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ABSTRACT

PROFILE SYNTHESIS OF PLANAR VARIABLE JOINTS

Brian J. Slaboch, B.S., M.S.

Marquette University, 2013

Reconfigurable mechanisms provide quick changeover and reduced costs for
low volume manufacturing applications. In addition, these mechanisms provide
added flexibility in the context of a constrained environment. A subset of planar
reconfigurable mechanisms use variable joints to provide this added adaptability.

In this dissertation, the profile synthesis of planar variable joints that
change from a rotational motion to a translational motion was investigated. A
method was developed to perform automated profile synthesis. It was shown that
combinations of higher variable joints can be used to create kinematically
equivalent variable joints that are geometrically different.

The results were used to create two new reconfigurable mechanisms that
utilize the synthesized variable joints. The first reconfigurable mechanism is a
four-bar mechanism that performs a rigid body guidance task not possible using
conventional four-bar theory. The second mechanism uses variable joints in a
3-RPR parallel mechanism for singularity avoidance without adding redundant
actuation.
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CHAPTER 1

Introduction

“You can’t make bricks without straw.”

1.1 Introduction

There is an ever increasing demand for mechanisms that perform a variety

of different tasks. One possible technique is to have adaptable mechanisms. A

reconfigurable mechanism is a mechanism that changes its topology or degrees of

freedom (DOF). Application areas for reconfigurable mechanisms include, but are

not limited to, deployable truss structures [1], origami [2], and industrial

manufacturing [3].

A subset of reconfigurable mechanisms, Type II Mechanisms with Variable

Topology (MVTs), require variable joints. Variable joints are able to change their

kinematic pair or representative orientation based on the required mechanism

function. Variable joints are found in everyday items such as adjustable pliers or

door latches. Conventional mechanisms rely on the classic lower (i.e., revolute and

prismatic joints) and higher (i.e., cams, Reuleaux triangle, etc.) pairs to constrain

the motion of two links. However, greater adaptability can be gained by using

variable joints in a mechanism. Variable joints can help reduce the number of

required actuators, which reduce the power supplies, wiring, and coordination of
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the DOF.

1.2 Research Purpose

Reconfigurable mechanisms have the potential to revolutionize mechanism

design. The ability for a mechanism to seamlessly switch from one mechanism to

another is an active area of research with significant upside potential, including

reduced weight, cost savings, and added flexibility.

Synthesis of reconfigurable mechanisms is a complicated problem. Most

reconfigurable mechanisms are created by either locking a joint with an external

force or by passing through a singularity. In both cases, the type of joint does not

change. Rather, the joint becomes inactive (or active), due to constraints placed

on the mechanism.

MVTs that contain variable joints (Type II MVTs) are distinctly different

from reconfigurable mechanisms that change due to locking a joint. For example,

by using a planar, variable joint, a four-bar mechanism could seamlessly switch

from a RRRR four-bar to a RRRP1 four-bar. This Type II MVT is in contrast to

a reconfigurable four-bar mechanism in which one of the joints is locked by an

external force, thereby reducing the mechanism to a structure.

In order to synthesize Type II MVTs, the joint profiles of variable joints

must be well understood, and, therefore, the joint profiles are the focus of this

dissertation. This dissertation provides a method that can be used to perform

automated profile synthesis of planar, variable joints that change from a revolute

1The notation “RRRR” and “RRRP” denote the order in which revolute and prismatic joints
are connected in a four-bar mecahnism.
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pair to a prismatic pair. The results of this work are subsequently applied to two

applications involving industrial manufacturing and singularity avoidance in

parallel manipulators.

The proverb that heads this chapter is fitting for the problem solved in this

dissertation. Just as you cannot make bricks without straw, you cannot make

Type II MVTs without variable joints. Hence, the broader impact of this research

is that engineers will have a new tool to create planar, variable joints that change

from a revolute pair to a prismatic pair. In addition, the dissertation provides a

new way of thinking about the profiles of variable joints, and the methods used in

this work have the potential to be expanded to other types of variable joints as

well. The potential applications for reconfigurable mechanisms that use these

variable joints are limitless.

1.3 Joint Profile Synthesis

An easy way to visualize the variable joint synthesis problem is by example.

Figure 1.1 provides a general representation of a joint where link 1 (a hollow rigid

body) is assumed fixed, and link 2 (a solid rigid body) moves in the plane relative

to link 1. Each link has a distinct profile which constrains the relative motion

between the two links. Similarly, each link of the variable joint in Fig. 1.2 has a

distinct profile which constrains the relative motion between the two links.

However, the joint in Fig. 1.2 provides a more prescribed motion due to its

methodical design. The variable joint is able to change from a revolute pair to a

prismatic pair due to the geometric profiles of the two links. The goal is to find the
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Figure 1.1: General Profile of a Joint
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Figure 1.2: Example Rotational to
Translational Variable Joint

properties these profiles need to have to enforce this type of motion.

1.4 Profile Synthesis of an Example Variable Joint

An example of the results from this research is shown in Fig. 1.3. The

variable joint contains two links. Link 1 is assumed fixed, and link 2 moves relative

to link 1. Link 2 starts in the initial configuration, as shown in Fig. 1.3(A), and

rotates counterclockwise to the position, as shown in Fig. 1.3(B). Link 2 is then

able to translate along the fixed slot as shown in Fig. 1.3(C). In determining the

profiles for link 1 and link 2 of the variable joint, the design parameters are the

(B) (A) 

Link 1 

Link 2 

(C) 

Figure 1.3: Rotational to Translational Variable Joint
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amount of rotation, the direction of translation, and the distance link 2 translates.

From specifying these design parameters, it is possible to automatically determine

the profiles of two links that provide the desired planar motion.

In this dissertation, it is further shown how this type of variable joint can

be used in a reconfigurable four-bar mechanism utilized in a manufacturing

application. In addition, it is shown that using a variable joint that changes from a

rotational motion to a translation motion can be used for singularity avoidance in

a certain parallel manipulator (PM).

1.5 Organization of the Dissertation

This dissertation is organized as follows: Chapter 2 outlines the relevant

literature and motivation for this work. Chapter 3 introduces planar, higher

variable joints as essential components of Type II MVTs. Chapter 4 presents a

procedure for the profile synthesis of RuPv variable joints. Chapter 5 shows an

example of a reconfigurable four-bar mechanism that uses RuPv variable joints in a

manufacturing application. Chapter 6 shows how an RuPv variable joint can be

used to help avoid singularities in a 3-RPR2 mechanism, and Chapter 7 provides a

conclusion and remarks for future work.

2The underlined P in 3-RPR denotes the actuated joints.
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CHAPTER 2

Motivation and Literature Review

This work is motivated by the fact that variable joints are fundamental

components of certain reconfigurable mechanisms1. Reconfigurable mechanisms

were introduced as recently as 1996 [4], and these will be discussed in greater

detail in Section 2.3. However, in order to place this work in proper context, a

brief history of kinematics will be presented.

2.1 A Brief History of Kinematics

Mechanisms analysis and synthesis was first formalized in the 1800s by

Reuleaux [5], Kennedy [6], and Burmester [7]. Ingenious mechanisms were created

prior to this time, but there were no standard analysis or synthesis techniques in

use. In the early 1800’s, many kinematicians were focused on synthesizing

mechanisms that provide straight-line (or approximate straight line) motions.

Examples include the Peaucellier-Lipkin linkage, the Sarrus linkage, Watt’s

linkage, Hoeken’s linkage, and the Chebyshev linkage. In 1875 Reuleaux published

his famous book, Kinematics of Machinery, in which he was the first to develop

a notation to represent the topology of mechanisms. He also introduced the

concept of kinematic pairs as well as kinematic inversions. In 1886, Alexander

1The term reconfigurable mechanism should not be confused with self-reconfigurable robots
which are not the focus of this work.
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Kennedy translated Kinematics of Machinery into English, and Kennedy’s

Theorem [6] was a major contribution to the field. Around the same time frame,

Burmester provided solutions for finite position synthesis for planar mechanisms.

Over the next fifty years mechanisms were synthesized to trace a particular path.

In the 1950s, Denavit and Hartenberg introduced a standard matrix

notation that is used as a convention for attaching reference frames to the links of

a serial kinematic chain [8]. The advent of the digital computer in the allowed for

the use of the vector loop equations [9, 10] to perform automated analysis and

synthesis of linkages [11]. In 1985 Tsai and Morgan were able to solve the forward

and inverse kinematics for general five and six DOF manipulators [12]. In 1992,

Wampler and Morgan provided a complete solution of the nine-point path

synthesis problem for four-bar linkages [13]. Following in 1996 Wohlhart

introduced kinematotropic mechanisms [4]. In 1997, Ruth and McCarthy

introduced computer aided synthesis for spherical linkages [14]. By 1999 Dai and

Jones introduced metamorphic mechanisms [15]. The early 2000s led to the

synthesis of compliant mechanisms [16]. In 2001 Yan et al. introduced mechanisms

with variable topology (MVTs) [17], and in 2008 Murray and Schmiedeler did

work with shape changing mechanisms [18].

This brief history of kinematics shows that since the 1950s many of the

advances in the field have relied on advances in computer algebra and the solution

of complex systems of equations. It is only recently that reconfigurable

mechanisms (kinematotropic mechanisms, metamorphic mechanisms, MVTs) have

been used to solve complex kinematics problems.
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2.2 Reconfigurable Mechanisms

Recently, there has been an increasing demand to create reconfigurable

mechanisms that can perform multiple tasks. As mentioned previously,

reconfigurable mechanisms can be defined as mechanisms that change either their

topology or DOF. These mechanisms are useful because they can provide quick

changeover and reduced costs for low volume manufacturing applications. In

addition, reconfigurable mechanisms can provide added flexibility in the context of

a constrained environment. Specific areas of application include manufacturing,

space exploration, medical devices, robotic end-effectors, and hand tools.

Much of the research on reconfigurable mechanisms focuses on

reconfigurable mechanisms analysis. Dai [19], Kuo [20], Lan [21], and Slaboch [22]

have proposed different ways to represent the topological characteristics of

reconfigurable mechanisms using a matrix notation. In 2005 Dai and Jones [19]

proposed an EU-elementary matrix operation to represent the state changes of

metamorphic mechanisms. Dai and Jones realized that upon a change in the

number of effective links, the dimension of an adjacency matrix changes as well as

the order of the elements. The EU-elementary matrix operation is useful in

capturing this change. This was followed in 2006 when Yan and Kuo [20] proposed

directionality topology matrices. These matrices improved upon Dai’s method by

including information about the type of kinematic pair. In 2008 Lan and Du [21]

proposed a -1 element to indicate a fixed kinematic pair. This ensured that the

size of the adjacency matrix remained the same after a change in configuration
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occurred. Finally, in 2011 Slaboch and Voglewede [22] introduced Mechanism

State Matrices (Msm) which combined the best qualities of the previous

representations. (A more in depth review of reconfigurable mechanisms analysis

and Mechanism State Matrices is presented in Appendix A.)

While reconfigurable mechanism analysis can be used as a common tool for

discussing reconfigurable mechanisms, the more important type of research involves

reconfigurable mechanisms synthesis. That is, determining what types of links and

joints are required for a reconfigurable mechanisms to perform a certain task.

In 2001 Galletti [23] showed how to create single-loop kinematotropic

mechanisms followed up in 2002 by Multiloop Kinematotropic Mechanisms [24]. In

this work, different geometric conditions (i.e., parallel axes or coincident axes)

were exploited to create mechanisms that would move through a singular

configuration to change the DOF for a finite motion. Following in 2006, Yan and

Kuo [20] showed how to use graph theory and generalized transition pairs to form

a semi-automated procedure in synthesizing new mechanisms. This procedure

involves determining different joint sequences based on design requirements.

However, this procedure requires heavily on intuition. In 2006 Herve [25] showed

how to create translational parallel manipulators using Lie-group algebra. In 2009

there was much work presented at the Reconfigurable Mechanisms and Robotics

(ReMAR) conference in London. Ma et al. [26] showed how to use a characteristic

matrix to produce new designs. Yang et al. [27] showed how to use a genetic

algorithm approach to determine an optimal reconfigurable mechanism. Their

algorithm uses different building blocks that are combined together using an



10

optimization. Kong and Huang [28] examined the type synthesis of single-DOF

single loop mechanisms that have two operation modes, and Yan and Kang [29]

showed how to perform configuration synthesis of mechanisms with variable

topologies using graph theory.

Previous research on reconfigurable mechanism synthesis has relied

exclusively on the classic lower and higher pairs. The synthesis work in this

dissertation is different than prior research in that the focus is on the profile

synthesis of the variable joints that change from rotational to translational motion.

Once the profiles of the joints have been determined, the joints can be used to

create new reconfigurable mechanisms. This type of synthesis work is novel, and

the synthesized joint profiles are intended to help in the reconfigurable mechanism

synthesis process.

This section has provided an overview of the analysis and synthesis of

reconfigurable mechanisms. Section 2.3 will provide an overview of the three main

types of reconfigurable mechanisms that are found in the literature. A subset of

these mechanisms rely on variable joints (Type II MVTs), and so a fundamental

understanding of the different types of reconfigurable mechanisms is necessary.

This will help to show why the profile synthesis of variable joints that change from

a rotational motion to a translational motion is an important problem.

2.3 Types of Reconfigurable Mechanisms

Different types of reconfigurable mechanisms were formally defined starting

in the early 1990s, but they have been used informally prior to this time. For
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example, in 1954 Wunderlich [30] introduced a 12-bar mechanism that changes

from one DOF to two DOF. Even though reconfigurable mechanisms existed, they

were not formally defined because most of the research was focused on what are

today considered standard mechanisms analysis and synthesis procedures. In

addition, each reconfigurable mechanism was considered an anomaly, and a

broader classification system did not exist.

2.3.1 Kinematotropic Mechanisms

Reconfigurable mechanisms can be categorized as kinematotropic

mechanisms, metamorphic mechanisms, or mechanisms with variable toplogy

(MVTs)2. Kinematotropic mechanisms were first proposed by Wohlhart in

1996 [4, 31]. In 2001, Galletti [23] showed how to create single-loop kinematotropic

mechanisms, and in 2002 synthesized multiloop kinematotropic mechanisms [24].

Kinematotropic mechanisms are defined as follows:

Kinematotropic Mechanisms: “Mechanisms that, in passing a
singularity position (in which a certain transitory infinitesimal mobility
is attained) these mechanisms permanently change their global
mobilities.” [4]

Figures 2.1 and 2.2 depict a typical kinematotropic mechanism in which the

mechanism moves into a singularity which permanently changes the DOF of the

linkage from one DOF to two DOF. A singularity occurs when ψ is equal to zero

which causes the mechanism change its DOF. This example shows that

kinematotropic mechanisms can change their global mobility by passing through a

2All reconfigurable mechanisms are MVTs. There are three different types of MVTs that are
used to further classify the type of reconfigurable mechanism.
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singular configuration.

2.3.2 Metamorphic Mechanisms

Following the work performed on kinematotropic mechanisms, Dai and

Jones introduced metamorphic mechanisms [15]. A metamorphic mechanism is

defined as follows:

Metamorphic Mechanism: “A mechanism whose number, the total of
all effective links, changes as they move from one configuration to
another or a singular condition makes it behave differently.” [15]

An example of this type of reconfigurable mechanism is shown in Fig. 2.3.

This is a five-link metamorphic mechanism that oscillates between pins P1 and P2.

The spring embedded in link 2 pushes link 3 along the slot in link 2. In this case

the state of the mechanism changes as it oscillates between pins P1 and P2. The

difference between this mechanism and a kinematotropic mechanisms is that there

is a change in topology due to an external force as opposed to a singularity in the

mechanism. This leads to the most common type of reconfigurable mechanisms,

which are mechanisms with variable topology.
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Figure 2.3: The Mechanisms Oscillate Between Pins P1 and P2.

2.3.3 Mechanisms with Variable Topology

The topology of a mechanism refers to determining the types of joints in a

mechanisms as well as the connectivity of those joints. A mechanism with variable

topology is defined as follows:

Mechanism with Variable Topology (MVT): “A mechanisms with
variable topology is a mechanism whose topology changes during
operation.” [32]

MVTs can be further classified as one of the following three types [33]:

I. MVTs that change topology due to an intrinsic constraint
(kinematotropic or metamorphic mechanisms)

II. MVTs that change topology due to a joint geometry change

III. MVTs that change topology due to an external constraint
(metamorphic mechanism)

Metamorphic mechanisms and kinematotropic mechanisms are simply

subsets of Mechanisms with Variable Topology as shown in the diagram in

Fig. 2.4. Both Type I MVTs and Type III MVTs have been studied more

extensively than other types of reconfigurable mechanisms, and these types of

mechanisms were discussed in Section 2.3.1 and Section 2.3.2. However, this

research will be motivated by MVTs that change topology due to a joint geometry
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Figure 2.4: Classification of Mechanisms with Variable Topology

change (Type II), which are not as well understood. An example of an MVT that

changes topology due to a joint geometry change is given in Figs. 2.5 and 2.6. This

mechanism is able to change from performing skew-axial motion to performing

straight line motion.

This mechanism is able to change its topology by using a variable joint that

changes its orientation. In particular, the joint is able to change its axis of

rotation. This type of joint is not a joint used in conventional mechanisms. In

order to physically create this joint, the joint profiles had to be determined. It is

assumed that the profiles of the variable joints in this mechanism were created

using intuition. While this may work in some cases, it is the goal of this research

to determine the theory behind the profile synthesis of variable joints. Specifically,

the profiles of planar variable joints that change from a rotational to a

translational motion will be determined.
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Figure 2.5: Mechanism Performing
Straight Line Motion [34]

Figure 2.6: Mechanism Performing
Straight Line Motion [34]

2.4 Summary of Reconfigurable Mechanisms

This section has shown that there are three types of reconfigurable

mechanisms (kinematotropic, metamorphic, MVTs). Kinematotropic,

metamorphic, and MVTs of Type I and Type III have been widely studied. Type

II MVTs are reconfigurable mechanisms that change topology due to a joint

geometry change. The joints that make up Type II MVTs will be the focus of this

research. In order to fully comprehend what is meant by a “joint geometry

change” it is important to first understand the definition of a joint.

