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ABSTRACT 

SLOW POTENTIALS OF THE SENSORIMOTOR CORTEX  

DURING RHYTHMIC MOVEMENTS OF THE ANKLE 

 

 

Ryan J. McKindles, B.S. 

 

Marquette University, 2013 

 

 

The objective of this dissertation was to more fully understand the role of the 

human brain in the production of lower extremity rhythmic movements.  Throughout the 

last century, evidence from animal models has demonstrated that spinal reflexes and 

networks alone are sufficient to propagate ambulation.  However, observations after 

neural trauma, such as a spinal cord injury, demonstrate that humans require supraspinal 

drive to facilitate locomotion.  To investigate the unique nature of lower extremity 

rhythmic movements, electroencephalography was used to record neural signals from the 

sensorimotor cortex during three cyclic ankle movement experiments.  First, we 

characterized the differences in slow movement-related cortical potentials during 

rhythmic and discrete movements.  During the experiment, motion analysis and 

electromyography were used characterize lower leg kinematics and muscle activation 

patterns.  Second, a custom robotic device was built to assist in passive and active ankle 

movements.  These movement conditions were used to examine the sensory and motor 

cortical contributions to rhythmic ankle movement.  Lastly, we explored the differences 

in sensory and motor contributions to bilateral, rhythmic ankle movements.  

Experimental results from all three studies suggest that the brain is continuously involved 

in rhythmic movements of the lower extremities.  We observed temporal characteristics 

of the cortical slow potentials that were time-locked to the movement.  The amplitude of 

these potentials, localized over the sensorimotor cortex, revealed a reduction in neural 

activity during rhythmic movements when compared to discrete movements.  Moreover, 

unilateral ankle movements produced unique sensory potentials that tracked the position 

of the movement and motor potentials that were only present during active dorsiflexion.  

In addition, the spatiotemporal patterns of slow potentials during bilateral ankle 

movements suggest similar cortical mechanisms for both unilateral and bilateral 

movement.  Lastly, beta frequency modulations were correlated to the movement-related 

slow potentials within medial sensorimotor cortex, which may indicate they are of similar 

cortical origin.  From these results, we concluded that the brain is continuously involved 

in the production of lower extremity rhythmic movements, and that the sensory and 

motor cortices provide unique contributions to both unilateral and bilateral movement. 
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CHAPTER 1: INTRODUCTION & BACKGROUND 

1.1 THESIS STATEMENT 

An analysis of movement-related slow potentials of the sensorimotor cortex 

provides evidence that the brain plays an essential role in the perpetuation of lower 

extremity rhythmic movements in humans. 

 

1.2 LOWER EXTREMITY RHYTHMIC MOVEMENTS 

1.2.1 Motivation 

Since the early experiments by Sir Charles S. Sherrington and T. Graham Brown 

there has been controversy over the roles of spinal reflexes (Sherrington, 1908) and 

central pattern generation (Brown, 1911)  in the control of rhythmic movements of the 

lower extremities.  Through separate mechanisms, both men provided scientific evidence 

that rhythmic stepping motions could be elicited on a treadmill without descending 

supraspinal drive in decerebrate cat preparations.  From his experiments, Sherrington 

believed that reflexes were the primary driver that perpetuated lower extremity rhythmic 

movements.  Whereas, Brown demonstrated that after deafferentation, stimulation the 

spinal cord could produce similar rhythmic stepping movements.  Brown believed there 

were intrinsic pattern generators in the spinal cord that alone could facilitate locomotion.  

For extensive reviews on the spinal level control of locomotion, please see Grillner 

(1975) and Hultborn & Nielsen (2007).  

Several decades later, scientists attempted to transfer these theories to humans by 

training patients who had suffered spinal cord injuries (SCI) to walk on a treadmill with 
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bodyweight support.  However, even with support and training, SCI patients were unable 

to produce significant muscle activity to elicit independent stepping movements (Dietz et 

al., 1995).  Therefore, it has been suggested that afferent sensory feedback and spinal 

networks are alone not sufficient to perpetuate lower extremity rhythmic movements in 

man.  It has been hypothesized that through evolution humans have developed a greater 

dependency on supraspinal structures to compensate for bipedal locomotion (Nielsen, 

2003).  The hypothesis of bipedal compensation and the unique nature of human 

locomotion motivate the research in this dissertation with the goal of understanding more 

fully the role of the cerebral cortex in the perpetuation of lower extremity movements. 

 

1.2.2 Neural Control of Rhythmic Movements 

Three individual components of the nervous system that play a role in the lower 

extremity control of rhythmic movements are peripheral afferent feedback, spinal 

networks, and supraspinal structures.  During movement, afferent feedback from muscle 

spindles and Golgi tendon organs relay position, velocity, and force information to the 

central nervous system (For a review, please see Windhorst (Windhorst, 2007)).  

Specifically, muscle spindles are most sensitive to the position and velocity properties of 

muscle stretching and send monosynaptic projections to motor neurons, via Ia afferent 

sensory fibers, to autoregulate muscles.  This is known as the monosynaptic stretch reflex 

(Liddell & Sherrington, 1924).  Golgi tendon organs, however, are located in the 

musculotendinous junction and are primarily sensitive to the force of muscle tension.  

Proprioceptive information to the ipsilateral, dorsal horn of spinal cord is relayed through 

type Ib afferent fibers. 
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Spinal networks integrate sensory information from the periphery, other spinal 

segments, and descending supraspinal drive onto the motor system‟s final pathway: the 

motor neuron.  The spinal cord is organized from rostral to caudal into the cervical, 

thoracic, lumbar, and sacral regions.  Within each region, there are several spinal 

segments from which sensory and motor neurons project to specific groups of muscles, or 

myotomes.  Sensory inputs to the spinal cord also create polysynaptic connections, where 

minimally there is one interneuron between the sensory afferents and motor neurons.  

Interneurons create networks that have been shown to facilitate muscle coordination, 

inhibit antagonist muscles (Windhorst, 1996), or even create rhythmic movement patterns 

(Jankowska et al , 1967).  In lesser mammals, spinal centers that are able to produce 

rhythmic muscle patterns are known as central pattern generators (CPGs).  Though there 

is evidence of CPGs in humans, the specific location(s) is not well understood (For a 

review, please see MacKay-Lyons (2002)).  Moreover, it has been suggested that the 

neural mechanisms required for rhythmic movement may be distributed across multiple 

spinal segments or even into the subcortical and cortical areas of the brain (Ivanenko, 

Poppele, & Lacquaniti, 2009). 

Supraspinal structures, such as the brainstem, cerebellum, and sensorimotor 

cortices, are active during rhythmic movements of the lower extremities (Gwin et al., 

2011; Jain et al., 2013; Mehta et al., 2012; Raethjen et al., 2008; Schneider et al., 2013; 

Wagner et al., 2012).  During movement, proprioceptive afferent information from the 

muscles is relayed through the brainstem and thalamus to the sensory cortex.  Here, 

projections are sent to supplementary sensory areas and to the motor cortex.  The motor 

cortex integrates information from the sensory and premotor cortices to produce the 
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appropriate efferent motor command.  Moreover, modulations in both the afferent 

somatosensory evoked potentials (SEPs) (Altenmüller et al, 1995; Duysens et al., 1995) 

and in the efferent motor evoked potentials (MEPs) (Schubert, 1997) during walking 

demonstrate that sensory and motor pathways are continuously active during rhythmic 

lower extremity movement.  However, these measures are indirectly linked to the 

underlying physiology.  The work in this dissertation is further motivated by developing a 

method that allows for interpretation of natural cortical signals to understand their 

relationship to the perpetuation of rhythmic lower extremity movements. 

 

1.3 ELECTROENCEPHALOGRAPHY 

1.3.1 Recording Electrical Potentials from the Brain 

Electroencephalography (EEG) is the noninvasive recording of the electrical 

potentials associated with neural activity from the brain.  First used for human recordings 

by Hans Burger (1929), EEG is one of three technologies used primarily for recording 

electrical potentials from the cerebral cortex.  The other recording devices are 

electrocorticography (ECoG) (Jasper & Penfield, 1949), also known as intracranial EEG, 

and cortical electrode arrays (Maynard et al., 1997).  Though the implantation of these 

other devices requires invasive surgery, they are able to record comparatively high 

quality signals from the brain.  Conversely, EEG electrodes are placed on the surface of 

the scalp; consequently, the cortical signals are highly attenuated by the electrical 

impedance of the pia matter, arachnoid membrane, dura matter, skull, periosteum, and 

skin before it reaches the electrode surface (Cooper et al., 1965).  For that reason, a 

typical ECoG signal recording has a significantly better signal-to-noise ratio than an EEG 
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recordings (Ball et al., 2009).  However, EEG is advantageous for studying the brain 

because it is low cost, noninvasive, and reusable.  In comparison to other neural imaging 

modalities, such as fMRI,PET, and MEG, the high temporal recording resolution and 

portability of EEG can be advantageous.  Most EEG devices can sample signals from 100 

to 20,000 Hz.  Though high sampling rates are beneficial for some research projects, the 

tradeoffs are large data file sizes and reduced post-processing speed. 

 

1.3.2 EEG Electrodes 

A typical EEG device is comprised of an array of 8 to 512 electrodes that sample 

the electric field present at the scalp surface.  EEG electrodes are traditionally round in 

shape (approx. 0.5 to 1.5 cm diameter) and made from conductive materials, such as tin, 

gold, silver-chloride, or sintered silver/silver-chloride (Teplan, 2002).  However, some 

new dry electrode caps have multiple finger like projects to reach through the hair to the 

scale surface and some use conductive polymers instead of metal in their electrode 

designs (Lin, Liao, et al., 2011).  Whatever the electrode type, each design must meet any 

special requirements of the recording environment, such as high strength magnetic fields 

in an MRI or movement induced noise during walking. 

EEG electrodes are categorized as either passive or active.  A passive EEG 

electrode records electrical potentials from the scalp surface and transferred via wires or 

cables to an amplifying and recording system.  In contrast, active electrode systems 

implement operational amplifiers (op amps) between the electrodes and the main 

amplification stage.  Either, the op amps are used to amplify the EEG signal immediately 

after recording to increase the signal amplitude to be larger than external noise that could 
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be introduced by cable movement or electrical line noise from nearby lighting (Teplan, 

2002).  Otherwise, the op amps can be used as a bridge to better match the low 

impedance EEG signals to the high impedance inputs of the main amplifiers.  Because 

the op amps require power at the electrode site, they are not compatible with certain 

recordings environments, such as the high magnetic field in an MRI machine.  

 

1.3.3 Closing the Impedance Gap 

Electrolytic gels and pastes are used to reduce the high impedance gap caused by 

the irregular shape and consistency of the scalp surface and the material properties of the 

electrodes.  Lowering this impedance gap reduces the effects of capacitively coupled 

noise and signal attenuation.  This process is known as impedance matching and is the 

electrical equivalent of the acoustical measurement technique used in ultrasound 

(Bushberg et al., 2002).  Traditionally, scalp preparation was performed before an EEG 

experiment to clean and abrade the skin surface, which removes any oils and increases 

surface area to further reduce the electrical impedance.  However, with the development 

of high impedance amplifiers and better digital filtering techniques, high quality EEG 

signals can be recorded without the use of skin abrasion (Ferree et al., 2001).  This is 

beneficial because there is less risk of infection or bleeding during the preparation 

process.  As previously mentioned, dry electrode systems do not require gel.  These 

systems are designed for quick application and use both metal and electroconductive 

polymers for their electrode design.  However, because of their high impedance interface, 

these electrodes are prone to low-frequency noise, which is often analog filtered or 

otherwise removed before recording.  The placement of EEG electrodes on the scalp 
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surface can be accomplished manually or, with new higher density electrode system, 

electrodes are placed in an elastic cap for easy setup.  In both methods, electrodes are 

placed in predetermined locations over the cortical surface. 

 

1.3.4 Electrode Placement (10-20 System) 

The current standard for EEG electrode placement that is most widely used in 

both clinical and research settings is the International 10-20 system.  This system was 

proposed at the first EEG congress by H.H. Jasper to standardize the placement of EEG 

electrodes (Jasper, HH, 1958).  Since then, the International Federation of Clinical 

Neurophysiology (IFCN) has kept standards and recommendations on the practice of 

EEG recording, including the 10-20 system (Klem 1999).  The 10-20 system is named for 

the measurements used to find the correct electrode locations.  Measuring the total 

distance in the sagittal plane from the nasion to inion, the first electrode is placed at 10% 

of that distance and subsequent electrodes at 20% intervals with the last electrode at 10% 

above the inion.  Similarly, electrodes are placed based on measurements in the frontal 

plane between the left and right prearticular points.  Both measurements pass through the 

vertex.  The electrodes are named alphanumerically with the odd numbers over the left 

hemisphere, the even numbers over the right hemisphere, and increasing in value as they 

move laterally from the midline.  Along the midline, the number is substituted with the 

letter z.  The letters roughly indicate the different regions of the brain over which the 

electrodes are placed.  For example, F2 is over the frontal lobe just to the right of the 

midline, and CPz is located near the border of the central and parietal areas over the 

midline. 
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1.3.5 Referencing 

As is true with any electrical recording, signal properties are always relative to a 

reference.  In the case of monopolar recordings, EEG signals are measured as the voltage 

difference between each electrode location and a separate reference electrode also placed 

on the surface of the skin.  Moreover, both electrodes and the reference are originally 

referenced to ground voltage value that is used to hold the signal within the range of the 

amplifier.  Therefore, the final voltage value sampled at any time point is the difference 

between each electrode (including the reference) and a ground voltage, then the 

difference between each electrode and the reference.  This effect of the ground voltage is 

eliminated by the second difference measure.  Please see Ferree et al. (2001) for 

additional details.  Therefore, what is most important is the placement of the reference 

electrode.  Since there are no electrically quiet areas on the skin surface, the placement of 

this electrode has been controversial.  Some of the most common locations have been the 

ear lobe, linked ear lobes, over the midline and in front of the vertex, and the nose.  

Additionally, other types of referenceless procedures have been suggested, including the 

common average reference (Bertrand et al., 1985; Goldman, 1950) and a reference at 

infinity (Yao, 2001).  The common average reference, which has become one of the most 

popular referenceless recording procedures, allows the reference electrode to be placed 

anywhere during the experiment.  Then during post processing, the mean signal of all the 

elctrodes is removed from each individual electrode signal.  However, as with any 

referencing procedure there are caveats and caution should be taken when choosing the 

correct procedure (Desmedt et al., 1990; Dien, 1998).  Another type of EEG recording is 

the bipolar recording.  In this type of recording, the signals that are observed are the 
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differences between pairs of electrodes, typically adjacent to each other, which 

demonstrate local differences in cortical potentials, and are used for specific clinical and 

research purposes. 

 

1.4 CLINICAL AND RESEARCH USE OF EEG 

Electroencephalography is a prominent neural recording device in both clinical 

and research settings.  Clinically, EEG has been the dominate technology for the 

detection and diagnosis of many sleep and seizure disorders for many years.  During 

sleep studies, temporal waveforms and the rate of neural oscillation in specific electrodes 

indicates when a patient enters or exits different stages of sleep.  Irregularities in the 

order or duration of specific sleep stages are used to diagnose neural disorders.  The 

clinical use of EEG for seizure disorders, such as epilepsy, has been developed with 

advanced mathematics to detect and track the progression of epileptic activity (Guerrero-

Mosquera et al., 2012).  More recently, the field of neurofeedback has bridged the gap 

from research to the clinical setting.  This field focuses on the self-regulation of neural 

signals by presenting visual or auditory feedback to the patient (Holtmann et al., 2011; 

Lofthouse et al., 2012).   

There is a more extensive use of EEG for research purposes in neuroscience, 

neuropsychology, biomedical engineering, and many other fields.  The noninvasive 

nature of EEG has made it advantageous when studying neurophysiology in humans.  

Neuroscientists have used EEG to understand basic neurophysiology of the brain with 

evoked potentials.  Neuropsychology uses EEG to measure changes in the cerebral cortex 

to learn about cognitive function and changes within different diseased populations, such 
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as Alzheimer‟s disease (Leiser, 2011) and autism (Van Hecke et al., 2013).  More 

recently, a new field has emerged that uses brain signals recorded with EEG to interact 

with electronics.  This field has been termed brain machine interfacing (BMI) or brain 

computer interfacing (BCI), both of which are part of broader field known as human 

machine interfaces (HMI) (Nicolas-Alonso & Gomez-Gil, 2012).  Research into BMI 

devices has helped fuel the research in some of the basic physiology of how the brain 

controls movements, as many of the devices being developed are to control prosthetic 

upper limbs (Jackson et al., 2006) and lower extremity exoskeletons (Contreras-Vidal et 

al., 2012).  Because of this, more interest has been put on how the brain is used to control 

movement and what signals can we extract from EEG to use as controls for such BMI 

devices.  However, as with many new fields, there are a number of ethical questions that 

need to be considered (Clausen, 2011). 

 

1.5 ELECTRICAL POTENTIALS OF THE CEREBRAL CORTEX 

1.5.1 Physiological Origin of EEG 

Electroencephalography records electrical field potentials produced by neuronal 

populations in the brain.  Since the field potential produced by a single neuron is small 

and there is significant skull attenuation, EEG signals recorded at the scalp surface 

represent the field potentials of populations of neurons with synchronized firing.  

