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ABSTRACT

Removal of Trace Heavy Metals from Drinking Water by Electrocoagulation

Joe Heffron

Marquette University, 2015

Geologic and anthropogenic heavy metals contaminate drinking water for hundreds
of millions of people worldwide. Electrocoagulation – the in situ generation of coagulant
by electrolytic oxidation of metal electrodes – is a century-old process gaining new traction
for metal removal from water and wastewater. However, the low conductivity of drinking
water and low target contaminant concentrations required for human consumption present
challenges for electrocoagulation of drinking water. This study is unique in that it
addresses seven different metal contaminants at the trace concentrations of concern to
human consumption and investigates the wide range of possible source water matrices.

The goal of this study was to determine the feasibility of electrocoagulation to
remove trace heavy metals from drinking water. This goal was addressed by first
demonstrating removal of contaminant metals to below regulatory concentrations. Seven
metals were tested for removal to meet U.S. Environmental Protection Agency
requirements for drinking water: chromium, nickel, copper, zinc, arsenic, cadmium and
lead. Next, the effects of electrode material (aluminum versus iron) and post-treatment
separation of flocs (micro-filtration versus settling alone) were tested in a
mixed-contaminant scenario. In addition, the importance of source water pH and ionic
composition was tested for the same five metals. A bench-scale, batch reactor was used
with a galvanostatic DC power supply providing 0.5 A current. Metal concentrations were
determined by inductively-coupled plasma mass spectrometry (ICP-MS).

Removal of five metals was demonstrated to below regulatory concentrations for
drinking water: chromium, copper, arsenic, cadmium and lead. Iron electrodes vastly
out-performed aluminum electrodes in removing chromium and arsenic. Aluminum
electrodes were slightly more effective at removing nickel, cadmium and lead, but only at
pH 6.5. Microfiltration enhanced contaminant removal and reduced the variance of
effluent concentration. Microfiltration also dramatically reduced the residual
concentration of aluminum and iron after treatment. Electrocoagulation removed nickel
and cadmium more efficiently at pH 8.5 than 6.5, though chromium, arsenic and lead
showed no significant effect from initial pH in the range tested. All metals exhibited
poorer removal efficiencies as the ionic strength of the background electrolyte increased,
particularly in the very high-solids, synthetic groundwaters.
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1. INTRODUCTION

1.1. Electrocoagulation

Electrocoagulation (EC) is the in situ production of coagulant in water by passing

electrical charge through one or more submerged, sacrificial electrodes. EC can be

modeled as a three-stage process: coagulant formation, contaminant destabilization and

flocculation (Fernandes et al., 2014; Liu et al., 2010). First, the anode is electrochemically

oxidized to release cations in solution:

M 0
(s) M z+

(aq) + z ·e– (Rxn 1.1)

where M is the metal comprising the sacrificial electrode(s), commonly aluminum or iron.

These cations combine with hydroxide ligands to form coagulant in solution. At the same

time, hydrogen gas is formed at the cathode by electrolytic reduction of water. Next, the

coagulant destabilizes dissolved or colloidal contaminants and physically aggregates to

form flocs. Flocs may enmesh bubbles of hydrogen gas and rise to the surface to form a

flotation layer or simply settle by gravitation. These three processes are depicted in

Figure 1.1.
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Figure 1.1: Summary of primary reactions and transport in an electrocoagulation reactor.
Flocs formed by coagulation are separated by gravity either by sedimentation or flotation.
Charged species in solution undergo electrophoretic movement, with negative charge flowing
toward the anode and positive charge toward the cathode.
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1.2. History

EC was first patented in the late 19th century as a sewage treatment process. The

first operational EC wastewater treatment facilities appeared in the 1890s in London and

Salford, England. These early plants combined the wastewater influent with seawater to

increase conductivity and generate chlorine disinfectant. In both Oklahoma City, OK, and

Santa Monica, CA, EC wastewater facilities began operation in 1911. EC was also

proposed for potable water treatment. In 1925, a power plant near Moscow began treating

drinking water with EC using soluble iron electrodes. In the 1940s and ‘50s, EC pilot

plants using iron and aluminum electrodes were tested for color and turbidity removal

from drinking water (Vik et al., 1984).

Though the EC facilities touted high quality effluent, operational costs were

considered high at the time due to the need to haul sludge from the treatment plants (Vik

et al., 1984). Furthermore, federal regulations did not provide minimum standards for

secondary treatment of wastewater until 1972 (Metcalf and Eddy et al., 2003), which

offered little incentive to continue providing premium treatment. In addition, chemical

coagulants for water treatment were becoming less expensive (Holt et al., 2005). EC did

not gain wide adoption for drinking water treatment, and all EC wastewater facilities in

the U.S. were decommissioned by 1930 (Holt et al., 2005).