2.5 Joints

Joints were first defined by Franz Reuleaux in 1876 [5], and their definition

has not changed since that time. This section provides an overview of the different

types of joints used for both conventional mechanisms and reconfigurable

mechanisms. Joints are categorized as either lower pairs or higher pairs depending

on the connection between two links (rigid bodies). Reuleaux was the first to

formalize the idea that links in a mechanism are connected in pairs.
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2.5.1 Lower Pairs

Reuleaux states that the closed pairs (lower pairs) must satisfy three

criteria:

1. “Must have surface contact.

2. The two elements must be geometrically identical.

3. The elements prevent every motion except the one that is required.” [5]

Reuleaux determined that, by this definition, there are only six lower pairs

(revolute, prismatic, cylindric, helical, spherical, plane), and in 1972 Waldron [35]

mathematically proved that Reuleaux was correct. Formal definitions of lower

pairs taken from Tsai [36] are given in Appendix B.

2.5.2 Higher Pairs

Higher pairs can be distinguished from lower pairs in that the pair of

elements do not enclose each other. From Reuleaux’s definition, higher pairs must

satisfy the following criteria:

1. Require a point or line contact.

2. It must be shown that in all consecutive mutual positions relative sliding is
impossible. [5]

An example of a higher pair is Reuleaux’s triangle, which is commonly used

in rotary engines. In both lower and higher pairs it was assumed that the two

bodies in contact were constrained solely by the geometric profiles of the two links.

This important assumption, which is often overlooked in conventional kinematics

texts, is an important concept as it relates to this research. In this research only

higher pairs that are constrained solely by the geometric profiles of the two links
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will be considered. Incomplete pairs [5] will not be considered. For example, a rack

and pinion gear pair is not considered because it depends upon the application of a

closing force.

2.5.3 Variable Joints

All MVTs that change topology due to a joint geometry change contain

variable joints. Variable joints were first introduced by Yan and Kuo in 2006 [37],

and are defined as joints that can change either their kinematic pair or

representative orientation with respect to a local coordinate system.

An example of a variable joint that changes its kinematic pair is shown in

Fig. 2.7. This variable joint changes its kinematic pair from a revolute pair to a

prismatic pair. In configuration (A) link 1 rotates relative to the ground link. In

configuration (B) link 1 is in a transition stage in which link 1 may

instantaneously either rotate or translate relative to link 2. Finally, in

configuration (C) link 1 may slide relative to the ground link.

Variable joints are also used to capture changes in the representative

orientation of a joint. For instance, Fig. 2.8 shows a variable slider joint in which a

sliding block moves relative to a fixed frame. The slider begins in configuration (A)
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and translates along the −Y axis to configuration (B). In configuration (B) the

slider is in a transition stage in which it may either slide along the X or Y axes.

The slider is then able to translate along the X axis as shown in configuration (C).

2.5.4 Practical Considerations for Variable Joints

In this dissertation, only the profile synthesis (i.e., the kinematics) of

variable joints that change from a rotational motion to a translational motion is

considered. However, there are many practical issues that would need to be

considered in order to create these variable joints. This section will outline some of

the practical issues that need to be considered. This is not meant to fully address

every practical consideration, but rather, to show that understanding the

kinematics is just the first part of the joint design process. While practical

considerations are similar to those that are used for current design of standard

lower and higher pairs, there are some design criteria that will be more challenging

for variable joints than conventional lower and higher pairs.

After determining the required joint profiles, each of the joint profiles must

be considered from a manufacturing point of view. An important first step in this

process is to determine kinematic redundancies based on the nominal joint profile

design. Kinematic redundancies can be used to add mechanical stops, reduce

stress concentrations, and provide added stability to the design.

Appropriate bearings must be designed to accommodate the different joint

profiles. Standard ball bearings are not designed for use with variable joints. Ball

bearing designs for variable joints is an important area of future research.
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However, one potential option could be to place steel balls around the joint profiles

similar to what is done for current revolute joints.

Tolerances must be analyzed which can be completed using the work by

Sacks et. al [38]. Tolerances are critical for RuPv variable joint due to the

transition configuration from rotational to translational motion. In order to use

RuPv variable joints in an automated process it must be shown that they are

robust and do not jam during the transition from one motion to another.

When an RuPv variable joint is used within a mechanism the dynamics

must be considered because different joint profiles may be better than others

depending on the loading conditions of the joint. Care must be taken to ensure

that the forces acting on the joint are within an appropriate range.

Other important factors include the stiffness of the joint as well as possible

backlash. Many of the design considerations are identical to those for standard

joints. Appropriate materials must be selected based on the specific application.

While each of the design considerations are important, it is critical to first

understand the joint profiles so that the required kinematic constraints are

satisfied, and that will be the focus of this dissertation.

2.6 Summary

There is a need for reconfigurable mechanisms due to the fact that they can

be used to provide quick changeover and reduced costs for low volume

manufacturing applications. In addition, reconfigurable mechanisms can provide

added flexibility in the context of a constrained environment. Reconfigurable
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mechanisms can be categorized as kinematotropic, metamorphic, or mechanisms

with variable topology. This research will focus on Type II MVTs because variable

joints are fundamental components of Type II MVTs. Thus, in order to create

Type II MVTs it is important to understand the profile synthesis variable joints.

In this research, the profile synthesis of planar, variable joints that change

from a specific rotational motion to a specific translational motion will be

investigated. Rotational and translation joints were chosen because these are the

most common types of joints used in mechanisms.
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CHAPTER 3

Higher Variable Joints

This chapter introduces planar, higher variable joints as essential

components of Type II MVTs. It will be shown that profile synthesis of variable

joints cannot be achieved using a conventional centroid approach. Finally, it will

be proven that second order effects, or surface curvature, of higher variable joints

is critical to achieve a particular joint motion. Higher variable joints will be used

in Chapter 4 when performing profile synthesis of variable joints that change from

a specific rotational motion to a specific translational motion.

3.1 Overview of Higher Variable Joints

In this section, planar revolute and prismatic higher variable joints are

introduced. The term higher variable joints comes from the fact that each joint

performs the higher characteristic of a lower pair motion, and this motion is

intended to be used in a variable joint. Revolute higher variable joints are denoted

as Type Ru, where u =1, 2, or 3. Prismatic higher variable joints are denoted as

Type Pv, where v = 1 or 2. Figure 3.1 shows that each of the higher variable joints

is the discrete form of lower pair motion.

For example, the first row of Fig. 3.1 shows a Type R1 higher variable joint.

The body defined by points (1,2,3) rotates by an angle θ to points (1′, 2′, 3′) as
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shown in Fig. 3.1. Note that the angles between the contact normals (α,β,γ) must

be less than 180◦. The advantage of higher variable joints is that they are able to

provide geometrically different forms of identical rotational or translational

motion. In Section 3.2 and Section 3.3 it will be proven that there are three types

of Ru higher variable joints, and there are two types of Pv type higher variable

joints. Prior to this, it will be shown why standard kinematic theory cannot be

used to determine the profiles of joints that change from a specific rotational

motion to a specific translational motion.

3.1.1 Motivation for Higher Variable Joints

Profile synthesis has been studied since the time of Reuleaux [5]. Reuleaux

proposed various methods to determine the profiles of higher pair joints, based on
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a centrode approach. Centrodes can be used to represent the planar motion of one

body relative to another. Thus, any body moving relative to another can be

represented by a fixed and moving centrode where the moving centrode rolls upon

the fixed centrode and remains continually in contact.

The two most widely used planar lower pairs, the revolute and prismatic

pair, are unique in that their respective fixed and moving centrodes are identical.

For a revolute pair the fixed and moving centrodes are both a point as shown in

Fig. 3.2(A) because the instantaneous center of rotation does not change. For a

prismatic pair, the fixed and moving centrodes are considered to be a line at

infinity as shown in Fig. 3.2(B). When combined into a variable joint as shown in

Fig. 3.2, the fixed and moving centrodes are still identical, but there is a

discontinuity in which the centrodes move from a point to a line at infinity as the

variable joint changes from a revolute pair to a prismatic pair. Thus, there is not a

moving centrode rolling on a fixed centrode. Due to this fact, a standard joint

profile synthesis technique using a centroid approach is not applicable to variable

joints.

In order to determine the profile synthesis of a variable joint that changes
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from a rotational motion to a translational motion, it is important to know the

minimum number of frictionless point contacts necessary to constrain a body

(either circular or rectangular) to either rotational or translational motion. By

determining the minimum number of contact points necessary, it allows one to

develop a nominal design which can be used to design these types of variable

joints. In order to determine the minimum number of contact points necessary, a

theory developed by Rimon and Burdick [39] was used, and the fundamentals of

this theory are provided in Section 3.1.2.

3.1.2 Mobility of Bodies in Contact

In 1995 Rimon and Burdick [39,40] showed how configuration space may be

used to determine the mobility of an object, B, that is in contact with constraint

bodies 1 A1,...,An. Figures 3.3 and 3.4 show two bodies, each constrained by

frictionless point contacts. First order theories, such as screw theory or Reuleaux’s

instant center approach, would correctly indicate that both bodies may

instantaneously rotate about the z-axis. However, body B in Fig. 3.3 is able to

rotate freely about the z-axis, while body B in Fig. 3.4 is immobile. Rimon and

Burdick showed that second order effects (i.e., curvature effects) are needed to

determine the mobility of bodies in contact because the relative motion between

the two bodies is a finite, rather than an infinitesimal motion. The results from

this prior work have been used in grasp planning and fixturing as well as other

application areas in which the goal is to determine the minimal number of

1Constraint bodies may be thought of as frictionless point contacts. The constraint bodies do
not need to be circular, but must only make contact with body B at one point.
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constraint bodies necessary to completely immobilize a body, B.

This chapter uses the approach proposed by Rimon and Burdick to

determine the minimum number of constraint bodies necessary to constrain a

body, B, to either rotational motion or translational motion depending on whether

a Type Ru or Type Pv higher variable joint is required. Section 3.1.3 will review

the configuration space (c-space) terminology associated with this theory.

3.1.3 Configuration Space Terminology

A rigid object, B, is in contact with rigid, stationary, constraint bodies

A1,...,An. It is assumed that the boundaries of all bodies are smooth (i.e.,

frictionless) and that the surface normals are well defined. This analysis will focus

on the configuration space of B rather than the combined configuration space of

the constraint bodies.

A planar configuration space representation requires three configuration

variables. The configuration variables (xB, yB, θB) can be thought of as describing

the motion of the center of body B relative to a fixed body A. Both xB and yB

have units of length, and −180 < θB < 180 ◦. Points are denoted by q = (d, θ),

where d = (xB, yB).



26

C-space obstacles will be denoted by CAi, which is the set of all

configurations, q, in which B(q) intersects the ith constraint body, Ai. The

boundaries of CAi are denoted as Si, and consist of the configurations in which the

surfaces B(q) and Ai touch each other, while their interiors are not touching. The

freespace, Fi, is the complement to the c-obstacles’ interior. Therefore, curves in F

correspond to the free motions of B. If a body, B, is in contact with n frictionless

point contacts then the freespace may be expressed as F =
⋂n

i=1 Fi.

3.2 Type Ru Variable Kinematic Joints

In order to determine the types of Ru higher variable joints, it is important

to review the fundamentals of lower pair revolute joints. Lower pairs consist of

touching surfaces, one solid and the other hollow which can move relative to each

other while maintaining contact. For example, in the plane, revolute joints can be

represented by a solid circle of radius R rotating relative to a hollow outer circle as

shown in Fig. 3.5(A). Reuleaux [5], and subsequently Waldron [35], proved that

these are the only profiles in the plane that can be used to produce revolute

motion. Therefore, to produce a joint that has a variable amount of rotation, one

of the joint profiles must be a circular arc.

Suppose now that the solid inner circle of the revolute joint is removed and

only the hollow outer circle remains. In creating a higher variable revolute joint,

the goal is to determine the minimum number of constraint bodies necessary to

ensure that the circle of radius R remains constrained to rotational motion. There

are three possible cases as shown in Fig. 3.5:
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Case 1: Frictionless point contacts are placed on the outside of the
circle (Fig. 3.5(B)).

Case 2: Frictionless point contacts are placed on the inside of the circle
(Fig. 3.5(C)).

Case 3: Frictionless point contacts are placed on both the inside and
the outside of the circle (Fig. 3.5(D)).

3.2.1 Case 1: Type R1 Higher Variable Joints

For Type R1 higher variable joints three constraint bodies are necessary to

completely constrain a circular body, B, to rotational motion. In addition, the

angles between the contact normals of the three constraint bodies (α, β, γ) must

be less than 180◦. In order to prove that three constraint bodies is the minimum

number of bodies necessary to constrain body B to rotational motion, it must be

shown that motions other than rotational motion are possible with one or two

constraint bodies. Three sub-cases will be examined corresponding to the number

of constraint bodies that are used to attempt to constrain body B to rotational

motion. All of the sub-cases will be shown for R1 higher variable joint, but for the

other higher variable joints only the final result will be presented.
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Figure 3.5: Different Cases for Revolute Higher Variable Joints



28

One Constraint Body

In this sub-case, it will be shown that one constraint body located on the

outside of circle B is not sufficient to completely constrain the body to rotational

motion. Figure 3.6(A) consists of a circle of radius R (body B) that is in contact

with a constraint body (body A) with radius r. A fixed XY θ coordinate system is

located at the center of body B. A local XBYBθB coordinate system is attached to

body B, and it is initially aligned with XY θ in configuration q1. Figure 3.6(B)

shows body B in two different contact configurations, q1 and q2. Note that in

configuration 2, body B is rotated relative to the fixed coordinate system. The

c-space obstacle, represented by CA, is shown in Fig. 3.6(C). The boundary of the

c-obstacle is given by S. The free space, F , is the complement of the c-obstacles

interior.

A tangent plane can be drawn at configuration q1 that provides a

separation between the penetration Halfspace and the free Halfspace. First order

theories show that body B can break away from constraint body A along a path

within the free Halfspace as shown in Fig. 3.6(C). However, due to the curvature of

body B, there are paths in the penetration Halfspace in which body B may escape

from body A as curves within F correspond to free motions of B. For instance,

body B may break away from body A by moving along the curve α1(t) or α2(t).

Due to the existence of an infinite number of free paths within F , one constraint

body is not sufficient to constrain body B to pure rotation.
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Figure 3.6: One Constraint Body is Not Sufficient to Constrain Body B to Purely
Rotational Motion.

Two Constraint Bodies

In this sub-case it will be shown that two constraint bodies located on the

outside of circle B are not sufficient to completely constrain the body to rotational

motion. Figure 3.7(A) shows body B with two constraint bodies, A1 and A2, that

are placed on the outside of body B. The contact normals of both bodies are

aligned. In the XY θ coordinate system, it can be shown that c-obstacles formed

by bodies A1 and A2 create cylinders that meet at the origin. By examining the

XY plane (θ = 0) in Fig. 3.7(B), there are an infinite number of possible paths for

body B to break away from the constraint bodies. Example paths are denote α1(t)

through α6(t). Note that even if the contact normals of A1 and A2 were not

aligned, body B would still be able to break away from the constraint bodies

because there would always be an infinite number of free paths. This is in contrast

to first order theories which would suggest that there are no possible motions

along either the Y -axis or −Y -axis.
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Three Constraint Bodies

In this sub-case it will be shown that three constraint bodies located on the

outside of circle B are sufficient to completely constrain the body to rotational

motion. Figure 3.8(A) shows that in the plane, the c-obstacles form three circles

that intersect about the center point of body B. This means that only pure

rotation is possible. Figure 3.8(B) shows that the possible configurations is a

vertical line in the configuration space corresponding to a pure rotation. Any path

taken other than along the vertical line would cause body B to collide with a

c-obstacle. It is important to note that the angles between the contact normal of

the bodies (α,β,γ) must be greater than 180◦. If the contact normals are less than

180◦ then the c-obstacles do not intersect at a point (in the XY -plane) and motion

other than rotational motion is possible.



31

3.2.2 Case 2: Type R2 Higher Variable Joints

For Type R2 higher variable joints two constraint bodies are necessary to

completely constrain a circular body, B, to rotational motion. This corresponds to

the case in Fig. 3.5(C), in which the contact bodies make contact on the inside of

body B. For this case, it can be proven that only two contact bodies are necessary

to completely restrain body B to rotational motion. The normals of the two

contact bodies must be aligned for this to be possible, and the contact normals

must also be in opposite directions. Figure 3.9 shows body B, in contact with two

constraint bodies, A1 and A2. The contact normals, n̂1 and n̂2, of A1 and A2 are

aligned. In the XY -plane, the c-obstacles form two circles that meet at the origin.

This is similar to the two constraint body case for R1 higher variable joint. The

difference is that the freespace, F , is now the c-obstacles interior, as opposed to

the complement of the c-obstacles interior. The reason for this is the body B is
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Figure 3.8: (A) The C-obstacles Intersect at the Origin. (B) Only Pure Rotation
is Possible Along the θ Axis.
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Figure 3.9: (A) The Only Free Motion is Rotation About the Center of Body B.
(B) Only Pure Rotation is Possible Along the θ axis.

now imposing a boundary around the constraint bodies which forces them to

remain within that boundary. Recall that only paths within the freespace are

possible. Therefore, the only free path occurs at the intersection of the c-obstacles.

This corresponds to a vertical line as shown in Fig. 3.9(B). Similar to R1 higher

variable joints, only rotational motion is possible.