Moreover, these populations must be aligned in parallel so that the electrical fields of 

individual neurons do not cancel.  Advantageously, columns of pyramidal cells in the 

cerebral cortex are aligned parallel with each other and perpendicular to the cortical 

surface.  When a population of these cortical neurons is excited, the electrical field 
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produced along the axis (toward the cortical surface) is enhanced and can be recorded 

with EEG at the scalp surface.  Conversely, the portion of the field that is perpendicular 

to the axis of the neuron is cancelled by the fields of nearby neurons.  Even with a large 

population of neurons, the amplitude of the electrical potentials produced quickly 

dissipates with increasing distance from the scalp surface.  Therefore, recording of 

neuronal signals from the scalp surface, such as EEG, are often thought be primarily of 

cortical origin.  Moreover, since EEG measures the electrical component of an 

electromagnetic signal, the cortical sources that align perpendicular to the scalp surface 

give the largest field potentials.  For reviews, please see Lopes (2010) and Niedermeyer 

(1999).  This is opposite for MEG, as the electric and magnetic potentials are 

perpendicular to each other (Salmelin & Baillet, 2009).  Oscillations of these neuronal 

populations are commonly known as brain waves. 

 

1.5.2 EEG Frequency Spectrum 

One way in which EEG signals are categorized is by the number of times it 

oscillates per second or its frequency.  Generally, there are five defined categories in the 

frequency domain known as EEG frequency bands.  These bands include the delta (0 – 4 

Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 30 Hz), and gamma (> 30 Hz) bands.  

The size of the frequency ranges, bounds, and even naming conventions vary slightly 

between different fields of EEG study.  For example, alpha rhythms recorded over the 

sensorimotor cortex during movement are also known as mu rhythms (Lopes, 2010).  

Each frequency band has been shown to be important over different parts of the cortex 

for different activities.  For example, the delta band is often associated with sleep (Lopes, 
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2010) and movement-related slow potentials and modulations of beta band power have 

been shown over the sensorimotor cortex during movements (Kilavik et al., 2013).  The 

characteristic frequency spectrum of a resting state EEG signal is 
 

  
, where n is 

approximately 1 to 2.  This relationship is known as the power law and it describes the 

relationship between the amplitude of the neural signal and its frequency.  Though still 

under debate, it is hypothesized that this scaling is due to the low-pass frequency filtering 

attributes of dendrites (Buzsáki et al., 2012).  

 

1.5.3 Evoked and Induced Potentials 

Two general categories of brain signals used to study the brain are known as 

evoked and induced potentials.  Evoked potentials (EPs) or Event Related Potentials 

(ERPs) are so named because the signals are time-locked to a specific event.  Events are 

usually sensory (visual, auditory, somatosensory, etc.) in origin, such as flash of light, an 

audible tone, electric stimulation, or movement perturbation.  This technique used with 

temporal averaging of the signals is an indirect measure of cortical processing.  The 

stimuli are repeated dozens or hundreds of time to improve the signal-to-noise ratio of the 

averaged signal, which will provide a better signal estimate.  Induced responses to a 

stimulus, however, are not time locked to a stimulus.  Therefore, temporal averaging of 

such responses yields no or little discernible signal.  For example, if a neural signal is 

oscillating at 25 Hz and an event occurs that causes the amplitude of that 25 Hz 

oscillation to decrease or increase, temporal averaging of that signal with noise and other 

factors will be near zero.  In order to capture the modulation of that signal, the signal can 

be rectified and smoothed to produce the amplitude modulation profile.  This, 
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consequently, can be time-locked to a stimulus event and then can be detected and used 

for analysis. 

 

1.5.4 Movement-related Cortical Potentials 

Two types of movement-related brain potentials are slow cortical potentials and 

amplitude modulations in beta power.  The most studied slow cortical potential is the 

bereitschaftspotential (BP), or readiness potential (Colebatch, 2007; Shibasaki & Hallett, 

2006).  This movement-related brain potential (MRBP) is associated with premotor areas 

and the preparation to execute movement.  Interestingly it can be detected 1.5 seconds 

before the movement occurs, which has caused some controversy and discussions about 

the state of free will (Libit, 1999).  Amplitude modulations of beta power have also been 

associated with movement.  Preceding and during movement, the beta power reduces in 

amplitude.  This is known as an event-related desynchronization (ERD), and it is 

hypothesized that this reduction in power is associated with an increase in neural activity 

that disrupts the resting oscillations of the cortex.  After movement, a rebound in the beta 

power amplitude overshoots the resting state level.  This is referred to as an event-related 

resynchronization (ERS).  The BP, ERD, ERS, and various other movement-related 

cortical potentials have been used as probes to study how the sensorimotor cortex 

controls movements in neurologically intact people, people with neural injuries (Gourab 

& Schmit, 2010; Müller-Putz et al., 2007), and in brain computer interfaces (Pfurtscheller 

et al., 2003).   
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1.6 EEG ARTIFACTS AND SIGNAL PROCESSING 

1.6.1 EEG Artifacts 

There a number of well-known artifacts present in most EEG recordings.  These 

include ocular, movement, slow drift, and electrical artifacts.  Ocular artifacts reflect the 

EMG activity of the eye muscles during movement and blinks.  Movement-related 

artifacts are often induced by quick movements of the head that physically move the 

electrodes, thus changing the impedance between the electrode and the scalp.  Since the 

voltage (V) recorded is proportional to this impedance (Z) (i.e. V=IZ), changes in 

impedance will change the recorded voltage even if the current remains the same.  Slow 

drifting potentials can cause problems when recording very low frequency or DC 

potentials.  These artifacts are typically the result of sweat on the scalp surface that 

slowly changes the impedance.  Finally, external electrical noise can induce noise into the 

EEG data.  The most common electrical artifact is the 60 Hz line noise from lights.   

 

1.6.2 Artifact Removal 

EEG artifact removal requires the appropriate selection and ordering of specific 

signal processing steps.  For every dataset the goal of EEG signal processing is to = 

remove artifacts and reveal as much of the underlying neural signal as possible.  

Temporal filtering is one of the most basic types of EEG artifact removal.  This technique 

can be implemented with both analog electronics during recording and with digital 

filtering techniques afterwards.  For large repetitive artifacts, such as eye blinks, 

templating can be used to remove the blink artifact while preserving some of the cortical 
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signal.  If an experiment includes a response time-locked to known points, such as an 

evoked potential, underlying cortical responses can be accentuated by temporally 

averaging many repetitions of the task.  Finally, blind source separation techniques, such 

as principle component analysis (PCA) and independent component analysis (ICA) can 

be useful to remove distinct artifacts that are mixed with cortical EEG signals. 

 

1.6.3 Independent Component Analysis 

Independent component analysis (ICA) is classified as a Blind Source Separation 

(BSS) method for decomposing data into statistically independent components (Stone, 

2004).  For an ICA decomposition of EEG signals, recorded data from each electrode 

location are assumed to represent linear mixtures of underlying neural sources.  

Assuming there is at least the same number of electrodes as sources of neural activity and 

that the sources are independent, the first step of the ICA analysis whitens the data to 

remove any correlations between the individual electrodes.  After whitening, the 

statistical properties of the mixed signals (e.g. variance, kurtosis) are used to extract a 

square weighting matrix the size of the number of original linearly independent 

electrodes.  Though there are a number of methods to determine this matrix and the 

statistical independence of the components, two such methods include minimizing 

gaussianity or mutual information (Infomax).  This weighting matrix is then used to 

convert EEG signals in electrode space into ICA component space.  For artifact removal, 

ICA components that have distinct artifact characteristics are removed and the remaining 

components can be projected back to electrode space, now artifact free, for further 
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analysis.  Similarly, the ICA components themselves can be used for continued analysis, 

as they represent the unmixed and localized neural activity. 

 

1.7 SPECIFIC AIMS 

1.7.1 Aim 1: Identify the sensorimotor cortical contribution of rhythmic and discrete 

movements of the ankle. 

The purpose of this study was to ascertain the extent to which the sensorimotor 

cortex plays a role in the perpetuation of unilateral, rhythmic and discrete movements of 

the ankle.  Electroencephalography was used to measure neural activity in ten young, 

healthy subjects while they performed rhythmic and discrete ankle movements at 

approximately 0.7 Hz.  We hypothesized that if the cortex was continuously involved in 

rhythmic movements, movement-related slow potentials would be similar to those 

observed during discrete movements.  However, during rhythmic movements, pre- and 

post-potentials would be absent. 

 

1.7.2 Aim 2: Differentiate the sensory and motor cortical contributions to rhythmic 

movements of the ankle. 

In this study, we aimed to decouple the unique involvement of the individual 

sensory and motor cortices in the propagation of rhythmic ankle movements.  Ten young, 

healthy subjects performed unilateral, rhythmic ankle movements in a custom robotic 

device.  The robot was used to constrain the position, range, and frequency of ankle 

movement to increase consistency between trials and subjects.  The protocol included 

combinations of three factors: volition, attention, and movement frequency.  Sensory and 

motor contributions to the cortical signal were identified with passive and active 
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movements, respectively.  We hypothesized that movement-related slow potentials over 

the sensory cortex would be continuous during rhythmic movements.  However, the 

motor related potential would be associated with the muscle activity. 

 

1.7.3 Aim 3: Determine the sensory and motor cortical contributions to bilateral, 

rhythmic movements of the ankle. 

The goal of this experiment was to determine the role of the sensory and motor 

cortices in the propagation of rhythmic, bilateral ankle movements.  Similar to the 

previous experiment, electroencephalography was recorded during active and passive 

rhythmic ankle movements in a custom robotic device.  The protocol for this experiment 

included four bilateral and two unilateral movement conditions.  During bilateral 

movement conditions, the left ankle lagged the right by 0
o
, 90

o
, 180

o
, and 270

o
.  We 

hypothesized that bilateral and unilateral movements require the same neural generators 

to perpetuate rhythmic movements.  However, the close spatial locations of the 

generators produced destructive and constructive interference of the generated electrical 

fields.  
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CHAPTER 2: MOVEMENT-RELATED SLOW POTENTIALS OF 

THE SENSORIMOTOR CORTEX DURING RHYTHMIC AND 

DISCRETE ANKLE MOVEMENTS 

2.1 INTRODUCTION 

In humans, the cerebral cortex appears to be continuously involved in the 

production of rhythmic movements of the lower extremities.  In comparison, non-human 

mammalian control of rhythmic leg movements, such as walking, swimming, and 

scratching is often described in terms of spinal reflexes and networks, such as central 

pattern generators (CPGs) (Fore a review, please see Frigon, 2012).  However, these 

spinal networks in humans are not sufficient to produce consistent rhythmic movements 

when supraspinal drive is disrupted, as evidenced by gait impairments after spinal cord 

injury (SCI) (Dobkin et al., 2007) or stroke (Buurke et al., 2008).  Therefore, it has been 

hypothesized that through evolution, the role of cortical structures in the production of 

lower extremity rhythmic movements has been emphasized to compensate for the less 

stable, bipedal nature of human locomotion (Nielsen, 2003).  Recent studies have 

supported this concept, demonstrating that the human sensorimotor cortex is actively 

involved in producing lower extremity movement during stepping (Wieser et al., 2010), 

walking (Gwin et al., 2011; Petersen et al., 2012; Wagner et al., 2012), and pedaling (Jain 

et al., 2012; Mehta et al., 2009).  Though these studies demonstrate cortical involvement 

and modulation of neural signaling, further knowledge of the fundamental aspects that 

underlay the cortical contribution to rhythmic movements is important to our 

understanding of movement deficits following neural injury. 

Both kinematics and neural control mechanisms differentiate rhythmic and 

discrete movements; however, the variation and complexity of these movement types 
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have made definitions difficult to elucidate.  A proposed kinematic taxonomy by Hogan 

and Sternad (2007) defines a discrete movement as a movement bounded by two 

postures, where a posture is a period of no movement.  In contrast, the continuality, or 

absence of defined postures, generally defines rhythmic movements.  Rhythmic 

movements are differentiated into specific sub-types that range from simple cyclic 

movements to more complex repetitive patterns.  Neurologically, discrete movements 

require cortical involvement attributed to planning, execution, and termination of the 

individual movements (Kalaska, 2009; Sabes, 2000).  However, the role of the 

sensorimotor cortex is less defined for the perpetuation of rhythmic movements, 

especially in the lower extremity. 

One method of measuring the cortical contribution to rhythmic and discrete 

movements is electroencephalography (EEG); specifically, spatiotemporal characteristics 

of movement-related slow potentials might provide insight into cortical control.  In 

contrast to other movement-related brain potentials (e.g. beta desynchronization), slow 

potential oscillations are time-locked to the movement profile (Grünewald-Zuberbier et 

al., 1980), and have been shown to be related to kinematic (Mayville et al., 2005) features 

of movement.  Similar to other brain potentials, these slow potentials are thought to be 

cortical in origin because of their large signal amplitude recorded by surface EEG.  

However, the specific mechanisms underlying slow potentials are still largely unknown 

(see Birbaumer et al. (1990) for some theoretical explanations).  In discrete movements 

there are various types of pre-potentials (e.g. Bereitschaftspotential), potentials during 

movement (e.g. movement monitoring potentials), and post-potentials; all of which 

depend on the kinematics or kinetics of the movement and various cognitive factors (e.g. 
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attention) (Deecke et al., 1984).  To the best of our knowledge, the characteristics of slow 

potentials during rhythmic movements of the lower extremity have not been studied. 

In the current study, we recorded EEG from young, healthy adults performing 

discrete and rhythmic ankle movements.  We hypothesized that temporal profiles of 

movement-related slow potentials over the medial sensorimotor cortex would be similar 

for both rhythmic and discrete movements, but discrete movements would have 

additional pre- and post-potentials related to initiation and termination of movement.  

This would support the theory that rhythmic movements require a subset of the neural 

mechanisms observed during discrete movements (Schaal et al., 2004). 

 

2.2 METHODS  

2.2.1 Study Participants 

Ten young adults (5 male and 5 female) with an age range of 20 to 32 years old 

participated in this study.  All subjects were in good health and reported no history of 

neurological disease or injury.  Prior to participation, each subject provided written, 

informed consent.  All procedures were approved by the Institutional Review Board at 

Marquette University, in accordance with the Declaration of Helsinki (World Medical 

Association, 2008). 

 

2.2.2 Experimental Protocol 

Subjects sat upright at the end of a therapy table (Electro Medical, Marietta, GA) 

with their backs supported.  Their lower legs were free hanging at approximately 90
o
 of 

knee flexion and their ankles at a relaxed neutral position (Figure 2-1).   



21 

 
 

Figure 2-1: Experimental Setup.  Subjects sat on a therapy table with their lower legs 

free hanging.  Kinematic markers placed on the lower leg recorded right ankle 

movements.  A 64-channel active electrode EEG cap recorded neural signals throughout 

each movement trial. 

The experimental protocol consisted of rhythmic, discrete, and ballistic movement 

conditions with two, five-minute trials each.  During all trials, subjects moved their right 

ankle in a cyclic pattern starting from a relaxed position up to a comfortable dorsiflexion 

and back down.  For rhythmic movement trials, subjects continuously repeated this 

pattern at approximately 0.7 Hz.  Conversely, discrete movement trials included a self-

paced rest period between each movement of approximately 1 to 2 seconds.  During 

ballistic trials, subjects concentrated on the screen, and a green circle appeared for 100 

ms that served as an external visual cue to make a brisk dorsiflexion movement with a 

randomized intertrial rest period of 7 to 9 seconds. 
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To ensure kinematic consistency throughout the rhythmic and discrete trials, 

subjects matched their ankle movement with a virtual slider that moved up and down at a 

frequency of 0.7 Hz on a large screen, approximately two meters in front of them.  In 

order to reduce the influence of eye movement artifacts in the EEG signal, the slider was 

visible in a pattern of 5 seconds on and 30 seconds off, during which subjects fixated on a 

cross on the screen.  Data recorded during the on periods were excluded from the final 

analysis.  

 

2.2.3 Physiological Measurements 

During the experimental trials, a 64-channel active electrode actiCAP (Brain 

Products, Germany) continuously recorded EEG data.  The electrode positions of this cap 

conformed to the international 10-20 coordinate system with a reference at FCz and a 

ground at AFz (See Appendix A).  Experimenters placed the EEG cap on the subject‟s 

head so that the Cz electrode was at the vertex, in line with the prearticular points of each 

ear in the frontal plane and with the nasion and inion in the sagittal plane.  Each electrode 

site was hydrated using a syringe, blunted needle, and SuperVisc gel (Brain Products, 

Germany) in order to reduce the electrical impedance to a level below 10 kOhms between 

the electrode and the scalp surface.  Throughout the experimental session, EEG signals 

were amplified, sampled at 2000 Hz, and filtered from DC to 500 Hz using a Synamps
2
 

system (Neuroscan, Charlotte, NC), and recorded using the Neuroscan software, Scan 

4.5. 

