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Abstract: 

The vitelline membrane (VM), the oocyte proximal layer of the Drosophila 

eggshell, contains four major proteins (VMPs) that possess a highly conserved 

“VM domain” which includes three precisely spaced, evolutionarily conserved, 

cysteines (CX7CX8C). Focusing on sV23, this study showed that the three 

cysteines are not functionally equivalent. While substitution mutations at the 

first (C123S) or third (C140S) cysteines were tolerated, females with a 

substitution at the second position (C131S) were sterile. Fractionation studies 

showed sV23 incorporates into a large disulfide linked network well after its 

secretion ceases, suggesting post-depositional mechanisms are in place to 

restrict disulfide bond formation until late oogenesis, when the oocyte no 

longer experiences large volume increases. Affinity chromatography utilizing 

histidine tagged sV23 alleles revealed small sV23 disulfide linked complexes 

during the early stages of eggshell formation that included other VMPs, 

namely sV17 and Vml. The early presence but late loss of these associations 

in an sV23 double cysteine mutant suggests reorganization of disulfide bonds 

may underlie the regulated growth of disulfide-linked networks in the vitelline 

membrane. Found within the context of a putative thioredoxin active site 

(CXXS) C131, the critical cysteine in sV23, may play an important enzymatic 

role in isomerizing intermolecular disulfide bonds during eggshell assembly. 

Keywords: Drosophila, eggshell assembly, vitelline membrane, extracellular 

disulfides, VM domain, sV23 eggshell protein, cysteine mutants. 

Introduction 

The multi-layered Drosophila eggshell provides an excellent 

experimental system for studying the assembly of an extracellular 

matrix in vivo. The eggshell not only provides a protective function, 

but the vitelline membrane, the oocyte proximal layer, also appears to 

play an important role in localizing embryonic patterning cues. Torso-

like, a protein involved in terminal patterning is localized in the 

vitelline membrane at the two poles of the egg (Stevens et al., 2003), 

and several vitelline membrane proteins appear to be substrates of the 

Drosophila dorsoventral determinant Pipe (Zhang et al., 2009). Spatial 

regulation of the serine protease cascade that controls dorsal-ventral 

patterning is dependent upon the Pipe sulfotransferase (Sen et al., 

1998). The exacerbation of dorsal/ventral patterning defects by the 
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loss of the vitelline membrane protein Vml in a sensitized pipe genetic 

background suggests vitelline membrane proteins influence embryonic 

dorsal-ventral polarity (Zhang et al., 2009). How sulfonated vitelline 

membrane proteins exert their influence is not known. Vitelline 

membrane structural components as well as gene products needed for 

its structural integrity (eg. Nudel, etc) have been identified in 

numerous studies (Cernilogar et al., 2001; LeMosy and Hashimoto, 

2000; Waring, 2000 ). The significance of the components and how 

they are assembled into a functional unit are not known. 

Mutants in which VM assembly is disrupted fall amongst the 

larger class of female sterile (fs) mutants. Only two VM genes have 

been identified through fs mutant screens, dec-1 (Bauer and Waring, 

1987; Gans et al., 1975) and VM26Ab (Savant and Waring, 1989). In 

both cases females with null alleles lay flaccid, unfertilized eggs. 

Surprisingly females homozygous for VmlEPgy2, a Vml null allele, 

produce eggs that can be fertilized and hatch (Zhang et al., 2009). 

This finding suggests functional redundancy amongst vitelline 

membrane proteins and may in part explain the failure to detect genes 

encoding other VM proteins in previous genetic screens. 

Sv23, encoded by VM26Ab, is an abundant vitelline membrane 

protein that is essential for female fertility. Secreted as a proprotein, 

sV23 undergoes two post-depositional cleavages (Manogaran and 

Waring, 2004). During late stage 10 a small C-terminal region is 

removed; during the later stages of oogenesis a hydrophobic N-

terminal prodomain is removed yielding a mature protein consisting of 

repeats of the octapeptide YSAPAAPS and the signature VM domain, a 

thirty eight amino acid stretch of amino acids found in many vitelline 

membrane proteins (Figure 1). By introducing mutated versions of 

sV23 transgenes into sV23 null females, previous studies have shown 

that whereas the C-terminal prodomain can be removed without 

functional consequences, both the hydrophobic N-terminal domain and 

the signature VM domain are essential (Manogaran and Waring, 2004). 
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Figure 1 (A) A wild type (wt) 3.6 kb genomic fragment containing the sV23 open 

reading frame (ORF-thick rightward arrow) and the fc 20 ORF (VM26Ac) (thick 

leftward arrow). Key restriction sites used in constructing the sV23 transgene and its 

mutated derivatives are shown: X (XhoI), S (SalI), Z (XbaI), R (EcoRI), and K* (KpnI 

engineered into the mutant transgenes). (B) Wild type and mutant sV23 transgenes. 

The 168 amino acid sV23 open reading frame is shown at the top. The central region 

consisting of five perfect and three degenerate copies of an octapeptide repeat 

(PAYSAPAA) and the 38 amino acid VM domain with its three precisely spaced 

cysteines at positions 123, 131, and 140 are highlighted. The lines below the sV23 

ORF show the amino acids at positions 123, 131, and 140 in the context of the 3.6 kb 

X/R genomic fragment for the wild type allele and seven cysteine substitution mutant 

transgenes created in this study. The designations on the right are used to denote the 

single (SCC, CCS, CSC), double (SSC, CSS, SCS), and triple (SSS) sV23 substitution 

mutations. (C) Histidine tagged wild type and mutant (SSC-His) sV23 transgenes. The 

top line shows the sV23 ORF with a 6X- histidine tag (*) inserted between R166 and 

E167. The BamHI restriction site (B) used in creating the SSC-His transgene and the 

position of the engineered KpnI site (K) relative to the cysteine residues are denoted. 
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The genomic XhoI/EcoRI fragments containing the histidine codons and SSC 

substitution mutations are shown below. 