3.2.3 Case 3: Type R3 Higher Variable Joints

For Type R3 higher variable joints two constraint bodies are necessary to

completely constrain a circular body, B, to rotational motion. Type R3 higher

variable joints correspond to the case in Fig. 3.5(D) in which there are contacts on

both the inside and the outside of body B. For this case, two constraint bodies, A1

and A2, are needed to constrain body B to rotational motion as shown in

Fig. 3.10(A). The contact normals must be aligned, and the contact normals must

be in opposite directions. In this case, F1 is on the interior of CA1, and F2 is the
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complement to the CA2. Therefore, the intersection of the freespace in the

XY -plane is again a point at the origin. Figure 3.10(B) shows that the possible

configurations of body B correspond to pure rotation about the center of body B.

3.2.4 Review of Type Ru Higher Variable Joints

In this section three types of Ru higher variable joints were presented. In

each case, a different number of contact point were necessary to constrain body B

to purely rotational motion, depending on the location of the contact points. The

three types of Ru higher variable joints are all kinematically equivalent to a lower

pair revolute joint, but each higher variable joint has a different physical

implementation.

3.3 Type Pv Higher Variable Joints

This section presents Type Pv higher variable joints as shown in Fig. 3.12.

These will be derived in a similar manner as for Type Ru higher variable joints. In
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Figure 3.10: (A) The only free motion is rotation about the center of body B. (B)
Only pure rotation is possible along the θ axis.
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the plane, a prismatic joint may be thought of as two rectangles, one solid and the

other hollow, that move relative to each other. Similarly to revolute joints,

Waldron [35] proved that these are the only profiles in the plane that can be used

for translational motion. Thus, any joint containing a variable amount of

translational motion must contain two parallel lines as part of the constraint

profiles. In creating a higher variable prismatic joint, the goal is to determine the

minimum number of constraint bodies necessary to ensure that the outer

rectangle remains constrained to translational motion. There are three possible

cases as shown in Fig. 3.11:

Case 1: Frictionless point contacts are placed on the outside of the
rectangle (Fig. 3.11(B)).

Case 2: Frictionless point contacts are placed on the inside of the
rectangle (Fig. 3.11(C)).

Case 3: Frictionless point contacts are placed on both the inside and
the outside of the rectangle (Fig. 3.11(D)).

For a prismatic joint, case 1 and case 3 are equivalent if it is assumed the

lines forming the outer rectangle have some finite thickness.

Outer rectangle 
 

Inner rectangle 

(A) 

x 

y 

(B) (C) (D) 

Figure 3.11: Different Cases for Prismatic Higher Variable Joints
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Figure 3.12: (A) Two Point Contacts are Needed for Translational Motion. (B)
Three Point Contacts are Needed for Translational Motion.

3.3.1 Case 1: Type P1 Higher Variable Joints

For Type P1 higher variable joints, two constraint bodies are necessary to

completely constrain a rectangular body, B, to translational motion. The contact

normals of both constraint bodies must be aligned, and they must be in opposite

directions. Type P1 higher variable joints are shown in Fig. 3.11(A). The two

constraint bodies, A1 and A2 make contact with body B. Figure 3.13 shows the

three dimensional c-obstacles, CA1 and CA2. The only available motion is

translational motion along the X-axis.

Figure 3.14 shows a cross section of Fig. 3.13 at different values of θ.

Figures 3.13 (A) and (C) show that when θ = −10◦ or θ = 10◦ any possible motion

from the origin causes body B to collide with either body A1 or A2. This is due to

the fact that the c-obstacles overlap, and there is no free path. However,

Fig. 3.13(B) shows that when θ = 0◦ the only possible motion is translational

motion. The free space is a line along the X-axis. Figure 3.15 show a case in
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which the contact normals of the constraint bodies, A1 and A2, are not aligned. In

this situation, intuition reveals that body B should be able to rotate clockwise,

(A) (B) (C) 

A
1 

� ! 

� " 

A
2 

CA
1 

CA
2 

Figure 3.14: Cross Sections for: (A) θ = −10◦. (B) θ = 0◦ (C) θ = 10◦
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but counterclockwise rotation should be prevented. The cross section at θ = −10◦

(Fig. 3.15) shows that because the c-obstacles do not overlap there is an available

free path. However, Fig. 3.15(C) with θ = 10◦ shows that if positive rotation is

attempted the c-obstacles overlap and there is no available free path.

3.3.2 Case 2: Type P2 Higher Variable Joints

For Type P2 higher variable joints three constraint bodies are necessary to

completely constrain a rectangular body, B, to translational motion. Type P2

higher variable joints are shown in Fig. 3.11(B). The three constraint bodies, A1,

A2, and A3 make contact with body B. The contact normal for body A3 must be

between the contact normal for bodies A1 and A2. Figure 3.16 shows the three

dimensional configuration space for a Type P2 higher variable joint. To analyze

this plot it is best to examine different cross sections. Figure 3.17 shows the cross

section of Fig. 3.16 when θ = −10◦, θ = 0◦, or θ = 10◦. As shown in

Figs. 3.17(A) and (C) there is no overlap in the possible free space (the
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Figure 3.15: Cross Sections for: (A) θ = −10◦. (B) θ = 0◦ (C) θ = 10◦
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c-obstacle’s interior). The only possible free motion is a translational motion along

the X-axis. Consider another situation in which the contact normals from

constraint bodies A2 and A3 are aligned as shown in Fig. 3.18(A). In this situation
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Figure 3.17: Cross Sections for: (A) θ = −10◦. (B) θ = 0◦ (C) θ = 10◦
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Figure 3.18: Cross Sections for: (A) θ = −15◦. (B) θ = 0◦ (C) θ = 15◦

intuition dictates that body B can rotate clockwise, but counterclockwise rotation

should be prevented. The results from this configurations space analysis agree

with intuition. Figure 3.17(A) shows that at θ = −15◦ there is an area of overlap

of the c-obstacles interior which shows that there are available free motions.

However, when body B is rotated counterclockwise (Fig. 3.18(C) there is no

overlap in the c-obstacles, and therefore there are no available free motions.

3.3.3 Review of Type Pv Higher Variable Joints

In this section two types of Pv higher variable joints were presented. In

each case, a different number of contact points were necessary to constrain body B

to purely translational motion, depending on the location of the contact points.

The two types of Pv higher variable joints are all kinematically equivalent to a

lower pair prismatic joint, but each higher variable joint has a different physical

implementation.
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3.4 Summary

In this chapter it was shown that surface curvature of higher variable joints

is important to achieve a particular joint motion. Higher variable joints will be

used in Chapter 4 when performing the profile synthesis of variable joints that

change from a specific rotational motion to a specific translational motion. These

variable joints can then be used in reconfigurable mechanisms.
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CHAPTER 4

Profile Synthesis of RuPv Variable Joints

This chapter presents a method that can be used for profile synthesis of

planar, variable joints that change from a revolute pair to a prismatic pair. The

method utilizes the minimum number of points necessary for the profiles of the

two links. The method provides a nominal design for RuPv variable joints that can

be modified based on the required application.

4.1 Profile Synthesis of an Example R1P1 Variable Joint

The goal of this section is to provide an example of the profile synthesis for

a specific variable joint that changes from a rotational motion to a translational

motion. Figure 4.1 shows an example R1P1 variable joint that was synthesized

using the method from this chapter. The notation R1P1 means that a R1 higher

variable joint is combined with a P1 higher variable joint to create a R1P1 variable

joint.

The R1P1 variable joint is comprised of two links. Link 1 is assumed to be

attached to ground, and link 2 is assumed to move relative to link 1. Link 1 is

denoted by the solid lines, and link 2 is denoted by the dashed lines connected to

five point contacts. Note that all of the dashed lines are rigidly attached. In

Fig. 4.1 (A)-(C) link 2 rotates CCW relative to link 1. The three outer point
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contacts make this a Type R1 higher variable joint motion. In Fig. 4.1 (D) and (E)

link 2 translates relative to link 1. The two outer point contacts required for

translation make this a Type P1 higher variable joint motion.

The resulting profiles of two links provide the desired rotational to

translational motion. The profiles shown utilize the minimum number of point

contacts necessary to generate the required rotational to translational motion for a

R1P1 variable joint. After creating a RuPv variable joint it can be used in a

reconfigurable mechanism for applications in which adaptability is required.

Examples of this will be presented in Chapters 5 and 6.

4.2 Enumeration of Rotational to Translational Variable Joints

Before presenting the equations for the specific profiles, it is important to

enumerate all possible permutations of planar, higher variable joints that change

from a rotational motion to a translational motion. These joints will be

represented by generalized variable joints which are created by combining the

different types of higher variable joints from Chapter 3. For instance, in creating a

generalized RuPv variable joint there are three Type Ru higher variable joints and

two Type Pv higher variable joints. This leads to six different RuPv variable joints

as shown in Eq. 4.1:

R1P1 R1P2 (4.1)

R2P1 R2P2

R3P1 R3P2
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Figure 4.1: R1P1 Variable Joint

RuPv
1 variable joints are not the only generalized variable joints that provide

rotational to translational motion. Table 4.1 shows that there are 60 permutations

of generalized variable joints that allow for a change from a rotational motion to a

translational motion. The six variable joints presented in Eq. 4.1 correspond to the

first row of Tab. 4.1. Each of these geometric representations corresponds to

identical joint motions; however, the profiles of each of the joints are distinctly

different.

1Note that RuPv variable joints are kinematically equivalent to PvRu variable joints.
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Figure 4.2: R1R2R3 Variable Joint

Even though there are 60 possible permutations available, many of them

are not useful for practical applications. For instance, there are 24 generalized

variable joints in Tab. 4.1 that contain an RuRuRu combination. An example of an

R1R2R3 variable joint is provided in Fig. 4.2. In Fig. 4.2(A) three contact points

are used to constrain link 2 to rotational motion (Type R1 higher variable joint).

In Fig. 4.2(B) the contact points change, and two contact points are needed to

constrain link 2 to rotational motion (Type R2 higher variable joint). Finally, in

Fig. 4.2(C) two contact points are used to constrain the system to rotational

motion (Type R3 higher variable joint). While the R1R2R3 variable joint is a

theoretically possible solution as shown, it would not be used in any practical

design. The manufacturing of this type of joint would be difficult, and the joint

Table 4.1: General Variable Joint Permutations

Generalized Variable Joint Number of Permutations

RuPv 6
RuPvPv 6
RuRuPv 12

RuRuPvPv 12
RuRuRuPv 12

RuRuRuPvPv 12
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would be overly complicated for its intended purpose. The other generalized

variable joints also have similar practical issues, and therefore RuPv generalized

variable joints will be the focus of this work.

4.3 Design Configuration Space of Variable Joints

Each of the profiles of the six RuPv variable joints must be created by

specifying the desired joint motion in some manner. Typically, the joint design

requirements will start in written form, but it is helpful to have a more formal

mathematical formulation. In this dissertation, configuration space will be used to

specify the design parameters. The “design configuration space” is a way to

generalize the joint motion, and it represents the movement of link 2 relative to

link 1. The joint design requirements could be specified in a tabular or some other

form, but configuration space ensures joint motions are not missed, and the design

configuration space representation can be expanded to spatial joints as well.

Configuration space has been widely studied in terms of robot motion

planning [41], and it can be thought of as the space of possible poses that a

physical system may attain. A planar configuration space representation requires

three configuration variables (x, y, θ)⊤. Both x and y have units of length, and

−180◦ < θ < 180◦. By its definition, this is the same configuration space as was

used in Chapter 3. However, the design configuration space in this chapter is used

for a different purpose than the configuration space from Chapter 3.

The configuration space for an example RuPv joint is shown in Fig. 4.3.

This can be manifested physically in the R1P1 variable joint in Fig. 4.1, but there
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Figure 4.3: Configuration Space for a RuPv Variable Joint

are five other RuPv designs that would provide the same kinematic motion. The

vertical line represents the rotational motion of the moving link relative to the

fixed link, and the line in a plane parallel to the XY -plane represents translational

motion. The circle in Fig. 4.3 represents the transition between rotational motion

and translational motion. For a RuPv variable joint, there are specific constraints

on the configuration space as shown:

1. There must be exactly one vertical line and exactly one horizontal line.

2. The vertical line and the horizontal line must meet at a point.

3. The point of intersection between the two lines must be at either end of the
vertical line.

Each of the points in the configuration space corresponds to a different

configuration of a joint. For example, point ξ1 in Fig. 4.3 corresponds to the initial

configuration for the R1P1 variable joint in Fig. 4.1(A). Similarly, ξ3 and ξ2
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correspond to Fig. 4.1(C) and Fig. 4.1(E), respectively. Properly specifying the

joint motion is an important part of determining the joint profiles.

4.4 Profile Synthesis Equations for RuPv Variable Joints

Once the design requirements have been expressed in the design

configuration space, it is possible to automatically determine the profiles for the

RuPv variable joints. The profile for link 1 can be generated by determining

equations for the constraint arcs required for rotational motion as well as the lines

required for translational motion. The profile for link 2 is specified by the

minimum number of points that need to be rigidly attached to generate the

required rotational or translational motion. The profiles for all six RuPv variable

joints can be represented by general equations, and each of the RuPv variable joint

profiles can be synthesized by changing parameters in the general equations.

4.4.1 Assumptions

In determining the general profiles for both link 1 and link 2 the following

assumptions are made:

1. The constraint points for both the rotational and translational motion are in
the same plane.

2. All bodies are rigid.

3. The system dynamics are ignored.

4. Tolerances and machining errors are ignored2.

5. The design configuration space is known based on the design requirements.

2Tolerances are ignored because there has been much work done by Sacks et al. [38] on the
tolerance analysis of higher pairs. The focus of this work is purely on the kinematic analysis.
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Figure 4.4: General Joint Profile

The assumptions were chosen so that the majority of this work will focus on the

kinematics of the joints. The kinematics are fundamental to understanding issues

associated with dynamics and tolerances. This is not within the scope of this

work.

4.4.2 Profile of Link 1

From the design configuration space, it is possible to extract all the

information necessary to perform the profile synthesis of RuPv variable joints. The

variables in the equations are separated into the design configuration space inputs,

joint design parameters, and the outputs as shown below:

design configuration space inputs: ξ1, ξ2, ξ3

joint design parameters: l, wj , rn, α, β, γ, δk, δpo, θR

outputs: Υn, ηj , ζk
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The design configuration space inputs have already been defined in Section 4.3.

The joint design parameters and the outputs will be defined throughout the

derivation.

Link 1 is assumed fixed to ground, and it is defined by the three constraint

arcs required for rotational motion, and the two line segments required for

translational motion. The arcs required for rotational motion are given by Υn, and

the lines required for translational motion are given by ηj, where n = 1, 2, 3 and j

= 1, 2 as shown in Fig. 4.4(B). In order to determine Υn and ηj it is helpful to

determine θi, θf , θt, and d, where θi is the initial angle of rotation of link 2, θf is

the final angle of rotation of link 2, θt is the angle of translation of link 2, and d is

the distance of translation. The design configuration space inputs are used to

determine θi, θf , θt, and d in Eq. 4.2

θi = ξ1z (4.2)

θf = ξ3z

θt = atan2(ξ2y, ξ2x)

d =
√

(ξ2x − ξ1x)2 + (ξ2y − ξ1y)2.

The three arcs in a general RuPv variable joint are separated by the angles α, β,

and γ. These angles change based on the potential joint design, and they will be

referred to as the separation angles. The general RuPv variable joint must include

all three arcs because a R1 higher variable joint requires all three. The outer

boundaries, Υn, are then given as
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Υn = (rn cos θn, rn sin θn) | φni ≤ θn ≤ φnf (θi > θf) (4.3)

φni ≥ θn ≥ φnf (θi < θf)

where

φni = φn + θi (4.4)

φnf = φn + θf

and

φ1 = θR (4.5)

φ2 = φ1 + α

φ3 = φ2 + β,

rn is the radius of each of the arcs, and i and f correspond to the initial and final

states. θR provides an added amount of rotation to Υn.

The lines required for translational motion, ηj, are given in Eq. 4.6 as

η1 = (−w1 sin θt + (l + d1) cos θt, w1 cos θt + (l + d1) sin θt) | 0 ≤ d1 ≤ d (4.6)

η2 = (w2 sin θt + (l + d2) cos θt,−w2 cos θt + (l + d2) sin θt) | 0 ≤ d2 ≤ d,

where wj is the width of the sliding track and l is the distance the track is offset

from the origin in the radial direction. The profile for link 1 has now been fully

defined by Υn and ηj.

4.4.3 Profile of Link 2

The general profile of link 1 consists of the three arcs for the rotational

constraint and the two lines for translational constraint. The general profile of
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link 2 consists of a set of contact points that are rigidly connected.3 These points

constrain the motion of link 2 to be either rotational motion or translational

motion relative to link 1. The profile of link 2 is defined by the points ζk, where k

= 1 to 7 as shown in Fig. 4.4 (C). Even though there are seven ζk points in the

general joint profile, only some of these points will be used at a time. The number

of points that are used depends on which type of RuPv variable joint is being

synthesized. All values of ζk will be defined based on the transition configuration

between rotational and translational motion. The values of ζk are expressed in

Eq. 4.7 as

ζn = ((rn + δn) cosφnf , (rn + δn) sinφnf) (n = 1 to 3) (4.7)

ζ4 = ((rn + δ4) cosφ1f , (rn + δ4) sinφ1f)

ζ5 = ((w2 + δ5) sin θt + (l + δ5o) cos θt,− (w2 + δ5) cos θt + (l + δ5o) sin θt)

ζ6 = (− (w1 + δ6) sin θt + l cos θt, (w1 + δ6) cos θt + l sin θt)

ζ7 = (− (w1 + δ7) sin θt + (l + δ7o) cos θt, (w2 + δ7) cos θt + (l + δ7o) sin θt)

The δk and δpo (p = 5 or 7) values can be considered a small distance. For

example, Fig. 4.5 shows a change of δ1 in the radial direction for a R1 higher

variable joint. Changing the values of δk and δpo allow for a change between the

different types of RuPv variable joints. For example, moving δ1 in the positive

radial direction allows for a R1 higher variable joint, but moving δ1 in the negative

radial direction allows for a R2 variable joint.