Motion analysis and electromyography (EMG) were measured to characterize 

lower leg kinematics and muscle activation patterns throughout movement trials.  Vicon 
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MX3+ motion capture cameras (Oxford, UK) were used to identify the position of five 

reflective markers that were placed on the lateral side of the right knee, tibia, and ankle, 

along with markers placed over the midheel and second digit of the foot (Figure 2-1).  

Additionally, wireless Trigno
TM

 EMG sensors (Delsys, Boston, MA) measured muscle 

activation patterns of the right tibialis anterior (TA), medial gastrocnemius (MG), and 

soleus (SOL).  Vicon software sampled and recorded both the marker positions and EMG 

signals at 100 and 2000 Hz, respectively.  Finally, custom LabVIEW (National 

Instruments, Austin, TX) code produced the intermittent virtual movement slider, visual 

cues, and generated digital pulses recorded in both Vicon and Neuroscan to synchronize 

the timing of the movement and EEG data offline. 

 

2.2.4 Data Processing 

EEG Artifact Removal 

Initial processing steps removed noise and artifacts from the EEG signals using 

custom MATLAB scripts (2011a, The MathWorks, Natick, MA) and EEGLAB functions 

(version 12.0.0.0b) (Delorme & Makeig, 2004).  First, corrections applied to the raw data 

removed any DC offset and drift (third-order polynomial) using Scan 4.3 software 

(Neuroscan, Charlotte, NC).  Next, EEG data were referenced to a common average that 

included the reference electrode.  Then low frequency and power line noise were 

removed using a band-pass, FFT square filter from 0.2 to 100 Hz and notch-filter from 59 

to 61 Hz, respectively.  Finally, an Adaptive Mixture Independent Component Analysis 

(AMICA) (Palmer et al., 2008) was implemented to decompose signals for each trial into 

64 individual components, and then artifact components were identified for removal 
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using the ADJUST plugin (Mognon et al., 2010) to EEGLAB.  We found these 

processing steps suitable to remove the eye blink and other artifacts, yet conservative 

enough to maintain the movement-related slow potential amplitude.  Remaining 

components were back projected to the original EEG channel space for further analysis. 

 

Electromyography Processing 

Temporal processing of EMG data determined the max muscle activation during 

individual movement trials.  EMG amplitude was defined as the max value of the root 

mean squared (RMS) muscle activation.  To calculate the RMS EMG, first, band-pass 

filtering of the raw EMG data eliminated extraneous signal noise below 30 and above 200 

Hz (zero-phase, 4
th

-order, Butterworth).  Signals were then squared and smoothed using a 

50 ms sliding window with 25 ms padding of the first and last temporal values to retain 

the original signal length.  Finally, a square root transform was applied to the signals. 

 

Cycle Definition 

Characteristics of the temporal ankle angle profile identified the initiation and 

termination of individual movement cycles.  The angle between the three-dimensional 

vectors created by the heel to toe and ankle to knee markers defined the ankle angle at 

each point in time (See Appendix B).  After calculation of ankle angle, temporal angle 

profiles were upsampled from 100 Hz to 2000 Hz using linear interpolation to match the 

sampling rate of the recorded EEG.  Ankle angle data were then band-pass filtered 

(fourth-order, zero-phase, Butterworth) from 0.1 to 1.5 Hz to extract the main kinematic 
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movement pattern.  Finally, the data were inverted so that local maxima corresponded to 

peak dorsiflexion. 

For rhythmic trials, a cycle start point was identified as a position of relaxation 

(local minima), and a corresponding stop point was defined as the point before the 

subsequent start point.  For discrete and ballistic trials, start and stop points were 

calculated as one full width at half max (FWHM) distance before and after each 

maximum dorsiflexion (local maxima), respectively.  The difference between each max 

dorsiflexion and the previous baseline value defined the amplitude values for the FWHM 

calculation, where baseline values were the midpoint between the current and previous 

max dorsiflexion point (See Appendix C).  Start and stop point pairs, during rhythmic and 

discrete movements, that overlapped the five-second visual cueing periods were removed 

from further analysis. 

 

Temporal Processing 

Temporal averaging extracted movement-related slow potentials and muscle 

activation patterns time-locked to the movement cycles.  The EEG and EMG data of each 

trial were epoched into cycles from half a movement cycle before (-Half) each start point 

to half a movement cycle after (+Half) each end point.  For rhythmic movements, this 

range was defined from the previous to the subsequent max dorsiflexion point.  For 

discrete and ballistic movements, these points were defined as two FWHM before and 

after max dorsiflexion (See Appendix C).  Individual cycles were eliminated from further 

processing if the movement time or amplitude exceeded three standard deviations from 

their respective means.  Due to the variability in length, cycles were resampled to 2000 
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points and time warped to align the -Half, start, max dorsiflexion, stop, and +Half points 

(See Appendix D).  Position data, EEG, and EMG for the remaining movement cycles 

were averaged.  Due to consistency of amplitude and signal morphology, individual 

subject data were not normalized before creating grand average plots. 

 

Source Localization 

Cortical localization algorithms were used to determine the spatial distribution of 

current sources with the highest probability of producing the recorded EEG signals.  For 

all subjects, sources were modeled using the default anatomical template of the cortex 

derived from the MNI/Colin27 brain in Brainstorm software (Tadel et al., 2011).  The 

standard actiCAP electrode locations were fit to the scalp surface so that the Cz electrode 

was at the vertex.  The center electrode row in the sagittal plane (i.e. Fz, Cz, Pz) was 

situated on the midline between the nasion and inion and the center row in the frontal 

plane (i.e. C3, Cz, C4) with the prearticular points of the ears.  Since EEG is susceptible 

to geometrical approximations of the head, Brainstorm used boundary element modeling 

(BEM) to estimate the forward model (OpenMEEG) (Gramfort et al., 2010; Kybic et al., 

2005), and the inverse model was estimated by the depth-weighted minimum L2 norm 

estimator of cortical current density (Hämäläinen & Ilmoniemi, 1994).  Individual 

cortical projections were then averaged across cycles within each subject.  To maintain 

signal amplitude for group comparison between conditions, single subject projections 

were not normalized before creating grand average plots. 
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Power Spectral Analysis 

Two separate analyses of the EEG frequency spectrum were used to compare 

rhythmic, discrete, and ballistic movement types.  Data were filtered and artifact 

components from ICA decomposition were removed as previously described.  The first 

analysis examined changes in low delta frequency power (0.2 to 1 Hz), which used data 

from only one of the five-minute trials for each movement condition.  Within each trial, 

only the data during the off periods of visual cueing were used for the rhythmic and 

discrete trials.  The frequency spectrums were calculated for each EEG channel using 

Welch‟s method for estimating power spectral density (PSD).  Parameters for this 

estimate included data segmentation of 8192 points (4.096 seconds) with 50% overlap, 

and each segment was windowed with a Hamming window of the same length.  To 

ensure there were an equal number of segments (averages) per condition, times series for 

each condition were truncated to the shortest length of the three conditions.  For example, 

if the rhythmic condition had a time series of 5.1 minutes, the discrete 5.0 minutes, and 

ballistic 4.9 minutes, all EEG time series were truncated to 4.9 minutes. 

The second analysis examined power differences during the movement at 

frequencies above 1 Hz and excluded resting periods during discrete and ballistic 

conditions.  For all conditions, cycles were epoched from the start to end of each 

movement and concatenated to remove rest periods.  Data were subsequently high-pass 

filtered at 1 Hz (Butterworth, 8
th

-order, zero-phase) to remove low frequency content 

induced by concatenation.  As described previously, the data were then truncated to the 

shortest length of the three conditions and the PSD estimated for each EEG channel. 
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Subsequently, for both analyzes, total power for EEG frequency bands at each 

electrode location were calculated.  Power bands were split into the low delta (0.2 to 1 

Hz), high delta (1 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 12 Hz), beta (12 to 30 Hz), and 

gamma (30 to 50 Hz) and the total power per band was calculated using the trapezoidal 

method for discrete integration. 

Finally, for each frequency band, power differences at each electrode were 

calculated as the percent difference in power during the rhythmic movement task, using 

the discrete movement task as the baseline measurement.  Significant electrodes were 

identified using Student‟s t-tests (Student, 1908) to compare the subject distribution of 

percent change values to zero.  Multiple comparisons were corrected for using the false 

discovery rate (FDR) method (Benjamini & Hochberg, 1995) with an initial α value of 

0.05. 

 

2.3 RESULTS 

The aim of this study was to describe the activity of the sensorimotor cortex 

during rhythmic and discrete ankle movements.  For comparison, ankle kinematics were 

maintained between these trial types, and paired Student‟s t-tests confirmed no significant 

differences between the number of averaged cycles (p = 0.17) or mean cycle lengths (p = 

0.44).  Moreover, peak dorsiflexion during discrete movements was on average only 3
o
 

greater than rhythmic movements.  Additionally, the percent difference between 

conditions showed no correlation between EEG amplitude and TA EMG max amplitude 

(p = 0.11) or area (p = 0.17).  Therefore, we based the comparisons of EEG potentials on 

similar movements, with the dominant difference being the rhythmic or discrete nature of 
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the task.  Conversely, kinematic profiles and muscle activity during the ballistic trials 

were not controlled, as is the nature of this movement type. 

Temporal averaging of EEG revealed slow potentials time-locked to each of the 

three movement conditions (Figure 2-2).  The amplitudes of these movement-related slow 

potentials were largest over the medial sensorimotor cortex, confirmed by distributed 

source localization (Figure 2-3).  Discrete and ballistic movement trials produced a large 

underlying potentiation at the movement frequency (0.7 Hz) that is referred to hereafter 

as the movement frequency component or MFC1. 

 

 
 

Figure 2-2: Slow Potentials during Rhythmic, Discrete, and Ballistic Movements.  
Temporal averages of the EEG response (bottom) for a single representative subject (Sub 

1) (left) and the group average (right) over the medial sensorimotor cortex (Cz electrode) 

during ballistic (green), discrete (red) and rhythmic (blue) ankle movements.  Root mean 

square (RMS) EMG of the TA muscle is color matched to the movement type (top).  

Position of the ankle is denoted with a dotted black line, which is most positive at peak 

ankle dorsiflexion.  All movements are normalized in time to percent of the movement 

cycle.  The dorsiflexion period is indicated by the dark gray background, the relaxation 

period with a light gray background, and half a cycle preceding and following the 

movement is displayed with a white background. 
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Figure 2-3: Spatial localization of Movement-related Slow Potentials.  Cortical 

sources spatially localized to the medial sensorimotor cortex for both the rhythmic and 

discrete movement conditions.  Plots represent the dipole current density of the time-

averaged signal over a movement cycle.  The movement cycle for both a single 

representative subject (Sub 1) (left) and the group average (right).  For visual display, 

lower dipole current density thresholds were set at 50 pA m for the discrete trials (top) 

and 20 pA m for rhythmic trials (bottom) to highlight the local maxima. 

This component of the slow potential was comprised of positive pre- and post-

movement potentials and deflected negatively during the movement.  Though masked by 

a harmonic frequency, the timing of the negative peak MFC1 was approximated to be 

within 25% to 50% of the movement cycle.  This potential was absent or significantly 

reduced in the rhythmic movement trials, as shown by a significant decrease in amplitude 
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during dorsiflexion (F(1.3, 11.6) = 30.7, p < 0.0001, Greenhouse-Geisser Correction) 

(Figure 2-4). 

 
 

Figure 2-4: Local Negativity during Dorsiflexion.  This figure displays the average 

local minimum value of the EEG slow potential over the medial sensorimotor cortex (Cz 

electrode) during the dorsiflexion phase of movement in Figure 2-2.  Significance levels 

are denoted as * (p < 0.05) and *** (p < 0.0005).  Error bars denote the standard 

deviation across subjects.  

Additionally, a secondary component (MFC2) at twice the movement frequency 

(1.4 Hz) was evident in the averaged trials.  This component modulated similarly 

between all movement conditions and with approximately the same amplitude between 

the three conditions (Figure 2-5).  Negative potentials were present during the transition 

phases of the movement, with a positive deflection observed during the period of TA 
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muscle relaxation.  The similarity of this potential between the conditions was 

accentuated by high-pass filtering of the EEG signal at 1.0 Hz, above the movement 

frequency (0.7 Hz), to remove the slow, movement-frequency fluctuation. 

 

 

Figure 2-5: Second Harmonic of the Fundamental Movement Frequency.  Group 

average of the EEG slow potentials during each movement type over the medial 

sensorimotor cortex (Cz electrode) high-pass filtered at 1.0 Hz.  Filtering the slow 

potential responses above the movement frequency (0.7 Hz) demonstrates the similarity 

of the second harmonic signal, MFC2, between the rhythmic and discrete trials. 

Comparison of power between rhythmic and discrete movements revealed a 

localized reduction in delta frequency power for rhythmic movements (Figure 2-6). 

Differences in delta frequency power exhibited a greater reduction in low delta power 

(0.2-1 Hz) than high delta power (1-4 Hz).  This was consistent across subjects with an 

average decrease in low and high delta power of 46% and 16%, respectively.  This 

localized reduction in EEG power was observed over the medial sensorimotor cortex 
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(approximately the Cz electrode), and it dissipated from that point outward.  No other 

significantly different electrodes were noted in any other frequency band. 

 

 
 

Figure 2-6: Percent Signal Change of Delta Frequency Power.  2-D surface maps of 

low delta (0.2 to 1 Hz) and high delta (1 Hz to 4 Hz) frequency bands expressed in 

percent power change for rhythmic relative to discrete movement trials.  A localized 

negativity in the medial sensorimotor cortex was apparent in both a single representative 

subject (Sub 1) (left) and the group average (right).  These maps (both single subject and 

group average) display only the percent change in power for the statistically significant 

electrodes (white in the group average).  Peripheral electrodes were removed for display 

and were not significant. 
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2.4 DISCUSSION 

Results from this study demonstrated that the cerebral cortex is continuously 

involved in lower extremity rhythmic movements.  In all movement conditions, slow 

potentials recorded over the medial sensorimotor cortex established continuous neural 

activity time-locked to the movement.  Though slow potentials related to rhythmic and 

discrete movements were similar, an attenuation of the fundamental movement frequency 

component, MFC1, was a unique feature of rhythmic movements.  Therefore, we believe 

that the control mechanisms of rhythmic movements are a subset of those associated with 

discrete movements. 

Cortical slow potentials during rhythmic movements produce spatiotemporal 

characteristics similar to discrete movements.  In this study, slow potentials of all 

movement types spatially localized to the medial sensorimotor cortex with comparable 

temporal profiles.  These results are supported by previous reports of similar slow 

potential profiles that are observed during discrete wrist (Grünewald-Zuberbier & 

Grünewald, 1978) and finger (Mayville et al., 2005) movements.  During movement, we 

described these slow potentials in terms of two unique components, MFC1 and MFC2.  

The first of these components was the fundamental movement frequency potential, 

MFC1, as it oscillated once per movement cycle.  This component produced 

perimovement positivities and a max negativity during the dorsiflexion phase of 

movement.  The second component, MFC2, was a harmonic of MFC1, at twice the 

movement frequency.  This component was most prominent during movement and 

characterized by negativities during transition phases of movement and positivity near 
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peak dorsiflexion.  Though both the MFC1 and MFC2 components exist in rhythmic and 

discrete movements, their relative proportions appear to be different.  

The amplitude of the fundamental movement frequency component differentiates 

rhythmic and discrete movements.  Visually, the perimovement potentials and larger 

negativity apparent in the temporal traces of discrete movements are absent or highly 

attenuated in rhythmic movements (Figure 2-2).  This is supported by the localized 

attenuation of low delta power over the medial sensorimotor cortex (Figure 2-6).  In 

contrast, the MFC2 component is similar between rhythmic and discrete slow potentials 

(Figure 2-5).  Movement-evoked magnetic fields also reveal similar components during 

discrete finger movements at different rates (Mayville et al., 2005).  As the rate of 

movement increases, the MFC1 potential decreases in amplitude, but the amplitude of the 

MFC2 remains constant.  Therefore, the MFC1 is likely associated with the initiation and 

termination of individual discrete movements, as they differentiate the movement 

conditions.  Additionally, the MFC2 is likely associated with the movement kinematics or 

muscle activation, which is consistent between both conditions.  

The attenuation of the MFC1 component coupled with the similar MFC2 

component supports the hypothesis that rhythmic movements are a subset of discrete 

movements.  Therefore, the components of rhythmic movements may be contained or 

shared by the larger set of discrete components.  Observed in this study, discrete 

movements share the MFC2 component with rhythmic movements, but additionally have 

the MFC1 component, most probably due to initiation and termination of movement.  

Though this study focuses on the temporal aspects of the neural processing, this same 

idea has been shown spatially using fMRI in the upper extremity (Schaal et al., 2004).  
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Together, these data suggest a high cortical influence on rhythmic movements that is 

similar temporally and spatially to discrete movements and the theory that discrete 

movements are aborted rhythmic movements.  These results contradict the idea that 

rhythmic movements are a concatenation of discrete movements, since the added 

temporal traces would not equal the rhythmic signal.  While it is possible that separate 

neural processes control rhythmic and discrete movements, the high degree of overlap 

suggests otherwise. 

