




3

transported via pipelines and increasingly in the form of liquefied natural gas

(LNG) through tanks. Figure 1.1 describes a simplified process of how natural gas is

transported from well-head to the end user.

Figure 1.1: Natural gas industry [1]

In this work, we are concerned with the distribution section of the natural

gas industry, seen in Figure 1.1. A local gas distribution company (LDC) must

ensure that it meets the daily gas requirements of its consumers. To achieve this

goal successfully and to ensure customer satisfaction, LDCs have to forecast the

daily natural gas needs of their consumers. Forecasting daily natural gas

consumption accurately can be challenging. In winter, demand for natural gas

increases because natural gas is largely used to heat space in homes and businesses,
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while in summer, the demand for natural gas decreases as consumers use it mostly

for the other domestic and industrial purposes including electric power

generation [4]. Low temperature thresholds are not directly related to an LDCs gas

demand forecasting, but knowledge of extreme low temperatures is important to

ensure that an LDC has enough capacity to meet customer demands when extreme

low temperatures are experienced.

In February 2011, New Mexico, Arizona, and Texas experienced unusually

cold and windy weather, which resulted in natural gas production declines [5].

These declines ultimately resulted in natural gas curtailments or outages to more

than 50,000 customers in these three states. The Federal Energy Regulatory

Commission (FERC) initiated an inquiry into the Southwest outages and service

disruptions to explore solutions that can mitigate future natural gas outages.

1.2 Problem Statement

In this thesis, we estimate the threshold defining an extreme cold temperature event

that may be expected to occur, on average, once in N years for different weather

stations in the United States using a non-parametric statistical method called kernel

density estimation.

A local gas distribution company (LDC) is responsible for delivering natural



5

gas to its customers daily. Since natural gas is difficult to store, there is a demand

for accurate forecasting models. If an LDC purchases too much or too little natural

gas, there are high costs associated with these errors in forecasting gas demand.

Extreme low-temperature events are not directly related to a utility’s daily gas

demand forecasting, but extreme low-temperature data is important for

infrastructure capacity planning and for supply planning to ensure that the utility

has sufficient capacity to supply gas to its customers during an extreme

low-temperature event. We estimate the threshold defining an extreme cold

temperature event that may be expected to occur, on average, once in N years for

different weather stations in the United States, where N can be determined by a gas

utility depending on the rarity of the cold event they need to analyze. In this thesis,

we assume stationarity of weather and climate. We also assume that daily

temperature is independent of neighboring days, but not identically distributed.

Let Xt be the random variable describing the average daily wind-adjusted

temperature on a day, where the domain of the random variable is the set of all

days in the entire historical record, and the range is the set of all possible

temperatures. For our experiment, we use n years, then t is the index of days {1, 2,

3, ..., n× 365}. We estimate a threshold temperature, Tth, with the property that

the event Xt ≤ Tth, may be expected to occur, on average, once in N years.

Henceforth, we will refer to this threshold, Tth, as “one-in-N low temperature
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threshold.” We will consider N = 0.25, 0.5, 1, 2, 5, 10, 20, and 30. Below, we will

discuss the properties of the one-in-N low temperature threshold.

We define an indicator function, fc(Xt), whose domain is temperature (Xt),

and the range is the set {0, 1}. The rule is

fc(Xt) =


1 if Xt ≤ Tth ,

0 otherwise .

(1.1)

Our experiment is to count the number of times the temperature (Xt) falls below

the threshold temperature (Tth). Our outcome is the independent random variable,

count, which is the count of the number of extreme low temperature events in the

n-year period.

count =
n×365∑
t=1

fc(Xt) . (1.2)

Hence, if we perform several experiments with different sets of n years of data, the

expected value of the count should be

E (count) = E

(n×365∑
t=1

fc(Xt)

)
=

n

N
. (1.3)

For example, if we had n = 300 years and N = 30 years, then if we perform several

experiments of counting the number of times the temperature falls below the
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one-in-N low temperature threshold, each with 300 years of data, we should get

E (count) = 10.

We have identified and described the problem of estimating the one-in-N low

temperature threshold in this section and explained the property of the one-in-N

low temperature threshold. We now introduce our proposed solution.

1.3 Proposed Solution

We organize this section starting with a brief overview of the data used for this

thesis, followed by identification of the current methods, and a brief description of

the proposed solution. At the end of this section, the reader will appreciate the

proposed solution compared to the current methods.

The data set considered in this thesis consists of 264 weather stations

associated with Marquette University’s partner LDCs across the United States.

Analysis and tests will be performed on weather stations with more than 30 years of

data because of the values of N = 0.25, 0.5, 1, 2, 5, 10, 20, and 30 selected for

experimentation in this thesis. For each year, we consider only typical winter data

for our evaluation, which we explain in Chapter 3. In this thesis, we will discuss the

results for only three weather stations chosen for their unique weather patterns as

explained in Chapter 4. These weather stations are Milwaukee, WI (KMKE);
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Albuquerque, NM (KABQ); and Anchorage, AK (PANC). KMKE depicts a typical

weather pattern, while the other two weather stations reveal unexpected weather

patterns.

Currently, probability density functions for several distributions are being

used to fit the winter weather data to find the one-in-N year low temperature

threshold. They are the normal, Weibull, Gumbel, generalized extreme value,

logistic, Student t-location-scale, and a distribution created by a weighted variance

of the aforementioned distributions. In Chapter 2, we will explain some of these

distributions theoretically and discuss the results from the survey of literature

conducted in research areas dealing with extreme rare conditions.

Since we are interested in the low temperature threshold, we would like to

find a cumulative density function that best fits the left tail of the winter data.

Some of the currently used distributions fit the winter data better than some of the

other distributions. For a visual understanding of how well a distribution fits the

data, we have fit the probability density function of four distributions and compared

them to the histogram of temperature data, as shown in Figure 1.2. The goodness of

fit is measured using an error score (RMSE), which will be explained in Chapter 3.

A lower RMSE value corresponds to a better fit. If we compare the fit of the

probability density functions of the three distributions currently used in the GasDay

lab, we see that we were getting good estimates of the one-in-N low temperature
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Figure 1.2: Daily temperature for typical winter days for every year in the data set

thresholds. However, there is always room for improvement in science. We found

that we could improve these estimates for the one-in-N low temperature threshold

by using a non-parametric distribution called the kernel density estimation method.

Since the kernel density estimation method makes no prior assumptions that the

data comes from a specific distribution, it can fit the weather data well, especially in

the left tail. Hence, this thesis will estimate the one-in-N low temperature threshold
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for different weather stations in the United States using the non-parametric

distribution method, kernel density estimation. Extensive preliminary tests were

conducted comparing the results obtained from the different distributions, and the

conclusion was reached that the kernel density estimation method provides a better

estimate compared to the other currently used distributions.

To summarize the preliminary analysis of Figure 1.2, the figure displays the

generalized extreme value distribution, the normal distribution, the

variance-weighted composite distribution, and the kernel density estimate. Visually,

a good fit would be how closely the probability density function follows the data,

determined by a low RMSE value. In Chapter 3, we will explain what we define as

typical winter days and the other ways in which we prepared the data for this

thesis. We will also re-introduce Figure 1.2 in Chapter 3 so that the reader can

better understand this graph.

1.4 Thesis Outline

This chapter provides the reader with a brief overview of the thesis. We explain the

motivation of the thesis and provide an informal explanation of the problem we are

trying to solve. Then we provide a formal problem statement complete with

equations. An introduction to the possible solution naturally follows as the next

section, where we provide the reader with the data used and the methods currently
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used to solve this problem. Finally, we introduce the nonparametric distribution

method called the kernel density estimation method. We glance at the results

obtained from the one-in-N algorithm and visually determine that it was an

improvement over the current methods. We conclude this chapter by promising the

reader more details on the one-in-N algorithm and results.

The remainder of the thesis is organized as follows.

Chapter 2 of this thesis provides a summary of the literature surveyed across

disciplines to develop the one-in-N algorithm. This literature survey investigates

other methods used by scientists to model the tails of distributions. We explain

some theory of the statistical distributions used in this thesis and provide additional

references for the reader’s benefit. This information prepares the reader for the

explanation of the method in Chapter 3.

Chapter 3 describes the mathematical model used to estimate the one-in-N

year low temperature threshold. We give a detailed, step-by-step development of the

kernel density estimation method algorithm. We first explain how the the data is

prepared and explain what a “winter” means in this thesis. We provide the reader

with the output of the algorithm and explain how the one-in-N method is

developed. We also provide a high-level summary of the entire method to aid in

replication of the work.
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Chapter 4 provides an evaluation of these results based on extensive tests.

We discuss the results obtained from the one-in-N algorithm for Milwaukee, WI

(KMKE), Albuquerque, NM (KABQ), and Anchorage, AK (PANC). We describe

the test plan used to show that the one-in-N algorithm is an improvement over the

other methods, and present the results of the test plan. We hope that these results

will encourage additional research in this subject.

This thesis concludes in Chapter 5 with a summary of method and results, as

well as suggestions for future research work that originated from this thesis. We also

identify some bias in the kernel density estimation method and how it is mitigated

in this thesis. The future work is subdivided into two categories: Extension of work

and Hypotheses to be explored.
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CHAPTER 2

Literature Survey on the Likelihood of Rare Events and Statistical

Theory

Extreme events rarely occur and are found in the tails of a statistical

distribution. Applications of statistical methods in the estimation of extreme events

are seen in fields including meteorology, actuarial sciences, social sciences,

economics, business, and engineering. A survey of literature from some of these

disciplines reveals a few techniques that may be used to estimate extreme

low-temperature events, which are the subject of this thesis.