3The profile of link 2 is considered to be a set of points as opposed to the lines and arcs that
define link 1. It should also be noted that the points are rigidly connected to form the joint profile.
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4.4.4 Constraints for RuPv Variable Joints

The two joint profiles for a general RuPv variable joint are fully specified

using Eqs. 4.3, 4.6, and 4.7 which correspond to Υn, ηj, and ζk. The six different

RuPv variable joints can be created by placing constraints on different values in

the equations. Table 4.2 shows how different parameters change based on the

desired RuPv variable joint. Example RuPv variable joints are shown for a specific

design in Fig. 4.6.

Consider the R1P1 variable joint in Fig. 4.6 which corresponds to the first

row in Tab. 4.2. For this variable joint α, β, and γ must all be less than 180◦ due

to the R1 constraint as was derived in Chapter 3. All three outer boundaries are

used, and therefore Υ2
4 and Υ3 have a “1” to indicate that those arcs are needed

for the rotational constraint. The values of δ1, δ2, and δ3 all have a small positive

distance, and are denoted with a “+” in Tab. 4.2. This ensures that ζ1, ζ2, and ζ3

are all moved outwardly in the radial direction. δ4 is not needed for a R1 higher

4Υ1 is not placed in the table because it is used for every joint

� 

   

! 

Figure 4.5: A Change of δ1 in the Radial Direction
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Table 4.2: Constraints for RuPv Variable Joints

Variable Joint α β γ Υ2 Υ3 δ1 δ2 δ3 δ4 δ5 δ5o δ6 δ7 δ7o

R1P1 < 180◦ < 180◦ < 180◦ 1 1 + + + ∅ + 0 + ∅ ∅
R2P1 180◦ 180◦ ∅ 1 ∅ − − ∅ ∅ + 0 + ∅ ∅
R3P1 ∅ ∅ ∅ ∅ ∅ + ∅ ∅ − + 0 + ∅ ∅
R1P2 < 180◦ < 180◦ < 180◦ 1 1 + + + ∅ − − − − −
R2P2 180◦ 180◦ ∅ 1 ∅ − − ∅ ∅ − − − − −
R3P2 ∅ ∅ ∅ ∅ ∅ + ∅ ∅ − − − − − −

variable joint, and therefore it is denoted by ∅. Both δ5 and δ6 are given a positive

value in order to apply the appropriate translational constraint for a P1 higher

variable joint. This will ensure that ζ5 and ζ6 are moved outward for a P1 higher

variable joint. δ5o is 0 because ζ5 and ζ6 must be aligned. δ7 and δ7o are only used

for P2 higher variable (as shown in Fig. 4.6) joints and so both of these have a

value of ∅.

Table 4.2 provides the constraints for all six RuPv variable joints.

Substituting theses values into Eqs. 4.3, 4.6, and 4.7 yields the profiles of RuPv

variable joints as shown in Fig. 4.6. The equations presented provide the minimum

number of points necessary to create the two link profiles. A designer can then use

these points as a nominal design for a joint that changes from a rotational motion

to a translational motion.

4.5 Adjustable Plier Designs Based on RuPv Variable Joints

As an example of the theory presented in Section 4.4, consider the design of

adjustable pliers that are commonly used to grip irregularly shaped objects. The

adjustable pliers will be made of two links, one moving relative to another. This

tool can be thought of as a variable joint because the motion of one link relative to
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another requires both translational motion and rotational motion. It will be shown

in this section how these designs can be generated in a systematic manner by using

the method developed in Section 4.4.

The design requirements must first be determined. Figure 4.7 provides the

design configuration space for standard adjustable pliers. Adjustable pliers must

be able to rotate between 0◦ and 90◦ to provide different clamping configurations.

Additionally, the pliers must be able to slide to accommodate different sized

objects. The proposed design configuration space is shown in Fig. 4.7. The vertical

lines in the design configuration space correspond to the rotation of one link
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Figure 4.6: The RuPv Variable Joints
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rotation 
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Figure 4.7: Design Configuration Space Representation of Adjustable Pliers.

relative to another, and the horizontal lines correspond to translation of one link

relative to another.

Link 1 of the pliers begins at a position of ξ1 = (0, 0, 90)⊤ relative to Link 2.

This link then rotates from 90◦ to 0◦ to position ξ3. Finally, link 1 translates

relative to link 2 to position ξ2. This process is repeated four more times to create

different clamping configurations. Thus, the configuration space representation for

the adjustable pliers can be thought of as multiple RuPv variable joints connected

in series.

4.5.1 Example R1P2 Variable Joint for Adjustable Pliers

A R1P2 variable joint is perhaps the most complicated type of RuPv

variable joint because three constraint arcs (Υ1, Υ2, Υ3) are needed to perform the

rotational motion. It is this complicated design that will be explained with the

theory. In designing a R1P2 variable joint (or any RuPv variable joint) ξ1, ξ2, and
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Figure 4.8: The R1P2 Variable Joint for Adjustable Pliers

ξ3 must first be determined from the design configuration space. From Fig. 4.7, ξ1,

ξ2, and ξ3 are given in Eq. 4.8 as

ξ1 = (0, 0, 90◦)⊤ (4.8)

ξ2 = (−.32 in., 0, 0)⊤

ξ3 = (0, 0, 0)⊤.

The resulting R1P2 variable joint is shown in Fig. 4.8. This joint was created by

using Equations 4.3 through 4.7 presented in Section 4.4. To better visualize how

link 2 moves relative to link 1, Fig. 4.9 shows link 2 in five different configurations.

Link 2 starts at its initial configuration as shown in Fig. 4.9(A) and rotates 90◦

counterclockwise to configuration (C). Link 2 then translates from configuration

(C) to configuration (E). Notice that each of these configurations corresponds to a

point in the configuration space as shown in Fig. 4.10.
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(A) (B) (C) 

(D) (E) 

Link 1 

Link 2 

Figure 4.9: Different configurations of the R1P2 variable joint

The joint design parameters were chosen carefully to ensure that the joint

performs the required kinematic function. The values for this joint design

parameters are given in Tab. 4.3. All values have units of inches unless otherwise

indicated. The value of l was chosen to be 0 in. so that the center of link 2 remains

in the same xy position throughout the 90◦ rotation. The wj values were chosen to

be identical to ensure symmetry about the x−axis for the translational constraint.

Additionally, these values were chosen to be greater than the rn values; doing so

Table 4.3: Joint Design Parameters for a R1P2 Variable Joint

Joint Design Parameter l w1 w2 r1 r2 r3 α β γ δk δpo θR

Value 0 0.16 0.16 0.08 0.12 0.12 45◦ 150◦ 165◦ δ δ 0
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allows the rotational constraint points to be contained within the translational

constraint points. This will be important when connecting this joint in series.

Both the values of r2 and r3 are identical, but r1 was chosen to be smaller

than r2 and r3 to ensure that during the translational motion ζ2 does not make

contact with Υ1. The separation angles, α, β, and γ were carefully chosen to

ensure that when link 2 begins to slide there is no interference between the ζk

rotational constraint points and the Υn boundaries. For instance, by choosing

α = 45◦ point ζ2 is able to translate without interfering with Υ2. Finally, all of the

δk and δpo values were chosen to be a small finite distance denoted by δ.

After completing the R1P2 variable joint design, this variable joint can be

connected in series to create the joint profile for the adjustable pliers. The final

design is shown in Fig. 4.11(A) and Fig. 4.11(B). Figure 4.11(A) shows link 2 in its

design position. The R1P2 joint is repeated four times which corresponds to the

(B) 

(A) 

(C) 

(D) 
(E) 

Figure 4.10: Design Configuration Space Representation of Adjustable Pliers.
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configuration space shown in Fig. 4.10. Figure 4.11(B) shows link 2 as it moves

through configurations C1 through C6. This allows the pliers to move through

different clamping configurations.

The next step in the RuPv variable joint design process is to add kinematic

redundancies for a more practical solution. This step will not be completed for this

example because the joint design has many drawbacks such as the complicated

profile of link 1 as well as different rn values. An example of adding kinematic

redundancies to an RuPv variable joint will be shown in Section 4.5.3.

4.5.2 Alternative Solution

The design from Section 4.5.1 is one of an infinite number of design

possibilities that can be generated using the method presented in Section 4.4.

Consider an alternative solution for a R3P2 variable joint. The joint design

parameters are shown in Tab. 4.4, and the resulting joint profile is given in

(A) 

(B) 
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Figure 4.11: R1P2 Adjustable Plier Design
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Table 4.4: Joint Design Parameters for a R1P2 Variable Joint

Joint Design Parameter l w1 w2 r1 δk δpo θR

Value −0.32 0.005 0.005 0.32 δ δ 0

Link 1 

Link 2 

��, �� �  

�!, �" 

Figure 4.12: R3P2 Variable Joint

Fig. 4.12. The value of r1 was chosen such that the radius equals the sliding

distance, d. The value of l was chosen as −.32 in. so that the translational

constraint points are essentially coincident with the rotational constraint point, ζ4.

The variable joint shown in Fig. 4.12 can then be attached together in series to

produce the final design of the adjustable pliers as shown in Fig. 4.13

4.5.3 Kinematic Redundancies

The profile for the adjustable pliers in Fig. 4.13(A) provides the minimal

number of point contacts necessary for the required joint motion. This is meant to

be a nominal design that is used as the base for a more practical solution.

However, as part of the method presented in this chapter, kinematic redundancies
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can be added for a more practical solution.

Figure 4.13(B) provides a R3P2 adjustable plier design based off of the joint

design parameters from Tab. 4.4. The design shows the two links of the pliers as

link 2 moves from configuration C1 to configuration C6. Kinematic redundancies

have been added to improve functionality of the joint. For instance, mechanical

stops have been added to the design to prevent unwanted translational or

rotational motion. As an example, in configuration C3 a mechanical stop has been

put in place to prevent unwanted translation in the x-direction.

Another kinematic redundancy is that the point contacts of ζ1 and ζ4 have

been changed to surface contacts. The surface contacts occur during both the

rotational motion and the translational motion. The surface contacts allow for a

more stable design, and the device is able to handle larger loads.

Care must be taken when changing any point contacts to surface contacts.

In this example, when ζ1 and ζ4 were changed to surface contacts, part of the

profile of link 1 had to be removed to account for the expansion of ζ1 and ζ4 from a

point contact to a surface contact. For instance, in configuration C3 link 2 must be

able to translate. Therefore, a section of link 1 was removed. The section that is

removed was critical for the joint design shown in Fig. 4.13(A). However, due to

the change from point contacts to surface contacts, the joint is able to maintain

the rotational constraint at the desired configuration. A similar approach was

taken for the translational part of the motion.

Other kinematic redundancies can be added to ensure that the links do not

move relative to one another along the z-axis. The kinematic redundancies are just
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Figure 4.13: R3P2 Adjustable Plier Design

some of the redundancies that would need to be added to create a practical design.

However, it is shown in this section how understanding the joint profiles allows one

to choose kinematic redundancies appropriately.

4.5.4 Summary of Adjustable Plier Designs

In this section it was shown how different adjustable plier designs can be

created based off of the required design configuration space. Both a R3P2 and a

R1P2 variable joint were created using the method from Section 4.4. Any other

RuPv joint could be synthesized. The synthesized profiles are used as a nominal

joint design that can be modified for practical purposes. Each of RuPv variable

joints has the same kinematic motion but different joint profiles. The RuPv
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variable joint can be connected in series to form a new design for adjustable pliers.

Figure 4.14 provides a comparison between the two adjustable plier designs

presented in this chapter (Fig. 4.14(A) and Fig. 4.14(B)) as well as an adjustable

plier design based on a R2P2 variable joint (Fig. 4.14(C)). Notice that all three of

the adjustable plier profiles are distinctly different, but they all provide the

required kinematic motion. For instance, a comparison of the translational

distance, d, shows that the translational distance is equal for all three joint

designs. It is interesting to note that adjustable plier designs are commercially

available that are based on both an R2 higher variable joint and an R1 higher

variable joint as shown in Figs. 4.15 and 4.16. These adjustable pliers do not

impose translational constraints, and therefore a Pv variable joint is not utilized

for these designs.

4.6 Constraints on the Direction of Translation

During the design of the adjustable pliers, there were certain directions of

translation that were not possible. Depending on the joint design parameters, not

all directions of translation are possible for all RuPv variable joints. Constraints

exist on the direction of translation due to the Υn constraint arcs. The two types

of constraints are denoted as external arc interference and internal arc interference.

4.6.1 External Arc Interference

External arc interference occurs when ζk (k = 1 to 4) interferes with either

of the two arcs it does not make contact with during the initial rotation. For

instance, during external arc interference, ζ1 could potentially make contact with
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(A) 

(B) 

(C) 

� 

Figure 4.14: Adjustable Plier Designs

either Υ2 or Υ3 as shown in Fig. 4.17. Link 2 begins at the position shown in

Fig. 4.17(A) and slides through to the position shown in Fig. 4.17(C). In

Figure 4.15: Knipex R2 adjustable plier
design

Figure 4.16: Craftsman R1 adjustable
plier design
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Fig. 4.17(C) ζ1 makes unwanted contact with Υ2. External arc interference must

be determined during the joint design process to avoid this unwanted contact.

Figure 4.18 shows a graphical representation of how the external arc interference

regions can be calculated. A unit vector can be formed between point λ1 and λ2

and points λ1 and λ3. The direction of translation, θt, must lie outside the region

formed by the unit vectors
−→
U λ1λ2 and

−→
U λ1λ3 . This region is indicated by the red

arc in Fig. 4.18. Repeating this process for ζ1, ζ2, and ζ3 results in six different

regions in which external arc interference occurs. This is shown in Fig. 4.19. Care

must be taken to ensure that external arc interference does not occur during the

joint design process. These constraints can easily be added to the requirements of

Section 4.4.

4.6.2 Internal Arc Interference

Internal arc interference occurs when ζk interferes with Υn. For example, ζ1

may interfere with Υ1 as shown in Fig. 4.20. It is assumed that link 2 can move in

the tangent direction of Υn or in the direction of the unit vector that connects the

initial angle of rotation to the final angle of rotation. Figure 4.21 shows all of the

(A) (B) (C) 

Υ�  

Υ   

Υ!  

"�  

Figure 4.17: External Arc Interference Example.
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Figure 4.18: External Arc Interference
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Figure 4.19: All External Arc Interfer-
ence Regions

internal arc interference regions for the joint in Fig.4.20. It is important that these

regions for translation are avoided.

4.6.3 Determining the Separation Angles for an R1Pv Joint

The R1Pv variable joint is unique in that there is variability in the location

of two of the three arcs that form the outer boundary. For most R1Pv joint designs

there are multiple combinations of separation angles that may be used to generate
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Figure 4.20: Internal Arc Interference
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Figure 4.21: All Internal Arc Interfer-
ence Regions
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the desired motion. This section will look at different ways to determine

appropriate separation angles. Figure 4.22 shows a plot of all theoretically possible

α, β, and γ combinations for the example RuPv variable joint presented in

Section 4.3. This plot was generated based on the internal and external arc

interference equations presented in Section 4.6 with the following range of α, β,

and γ values:

0◦ ≤ α, β, γ ≤ 180◦ (4.9)

Notice that Fig. 4.22 is a plane due to the constraint that α+ β + γ = 360◦. While

Fig. 4.22 shows the theoretically possible values of the separation angles, many of

the separation angle combinations are not practical. Further constraints can be

placed on the separation angles to ensure the solutions are practical. Eq. 4.10
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Figure 4.22: Possible α, β, γ Combinations with θi = 25◦, θf = 65◦, θt = 110◦,
θR = 0◦, and d = 5 in.
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Figure 4.23: Unrealistic Joint Design

shows an additional constraint that

α ≥ θf − θi +∆θ (4.10)

β ≥ θf − θi +∆θ

γ ≥ θf − θi +∆θ,

which ensures that the arcs will not overlap, and there will be a separation of ∆θ

degrees between each arc. Figure. 4.24 shows updated separation angles after

imposing the constraints in Eq. 4.10. After imposing the constraints in Eq. 4.10 it

is up to the designer to choose appropriate values for the separation angles.

4.7 Summary

This chapter presented a method that can be for the profile synthesis of

RuPv variable joints. General equations were developed based on a general joint

profile that includes all RuPv variable joints. By changing parameters in the
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Figure 4.24: Separation Angles after Imposing the Constraints from Eq. 4.10

equations, the profiles of the six different RuPv variable joints were determined. It

was further shown how the profiles of RuPv variable joints can be created based on

a design configuration space. An example was provided in which different

adjustable pliers were created by placing multiple RuPv variable joints in series. In

addition, it was shown that there are constraints on the direction of translation of

RuPv variable joints due to the arcs used for rotational constraint. Finally, different

combinations of separation angles were considered for R1Pv variable joints.
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CHAPTER 5

Four-Bar Mechanism with Variable Topology

This chapter presents a four-bar Type II MVT that may be used in an

industrial manufacturing application. The four-bar Type II MVT uses a RuPv

variable joint to perform a manufacturing task. Using a RuPv variable joint allows

for fewer actuators to be used in the mechanism. It is further shown how to

determine an appropriate transmission ratio to reduce the forces seen by the

variable joint.

5.1 Problem Setup

Figure 5.1 shows the setup for this manufacturing application. The

application requires the assembly of part A to part B. An even layer of adhesive

must be applied to part A by a dispenser that is at a height, h, above ground level.

Dispensing the adhesive in the vertical direction allows for a uniform application.