All together, these results suggest continuous involvement of the sensorimotor 

cortex in the production of lower extremity rhythmic movements.  Moreover, the control 

mechanisms of lower extremity rhythmic and discrete movements appear similar, though 

discrete movements require additional cortical activity to initiate and terminate each 

individual movement.  However, due to the poor spatial resolution of EEG recordings, it 

is still unknown whether the observed movement-related slow potentials represent motor, 

sensory, or mixed cortical activity.  Future experimentation will use passive and active 

movements to explore the cortical origins of these potentials.  
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CHAPTER 3: UNIQUE MOVEMENT-RELATED SLOW POTENTIALS 

OF THE SENSORY AND MOTOR CORTICES DURING RHYTHMIC 

MOVEMENTS OF THE ANKLE 

3.1 INTRODUCTION 

The individual roles of the human sensory and motor cortices in the perpetuation 

of rhythmic movements of the lower extremities are still unknown.  In lesser mammals, 

spinal reflexes and networks are alone sufficient to elicit lower extremity rhythmic 

movements (For a review, please see Frigon, 2012).  However, the disruption of the 

supraspinal drive to the spinal cord results in greater impairments to human locomotion 

(Dietz et al., 1995).  In a previous experiment, we observed movement-related slow 

potentials of human sensorimotor cortex are time-locked to both rhythmic and discrete 

movements, as evidenced by the spatiotemporal characteristics of movement-related slow 

cortical potentials (Chapter 2).  However, the individual contributions of the sensory and 

motor cortices to the slow potentials were difficult to differentiate because of the 

contemporaneous afferent and efferent cortical activities. 

One method used to decouple the individual sensory and motor cortical 

contributions to movement is the comparison of neural responses elicited by active and 

passive movements (Guzzetta et al., 2007; Mehta et al., 2012; Mima et al., 1999; Onishi 

et al., 2013).  Here, neural imaging has been used in conjunction with a predetermined 

single- or multi-joint kinematic pattern held constant for all movement trials.  During 

active trials, subjects produce volitional movements that elicit neural activity associated 

with both the motor drive to the muscles and the sensory feedback to the brain.  

Conversely, subjects are moved through the same kinematic pattern during passive trials, 

which primarily emphasizes the sensory component of the movement.  Finally, the 
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difference in neural activities observed during the active and passive conditions describes 

the motor or volitional component of the movement.  

Multiple studies have used active and passive movements together with various 

imaging modalities to study the sensory and motor contributions to rhythmic movements 

of the lower extremities.  Positron emission tomography (PET) (Christensen et al., 2000) 

and functional magnetic resonance imaging (fMRI) (Mehta et al., 2012) during pedaling 

indicate similar areas of activation in the medial sensorimotor cortex and cerebellum 

during active and passive movements.  These imaging modalities have better spatial 

compared to temporal resolution that provides precise localization of the movement-

related neural activity in the brain.  However, imaging modalities such as PET and fMRI 

have poor temporal resolution required to observe the underlying cortical dynamics. 

These temporal profiles of neural activity during rhythmic leg movements have 

been documented using electroencephalography (EEG) and magnetoencephalography 

(MEG).  For example, modulations in alpha and beta power time-locked to the movement 

cycle during pedaling (Swedler, 2012) and walking (Gwin et al., 2011; Wagner et al., 

2012), and repetitive patterns of movement-related slow potentials during stepping 

(Wieser et al., 2010) and pedaling (Jain et al., 2012).  However, EEG and MEG have 

poor spatial resolution and can only give general areas of cortical excitation.  Together, 

however, these studies demonstrate distinct localization of lower extremity movements 

and modulations of cortical activity during movement cycles.  Though, the movement 

types in these studies are complex and require multiple joint and muscle coordination and 

sometimes balance, so cortical responses are likely as complex as the tasks themselves. 
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In order to examine the individual roles of the sensory and motor cortices in the 

perpetuation of rhythmic movements, we chose to use a simplified unilateral, cyclic ankle 

movement task.  Movement-related slow potentials and changes in neural power were 

recorded with EEG, and we examined the changes in cortical contributions to factors of 

volition, attention, and frequency of ankle movement.  We hypothesized that unique 

sensory and motor slow potentials could be identified during rhythmic ankle movements. 

 

3.2 METHODS 

3.2.1 Study Participants 

Ten young adults (five male and five female) ranging in age from 20 to 32 years 

old participated in this study.  Subjects were all in good health and reported no history of 

neurological or orthopedic injury or disease that would inhibit normal ankle movement.  

We informed all subjects of the experimental procedures, and they provided written 

consent to participate in this study.  The procedures and consent documentation were 

approved by the Institutional Review Board at Marquette University and were in 

accordance with the Declaration of Helsinki (World Medical Association, 2008). 

 

3.2.2 Robotic Ankle Device 

Throughout the experimental session, subjects sat upright on a therapy table 

(Electro Medical, Marietta, GA) with their right knee at approximately 25 degrees of 

flexion and their right foot in a custom robotic device (Figure 3-1).  The ankle robot 

contained a servomotor (Kollmorgen, Radford, VA), an inline torque load cell (S. 

Himmelstein and Company, Hoffman Estates, IL), and a custom ankle brace. 



40 

 
 

Figure 3-1: Experimental Setup.  Subjects sat comfortably on a therapy table with their 

right foot in a robot device and a computer monitor in front of them.  A barrier was 

placed on the bottom and left side of the monitor to remove any visual feedback of the 

leg or robot movement.  During all experimental conditions, EEG, lower leg EMG, ankle 

torque, and ankle position were recorded.  

Experimenters aligned the brace so that the center of rotation of the motor and sagittal 

plane rotation of the ankle were on the same axis.  Rotation of the ankle robot was 

velocity controlled by custom LabVIEW code (National Instruments, Austin, TX), and 

the information from a digital position encoder attached to the robot allowed for online 

corrections of the velocity profile to prevent angular drift.  Finally, to ensure the safety of 

all experimental subjects, mechanical, electrical, and software stops ensured ankle 

movement only within a comfortable range of motion.  As an additional safety measure, 
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subjects held an emergency stop button to use at any time throughout the experimental 

session. 

 

3.2.3 Experimental Protocol 

Prior to the main protocol, subjects performed maximum voluntary contractions 

(MVCs) during cyclic ankle movements at 0.7, 1.0, and 1.3 Hz.  While performing 

MVCs, subjects assisted the robot with maximal force during only the dorsiflexion phase 

of four consecutive movement cycles.  Additionally, subjects remained relaxed during 

four passive movement cycles that measured the resting baseline electromyography 

(EMG) at each of the three movement frequencies.  The MVC EMG values for the right 

tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL) muscles were 

defined as the difference between the maximum amplitude of the root mean squared 

(RMS) EMG and mean resting baseline values. 

The main protocol for this experiment consisted of 12 unilateral movement trials 

of the right ankle.  During each trial, the robotic device, described previously, rotated the 

ankle 200 times in a cyclic pattern between 0 and 35 degrees of plantar flexion.  Trials 

included the combinations of three factors: Volition (active and passive conditions), 

Attention (focused and distracted conditions), and Movement Frequency (0.7, 1.0, and 

1.3 Hz).  During the active condition, subjects assisted the robotic device during only the 

dorsiflexion phase of movement, and the experimenter gave verbal feedback to keep the 

muscle activation produced for each cycle between 10% and 30% of their speed-specific, 

TA MVC EMG value.  Conversely, subjects completely relaxed during the passive trials.  

During the focused trials, subjects were instructed to fixate on a monitor in front of them 
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and to mentally stay focused on the ankle movements.  The experimenter gave a verbal 

instruction to “please stay focused” intermittently throughout each trial.  During the 

distracted trials, subjects watched a TV show on the same monitor.  Additionally, a 

barrier was placed within the subject‟s line of vision, extending from the bottom and left 

side of the monitor toward the subject to remove any visual feedback of right ankle 

movement (Figure 3-1).  Finally, each experimental session concluded with a slow 

passive movement and inertial trial for offline torque calibration (Steldt & Schmit, 2004). 

 

3.2.4 Physiological Measurements 

During all trials, an active electrode actiCAP (Brain Products, Germany) recorded 

EEG from 64 scalp locations.  The cap placement procedure and electrode locations were 

similar to those reported in the second chapter of this dissertation.  Briefly, electrodes 

aligned to the international 10-20 system were hydrated to impedances below 20 kOhms 

using SuperVisc Gel (Brain Products, Germany).  Analog EEG signals were further 

amplified, filtered from 0.3 to 200 Hz with a Synamps
2
 system (Neuroscan, Charlotte, 

NC), and sampled at 1000 Hz in Scan 4.5.  EMG signals were collected from the tibialis 

anterior (TA), medial gastrocnemius (MG), and soleus (SOL) muscles with the Trigno 

wireless EMG system (Delsys, Boston, MA).  Additionally, sagittal plane ankle torque 

and angular position were measured using an inline torque load cell and a digital encoder 

(US Digital, Vancouver, WA), respectively, both mounted on the custom robotic device.  

Analog signals of position, torque, and EMG were anti-alias filtered below 500 Hz using 

custom hardware, sampled at 1000 Hz by a data acquisition system (PCI-06071E, 

National Instruments, Austin, TX) and recorded using custom LabVIEW software.  
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Lastly, analog square waves were used as triggers to indicate each cycle and were 

recorded in both LabVIEW and Neuroscan software to synchronize data offline.  

 

3.2.5 Data Processing 

EEG Artifact Removal 

Preprocessing was performed in a similar manner as described in the second 

chapter of this dissertation.  In summary, artifacts were removed from EEG data using 

custom MATLAB scripts (The MathWorks, Natick, MA) and functions from EEGLAB 

(12.0.0.0b) (Delorme & Makeig, 2004).  EEG data were re-referenced to a common 

average that retained the reference (FCz) electrode.  To remove low frequency drift, 

signals were filtered from 0.5 to 100 Hz using an FFT square filter.  Additionally, line 

noise was removed using a 4
th

 order, zero-phase, Butterworth notch filter from 59 to 61 

Hz.  Signals from each trial were independently decomposed using an Adaptive Mixture 

Independent Component Analysis (AMICA) (Palmer et al., 2008) and components were 

identified for removal using the ADJUST plugin to EEGLAB (Mognon et al., 2010).  

 

Additional Analog Signals Preprocessing 

Custom MATLAB code was written for initial processing steps of the analog 

position, torque, and EMG signals.  Motor position and torque signals were converted 

from voltage to degrees and newton meters, respectively, using linear calibration 

coefficients empirically derived previous to the experiment, and low-pass filtered at 5 Hz 

(Butterworth, zero-phase, 4
th

 order).  Additionally, torque signals were adjusted to 

account for the inherent torque of the ankle brace (Steldt & Schmit, 2004).  EMG 
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recordings were band-pass filtered from 30 to 200 Hz (Butterworth, zero-phase, 4
th

 order) 

and, the RMS values were calculated using a 50 ms sliding window with 25 ms padding 

of the first and last points to their respective ends to preserve signal length.  

 

Temporal Processing 

Neural activity time-locked to each movement trial was extracted by means of 

temporal cycle averaging.  EEG, EMG, and position data were epoched into single cycles 

starting at peak dorsiflexion.  Cycles with excess noise in the EEG signal were 

statistically identified and eliminated from further analysis by the pop_autorej function in 

EEGLAB with maximum epoch rejection rate of 5% and initial probability threshold of 

three standard deviations.  Epoched data were averaged across cycles to produce 

estimated mean signals of the EEG, EMG, and position.  Finally, EEG and EMG 

amplitude values for each electrode were defined as the difference between the maximum 

and minimum values over the average cycle. 

 

Source Localization 

Localization of the cortical source distribution was approximated for each trial in 

Brainstorm software (Tadel et al., 2011) on a default cortical template derived from the 

MNI/Colin27 brain.  Electrode locations were registered to the scalp surface so that the 

Cz electrode was over the vertex, the midline electrodes (e.g. Fz, Cz, Pz) were in line 

with the sagittal plane between the nasion and inion, and the central lobe electrodes (e.g. 

C3, Cz, C4) were situated between the prearticular points of the ears.  In Brainstorm, a 

boundary element model (BEM) approximation of the forward model was calculated 
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using the OpenMEEG (Gramfort et al., 2010; Kybic et al., 2005) plugin, and the inverse 

model was estimated by the min L2 norm estimator of cortical current density 

(Hämäläinen & Ilmoniemi, 1994).  Individual source localization maps were then 

averaged across cycles for each trial.  Finally, grand average maps were produced by 

averaging the current density maps of the ten subjects.  Spatial localization plots in all 

figures are the time-averaged localization across the whole movement cycle or the 

average current density across movement cycle for each point on the cortex.  

 

Power Spectral Analysis 

Neural power in each of the traditional EEG bands (i.e. delta, theta, alpha, beta, 

and gamma) was calculated for each electrode within each trial (electrode/trial pair) using 

Welch‟s method for power spectral density (PSD) estimation.  After filtering and artifact 

removal, as previously described, remaining cycles for each electrode/trial pair were 

concatenated in time.  Since the trial time was shortest for the 1.3 Hz conditions, 

approximately 2 minutes (123.4 s, 123,040 points) of data was used for each trial.  Trial 

data were then divided into 2048-point (2.048 s) segments with 50% overlap, which 

resulted in approximately 120 segments, and each segment was filtered using a Hamming 

window of the same length.  The PSD of the electrode/trial pair was estimated by 

calculating individual spectrums for each segment with a frequency resolution of ~0.49 

Hz and averaging across segments.  Spectral averages were then split into delta (0.5 to 4 

Hz), theta (4 to 8 Hz), alpha (8 to 12 Hz), beta (12 to 30 Hz), and gamma (30 to 50 Hz) 

bands, and the total power per band was calculated using the trapezoidal method for 

discrete integration. 
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Analysis of Variance for EEG Amplitudes and Band Power 

Conditional differences in mean EEG amplitude and individual band power were 

calculated independently using repeated measures Analysis of Variance (ANOVA).  For 

each electrode, the repeated measures ANOVA included a dependent variable of slow 

potential peak-to-peak amplitude or power in one of five bands (delta, theta, alpha, beta, 

or gamma) and three independent factors of Attention, Volition, and Movement 

Frequency.  The assumption of sphericity was adjusted for by finding the average of the 

Greenhouse-Geisser and Huynd-Feldt corrections (Stevens, 2009), and a significance 

value was set at α = 0.05.  Type I error was constrained by only considering significant 

clusters of two or more adjoining electrodes.  See Appendix A for a map of electrode 

locations.  Spatial plots were created to map the percent signal change at each electrode 

location of the within-factor conditions and normalized (multiplied) by the partial eta 

squared value, a measure of intrasubject effect size (variance explained) by each factor or 

interaction.  Baseline conditions for the Attention, Volition, and Movement Frequency 

factors were the distracted, passive, and 0.7 Hz conditions, respectively. 

 

Analysis of Variance EMG Amplitudes 

Consistency of EMG amplitude within Attention and Movement Frequency 

conditions was calculated using a repeated measures ANOVA.  The set of peak RMS 

EMG values for the TA muscle was the dependent variable in this analysis.  A two-way, 

repeated measures ANOVA was used to calculate the likelihood that EMG amplitudes 

were different between levels of the Attention and Movement Frequency conditions.  
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This analysis was run on only the active movement trials.  The assumption of sphericity 

was again adjusted for by finding the average of the Greenhouse-Geisser and Huynd-

Feldt corrections (Stevens, 2009), and a significance value was set at α = 0.05. 

 

Beta Power Modulation and Slow Potential Correlation 

The cross correlation of the beta power modulation and movement-related slow 

potential temporal profiles was calculated to reveal any temporal relationship between the 

two phenomena.  After initial artifact removal, EEG signals at each electrode location 

were band-pass filtered from 12 to 30 Hz (Butterworth, 6
th

 order, zero-phase), RMS 

transformed, epoched into cycles, and averaged for each movement condition.  The cycle 

amplitude of the beta modulation was calculated as the difference between the maximum 

and minimum value of the averaged response across a cycle.  The maximum correlation 

value between the beta power modulation and movement-related slow potential responses 

was calculated at each electrode location.  A three-factor, repeated measures ANOVA 

was run to determine if the effects of Volition, Attention, and Movement Frequency had 

an effect on the amplitude measure of the beta power modulations. 

 

3.3 RESULTS 

The primary aim of this study was to improve understanding of the role of sensory 

and motor cortices in the control of lower extremity rhythmic movements.  Our analysis 

focused on characteristics of movement-related slow potentials as a probe to identify the 

cortical activity elicited by different levels of Volition, Attention, and Movement 

Frequency.  Additionally, we used source localization to determine the areas of cortical 
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activation produced by these slow potentials and examined factor-specific changes of the 

EEG power spectrum.  Lastly, we explored the temporal relationship between the beta 

power modulations and movement-related slow potentials. 