2.1 Survey of Rare Events in Meteorology, Ecology, and the Nuclear

Power Industry

In meteorology, a group of climate scientists, social scientists, and biologists met to

discuss the impact of extreme weather and climate events and attempted to discern

whether these events were changing in frequency or intensity [2]. Together, they

published a series of five articles to discuss these effects. Meehl [2] introduces the

concept of extreme events and how a change in the mean and variance of a climate

variable affects the frequency of occurrence of these extreme events. Figures 2.1, 2.2,
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and 2.3 represent a normal distribution of a climate variable [2]. The shaded areas

located in the tails of the distributions depict the extreme events that occur

infrequently. Figure 2.1 shows that an increase in the mean affects the frequency of

the extreme events; the frequency of the right-tailed extreme events increased; and

those of the left-tailed extreme events decreased. Figure 2.2 shows that an increase

in the variance increases the frequency of the extreme events. Figure 2.3 shows that

a change in both the mean and the variance alters the occurrence of extreme events.

Meehl further states that it is possible to estimate changes in extremes that occur

once every 10− 100 years using extreme value distributions such as the Gumbel

distribution. However, in Chapter 3, we will see that the Gumbel distribution, a

special case of the generalized extreme value distribution, does not provide a good

fit for the left tail of the daily minimum temperatures compared to the kernel

density estimation method.
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Figure 2.1: Schematic diagram depicting how a change in mean can affect extreme

events [2]

Figure 2.2: Schematic diagram depicting how a change in variance can affect extreme

events [2]

Mearns [6] studies the likelihood of extreme high-temperature events and

their effect on agriculture in or near the U.S. Corn Belt, including weather stations

in the states of Iowa, North Dakota, and Indiana. With her expertise in

meteorology, she expects that changes in the means of meteorological variables (e.g.,
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Figure 2.3: Schematic diagram depicting how a change in mean and variance can

affect extreme events [2]

temperature) will have adverse effects on agricultural production. She studies the

probabilities of the following events:

1. Maximum temperature on a given day in July ≥ threshold temperature (day

event)

2. At least one run in July consisting of at least five consecutive days ≥

threshold temperature (run event)

3. At least five days in July (not necessarily consecutive) ≥ threshold

temperature (total event)



17

The threshold temperature is set to 95 ◦Fahrenheit because it represents the

approximate temperature that is reported to be harmful to the corn crop. Her study

analyzes extreme high-temperature events for the month of July, as this is the

month when a particularly temperature-sensitive agricultural process takes place.

The run event (described as event 2 above) is particularly important, as it is argued

theoretically to be more harmful to the crop. Her study analyzes how a change in

the mean, variance, and autocorrelation of the daily maximum time series data

affects the probabilities of the aforementioned events. For this analysis, she has to

develop a probabilistic model that simulates the daily maximum time series data.

To develop this model, she needs to obtain several characteristics of the time series

data such as the shape of the distribution, measure of central tendency (e.g., the

mean), measure of dispersion (e.g., the variance), and a measure of the dependence

among the data points (e.g., the autocorrelation function). She uses a normal

probability density function to obtain the sample mean, sample variance, and

sample first-order autocorrelation from the high-temperature time series data for

July. The available sample data ranges from 31 to 69 years. She assumes that the

daily maximum time series data is an approximate realization from a first-order

autoregressive [denoted AR(1)] process or a “Markov” process, which assumes that

the data comes from a normal probability density function. She simulates 500 years

of July daily maximum time series data using the AR(1) model. Then she varies the
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parameters in six different ways to observe how these different changes affect the

probabilities of the three extreme events listed above.

The conclusions from her experiments support her hypothesis that a small

change in the mean maximum temperature causes shifts of practical significance in

the probabilities of extreme high-temperature events. For example, a 3◦F increase in

the mean, holding the variance and autocorrelation constant, causes the likelihood

of occurrence of the run event to be about three times greater than that under the

current climate at Des Moines, and the likelihood increases to as much as six times

greater when the variance and autocorrelation are increased as well. For the

purpose of this study, Mearns’ assumption that the daily maximum temperature

time series data follows a normal distribution is a good approximation, as it is

computationally less intensive to generate synthetic time series data, and it also

serves the purpose of trying to analyze the impact that a change in mean maximum

temperature has on the likelihood of the three extreme events. However, in this

thesis, we are trying to estimate the threshold temperature for the event that the

minimum temperature on a winter day is less than or equal to the threshold

temperature, which may be expected to occur, on average, one-in-N years. For this

purpose, the normal probability density function and hence, the AR(1) model, is

not a good approximation for the daily minimum temperature time series data, as it

does not model the tails of the data (where the extreme temperatures are located)
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very accurately. As a result, much valuable information about the extreme

temperatures is lost. The kernel density estimation method is found to provide a

better fit for extreme minimum temperatures.

In his paper considering modeling extremes in projections of future climate

change, Gerald Meehl [7] summarizes the knowledge of possible future changes in

the statistical aspects of weather and climate extremes based on existing models

published in a recognized meteorological report. He discusses several climate

variables including temperature, precipitation, extratropical storms, El Niño

Southern Oscillation (ENSO), and tropical cyclones. We will only discuss the

section concerning temperature. Meehl’s review of existing climate models leads him

to conclude that the weather and climate extremes in a future climate are affected

by an increase of greenhouse gases as theoretically expected by meteorologists. For

example, an increase in mean temperatures results in higher frequencies of extreme

high temperatures and lesser frequencies of extreme low temperatures. Another

conclusion is that the diurnal temperature range is reduced due to the observation

of a dramatic increase in nighttime low temperatures compared to the daytime high

temperatures in many regions. A third observation about the change in temperature

extremes is from a decreased daily variability of temperature in winter and an

increased variability in summer in the Northern hemisphere. However, the final

conclusion is not necessarily one that we have observed with actual winter daily
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average temperatures. In Albuquerque, NM, we have observed that there is more

volatility in the frequency of occurrence of the minimum extreme temperatures.

This observation will be discussed further in Chapter 4. Nonetheless, in general,

Meehl’s conclusions provide an interesting point of view that suggests possible areas

for future research based on work reported in this thesis.

Alexander Gershunov [8] analyzes the influence of El Niño Southern

Oscillations (ENSO) on intraseasonal extreme rainfall and temperature frequencies

in the United States. We will only discuss the results obtained for temperature.

Gershunov uses a compositing technique that he developed [8] to demonstrate ENSO

sensitivity in the extreme ranges of a temperature probability density function. He

conducted his experiment on 168 weather stations in the contiguous United States

using six decades of daily data. He found that ENSO-based predictability is

potentially useful to predict extreme warm temperature frequency in the southern

and eastern United States during El Niño winters and in the Midwest during the

strongest events. Extreme warm temperature frequency is very well predicted by La

Niña winters in southern United States centered on Texas. However, extreme cold

temperature frequency predictability is mostly weak and inconsistent, particularly

during strong ENSO events. However, during weaker El Niño winters, this

predictability improves in the northern United States, along the West Coast, and in

the Southeast. Weaker La Niña winters improve extreme cold temperature
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frequency predictability in the Midwest. This paper also suggests that El Niño and

La Niña regional specifications are not opposites of each other. The conclusions

from Gershunov’s work is useful for future work on extreme cold temperature trends

in the United States and how ENSO sensitivity affects the winters.

The paper by Qiqi Lu et al. [9] informs our analysis using the kernel density

estimation method. Lu discusses general trends in weather over a few centuries of

data. It was written as an improvement to an existing method. Lu and her team

found a simple but effective way to handle changepoints of weather stations, when

there is a change of station location, station instrument, or station shelter.

Observations between changepoints are termed as a “regime” [10]. She uses a simple

linear regression model to fit the weather data and uses an ordinary least squares

method to estimate the trend parameters. She then uses a nonparametric local

averaging smoother in conjunction with geographic information system software to

plot the trends on contour maps. Lu analyzes weather by month to estimate the

weather trends. She encountered missing observations within the weather data from

all the stations. The missing weather data was infilled using a model-based

expectation maximization algorithm [9]. An interesting conclusion from this

research is that the variability of the estimated trends is the greatest during winter

and smallest during fall and summer. This paper also shows that the winters in the

U.S. show the most warming compared to the other seasons. Specifically, there is
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warming in the northern Midwest and the Four Corners region, the Dakotas,

southern Arizona, and southern California. In this thesis, we look for similar trends

in the weather.

Paul Knappenberger [11] discusses the daily temperature trends in the

United States during the 20th century. He discovers three different periods of

change: warming from 1900− 1940, cooling from 1940− 1969, and warming from

1970− 1997. From his analysis of the temperature data, he finds higher extreme

maxima in the first period, lower extreme minima in the second period, and

warming of the extreme minima in the third period. He concludes that the warming

of the coldest days of the year in this last period (a period of the greatest human

alterations on the climate) is evidence of temperature moderation. He also points

out that the high temperatures in this period remain comparatively unchanged. For

this study, he uses daily temperature data because most extreme events occur on a

fine temporal scale, so using monthly data may overlook many important aspects of

how the change took place. In this thesis, we use daily temperature for the

aforementioned reason and because we have acquired good quality daily temperature

data in the GasDay lab from sources such as the National Oceanic and Atmospheric

Administration, NOAA (http://weather.noaa.gov/weather/WI_cc_us.html),

Schneider Electric (http://www.schneider-electric.com/), and the Agricultural

Weather Information Service, AWIS
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(http://www.awis.com/Forecast_services/About_Forecast_Services.htm).