Part A must be moved from configuration I to configuration II where it must be

able to slide a distance, l, to make an even surface contact with part B as shown in

configuration III. This process must be automated to ensure both the speed and

the accuracy of the manufacturing operation.
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Figure 5.1: Problem Setup for Manufacturing Application

5.2 Solution Method using RuPv Variable Joints

This rigid body guidance problem can be completed using a four-bar

mechanism that uses a RuPv variable joint for one of the base pivots. Doing so

allows the four-bar linkage to change its topology from an RRRR mechanism

shown in Fig. 5.2 to a RRRP mechanism1 shown in Fig. 5.3. Figure 5.4 shows how

an RuPv variable joint can be incorporated into the base pivot of the ground link

1Note that an inline RRRP mechanism is not necessary for this application, but an inline
RRRP mechanism is used as a simplifying assumption.

1 1 

2 

3 

4 

Figure 5.2: RRRR Four-Bar Mechanism

1 1 

2 
3 

4 

Figure 5.3: RRRP Four-Bar Mechanism
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Figure 5.4: Solution Using a RuPv Variable Joint

to produce a four-bar mechanism capable of completing the required rigid body

guidance. Notice the graphical symbol from Fig. 5.5 is used to denote the variable

joint. This is a new symbol introduced in this dissertation. As shown in Fig. 5.4, a

RRRR four-bar mechanism is used to move part A from configuration I to

configuration II. At this instant, due to the variable joint, a RRRP mechanism is

used to translate from configuration II to configuration III. Changing to a RRRP

mechanism allows the adhesive to be applied evenly to part B. Fig. 5.6 shows how

the mechanism moves from the initial configuration to the final configuration. Six

different configurations are shown. After the input link rotates clockwise through

the six configurations, the input link rotates counterclockwise back to

configuration I, and the cycle is repeated. The joint used in Fig. 5.6 is for

demonstration only. Section 5.7 will explore the particular joint design in greater

detail. However, prior to this, the mechanism will be analyzed to understand the

topology and DOF.
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5.3 Four-Bar Mechanism Analysis

It is important to understand the topology and DOF of the mechanism

prior to performing the mechanism synthesis. Often, the analysis techniques can

then be used to help with the mechanism synthesis. The mechanisms in Figs. 5.2

and 5.3 can be conveniently represented with one schematic representation as

shown in Fig. 5.7. It can further be shown that the topology for this mechanisms

can be represented by the augmented mechanism state matrix in Eq. 5.1.

MASM =

[

α2RZ , 4
R
Z β3RZ β4RZ β 1

α2RZ , 4
P
X β3RZ β4RZ β 1

]

(5.1)

This provides a convenient way to communicate the topology and degrees of

freedom of this mechanism in a mathematical form. Appendix A contains more

information on mechanism state matrices. There are many other forms of

graphical analysis such as conventional adjacency matrices [36], EU-matrix

transformations [15, 19], improved adjacency matrices [21], and directionality

topology matrices [37]. However, all of these contain a subset of the information

found in mechanism state matrices, and that is why mechanism state matrices are

used in this section.

The analysis techniques have a limit to their usefulness in mechanism

Figure 5.5: Graphical Symbol for an RuPv Variable Joint
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Position 3 Position 4 

Position 5 Position 6 

Figure 5.6: Final Result

design of reconfigurable mechanisms. Simply expressing the topology and degrees

of freedom of the mechanism is not enough to synthesize a mechanism for a

1 1 

2 

3 

4 

Figure 5.7: Combined RRRR and RRRP Four-Bar Mechanism
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Figure 5.8: Solution Using a RuPv Variable Joint

particular task. The remainder of this chapter will be used to show how the theory

developed in Chapter 4 can be used to design the joint required for this

mechanism. In addition, classic four-bar mechanism theory can be applied in a

new way because a variable joint is used in the design. Using a variable joint

allows for a four-bar mechanism to perform a rigid body guidance task that is not

possible using a conventional four-bar mechanism.

5.3.1 Overview of Solution Methodology

Figure 5.8 shows the schematic that is used to determine the solution to

this problem. The links of the mechanism are numbered one through four, and

their lengths are given by l1, l2, l3, and l4. Part A is at a distance, h, from the

ground. There is an offset of a distance, d, which is trivial. The mechanism moves

a distance l when moving from configuration II to configuration III.

The solution to this problem is separated into four different tasks. The first

task is to determine the constraint equations necessary to move the four-bar

linkage from configuration I to configuration II. The second task is to determine
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the constraint equations to move the four-bar mechanism from configuration II to

configuration III. Once all of the constraint equations are determined, the next task

is to determine optimal transmission angles, µ11 and µ22 where the transmission

angles in different configurations are denoted by µij where i = 1 corresponds to the

RRRR mechanism, i = 2 corresponds to the RRRP mechanism, and j

corresponds to the configuration of the mechanism. Finally, an appropriate RuPv

variable joint will be determined using the theory from Chapter 4.

5.3.2 Two Position Rigid Body Guidance for an RRRR

The first task is to determine the constraint equations necessary to move

from configuration I to configuration II. To move from configuration I to

configuration II, the coupler of the four-bar mechanism moves from position A1B1

to position A2B2. Determining a four-bar mechanism in which the coupler moves

between two known configurations is known in the literature as two position rigid

body guidance [42]. This can be formally defined as follows:

• Two Position Rigid Body Guidance: Given two positions and orientations of
a coupler link, synthesize a planar RRRR four-bar mechanism such that its
coupler assumes these two positions and orientations during the course of the
the motion of the mechanism.

For this manufacturing application, the equations used for two position rigid body

guidance, along with constraint equations, can be used to determine a mechanism

to perform the required task.

Figure 5.9 provides the schematic for the solution to the two position rigid

body guidance of a planar RRRR four-bar mechanism. The coupler moves from

position A1B1 to position A2B2. The fixed pivots are located at points A0 and B0.
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Figure 5.9: Two Position Rigid Body Guidance: RRRR

The pivots may be located anywhere along the perpendicular bisector of A1A2 and

B1B2. These lines will be denoted as LA and LB. This graphical solution can be

written in algebraic form in Eq. 5.2:

(A1x − A0x)
2 + (A1y − A0y)

2 = l2
2 (5.2)

(A2x − A0x)
2 + (A2y − A0y)

2 = l2
2

(B1x − B0x)
2 + (B1y − B0y)

2 = l4
2

(B2x − B0x)
2 + (B2y − B0y)

2 = l4
2

Equation 5.2 provides the general constraint equations for the two position rigid

body guidance problem of an RRRR, but in this manufacturing application, there

are further constraints that must be used in conjunction with Eq. 5.2.

Link four must be constrained so that it is able to slide relative the ground

once the coupler reaches position A2B2. Therefore, link 4 must rotate 90◦
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clockwise from the vertical position to the horizontal position as shown in Fig. 5.8.

Further, the ground pivots, A0 and B0, are assumed to be along the x-axis which

will allow for an inline RRRP mechanism. The constraint equations are given in

Eq. 5.3. Note that y-axis of the coordinate system is aligned with point A1.

A0y = B0y = A1x = B2y = 0 (5.3)

B0x = B1x = l3 sinµ11

B1y = h− d

B2x = B1x +B1y

A1y = B1y − l3 cosµ11

A2x = B2x − l3 sinµ22

A2y = l3 cosµ22

l4 = B1y,

Substituting the constraint equations from Eq. 5.3 into Eq. 5.2 and solving for the

unknowns A0x and l2 gives

A0x =
A2

2x + A2
2y −A2

1y

2A2x
(5.4)

l2 =
√

(A1x − A0x)2 + (A1y −A0y)2.

The RRRR four-bar mechanism has now been fully defined based on the

constraints.
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Figure 5.10: Two Position Rigid Body Guidance: RRRP

5.4 Two Position Rigid Body Guidance for an RRRP

After completing the two position synthesis of an RRRR to move from

configuration I to configuration II, two position rigid body guidance must be

completed for an RRRP in order to move part A from configuration II to

configuration III. For an RRRP mechanism, the two position rigid body guidance

problem can be formally defined as follows (see Fig. 5.10):

• Two Position Rigid Body Guidance: Given two positions of the slider, x1
and x2, synthesize a planar RRRP four-bar mechanism such that its input
link changes its angle from ψ1 to ψ2.

ψ1 = arcsin

(

l3 cosµ22

l2

)

(5.5)

x1 = B0x.
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Thus, it is possible to solve for ψ2 using the law of cosines. The result is given in

Eq. 5.6 as

ψ2 = arccos
l2

2 + (B2x + l −A0x)
2 − l23

2l2(B2x + l − A0x)
. (5.6)

Different choices of l3, µ11, and µ22 will lead to different values of both ψ1 and ψ2.

Therefore, a designer has a choice of different four-bar mechanisms that can

perform the desired task. The next section will provide insight on how to

determine appropriate transmission angles for the design.

5.5 Determining Transmission Angles for a Reconfigurable Four-Bar

Transmission angles used in four-bar mechanism design to estimate the

dynamic forces of the mechanism during the kinematic design process. The

transmission angles for both an RRRR four-bar mechanism and a RRRP

mechanism are shown in Figs. 5.11 and 5.12, and the general transmission angles

are denoted by µR and µP , respectively. However, the transmission angles change

as the mechanisms moves from one configuration to another. The transmission

angles in different configurations are given by µij. Furthermore, the transmission

angles are kinematic parameters, and do not rely on the system dynamics.

For both mechanisms, it is best to keep the transmission angles as close to

90◦ as possible because this is the optimal value for force transmission. This helps

to ensure that most of the torque from the input link is transferred to the output

link. It also reduces the forces felt by the joint of the output link. A rule of thumb

used in four-bar mechanism design is to keep the transmission angle between 45◦
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and 90◦. Therefore, the maximum and minimum transmission angles must be

determined during the design process to ensure that the transmission angles fall

within the required range.

To determine the maximum and minimum transmission angles, equations

can be derived for the transmission angle of both mechanisms. For the RRRR

four-bar mechanism the transmission angle can be determined by writing the law

of cosines for both triangles A0A1B0 and B0A1B1 and equating the distance A1B0

as shown in Fig. 5.11 which leads to Eq. 5.7

cosµR =
l24 + l23 − l21 − l22

2l3l4
+
l1l2

l3l4
cos θ2. (5.7)

Similarly, the expression for the transmission angle for the RRRP four-bar

mechanism in configuration II is given in Eq. 5.8 as

cosµP =
l2

l3
sin θ2. (5.8)

The expressions for the transmission angles are both continuous and differentiable,
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Figure 5.11: RRRR Transmission Angle
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Figure 5.12: RRRP Transmission Angle
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and therefore to find maximum and minimum transmission angles the equations

for the transmission angles must be evaluated at all critical points as well as the

boundaries.

The global maximum and minimum transmission angles are the critical

points and can be found by differentiating Eqs. 5.7 and 5.8 with respect to θ2 and

setting equal to zero as shown in Eqs. 5.9 and 5.10, respectively.

dµR

dθ2
=
l1l2

l3l4

sin θ2
sin µR

= 0 (5.9)

dµP

dθ2
= − cos θ2

sin µP

l2

l3
= 0 (5.10)

Solving Eq. 5.9 for θ2 shows that the global maximum and minimum transmission

angles for a RRRR four-bar mechanism occur at θ2 = 0◦ or θ2 = 180◦. Similarly,

solving Eq. 5.10 for θ2 shows that the maximum and minimum transmission angles

occur at θ2 = 90◦ or θ2 = 270◦.

If the mechanism does not pass through the the θ2 values corresponding to

the maximum and minimum transmission angles, then the maximum and

minimum transmission angles must occur at the values of θ2 corresponding to

either the starting configuration or ending configuration (i.e. the boundary

conditions). An example will be provided in Section 5.6.
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Figure 5.13: Resulting Four-Bar Mechanism

5.6 Numerical Example

A numerical example is presented in this section to verify the results of the

derived equations, and to show how appropriate transmission angles can be

determined for a reconfigurable four-bar mechanism. Part A begins at a height of

h = 3 ft. above ground level. Bar A1B1 is offset in the vertical direction d = 0.5 ft.

The required sliding distance is l = 1.6 ft. The final inputs were determined to be

l3 = 3 ft., µ11 = 90◦, and µ22 = 45◦. Substituting the known values into Eqs. 5.4,

5.5, and 5.6 gives

A0x = 1.4304 (5.11)

l2 = 2.8803 ft.

ψ1 = 47.4342◦

ψ2 = 15.706◦.
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Figure 5.13 shows the four-bar mechanism as it moves from configuration I to

configuration II to configuration III.

The transmission angles, µ11 and µ22, were chosen to reduce the reaction

forces seen by the joints of the output link. A unique problem for choosing

transmission angles for this reconfigurable mechanism is that in configuration II

there is a constraint on the transmission angle for the RRRR four-bar (µ12) and

the transmission angle for the RRRP four-bar (µ22) given by:

µ12 + µ22 = 90◦ (5.12)

In this design both µ12 and µ22 were chosen to be 45◦ in order to satisfy the

constraint that the transmission angles do not deviate more than 45◦ from the

optimal value of 90◦. The transmission angle for the RRRR four-bar (µ11) was

chosen to be 90◦, as this is the optimal value. The calculated boundary conditions

of

θ2i = 119.7765◦ (5.13)

θ2f = ψ1 = 47.4342◦.

show that the mechanism does not pass through θ2 = 0◦ or θ2 = 180◦ (the critical

points), and therefore the the maximum and minimum values of the transmission

angles for the RRRR four-bar are 90◦ and 45◦, respectively. Similarly, for the

RRRP mechanism the mechanism does not pass through θ2 = 180◦ or θ2 = 270◦
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Figure 5.14: Design Configuration Space

(the critical points), and therefore the minimum and maximum transmission

angles for the RRRP four-bar are 45◦ and 67.556◦, respectively.

5.7 Joint Design for the Four-Bar Mechanism

The R2P2 variable joint designed in this section is for the example in

Section 5.6. The joint is required to rotate from 90◦ to 0◦ and then translate a

distance, l, of 1.6 ft. This can be seen in the design configuration space shown in

Fig. 5.14 where the values of ξ1, ξ2, and ξ3 can be given in Eq. 5.14

ξ1 = (0, 0, 90◦)⊤ (5.14)

ξ2 = (1.6, 0, 0)⊤

ξ3 = (0, 0, 0)⊤.

The units are in ft unless otherwise indicated. Notice that the transition point
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between rotational and translational motion occurs at the origin.

The resulting joint is shown in Fig. 5.15, and the corresponding parameters

table is given in Tab 5.1. For this design, the values of the joint design parameters

were chosen so that ζ1 coincides with the translational constraint point. The

calculated R2P2 variable joint is shown in the final mechanism in Fig. 5.16. A

version of this design that includes redundant contact points is given in Fig. 5.17.

In this modified design, the rotational constraint points are expanded to be

surfaces to allow for a smoother rotation. In addition, the translational constraint

points are extended to be lines in order to have a more stable design. Mechanical

stops are also placed at both the end of the rotational motion and the end of the

translational motion. Note that the mechanical stop at the end of the translation

is used for a dual purpose. It is meant to stop the rotation of link 2, but it will

also force link 2 to transition from a rotational motion to a translational motion.

Link 1 

Link 2 

��, ��, �� 

�  

�� 

Figure 5.15: Calculated R2P2 Joint
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Figure 5.16: Mechanism Design with an R2P2 Variable Joint

The mechanical stop could be made longer if the width of link 2 were reduced.

However, this would reduce the surface contact during rotation. This is an

important tradeoff that must be considered.

Link 1 
Link 2 

Figure 5.17: Final Joint Design for the R2P2 Variable Joint

Table 5.1: Joint Design Parameters for a R2P2 Variable Joint

Joint Design Parameter l w1 w2 r1 r2 r3 α β δk δpo θR

Value 0.24 0.16 0.16 0.3 0.3 0.3 180◦ 180◦ δ δ 29◦
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5.8 Discussion of Alternative Solutions

In any rigid body guidance task (or other motion specification) there are

typically multiple different mechanisms that can provide the same kinematic

motion. For example, there are multiple mechanisms that can be used to perform

straight line motion (Peaucellier linkage, Sarrus linkage, etc.). Determining which

mechanism to use for a particular application is typically referred to as type

synthesis. This provides the basic topology of the mechanism. After type synthesis

occurs, dimensional synthesis is completed to determine specific link lengths that

will provide the desired kinematic motion.

There are multiple mechanisms that can be used to complete the rigid body

guidance problem for this particular assembly application. For instance, a planar

RP serial mechanism can be used to perform the required task. Additionally, an

additional linear actuator can be used in combination with a RRRR four-bar

mechanism to produce the same result. However, both of these solutions require

more than one actuator.

The advantage of using an RuPv variable joint is that it is possible to

produce the required motion with a one DOF four-bar mechanism. This is not

possible with a four-bar mechanism unless a variable joint is used. The four-bar

mechanism is one of the most widely used mechanisms. The most common type of

four-bar mechanism is an RRRR chain, but other options include an RRRP ,

RRPP , or an RPRP . By assigning various links of each of these as a fixed link

there are seven basic one DOF four-bar mechanisms that result [36]. These
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Figure 5.18: Three Position Rigid Body Guidance: RRRR

mechanisms have common names such as the turning-block linkage,

swinging-block-linkage, scotch yoke mechanism, etc., and are used extensively in

industry. Each of these mechanisms have their own specific use, but none of these

four-bar mechanisms can be used to solve the rigid body guidance problem posed

in this chapter.

For example, it can quickly be shown that it is not possible to move a rigid

body in pure translation using an RRRR linkage. Consider the three position rigid

body guidance problem shown in Fig. 5.18. The coupler link of a four-bar

mechanism must be moved from position A1B1 to position A2B2 to position A3B3.