A hallmark of the VM domain is the presence of three precisely 

spaced cysteine residues (CX7CX8C). Vitelline membrane proteins with 

VM domains become incorporated into a large disulfide linked network 

during late oogenesis. Disulfide bonds are routinely used in 

extracellular matrices to stabilize networks formed via non-covalent 

interactions. During eggshell assembly both non-reducible and 

reducible crosslinks are used to stabilize proteins in the eggshell 

layers. Both types of cross-links stabilize the innermost VM layer while 

the outer endochorion layer relies strictly on non-reducible crosslinks 

(Margaritis, 1985). Peroxidase mediated tyrosine crosslinking occurs in 

the endochorion layers during stage 14, the terminal stage of 

oogenesis (Mindrinos et al., 1980). Peroxidase mediated crosslinking 

occurs post-ovulation in the vitelline membrane, hence disulfide 

crosslinking during oogenesis likely plays an important role in allowing 

the egg to resist the mechanical pressures incurred during its passage 

through the oviduct. 

Vitelline membrane proteins are secreted during stages 9-10 in 

membrane bound vesicles that accumulate in the extracellular space 

as vitelline bodies. At the end of stage 10 microvilli that project from 

both the follicle cells and oocyte surfaces recede and vitelline bodies 

fuse into a continuous layer. As the oocyte continues to grow via nurse 

cell dumping and hydration, the VM layer thins from 1.7 to 0.4 u 

(Margaritis, 1985). To retain its elasticity, constraints on the number 

of intermolecular disulfide bonds that form before the oocyte 

approaches its final size are likely necessary. Balancing the need for 

early elasticity and late stabilization suggests regulation of disulfide 

bond formation in the extracellular environment may be critical for 

proper vitelline membrane morphogenesis. An emerging concept is 

that extracellular disulfide bonds need not be inert but rather can act 

as a dynamic scaffold to present mature proteins in different 

conformational states that can have significant impact on their function 

(Hogg, 2003). Within this context we investigated the consequences of 

mutating, singly and in combination, the three evolutionarily 

conserved cysteines within the VM domain of sV23 on vitelline 

membrane assembly and function. 
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Materials and Methods 

Culture conditions and stocks 

All stocks were maintained on standard yeast, cornmeal, 

molasses, and agar medium. The w*/w* and VM26AbQJ42 stocks have 

been described previously (Manogaran and Waring, 2004); the Df 

(2L)Exel7024 and VmlEPgy2 stocks are described in Flybase. 

Transformant lines carrying mutated sV23 transgenes created in this 

study are described below. 

Construction of mutant sV23 transgenes 

sV23 transgenes with base pair substitutions were created using 

a combination of PCR mutagenesis and exchanging selected DNA 

fragments. All of the sV23 transgenes in this study (Figure 1) 

consisted of the sV23 open reading frame, ~1.25 kb of 5’ flanking and 

1.8 kb of 3’ flanking DNA subcloned into a pCaSpeR4 transformation 

vector (Manogaran and Waring, 2004). A 1 kb SalI-XbaI wild type 

genomic fragment containing the sV23 ORF (see Figure 1A) subcloned 

into a pSP73 plasmid vector was used as a template for inverse PCR 

reactions. Primers with nucleotide changes at designated positions 

were used to introduce a strategic KpnI site (silent change) in addition 

to codon changes that created either the CSS or SSS cysteine mutant 

transgenes. For sV23-SSC, a ~0.4 kb KpnI-XbaI fragment with C 

rather than S at the third position was amplified from the 3.6 kb XhoI-

EcoRI sV23-CSS fragment, subcloned, and exchanged with its 

counterpart in an XhoI-XbaI sV23-SSS subclone. The resultant XhoI-

XbaI SSC fragment was exchanged with its counterpart in the sV23-

CSS pCaSpeR4 transformation vector. 

Using the sV23-CSS transgene in pCaSpeR4 as template, a CC 

containing XhoI-KpnI fragment was amplified, subcloned, and 

exchanged with its counterpart in an XhoI-XbaI CSS subclone. The 

resultant XhoI-XbaI CCS fragment was then exchanged with its 

counterpart in the sV23-CSS pCaSpeR4 transgene, yielding the sV23-

CCS transgene. 

To create the sV23-SCC transgene, an XhoI-KpnI SC fragment 

was amplified from an XhoI-XbaI SSC template. The XhoI-KpnI SC 
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fragment was exchanged with its counterpart in an XhoI/XbaI- SSC 

subclone to yield XhoI-XbaI-SCC. The XhoI/XbaI SCC fragment was 

exchanged with its counterpart in a delN24-42pCaSpeR4 construct 

(Manogaran and Waring, 2004) yielding the sV23-SCC transgene. 

The sV23-CSC and SCS transgenes were created through 

fragment exchanges. An XhoI/XbaI CSC fragment was created by 

exchanging the KpnI-XbaI fragment from an SSC subclone with the 

KpnI-XbaI fragment from a CSS subclone. Exchanging the KpnI/XbaI 

fragment from a CSS subclone with the KpnI/XbaI fragment in an 

XhoI/XbaI SCC subclone created an XhoI/XbaI SCS fragment. Each 

XhoI/XbaI fragment was then exchanged with its counterpart in delN24-

42pCaSpeR4 to yield the sV23-CSC and sV23-SCS transgenes, 

respectively. 

Histidine tagged versions of both wild type sV23 and sV23-SSC 

were created by inserting 6 histidine codons between the codons 

specifying amino acids 166 (R) and 167(E) (Figure 1C). Using a wild 

type KpnI/XbaI subclone as template, a 200 bp 5’ fragment with 6 His 

codons at its 3’ end and a 400 bp 3’ fragment headed by 6 His codons 

were generated in two separate PCR reactions. The GAA glu codon 

following the His-tag was changed to a GAG glu codon in order to 

create a diagnostic SacII restriction site. After mixing the PCR products 

a 600 bp fragment was amplified and subcloned. The 0.4 kb His-

tagged KpnI/XbaI fragment was excised and exchanged with its 

counterpart in an sV23-CCS XhoI/XbaI fragment, yielding a wild type 

XhoI/XbaI fragment bearing the engineered KpnI site and His-codons 

near the end of the sV23 ORF (see Figure 1C). For sV23-SSC-His, an 

XhoI/BamHI fragment from sV23-SSC was exchanged with its tagged 

wild type counterpart, yielding an sV23-SSC-His XhoI/XbaI fragment. 