With contemporary regulations and methods for detecting contaminants, interest

in EC has seen a recent resurgence as an effective and portable option for water and

wastewater treatment. Recent applications include remediation of wastewaters from pulp

mills (Perng et al., 2009), acid mine drainage (Radić et al., 2014), textile manufacturers

(Bhatnagar et al., 2014), restaurants (Chen et al., 2000), slaughterhouses (Ozyonar &

Karagozoglu, 2014), and pharmaceutical manufacturers (Farhadi et al., 2012). EC

effectively removes a wide range of pollutants, including metals (Li et al., 2012), natural

organic matter (NOM) (Dubrawski & Mohseni, 2013b), algae (Gao et al., 2010), viruses

(Tanneru et al., 2013), and oil and grease (Chen et al., 2000).

To date, most research into EC has focused on wastewater applications rather
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than drinking water. Wastewater conductivity is higher than that of drinking water and

can be increased by adding salts. Relatively few companies have produced commercial EC

reactors. In the U.S., EC wastewater treatment units are produced by Powell Water

Systems, Inc. (2002), Quantum Ionics, Inc. (2004), and Water Tectonics (2015). Jye-Shi,

Inc., of Taiwan also produces an EC unit for industrial wastewater treatment (Perng

et al., 2009). Lamar University in Texas has created a pilot-scale, mobile treatment unit

for arsenic removal from drinking water. The mobile plant uses a series of iron electrodes

and features air sparging to enhance oxidation (Parga et al., 2012).

1.3. Comparison to conventional coagulation

EC has numerous benefits over conventional coagulation with metal salts. The EC

process is easy and safe to operate, can be automated, requires shorter residence times,

and produces smaller volumes of sludge (Cataldo Hernández et al., 2012; Mouedhen et al.,

2008; Ozyonar & Karagozoglu, 2014; Zhu et al., 2005). Unlike conventional coagulation,

EC can be effective over a wide initial pH range, because hydrolysis at the cathode

neutralizes the solution pH over time (Bagga et al., 2008; Mouedhen et al., 2008; Zhu

et al., 2005). EC’s portability has led some authors to suggest remote and emergency

applications as an appropriate niche (Bagga et al., 2008; Holt et al., 2005).

The electrical potential across the EC cell provides several additional advantages

over chemical coagulation. EC offers better removal efficiency for many contaminants than

conventional coagulation and removes smaller diameter colloids due to electrophoretic

transport and concentration of charged particles (Behloul et al., 2013; de Mello Ferreira

et al., 2013; Ozyonar & Karagozoglu, 2014). With the benefit of flotation due to

hydrolysis, EC could theoretically replace both chemical coagulation and dissolved air

flotation (DAF) processes (Vik et al., 1984). Moreover, EC can oxidize or reduce

contaminants like arsenic and chromium that would require pre-treatment when using

conventional coagulation (Ratna Kumar et al., 2004). Given the appropriate application,

EC could therefore replace chemical coagulation, DAF and chemical pre-treatment.

In potable water applications, EC has the benefit of not adding additional anions
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(e.g., chloride or sulfate) into solution. However, the very low conductivity of most

potable water means that the applied voltage (and therefore power) required is much

greater than for wastewater applications (Dubrawski & Mohseni, 2013a; de Mello Ferreira

et al., 2013). The primary drawback of EC, therefore, is that electrical energy is required

for operation, as opposed to the convenient chemical energy embodied in aluminum or

iron salts. The electrical energy demand for treatment increases as conductivity decreases.

For drinking water applications, the low conductivity of the electrolyte requires

closely-spaced electrodes with broad surface areas. An electrode with a large surface area

has a lower current density, and therefore produces fewer hydrogen bubbles per unit area.

Therefore, drinking water applications may not be able to rely on flotation for floc

removal (Dubrawski & Mohseni, 2013a).

1.4. Mechanisms

1.4.1 Electrolytic dissolution

The first step in the in situ formation of coagulant is the oxidation/dissolution of

the sacrificial anode. Ideal anodic dissolution from charge transfer is given by Faraday’s

Law of Electrolysis:

m =
I · t ·M
z · F

(1.1)

where m is the mass liberated from the anode (g), I is the current (A), t is reaction time

(s), M is molar mass (g/mol), z is valence number and F is Faraday’s constant (C/mol)

(Abdel-gawad et al., 2012; Akbal & Camcı, 2012; Dubrawski & Mohseni, 2013a; de Mello

Ferreira et al., 2013). The Faraday efficiency (Φ) of the reactor is thus the actual mass

(mactual) of ions released compared to the theoretical mass (mtheoretical) given by

Faraday’s Law.

Φ =
mactual

mtheoretical
(1.2)
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The actual rate of coagulant production can exceed the theoretical mass transfer given by

Faraday’s Law and depends on not only current but also the pH and composition of the

electrolyte (Cataldo Hernández et al., 2012; Chen et al., 2000; Mouedhen et al., 2008;

Vepsäläinen et al., 2012). Chemical oxidation of the cathode in solution may contribute

significantly to the total coagulant in the system. Moreover, acidic and alkaline

microenvironments form around the anode and cathode, respectively, and promote

chemical attack on the electrodes. Aluminum in particular is amphoteric and corrodes

below pH 4 and above pH 8.5 (Mouedhen et al., 2008).