The graphical solution procedure for the three position problem follows the same

method as that for the two position problem. Figure 5.18 shows that the

perpendicular bisector of A1A2 and the perpendicular bisector of A2A3 do not

cross, and therefore there is no solution. A similar example can be used to show

that the other types of four-bar mechanisms cannot be used for this manufacturing

application.
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5.9 Summary

In this chapter it was shown that a four-bar mechanism with a variable

joint (a Type II MVT) can be used in a practical manufacturing application. The

mechanism uses an R2P2 variable joint as one of the fixed pivots. This allows for a

combined RRRR and an RRRP four-bar mechanism that can be used to perform

a rigid body guidance task that changes from a rotational motion to a translational

motion. It was also shown that this type of problem could not be solved using a

conventional four-bar mechanisms without adding an additional actuator.
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CHAPTER 6

Singularity Avoidance in a 3-RPR Parallel Manipulator

This chapter shows how an RuPv variable joint can be used for singularity

avoidance when a 3-RPR parallel manipulator (PM)1 is moved in the vertical

direction. The advantage of this approach is that the end-effector of the 3-RPR

mechanism can pass through a singular configuration without redundant

actuation. This is accomplished by replacing one of the passive revolute joints on

the end-effector with an RuPv variable joint that changes one of the legs of the

mechanism to an RPP kinematic chain.

6.1 Introduction

In general, PMs have lower inertia and higher end-effector speeds than serial

end-effectors. In addition, PMs often have higher stiffness and are more accurate

than serial manipulators. The tradeoff is that PMs have a reduced workspace and

an increased number of singularities [43]. Singularities that are unique to parallel

manipulators are called platform singularities [44]. When platform singularities

occur, a parallel mechanism can instantaneously gain a degree of freedom. That is,

the end-effector can move instantaneously even if all of the actuators are locked.

Platform singularities can lead to large internal forces, reduced accuracy,

1The prismatic joint in 3-RPR is underlined to indicate that this is the actuated joint
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Figure 6.1: 3-RPR Parallel Mechanism

and an uncontrollable degree of freedom. Two options are often used to overcome

platform singularities: avoiding the singularities or redundant actuation. Avoiding

singularities in the workspace may not be feasible to due the required path of the

end-effector. Redundant actuation can be used for singularity avoidance, but this

adds unwanted inertia [43]. In this chapter, it is shown how an RuPv variable joint

provides a passive solution to singularity avoidance for a 3-RPR moving in the

vertical direction.

6.2 3RPR Singularities

In this section the singularities of a 3-RPR are found by way of the

standard Jacobian method. This method is used in order to easily determine the

singularity curve of the mechanism. Another method using Kennedy’s Theorem

will be presented later in this chapter as a more graphical approach to the

problem. Either approach is valid, but both an analytical as well as graphical

solution provide insight into the problem at hand.
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Figure 6.1 shows a typical 3-RPR mechanism. There are three passive

revolute joints located at a grounded pivot (x0i, y0i), where i = 1, 2, 3. The

prismatic joints are active and have a variable length, Li. The end-effector

(represented by a triangular piece) is connected to the prismatic joints by three

passive revolute joints. The lengths li are at an angle of αi, and are the distance

from the distal passive revolute joint (i.e., on the end-effector) to the centroid of

the end-effector. The end-effector configuration is given by (x, y, φ)⊤, where φ is

the angle of the end-effector relative to the horizontal. The values of αi are related

to φ as shown in Eq. 6.1.

α1 = φ+
π

6
(6.1)

α2 = φ+
5π

6

α3 = φ− π

2

In order to determine the singularities of the 3-RPR the determinant of the

Jacobian must be determined. The Jacobian relationship for this manipulator can

be given in Eq. 6.2 as:





1 0 0
0 1 0
0 0 1









L̇1

L̇2

L̇3



 =





cos θ1 sin θ1 l1 sin (α1 − θ1)
cos θ2 sin θ2 l2 sin (α2 − θ2)
cos θ3 sin θ3 l3 sin (α3 − θ3)









ẋ

ẏ

φ̇



 (6.2)

The Jacobian relationship is in the form of

AL̇ = BẊ, (6.3)
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and singular configurations occur when either matrix A or B is singular [44].

When A is singular the manipulator has inverse kinematic singularities. For the

3-RPR there are no inverse kinematic singularities. When B is singular the

manipulator undergoes a platform singularity. Platform singularities are found by

setting the determinant of B equal to 0. This leads to the expression in Eq. 6.4:

l1 sin (α1 − θ1) sin (θ3 − θ2) + l2 sin (α2 − θ2) sin (θ1 − θ3) (6.4)

+ l3 sin (α3 − θ3) sin (θ2 − θ1) = 0.

Substituting in the values of αi gives

l1 sin
(

φ+
π

6
− θ1

)

sin (θ3 − θ2) + l2 sin

(

φ+
5π

6
− θ2

)

sin (θ1 − θ3) (6.5)

+ l3 sin
(

φ− π

2
− θ3

)

sin (θ2 − θ1) = 0.

While the singular configurations can be determined by solving Eq. 6.5, the

Figure 6.2: 3-RPR Singular Configuration
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equation can be interpreted geometrically by looking at the Jacobian relationship

of matrix B . The first two columns for each row are the unit vectors of the Li

links. The third column can be thought of as the “moment” of that unit vector

about the center point of the end-effector. Thus, the geometric interpretation of

Eq. 6.5 is that singularities occur when the values of θi are such that axes of all

three prismatic actuators meet at a point (including infinity) as shown in

Fig. 6.2 [45]. At this instant in time the end-effector can instantaneously rotate

about the point of intersection even if all three prismatic actuators are locked.

Another approach to determining singularities is to use Kennedy’s theorem.

Kennedy’s theorem is stated as follows:

• Kennedy’s Theorem: The three instant centers shared by three rigid bodies

in relative planar motion all lie on the same straight line [6].

The results from Kennedy’s theorem are the same as the results from analyzing

the determinant of the Jacobian in Eq. 6.5. However, Kennedy’s theorem provides

a more intuitive and graphical result, and can be easily applied to a mechanism at

a particular instant. Kennedy’s theorem will also be used to analyze the

mechanism when one of the legs changes from an RPR to a RPP.

There are currently two common ways to overcome a platform singularity.

One method involves avoiding the singular configuration altogether. However,

avoiding singular configurations reduces the effective workspace of the PM, and

avoiding the singular configuration may not be an option due to the required

trajectory of the end-effector.
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An alternative solution is to add redundant actuation. For example, an

extra actuator may be placed on one of the passive revolute joints. Adding this

additional actuator ensures that when the end-effector reaches a platform

singularity the actuator can be locked to prevent unwanted rotation. The

drawback from adding a redundant actuator is that the actuator adds unwanted

inertia to the system. One of the main advantages of a PM is its increased speed

in comparison to a serial mechanism, but adding additional inertia reduces the

effectiveness of this advantage.

Another solution to solving the problem of platform singularities is to add a

redundant leg to the mechanism, a similar solution as adding a redundant actuator

to one of the passive revolute joints. However, it also has similar drawbacks due to

the unwanted inertia and an added actuator that must be controlled.

Each of the current popular solutions to solving the problem of platform

singularities has different drawbacks such as an effectively reduced workspace or

increased inertia in the system. In the following sections it will be shown how, for

certain cases, platform singularities can be avoided using an RuPv variable joint.

Eliminating the platform singularity allows one to maintain control of the

end-effector and avoid any large internal forces that could have occurred at the

singular configuration.

The advantage of the proposed approach is that no redundant actuators are

necessary, and the singular configuration does not need to be avoided. By using an

RuPv variable joint, it is possible to take advantage of the existing actuators used

in the mechanism to overcome the platform singularity. In the next section, a
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problem will be described in which a platform singularity will be avoided.

6.3 Problem Setup

The problem that will be considered will be for a potential manufacturing

application. Consider the 3-RPR in Figs. 6.3 and 6.4. For a specific manufacturing

application, it is necessary to move the end-effector in the Y -direction. The

starting configuration (Fig. 6.3) is non-singular because the axes of the prismatic

joints do not intersect at a point. As the end-effector moves in the Y -direction it

eventually reaches a singular configuration where the axes of the prismatic joints

intersect. Figure 6.5 shows how this problem could be solved using redundant

actuation. An additional actuator could be used in place of one of the passive

joints. By locking the actuator it can prevent the end-effector from from gaining

an extra DOF. However, adding this redundant actuator adds a significant amount

of unwanted inertia to the system.

In the next section, it will be shown how this problem can be solved by

adding an RuPv variable joint in place of one of the passive revolute joints. Using
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an RuPv variable joint in this way allows one to effectively lock the passive

revolute joint. This is similar to how a redundant actuator can be used to lock the

passive revolute joint. The difference between the two solution methodologies is

that using a variable joint is a completely passive solution that does not require

the added redundant actuator.

6.4 Solution Method using RuPv Variable Joints

Passing through this singularity can be accomplished using an RuPv

variable joint in place of one of the passive revolute joints on the end-effector as

shown in Fig. 6.6. This mechanism operates in two different states. When the

RuPv variable joint is a revolute joint the mechanism will function exactly as a

conventional 3-RPR mechanism would. However, when the RuPv variable joint

becomes a prismatic joint, one of the legs in the mechanism becomes an RPP

chain. In certain situations, changing the leg in the mechanism from a RPR to an

RPP chain removes the platform singulary. Before explaining why this joint

change removes the platform singularity, a conventional 3-RPR singularity will be

X 

  

Added redundant actuator 

Figure 6.5: 3-RPR with Variable Topology
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Figure 6.6: 3-RPR with Variable Topology

examined in more detail.

Platform singularities allow for instantaneous rotation of the end-effector

even if all the actuators are locked. When all of the actuators are locked a

standard 3-RPR can be thought of as a 3-RR mechanism as shown in Fig. 6.7.

Even though it seems like the 3-RR mechanism should be a structure, the

end-effector can still instantaneously rotate due to the platform singularity. The

platform singularity can be shown by using Kennedy’s theorem.
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Figure 6.7: Singular Configuration
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In Fig. 6.7 the instant center of link one and three is denoted by I13, and

the instant center between links three and five is denoted by I35. Therefore, the

instant center between link five and one must be on the line connecting I13 and

I35. For link five to move relative to link one, I15 must be a unique point. Because

I15 in Fig. 6.7 is a unique point, the end-effector can instantaneously rotate around

that point.

A similar analysis can be completed if one of the legs changes from RPR to

RPP as shown in Fig. 6.8. The joint change can be completed using an RuPv

variable joint. The joint change that occurs changes the position of the instant

centers in the mechanism. When the joint between links two and five is changed

from a revolute joint to a prismatic joint as shown in Fig. 6.8, the end-effector

(link five) is instantaneously trying to rotate about three different points.

Therefore, the mechanism is a structure. The instant center, I15, that occurred in

the mechanism in Fig. 6.7 no longer exists because the end-effector is

instantaneously trying to rotate around three different points.

An animation showing the result using an example R1P2 variable joint is

shown in Fig. 6.9. In position one the mechanism is not in a singular configuration

because the axes of the prismatic joints do not intersect. In positions two and

three, actuator one is moved along the Y -axis to change the joint from a rotational

joint to a prismatic joint while the end-effector remains stationary. In positions

four and five actuators two and three are actuated in order to move the end-effector

along the Y -axis. During the movement along the Y -axis the end-effector passes

through the singular position that would occur if the passive prismatic joint were a
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revolute joint. Position six shows the end-effector rotating after passing through

the singularity. The advantage of this approach is that no redundant actuators are

required in order to pass through the singular configuration. Section 6.5 will

present a numerical example to provide added clarity.

6.5 Numerical Example

The numerical example presented here relates back to the manufacturing

application discussed in Section 6.3. The 3-RPR mechanism is shown in Fig. 6.10.

Position 1 Position 2 Position 3 

Position 4 Position 5 Position 6 

Actuator 1 

Actuator 2 

Actuator 3 

x 

  

Figure 6.9: Animation Showing the Final Result
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Figure 6.10: 3-RPR Mechanism Singular Configuration

The fixed pivots are located at the following location:

(x01, y01)
⊤ = (0, 0)⊤ (6.6)

(x02, y02)
⊤ = (1.75, 2.5)⊤

(x03, y03)
⊤ = (1, 2.5)⊤.

The end-effector is an equilateral triangle with a side length of 0.75 m. Therefore,

the lengths of each of the sides of the end-effector are l1 = l2 = l3 =
0.75√

3
m. The

actuator lengths, Li, are limited to a 1.5 m stroke length. Therefore, the reachable

workspace for this mechanism is shown in Fig. 6.11. For the manufacturing

application, the end-effector must move from the initial position to the final
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position as shown in Eq. 6.7, which corresponds to Figs. 6.12 and 6.13, respectively.

(x, y, φ)⊤initial = (1, 0.75, 0)⊤ (6.7)

(x, y, φ)⊤final = (1, 0.93, 0)⊤

Due to the required end-effector path, the end-effector must pass through the

singular position given by:

(x, y, φ)⊤singular = (1, 0.84, 0)⊤.

Figure 6.14 shows the singular configurations of the 3-RPR when φ = 0◦. The

initial and final positions are shown, and they are connected together with a

straight line. This shows that in order for the end-effector to complete its required

path, it must move through a singular configuration. To complete this motion, an

RuPv variable joint can be added in place of the passive revolute joint. This
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Figure 6.11: 3-RPR Reachable Workspace φ = 0◦
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Figure 6.13: 3-RPR Final Position

passive solution effectively allows the end-effector to pass through the singularity

curve shown in Fig. 6.14. To complete this task, an appropriate RuPv variable

joint must be designed, and this will be discussed in the next section.
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Figure 6.14: Singular Configuration with φ = 0
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6.6 Joint Design for the 3-RPR

The RuPv variable joint designed in this section is for the example in

Section 6.5. The joint is required to rotate from 45◦ to 90◦ and then translate a

distance, l, of 0.18 m. This can be seen in the design configuration space shown in

Fig. 5.14 where the values of ξ1, ξ2, and ξ3 can be given in Eq. 6.8

ξ1 = (0, 0, 45◦)⊤ (6.8)

ξ2 = (0, 0.18, 90◦)⊤

ξ3 = (0, 0, 90◦)⊤.

All units are in meters unless otherwise indicated. The synthesized R2P2 variable

joint along with the joint parameters table is provided in Fig. 6.16 and Tab. 6.1.

Similar to the joint in the previous chapter, the translational constraint points

were aligned with the rotational constraint points. Aligning these points helps to

simplify the joint design. The design shown in Fig. 6.16 contains only the

minimum point contacts that are necessary for the required rotational to

translational motion. A design that includes additional redundant points is shown

in Fig. 6.17. The translational constraint points were extended to be lines to

Table 6.1: Joint Design Parameters for a R2P2 Variable Joint

Joint Design Parameter l w1 w2 r1 r2 r3 α β δk δpo θR

Value 0.05 0.14 0.14 0.15 0.15 0.15 180◦ 180◦ δ δ −68◦
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Figure 6.15: Design Configuration Space

provide added stability. Additional curvature was added to link 2 so that a surface

contact is made during the rotational motion.

6.7 Summary

It was shown that a 3-RPR mechanism with variable topology can be used

for singularity avoidance. The mechanism uses an R2P2 variable joint as one of the

Link 1 

Link 2 

Figure 6.16: Calculated R2P2 Joint
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Link 1 

Link 2 

Figure 6.17: Final Joint Design for the R2P2 Variable Joint

passive joints attached to the end-effector. This allows for one of the legs in the

mechanism to change from an RPR to an RPP. It was shown by using Kennedy’s

theorem that this joint change eliminates the singularity.
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CHAPTER 7

Summary and Conclusions

The final chapter provides a summary of the contributions made in this

dissertation as well as some conclusions. The goal of this research was to provide a

method that can be used for the profile synthesis of variable joints that change

from a specific rotational motion to a specific translational motion. The

synthesized variable joints can then be used in reconfigurable mechanisms. Using

variable joints in a reconfigurable mechanism can help reduce costs and provide

quick changeover for low volume manufacturing applications. These types of

mechanisms are also used to provide added flexibility in the context of a

constrained environment.

7.1 Higher Variable Joints

Higher variable joints were introduced fundamental components of planar,

variable joints that change from a rotational motion to a translational motion.

Higher variable joints are kinematically equivalent revolute and prismatic pairs but

have different joint profiles. It was shown that second order effects, or surface

curvature, of higher variable joints is critical to achieve a particular joint motion.

Planar, higher variable joints were investigated for both rotational joints and

translational joints. For rotational higher variable joints, the minimum number of
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point contacts were found that can be used to constrain a circle to rotational

motion. A similar procedure was also completed for translational higher variable

joints. It was shown that there are three types of rotational higher variable joints

and two types of translational higher variable joints. The resulting higher variable

joints form the basis for the profile synthesis procedure.

7.2 Profile Synthesis of RuPv Variable Joints

Equations were provided that can be used for the profile synthesis of RuPv

variable joints. General equations were developed based on a general joint profile

that includes all RuPv variable joints. By changing different parameters in the

equations, the profiles of the six different RuPv variable joints were determined. It

was further shown how the profiles of RuPv variable joints can be created based on

a design configuration space. Kinematic redundancies were then added to the joint

design. An example was provided in which different adjustable pliers were created

by placing multiple RuPv variable joints in series. In addition, it was shown that

there are constraints on the direction of translation of RuPv variable joints due to

the arcs used for rotational constraint. Finally, different combinations of

separation angles were considered for R1Pv variable joints.

7.3 Four Bar Mechanism with Variable Topology

A four-bar mechanism with variable topology of Type II was presented that

can be used in an industrial manufacturing application. The variable joint that is

used in the mechanism was developed using the methods from Chapter 4. It was

shown that by using variable joints, a four-bar mechanism was created that is able
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to perform a rigid body guidance task that is not possible to perform with a

conventional four-bar mechanism. The mechanism drew upon classic four-bar

mechanism theory in order to optimize the mechanism’s transmission ratio, given

the position constraints.