Both tagged XhoI/XbaI fragments were introduced into the sV23-

pCaSpeR4 transgene as previously described. The sV23 coding 

sequence of all of the constructs was verified by DNA sequencing. 

Additional details of the constructions are available upon request. 

Recombinant pCaSpeR 4 plasmid DNAs were purified and 

injected along with a S129A helper plasmid (Beall et al., 2002) into 

w*/w* preblastoderm embryos. After establishing chromosomal 

linkage of the transgenes in the transformants, two copies of the each 

http://dx.doi.org/10.1016/j.ydbio.2010.08.037
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018331/#R13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018331/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018331/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018331/#R3


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Developmental Biology, Vol. 347, No. 2 (November 2010): pg. 360-368. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

8 

 

transgene were introduced into sV23 null females via a series of 

genetic crosses. 

Egg laying and fertility tests 

Well-fed 2-5 day females were placed in egg collection 

chambers as described previously (Spangenberg and Waring, 2007). 

Eggs from single females collected over a 24-hour period were counted 

and the number of larva that hatched from these eggs over the 

ensuing 48 hours was recorded. 

Protein Analyses 

Proteins soluble in Laemmli sample containing 5% beta-

mercaptoethanol were separated by SDS-PAGE and transferred to 

nitrocellulose using a Bio-Rad Mini-Protean system. ECL Western blot 

signals were developed as previously described (Manogaron and 

Waring 2004). The sV23, sV17 (VM26Aa), and Cfc106 DEC-1 antisera 

used in this study have been described previously (Noguerón, 1996; 

Pascucci et al., 1996); rabbit anti-6-His-Antibody (1/5000 dilution) 

was obtained from Bethyl Laboratories. For silver staining, gels were 

processed as described (Zhou et al., 2003). 

For fractionation studies, egg chambers were disrupted with a 

Kontes dounce homogenizer (B-type pestle) in Tris buffer based 

solutions (50 mM Tris, pH7.4, 150 mM NaCl) as indicated. Following 

centrifugation at 15,000 × g for 15 minutes pellet (P) and supernatant 

(S) fractions were recovered. Pellet fractions were resuspended in 

Laemmli sample buffer and 5% beta mercaptoethanol; supernatant 

fractions were adjusted to similar concentrations by the addition of an 

appropriate volume of a concentrated Laemmli solution. Prior to SDS-

PAGE, samples were boiled for 3 minutes. 

Affinity Chromatography 

Stage 10 egg chambers were disrupted in lysis buffer (400 mM 

NaCl, 50 mM Tris, pH 7.4, 2% Triton X-100) with a dounce 

homogenizer. Following low speed centrifugation (1000 × g, 10 min.) 

the pellet was resuspended in lysis buffer with a dounce homogenizer, 

and centrifuged as above. After three such cycles, the pellet was 
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resuspended in DNase I buffer (50 mM Tris, pH 7.5, 10 mM MgCl2) 

containing DNase I (20 ng/ul) and RNase A (20 ng/ul) and incubated 

at 37° for 30 min. An enriched eggshell pellet was obtained by 

centrifugation at 15,000 × g for 15 min. After rinsing in DNaseI buffer, 

the enriched eggshell pellet was resuspended in 90 ul of denaturing 

buffer (8M urea, 100 mM NaH2PO4, 10 mM Tris, adjusted to pH 8.0 by 

the addition of NaOH) containing 2% Triton X-100 and incubated for 

one hour at room temperature. Following high speed clarification 

(210,000 × g, 30 min) the supernatant was added to a 100 ul 

Protino® Ni-IDA 150 packed column (Machery-Nagel) pre-equilibrated 

with denaturing buffer containing 2% Triton X-100 at room 

temperature. After a 2 hr incubation period, unbound proteins were 

removed by gravity flow with 6 column volumes of denaturing buffer. 

Bound histidine-tagged proteins were eluted with denaturing buffer 

containing 250 mM imidazole. After applying 6 column volumes of 

elution buffer, 4 column volumes of denaturing buffer containing 2% 

SDS were added to remove residual proteins from the column. 

Mass spectrometry 

Elution fractions were analyzed at the Protein & Nucleic Acid 

Shared Facility HRC at the Medical College of Wisconsin. Briefly, 

samples were incorporated into a polyacrylamide gel matrix and 

digested with trypsin. The tryptic peptides recovered were analyzed by 

LTQ LC/MS mass spectrometry. Visualize software, version 1.13, 

designed by Brian D. Halligan (Medical College of Wisconsin) was used 

for data analyses. 

RNA analyses 

RNA was extracted from stage 10 egg chambers of Vm26AbQJ42 

origin that included the transgenes indicated. Briefly, total RNA from 

~100 egg chambers was extracted with 100 ul of TRIzol reagent and 

purified using the Trizol® Plus RNA purification system (Invitrogen). 

Approximately 1 ug of RNA was reverse transcribed with the Promega 

Reverse Transcription System and sV23 specific primers (sense 5’-

ATGGCATTCAACTTTGGTCACCTC-3’ and antisense 5’-

TCAGATCTCAAGTCGGATCCGTTTCGATCC-3’) were used to amplify a 

537 bp sV23 PCR product. The conditions used for the PCR reactions 

were: 2’ at 95°, 30 cycles of 95° for 1’, 50° for 1’, 72° for 2’, followed 
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by a final extension at 72° for 15’. PCR products were purified using 

Promega’s Wizard®SV Gel and PCR Clean Up System and digested 

with KpnI. The digestion products were separated on 2% agarose gels. 

Results 

Cys131 is critical for sV23 function 

The evolutionary conservation of the number and spacing of 

cysteine residues within the VM domain suggests that these residues 

are critical for the integration/stabilization of vitelline membrane 

proteins within the eggshell. To address functional issues, we focused 

on cysteine residues within the VM domain of sV23 since previous 

studies established that sV23 is necessary for the production of turgid, 

fertile eggs. To determine the number and position of cysteines within 

the sV23 VM domain that are critical for its function, a series of 

cysteine to serine substitution mutant sV23 transgenes were created. 