One could use the United States Historical Climatology Network (HCN) [12] as a

source of data, although data quality and control is not as strict as it is from the

other sites. A constant challenge in obtaining clean data is that the reduction of

data quality and control is associated with time of observation changes, station

changepoints (location/instrument), and urbanization. Another source of data

quality reduction to note is that in the 1980’s, liquid-in-glass thermometers were

replaced by thermistor-based temperature observing systems. If Knappenberger’s

data was missing fewer than ten observations, he interpolated the missing values as

the linear average between the temperature on the previous and following days. If

more than ten observations were missing, he dropped that year of data. In this

thesis, we do not want to reduce further the quality of data, so we drop the missing

observations. He also makes a point about urbanization in his paper. Urbanization

increases night-time temperatures more than day-time temperatures, leading to

apparent increasing trends in minimum temperatures. D. R. Easterling [13] also

looks at extreme climate trends worldwide. He observes that in some areas of the

world, increases in extreme events are apparent, but in others, there seems to be a

decline. This paper makes important contributions regarding the trends in

temperature in the U.S., but the data set only extends until 1997. On February 2nd,

2011, both Milwaukee and Albuquerque experienced an extreme cold event, which

might be evidence that the climate is not tending towards moderation anymore, as
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suggested by Knappenberger. Further analysis of this event can be found in

Chapter 4 of this thesis. Easterling [13] suggests that an increased ability to

monitor and detect multidecadal variations and trends is critical to detect changes

in trends and to understand their origins.

The research conducted by Rebetez [14] for two weather stations in

Switzerland led to insightful findings regarding temperature variability in Europe.

He found that warmer temperatures are attributed to a decrease in day-to-day

temperature variability (measured using intra-monthly standard deviation of

temperature), particularly for minimum temperatures and winter. He also found

that a negative correlation exists between the day-to-day variability and skewness of

the temperature distribution. This means that a reduction in the day-to-day

variability occurs through the loss of the coldest extremes in the monthly

distribution, particularly the coldest extremes in winter. He also attributes a

warming climate to the reduction in diurnal temperature range, i.e., a reduced

warming of daytime temperature compared to nighttime temperature. This

observation is particularly prevalent at lower elevations. Rebetez discusses the effect

of a meteorological phenomenon called the North Atlantic Oscillation (NAO) index,

which is the dominant mode of winter climate variability in northern Asia and in

the North Atlantic region spanning North America and Europe. The NAO is an

atmospheric mass that seesaws between the subtropical high and polar low. This
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index varies over the years, but may remain in one phase for several years at a time.

A positive NAO index indicates a subtropical high pressure center and a strong

Icelandic low, leading to cold and dry winters in northern Canada and Greenland

and mild and wet winters in the eastern United States [15]. Rebetez observed that

higher NAO index values are associated with an increase in temperature and a

decrease in day-to-day temperature variability. This is consistent with the fact that

these high pressures are linked to high NAO values and relatively stable weather in

winter. In this thesis, we are concerned with estimating the cold event that falls in

the coldest extremes of the winter distribution. In future research, we will be

interested to see if these extreme cold events change over time. It also may be

interesting to evaluate the effect of the NAO index and elevation on the extreme

cold temperatures. However, in this research, we observe that the temperature

variability decreases in the summer and is higher in winter. Hence, it is important

to define the window of days to be narrow enough to avoid the low variability and

broad enough to have a significant number of data points as we discuss in Chapter 3.

A study of the trends in time-varying percentiles of daily minimum

temperature over North America reveals a unique warming pattern of the daily

minimum temperature [16]. In this study, Robeson analyzes percentiles ranging

from the 5th to the 95th in 5−percentile increments that were estimated for each

month of every year using linear interpolation. Then linear trends were estimated
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using a least-squares regression followed by interpolation using splines. Cluster

analysis was used to identify regions with homogeneous percentile trends over the

year. An average-linkage method was used to identify larger homogeneous clusters.

High quality data was used spanning the years 1948− 2000 with less than 20% of

missing data.

He found three principal spatial patterns for the daily minimum

temperature, with two of the three patterns that were dominant (covered 95% of

North America). One cluster is found in eastern North America and shows

moderate warming trends during February and March, but very weak trends during

the other months. Another cluster is found in western North America and shows

intense warming during January through April. However, the lower tail of the daily

minimum temperature frequency distribution had the strongest warming for the

lower percentiles from January through March. He also found that during the other

parts of the year, trends in daily minimum temperature are mostly positive, with

weak cooling occurring during October and November. The last cluster, found in a

small part of northeastern Canada, has strong to moderate cooling during the colder

months and weak warming in warmer months. These trends in daily air

temperature percentiles emphasize the importance of late winter and spring in the

changing climate of North America. However, the data set used in this study only

spanned until the year 2000. The year 2011 had some unusually cold weather on
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February 2nd (discussed in Chapter 4), which may impact the results of this study.

From our analysis in this thesis, Albuquerque, NM, seems to fall within the first

cluster, the one with moderate warming, which is in accordance with our findings

from the results charts in Chapter 4. Further research into the results reported in

this thesis may be useful in recognizing trends similar to those in Robeson’s work.

In Great Britain, F. K. Lyness [17] was interested in being able to meet the

gas demands for a very cold winter that may occur with a frequency of once in fifty

years. He breaks down the problem into two parts:

1. what constitutes 1-in-50 winter conditions?

2. what is the demand for gas in these conditions?

We will only discuss the first part of the problem here. Lyness uses a span of at

least 51 winters to deduce the 1-in-50 winter conditions. He realizes that making

estimates from a sample size of 51 involves a large sampling error, but a longer

historical span of data either may not be available, would raise the problem of

climatic trends, or both. He performed tests of randomness and found that although

climatic changes can be detected, they follow no predictable pattern and are very

small compared to the seemingly random variation from winter to winter. Another

problem is that meteorologists are unclear about how to include climatic effects in

the process of making estimates. Since Lyness intends to update his estimates every
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5− 10 winters, including climatic effects may be unnecessary. He also realizes that

the results he obtained for the 1-in-50 winter estimates are sensitive to particularly

cold or mild winters and the size of the sample. His justification is that we cannot

know the “true” 1-in-50 value and that he is attempting to solve a technical

problem practically. His aim was to find a practical and consistent approach for all

the natural gas regions in Great Britain. Our aim is to find a distribution that best

models the left (cold) tails of the daily winter temperature distribution, while being

practical to use. The method Lyness uses is unique. He first chooses a series of

temperature threshold values at random. Then the accumulated temperature below

each threshold is calculated for each of the 51 winters. He then fits a probability

distribution to the 51 accumulated temperatures and finds the 1 in 50 value from

the distribution. He found that a normal distribution fitted to the cube-root of

accumulated temperature fits the data well. However, the existence of zeros in the

data causes problems, so they were dropped from the sample. In this thesis, we can

provide a possible improvement to these estimates as we do not need to eliminate

zero values of temperature. Also, the kernel density nonparametric distribution

might be a better solution compared to the cube-root normal distribution as it does

not make any parametric assumptions to the data.

Sebastian Jaimungal [18] investigates the use of kernel-based copula

processes (KCPs) to analyze multiple time-series and to model interdependency
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across multiple time-series. A copula function is a joint distribution function of

uniform random variables. He applies the theory to daily maximum temperature

series from weather stations across the United States. He successfully modeled the

heteroskedasticity of the individual temperature changes and discovered

interdependencies among different weather stations. He illustrated the superior

modeling power of KCPs by comparing the models obtained from KCPs with those

from a Gaussian copula process. He points out that KCPs handle missing data

naturally. In his application, he detrended the temperature data by subtracting a

customized sinusoidal seasonal trend, based on a least-square criterion, from the

data. We use a Fourier series process to remove seasonality of the temperature data

and focus on its stochastic nature. He then analyzes the second moment

autocorrelation function (autocorrelation of the square of the data). This second

moment autocorrelation function implies the rate of fluctuation, or volatility of the

temperature data. Analyzing the second and the first moment autocorrelation

functions, he developed a non-stationary kernel function. From this paper, we are

further convinced that using kernel density function is a good solution to modeling

the cold tail of the temperature probability density function.

From the ecological society, Philip Dixon [19] attempts to improve the

precision of estimates of the frequency of rare events. The probability of a rare event

is estimated as the number of times the event occurs divided by the total sample
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size. However, this estimate has very low precision, and the coefficient of variation

(cv) of this estimate can exceed 300% for sample sizes smaller than 100 observations.

The coefficient of variation is the normalized measure of dispersion of a probability

distribution. If σ is the sample standard deviation, and µ is the sample mean,

cv =
σ

| µ |
; µ 6= 0 . (2.1)

To reduce the cv to below 10%, one should obtain sample sizes of 103 − 104

observations. He explains that since such a large number of observations are not

always available, auxiliary data should be used to improve the precision of the

estimate. He describes four approaches for creating auxiliary data: (1) Bayesian

analysis that includes prior information about the probability; (2) Stratification; (3)

regression models; (4) using aggregated data collected at larger spatial or temporal

scales. He applied these methods to data on the probability of capture of vespulid

wasps by the insectivorous plant Darlingtonia californica. He found that all four

methods increased the precision of the estimate compared to the simple

frequency-based estimate. In this thesis, we do not use auxiliary data in our

estimation process. However, future research in auxiliary data for temperature can

be analyzed to determine if it improves the estimates. Then we may be able to

increase the amount of data we have to about a century.

Another application of statistical methods is in system reliability. Reliability
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theory is used to estimate a safety circuit failure of a nuclear reactor by Babik [20].

A reactor safety circuit is a complex device whose function is to trip a nuclear

reactor when it develops a dangerous condition. Shutting down a faulty reactor is

the purpose of the safety circuit, but it can fail to perform this task. Babik derives

formulae for the frequency of occurrence of safe and unsafe circuit failures using

reliability theory. However, reliability theory is used to determine the probability of

encountering a failure [21]. The binary nature of whether a system fails does not

exactly meet the requirements for estimating the extreme low-temperature events,

since the latter is not binary. This problem can be overcome by determining a

threshold value below which is considered an extreme low-temperature event.

However, this solution does not exactly solve the problem of finding the extreme

low-temperature event with a probability of one-in-N years, but in this thesis we

will use a similar binary method to test our one-in-N algorithm.

The United States Department of Agriculture created a “Plant Hardiness

Zone Map” which displays the average annual minimum temperature in the United

States, Mexico, and Canada [22]. This average annual minimum temperature is

based on at least 10 years of temperature data. Cathey used weather data from

8000 weather stations to create this map. As an extension of the work presented in

this thesis, we could use a similar mapping technique to display the extreme
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low-temperature threshold in the United States to aid in the visual analysis of the

extreme cold temperature trends.