7.4 Singularity Avoidance in a 3-RPR Parallel Manipulator

It was shown how an RuPv variable joint can be used for singularity

avoidance when a 3-RPR parallel manipulator (PM) is moved in the vertical

direction. The advantage of this approach was that the end-effector of the 3-RPR

mechanism can pass through a singular configuration without adding redundant

actuation. This is accomplished by replacing one of the passive revolute joints on

the end-effector with an RuPv variable joint that changes one of the legs of the

mechanism to an RPP kinematic chain.

7.5 Conclusions

This sections outlines some of the conclusions that can be drawn from this

research. Some of the conclusions are lessons that were learned during the

research, and other conclusions can be considered ideas for future work. The

conclusions can be outlined as follows:

1. Surface curvature is critical when determining the profiles of variable joints

that change from a rotational motion to a translational motion. It is

important to understand the minimum number of point contacts in order to

determine an appropriate joint profile. Understanding the minimum number

of points allows one to understand where kinematic redundancies are in the
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design. Understanding where the kinematic redundancies are allows one to

create a more robust joint.

2. Variable joints work well in cases in which the mechanisms’s actuators can

be used to actuate the variable joints during both joint motions. The

advantage of this approach is that the number of actuators used in the

mechanism is reduced which reduces the power supplies and coordination of

the DOF. When one actuator is used for both joint motions there must be a

way to determine which motion will be active. This can be accomplished by

considering the dynamics of the mechanisms as well as the kinematic

redundancies in the joint (i.e., mechanical stops).

3. Conventional kinematics theory can still be used when a variable joint is

used in a mechanism. However, there are added constraints due the fact that

two mechanisms are combined into one. Even though there are added

constraints in the mechanism, the combination of two mechanisms into one

mechanism may still be able to perform a task that is not possible to

perform using each mechanism individually.

4. The design configuration space works well for planar joints. However, the

design configuration space may be more difficult to use for spatial joints in

which more than three parameters are required to describe the joint

configuration. The design configuration space is not the only way to specify

the design requirements. The design requirements could also be specified in
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tabular or some other form, but configuration space is beneficial because it

ensures no joint configurations are missed. In addition, tolerance analysis can

be accomplished in configuration space using the works by Sacks et al. [38].

5. The methods presented in this dissertation can be expanded to include

planar variable joints that change topology due to a change in direction as

well as spatial joints. For instance, a spatial joint that changes direction of

rotation can be thought of as combining two planar revolute joints that

rotate around different axes. For spatial joints, it is also important to

determine the minimum number of point contacts for a specific type of

motion, and this is an area of future research.

6. Combining multiple RuPv variable joints in series creates added constraints

that must be considered, and therefore the joint design is more difficult.

However, the resulting variable joint has a broader range of possible

configurations. The difficulty in connecting multiple RuPv variable joints in

series is that every new joint motion impacts the downstream joint motion.

For instance, the constraints on a R1 joint motion effect the possibility of

performing a future Ru or Pv type motion. One way to minimize this effect

to use connect multiple RuPv variable joints of the same type.

7. Joint profile synthesis must be taken into consideration during the synthesis

of Type II MVTs, and not after the mechanism design is completed. The

reason for this is that even if the mechanism is feasible it may not be
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possible synthesize a joint that can complete the required task. In addition,

it is important to minimize the reaction forces that occur at the joint, and

therefore it is important to consider the joint profile during the kinematic

design stage.

8. New types of graphical symbols need to be developed as a standard way to

represent variable joints that are used in Type II MVTs, and this is an area

of future work. Potential options for RuPv variable joints have already been

shown in this dissertation, but a more formal set of graphical symbols is

needed.

9. Using a variable joint in a mechanism adds joint complexity, but the added

joint complexity may lead a mechanism that provides a simple solution to a

complex task. For instance, in this dissertation it was shown how the

Type II MVT four-bar linkage was able to perform an operation that would

not be possible using a conventional four-bar linkage.

7.6 Final Remarks

This dissertation provides a general procedure to synthesize the profiles of

RuPv variable joints, and that is a powerful design tool. Currently, variable joints

are rarely used in mechanism design. Yet, this dissertation provides two

applications where RuPv variable joints can be used in a mechanism to solve a

problem. In both examples, by using variable joints it is possible to utilize the

actuators that are currently used in the mechanism. Using variable joint in a
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mechanism does add mechanism complexity, but by building the complexity in the

joints, fewer actuators are needed and the controls may become simpler.



115

REFERENCES

[1] J. Liu and S. Sun. A brief survey on inflatable deployment space structures’

research and development. In Proceedings of the 2010 Reconfigurable

Mechanisms and Robotics Conference, pages 773–782, 2009.

[2] G. Wei and J. Dai. Geometry and kinematic analysis of an origami-evolved

mechanism based in artmimetics. International Conference on Reconfigurable

Mechanisms and Robotics, pages 450–455, 2009.

[3] J. Zhang, J. Yang, and B Li. Development of reconfigurable welding fixture

system for automotive body. In Proceedings of the 2009 Reconfigurable

Mechanisms and Robotics Conference, pages 702–708, 2009.

[4] K. Wohlhart. Kinematotropic linkages. In J. Lenarcic and V. Parenti-Castelli,

editors, Recent Advances in Robot Kinematics, pages 359–368. Kluwer

Academic, Dordrecht, The Netherlands, 1996.

[5] F. Reuleaux. The Kinematics of Machinery. Dover Publications, 1963.

[6] A.B.W. Kennedy. The Mechanics of Machinery. MacMillan and Co, London,

1886.

[7] L. Burmester. Lehrbuch der Kinematik. Verlag Von Arthur Felix, Leipzig,

Germany, 1886.

[8] R.S. Hartenberg and J. Denavit. Kinematic Synthesis of Linkages.

McGraw-Hill Book Company, New York, 1964.

[9] K.H. Hunt. Kinematic Geometry of Mechanisms. Oxford University Press,

New York, 1978.



116

[10] O. Bottema and B. Roth. Theoretical Kinematics. Dover Publications, Inc.,

New York, 1990.

[11] F. Freudenstein and G.N. Sandor. Synthesis of path generating mechanissm

by means of a programmed digital computer. ASME Journal of Engineering

for Industry, 81:159–168, 1959.

[12] L. W. Tsai and A.P. Morgan. Solving the kinematics of the most general six

and five degree-of-freedom manipulators by continuation methods. Journal of

Mechanisms, Transmissions, and Automation in Design, 107(5), 1985.

[13] C.W. Wampler and A.P. Morgan. Complete solution of the nine-point path

synthesis problem for four-bar linkages. Journal of Mechanical Design,

114(1):153–159, 1992.

[14] D.A. Ruth and J.M. McCarthy. Sphinxpc: An implementation of four

position synthesis for planar and spherical linkages. In Proceedings of the

ASME Design Engineering Technical Conferences, volume 1, pages 14–17,

Sacramento, CA, September 1997.

[15] J.S. Dai and J. Rees Jones. Mobility in metamorphic mechanisms of foldable/

erectable kinds. Journal of Mechanical Design, 121:375–382, September 1999.

[16] Larry Howell. Compliant Mechanisms. Wiley-Interscience, 2001.

[17] H.S. Yan and N.T. Liu. Finite-state-machine representations for mechanisms

and chains with variable topologies. In Proceedings of the 26th ASME

Mechanisms Conference, Baltimore, Maryland, 2000.

DETC2000/MECH-14054.

[18] A.P. Murray, J.P. Schmiedeler, and B.M. Korte. Kinematic synthesis of

planar, shap-changing rigid-body mechanisms. Journal of Mechanical Design,

130:1–10, March 2008.



117

[19] Jian S. Dai and J. Rees Jones. Matrix representation of topological changes in

metamorphic mechanisms. Journal of Mechanical Design, 127:837–840, July

2005.

[20] H.-S. Yan and C.-H. Kuo. Topological representations and characteristics of

variable kinematic joints. ASME Journal of Mechanical Design, 128:384–391,

March 2006.

[21] Z.H. Lan and R. Du. Representation of topological changes in metamorphic

mechanisms with matrices of the same dimension. Journal of Mechanical

Design, 130, July 2008.

[22] B. Slaboch and P. Voglewede. Mechanism state matrices for planar

reconfigurable mechanisms. Journal of Mechanisms and Robotics,

Transactions of the ASME, 3(1), February 2011.

[23] C. Galletti and P. Fanghella. Single-loop kinematotropic mechanisms.

Mechanism and Machine Theory, 36(6):743–761, June 2001.

[24] C. Galletti and P. Fanghella. Multiloop kinematotropic mechanisms. In

Proceedings of the ASME DETC, Montreal, CA, September 2002.

[25] J.M. Herve. Translational parallel manipulators with douple planar limbs.

Mechanism and Machine Theory, 41:433–455, 2006.

[26] L. Z. Ma, A. Liu, H. Shen, and D. Yang. A method for structure syntheiss of

reconfigurable mechanissm based on genetic optimization algorithm. In

Proceedings of the 2009 Reconfigurable Mechanisms and Robotics Conference,

pages 148–152, 2009.

[27] T. Yang, A. Liu, L. Zhang, and J Yun. Comparative study of two methods for

type synthesis of robot mechanisms. In Proceedings of the 2009 Reconfigurable

Mechanisms and Robotics Conference, pages 205–214, 2009.



118

[28] X. Kong and C. Huang. Type synthesis of parallel mechanisms with multiple

operation modes. In Proceedings of the 2009 Reconfigurable Mechanisms and

Robotics Conference, pages 141–146, 2009.

[29] H.-S. Yan and C.-H. Kang. Configuration synthesis of mechanisms with

variable topologies. Mechanism and Machine Theory, 44:896–911, 2009.

[30] W. Wunderlich. Ein merkwurdiges zwolfstabgetriebe, osterreichisches

ingenieurarchiv. pages 224–228. Kluwer Academic, 1954.

[31] K. Wohlhart. Degrees of shakiness. Mechanism and Machine Theory,

34(7):1103–1126, October 1999.

[32] C.H. Kuo. Structural characteristics of mechanisms with variable topologies

taking into account the configuration singularity. Master’s thesis, Department

of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan,

2004.

[33] W. Shieh, F. Sun, and D. Chen. On the topological representation and

compatibility of variable topology mechanisms. In Proceedings of the 2009

ASME Design Engineering Technical Conference, Sand Diego, CA, September

2009. Paper Number: DETC2009-87205.

[34] K. Zhang, Y. Fang, G. Wei, and J. Dai. Structural representation of

reconfigurable linkages. In Proceedings of the 2012 Reconfigurable Mechanisms

and Robotics Conference, pages 127–137, Tianjin, China, July 2012.

[35] K.J. Waldron. A method of studying joint geometry. Mechanism and

Machine Theory, 7(3):347–353, 1972.

[36] L.-W. Tsai. Mechanism Design: Enumeration of Kinematic Structures

According to Function. CRC Press LLC, Boca Raton, FL, 2001.

[37] H.-S. Yan and C.-H. Kuo. Representations and identifications of structural



119

and motion state characteristics of mechanisms with variable topologies.

Transactions of the Canadian Society of Mechanical Engineering, 30:19–40,

March 2006.

[38] E. Sacks and L. Joskowicz. The Configuration Space Method for Kinematic

Design of Mechanism. The MIT Press, London, England, 2010.

[39] E. Rimon and J. Burdick. A configuration space analysis of bodies in contact

- I. 1st order mobility. Mechanism and Machine Theory, 30(6):897–912, 1995.

[40] E. Rimon and J. Burdick. A configuration space analysis of bodies in contact

- II. 2nd order mobility. Mechanism and Machine Theory, 30(6):913–928, 1995.

[41] J. Latombe. Robot motion planning. In Robot Motion Planning, pages x–xi,

Norwell, MA, September 1991.

[42] J.M. McCarthy. Geometric Design of Linkages, volume 11 of Interdisciplanry

Applied Mathematics. Springer-Verlag, New York, 2000.

[43] P.A. Voglewede. Measuring Closeness to Singularities of Parallel

Manipulators with Application to the Design of Redundant Actuation. PhD

thesis, Georgia Institute of Technology, March 2004.

[44] C. Gosselin and J. Angeles. Singularity analysis of closed loop kinematic

chains. IEEE Transactions on Robotics and Automation, 6(3):281–290, June

1990.

[45] P.A. Voglewede and I. Ebert-Uphoff. Overarching framework for measuring

closeness to singularities of parallel manipulators. IEEE Transactions on

Robotics, 21(6):1037–1045, December 2005.

[46] H.-S. Yan and C.-H. Kuo. Structural analysis and configuration synthesis of

mechanisms with variable topologies. In ASME/IFToMM International

Conference on Reconfigurable Mechanisms and Robots, pages 23–31, London,



120

United Kingdom, 2009.



121

APPENDIX A

Analysis of Reconfigurable Mechanisms

This Appendix introduces mechanism state matrices as a new and improved

way to represent the topological characteristics of reconfigurable mechanisms. The

advantages of this approach are that each row corresponds to a unique state in the

mechanism, the fixed and free links in the mechanism can be identified, and the

DOF at each state are shown. A series of examples will be used to illustrate the

proposed concept.

A.1 Introduction

Many researchers are currently working on ways to analyze and synthesize

reconfigurable mechanisms. As part of this, there is a need for a concise matrix

representation of the topological characteristics of reconfigurable mechanisms. The

topological characteristics of any reconfigurable mechanism can be broken into five

areas:

(i) The connectivity of the links and joints

(ii) The type of joint motion

(iii) The kinematic orientation of the joints

(iv) The fixed and free links

(v) The degrees of freedom (DOF) of the mechanism.

Mechanism state matrices are a novel matrix representation that combines all five

topological characteristics into a concise matrix representation. This chapter will

develop mechanism state matrices and compare and contrast them to current
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matrix representations which include conventional adjacency matrices [36],

EU-matrix transformations1 [15, 19], improved adjacency matrices [21], and

directionality topology matrices [37].

Mechanism state matrices combine the upper triangular portion of the

directionality topology matrix with the finite state representation [17]. Thus, each

row of the mechanism state matrix corresponds to a distinct state of the

mechanism. This is in contrast to conventional matrix representations in which

each row corresponds to a distinct link in a mechanism. This new matrix

representation is unique in that it allows for identification of the fixed links in a

mechanism. In addition, the DOF of a mechanism at each state is clearly

identified.

A.2 Current Matrix Representations

A number of researchers [19, 21, 37, 46] have introduced various methods of

representing the topological characteristics of reconfigurable mechanisms using a

matrix notation. While each of these matrix representations has its own

advantages, none of these current matrix representations fully specify the five

topological characteristics useful for analysis and synthesis of reconfigurable

mechanisms.

A.2.1 Adjacency Matrices

Adjacency matrices are used to represent the topological structure of a

mechanism where the links in a mechanism are labeled 1 through n. In an

adjacency matrix, the row and column numbers correspond to the link numbers in

1“EU” stands for an E-elementary matrix combined with a U-elementary matrix as outlined
in [19].
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Figure A.1: (A) The Six-Bar Linkage in State 1 has Three DOF. (B) The Six-bar
Linkage becomes a Five-bar Linkage in State 2 with Two DOF.

a mechanism. The definition of an adjacency matrix is given in [36] as

A(i, j) =











1 if link i is connected to link j by a joint

0 otherwise (including i = j),
(A.1)

where A(i, j) is the ith row and jth column of matrix A. For an n link mechanism

an adjacency matrix is an nxn matrix. For example, matrix A0 is the adjacency

matrix for the six-bar linkage in Fig. A.1(A),

A0 =

















0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

















. (A.2)

In this example, element A0(1, 2) is 1 because link 1 is attached to link 2 by

a joint. Adjacency matrices are advantageous in that they provide information

about the connectivity of the links and joints. However, adjacency matrices cannot

be used to identify type of joints, the kinematic orientation of the joints, the fixed

links, or the DOF of the mechanism.
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A.2.2 EU-Matrix Transformations

In 2005 Dai and Jones [19] proposed an EU-elementary matrix operation to

represent the state changes of metamorphic mechanisms. EU-elementary matrix

operations are the first type of matrix operation that can be used to reduce the

dimension of an adjacency matrix. An E-elementary matrix is combined with a

U-elementary matrix to form an EU-elementary matrix operation. As shown in

Fig. A.1(B), consider the case in which link 6 of the six-bar linkage becomes fixed

as a result of a pin, P . The E-elementary matrix and the U-elementary matrix

associated with the transformation from the six-bar linkage in state 1

(Fig. A.1(A)) to the six-bar linkage in state 2 (Fig. A.1(B)) are

E6 =
[

I5 0
]

=













1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0













(A.3)

U5,6 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

















.

The two matrices are used to perform the elementary matrix operation

given in Eq. A.4 as

A1 = (E6U5,6)A0(E6U5,6)
T . (A.4)

The matrix operation uses modulo-2 arithmetic and the results are given in Eq. A.5
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A1 =













0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0













. (A.5)

The EU-matrix transformation effectively transformed A0 to the adjacency

matrix for the mechanism in Fig. A.1(B). Dai and Jones realized that, upon a

change in the number of effective links, the dimension of an adjacency matrix

changes as well as the order of the elements. In the previous example A0 changed

from a 6× 6 matrix to A1, a 5× 5 matrix. The EU-elementary matrix operation is

useful in capturing this change. However, the EU-matrix transformation does not

identify the type of joints, the kinematic orientation of the joints, the fixed links,

or the DOF of the mechanism.

A.2.3 Improved Adjacency Matrix

In 2008 Lan and Du [21] proposed a “-1” element to indicate a fixed

kinematic pair. In this way the dimension of the adjacency matrix remains the

same after a topological change has occurred. In addition, information about the

original state of the mechanism is not lost. For example, the improved adjacency

matrix for the six-bar linkage in Fig. A.1(B) is given in A2 as

A2 =

















0 1 0 0 0 −1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
−1 0 0 0 1 0

















. (A.6)

This representation ensures that the dimension of the adjacency matrix
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remains unchanged due to a change in the number of effective links. However, it

does not identify the type of joints, the kinematic orientation of the joints, the

fixed links, or the DOF of the mechanism.