Single serine substitutions at each cysteine residue (Vm26AbC123S 

(SCC), Vm26AbC131S (CSC), and Vm26AbC140S (CCS), all three 

combinations of double cysteine substitutions (SSC; SCS; and CSS), 

as well as the triple substitution mutant (SSS) were created (Figure 

1B). To ensure that the mutant transgenes were the only source of 

sV23 protein, each mutant transgene was crossed into sV23 protein 

null females (either homozygous Vm26AbQJ42 or Vm26AbQJ42 / Df 

(2L)Exel7024). If the engineered mutation was tolerated, the sV23 

transgene was expected to provide a functional source of sV23 and 

thus rescue the sterility of sV23 null mutant females. As shown in 

Table 1 only transgenes bearing single cysteine substitutions at either 

the first or third position were tolerated. The hatching rate of eggs 

derived from CCS females (50.5 and 52%) was comparable to the wild 

type control, CyO/ Vm26AbQJ42 (54%). The lower hatching rate of the 

SCC eggs (30.6%) may indicate a small functional distinction between 

the first and third cysteines or differences in their expression levels 

(see below). In marked contrast to the turgid eggs laid by the CCS and 

SCC females, most of the eggs laid by CSC females were either 

collapsed or only slightly turgid, and all failed to hatch. This indicates 

that the second cysteine within the sV23 VM domain plays a critical 

role in eggshell assembly. Consistent with this finding, all eggs laid by 

double cysteine mutants that included a substitution at the second 

position collapsed and failed to hatch. The severely compromised 
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hatchability of SCS eggs (3.6%) suggests that although critical, a 

single cysteine at the second position in sV23 is not sufficient to 

support the assembly of a functional eggshell. The appearance of the 

SCS eggs was variable. Like the other cysteine double mutants, about 

half of the eggs collapsed; the remainder were slightly turgid, but 

clearly distinguishable from wild type eggs. As expected, eggs laid by 

females with an sV23 transgene bearing substitutions at all three 

cysteines (SSS) collapsed and failed to hatch. 

 

Table 1 Two copies of each mutant transgene were expressed in either 

homozygous Vm26AbQJ42 (fs/fs) or heteroallelic Vm26AbQJ42/ Df(2L)7024 (Df/fs) sV23 

protein null mutant females. The number of females of each genotype analyzed is 

shown. Eggs laid within a 24 hr. period were counted and the number of larvae that 

hatched over the ensuing 48 hours was recorded. Egg morphology was assessed by 

light microscopy. The intermediate phenotype denotes a mixture of eggs within the 

population, with most being either collapsed or with a marked reduction in turgidity 

relative to wild type eggs. 

The effects of mutations can be manifested at many different 

levels, hence establishing a definitive relationship between a mutated 

residue and the function of a protein can be problematic. Many 

mutations induce protein misfolding with consequent alterations in 

trafficking through the secretory pathway. By disrupting cysteine 
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residues and their potential to form intra- or intermolecular disulfide 

bonds, the secretion of sV23 from the follicle cells may be 

compromised. To verify that the amount of sV23 secreted was 

sufficient to support the production of fertile eggs, sV23 accumulation 

was analyzed by Western blot analysis in each of the mutant 

transgenic lines. Figure 2 shows a dilution series in which the signal 

intensity of sV23 from egg chambers carrying different mutant 

transgenes was compared with wild type sV23. Synthesis and 

accumulation of sV23 occurs during stages 9 and 10 of oogenesis, a 

period encompassing approximately 20 hours. At the end of stage 10 

sV23 begins to undergo the first of two post-depositional cleavages. To 

minimize differences in signal intensity due to loss of epitopes, yet 

monitor sV23 accumulation at near peak levels, late stage 10 egg 

chambers were chosen for the comparison. Egg chamber proteins were 

extracted with Laemmli sample buffer in the presence of a reducing 

agent and separated by SDS-PAGE. The Western blot signals from the 

dilution series shown in Figure 2 were quantified using Image J 

software. Although the fertility of VM26AbQJ42/ VM26AbQJ42; CCS/CCS 

females was comparable to wild type, sV23-CCS protein accumulated 

at ~33% the level of wild type sV23. Accumulation in the other fertile 

single substitution mutant, SCC, was approximately 25% of wild type. 

Importantly, in the sterile single substitution mutant sV23-CSC levels 

were at least 50% of wild type. Although accumulation of the sV23-

CSC protein was elevated relative to the other substitution derivatives, 

the higher accumulation level of this mutant derivative per se does not 

appear to have an adverse effect since fertility was not compromised 

when two copies of this transgene were present in wild type flies (+/+ 

or VM26AbQJ42/CyO). Thus the sterility of the sV23-CSC mutant, 

despite sV23 accumulation levels commensurate with fertility, argues 

that the second cysteine plays a distinct and critical role in vitelline 

membrane assembly. 
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Figure 2 Accumulation of sV23 in mutant and wild type stage 10 egg chambers. 

Late stage 10 egg chambers (5-25) were resuspended in Laemmli sample containing 

5% beta mercaptoethanol and boiled to generate soluble protein extracts. Protein 

representing the number of egg chambers indicated below each lane was obtained by 

diluting the original extract appropriately. Each mutant series, designated on the right, 

was run in parallel with wild type egg chambers (left). Western blots were developed 

with sV23 antiserum. The sV23 signals are shown in the three upper panels. The SSS 

panel also includes CRM-14, a small vitelline membrane protein that is recognized by 

our sV23 antiserum. The exposure times varied from blot to blot. 