In conclusion, a survey of literature across several disciplines has uncovered

different strategies to help estimate the extreme low-temperature event. In the next

section, we will discuss statistical theory for the distributions used in this thesis.

2.2 Parametric and Nonparametric Statistical Theory

In this section, we will discuss the statistical theory for the distributions used in this

thesis. These statistical distributions include the Gaussian (normal), the log normal,

the generalized extreme value, and the kernel density estimation method. We will

also provide a brief definition of probability density functions and cumulative

distribution functions.

2.2.1 Probability Density Functions

A function with values f(X), defined over the set of all real numbers, is called a

probability density function (pdf) [23] of the continuous random variable X if

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx for any real constants a and b. (2.2)
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A probability density function, integrated from a to b (with a ≤ b), gives the

probability that the corresponding random variable will have a value in the interval

from a to b. Also, the value of the probability density function of X at a is zero in

the case of continuous random variables. The total area (−∞ < x <∞) under the

probability density function curve is equal to 1. Figure 2.4 is an example of a

probability density function. Next, we will define cumulative distribution functions

and provide an example graph.

2.2.2 Cumulative Distribution Functions

If X is a continuous random variable, and the value of its probability density at t is

f(t), then the cumulative distribution function (cdf) [23] of X is

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt for −∞ < x <∞ . (2.3)

One important property of a cumulative distribution function is F(∞) = 1. An

example of a cumulative distribution function is shown in Figure 2.5.
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Figure 2.4: Example of a probability density function
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Figure 2.5: Example of a cumulative distribution function
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2.2.3 Gaussian (Normal) Distribution

A random variable X with mean µ and standard deviation σ has a normal

distribution if its probability density function is

f(x |µ, σ) =
1

σ
√

2π
e−

1
2(x−µσ )

2

, for −∞ < x <∞ , where σ > 0. (2.4)

The normal distribution was first studied by Abraham de Moivre, Pierre Laplace,

and Karl Gauss [24]. From Figure 2.6, we see that the probability density function

of the normal distribution looks like a cross section of a bell and is sometimes

referred to as a bell curve. Figure 2.7 depicts the cumulative density function of a

normal distribution function. We will perform a comparative analysis of the

threshold temperature obtained using the normal cumulative distribution function

with the one obtained using the kernel density estimation method in Chapter 4.

2.2.4 Log Normal Distribution

The normal and log normal distributions are closely related [23]. A random variable

X with mean m and standard deviation s has a log normal distribution as shown in

Figure 2.8 if its probability density function is

f(x |m, s) =
1

sx
√

2π
e−

1
2( ln(x)−m

s )
2

, for 0 < x <∞ . (2.5)
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Figure 2.6: Gaussian (normal) probability density function



38

Figure 2.7: Gaussian (normal) cumulative distribution function
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Then ln(x) is distributed normally with mean µ and standard deviation σ as shown,

Figure 2.8: Log normal probability density function

µ = e
(m+s2)

2 ;

σ2 = e(2m+s2)(es
2 − 1) . (2.6)
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Figure 2.9: Log normal cumulative distribution function
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From Figure 2.8, we see that the left tail is finite and non-negative. One LDC uses a

log normal distribution in an attempt to fit the cold tail of the winter temperature

data. A graph of the cumulative distribution function of the log normal distribution

is displayed in Figure 2.9.

2.2.5 Generalized Extreme Value Distribution

A random variable X with shape parameter ξ, location parameter µ, and scale

parameter σ has a generalized extreme value distribution if its probability density

function is [25]

f(x|ξ, µ, σ) =



1
σ

{
1 + ξ(x−µ

σ
)
}− 1

ξ
−1
e−(1+ξ

(x−µ)
σ

)
− 1
ξ

if −∞ < x≤ µ− σ
ξ

for ξ < 0;

and if µ− σ
ξ
≤ x <∞ for ξ > 0;

1
σ
e(−

(x−µ)
σ
−e−

(x−µ)
σ ) if −∞ ≤ x <∞ for ξ > 0.

(2.7)

The generalized extreme value distribution was first introduced by Jenkinson [25].

The shape parameter ξ (K in Figures 2.10 and 2.11) may be used to model a wide

range of tail behavior. The case ξ = 0 (Type I) depicts an exponentially decreasing

tail in the probability density function. An example of this distribution is the

Gumbel distribution as shown in Figure 2.10 as Type I. The case ξ > 0 (Type II)

corresponds to a long-tail in the probability density function. An example of this
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Figure 2.10: Three types of the generalized extreme value probability density function

distribution is the Fréchet distribution displayed as Type II in Figure 2.10. The case

ξ < 0 (Type III) depicts a short tail in the probability density function because it

has a finite upper endpoint. An example of this distribution is the Weibull

distribution shown in Figure 2.10 as Type III. The associated cumulative

distribution functions for all three types of the generalized extreme value

distribution can be found in Figure 2.11. The Weibull distribution has a longer left
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Figure 2.11: Three types of the generalized extreme value cumulative distribution

function

tail, which has been used to model the cold tail of the winter temperature data to

obtain the one-in-N threshold temperature (Chapters 3 and 4). We will discuss the

analysis of the generalized extreme value distribution further in Chapter 4.

Applications of the generalized extreme value distribution can be found in Paul

Embrechts’ book on Modelling Extremal Events [26]. In the next section, we will

explain some theory of the kernel density estimation method.
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2.2.6 Kernel Density Estimation

A probability density function for independent and identically distributed random

variables X can be estimated using the kernel density estimation method [3]

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.8)

where K(·) is a kernel function, h > 0 is a smoothing parameter called the

bandwidth, and n is the sample size. Table 2.1 displays a few of the commonly used

Kernels. I(...) corresponds to the indicator function or a characteristic function

defined on a set X that indicates membership of an element in a subset A of X. For

example, the uniform kernel assigns a weight of 1 for each observation that falls into

the interval [x− h, x+ h) and a weight of 0 for all observations outside this interval.

In this thesis, we use the Gaussian kernel function.

The bandwidth (window parameter) h controls the smoothness of the

probability density function estimate. Hence, it is crucial to choose an appropriate

bandwidth. On one hand, if the bandwidth is too small, the result is a crude

estimate of the probability density function. On the other hand, of the bandwidth is

too large, then we get an overly smoothed estimate of the probability density

function. In this thesis, we will use Silverman’s rule of thumb [3] to estimate a
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Table 2.1: Kernel Functions

Kernel K(u)

Uniform 1
2
I(|u| ≤ 1)

Epanechnikov 3
4
(1− u2)I(|u| ≤ 1)

Quartic (Biweight) 15
16

(1− u2)2I(|u| ≤ 1)

Gaussian (Normal) 1√
2π
e(−

1
2
u2)

practical bandwidth. This window parameter is optimal for a normal distribution.

If σ is the calculated standard deviation, and n is the total number of points in the

data set, then the bandwidth is

h = σ

(
4

3n

) 1
5

. (2.9)

From Figure 2.12, we can gain insight as to how the kernel density

estimation method works [3]. There is a kernel function centered at each of the

observations. At a given x, we find the probability density function estimate by

vertically summing over the kernel “bumps” [3]. This explanation also helps

understand how varying the bandwidth changes the appearance of the bumps and

the appearance of their sum.

Figures 2.13 and 2.14 display the probability density function and cumulative
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Figure 2.12: Cartoon of Construction of the Kernel Density Function [3]

distribution function, respectively, for data obtained from a gamma distribution and

how closely the kernel estimation matches the original gamma distribution.

2.2.7 Variance-weighted composite distribution

In this thesis, we introduce a variance-weighted composite distribution that is being

used to fit the cold tail of the winter temperature data. The variance-weighted

composite distribution was created using a weight determined from the variance of

different distributions. In practice, this composite is created using the normal,
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Figure 2.13: Comparison between the Gamma probability density function and its

Kernel Estimate
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Figure 2.14: Comparison between the Gamma cumulative distribution function and

its Kernel Estimate
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Weibull, Gumbel, and generalized extreme value distributions (see Section 1.3,

Chapter 1). For the purpose of this thesis, we will only discuss a composite created

using the normal and generalized extreme value distributions because in Chapter 4,

we will test the one-in-N algorithm and compare the results obtained with the test

results obtained using this variance-weighted composite.

The variance-weighted composite distribution is created by first summing the

reciprocal of the variances of the two distributions. We define this sum as

WeightDivisor as shown in Equation 2.10.

WeightDivisor =
1

variancenormal
+

1

varianceGEV
. (2.10)

The reciprocal of the variances of each of the two distributions are divided by the

WeightDivisor yielding in a 1× 2 matrix

weight =
1

WeightDivisor
∗
[

1

variancenormal

1

varianceGEV

]
. (2.11)

The resulting variance-weighted composite distribution is the product of the weight

and the probability density function matrix or the cumulative distribution function

matrix of the normal and GEV distributions, in this example.

In this chapter, we have presented a review of techniques used to evaluate

extreme events in various applications, particularly in the field of meteorology. We
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also have explained statistical theory of several distributions that are being used

currently to estimate the low temperature threshold, as well as the kernel density

estimation method, which is the statistical method proposed to estimate the

one-in-N threshold temperature. In Chapter 3, we present the method used to

estimate the one-in-N coldest threshold temperature for the winter. This method is

an improvement over the existing methods used.
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CHAPTER 3

Estimating the One-in-N Coldest Temperature Threshold

In Chapter 2, we presented a review of several techniques used in evaluating

extreme events, particularly in the field of meteorology. We also provided a brief

discussion of statistical theory for the different distributions that will be used in this

thesis. Armed with this background knowledge, now we are prepared to explain

what data we used, how it was obtained, and how it was prepared for use in the

one-in-N algorithm. Part of the data preparation stage is defining what a “winter”

means in this thesis. We also will show the resulting output of the one-in-N

algorithm, so the reader has a better understanding of the one-in-N algorithm used.