A.2.4 Directionality Topology Matrices

The directionality topology matrix (MDT ) proposed by Yan and

Kuo [37, 46] is one step closer to a complete representation of the topological

characteristics of reconfigurable mechanisms. The directionality topology matrix in

Eq. A.7 represents the topological change from the six-bar linkage in state 1 to the

six-bar linkage in state 2.

MDT =



















1 J
R,R
Z,Z 0 0 0 J

R,X
Z,V

a 2 J
R,R
Z,Z 0 0 0

0 b 3 J
R,R
Z,Z 0 0

0 0 c 4 J
R,R
Z,Z 0

0 0 0 d 5 J
R,R
Z,Z

f 0 0 0 e 6



















(A.7)

For i = j, MDT (i, j) denotes the label of link i. For i > j, MDT (i, j) denotes the

label of the kinematic pair connecting links i and j, and for j > i, MDT (i, j)

contains the joint code for links i and j. Joint code is in the form of Jλ
µ where λ

and µ represent the type and orientation of a kinematic pair, respectively.

Figure A.2 contains the schematic diagram and the joint code for common

kinematic pairs. Fixed pair notation is given by JX
V , where V represents an

arbitrary kinematic orientation and X represents a fixed joint. Reconfigurable

mechanisms are unique in that they have the ability to transition from one state

with a certain configuration to another state with a different configuration. The
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Fixed N/A 0 N/A

Figure A.2: Joint Code of Common Kinematic Pairs

joint code representing these changes can be expressed in a joint sequence, J(λ, µ),

Jλ1,λ2,...,λn
µ1,µ2,...,µn

(A.8)

in which λn and µn correspond to the joint code for the nth state of the mechanism.

Directionality topology matrices identify the connectivity of the links and

joints, the type of joints, and the kinematic orientation of the joint. In addition,

joint sequences allow for multiple states to be conveniently represented in a single

matrix. Mechanism state matrices build upon directionality topology matrices by

identifying the fixed links, as well as providing the information about the DOF of

the mechanism. In addition, each row of the matrix will correspond to a distinct

state in a mechanism.

A.3 Mechanism State Matrices

Recall that the topological characteristics of reconfigurable mechanisms can

be broken into five areas:

(i) The connectivity of the links and joints

(ii) The type of joint motion
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Table A.1: Topological Characteristics

Matrix Representations (i) (ii) (iii) (iv) (v)

Adjacency Matrix
√

EU-Matrix Operations
√

Improved Adjacency Matrix
√

Directionality Topology Matrix
√ √ √

Mechanism State Matrix
√ √ √ √

Augmented Mechanism State Matrix
√ √ √ √ √

(iii) The kinematic orientation of the joints

(iv) The fixed and free links

(v) The degrees of freedom (DOF) of the mechanism.

As shown in Tab. A.1, current matrix representations fail to identify all five

topological characteristics. The goal of mechanism state matrices is to incorporate

all five topological characteristics into a single matrix representation.

A.3.1 Matrix Notation

Mechanism state matrices provide a new way to capture the topological

characteristics of a reconfigurable mechanism as it changes from one state to

another. This representation combines the desirable characteristics from current

matrix representations into a more compact form. For example, mechanism state

matrices incorporate EU-matrix transformations into its inherent structure. In

addition, fixed joint notation remains consistent with improved adjacency

matrices. Lastly, joint code notation used in directionality topology matrices is

retained in mechanism state matrices.

This novel matrix representation is fundamentally different than current

matrix representations in multiple ways. First, each row of a mechanism state



129

MSM(m,n)
=



















































κ(i,j)γ
λ1(i,j)

1(i,j)µ1(i,j)
, γ

λ2(i,j)
2(i,j)µ2(i,j)

...γ
λr(i,j)

r(i,j)µr(i,j)
κ(i,j)γ

λ1(i,j)
1(i,j)µ1(i,j)

, γ
λ2(i,j)

2(i,j)µ2(i,j)
...γ

λr(i,j)
r(i,j)µr(i,j)

. . . . . . κ(1,n)

κ(i,j)γ
λ1(i,j)

1(i,j)µ1(i,j)
, γ

λ2(i,j)
2(i,j)µ2(i,j)

...γ
λr(i,j)

r(i,j)µr(i,j)
κ(i,j)γ

λ1(i,j)
1(i,j)µ1(i,j)

, γ
λ2(i,j)

2(i,j)µ2(i,j)
...γ

λr(i,j)
r(i,j)µr(i,j)

. . . . . .

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

κ(m,1)γ
λ1(m,1)

1(m,1)µ1(m,1)
, γ

λ2(m,1)
2(m,1)µ2(m,1)

...γ
λr(m,1)

r(m,1)µr(m,1)
κ(m,n)



















































.

(A.9)

matrix corresponds to a unique state of the mechanism. This is in contrast to

current matrix representations in which each row corresponds to a unique link in a

mechanism. Second, each link in a mechanism is designated as either a free link

or a fixed link. Free links are denoted by β, and fixed links are denoted by α.

Mechanism state matrices will now be rigorously defined, and then a simple

example will be used to elucidate the theory. The following list outlines the

guidelines used for forming mechanism state matrices.

1. The mechanism state matrix is an m× n matrix.

2. For an n link mechanism, the links are labeled 1 to n.

3. The m rows of the matrix correspond to the m states of the mechanism.

4. The n columns of the matrix correspond to the n links of the mechanism.

5. Mechanism state matrices are read from left to right.

6. Once the connectivity of two links is established, it is not repeated.

The general form of the mechanism state matrix is given in Eq. A.9.

MSM(i, j) contains the link code for the jth link at the ith state. Link code has the

general form of

κ(i,j)γ
λ1(i,j)

1(i,j)µ1(i,j)
, γ

λ2(i,j)

2(i,j)µ2(i,j)
...γ

λr(i,j)

r(i,j)µr(i,j)
. (A.10)
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For the jth link at the ith state κ(i, j) is defined as

κ(i, j) =















α if link j is a fixed link

β if link j is not a fixed link.

(A.11)

The remaining variables are defined as follows:

1. x : an integer from 1 to r

2. r : the number of links connected to link j for γx(i,j) > j

3. γx(i,j) : a link number (1 to n) corresponding to a link connected to link j by
a joint, where γx+1(i,j) > γx(i,j) > j

4. λx(i,j) : the type of kinematic pair connecting link j to link γx(i,j)

5. µx(i,j) : the orientation of the kinematic pair connecting link j to link γx(i,j).

It should be noted that
λx(i,j)
µx(i,j) is identical to the joint code used for

directionality topology matrices [37]. The notation for the type and orientation of

common kinematic pairs can be found in Fig. A.2.

A.3.2 Representative Example

The transformation from the mechanism in Fig. A.1(A) to the mechanism

in Fig. A.1(B) will be used to illustrate how mechanism state matrices can be used

to represent the topological characteristics of reconfigurable mechanisms. In this

example, the values associated with the link code for MSM(1, 1) are as follows:

κ(1, 1) = α

γ1(1,1) = 2, γ2(1,1) = 6

λ1(1,1) = R, λ2(1,1) = R

µ1(1,1) = Z, µ2(1,1) = Z.
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The values for the link code can be found for every element of MSM . Substituting

the link code values into the generalized form of the mechanism state matrix yields

the matrix given in Eq. A.12

MSM =

[

α2RZ , 6
R
Z β3RZ β4RZ β5RZ β6RZ β

α2RZ , 6
X
V β3RZ β4RZ β5RZ β6RZ α

]

. (A.12)

Notice that each row of the mechanism state matrix corresponds to a

distinct state in the mechanism. That is, the first row corresponds to the six-bar

linkage in state 1 and the second row corresponds to the six-bar linkage in state 2.

There are 6 columns corresponding to the 6 links in the mechanism.

Link code is used to describe each link at the corresponding state. For

instance, consider MSM(1, 1). α specifies that link 1 is a fixed link. The notation

2RZ , 6
R
Z specifies that link 1 is connected to link 2 through a revolute joint, and link

1 is also connected to link 6 through a revolute joint. The direction of the rotation

axis is specified as the Z-axis in both cases. It is important to reiterate that

mechanism state matrices are read left to right, and that once a connectivity is

established it is not repeated. For example, link 1 is specified to be connected to

link 2. Thus, MSM(1, 2) is given as β3RZ and not β1RZ , 3
R
Z because MSM(1, 1)

already specified that link 1 is connected to link 2.

In state 2 the mechanism changes in two ways. Link 6 becomes a fixed link,

and the joint connecting links 1 and 6 becomes a fixed joint. By looking at

MSM(2, 1) it is clear that the joint between links 1 and 6 has become fixed. This is

given by the joint code 6XV . Likewise, one can easily determine that link 6 has

become a fixed link. This is given by α in MSM(2, 6).
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A.4 Augmented Mechanism State Matrices

A defining characteristic of many reconfigurable mechanisms is that the

DOF of the mechanism changes as the mechanism moves from one state to

another. Knowledge of the DOF of a mechanism is important for both the analysis

and synthesis of reconfigurable mechanisms. To capture this important

information the DOF matrix will be defined as

D =

















S1

S2

.

.

.

Sm

















, (A.13)

where Sm corresponds to the DOF at state m. The DOF matrix can then be

combined with the mechanism state matrix to form an augmented mechanism state

matrix. The augmented mechanism state matrix, MASM , is defined in Eq. A.14 as

MASM = (MSM |D) (A.14)

The general form is given in Eq. A.15

MASM(m,n+1)
=















































κ(i,j)γ
λ1(i,j)

1(i,j)µ1(i,j)
, γ

λ2(i,j)
2(i,j)µ2(i,j)

...γ
λr(i,j)

r(i,j)µr(i,j)
κ(i,j)γ

λ1(i,j)
1(i,j)µ1(i,j)

, γ
λ2(i,j)

2(i,j)µ2(i,j)
...γ

λr(i,j)
r(i,j)µr(i,j)

. . . . . . κ(1,n) S1

κ(i,j)γ
λ1(i,j)

1(i,j)µ1(i,j)
, γ

λ2(i,j)
2(i,j)µ2(i,j)

...γ
λr(i,j)

r(i,j)µr(i,j)
κ(i,j)γ

λ1(i,j)
1(i,j)µ1(i,j)

, γ
λ2(i,j)

2(i,j)µ2(i,j)
...γ

λr(i,j)
r(i,j)µr(i,j)

. . . . . . S2

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

κ(m,1)γ
λ1(m,1)

1(m,1)µ1(m,1)
, γ

λ2(m,1)
2(m,1)µ2(m,1)

...γ
λr(m,1)

r(m,1)µr(m,1)
κ(m,n) Sm















































,

(A.15)

where all variables are as previously defined. For the six-bar linkage example, the

mechanism changes from a 3 DOF mechanism in state 1 to a 2 DOF mechanism in

state 2. In this case, the DOF matrix would be
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D =

[

3
2

]

. (A.16)

The corresponding augmented mechanism state matrix is given in Eq. A.17

MASM =

[

α2RZ , 6
R
Z β3RZ β4RZ β5RZ β6RZ β 3

α2RZ , 6
X
V β3RZ β4RZ β5RZ β6RZ α 2

]

. (A.17)

Augmented mechanism state matrices fully specify all five topological

characteristics of reconfigurable mechanisms. They are a convenient way to capture

the changes in the DOF of a mechanism as it moves from one state to the next.

A.5 Examples

In this section three examples will be provided to illustrate how mechanism

state matrices can be a useful analysis tool for reconfigurable mechanisms. The

first example will focus on a 3RRR mechanism that moves through three states. In

the second example, a planar metamorphic mechanism will be anlayzed [21]. The

last example will show how mechanism state matrices work well for topologically

identical mechanisms with different configurations.

A.5.1 3RRR Mechanism

Consider the 3RRR2 mechanisms in Figures A.3(A), A.3(B), and A.3(C).

For this example it is assumed that the mechanism transforms from state 1 in

Fig. A.3(A) to state 2 in Fig. A.3(B) to state 3 in Fig. A.3(C). In state 1 link 1 is

the only fixed link. In state 2 both links 8 and 1 are fixed links, and in state 3

links 7 and 1 are designated as fixed links. The mechanism state matrix for the

three states is given in Eq. A.18 as

23RRR denotes a manipulator with three kinematic chains of the type revolute-revolute-
revolute.
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Figure A.3: (A) 3RRR Linkage with Three DOF. (B) 3RRR Linkage with Two
DOF. (C) 3RRR Linkage with One DOF.

MSM =













α2RZ , 6
R
Z , 8

R
Z β3RZ β4RZ β5RZ , 7

R
Z β6RZ β β8RZ β

α2RZ , 6
R
Z , 8

X
V β3RZ β4RZ β5RZ , 7

R
Z β6RZ β β8RZ α

α2RZ , 6
R
Z , 8

X
V β3RZ β4RZ β5RZ , 7

R
Z β6RZ β α8XV α













. (A.18)

The corresponding augmented mechanism state matrix is given in Eq. A.19

as

MASM =













α2RZ , 6
R
Z , 8

R
Z β3RZ β4RZ β5RZ , 7

R
Z β6RZ β β8RZ β 3

α2RZ , 6
R
Z , 8

X
V β3RZ β4RZ β5RZ , 7

R
Z β6RZ β β8RZ α 2

α2RZ , 6
R
Z , 8

X
V β3RZ β4RZ β5RZ , 7

R
Z β6RZ β α8XV α 1













. (A.19)

The augmented mechanism state matrix identifies how the DOF of this

mechanism changes as it moves from one state to another. Additionally, it is easy

to track how a link changes as the mechanism changes states. For instance, link 8

changes from a movable link in state 1 to a fixed link in states 2 and 3.

A.5.2 Planar Metamorphic Mechanism

The second example will be that of the planar metamorphic mechanism

analyzed in [21] and shown in Figure A.4. This is a five-link mechanism that

oscillates between pins P1 and P2. The spring embedded in link 2 pushes link 3
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Figure A.4: The Mechanisms Oscillates Between Pins P1 and P2.

along the slot in link 2. In every state the mechanism is a five-bar linkage with one

DOF. However, the state of the mechanism changes as it oscillates between pins P1

and P2. The mechanism state matrix is given in Eq. A.20 as

MSM =





α2RZ , 5
X
V β3PV β4RZ β5RZ α

α2RZ , 5
R
Z β3XV α4RZ β5RZ β

α2RZ , 5
X
V β3PV β4RZ β5RZ α



 . (A.20)

The augmented mechanism state matrix for this example is given in Eq. A.21 as

MASM =





α2RZ , 5
X
V β3PV β4RZ β5RZ α 1

α2RZ , 5
R
Z β3XV α4RZ β5RZ β 1

α2RZ , 5
X
V β3PV β4RZ β5RZ α 1



 . (A.21)

In this case the DOF does not change as the mechanism changes states. However,

the augmented mechanism state matrix shows how the links and joints change as

the mechanism moves from one state to another.

A.5.3 2R-2P Mechanism

Mechanism state matrices can be used to identify topologically identical

mechanisms with different configurations. Consider the 2R-2P mechanisms shown

in Figures A.5 and A.6. These are topologically identical mechanisms with

different configurations. The difference between them is evident by forming the

augmented mechanism state matrices. The augmented mechanism state matrix for
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the 2R-2P mechanism in Fig. A.6 is given by

MASM =

[

α2RZ , 4
P
X β3RZ β4PY β 1

]

, (A.22)

and the augmented mechanism state matrix for the 2R-2P mechanism in Fig. A.6

is given as

MASM =

[

α2XV , 4
P
X α3XV α4PX β 1

]

. (A.23)

Equation A.22 shows that either links 2, 3, or 4 could be an input link. This is not

the case for the 2R-2P mechanism with parallel prismatic joints. As shown in

Eq. A.23 only link 4 can be an input link. The other three links are fixed. It

should be noted that the 2R-2P mechanism with parallel prismatic joints is a

special case in which the configuration of the mechanism causes three of the four

links to be fixed.

A.6 Review of Mechanism State Matrices

This Appendix introduced mechanism state matrices as a novel way to

represent the topological characteristics of reconfigurable mechanisms. Mechanism

state matrices are unique in that each row of the matrix corresponds to a distinct

state in the mechanism. In addition, this is the first approach that identifies fixed

and free links. Finally, the DOF at each state in the mechanism can be added to

Y

X

1

2

3

4

Figure A.5: 2R-2P Mechanism with Perpendicular Prismatic Joints
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4

Figure A.6: 2R-2P Mechanism with Parallel Prismatic Joints

the mechanism state matrix to form the augmented mechanism state matrix.
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APPENDIX B

Lower Pairs

A revolute joint, R, permits two paired elements to rotate with

respect to one another about an axis that is defined by the geometry of

the joint. Therefore, the revolute joint is a one degree-of-freedom (dof)

joint.

A prismatic joint, P , allows two paired elements to slide with respect

to each other along an axis defined by the geometry of the joint.

Similar to a revolute joint the prismatic joint is a one-dof joint. In

imposes five constraints on the paired elements. The prismatic joint is

also called a sliding pair.

A cylindric joint, C, permits a rotation about an independent

translation along an axis defined by the geometry of the joint.

Therefore, the cylindric joint is a two dof joint.

A helical joint, H , allows two paired elements to rotated about and

translate along an axis defined by the geometry of the joint. However,

the translation is related to the rotation by the pitch of the joint.

Hence, the helical joint is a one-dof joint.

A spherical joint, S, allows one element to rotate freely with respect

to the other about the center of a sphere. It is a ball-and-socket joint

that permits no translations between the paired elements. Hence, the
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spherical joint is a three-dof joint.

A plane pair, E, permits two translational degrees of freedom on a

plane and a rotation degree of freedom about an axis that is normal to

the plane of contact. Hence, the plane pair is a three-dof joint.
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