 5 minutes
Ea3 = round(x(1,30)*1e4)/1e4; % after 6 minutes
Ea4 = round(x(1,35)*1e4)/1e4; % after 7 minutes
Ea5 = round(x(1,40)*1e4)/1e4; % after 8 minutes
% Several Estimated Steady-state sensitivity (Analy te B)
Eb1l = round(x(2,20)*1e4)/1e4; % after 4 minutes
Eb2 = round(x(2,25)*1e4)/1e4; % after 5 minutes
Eb3 = round(x(2,30)*1e4)/1e4; % after 6 minutes
Eb4 = round(x(2,35)*1e4)/1e4; % after 7 minutes
Eb5 = round(x(2,40)*1e4)/1e4; % after 8 minutes

% Several Estimated Frequency Shift

vestl = Eal*(1-exp(-Sa.*vt)) + Eb1*(1-exp(-Sb.*vt)) ;
vest2 = Ea2*(1-exp(-Sa.*vt)) + Eb2*(1-exp(-Sb.*vt)) ;
vest3 = Ea3*(1-exp(-Sa.*vt)) + Eb3*(1-exp(-Sb.*vt)) ;
vestd = Ead*(1-exp(-Sa.*vt)) + Eb4*(1-exp(-Sb.*vt))

vest5 = Eab5*(1-exp(-Sa.*vt)) + Eb5*(1-exp(-Sb.*vt))

vest1=[((0:0.1:4.9)*0);vest1];
vest2=[((0:0.1:4.9)"*0);vest2];
vest3=[((0:0.1:4.9)*0);vest3];
vest4=[((0:0.1:4.9)*0);vest4];
vest5=[((0:0.1:4.9)"*0);vest5];

pdal = ((Eal-a)/a)*100
pda2 = ((Ea2-a)/a)*100
pda3 = ((Ea3-a)/a)*100
pda4 = ((Ea4-a)/a)*100
pda5 = ((Ea5-a)/a)*100

pdbl = ((Eb1-b)/b)*100
pdb2 = ((Eb2-b)/b)*100
pdb3 = ((Eb3-b)/b)*100
pdb4 = ((Eb4-b)/b)*100
pdb5 = ((Eb5-b)/b)*100

pda = ((Ea-a)/a)*100
pdb = ((Eb-b)/b)*100

% Change time to minutes

vt=(0:0.1:length(y)-1)*(T/60); vk=((0:length(y)-1) *(T/60);

% Plot

figure(5)

h=plot(vk, y, *b' i, Vit, “b" vt vestl, --r' vt vest2, g,
vt, vest3, --c' Vvt vest, k)

xlabel(  'Time, t (min)' , 'FontSize'  ,14); ylabel( 'Frequency Shift, \Deltaf
(kHz)' , 'FontSize' ,14)

h_legend = legend( 'Experimental data' .

'Experimental data fitting' y e
'Estimated Sensor Response after 4 minutes' ,
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'Estimated Sensor Response after 5 minutes' ,
'Estimated Sensor Response after 6 minutes' -
‘Estimated Sensor Response using all data points' );

set(h_legend, 'FontSize' ,15);
set(h, ‘'Linewidth' ,3)

%09%%%%% % %% %% %% %% % %% %% %% %% % %% %% %% % % % %48804808800880088008008008800880800%%0%

%%%%

%

%%%%%%% %% %% %% %% %% %% % %% % %% %% %% %% % %%
%%

% %%%%%% %% %% %% %% %% %% %% %% %% %% End of Program
%%%%%%% %% %% %% %% % %% %% %% % %% %% %% %%

0%%%
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