Following the output section, we will explain the one-in-N algorithm. We will close

this chapter with a brief discussion summarizing the main points of this chapter.

Table 3.1 defines most notation used in this chapter.

3.1 Summary of Problem

In this section, we review the problem statement and the contribution made by this

thesis in the field of meteorology and statistics.
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Table 3.1: Common notation used in Chapter 3

Notation Description

Xt daily average wind-adjusted temperature (◦F)

n total number of years in the data set

t index of days {1, 2, 3, ..., n ∗ 365}

Tth one-in-N low temperature threshold

N 0.25, 0.5, 1, 2, 5, 10, 20, and 30 years

In this thesis, we estimate the threshold defining an extreme cold

temperature event that may be expected to occur, on average, once in N years for

different weather stations in the United States using the non-parametric statistical

method called kernel density estimation.

From Chapter 1 Section 1.2, we reiterate the assumption of stationarity of

weather and climate. Since we intend to update our estimates every year, including

climatic effects might be unnecessary [17]. We also assume that daily temperature is

independent of neighboring days, but not identically distributed. The remainder of

this section is a reproduction of Chapter 1, Section 1.2, for the reader’s convenience.

We let Xt be a random variable describing the daily average wind-adjusted

temperature on a day, where the domain of the random variable is the set of all

days in the entire historical record, and the range is the set of all possible

temperatures. For our experiment, we use n years, then t is the index of days {1, 2,
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3, ..., n× 365}. We estimate a threshold temperature, Tth, with the property that

the event Xt ≤ Tth, may be expected to occur, on average, once in N years. We call

this threshold Tth the “one-in-N low temperature threshold.” We consider N =

0.25, 0.5, 1, 2, 5, 10, 20, and 30. Below, we discuss the properties of the one-in-N

low temperature threshold.

We define an indicator function, fc(Xt), whose domain is temperature (Xt),

and whose range is the set {0, 1}. The rule is

fc(Xt) =


1 if Xt ≤ Tth ,

0 otherwise .

(3.1)

Our experiment is to count the number of times the temperature (Xt) falls below

the threshold temperature (Tth). Our outcome is the independent random variable,

count (Equation 3.2), which is the count of the number of events in an n-year period,

count =
n×365∑
t=1

fc(Xt) . (3.2)

Hence, if we perform several experiments with different sets of n years of data, the

expected value of count should be

E (count) = E

(n×365∑
t=1

fc(Xt)

)
=

n

N
. (3.3)
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For example, if we had n = 300 years and N = 30 years, then if we perform several

experiments of counting the number of times the temperature falls below the

one-in-N low temperature threshold, each with 300 years of data, we should get

E (count) = 10.

A survey of the literature in Chapter 2 reveals that there is an opportunity

to improve the low temperature threshold estimate. In the GasDay lab, we use

parametric distributions to obtain low temperature threshold estimates (Chapter 2).

In this thesis, we use the non-parametric distribution called the kernel density

estimation method to obtain the low temperature threshold estimate, Tth, that

occurs on average, once in N years. This method is not only simple to use but also

models the cold tails of the data better than the distributions currently used. The

cartoon in Figure 3.1 gives a high-level summary of steps in the construction of the

one-in-N algorithm.

3.2 Preparing the Data

In this section, we explain how the data are prepared for the one-in-N algorithm.

Figure 3.2 shows the daily average wind-adjusted temperature data. The data are

high quality historical actual daily temperatures used in Marquette University

GasDay’s forecasting models. These data are first obtained from weather vendors

including Schneider Electric (http://www.schneider-electric.com/) and the
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Figure 3.1: Steps for the one-in-N algorithm
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Agricultural Weather Information Service, AWIS

(http://www.awis.com/Forecast_services/About_Forecast_Services.htm).

Like all sources of data, the data set obtained from these vendors are missing some

observations. We patch the missing data from the National Oceanic and

Atmospheric Administration, NOAA

(http://weather.noaa.gov/weather/WI_cc_us.html), another reliable source.

Using these sources of data, we are able to get sufficiently long (at least longer than

30 years) data sets for many weather stations. However, we still do not have enough

data (often less than 10 years) for some weather stations. Another problem is that

in spite of having several reliable sources of data, the weather data still contain

missing observations. This lack of data is common in applications.

Next, we will explain the process used to clean the data.

Once we have the weather data we need, we identify the weather stations for

which we have more than 30 years of daily average temperature data. We need more

than 30 years of data because the highest value of N used in this thesis is 30. In this

thesis, we use three weather stations, Milwaukee, WI (KMKE), Albuquerque, NM

(KABQ), and Anchorage, AK (PANC) for our analysis. All three weather stations

have more than 30 years of temperature data (Table 3.2).
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Figure 3.2: Daily average wind-adjusted temperature for Milwaukee, WI (KMKE)

Table 3.2: Size of data set

Weather station Number of years in data set Year range

KMKE 67 years 1948 to 2014

KABQ 67 years 1948 to 2014

PANC 42 years 1973 to 2014

Let h be the index for hour, and let temph be the temperature at hour h.

The daily average temperature data (DailyAvgTemp) is calculated by averaging all
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24 hours of a day’s temperatures,

DailyAvgTemp =

24∑
h=1

temph

24
. (3.4)

The daily average temperature data is arranged from July 1st through June 30th for

each year of data as shown in Figure 3.2. Continuing with the data preparation, n

years of data yield an n-by-365 matrix. On leap years, we have an extra day in

February, so we drop the June 30th data point to keep consistent with having 365

days in a year. This is the most logical date to omit for this work, as it falls in the

summer, and our work is concerned with winter temperatures. Also, from

Figure 3.2, we see an interesting event in the middle of January in the year

2002− 2003 where there is an unusually high temperature for Milwaukee, WI. This

confirms findings of Rebetez [14] and Lu [9] that there is high variability of

temperature in the winter.

Continuing with data preparation, we adjust the daily average temperature

to account for the effect of wind speed. For this study, wind speed (ws, in miles per

hour) is the quantity that affects the rate at which buildings lose heat. A building

loses more heat on a windy day compared to a non-windy day at the same

temperature [27]. We calculate the Heating Degree Day (HDD65) using a reference
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temperature of 65 ◦F,

HDD65 = max (0, 65−DailyAvgTemp) . (3.5)

HDD65 is an effective measure for weather in the natural gas industry for the

estimation of natural gas consumption [28]. Since heating spaces in homes and

businesses is most likely to occur at temperatures below 65 ◦F, we use a reference

temperature of 65 ◦F. The calculation of HDD65 and reference temperature of 65 ◦F

are natural gas industry standards in the United States [28]. For daily average

temperatures less than or equal to 65 ◦F, we calculate the wind factor (wf ) [27]

wf =


152+ws

160
if ws ≤ 8;

72+ws
80

if ws > 8.

(3.6)

For daily average temperatures greater than 65 ◦F, we do not adjust for wind, so,

wf = 1. Then the wind-adjusted Heating Degree Day (HDDW65) is

HDDW65 = HDD65 ∗ wf . (3.7)

We are interested in temperature and not heating degree days in this thesis. To

adjust the daily average temperature data for the effect of wind, we calculate the
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difference between HDD65 and HDDW65 as

δHDD65 = HDD65− HDDW65 . (3.8)

Then, the daily average wind-adjusted temperature is

Xt = DailyAvgTemp + δHDD65 . (3.9)

Figure 3.3: Daily average wind-adjusted detrended temperature for Milwaukee, WI
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We then find the mean daily average wind-adjusted temperature for each day

of the years forming a vector of size one row and 365 columns. The daily average

wind-adjusted temperature means are smoothed using a Fourier series, retaining the

first five Fourier harmonics. The result is the solid green line in Figure 3.2. From

this figure, we can see that the mean is annually periodic. In Chapter 2, we referred

to a study done by Jaimungal [18] on the benefits of using kernel-based copula

processes. We need to detrend the temperature to focus on the stochastic nature of

the data. Hence, we detrend the daily average wind-adjusted temperature data

shown in Figure 3.2 by subtracting the smoothed mean from the daily temperature

data. The resulting data is defined as detrended (or deviation from normal), and

reveals the stochastic nature of the data as shown in Figure 3.3. There is more

variability in the data during the winter (located around the center of the figure)

compared to the other seasons. What do we define as “winter” in this thesis? We

want to choose a window of days that is broad enough to contain a large data set

for our analysis, but narrow enough to contain only the data with the most

variability, characteristic of winter data.

Choosing the window of days to fit the aforementioned criteria remains a

challenge. Empirically, we have seen that a window of 91 days with the coldest daily

average wind-adjusted temperatures seems to satisfy this criteria for most weather

stations. However, more research into varying the window of days is needed to
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improve the estimates of the one-in-N algorithm. We are interested in defining a

winter because the problem we are trying to solve in this thesis is estimating the

one-in-N coldest threshold temperature that occurs in winter. The window of 91

days of winter is found by sorting the smoothed mean temperature (as described

above) in ascending order, so the coldest mean temperature is the first data point in

the vector. Then we identify the following 90 coldest mean temperatures and the

corresponding days on which all 91 coldest mean temperatures occur. These coldest

91 days are consecutive because of the periodic shape of the temperature data

shown in Figure 3.2. These days would not be consecutive if there were a run of

unusually high temperatures that are not characteristic of winter weather because

then we will see a spike or a more obvious bimodal effect in the smoothed mean. We

define bimodal effect as the condition where the second derivative of the mean has

more than two inflection points. However, we did not see a bimodal winter effect in

any of our weather stations. Hence, the 91 days with the coldest detrended daily

average wind-adjusted temperatures are consecutive. The 91 days with the coldest

daily average wind-adjusted temperatures are displayed within the box

characterized with a thick black line in Figure 3.2, Figure 3.3, and Table 3.3. The

91 days with the coldest daily average wind-adjusted temperatures are wide enough

to contain a large data set for our analysis, but narrow enough to only contain the

data with the most variability, characteristic of winter data. At this point, the data

is cleaned and ready for use in the one-in-N algorithm.
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Table 3.3: “Winter” for each weather station assuming non-leap years

Weather station Start of “winter” End of “winter”

KMKE December 6 March 6

KABQ November 19 February 17

PANC December 2 March 2

In this section, we have explained how the data was prepared for use in the

one-in-N algorithm. We talked about the sources of data and demonstrated how the

data was adjusted for wind. We defined a winter as 91 days with the coldest daily

average wind-adjusted temperatures, and finally cleaned the data by removing the

missing observations. Now, we are ready to use the data in the one-in-N algorithm.