 

 
 

Figure 3-2: Slow Potentials of the Medial Sensorimotor Cortex (Sub 2).  Slow 

potentials observed over the motor (FCz) and sensory (CPz) cortices during rhythmic 

ankle movement.  Each plot displays three cycles (gray) of Volition/Attention 

combination at 0.7 Hz movement frequency.  Background shading indicates each 

dorsiflexion (dark) and plantar flexion (light) phase of each cycle.  During active 

dorsiflexion, there is a distinct potential in the FCz electrode (blue) that is absent during 

passive movement.  Additionally, the CPz electrode (green) shows a reduction in peak-to-

peak amplitude, but appears to retain a similar temporal profile during passive 

movements. 
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3.3.1 Temporal Slow Potential Profiles and Spatial Localization 

Temporal averaging of EEG revealed two unique slow potentials time-locked to 

the ankle movement cycle for all experimental conditions.  The first potential appeared to 

track, but slightly lag, the position of the ankle during the movement.  This potential was 

prominent during the active condition in the more posterior electrode along the midline, 

CPz (Figure 3-2).  The second characteristic potential appeared during the dorsiflexion 

phase of the active condition, and was more prominent in the more frontal electrode over 

the midline, FCz.  During passive movements, these potentials were similar or smaller in 

amplitude compared to the active condition at 0.7 Hz.  Group averages for all movement 

conditions demonstrated similar results as the representative subject (Figure 3-3).  

Moreover, these slow potentials consistently localized to the medial sensorimotor cortex 

(Figure 3-4) and this was similar across all subjects (Figure 3-5).  The group average 

more clearly shows that during active movements both the sensory and motor cortices 

appear active.  However, only the sensory cortex appears active during passive 

movements.  
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Figure 3-3: Group Average Slow Potentials of the Medial Sensorimotor Cortex.  
Group representation of slow potentials over the medial sensorimotor cortex during 

continuous movement of the ankle, similar to Figure 3-2. 
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Figure 3-4: Slow Potential Localization for a Single Subject (Sub 2).  Single subject 

representation of the time-averaged, source localization for the slow potentials during 

rhythmic ankle movement.  Each plot represents one of the four Volition/Attention 

combinations at a Movement Frequency of 0.7 Hz.  For visualization, only values above 

a threshold of 35 pA m were displayed for all conditions. 
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Figure 3-5: Group Average Slow Potential Cortical Localization.  Group average 

plots of the slow potential localization in the medial sensorimotor cortex for each the four 

Volition/Attention task combinations at a Movement Frequency of 0.7 Hz.  These plots 

represent the time-averaged dipole current density over a movement cycle.  Similar 

localization maps were also observed at the 1.0 Hz and 1.3 Hz movement frequencies.  

For visualization, only values above a threshold of 14 pA m were displayed for all 

conditions. 

 

Because of the medial source localization near the vertex, the FCz and CPz 

electrodes (See Appendix A) were chosen to describe the motor and sensory cortical 

activity, respectively.  This decision was based on the following knowledge of anatomy 

and physics.  First, the ankle area of the sensorimotor cortex is known to be deep in the 

longitudinal fissure, under the midline electrodes near the vertex.  Second, signals from a 

deep origin produce weaker, but more diffuse, electrical potentials at the scalp surface, 
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because electric fields broaden and dissipate as the distance from their center increases.  

Therefore, it is believed that all the electrodes along the midline are of mixed origin 

(sensory and motor), but in different proportions.  This suggests that the FCz electrode 

has the largest proportion of motor to sensory activity as it is frontal to the primary motor 

cortex and further from the sensory cortex.  Similarly, the CPz electrode would have the 

largest proportion of sensory to motor activity, as it is posterior to the primary sensory 

cortex. 

 

3.3.2 Attention 

Effects of Attention were evident in both changes of slow potential amplitude and 

theta power.  Specifically, there were reductions in theta power bilaterally over the 

temporal and occipital lobes, during the focused compared to the distracted conditions 

(Figure 3-6a).  During only the active conditions, there were greater slow potential 

amplitudes during the focused conditions along the frontal midline that dissipated over 

the right frontal lobe (Figure 3-6b).  This was also observed in the temporal traces of the 

FCz slow potentials (Figure 3-3), and was more apparent in the single subject 

representation (Figure 3-2). 

 

3.3.3 Movement Frequency 

Movement Frequency had opposite effects on the amplitude of medial anterior 

(motor cortex) and posterior (sensory cortex) electrodes.  Slow potential amplitudes 

during both active and passive movements were proportional to the frequency of 

movement in the more frontal electrode, FCz, along the midline with a significant linear 
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contrast, p = 0.036 (Figure 3-7a).  For FCz, a significant linear contrast suggests that as 

the movement frequency was increased, there was a linear increase in the slow potential 

amplitude during both the active and passive movements.  This was in contrast to the 

slow potential amplitudes in the more posterior electrode, CPz, along the midline and 

adjacent contralateral electrodes.  Slow potentials in CPz were inversely proportional to 

the frequency of movement during the active condition (Figure 3-7b). 

 

 
 

Figure 3-6: Effects of Attention on Slow Potential Amplitudes and Theta Power.  
Theta power is reduced over large areas of temporal and occipital lobes during the 

focused task (a).  During active movements, there is an increase in slow potential 

amplitudes over the right frontal lobe including the FCz electrode (b).  Amplitude is 

measured in percent signal change from lowest (0.7 Hz) to highest (1.3 Hz) frequency 

with the slowest frequency as the baseline and is normalized (multiplied) by the effect 

size of the factor for each electrode.  White electrodes indicate significance (α = 0.05, 

cluster ≥ 2). 
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Figure 3-7: Effects of Movement Frequency on Slow Potential Amplitudes.  Left: 

Main effect of the FCz electrode slow potential amplitude is proportional with the 

movement frequency.  Right: During active movements, amplitude of the slow potential 

is inversely proportional with the movement frequency for contralateral areas over the 

medial sensory cortex.  Amplitude is measured in percent signal change with the slowest 

movement frequency (0.7 Hz) as the baseline and is normalized (multiplied) by the effect 

size of the factor for each electrode.  White electrodes indicate significance (α = 0.05, 

cluster ≥ 2).  

3.3.4 Volition 

Signal power the alpha and the beta bands were attenuated during the active 

condition in comparison to the passive condition.  Significant decreases in alpha and beta 

power occurred over the lateral area of contralateral sensorimotor cortex (Figure 3-8).  

Moreover, there was a significant decrease in Beta power over the lateral ipsilateral 

sensorimotor cortex, but to a lesser extent than the contralateral side.  No significant 

change over the midline was observed.  
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Figure 3-8: Effects of Volition on Alpha and Beta Power.  Alpha power (left) and beta 

power (right) decreased during active movements over contralateral (left hemisphere) 

areas of the sensorimotor cortex.  Additionally, beta power (right) decreased in a 

symmetrical location over the ipsilateral (right hemisphere) sensorimotor cortex, but to a 

lesser degree.  No significant change in alpha or beta power was observed over the 

midline.  Amplitude is reported in percent signal change with passive movement as the 

baseline and is normalized (multiplied) by the effect size of the factor for each electrode.  

White electrodes indicate significance (α = 0.05, cluster ≥ 2). 

3.3.5 Electromyography Attention & Movement Frequency 

The EMG amplitudes were found to differ between each of the Attention and 

Movement Frequency conditions.  Results of the repeated measures ANOVA 

demonstrated that during focused trials, the EMG was higher when compared to 

distracted trials (F(1,9) = 5.74, p = 0.04).  Moreover, as the frequency of movement was 

increased, there was a proportional increase in the EMG amplitude (F(2,18) = 6.28, p = 

0.01).  There were no significant differences in EMG amplitudes during passive trials.  
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3.3.6 Beta Power Modulation and Correlation with Slow Potentials 

Results of the repeated measures ANOVA revealed a significant increase in beta 

power modulation amplitude for the factors of Attention (F(1,8) = 5.37, p = 0.049) and 

Volition (F(1,8) = 5.70, p = 0.044) over the medial motor cortex.  Though not significant, 

there was a similar trend in the amplitude increase of the beta power modulations 

proportional to the Movement Frequency (Figure 3-9).  Moreover, there was a diffuse 

and significant decrease in power in over half of the electrodes at higher movement 

frequencies, including CPz and Cz. 

 

 
 

Figure 3-9: Effect of Movement Frequency on Beta Frequency Modulation 

Amplitude.  Left: Significant decreases in amplitude for the beta power modulation over 

much of the cortex, except the medial motor cortex at increased movement frequencies.  

Amplitude is measured in percent signal change with the slowest movement frequency 

(0.7 Hz) as the baseline and is normalized (multiplied) by the effect size of the factor for 

each electrode.  White electrodes indicate significance (α = 0.05, cluster ≥ 2).  Right: 

Amplitude of beta frequency modulation at 0.7, 1.0, and 1.3 Hz for the CPz, Cz, and FCz 

electrodes. 

Beta power modulations and movement-related slow potentials correlated most 

highly over the medial sensorimotor cortex, specifically over the CPz and Cz electrodes 
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and decreased outwardly.  This localization is depicted in Figure 3-10 at 0.7 Hz with the 

temporal profile recorded over the CPz electrode.  We also observed that on average the 

slow potentials lagged the beta power modulations, but the timing was variable.  

However, the localization and temporal lag were consistent across all movement 

frequencies. 

 

 
 

Figure 3-10: Correlation of Beta Frequency Modulations and Slow Potentials.  Left: 

Grand average of the max cross correlation values of beta frequency modulations and 

slow potentials at each electrode location at 0.7 Hz.  Right: Grand average temporal 

traces at 0.7 Hz of the slow potentials (green) and beta frequency modulations (x200) 

(violet) recorded over the CPz electrode.  The ankle movement move profile is denoted in 

black.  The background colors denote dorsiflexion (dark gray) and planter flexion (light 

gray). 

3.4 DISCUSSION 

Results from this study provided additional evidence in humans that both the 

sensory and motor cortices are involved in rhythmic movements of the lower extremities.  

Distinctive temporal patterns of movement-related slow potentials provide evidence that 

both cortices are active and unique in their contribution to movement control.  



59 

Additionally, the factors of Attention and Movement Frequency had effects localized to 

the medial motor and/or sensory areas of the cortex, though these results could be related 

to changes in EMG amplitude.  Finally, beta modulations, which are commonly 

associated with motor tasks (Kilavik et al., 2013), had a temporal correlation with 

movement-related slow potentials. 

Concurrent changes in movement-related slow potentials and EMG amplitudes 

gave insight into the relationship of the cortical and muscle activity during volitional 

tasks.  During the active condition, the amplitudes of slow potentials over the motor 

cortex and EMG were both proportional to the movement frequency.  Similar increases in 

neural activity in the medial areas of the motor cortex have been shown in both fMRI 

(Mehta et al., 2012) and PET (Christensen et al., 2000).  Interestingly, the opposite effect 

was recorded over the sensory cortex.  That is to say, as the EMG and motor cortical 

activity increased, the sensory cortical activity decreased.  This is consistent with the 

theory of sensory gating (Jones et al., 1989),where the motor cortex „gates‟ or attenuate 

the afferent sensory signal to the cortex when producing a volitional command. 

 During passive movements, however, the EMG and EEG slow potentials 

amplitudes were not proportional to each other.  As expected, during passive movements, 

the amplitudes of the movement-related slow potentials of the sensory cortex were 

similar, indeterminate of the attentional state or movement frequency.  This was in accord 

with the EMG amplitudes for all conditions which were near zero and never significantly 

different from each other.  Similarly, the motor cortex showed no change with attention 

during passive movements.  However, the motor cortex did show an increase during 

passive movements with increasing frequency.  That is to say, as we increased the 
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frequency of the passive ankle movement, there was no change in EMG activation or in 

sensory cortical activity; however, there was an increase in slow potential amplitude 

recorded.  It is interesting to note that the slow potential amplitude was larger as the 

EMG became more continuous.  In the lowest frequency movement, the EMG was 

discrete in nature with times of no activation (Figure 3-3).  However, the 1.0 Hz and 1.3 

Hz movements had increasingly less time between each EMG contraction.  The 

continuous EMG contraction that never goes back to rest could be one reason for the 

increased motor activity.  In addition, though the amplitudes at these higher frequencies 

of the motor cortex between the active and passive conditions were not significantly 

different, the temporal morphology was different.  Specifically, FCz peaked earlier 

during active movements compared to passive ones.  The passive movement slow 

potentials of the motor cortex appeared to peak at a similar time with the sensory signals.  

We believe that the earlier peak in the slow potential amplitude is similar to the peak seen 

at the 0.7 Hz condition, but is masked by the passive component. 

Increased attention reduced theta power over temporal and occipital lobes.  The 

changes in theta power recorded over the bilateral, temporal cortices and over the 

occipital cortex are likely results of auditory and visual stimulation, respectively, that the 

subjects received while watching the television show.  It is hypothesized this decrease 

was due to desynchronization of normal rhythmic oscillations of theta rhythms in these 

areas of the cortex during the focused conditions.  

Additionally, there was a reduction in alpha and beta power during the active 

conditions over the lateral sensorimotor cortex.  The largest percent change was observed 

over the ipsilateral cortex in the alpha band.  The beta band decrease was symmetric over 
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lateral areas of the sensorimotor cortex.  However, it was more negative over the 

contralateral side.  This response has been observed previously during bilateral pedaling 

(Jain et al., 2013) and unilateral and bilateral wrist movement (Formaggio et al., 2013).  

Interestingly, this same response here during unilateral, lower extremity movements was 

also bilateral and lateral in location, which is not what would be expected.  Possibly this 

is a result of subcortical activations that are projected to the lateral cortex and is inherent 

to all rhythmic motor tasks. 

Movement-related beta power modulations appear to act similarly to the recorded 

slow potentials.  The amplitude responses of the beta modulations increased during 

focused (Lin et al., 2011), active, and higher movement frequency trials over the medial 

motor cortex.  Additionally, the beta modulations decreased in amplitude over the 

sensory cortex with increasing movement frequency.  A similar responses was seen 

during finger tapping (Joundi et al., 2013).  Moreover, the beta modulations and slow 

potential had the highest correlation over the medial sensory cortex (Figure 3-10).  

In this study, we have shown that movement-related slow potentials are unique 

for motor and sensory cortices during lower extremity rhythmic movements.  It appears 

that the medial sensory cortex modulates with the position of the ankle, and the motor 

cortex is linked to the continuity and temporal profile of muscle activation.  Moreover, 

unilateral lower extremity movements activate bilateral beta desychronization that is 

greater during passive than active movements.  Lastly, the amplitude of beta power 

modulations was affected similarly to the amplitudes of movement-related slow 

potentials for different conditions of Attention, Volition, and Movement Frequency.  

Moreover, beta frequency modulations were most highly correlated with movement-
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related slow potentials over the medial sensory cortex.  In order to use these potentials in 

the future for more functional tasks, such as pedaling or walking, we will need to explore 

how bilateral cortical generators for each foot/leg interact. 
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CHAPTER 4: MOVEMENT-RELATED SLOW POTENTIALS OF THE 

SENSORIMOTOR CORTEX DURING BILATERAL, RHYTHMIC 

MOVEMENT OF THE ANKLES 

4.1 INTRODUCTION 

There is still considerable debate over the role of the sensorimotor cortex in the 

control of bilateral, rhythmic movements of the lower extremities.  Studies of animal 

locomotion demonstrate that supraspinal structures, such as the sensorimotor cortex, are 

not required to produce rhythmic movements of the lower extremities (Grillner, 1975).  

However, in humans severe deficits in locomotor capability after a neural injury, such as 

a spinal cord injury, demonstrate that the brain is vital in the production of lower 

extremity rhythmic movements (Dobkin et al., 2007).  During walking, there is indirect 

evidence of  afferent modulations with the use of somatosensory evoked potential (SEPs) 

(Altenmüller et al., 1995; Duysens et al., 1995) and changes in the excitability of efferent 

motor pathways, using transcranial magnetic stimulation (TMS) (Schubert et al., 1997) .  

These studies suggest that perpetuation of rhythmic movements of the lower extremities 

may at least partially require sensorimotor cortical contribution. 

The role of the brain in rhythmic movements has been studied with functional 

magnetic resonance imaging (fMRI), which has demonstrated neural activity in both the 

primary sensory and motor cortices during rhythmic wrist (Schaal et al., 2004) and ankle 

(Kapreli et al., 2006) movements, foot tapping (Mehta et al, 2009).  Similar activation is 

observed during bilateral multijoint movements, such as pedaling (Mehta et al., 2009).  

Additionally, cortical activity time-locked to the gait cycle has been recorded during 

walking using electroencephalography (EEG) (Gwin, 2011) and near-infrared 

spectroscopy (NIRS) (Miyai et al., 2001).  Together, the combined spatiotemporal 
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profiles of neural activity suggest that the brain plays an essential role in lower extremity 

rhythmic movements.  However, coupling of simultaneous afferent and efferent cortical 

activity during natural movements makes it difficult to discern the motor and sensory 

contributions to the recorded signals. 