At least one cysteine is required for accumulation of 

sV23 protein 

Accumulation levels of sV23 in the double cysteine mutants fell 

in ranges compatible with fertility (20-30% - data not shown). sV23 

accumulation in the triple substitution mutant, sV23-SSS, was severely 
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compromised however. sV23-SSS was not detected in extracts from a 

range of 3 to 25 mutant egg chambers. In contrast, a vitelline 

membrane protein that cross reacts with our sV23 antiserum, CRM-14, 

was detected with signal intensities commensurate with the number of 

egg chambers used for the protein determination. This suggests that 

at least one cysteine is needed for the production of stable sV23 

protein. To ensure that the lack of sV23-SSS protein did not reflect a 

deficiency at the RNA level, RT-PCR was used to compare the 

accumulation of sV23 RNA from the transgene with that from the 

endogenous VM26AbQJ42 locus (Figure 3). Total RNA from stage 10 egg 

chambers was reverse transcribed and a 537 bp sV23-specific 

fragment was amplified using the primers indicated. To distinguish the 

transgene product from the endogenous product we made use of the 

ectopic KpnI restriction site that was engineered into the mutant 

transgenes. After KpnI digestion, the 415 bp fragment derived from 

the transgene was easily resolved from the endogenous 537 bp 

product. Image J software was used to determine the relative ratios of 

the transgene and endogenous products. As shown in Figure 3 the 

intensity of the sV23-SSS fragment was about 1.6 times that of the 

endogenous product (accumulation of sV23 RNA from the VM26AbQJ42 

mutant allele is much less than wild type, presumably due to the 

mutation in the AUG initiation codon (Fokta, 2000) that renders it 

untranslatable). In comparison, the intensity of the sV23-CCS 

fragment was about 0.8 that of the endogenous VM26AbQJ42 product. 

Thus sV23-SSS RNA accumulates at approximately twice the level of 

sV23-CCS RNA. This shows that the lack of sV23-SSS protein is not 

due to a deficiency at the RNA level and suggests that at least one 

cysteine in the sV23 VM domain is necessary for its accumulation. 
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Figure 3 Relative accumulation of sV23 RNA from mutant transgenes and the 

endogenous Vm26AbQJ42 locus. The schematic shows the sV23 ORF (thick line) along 

with the 5’ and 3’ untranslated regions. The approximate positions of the cysteine 

residues within the VM domain and the primers used for amplification are indicated. 

The K below the line depicts an ectopic Kpn I restriction site that was engineered into 

the VM domains of all of the cysteine mutant transgenes. RNA from homozygous 

Vm26AbQJ42 mutant egg chambers carrying two copies of either the sV23-SSS or sV23-

CCS transgene, was reversed transcribed, amplified, and digested with KpnI. The 

arrows indicate the positions of the endogenous (EN) sV23 gene products and the 

transgene products (TG) from either sV23-SSS or sV23-CCS. The marker lanes (M) 

show the positions of 400 and 500 bp fragments. The expected length of the full 

length PCR product was 537 bp; KpnI digestion of the transgene products yielded 

fragments 415 and 122 bp in length. Only the 415 bp product is shown in this figure. 

The growth of disulfide-linked networks within the 

vitelline membrane is developmentally regulated 

Prior to ovulation, the vitelline membrane is stabilized by the 

formation of intermolecular disulfide bonds. Although disulfide linked 

oligomers may form during the initial stages of vitelline membrane 

formation, based on pelleting behavior, dramatic post-depositional 

growth of the sV23 disulfide-linked network occurs between stages 10 

and 14 (Figure 4A). To track temporal changes in the size of the sV23 
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disulfide linked network, egg chambers at different developmental 

stages were homogenized in buffered SDS solutions (1%) in the 

absence of a reducing agent. Following low speed centrifugation, 

proteins in the supernatant and pellet fractions were reduced and 

separated by SDS-PAGE. The Western blot in Figure 4A shows that 

sV23 and its derivatives, as well as CRM-14, were recovered only in 

the supernatant fraction during stages 10 and 12. In contrast, the 

mature proteolytic sV23 derivative (sV23-m) and CRM-14 were only in 

the pellet fraction in stage 14 egg chambers. Stage 13 appears to be a 

transitory period when vitelline membrane proteins begin to become 

part of a large disulfide-linked network(s). 

 

Figure 4 Fractionation of eggshell proteins. A. Wild type egg chambers at the 

stages of oogenesis indicated were homogenized in Tris buffered saline (TBS) 

containing 1% SDS, and separated into pellet (P) and post-15,000 × g supernatant 

(S) fractions. Western blots of P and S proteins incubated with sV23 antiserum. sV23-

10 – sV23 proprotein; sV23-12 – derivative after cleavage of C-terminal amino acids; 

sV23-m –mature derivative after cleavage of N- and C-terminal amino acids; CRM-14 
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– VM protein migrating in the 14 kDa range that cross reacts with the sV23 antiserum. 

(B.) stage 10 or 14 egg chambers from wild type or VM26AbQJ42 females with two 

copies of sV23 transgenes harboring single cysteine substitution mutations (SCC, CSC, 

and CCS) fractionated as in A. (C) Fractionation of egg chambers as in (B) except 

mutant transgenes have double cysteine substitution mutations (CSS, SSC, SCS). The 

lower panel is an independent Western blot of fractionated stage 14 samples incubated 

with an sV17 (VM26Aa) antiserum. (D) Stage 10 or 14 egg chambers from wild type 

(wt) or sV23-CSS females homogenized in TBS and processed as in (A). 

Cysteine residues in the sV23 proprotein are only found in the 

VM domain. To determine whether the incorporation of sV23 into a 

large disulfide linked network was impaired in any of the cysteine 

mutants, VM26AbQJ42/ VM26AbQJ42 egg chambers expressing each 

cysteine mutant transgene were fractionated as above. As shown in 

Figure 4B, the fractionation behavior of sV23 in all of the single 

cysteine substitution mutants from stage 10 and 14 egg chambers was 

similar to wild type. While incorporated into a large network, the 

sterility associated with the sV23-CSC transgene suggests that the 

organization of the network in this mutant is aberrant. Surprisingly, as 

shown in Figure 4C, despite having only a single cysteine residue, 

sV23-SCS integrates into a large disulfide linked network in stage 14 

egg chambers. This was in marked contrast to sV23-CSS and sV23-

SSC, which were recovered almost exclusively in the supernatant at 

stage 14. The behavioral differences between the latter transgene 

products and sV23-SCS confirm that disulfide-bonding status underlies 

the fractionation behavior of vitelline membrane proteins under 

denaturing conditions. Although sV23-CSS and sV23-SSC failed to 

pellet, other vitelline membrane proteins, CRM-14 and sV17 (Figure 

4C), were recovered exclusively in the pellet fraction at stage 14. 