Before we discuss the method, we will take a look at the output to get a better idea

of how the method works.

3.3 Output of the One-in-N Algorithm

Now that we have prepared the data, the next step is using the data in the

algorithm. However, in this section, we will discuss the output obtained from the

one-in-N algorithm so that the reader may understand the purpose of the

algorithm. We will illustrate the output of the one-in-N algorithm using graphs. We

note that the results obtained for the 1-in-N winter estimates are sensitive to
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particularly cold or mild winters and the size of the sample. Our justification is that

we cannot know the “true” 1-in-N value, and we are attempting to solve a technical

problem practically [17].

We estimate the threshold defining an extreme cold temperature event that

may be expected to occur, on average, once in N years for different weather stations

in the United States using the non-parametric statistical method called kernel

density estimation. What is the one-in-N (where N = 30) year coldest threshold

temperature estimate for the weather station KMKE in Milwaukee? We estimate

that it is −27.1◦F using 67 years of daily average wind-adjusted temperatures in the

one-in-N algorithm.

Figure 3.4 displays a histogram of winter data defined by 91 days with the

coldest daily average wind-adjusted temperatures for the weather station KMKE.

Figure 3.5 illustrates a plot of the raw probability density function created by

scaling the histogram by the total number of days (91× n) in the data set and its

estimates from the generalized extreme value distribution, the normal distribution,

the variance-weighted composite distribution, and the kernel density estimate. It

also shows the RMSE scores in the legend for each distribution. The kernel density

estimation method has the lowest RMSE of 0.001, thus providing the best fit to the

data. The difference in the mean square errors between the kernel density estimation
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Figure 3.4: KMKE coldest 91 days × n years temperature histogram

method and each of the other distributions is statistically significant at the 5% level.

In the following section, we will explain how the RMSE value is calculated.

3.4 The One-in-N Algorithm

In this section, we explain the details of the one-in-N algorithm. From the data

preparation section (Section 3.2), we learned how to adjust the data for use in the
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Figure 3.5: KMKE coldest 91 days × n years temperature with distributions

one-in-N algorithm. In its final form, we have 91 days of coldest daily average

wind-adjusted temperature data which we defined as “winter.” In Section 3.3, we

provided a preview of the output of the one-in-N algorithm. Figure 3.1 is a cartoon

explaining the steps of the one-in-N algorithm at a high level.

First, we plot a histogram of the prepared data (for example, Figure 3.4).

The histogram gives us a general idea of the spread of the temperature data along
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with the frequency of occurrence of temperature during the n years of winter (where

n is the total number of years in the data set, and “winter” is 91 days with the

coldest daily average wind-adjusted temperatures). Hence, we have n × 91 total

data points for the one-in-N algorithm. We set the bin width of the histogram to

1◦F for ease of implementation and interpretation. Besides, a bin width of 1◦F is

broad enough to contain significant number of occurrences of temperature and

narrow enough to give the viewer an idea of the general spread of the data. We also

store this temperature frequency determined from the histogram for later use (in a

vector called histvalues). If there is no missing data, we calculate a probability

density function scale factor (pdfscalefactor) as a product of the total number of

years in the data set (n), 91 days with the coldest daily average wind-adjusted

temperatures, and the bin width of the histogram (binwidth),

pdfscalefactor = n ∗ 91 ∗ binwidth . (3.10)

Second, we estimate the probability density function for the temperature

data using the generalized extreme value distribution, the normal distribution, the

variance-weighted composite distribution, and the kernel density estimate. We store

their respective probability density function values in a vector called pdfvalues.

We need to measure how well each of these distributions model the data. To do

this, we use the pdfscalefactor to scale the histogram to a raw probability density
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function. Now, the area under the raw probability density function is equal to one.

We use distfitness as a score to evaluate the goodness of fit of each distribution.

This score is essentially the root mean square error (RMSE), calculated as

distfitness =

√√√√√length(e)∑
i=1

(e)2

length(e)
,

where e = pdfvaluesi − histvaluesi ×
1

pdfscalefactor
. (3.11)

From Equation 3.11, it follows that a lower score corresponds to a better fit to the

data. Figure 3.5 shows the distfitness (RMSE) scores in the legend for each

distribution. The value associated with the kernel density estimation method is the

lowest and statistically significant at the 5% level. In this figure, we also see the

variance-weighted composite distribution created from the normal and GEV

distributions (explained in Chapter 2, Section 2.2, Subsection 2.2.7).

Theory suggests that combining distributions sometimes provides a better

estimate of the probability density function and the cumulative distribution

function [10]. However, in this case, the ksdensity method still seems to provide a

better estimate than the variance weighted composite because it has a lower

distfitness (RMSE) score than that of the variance-weighted composite

(Figure 3.5).

Third, we want to calculate the one-in-N coldest temperature threshold.



69

From Equation 2.2 in Chapter 2, Section 2.2, Subsection 2.2.1, we know that a

probability density function, integrated from a to b (with a ≤ b), gives the

probability that the corresponding random variable will have a value in the interval

from a to b. Also, the value of the probability density function of X at a is zero in

the case of continuous random variables. The total area under the probability

density function curve is equal to 1. In this thesis, we estimate the coldest

temperature threshold that occurs, on average, once in N years. For each year, we

are interested only in the “winter” data. Hence, we have only 91 days of data for

each year. Also, we defined Xt as the random variable describing the daily average

wind-adjusted temperature and Tth as coldest temperature threshold we want to

estimate. Hence, the probability that the event Xt ≤ Tth occurs is

P (Xt ≤ Tth) =
1

N ∗ 91
. (3.12)

We know the probability density function estimate and the probability that the

random variable Xt has a value in the interval from −∞ to Tth. From this

information, we calculate the threshold Tth. For example, for n = 67 years of KMKE

weather station daily average wind-adjusted temperatures and N = 30 years,

P (Xt ≤ Tth) =
1

N ∗ 91
=

1

30 ∗ 91
= 3.663 ∗ 10−4 . (3.13)

Therefore, from the one-in-N algorithm and the probability in Equation 3.13, coldest
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threshold temperature that occurs on average once in 30 years is −27.1◦F using 67

years of Milwaukee daily average wind-adjusted temperatures. Similarly, we repeat

this process for other weather stations in the country and for other values of N .

In this thesis, we used N = 0.25, 0.5, 1, 2, 5, 10, 20, and 30 years to get an

idea of the trends in weather. The one-in-N threshold temperature using the

one-in-N algorithm for most values of N for the weather stations KMKE, KABQ,

and PANC are presented in Table 3.4. Also, we will explain more about these

trends in Chapter 4.

Table 3.4: One-in-N threshold temperature (◦F) using the one-in-N algorithm

N year(s)
One-in-N threshold temperature (◦F)

KMKE KABQ PANC

0.25 -1.2 22.2 -2.2

0.5 -5.5 18.4 -5.5

1 -9.5 14.4 -8.7

2 -13.4 10.3 -11.8

5 -18.0 4.1 -15.4

10 -20.9 -0.2 -18.0

20 -24.5 -3.0 -21.0

30 -27.1 -4.0 -22.9
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In this chapter, we reviewed the problem statement and our contribution to

meteorology and statistics. We explained how the temperature data was obtained

and prepared. Part of the data preparation stage was defining what “winter” means

in this thesis. Then, we provided the reader with a brief description of the resulting

output of the one-in-N algorithm, followed by a detailed explanation of the one-in-N

algorithm. In Chapter 4, we will explain the output graphs in more detail and give

examples from additional weather stations. Also, we will discuss the testing method

implemented to compare the performance of the kernel density estimation method

with the existing methods and evaluate the results of the tests.
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CHAPTER 4

One-in-N Algorithm Test Results and Discussion of Output

4.1 Overview

In this thesis, we estimated the low temperature threshold that occurs, on average,

once in N years for different weather stations in the United States using the

non-parametric distribution method called kernel density estimation method. From

the survey of literature, we have discussed methods used in other fields of study to

estimate rare events as well as methods used in the GasDay lab to estimate the low

temperature threshold. We determined that there is a possibility for improving the

low temperature threshold estimate by using the kernel density estimation method.

Therefore, we created the one-in-N algorithm to obtain an improved low

temperature threshold estimate. In Chapter 3, we explained the one-in-N algorithm

in detail. Chapter 3 also included a section on the preparation of data for use in this

algorithm.

In this chapter, we will discuss the results obtained from the one-in-N

algorithm for three weather stations: Milwaukee, WI (KMKE), Albuquerque, NM

(KABQ), and Anchorage, AK (PANC). Then we will describe the testing method
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used to show that the one-in-N algorithm is an improvement over the methods used

in the GasDay lab. We will explain the results of the testing method. These results

should encourage additional research in this subject.

4.2 Analysis of the One-in-N Algorithm Output

In this thesis, we use the kernel density estimation method to fit a probability

density function to the daily average wind-adjusted temperature data and estimate

the one-in-N low temperature threshold, where N = 0.25, 0.5, 1, 2, 5, 10, 20, and 30

years. So far, we have estimated the low threshold temperature. We are interested

in how the estimate for the threshold temperature changes under different

conditions. Specifically, we are interested in analyzing how this estimate changes

over time (possibly effect of climatic changes) and with different n years of data

required to calculate this estimate. Hence, we will generate two graphs for each

weather station to help us analyze these trends in temperature. The first plot

displays the one-in-N year conditions by n years of data used to show the effect of

the length of available data. The second plot displays the one-in-N year conditions

using a sliding window containing 20 years of data at a time to show the effect of a

particular window of data a utility might happen to have available.