Therefore, various studies have explored the motor and sensory contributions to 

rhythmic movements of the lower extremities by the use of active and passive 

movements.  Results from these studies, however, have been contradictory.  Areas of the 

brain that are active during both passive and active movements (i.e. S1, M1, SMA, 

cerebellum) have been shown to elicit similar or slightly greater intensity of neural 

activity in areas of the medial sensorimotor cortex or cerebellum during active pedaling 

(Christensen et al., 2000; Mehta et al., 2012) and ankle plantar flexion (Ciccarelli et al., 

2005).  This suggests an increase in neural activity during active movements.  In contrast, 

temporal patterns of electroencephalography (EEG) during active pedaling elicited 

reductions in both slow potential amplitudes (Jain et al., 2013) and similarly, in higher 

frequency power modulations during walking (Wagner et al., 2012).  Authors have 

suggested that the reduction in neural activity, observed over the sensorimotor cortex 

during a volitional movement, could be evidence of centripetal gating.  However, in 

chapter three of this dissertation, we presented evidence that slow potential amplitudes 

over the sensorimotor cortex during unilateral, active movements are equal or greater 

than passive movements.  Therefore, though there may be a physiological explanation for 

the reduction of neural activity during active movements, it may also be possible that this 

phenomenon is created by electrical fields of out-of-phase, symmetric cortical generators 

within the medial sensorimotor cortex destructively interfere with each other. 
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In this study, we recorded movement-related slow potentials of the sensorimotor 

cortex with EEG during unilateral and bilateral rhythmic movements of the ankle.  

Moreover, passive and active movements were used to examine differences in sensory 

and motor aspects of movement.  During experimental trials, a robotic device constrained 

the movement trajectory and frequency in order to keep the sensory components of 

movement constant and allow for better comparisons between conditions.  Additionally, 

we focused on sagittal plane and active dorsiflexion movement to isolate the volitional 

task to primarily the tibialis anterior muscle.  This muscle was chosen as it has been 

shown to have significant monosynaptic corticospinal drive from the motor cortex 

(Petersen et al., 2003).  We hypothesized that during bilateral movements, the electrical 

field potentials of independent, symmetric cortical generators constructively or 

destructively interfere and create accentuated or attenuated potentials at the scalp surface, 

respectively.  If true, we predicted three outcomes of the current study.  First, unilateral 

left and right movements would produce similar slow potentials along the midline.  

Second, in phase or 0
o
 lag bilateral movements would produce larger slow potential 

amplitudes compared to unilateral movements due to constructive field interference.  

Lastly, as the bilateral movements become more out-of-phase with each other, the slow 

potentials would become misaligned, resulting in destructive interference, with the lowest 

amplitude observed at 180
o
 out-of-phase. 
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4.2 METHODS 

4.2.1 Study Participants 

Ten young, healthy subjects (five male and five female) with an age range of 20 

to 32 years old participated in this study.  All subjects reported that they were in good 

health and had no significant medical history that would impede bilateral ankle 

movement.  Before the experiment, subjects reviewed the experimental procedure and 

provided written, informed consent.  The experimental description and procedure were 

approved by the Institutional Review Board at Marquette University, in accordance with 

the Declaration of Helsinki (World Medical Association, 2008). 

 

4.2.2 Experimental Protocol 

Subjects sat comfortably in an upright position on a therapy table with their backs 

supported and both feet in a robotic ankle device (Figure 4-1) (For additional details of 

the ankle robot setup, please see Chapter 3).  During the experimental session, the robot 

controlled the velocity and trajectory of ankle rotation independently for each ankle in the 

sagittal plane using custom LabVIEW code (National Instruments, Austin, TX).  

Movements followed a prescribed cyclic trajectory of 0 to 30 degrees of plantar flexion at 

a frequency of 0.7 Hz consistently throughout all experimental trials.  Before the main 

protocol, subjects performed bilateral, in-phase maximum voluntary contractions (MVC) 

during only the dorsiflexion phase of four movement cycles.  The MVC values for the 

tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL) muscles were 
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calculated as the maximum value of the root mean squared (RMS) electromyography 

(EMG) across the cycles. 

 

 
 

Figure 4-1: Experimental Setup.  Subjects sat upright on a therapy table with both feet 

in the robotic device.  During the experimental session, physiological measurements of 

EEG and EMG were recorded.  Additionally, kinematic and force measurements of the 

ankle were recorded by the robotic device.  Finally, subjects were instructed to 

concentrate on a computer monitor in front of them, and a barrier prevented the subjects 

from seeing their feet. 

 

The experimental procedure followed the MVC measurements with 12 movement 

conditions, each 200 cycles in duration that combined an active or passive movement 

with one of six unique movement patterns.  Four of these patterns included bilateral 

movements, where the left ankle lagged the right ankle by 0
o
, 90

o
, 180

o
, and 270

o
.  The 
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remaining two patterns were unilateral left and right ankle movements.  During all active 

trials, subjects assisted the robotic device during only the dorsiflexion phase of 

movement at 10% to 30% of their TA MVC.  In contrast, subjects remained relaxed 

during passive movement trials.  An experimenter monitored the muscle activation 

throughout all trials and provided verbal feedback accordingly. 

 

4.2.3 Physiological Measurements 

An active, 64-channel actiCAP (Brain Products, Germany) recorded 

electroencephalography (EEG) signals during all 12 movement conditions.  The EEG cap 

preparation and all physiological recordings followed the procedure described in chapter 

three of this dissertation.  Briefly, experimenters used SuperVisc gel (Brain Products, 

Germany) to hydrate and lower the impedance between scalp and each electrode site to 

below 20 kOhms.  During recording, EEG signals were amplified, filtered from 0.3 to 

200 Hz, sampled at 1000 Hz using the Synamps
2
 system (Neuroscan, El Paso, TX), and 

recorded using the Neuroscan software, Scan 4.5.  Concurrently, analog position, torque, 

EMG (Delsys, Boston, MA), and trigger signals were anti-alias filtered below 500 Hz 

using custom analog hardware, sampled at 1000 Hz using a LabVIEW data acquisition 

system and recording software.  Trigger signals were recorded in both EEG and analog 

systems, and triggers were used offline to synchronize the EEG and analog data. 

 

4.2.4 Data Processing 

Many of the data processing steps used for this analysis were similar to those 

previously explained in this dissertation.  Each of the following briefly summarizes these 
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steps.  Please refer to the methods and data processing sections of Chapter 3 for more 

details. 

 

EEG Artifact Removal 

Custom MATLAB code (The MathWorks, Natick, MA) with EEGLAB functions 

(12.0.0.0b) (Delorme & Makeig, 2004) were written to remove initial EEG signal 

artifacts.  First, EEG data were re-referenced to a common average that also retained the 

reference (FCz) electrode.  Then, low frequency drift was filtered from the data using a 

0.5 to 100 Hz, FFT square filter.  Additionally, line noise was removed using a fourth-

order, zero-phase, Butterworth notch filter from 59 to 61 Hz.  EEG signals were 

decomposed using an Adaptive Mixture Independent Component Analysis (AMICA) 

(Palmer et al., 2008), and artifact components were identified for removal using the 

ADJUST plugin (Mognon et al., 2010) for EEGLAB.  

 

Additional Analog Signals Preprocessing 

Initial signal processing steps of the analog position, torque, and EMG signals 

were implemented with custom MATLAB code.  Recorded ankle position and torque 

signals were converted to degrees and newton meters, respectively.  Successively, they 

were low-pass filtered at 5 Hz (Butterworth, zero-phase, 4
th

 order).  Then the torque 

signal was adjusted to remove the inherent torque of the ankle brace (Steldt & Schmit, 

2004).  Recorded EMG signals were band-pass filtered from 30 to 200 Hz (Butterworth, 

zero-phase, 4
th

 order).  Subsequently, signals were RMS transformed using a 50 ms 
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sliding window with a 25 ms padding of the first and last points to their respective ends 

to preserve signal length.  

 

Temporal Processing 

Movement-related slow potentials were extracted by temporal averaging across 

cycles.  EEG, EMG, and position data were epoched into single cycles starting at peak 

dorsiflexion.  Cycles were eliminated if they were statistically identified to have excess 

EEG noise.  These cycles were determined by the pop_autorej function in EEGLAB with 

maximum epoch rejection rate of 5% and initial probability threshold of three standard 

deviations.  Cycle data were averaged to produce estimates of mean EEG, EMG, and 

position signals.  Finally, EEG slow potential amplitudes (maximum – minimum values) 

within each average movement cycle were calculated for each electrode.  

 

Source Localization 

Approximate source distributions for each trial were localized to the cortical 

surface in Brainstorm software (Tadel et al., 2011).  Electrode locations were registered 

to a standard cortical template (MNI/Colin27), which was used for all subjects.  The 

forward model approximation in Brainstorm used the OpenMEEG plugin (Gramfort et 

al., 2010; Kybic et al., 2005).  Sources were calculated for each movement cycle and then 

the spatial distributions averaged across cycles for inter-subject averages.  Intra-subject, 

grand average plots were calculated by averaging the results from all ten subjects. 
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Slow Potential Addition and Temporal Correlation 

Processed EEG cycles of the right and left unilateral tasks were added together to 

produce the slow potentials of the bilateral tasks at different phases.  The additive process 

was done for both passive and active movement conditions and at each electrode location.  

Only half the number of trials was used for each unilateral movement trial so that the 

total number of averages was similar between the bilateral and added unilateral 

conditions.  In this way, an increased number of averages that would inevitably increase 

the signal to noise ratio did not bias the slow potential amplitudes.  A correlation analysis 

was run on each electrode independently between the bilateral and added unilateral slow 

potentials on an individual subject basis.  Spatial plots of coefficient of determination 

values (R
2
) at each electrode were constructed for each movement condition.  Grand 

average plots were from the mean of the coefficient of determination values across 

subjects. 

 

Analysis of Variance for Slow Potential Amplitudes 

Conditional and volitional differences in slow potential amplitude were 

determined independently for the FCz and CPz electrodes using two-way, repeated 

measures analysis of variances (ANOVA).  For each electrode, the conditional factor 

included the unilateral and bilateral movements and the volitional factor included the 

active and passive movements.  The assumption of sphericity was adjusted for by finding 

the average of the Greenhouse-Geisser and Huynd-Feldt corrections (Stevens, 2009), and 

a significance value was set at α = 0.05.   
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Electromyography Amplitude Analysis 

Conditional and footedness differences in RMS EMG amplitudes were calculated 

using a two-way, repeated measure ANOVA.  The conditional factor included the 

unilateral movements together and each of the bilateral conditions.  The footedness factor 

separated the right and left ankle EMG for each condition.  Additionally, each subject 

completed the Waterloo survey (Elias et al., 1998) to determine his or her handedness and 

footedness, where a score of 2 was completely right handed, 0 was ambidextrous, and -2 

was completely left handed. 

 

Beta Power Modulation and Slow Potential Correlation 

Cross correlation was used to discern a temporal relationship between the beta 

power modulations and movement-related slow potentials.  Artifact removal, temporal 

processing, and amplitude calculation were similar to the process described previously 

for slow potentials.  However, before these data were epoched into cycles and averaged, 

EEG signals were filtered from 13 to 30 Hz (Butterworth, 6
th

 order, zero-phase) and RMS 

transformed.  The maximum cross correlation values between the beta power 

modulations and movement-related slow potentials were calculated at each electrode 

location. 

 

4.3 RESULTS 

Similar cortical activity was observed during both unilateral right and left ankle 

movements.  Similar to results of chapter two, unique slow potentials were again 

observed over the motor and sensory cortices during unilateral rhythmic ankle 



73 

movements (Figure 4-2) and they were similar across all subjects (Figure 4-3).  For both 

the right and left ankle movements, sensory potentials recorded by the CPz electrode 

appeared to track the position of the movement with a slight lag.  Conversely, the motor 

potentials had a distinct peak during the dorsiflexion phase of movement that was absent 

in passive movements.  Source localization confirmed that the cortical activity was 

greatest in the medial sensorimotor cortex.  

 
 

Figure 4-2: Spatiotemporal Profiles of Unilateral and Bilateral Movement (Sub 5).   

(Left) Time-averaged plots of movement-related cortical activity localized to the area of 

the medial sensorimotor cortex.  A lower bound threshold of 14 pA∙m was set for 

visualization only.  (Right) The temporal slow potential profiles recorded by both the FCz 

(blue) and CPz (green) electrodes.  Additionally, both left and right ankle movements 

produce similar cortical activity.  Solid and dashed black lines represent the temporal 

movement of the right and left ankles, respectively.  Additionally, the dark gray 

backgrounds represent the dorsiflexion phase of movement and light gray backgrounds 

represent the plantar flexion phase. 
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Figure 4-3: Spatiotemporal Properties of Unilateral Active/Passive Movement 

(Group).  (Left) Time-averaged plots of movement-related cortical activity localized to 

the area of the medial sensorimotor cortex.  A lower bound threshold of 14 pA∙m was set 

for visualization only.  (Right) The temporal slow potential profiles recorded by both the 

FCz (blue) and CPz (green) electrodes.  Additionally, both left and right ankle 

movements produce similar cortical activity.  Solid and dashed black lines represent the 

temporal movement of the right and left ankles, respectively.  Additionally, the dark gray 

backgrounds represent the dorsiflexion phase of movement and light gray backgrounds 

represent the plantar flexion phase. 

During bilateral movements, we observed distinct slow potential profiles over the 

sensory and motor cortices (Figure 4-4) for the different phasing.  During in-phase (0
o
 

lag) bilateral movements, the slow potential spatiotemporal characteristics were similar 

as seen during unilateral movements.  However, the bilateral, in-phase, slow potential 

amplitudes were significantly larger for the FCz and CPz electrodes (Figure 4-5).  The 

other out-of-phase conditions had relatively smaller slow potential amplitudes in both the 

active and passive conditions compared to the in-phase condition.  These amplitudes 

were similar in the 90
o
 and 270

o
 conditions with the largest reduction in amplitude during 

the 180
o
 condition.  However, the 180

o
 condition was unique, in that, the slow potential 
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amplitude during the passive condition was greater than in the active condition over the 

sensory cortex (p = 0.005).  Moreover, the sensory and motor slow potentials doubled in 

fundamental frequency, in the 180
o
 condition, from 0.7 Hz to 1.4 Hz.  In general, the 

slow potential amplitudes recorded over the motor cortex, FCz, were larger during active 

movements (p = 0.009), but not over the sensory cortex, CPz (p = 0.972) (Figure 4-5). 
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Figure 4-4: Spatiotemporal Profiles of Bilateral, Active/Passive, Out-of-phase 

(Group).  (Left) The localization of cortical sources related to bilateral ankle movement.  

A lower bound threshold of 14 pA∙m was set for visualization purposes.  (Right) 

Movement-related slow potentials recorded by the FCz (blue) and CPz (green) electrodes.  

Solid gray lines represent the right ankle position for three movement cycles, and the 

dashed lined similarly represents the left ankle position.  The vertical offset in the left 

ankle position was for visualization purposes only.  The dark gray backgrounds indicate 

the dorsiflexion phase of movement and light gray backgrounds indicate the plantar 

flexion phase. 
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Figure 4-5: Mean Slow Potential Amplitudes of FCz and CPz for Unilteral/Bilateral.  
These plots represent the mean slow potential amplitudes across subjects for each 

unilateral or bilateral movement condition for both the FCz (top) and CPz (bottom).  

Also, these measurements are displayed for both active (blue) and passive (red) 

movements. 

Added unilateral neural activity correlated highly to the bilateral activity over the 

medial sensorimotor cortex in most conditions (Figure 4-6).  The temporal profiles of 

both the motor and sensory slow potentials are similar to those in the bilateral conditions.  

The only exception to the localized high correlation in this area was during the active, 
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180
o
 out-of-phase condition.  In this condition, there is a low correlation over the sensory 

cortex. 

 

 
 

Figure 4-6: Added Temporal Profiles and Correlation with Slow Potentials (Left) 

Additive temporal responses for the FCz (blue) and CPz (green) electrodes.  The solid 

and dashed lines represent the movement profiles for the right and left ankles, 

respectively.  (Right) Coefficient of determination (R
2
) values at each electrode location 

that represent how well the additive responses reflect the bilateral cortical activations.  

The backgrounds of the temporal plots indicate the dorsiflexion (dark gray) and plantar 

flexion (light gray) phases of movement. 
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The analysis of EMG amplitudes revealed that the amplitude of the Right TA 

EMG was consistently higher than the Left TA EMG across the conditions (p = 0.001) 

(Figure 4-7).  However, the Right TA EMG was consistent across the conditions (p = 

0.719), where the Left TA EMG appears to change amplitude (p = 0.001).  Results of the 

Waterloo handedness and footedness scale indicated that the subjects were on average 

right handed ( ̅ = 1.23) and right footed ( ̅ = 0.91). 

 

 
 

Figure 4-7: Mean EMG of Right and Left Legs for Unilateral/Bilateral.  The above 

plot represents the average EMG amplitude for both the right (blue) and left (red) TA 

muscles during each of the unilateral and bilateral movement conditions. 

Amplitude fluctuations in beta power modulations were similar to the movement-

related slow potentials (Figure 4-8).  There seems to be no difference in amplitude of beta 

fluctuations between active and passive conditions or between the different phasing.  

Interestingly, the frequency of the beta modulations also doubled in the 180
o
 condition. 
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Figure 4-8: Beta Power Modulation and Slow Potential Correlation.  (Left) Temporal 

plots of the modulation of beta power (purple) and movement-related slow potentials 

(green) recorded over the CPz electrode.  The plots are an average of the active and 

passive responses for the 0
o
, 180

o
, and right only conditions.  (Right) Max cross 

correlation of the beta power modulation and movement-related slow potentials plotted at 

each electrode.  This max value is indiscriminate of phase lag. 