Taken together these results suggest that 1.) The second cysteine 

(C131) is sufficient for disulfide bond formation between sV23 and other 

vitelline membrane proteins and (2.) that other vitelline membrane 

proteins can incorporate into large disulfide based networks without 

sV23. 

Although large disulfide linked networks within the vitelline 

membrane are not in place during early eggshell morphogenesis 

(stage 10), vitelline membrane proteins are integrated into molecular 

networks that pellet following low speed centrifugation. As shown in 

Figure 4D when wild type egg chambers were homogenized in buffered 

saline (TBS) without SDS and fractionated as above, sV23 and CRM-14 
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were recovered exclusively in the pellet at both stage 10 and 14. When 

VM26AbQJ42/ VM26AbQJ42 egg chambers with the sV23-CSS transgene 

were disrupted in TBS, sV23-CSS was recovered in the pellet and 

supernatant at stage 10 and almost exclusively in the supernatant at 

stage 14. Although partitioning between the pellet and supernatant 

fractions varied from experiment to experiment for stage 10 egg 

chambers, sV23-CSS was only found in the supernatant fraction in 

stage 14 egg chambers. Thus beyond its incorporation into disulfide-

linked networks, integration of sV23-CSS into the eggshell in general is 

severely compromised, especially in late stage egg chambers. 

Early sV23 disulfide-linked complexes include other 

vitelline membrane proteins 

The integration of sV23-SCS into a large disulfide linked network 

indicates sV23 can form disulfide bridges with other vitelline 

membrane proteins. To begin to investigate the complexity of the sV23 

disulfide-linked network, we created a histidine (His-) tagged version 

of sV23 in order to isolate sV23-containing complexes by nickel affinity 

chromatography. While the need for strong denaturants to extract 

vitelline membrane proteins precludes investigating non-covalent 

associations, proteins linked by disulfide bonds can be recovered under 

denaturing conditions. 

Previous mutagenesis studies showed that small deletions were 

tolerated in the sV23 C-terminus, but not in the N-terminal prodomain. 

Reasoning that insertion of a 6X His-tag would be least detrimental at 

the C-terminus, we inserted histidine codons into a wild type sV23 

gene between the codons specifying R166 and E167 (Figure 1C). To 

verify its function, the transgene was tested in VM26AbQJ42/ 

VM26AbQJ42 females. Accumulation data and fertility tests showed that 

VM26AbQJ42/ VM26AbQJ42 females carrying two copies of a sV23-His 

transgene produced sV23 at near wild type levels (~80%) and laid 

turgid eggs with fertility rates comparable to wild type (data not 

shown). By inserting the His-tag within the C-terminal prodomain, 

sV23 disulfide linked complex isolation was restricted to stages 8 

through 10 since the C-terminal prodomain is removed via cleavage 

during late stage 10 and 11. 
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Disulfide-linked complexes containing sV23 were isolated from 

stage 10 egg chambers by Ni-IDA affinity chromatography. Proteins in 

enriched eggshell fractions were solubilized with 8M urea containing 

2% Triton X-100. Following clarification by high- speed centrifugation, 

soluble complexes were applied to the affinity matrix. Unbound 

proteins (w), proteins eluted with imidizole (e), and residual proteins 

eluted with 2% SDS (s) were analyzed by Western blot analysis and, 

in some cases, by silver staining. Western blot analysis of fractions 

derived from egg chambers in which the sV23-His transgene was the 

only source of sV23 (Figure 5A) showed negligible amounts of sV23 in 

the unbound fractions (w) and efficient recovery of sV23 in the 

fractions eluted with imidizole (e). A significant portion of sV17 and a 

cross reacting species, denoted CRM-80, co-eluted with sV23 

suggesting that these two proteins are part of early sV23 disulfide-

linked complexes. Immunolocalization studies have shown that dec-1 

gene products, which do not possess a VM domain, are localized 

exclusively within the vitelline membrane in stage 10 egg chambers 

(Nogueron et al., 2000). Unlike sV17 and CRM-80, the s80 and s60 

DEC-1 derivatives were found exclusively in the unbound fractions. To 

detect other proteins that might co-fractionate with sV23, larger 

portions of the fractions shown in Figure 5A were run in a parallel gel 

and the proteins were visualized by silver staining (Figure 5B). Beyond 

sV23 and a species that co-migrated with sV17, reproducible bands 

were not apparent. The recovery of CRM-80, sV23, and sV17 

exclusively in the unbound fractions when urea soluble complexes of 

stage 10 eggshells produced by wild type females lacking the His-

tagged transgene were incubated with the matrix (Figure 5C) confirms 

that (1) sV23 binding is dependent upon the presence of the His-tag, 

and (2) binding of CRM-80 and sV17 is dependent upon sV23 binding. 

To show that the co-fractionation of sV17 and CRM-80 with sV23 

depends on disulfide bonds, enriched eggshells were resuspended in 

urea in the presence of a reducing agent (5mM beta-

mercaptoethanol). As expected, monomeric sV23-His bound efficiently 

while CRM-80 and sV17 were recovered exclusively in the unbound 

fractions (Figure 5D). 
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Figure 5 Isolation of sV23 disulfide-linked complexes by Ni-affinity 

chromatography. 