In the first graph (we name it “Increasing Window”), we are trying to

evaluate whether the one-in-N conditions change over time and the minimum n
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years of data needed to calculate the one-in-N low temperature threshold reliably.

This plot displays the one-in-N year conditions vs. years of data used and is

constructed by first using a window containing the last five years of “winter” data.

We find the one-in-N low temperature threshold for the last five years and plot it on

a graph. The x-axis is labeled as number of years of data used, and the y-axis is

one-in-N daily average wind-adjusted temperature threshold estimate in ◦F. Then

we find the one-in-N low temperature threshold for the last ten years and plot it on

the same graph. In this way, we gradually expand the n years of data five years at a

time (Hence,“Increasing Window”) and estimate the one-in-N low temperature

threshold for each set of n years, until the window contains all available years of

“winter” temperature data. The resulting plot has eight trend lines for eight values

of N . We will discuss this graph for three weather stations: KMKE, KABQ, and

PANC. The discussion of the Increasing Window graph for all three weather stations

will seem a little repetitive because of the overlap in the analysis of the results.

In the second graph (we name it “Sliding Window”), we try to evaluate the

changes in the one-in-N low temperature threshold depending on which 20 year

span we use. We also try to determine if it is prudent to obtain the low temperature

threshold estimate using just 20 years of weather data or would it give us a biased

estimate? This evaluation is important because some natural gas utilities estimate

their design day temperature only using the coldest temperature that occurred in
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Figure 4.1: Increasing Window - Milwaukee, WI (KMKE) conditions by years of data

to determine the minimum number of years needed to calculate the low temperature

threshold
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the past 20 or 30 years. This plot displays the one-in-N year conditions using a

window containing n = 20 years of daily average wind-adjusted temperature. We

start with the first 20 years of data, then as we add a new year of data, we drop the

oldest year of data. In this manner, we “slide” this window through the data one

year at a time and estimate the one-in-N year low temperature threshold after each

new year is added to (and each oldest year is dropped from) the data set. As in the

previous plot, we obtain a trend line for each of the N years that we are using in

this thesis. As before, we will discuss this plot for the three weather stations of

KMKE, KABQ, and PANC.

4.2.1 Discussion: Extreme Cold Threshold for KMKE in Milwaukee

In this section, we present an analysis of the Increasing Window (Figure 4.1) and

Sliding Window (Figure 4.2) graphs constructed using the “winter” data from the

weather station KMKE in Milwaukee, WI.

The purpose of the Increasing Window graph is to determine the minimum

number of years needed to determine the one-in-N low temperature threshold

reliably. If we look at the 1-in-30 year trend line, we can see that if we use at least

35 years of weather data, the one-in-N low temperature threshold trend line has a

very small slope and is slightly increasing.

Another important aspect of this graph is instability of the rare events.
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Observing all the trend lines in this graph, we can see that the rarer the event, the

more unstable it is. For example, observe the difference between the 4 per year

trend line and the 1-in-10 year trend line. One can see that the instability in the

1-in-10 year trend line is greater than that in the 4 per year trend line. The 1-in-30

year trend line for the low temperature threshold value from the 5-year mark to the

15-year mark shows a slightly positive slope, while this trend line shows a very

distinct negative slope from the 15-year mark until the 35-year mark. These

observations show that the region displaying the negative slope might be indicative

of a warming climate, while the slight positive slope in the more recent years may

indicate a cooling of climate, or they might be statistical fluctuations. These

observations are clearer from Figure 4.2, which is explained later. However, we need

many more years of data and additional research in this area to make more

definitive conclusions. This gradual shift from negative to positive slopes in the

trends of the low temperature threshold values is also prevalent for the other

one-in-N trend lines in the graph, even though it is not as pronounced as in the

rarer 1-in-30 year trend line.

Figure 4.2 is a Sliding Window graph containing a 20-year sample of weather

data that slides over the entire range of available data and the one-in-N low

temperature threshold is calculated with each slide. The purpose of this graph is to

consider whether the rare events are stable over time. We see that the one-in-N low
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Figure 4.2: Sliding Window - Milwaukee, WI (KMKE) conditions using a window of

20 years of data to determine if conditions change with time

temperature threshold values obtained from the last 20 years of data is higher than

that obtained from the first 20 years of data in the data set. For example, the

1-in-20 year trend line has a low temperature threshold value of approximately

−19◦F when we use the last 20 years of data, but has a low temperature threshold

value of a low −21◦F when we use the first 20 years of weather data from our entire
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sample set. From this figure, we can see that the one-in-N algorithm is very

sensitive to changes in temperature and the data in our window, particularly

extremely low temperatures. In the year 1982, there was an extremely cold

temperature that affected the calculation of the one-in-N low temperature threshold

values (low temperature threshold values were very cold) for all the 20-year data

sets that contain this year. For the subsequent data sets not containing the year

1982, the low temperature threshold values steadily increase. We see that the trend

lines have a positive slope in general, which may be evidence of an overall climate

warming. However, additional data and research are needed to validate this claim.

We also see that the rare events are more unstable than the more frequent events, as

also evident in Figure 4.1. The instability of the rare events is clearer in the graphs

created for the other two weather stations explained below.

4.2.2 Discussion: Extreme Cold Threshold for KABQ in Albuquerque

In this section, we present a detailed analysis of the Increasing Window and Sliding

Window graphs constructed to explain the trends in the one-in-N low temperature

threshold values for Albuquerque, NM.

Figure 4.3 is the Increasing Window graph for KABQ winter data. The

purpose of this graph is to determine the minimum number of years needed to

explore the one-in-N low temperature threshold value. Let us observe the 1-in-10
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Figure 4.3: Increasing Window - Albuquerque, NM (KABQ) conditions by years

of data to determine the minimum number of years needed to calculate the low

temperature threshold
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year trend line. On one hand, if we were to calculate the one-in-N low temperature

threshold using the last 25 years of data, we would have a very high threshold

temperature. On the other hand, if we calculated this threshold temperature using

just the last 15 years of data, the threshold value obtained is almost 10 ◦F colder.

Now, if we use more than 40 years of data, this one-in-N low temperature threshold

value decreases along a negative slope. This may be indicative of statistical

fluctuations or a slight warming of climate. However, more data and research is

required to make definitive conclusions. Also, one can see that volatility of weather

is more apparent for this weather station (Figure 4.3) than for Milwaukee, WI

(Figure 4.1).

The Sliding Window graph (Figure 4.4) for KABQ explores whether the

one-in-N low temperature threshold conditions are stable over time, using a 20-year

sliding window. This is an interesting weather station to analyze because in early

2011, this area experienced an extremely rare cold event. In Figure 4.4, observe the

1-in-1 year trend line. We see that there is a general positive slope in the trend of

1-in-1 year low temperature threshold values over time. We see a general positive

slope in the trend of 1-in-20 year low temperature threshold values over time as

well, except for the data sets containing the year 2011. There is a sudden dip in the

low temperature threshold value attributed to the extremely rare cold event. This

shows that the one-in-N algorithm is very sensitive to extremes in temperature.
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Figure 4.4: Sliding Window - Albuquerque, NM (KABQ) conditions using a window

of 20 years of data to determine if conditions change with time

From this graph, we also see that volatility of weather increases as the one-in-N low

temperature threshold values get rarer. However, in general, the Albuquerque

winter seems to be getting warmer as the trend lines seem to have an overall

positive slope. In particular, the extreme cold temperature that occurred on

February 2nd, 2011, shows that the weather is quite volatile for rare events, even
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though the general trend of temperature may be warmer. Hence, LDCs should not

ignore the rarest one-in-N low temperature threshold simply because there may be a

general warming trend.

4.2.3 Discussion: Extreme Cold Threshold for PANC in Anchorage

In this section, we will analyze the Increasing Window and the Sliding Window

graphs for the weather station in Anchorage, AK (PANC). This weather station was

chosen for analysis because in 1989 they experienced their low temperature

threshold conditions on three consecutive days.

From Figure 4.5, we are trying to consider how many years are sufficient to

calculate the one-in-N low temperature threshold values. Analyzing this figure, we

see that the one-in-N low temperature threshold values have a near zero slope when

we use more than 30 years of data. Looking at the 1-in-30-year trend line, we see

that there has not been a low temperature threshold condition since 1989, which

explains the higher values for the 1-in-30-year low temperature threshold

calculations for windows of data that do not contain the year 1989. This graph is a

good example to show instability of the rare events compared to the more frequent

events. The trend lines below the 1-in-2-year line show increasing instability, which

is obvious around the 15 year mark, where it displays a sudden dip in temperature.
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Figure 4.5: Increasing Window - Anchorage, AK (PANC) conditions by years of data

to determine the minimum number of years needed to calculate the low temperature

threshold
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Figure 4.6: Sliding Window - Anchorage, AK (PANC) conditions using a window of

20 years of data to determine if conditions change with time

Figure 4.6 helps us explores whether the one-in-N low temperature threshold

conditions are changing over time. Here, we see that the three extremely cold

consecutive days in 1989 significantly affect the calculation of the 1-in-20 year and

1-in-30 year low temperature threshold values. When 1989 falls out of the 20 year

window, these low temperature threshold values become significantly warmer (by
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approximately 5 or 6 ◦F). This observation confirms that the one-in-N algorithm is

very sensitive to extreme cold temperatures and the size of the data set. It also

shows that as the weather becomes increasingly volatile, the rarer the events get.