4.4 DISCUSSION 

Results from this study suggest that the sensorimotor cortex is continuously 

involved in the production of unilateral and bilateral, rhythmic movements of the lower 

extremities.  Spatiotemporal properties of the right ankle movement-related slow 

potentials were similar to the previous findings from chapter three of this dissertation, in 

which we observed unique motor and sensory potentials during rhythmic movements.  In 

this study, we have additionally shown that rhythmic movement of the left ankle 

produces similar movement-related slow potentials (Figure 4-3).  The similarities 
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between the two unilateral movements support the hypothesis that the sensorimotor 

cortex contains separate cortical generators for each leg.  Though slow potentials for both 

the right and left ankle movements were observed to be most prevalent over the midline, 

it is most probable that cortical generator for each is located deep to the scalp surface in 

the respective contralateral hemisphere. 

Constructive and destructive interference of symmetric cortical generators 

produced distinct temporal profiles during bilateral movements.  This is evidenced by 

both the amplitude differences between the phasing conditions and the correlations 

between the added and bilateral conditions.  As would be predicted by this type of 

interaction, symmetric in-phase signals would be additive and the signal amplitude would 

grow.  This is seen in the bilateral in-phase condition (Figure 4-4).  Interestingly, 

however, theoretically the in phase signal would have an amplitude of exactly the added 

sum of each, and this is not the case with our data.  Therefore, two cases are possible.  

First, there were slight timing differences or asymmetries between the two generators that 

caused a reduction in the additive process.  Second, part of the slow potential profile and 

amplitude is due to an underlying process common to both unilateral conditions (Oda & 

Moritani, 1996).   

The out-of-phase bilateral movement conditions demonstrate varying levels of 

destructive cortical field interference for both active and passive conditions.  Within these 

conditions, we observed that the cortical potentials were further reduced in amplitude 

from the in phase condition as the movements approached 180
o
 out-of-phase.  Moreover, 

the 90
o
 and 270

o
 out-of-phase conditions had similar slow potential amplitudes with 

similar temporal patterns.  The most curious finding was observed during the 180
o
 out-of-
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phase movement pattern and had previously been observed by Jain et al. (2013) during 

stationary pedaling.  In this movement pattern, two distinct features were observed over 

the medial sensory cortex.  First, the fundamental frequency of the slow potential doubled 

to approximate 1.4 Hz for both the active and passive conditions.  Second, the amplitude 

of the slow potential during the passive condition was greater than the active condition.  

Jain and colleagues explained the reduction in the slow potential amplitude they observed 

during the active pedaling as a possible consequence of sensory gating.  However, the 

results from this study suggest that the reduction was due to destructive interference of 

symmetrical cortical generators that were firing out of phase.  This is further supported 

by the results of the added unilateral and bilateral slow potential cross correlations. 

Cross correlation of the additive unilateral and the bilateral slow potentials further 

supports the theory of cortical field interference.  Not only were the added unilateral and 

bilateral slow potentials highly correlated, these correlations were at their maximum over 

the medial sensorimotor cortex, except in the 180
o
 active condition.  However, just like 

all the other conditions, we observed the same temporal and amplitude properties from 

the 180
o
 added unilateral condition as we did in the bilateral condition.  The reason the 

correlation was not localized for the active condition was due to the almost complete 

attenuation of the sensory signal.  Again, the temporal and amplitude similarities between 

the added and bilateral conditions support the hypothesis that the reduced sensory 

potential was not sensory gating, but just the destructive nature of two similar signals 

180
o
 out-of-phase. 

Finally, correlations of the beta power modulations and the movement-related 

slow potentials were localized to the medial sensory cortex (Figure 4-8).  Moreover, 
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temporal and amplitude changes were similar across both unilateral and bilateral 

conditions.  Of particular interest, we observed that beta frequency modulations doubled 

their fundamental frequency, and they were reduced in the active 180
o
 out-of-phase 

condition, similar to the slow potentials.  The reasons for the correlations and similar 

bilateral responses remain unclear.  However, it is possible that they are separate 

biological mechanisms that are just responding to the same ankle movement and 

therefore are correlated, but may not be causal.  On the other hand, perhaps the origin of 

movement-related slow potentials are the slow frequency modulatory component of the 

changes in beta frequencies (Mazaheri & Jensen, 2008).  However, the latter does not 

explain the timing difference between the two signals. 

In this study, we have provided evidence that unilateral and bilateral ankle 

movements require similar cortical mechanisms.  Moreover, the changes in slow potential 

and higher frequency modulation amplitudes in out-of-phase movements may be the 

result of destructive field interference between individual, symmetric cortical generators 

on either side of the longitudinal fissure.  Lastly, beta power modulations of the medial 

sensory cortex are correlated with movement-related slow potentials in the same location.  

Whether these two phenomena are causal or only correlated is still unclear.  In future 

studies, we recommend caution when interpreting EEG recordings during bilateral out-

of-phase movements for either slow potentials or higher frequency modulations. 
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CHAPTER 5: MOVEMENT-RELATED SLOW POTENTIALS: 

ENCODING CORTICAL MOVEMENT CONTROL 

5.1 INTRODUCTION 

The neural coding of efferent and afferent information between the brain and the 

spinal cord for the generation muscle contractions and movements is still uncertain.  

Currently, there exist a number of opposing hypotheses that have been generated by 

results from intracortical recordings.  It has been suggested that the motor cortex in lesser 

mammals may encode various time-independent movement parameters, such as position, 

velocity, force, or a combination of these factors (Ashe, 1997; Cheney & Fetz, 1980; 

Georgopoulos et al., 1992; Hatsopoulos et al., 2007; Moran & Schwartz, 1999; Paninski, 

et al. 2004).  Moreover, less invasive studies of the human sensorimotor cortex have also 

shown relationships between neural signaling  during upper extremity movements and 

kinematic parameters such as position, velocity, and force (Anderson et al., 2012; Negro 

& Farina, 2011; Schalk et al., 2007).  However, less is known about the neural coding of 

lower extremity rhythmic movements. 

Therefore, in this analysis we used previously collected data from Chapters 2 and 

3 of this dissertation to evaluate how the motor and sensory cortices may control 

rhythmic movements of the ankle.  Electroencephalography (EEG) and electromyography 

(EMG) were used to record cortical and muscle activity during rhythmic ankle 

movements, respectively.  The corticomuscular control and feedback were investigated 

by observations of the temporal properties, timing, and correlations between movement-

related slow potentials and the tibialis anterior (TA) muscle activity.  From observations 

during the experiments, we hypothesized that the movement-related slow potentials 



85 

would encode properties of muscle or force production in the motor cortex and positional 

feedback from the sensory cortex. 

 

5. 2 METHODS 

5.2.1 Recording and Signal Processing 

Methods for Chapter 5 are similar to those found in Chapters 2 and 3 of this 

dissertation.  Briefly, electroencephalography (EEG) and electromyography (EMG) were 

recorded during unilateral, volitional ankle movements.  The experimental conditions 

from Chapter 2 included rhythmic, discrete, and cued free movements.  Movement 

conditions from Chapter 3 included rhythmic ankle movements in a robotic device at 0.7 

Hz, 1.0 Hz, and 1.3 Hz movement frequencies.  After recording, data from all EEG trials 

were preprocessed to remove physiological and environmental artifacts from the signals.  

Movement cycles with either additional artifact or were statistically different from the 

others were removed.  Finally, temporal averaging was used to reveal movement-related 

slow potentials at each electrode location.   

The EMG data for each trial were band-pass filtered and root mean square (RMS) 

transformed.  The data were then split into cycles and the average muscle activity per 

cycle was estimated using temporal averaging.  Finally, the derivative of the processed 

RMS EMG activity was calculated and subsequently filtered below 50 Hz.  This reflected 

the rate of muscle contraction during a movement cycle. 
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5.2.2 Analysis 

For this analysis, we focused on the FCz, Cz, and CPz electrodes, which are 

located near the vertex on the midline of the scalp.  These electrodes were chosen 

because they are positioned over the medial sensorimotor cortex: the leg area of the 

homunculus.  Specifically, slow potentials recorded over the FCz electrode were 

hypothesized to be from mostly motor cortical areas.  Similarly, the CPz electrode was 

related to the medial sensory cortex and the Cz considered to be of mixed sensorimotor 

origin. 

Three analyzes were considered in this chapter.  First, correlation of the negative 

movement-related slow potential amplitude was correlated with the maximal amplitude 

of the rate of muscle activation, during dorsiflexion of uninhibited ankle movements.  A 

coefficient of determination (R
2
) was calculated to approximate the linear relationship 

between the two variables.  Second, the delay in timing of the motor (FCz) and sensory 

(CPz) movement-related slow potentials were compared to the rate of muscle activation 

profile.  Relative timing was determined by calculating the differences in peak potentials 

during the dorsiflexion phase of movement.  Finally, we examined whether the motor and 

sensory movement-related slow potentials were independent of the movement frequency 

by calculating and comparing the total duration of each potential at each frequency.  

 

5.3 RESULTS 

Temporal profiles of the movement-related slow potentials over the medial 

sensory motor cortex demonstrate a relationship with the rate of TA muscle contraction 

or derivative of RMS EMG activity.  The similarity between the two temporal profiles 
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was consistent for continuous, discrete, and cued movements for a single representative 

subject and the group average (Figure 5-1).  Moreover, there were two specific 

components of the movement-related slow potential associated with the rate of EMG 

contraction.  First, there was a temporal component related to the kinematics profile of 

the movement.  This similarity was seen when the movement frequency component 

(MFC1) was filtered out in Chapter 2 (Figure 2-5).  This was also observed when the 

slower potential, MFC1, was removed from the EEG, even when the EMG pattern was 

not sinusoidal (Figure 5-2).  Second, the amplitude of the rate of EMG was correlated 

with the amplitude of the movement-related slow potential negativity during dorsiflexion 

(Figure 5-3).  The correlation between the rate of EMG and negative EEG potentials was 

R
2
 = 0.785, after removing three trials.  These three movement trials were removed from 

analysis because their movement patterns were not similar, and therefore could not be 

equally compared. 

There exist unique timings of the movement related slow potentials over the 

individual sensory and motor cortices.  During the dorsiflexion phase of movement, the 

local maximum of the movement-related slow potential over the motor cortex preceded 

the rate of EMG contraction by increasing amounts for each movement frequency (Figure 

5-4).  Moreover, the sensory potential lagged the rate of EMG contraction profile by 

decreasing amounts for each movement frequency.  The duration of the motor potentials 

was consistent across the movement frequencies at approximately 235 ms.  However, the 

duration of the sensory potential appeared dependent on the frequency of movement. 
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Figure 5-1: Temporal Relationship between EEG and Derivative of EMG.  Temporal 

relationship between the movement-related slow potentials during continuous (blue), 

discrete (red), and cued (green) trial recorded over the Cz electrode and the TA EMG 

(dotted black), and the derivative of EMG (gray).  Signals are represented as a percentage 

of the movement cycle with both dorsiflexion (dark gray background) and relaxation 

(light gray background) phases and half a cycle before and after the movement (white 

background).  Results are presented as group averages (left) and as a representative single 

subject (Sub 1, right).  Black circles represent the amplitude values used for correlation 

analysis (Figure 5-3). 
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5.4 DISCUSSION 

Results of this analysis support the previous studies presented in this dissertation 

by providing further insight into the cortical mechanisms that control rhythmic lower 

extremity movements.  First, we demonstrated that the movement-related slow potentials 

might be related to the derivative of the TA EMG activity.  Second, a temporal sequence 

of the motor potential, EMG derivative, and sensory potential reflects a causal 

relationship between them.  Lastly, there is evidence that the motor potential has a 

constant timing for all movement frequency.  This is in contrast to the sensory potential, 

which has a temporal profile that is reliant on the movement-frequency. 

 

 
 

Figure 5-2: High-pass Filtered Slow Potential and EMG Derivative.  Similar to 

Figure 5-1, discrete movement-related slow potential (red), EMG (dotted black), and the 

derivative of EMG (gray) are shown before filtering (left) and after elimination of low 

frequencies, such as MFC1 (right). 
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The movement-related slow potentials appear to be comprised of two components 

that relate to the concurrent muscle activity.  The first component modulated at the 

movement frequency, MFC1, and the amplitude of this component is correlated to the 

max amplitude of the derivative of the EMG signal, which is the rate of muscle 

contraction (Figure 5-3).  This was similar to the correlation observed between the 

amplitude of the movement-related cortical potentials and the rate of rising force 

produced during elbow flexion (Siemionow et al., 2000). 

 
 

Figure 5-3: Correlation of EEG and Derivative of TA EMG.  Correlation between the 

negative EEG amplitude of the movement-related slow potential recorded over the Cz 

electrode and the amplitude of derivative of the TA EMG during the dorsiflexion phase 

of movement.  The correlation included continuous (blue), discrete (red), and cued 

(green) movement types.  Three cued trials were excluded from the analysis (dotted 

circle). 
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Figure 5-4: Sensory and Motor Movement-Related Slow Potential Timing.  Average 

temporal profiles of movement-related slow potentials recorded during volitional ankle 

movements in a robotic device with focused attention.  Timing values in milliseconds 

between peak FCz (top), derivative of EMG (middle), and CPz (bottom) are reported in 

the table at the bottom for the 0.7 Hz (left), 1.0 Hz (middle), and 1.3 Hz (right) movement 

frequencies.  Temporal signals are plotted with the time of one cycle duration indicated at 

the bottom of each column.  Background represents the dorsiflexion (dark gray) and 

planter flexion (light gray) phases of movement. 
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The second component is revealed when the lower frequency component is 

removed and this component has a similar temporal pattern to the derivative of the 

associated EMG signal (Figure 5-2).  These results are supported by previous studies that 

have also concluded that the sensorimotor cortex may be encoding the force derivative of 

muscle contractions (Soto & Cros, 2011).  Interestingly, the temporal changes in spiking 

rates of motor units have been shown to be correlated to the derivative of muscle 

activation and force produced (Evarts, 1968; Yoshitake & Shinohara, 2013). 

The temporal organization of movement-related slow potentials of the 

sensorimotor cortex suggests a causal relationship.  The temporal profiles of movement-

related slow potentials over both the sensory and motor cortices were similar to the 

derivative of the associated EMG activity at all movement frequencies (Figure 5-4).  

Moreover, during dorsiflexion, the progression of motor, EMG derivative, then sensory 

potential with the observed timings suggests that the motor potential is causing a muscle 

contraction and that an afferent sensory signal is observed over the medial somatosensory 

cortex.  However, the measured values are highly variable between subjects and so it is 

difficult to determine the precise timing of each slow potential. 

Motor and sensory movement-related slow potentials demonstrate different 

effects of movement frequency.  Over the medial motor cortex, the recorded movement-

related slow potentials appear to have similar temporal duration, approximately 235 ms, 

irrespective of the frequency of movement (Figure 5-4).  However, the amplitude of the 

slow potential did increase with increased frequency.  This is similar to a theory of motor 

control known as pulse-step  (Ghez, 1979), in which the motor command is given in as a 

pulse of a constant duration and the amplitude is modulated to change the output.  
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Conversely, the duration of the movement-related slow potential over the medial sensory 

cortex did vary with increasing movement frequency, and we believe this is related to 

afferent sensory feedback related to the position of the movement. 

In this analysis, we have shown that there exist amplitude and temporal 

relationships of the movement-related slow potentials of the sensorimotor cortex and the 

derivative or rate of EMG activity during rhythmic movements of the ankle.  Moreover, 

the motor cortex appears to always send a similar duration potential previous to the 

muscle contraction, irrespective of the movement frequency.  Furthermore, the 

movement-related slow potential recorded over the sensory cortex lags the muscle 

activity and appears to relay positional information about the ankle movement. 
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CHAPTER 6: SUMMARY OF RESULTS AND FUTURE DIRECTIONS 

The following chapter summarizes the experimental results and conclusions 

presented in this dissertation.  Furthermore, we explain the significance of this work and 

its impact within the broader scientific community.  Finally, future research directions 

will be discussed, which address questions that have emerged while preparing this 

dissertation. 

 

6.1 SUMMARY OF RESULTS AND CONCLUSIONS 

Throughout this dissertation, we have demonstrated that the sensorimotor cortex 

is continuously involved in the propagation of rhythmic movements of the ankle.  We 

support this conclusion with the evidence that temporal profiles of movement-related 

slow potentials are continuous throughout the movement cycle and have modulation 

patterns related to kinematic or kinetic properties of the movement.  Additionally, this is 

supported by the spatial localization of the movement-related slow potentials over the 

medial sensorimotor cortex: the ankle area of the sensorimotor homunculus.  The 

following are results and conclusions for each individual aim of this dissertation. 

 

6.1.1 Aim 1: Identify the sensorimotor cortical contribution of rhythmic and discrete 

movements of the ankle. 

Results from this study suggest that rhythmic lower extremity movements may 

require a subset of neural mechanisms required for discrete movements.  We believe that 

discrete movements require these additional cortical mechanisms for the initiation and 

termination of movement.  Retention of similar spatiotemporal properties as discrete 

movements supports the conclusion that rhythmic movements require similar neural 



95 

mechanisms to propagate movement.  Moreover, the differences in low delta power and 

amplitude of pre- and post-movement potentials are mostly likely the neural component 

required to initiate and terminate a discrete movement. 