(A) Enriched eggshells from 900 stage 10 egg chambers from VM26AbQJ42/VM26AbQJ42 

females carrying two copies of the sV23-His transgene were resuspended in 

denaturing buffer (I-input) and applied to a packed 100 ul Ni-IDA affinity column. Six 

80 ul wash fractions (w) were used to collect unbound proteins; following the addition 

of 250 mM imidizole, six 80 ul elution fractions (e) were collected; 4 column volumes 

of denaturing buffer containing 2% SDS pre-heated to 95° [(s) – 80ul/fraction] were 

used to collect residual proteins. After the addition of Laemmli sample buffer and β-

ME, proteins from a small portion (0.6%) of selected fractions were separated by SDS-

PAGE. The upper panel shows a blot incubated simultaneously with sV23 and sV17 

antisera. The lower panel shows a blot of the same column fractions incubated with a 

DEC-1 antiserum (Cfc106). The positions of sV23, sV17, and CRM-80 (cross reacts 

with the sV23 antiserum) are shown to the left. In the lower panel the positions of the 

DEC-1 fc106 derivatives, s80 and s60 are indicated. (B) Silver stained gel of 12.5% of 

http://dx.doi.org/10.1016/j.ydbio.2010.08.037
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018331/figure/F5/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Developmental Biology, Vol. 347, No. 2 (November 2010): pg. 360-368. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

21 

 

each fraction shown in (A) [Note: the band observed in the w5 and e2 fractions was 

not reproducible]. (C) As in (A) except enriched eggshells were prepared from 200 

wild type stage 10 egg chambers and 3% of each fraction was analyzed. (D) As in (A) 

except 200 stage 10 egg chambers were used to prepare the enriched eggshells and 

the enriched eggshells were resuspended in denaturing buffer containing 5mM βME. 

The upper panel shows a blot incubated with the sV23 antiserum; the lower panel 

shows the reactive region of a parallel blot incubated with the sV17 antiserum. (E) 

Western blot of SDS soluble proteins from wild type (wt) and VmlEPgy2 (vml) stage 10 

egg chambers incubated with the sV23 antiserum. (F) Western blot of sample 

processed as in (A) above except the enriched eggshells were from 250 stage 10 egg 

chambers derived from homozygous Vm26AbQJ42 females carrying two copies of a 

sV23-SSC-His transgene. 

As an independent means to identify proteins in sV23 disulfide 

linked complexes, the peak elution fraction shown in Figures 5A and B 

(equivalent to material derived from 900 stage 10 egg chambers), as 

well as the peak elution fraction from an independent experiment (~ 

200 egg chambers) were analyzed by LC-mass spectrometry. Multiple 

peptides from only one gene product, Vml, were identified by these 

analyses. Vml possess a VM-like domain that includes the three 

evolutionarily conserved cysteines. Its large central region consists of 

30 perfect plus additional imperfect copies of an octapeptide repeat 

(PSYSAPAA) almost identical in sequence to the octapeptide repeat 

found in sV23 (PAYSAPAA). With a predicted molecular weight of 56.1 

kD, it is likely that CRM-80 is Vml. To confirm the identity of CRM-80, 

a Western blot of extracts from stage 10 egg chambers from wild type 

females or females with a P-element insertion in the Vml open reading 

frame (P{EPgy2}CG2879VmlEY21650) was incubated with the sV23 

antiserum. As expected and as shown in Figure 5E, the CRM-80 signal 

was absent in the Vml mutant. 

To determine if the complexity of sV23 disulfide linked 

complexes was altered when the ability of sV23 to form disulfide bonds 

was compromised, a double cysteine mutant transgene, sV23-SSC, 

was His-tagged at the same position as the wild type gene. Western 

blot analysis showed that when two copies of a His-tagged sV23-SSC 

transgene was the only source of sV23 (VM26AbQJ42/ VM26AbQJ42; 

sV23-SSC-His), sV23 accumulated at approximately 40% of wild type 

levels (not shown). Surprisingly nickel affinity chromatography of 

enriched eggshells from these flies showed that significant amounts of 

Vml and sV17 continue to co-fractionate with sV23-SSC-His (Figure 

5F). Since only one cysteine residue is available for disulfide bond 
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formation, sV23-SSC-His must form a disulfide bond with at least one 

other species. Direct disulfide linkages between sV23-SSC-His and Vml 

or sV17 cannot be inferred from this data. While previous data 

indicated that sV23-SSC was excluded from sV17 containing disulfide 

networks at stage 14, these data suggest that at earlier stages sV23-

SSC and sV17 are included in the same disulfide linked complexes. 

Discussion 

Vitelline membrane proteins are co-packaged into secretory 

vesicles that are constitutively released in the form of vitelline bodies 

into the extracellular space between the oocyte and overlying follicle 

cells. Vitelline bodies coalesce and eventually form a continuous layer 

at stage 10B of oogenesis. As residual nurse cell cytoplasm is 

transferred to the oocyte during stages 10B to 12, the oocyte volume 

increases and the vitelline membrane thins. Significant volume 

changes are not incurred during stages 13 and 14. Fractionation of 

wild type eggshells under denaturing conditions showed a transition in 

pelleting behavior of vitelline membrane proteins during stage 13. This 

suggests constraints are imposed on disulfide bonding within the 

vitelline membrane layer during stages 11 and 12 when elasticity is 

needed as the vitelline membrane thins. 

Aside from signal peptides, all of the cysteine residues in the 

vitelline membrane proteins followed in this study, sV23, sV17, and 

Vml, reside in the VM domain. The co-elution of sV17, Vml, and His-

tagged sV23 following affinity chromatography of eggshells solubilized 

in denaturing buffer suggests that small disulfide linked complexes are 

in place in stage 10 egg chambers. Since secretion of these VMPs is 

complete by the end of stage 10, the late stage growth of the 

disulfide-linked network(s) suggests temporally regulated post-

depositional changes in the availability of free cysteines, the rate of 

covalent assembly, or intermolecular disulfide bonding partners. The 

behavior of the sV23-SSC mutant protein is consistent with post-

depositional disulfide exchange. The stage 10 affinity purification data 

showed a sizeable fraction of sV17 and Vml co-eluted with sV23-SSC-

His (Figure 5F) in a cysteine dependent manner. While the formation 

of direct disulfide bonds between sV23 and sV17 or Vml cannot be 

inferred, the data showed that in stage 10 egg chambers sV23-SSC 

containing disulfide linked complexes include sV17 and Vml. When 

http://dx.doi.org/10.1016/j.ydbio.2010.08.037
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018331/figure/F5/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Developmental Biology, Vol. 347, No. 2 (November 2010): pg. 360-368. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

23 

 

stage 14 egg chambers from either the sV23-SSC or sV23-CSS 

mutants were disrupted in denaturing solvents, sV23 was recovered 

almost exclusively in the supernatant fraction after low speed 

centrifugation. With a single cysteine available for intermolecular 

disulfide bonds, a compromise in the ability of sV23-SSC to 

incorporate into a large disulfide linked network in late stage egg 

chambers was not surprising. The recovery of sV17, along with VM-

CRM14, exclusively in the pellet fraction (Figure 4C) was unexpected 

however, since substantial amounts of sV17 were included in sV23-

SSC disulfide linked complexes at stage 10. Taken together these data 

suggest rearrangements in intermolecular disulfide bonds occur in the 

vitelline membrane as eggshell morphogenesis progresses. 