From this graph, there does not seem to be an obvious slope in the trend

lines, indicating that over the available history, the winter weather has remained

nearly constant. In other words, for this weather station, the climate doesn’t seem

to have warmed or cooled or has not shown much statistical fluctuation. However,

more data and research are required to make definitive conclusions about these

preliminary observations.

4.3 Test and Results

So far in this thesis, we explained the One-in-N Algorithm, showed that it models

the winter daily average wind-adjusted temperature better than the methods

currently used in the Gasday lab at the 5% statistical level of significance, and

discussed the results obtained. Now, we show that the one-in-N low temperature

threshold estimates from the One-in-N Algorithm is more accurate compared to the

one-in-N low temperature threshold estimates from the generalized extreme value

distribution, normal distribution, and the variance weighted composite method.
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1. We separate the n years of daily average wind-adjusted temperature data into

a training set and a test set. The training set comprises of 30 years of winter

daily average wind-adjusted temperature data selected at random (pick 30

years from available n years randomly, and each chosen year contains the

entire winter data for that year only). The test set comprises of the remaining

n − 30 years of daily average wind-adjusted temperature data.

2. Using the training set, we calculate one-in-N low temperature threshold

estimates, where N = 30 years, using the one-in-N algorithm, generalized

extreme value distribution, normal distribution, and the variance weighted

composite. Then we count the number of times that the daily average

wind-adjusted temperature from the test set is less than or equal to these four

one-in-30 year estimates (called testcount).

3. We repeat steps 1 and 2 a hundred times and compare the mean count of the

daily average wind-adjusted temperature from the test set less than or equal

to the one-in-N low temperature threshold estimates (called meantestcount),

obtained from the generalized extreme value distribution, the normal

distribution, the variance-weighted composite distribution, and the kernel

density estimate to the theoretical expected count

theoreticalexpectedcount =
size of test set

30
. (4.1)
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We performed this test using the data from KMKE, KABQ, and PANC

weather stations.The results of this test, for each weather station, are shown in

Table 4.1.

Table 4.1: Validation test results after 100 iterations

Methods
Mean one-in-30 year threshold temperature (◦F)

KMKE KABQ PANC

one-in-N algorithm −26.5190 −3.1770 −22.8081

generalized extreme

value distribution

−17.4860 7.9787 −24.5158

normal distribution −17.4602 10.0613 −19.1824

variance weighted

composite method

−17.5432 9.0314 −22.7026

Methods
mean count of test-set data ≤ mean one-in-30 year estimate

KMKE KABQ PANC

theoretical expected 1.2333 1.2000 0.3667

one-in-N algorithm 1.7700 2.3600 0.5200

generalized extreme

value distribution

9.0100 12.6200 0.3300

normal distribution 8.7500 17.2800 0.6000

variance-weighted

composite method

8.6300 14.3900 0.5100

We need to determine if the meantestcount is statistically different from the

theoreticalexpectedcount. For each of the generalized extreme value
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distribution, the normal distribution, the variance-weighted composite distribution,

and the kernel density estimate, we calculate the square of the difference between

each testcount and the theoreticalexpectedcount (called square error). Then

we perform a t-test of statistical significance. We find that for KMKE and KABQ,

the meantestcount is statistically different from the theoreticalexpectedcount

at the 5% level. However, for PANC, we are unable to conclude that the

meantestcount is statistically different from the theoreticalexpectedcount.

These results demonstrate that the low temperature threshold estimate from

the one-in-N algorithm is more accurate than the low temperature threshold

estimates from the generalized extreme value distribution, normal distribution, and

the variance weighted composite method for KMKE and KABQ. In the future, we

should explore increasing the winter window for PANC to see if we can obtain a

meantestcount that is statistically different from the theoreticalexpectedcount.
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CHAPTER 5

Conclusions and Future Research

5.1 Conclusions

Our goal was to develop an algorithm to estimate the one-in-N low temperature

threshold value for weather stations in the United States that was better than the

existing methods. By applying statistics to the weather, particularly nonparametric

methods, we developed the one-in-N algorithm to estimate the one-in-N low

temperature threshold value.

We explained how the one-in-N algorithm was developed and used in

Chapter 3. In Chapter 4, we showed how this algorithm is better than the current

methods used. We used the RMSE measure to compare the fit of data to the

existing methods with the fit of data to the kernel density estimation method and

found that the kernel density estimation method provided a better fit to the

temperature distribution data. The kernel density estimation method is a major

part of the one-in-N algorithm. Then we created a test scenario using a training set

and a test set of weather data per station and evaluated the number of times we

obtained or deceded the one-in-N low temperature threshold. We found that the
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one-in-N algorithm provided a more reliable estimate than the existing methods.

From the explanation of the kernel density estimation method in Chapter 2, we

know that the density estimation near a point consists of contributions from kernels

above and below that point. However, for the minimum value of the observation (let

us call it XMIN), we cannot compute the kernel contributions below this point

because we do not have that data. If we only use the kernels above XMIN, it will

make a biased density estimate. To reduce this bias, we compute the contributions

from kernels centered above XMIN, and fold their values around XMIN. The result

should be good if the density is nearly flat in this area. If the density is increasing,

then the estimate will still be biased downward, and if the density is decreasing, it

will still be biased upward, but the bias will be reduced.

5.2 Future Research

In this thesis, we investigated and developed a method to estimate the one-in-N low

temperature threshold value. We also used this method to try to answer two

additional questions:

1. How many years of data is needed to reliably estimate the one-in-N low

temperature threshold?

2. Are these conditions changing over time?
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However, there are still many improvements and extensions that can be applied to

this method. We list a few suggestions to improve the one-in-N method, and a few

hypotheses we can test that were suggested by other scientists.

5.2.1 Extension of Work

In this thesis, we detrended the data using a time-varying mean. An extension to

this method could be to develop a technique to detrend the temperature data with a

time-varying variance, skewness, and kurtosis. The intention is that at the end of

this process, we will be left with only the pure, unaltered, underlying data, which

means that location and season would not be a restriction anymore. Hence, we

could use all the available weather data from all the weather stations, and for all

seasons, resulting in a really large data set. The kernel density estimation method

works better for large amounts of data.

Another extension to this algorithm could be trying to find the one-in-N low

temperature threshold per month. This approach may give one a better idea of

when these extreme cold events occur in a particular month and perhaps provide

insight into whether there is a distinct pattern in the occurrences per month for

each weather station.

For LDCs, knowing the one-in-N low temperature threshold for the day is
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only partially helpful to plan the day’s natural gas needs. We could extend this

thesis work to find the one-in-N low temperature threshold hour, which would help

identify the hour in a day that would require the most natural gas use.

In this thesis, we used a fixed 91 days with the coldest daily average

wind-adjusted temperatures to find the one-in-N low temperature threshold. Our

experiments showed that this 91 days with the coldest daily average wind-adjusted

temperatures was sufficient to contain the high variance regions of data, namely,

winter. However, for certain weather stations, we could expand this window of data,

while for others, we could narrow this window of data. Hence, one could develop an

algorithm to use a variable window of data that expands or contracts to the high

variance regions in the data.

From Chapter 2, Mearns [6] identified several characteristics of the

time-series data; one in particular, the autocorrelation function, which is a measure

of the dependence among the data points. We can extend this work by identifying

the autocorrelation between the data points and divising a solution to handle

autocorrelation in the data.

We also could study how to handle time of observation changes, station

changepoints (location/instrument), and urbanization, introduced by

Knappenberger [11], as they affect data quality and analysis of trends in

temperature.
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5.2.2 Hypotheses to be Explored

According to Meehl [2] and Mearns [6], a small change in the mean temperature

causes shifts of practical significance in the probabilities of extreme temperature

events. More research can be applied to locations such as Albuquerque, which

experienced a rare cold temperature event in 2011, to discern if there was any

noticeable change in the mean or variance from prior years.

Another hypothesis suggested by Meehl [7] is that variability in summer has

increased, and variability in winter has decreased. Lu [9] found that winters show

most warming in the northern MidWest, the four corners region, the Dakotas, south

Arizona, and southern California. Also, the winters seem to be warming more than

the summers. We could extend our research to include summer months to determine

whether we can confirm this hypothesis.

Easterling [13], Knappenberger [11], and Lu [9] found that night-time

temperatures have been increasing more than the day-time temperatures. We could

determine whether we can make similar conclusions using our one-in-N algorithm

and explore how this change affects the calculation of the design day conditions.

Besides, an increased ability to monitor and detect multidecadal variations and

trends is critical to detect changes in trends and to understand their origins [13].

Following from the item above, we could explore the hypothesis that extreme
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cold events change with location and elevation, as suggested by Rebetez [14]. We

could also investigate the effect of the North Atlantic Oscillation (NAO) index on

extreme cold events.

Further research can be made to estimate the one-in-N low temperature

threshold in the rest of the world, provided that sufficient data is available. A part

of this initiative could be to analyze the effect of El Niño Southern Oscillations

(ENSO) on the predictability of extreme cold temperature frequency. According to

Gershunov [8], weak ENSO events improve the predictability of extreme cold

temperature frequency in the South United States. Also, weak La Niña winters

improve the extreme cold temperature frequency predictability in the Midwest.

Future research into ENSO events, may provide additional insight into how the

one-in-N low temperature threshold changes with time and how it is correlated with

the type of winter (El Niño or La Niña).

In conclusion, we investigated, researched, and developed the one-in-N

algorithm to estimate the one-in-N low temperature threshold value using a

non-parametric distribution called the kernel density estimation method. We

compared the output of the one-in-N algorithm with the outputs of the generalized

extreme value distribution method, the normal distribution method, and the

variance-weighted distribution method. We validated that the one-in-N algorithm

provides a better estimate for the one-in-N low temperature threshold at the 5%
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level of significance. We also used this method to analyze two questions; how many

years of data is needed to estimate the one-in-N low temperature threshold

accurately, and are these conditions changing over time? We provided a few

suggestions to improve the one-in-N method and a few hypotheses suggested by

other scientists to be explored.
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