 

6.1.2 Aim 2: Differentiate the sensory and motor cortical contributions to rhythmic 

movements of the ankle. 

The identification of separate movement-related slow potentials suggests that the 

sensory and motor cortices are uniquely involved in the propagation of rhythmic 

movements of the ankle.  The temporal profile of the slow potential over the medial 

sensory cortex tracked the position of the movement with a slight lag.  This suggests that 

the sensory cortex may receive proprioceptive information of the ankle joint position.  

However, the temporal slow potential profile over the motor cortex was only active 

during contraction of the TA muscle.  Furthermore, the slow potential amplitude 

increased proportionally with the frequency of movement or continuity of the EMG, 

during both active and passive movements.  Together, these results suggest that the motor 

cortex may encode kinetic efferent profiles to the muscles, possibly the rate (derivative) 

of EMG contraction.  Lastly, temporal modulations in beta power were most highly 

correlated over the medial sensorimotor cortex.  It is still unclear whether the observed 

correlation between the two signals is also causal. 

 

6.1.3 Aim 3: Determine the sensory and motor cortical contributions to bilateral, 

rhythmic movements of the ankle. 

Unilateral and bilateral, rhythmic movements of the ankle appear to be propagated 

by similar cortical generators.  Spatiotemporal profiles of unilateral right and left ankle 

movement-related slow potentials suggest that both are produced through similar, 
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symmetric cortical mechanisms.  The symmetry and temporal similarities of the two 

generators caused constructive and destructive interference of their respective electric 

fields during bilateral, active and passive movements.  This was confirmed by high 

correlations between added unilateral trials with bilateral movement trials.  Similar 

consequences of field interference were observed for the temporal modulations of beta 

power recorded over the sensorimotor cortex.  We caution that EEG recordings of 

bilateral, lower extremity rhythmic movements may produce results that do not reflect the 

true underlying physiology. 

 

6.2 BROADER SCIENTIFIC IMPACT AND FUTURE DIRECTIONS 

There is still a significant amount of research required to understand the basic 

physiology of movement-related slow potentials.  The following sections highlight 

possible studies that explore further the basic physiology of movement-related slow 

potential.  In addition, we address two scientific areas in which movement-related slow 

potentials may have a broader scientific impact: cortical physiology of movement 

disorders and brain machine interfacing.   

 

6.2.1 Movement-related Slow Potential Physiology 

From results of this dissertation, we have only begun to understand the 

physiology of movement-related slow potentials.  This research has opened the door to an 

overabundant number of new experimental possibilities.  One example of a future 

experiment would be to examine the differences in cortical control between dorsiflexion 

and plantar flexion of the ankle.  Others could include, but are not limited to, single and 
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multi-joint movements, distal vs. proximal muscle control, multimodal imaging (EEG & 

fMRI or MEG), robotically controlled rhythmic and discrete movement patterns, and 

pseudorandom active and passive movements used to develop a neural model of 

movement control.  Furthermore, a firm understanding of the relationship between the 

motor cortex and muscle activation through a noninvasive technology would be very 

advantageous for studying the neural control of movement in humans. 

 

6.2.2 Cortical Physiology of Movement Disorders 

We demonstrated in this dissertation that there are distinct relationships between 

movement-related slow potentials and the kinematic and kinetic properties of movement.  

As this line of research continues, we believe these slow potentials will be specifically 

useful in understanding the sensory and motor cortical changes in people with a neural 

injury or disease.  For example, experiments could include unilateral active and passive 

ankle or hip movements in the robotic device used compare physiological differences 

between neurologically intact people and people who have a spinal cord injury or have 

had a stroke.  In spinal cord injury (SCI), the localization or temporal properties of the 

sensory and motor potentials could be compared to infer changes in cortical structure or 

plasticity after injury.  Also, It could be questioned whether people who have a chronic, 

complete spinal cord injury still retain the similar motor drive, or how cortical motor 

drive is different in people with partial SCI.  In stroke, specifically subcortical strokes, it 

could be tested whether there are changes to the sensory and motor cortices, and if this 

has any effect on movement dysfunction.  Moreover, the information gained from 
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specific subject populations may prove beneficial in developing new rehabilitation 

strategies.  

 

6.2.3 Brain Machine Interfacing 

Another field related to neural rehabilitation that movement-related slow potential 

may impact is brain-machine interfacing (BMI).  BMI uses naturally occurring neural 

signals to interface with robotic devices, such as a prosthetic arm for an amputee or 

exoskeleton robotic legs for a person with a spinal cord injury.  Knowledge from both the 

basic physiological and movement disorder studies previously mentioned could aid in 

new decoding algorithms for these devices.  With the knowledge of movement-related 

slow potential physiology from this dissertation, it may advantageous to combine 

advanced mathematical techniques from other, such Hidden Markov Model from the field 

of Speech Recognition fields, to develop improved neural decoding methods.  Finally, 

similar ideas are already being in practice.  For example, delta band (0.5 to 5 Hz) signals 

have been decoded during walking to reconstruct full lower leg kinematics (Presacco et 

al., 2011), and further research using EEG signals from this frequency band are 

underway. 
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APPENDIX A: ACTICAP ELECTRODE POSITIONS (10-20 SYSTEM) 

 
 

Figure A-1: Electrode locations of the 64-channel actiCAP.  As indicated by the 

legend, there are two, 32-electrode sets (green and yellow), a reference electrode (blue), 

and a ground electrode (black).  [Reference actiCAP-64-channel-Standard-2_1201.pdf, 

Version .002, Written 1 September 2012]  
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APPENDIX B: ANKLE ANGLE CALCULATION 

 
 

Figure B-1: Ankle Angle Calculation.  Foot and tibial vectors define from the 3-

dimensional coordinates of the Vicon markers places on the lower right leg.  A denotes 

the heel, B the toe, C the medial ankle, and D the medial knee markers. 

 

Equation B-1:              ‖[(  ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗) (  ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗)]‖  
    

 
     

 

Equation B-2: angle(i) = atan2(norm(cross(tibia(i,:),foot(i,:))),dot(tibia(i,:),foot(i,:))); 

angle = -angle*180/pi+90; 

where foot =   ⃗⃗⃗⃗  ⃗ & tibia =   ⃗⃗⃗⃗  ⃗ 
 

Calculation of the angle between the two vectors   ⃗⃗⃗⃗  ⃗ and   ⃗⃗⃗⃗  ⃗ (Figure B-1) and the 

MATLAB equivalent formula (Equation B-2) was modified from a suggestion by Roger 

Stafford [http://www.mathworks.com/matlabcentral/newsreader/view_thread/276582].  

The variable angle is calculated using the three Cartesian coordinates for each vector at 

each time point of the ankle movement path.  The signal is inverted and 90 degrees is 

added in order to define the reference (0 degrees) when the ankle is at a right angle. 
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APPENDIX C: DISCRETE MOVEMENT START AND STOP POINTS 

 
 

Figure C-1: Discrete Movement Start and Stop Points.  Discrete and cued movements 

used the Full Width at Half Max (FWHM) measure to define the start and stop points.  

The profile of a discrete sinusoidal movement (black) is displayed with the location of 

max amplitude (blue dashed) and the FWHM line (blue solid).  One FWHM distance 

from the midline is displayed and projected down to the movement profile for the start 

(green) and stop (red) points.  [Suggested by Benjamin Kalinowsky] 

 

During discrete and cued movements, there are no specific signal features (i.e. 

local maxima or minima) to define the start and stop of the movement.  Therefore, one 

FWHM distance before and after the midline (define at peak dorsiflexion) was used to 

indicate initiation (green) and termination (red) of movement, respectively.  Additionally, 

the half a cycle before and after the movement points that were used to epoch each 

discrete and cued movement were defined as two FWHM values on either side of the 

midline.  These are shown in Figure C-1 as -50% and 150% of the movement cycle. 
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APPENDIX D: RESAMPLE AND TIME WARP EXPLANATION 

 
 

Figure D-1: Resample and Time Warp Explanation.  (Left) Three movement profiles 

(epoched cycles) starting at the top with the fastest (green) to the slowest at the bottom 

(blue).  The baseline value for each movement is offset for visual differentiation in this 

figure only.  (Right) The same three movement profiles displayed after resampling and 

time warping. 

 

Equation D-1:
                         

                      
 
                                    

                         
  

    

    
 

    

     
 

 

Due to the variability in the movement profile, resampling and time warping of 

the position, EMG, and EEG data was necessary to allow for temporal averaging.  Five 

distinct points were used to time warp the signals and all signals were resampled to have 

2000 equally sampled points for each epoched cycle (Figure D-1).  The EEGLAB 

function timewarp was used to perform this transformation.  It should be observed that 

the average epoch time series length before the transformation is approximately 5714 

points (sampled at 2000 Hz), which was resampled to 2000.  Therefore, the new 

approximate average sampling rate per cycle was 700 Hz (Equation D-1).  Since the data 

was low-pass filtered at 100 Hz previous to this transformation, the Nyquist sampling 
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theorem was not violated.  As noted in the main text, both of these nonlinear processes 

will affect the frequency content of the signal; therefore, this transformation was not 

performed before any frequency (spectral) analysis of the data. 

 

APPENDIX E: SIGNAL PROCESSING PSEUDO CODE 

This appendix contains the signal processing pseudo code for MATLAB scripts written 

for this the analysis in this dissertation.  Specific functions are denoted in italics, when 

necessary.  These include native MATLAB functions and functions from the EEGLAB, 

Biomechanics Toolkit, and Brainstorm toolboxes. 

 

Preprocessing EEG Data (Aims 1-3) 

1. Load EEG data (64 channels) – pop_loadcnt 

2. Add channel locations (actiCAP.xyz) – pop_chanedit 

3. Average reference and retain FCz refence – pop_reref 

4. Notch Filter (59 to 61 Hz) – butter 4
th

 order, filtfilt (zero-phase) 

5. Filter band-pass (0.2 or 0.5 to 100) – pop_eegfilt 

6. AMICA analysis – runamica12 (Palmer et al., 2008) 

7. Split into 1 second epochs – pop_importevent, pop_epoch 

8. Determine artifact components with ADJUST (Mognon, 2010) 

 

Analog Processing (only Aim 1) 

1. Load .c3d files (Vicon) with BTK toolbox  

a. Markers – btkGetMarkers 

b. Analog Data – btkGetAnlogs 
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2. Root mean square of EMG data (for each muscle individually) 

a. Band-pass filter (30 to 200 Hz) – Butter, 4
th

 order, filtfilt (zero-phase) 

b. Square each point 

c. Sliding filter – 50 ms window 

d. Square root of each point 

3. Calculate ankle angle from Vicon makers 

a. Define tibia as Knee – Ankle marker 

b. Define foot as Toe – Heel marker 

c. Calculate angle for each time point (see Appendix B for equation) 

d. Convert to degrees (*180/pi) 

e. Add 90
o
 so that zero degrees is equal to 90

o
 between the tibia and foot 

4. Cycle Definition 

a. Upsample ankle angle signal from 100  to 2000 Hz – interp1 (linear) 

b. Filter ankle angle signal (0.1 to 1.5 Hz), butter, 4
th

 order, filtfilt (zero-

phase) 

c. Rhythmic movements 

i. Find peaks of filtered signal (findpeaks, minpeakheight,0) 

ii. Find actual max point of unfiltered signal using previous points 

iii. Find local minima (start points) between each max point 

iv. Determine end points as the point before each start point 

v. Remove start and stop point pairs that overlap times of visual 

feedback 

 

vi. Calculate half a cycle before and after each cycle 
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d. Discrete movements 

i. Find peaks of filtered signal (findpeaks, minpeakheight,15) 

ii. Find mid points between each max point 

iii. Calculate half the amplitude of each max point and previous 

midpoint 

 

iv. Calculate Full Width at Half Max (FWHM) (See Appendix C) 

v. Start and Stop points are calculated as 2 FWHM before and after 

each midpoint 

 

vi. Half a cycle before and after are defined at 4 FWHM from each 

midpoint 

 

Analog Processing (Aims 2-3) 

1. This procedure is performed for each experimental movement trial recorded and 

individual for each ankle brace and robot.  Coefficients were between for each 

robotic device and ankle braces were slightly different.  For further details see, 

(Steldt & Schmit, 2004). 

2. Load data files (recorded in LabVIEW) 

3. Root mean square of EMG data (for each muscle individually) 

a. Band-pass filter (30 to 200 Hz) – Butter, 4
th

 order, filtfilt (zero-phase) 

b. Square each point 

c. Sliding filter – 50 ms window 

d. Square root of each point 

4. Position calibration 

a. Load position calibration coefficients, passive movement trial, and inertial 

trial 

b. Convert all recorded values of volts to degrees (linear transform using 

coefficients) 
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5. Torque calibration 

a. Load torque calibration coefficients, passive movement trial, and inertial 

trial 

b. Convert all recorded values of volts to Nm (linear transform using 

coefficients) 

6. Torque correction 

a. Passive torque 

i. Find the mean torque at each step of the passive trials.  This trial 

was run with the subject in the robotic system and ankle position 

stepped down from peak dorsiflexion to plantar flexion in a 

staircase fashion. 

ii. Determine 3
rd

 order polynomial to fit those points – polyfit 

iii. Calculate the torque due to passive movement at each point in the 

movement cycle for each trial – polyval 

b. Inertial torque 

i. The inertial trial rotated the ankle in the robotic system quickly 

(1.5 Hz) for 10 cycles. 

ii. Velocity and acceleration of the position data for this trial were 

calculated (filtered after each step, Butter, low-pass, filtfilt, 5 Hz) 

iii. Calculate the passive torque values for the inertial trial, similar to 

above – polyval 

iv. Remove passive component from the inertial trial to get the final 

torque due to inertia. 

v. Calculate the moment of inertia for the trial, which is the inertial 

torque multiplied by the acceleration. 

c. Correction 

i. Calculate the velocity and acceleration for the movement trial 

(filtered after each step, Butter, low-pass, filtfilt, 5 Hz) 
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ii. The final corrected torque is as follows: 

               

Where, 

Tc = Torque corrected 

To = Torque from the original movement trial 

Tp = Torque passive component 

Im = Moment of Inertia 

α  = Acceleration of the original movement trial 

7. Cycle definition: Analog pulses recorded with the data marked each cycle.  Start 

points were determined by the maximum value (maximum dorsiflexion) between 

pairs of pulses. 

 

Processing (Aims 1-3) 

1. Remove EEG artifact components – pop_subcomp 

2. Epoch EEG and Analog data into cycles (different lengths for Aim 1) 

3. (Aim 1 only) Remove cycles with statistically different data  

a. Eliminate cycles with EEG amplitudes that have values more or less than 

3 SD of the mean 

b. Eliminate cycles with lengths that have lengths more or less than 3 SD of 

the mean 

4. (Aim 1 only) Resample and timewarp the EEG and Analog cycles (timewarp 

function) (See Appendix D) 

5. Identify and remove cycles that have EEG content that are statistically different 

from the other cycles (pop_autorej, maxrej = 5, startprob = 3) 

 

Temporal Processing 

1. After the previous processing steps, movement-related slow potentials were 

extracted by temporally averaging the signals. 
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2. (Aim 1) Signals were averaged from half a cycle before to half a cycle after each 

movement. 

3. (Aim 2 and 3) Data was epoched into three consecutive cycles and averaged. 

  

Spatial Localization 

1. The following was performed in Brainstorm Software (Tadel et al., 2011). 

2. The coordinates for the actiCAP were uploaded (65 channels, includes the 

reference channel, FCz) 

3. Individual cycles were loaded in Brainstorm.  (Aim 1, the time warped signals 

were loaded with their individual new sampling rate) 

4. Spatial localization of the cortical signals were calculated for each movement 

cycle individually – Compute Sources 

5. Computed sources for the cycles were averaged together within each trial/subject 

combination. 

6. Grand average plots were created by averaging across subjects with each trial 

type. 

 

Spectral Analysis 

1. After artifact and cycle rejection, remaining EEG cycles are concatenated in time 

2. Power spectral density was estimated using Welch‟s method.  – pwelch 

3. Section sizes 

a. Aim 1: 8192 points (signal sampled at 2000 Hz) 

b. Aim 2 and 3: 2948 points (signal sampled at 1000 Hz) 

4. Each section was windowed with a  Hamming window 

5. Each analysis used 50% overlap 
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6. Power spectral densities were split into the EEG bands 

a. Delta (0 – 4 Hz) 

b. Theta (4 – 8 Hz) 

c. Alpha (8 – 12 Hz) 

d. Beta (12 – 30 Hz) 

e. Gamma (30 – 50 Hz) 

7. Power for each band was calculated by using discrete integration – trapz 

 

Repeated Measure Analysis of Variance 

The repeated measures Analysis of Variance (ANOVA) was run in MATLAB with an m-

file from the MathWorks file exchange by Thomas Gladwin.  This code was tested 

against the statistical software SPSS and found the same results.  The code can be 

downloaded from http://www.mathworks.com/matlabcentral/fileexchange/30737-n-way-

repeated-measures-anova.  The function used was teg_repeated_measures_ANOVA. 
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