Extracellular remodeling of protein disulfide bonding patterns 

has been associated with regulatory roles (Hogg, 2003). A complex 

intramolecular disulfide exchange controls the activity of 

thrombospondin-1 (TSP-1), an extracellular glycoprotein that 

participates in cell-cell and cell-matrix communication. In turn TSP-1 

reduces the size and biological activity of the platelet adhesion factor 

vWF in the vasculature by facilitating reversible cleavage of the 

disulfide bonds that create large vWF multimers (Xie et al., 2001). 

Remodeling of disulfide bonds in the extracellular domains of cell 

surface receptors, including integrin alpha1beta3, CD4, and the tumor 

necrosis factor receptor CD30, induces conformational changes that 

strengthen the interactions with specific ligands (Hogg, 2003; Jordan 

and Gibbins, 2006). 

Disulfide exchange in the extracellular environment requires 

cleavage and reformation of disulfide bonds. Mass spectrometric 

analysis of enriched eggshell preparations from Drosophila ovaries 

revealed a putative GMC oxidoreductase (Fakhouri et al., 2006). Its 

stage specific expression in the follicle cells suggests it may play a role 

in VM morphogenesis. Typically disulfide bonds are reduced, oxidized, 

and rearranged by thiol-disulfide oxidoreductases that function in the 

endoplasmic reticulum. Secreted forms have been reported for a 

variety of cells however (Hogg, 2003; Jordan and Gibbins, 2006). In 

extracellular environments thioredoxin and protein disulfide 

isomerases (PDI) are thought to act as reductants. 
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The classic redox active site motif of thioredoxin/PDI is CXXC. 

Non-classical motifs (CXXS and SXXC) have been found however in the 

thioredoxin domains of a testis specific PDI (van Lith et al., 2005), a 

subset of the Arabidopsis thaliana thioredoxin h family (Serrato et al., 

2008), and in a novel endoplasmic reticulum folding assistant of the 

thioredoxin family, ERp44 (Anelli et al., 2002). Using CXXS as a query, 

analyses of the Escherichia coli, Campylobacter jejuni, Methanococcus 

jannaschii, and Saccharomyces cerevisiae genomes revealed a high 

proportion of proteins known to use the CXXS motif for redox function. 

A strong correlation was established between the conservation of the 

CXXS sequence and proteins with possible redox functions (Fomenko 

and Gladyshev, 2002). 

While the secretion of classical thioredoxins or PDIs into the 

space between the follicle cells and oocyte where the vitelline 

membrane forms has not been reported, the VM domains of sV23, 

Vml, and fc20 (VM26Ac) have an SXXC motif that includes the first 

cysteine C123. In addition sV23 has a motif, CXXS at C131, the second 

cysteine (Figure 6). Vitelline envelope proteins in the mosquito, Aedes 

aegypti, also possess a VM-like domain in which the spacing of the 

three cysteines is strictly conserved (Figure 6). Notably in two of these 

proteins the CXXS motif at the second cysteine is conserved along with 

the proline residue that precedes the serine (CXPS) in sV23. Given the 

critical nature of the second cysteine of sV23 in building a functional 

eggshell (Table 1) and the evolutionary conservation of CXXS in the 

mosquito proteins, we speculate that this thioredoxin like motif may 

play an essential redox role in isomerizing disulfide bonds during 

vitelline membrane morphogenesis. Noteworthy in this regard, of the 

Drosophila vitelline membrane proteins with a VM domain, to date 

female sterile mutations have only been reported for the sV23 gene. 

The fertility of VmlEPgy2/ VmlEPgy2 females is particularly surprising given 

the striking structural similarity of Vml and sV23. Both proteins are 

headed by a short N-terminal domain that include a potential furin 

cleavage site, followed by a central region consisting of tandem 

repeats of an octapeptide (P A/S YSAPAA) and a C-terminal VM 

domain. Unlike sV23, the thioredoxin-like motif at the second cysteine 

is missing in Vml as well as other VM domain containing eggshell 

proteins. 
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Figure 6 Alignment of the VM domains from Drosophila VM proteins and related 

domains found in Aedes aegypti vitelline envelope proteins (Edwards et al., 1998). The 

three precisely spaced cysteines are highlighted as well as Ser residues found within 

the context of putative redox motifs. The line highlights the evolutionarily conserved 

CXXS motif that includes the critical C131 of sV23. 

Switches in disulfide bonding partners may underlie the growth 

of the sV23 disulfide network. Interestingly of the three sV23 double 

cysteine mutants tested, only the mutant with cysteine at the second 

position, sV23-SCS, was able to incorporate into a large disulfide 

network with the other VMPs suggesting the second cysteine has a 

greater propensity to form disulfide bonds with other VMPs than either 

the first or third cysteines. The first and third cysteines can form 

bridges with other VMPs since sV23-CSC was incorporated into a large 

disulfide linked network (Figure 4). Whether the bridges formed under 

these circumstances are normal is questionable however since these 

females lay sterile eggs with structurally compromised eggshells. 

Temporally regulated formation of higher order disulfide 

networks involving other VMPs can occur in the absence of sV23. While 

the putative redox active second cysteine may be essential for proper 

incorporation of sV23 into higher order networks, other mechanisms 

must be in place to restrict temporal growth of the network(s) in 

general. Along with regulated growth of the network(s), remodeling of 

disulfide bonds within the vitelline membrane may also play an 

allosteric role in late eggshell morphogenesis by changing the 

presentation of proteins and how they interact. While reversible 

phosphorylation has widespread regulatory significance in the cell, 
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perhaps reversible disulfide bond formation will prove to have 

widespread regulatory significance in the extracellular environment. 
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