As metal ions are released at the anode, hydroxide ions and hydrogen gas are

created through hydrolysis at the cathode (Akbal & Camcı, 2012; Bhatnagar et al., 2014;

de Mello Ferreira et al., 2013; Dubrawski & Mohseni, 2013a; Fernandes et al., 2014; Holt

et al., 2005; van Genuchten et al., 2014).

2 H2O + 2 e– H2(g) + 2 OH– (Rxn 1.2)

The evolution of hydroxide ions at the cathode serves to increase bulk pH of the

treated solution (de Mello Ferreira et al., 2013). With greater applied voltage, secondary

reactions have also been observed, including hydrolysis at the anode to form oxygen gas

(Arroyo et al., 2009; Bagga et al., 2008; Liu et al., 2010):

2 H2O O2(g) + 4 H+ + 4 e– (Rxn 1.3)

Such secondary reactions compete for current with the primary reaction at the

anode (oxidative dissolution). Therefore, secondary reactions lower the Faraday efficiency

of the reactor and are not typically favorable (Cataldo Hernández et al., 2012). If

reactions 1.2 and 1.3 were the only favorable reactions, then the bulk pH would remain

constant, because for every electron passing through the cell, one H+ and one OH– would

be produced.
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1.4.2 Aluminum and iron speciation

Aluminum and iron are the most common electrode materials used in

electrocoagulation (Chen et al., 2000; Ozyonar & Karagozoglu, 2014; Dubrawski &

Mohseni, 2013a; Behloul et al., 2013; Akbal & Camcı, 2012).

Reaction 1.1 applies to aluminum as follows:

Al Al3+ + 3 e– (Rxn 1.4)

Researchers have found that iron is oxidized to ferrous ions at the electrode surface

(Bagga et al., 2008; Li et al., 2012).

Fe Fe2+ + 2 e– (Rxn 1.5)

Ferrous ions may then be oxidized to ferric ions by dissolved oxygen (DO) or other

reactive species in solution (Li et al., 2012; van Genuchten et al., 2014; Wan et al., 2011).

Fe2+ Fe3+ + e– (Rxn 1.6)

The latter reaction takes place by means of an intermediate oxidizing agent, modeled

below as tetravalent iron:

3 Fe2+ + O2 FeO2 + 2 Fe3+ (Rxn 1.7)

The intermediate oxidizing agent is immediately reduced by ferrous ions or other

reductants in solution (Li et al., 2012).

Relative concentrations of ferrous and ferric ions are dependent on factors other

than the presence of DO. Li et al. (2012) found pH to have a strong effect on iron

oxidation, even within the pH range of natural waters. At pH 6.8, the concentration of

Fe(II) increased linearly with reaction time and accounted for approximately 90% of total

iron ions, whereas the Fe(II) fraction approached a steady concentration of approximately

2.5 mg/L at pH 7.6. In addition, charge loading rate (CLR), or the charge passed through
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the cell per unit volume per unit time, influences iron oxidation. At low CLRs (e.g., 1

C/L-min) the rate of ferrous iron oxidation approaches the rate of ferrous ion production

by oxidative dissolution. At very low CLRs, electrolytic dissolution can be the

rate-limiting reaction of Fe(III) formation (Wan et al., 2011). As CLR increases, ferrous

ion production overtakes oxidation and results in a greater ratio of ferrous to ferric ions

(Li et al., 2012). When present, natural organic matter (NOM) may chelate with and

prevent oxidation of ferrous ions (Bagga et al., 2008). Finally, current density may limit

iron oxidation by creating locally high concentrations of ferrous ions and low

concentrations of DO at the anode surface (Cataldo Hernández et al., 2012). Conversely,

current density may promote oxidation by mixing due to electrolytic gas evolution

(Dubrawski & Mohseni, 2013b), or by increasing local pH (Bagga et al., 2008).

1.4.3 Coagulant formation

The metal cations form hydrated complexes in solution. These hydrated ions

undergo hydrolysis to form metallic hydroxide species. For aluminum, the process is

modeled as follows. Waters of hydration are omitted after the first two reactions for

simplicity:

Al3+ + 6 H2O Al3+ ·6 H2O (Rxn 1.8)

Al3+ ·6 H2O Al(OH)2+ ·5 H2O + H+ (Rxn 1.9)

Al(OH)2+ Al(OH) +
2 + H+ (Rxn 1.10)

Al(OH) +
2 + H2O Al(OH)3(s) + H+ (Rxn 1.11)

Al(OH)3(s) + OH– Al(OH) –
4(aq) (Rxn 1.12)

Between pH 5 and 6, Al(OH)2+ and Al(OH)2
+ are the predominant mononuclear

aluminum species. From pH 5.2 to 8.8, insoluble aluminum (III) hydroxide (Al(OH)3) is

predominant. Above pH 9, Al(OH)4
– dominates (Gomes et al., 2007). Aluminum

solubility in a matrix modeled on natural waters is shown in Figure A.1, page 84. This

more complex water matrix shows the prevalence of the aluminum hydroxide species in
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solution, but also that AlSO4
+ may become dominant below pH 5.5. Thus, the presence of

sulfate ions can increase aluminum solubility below pH 5.5. An analogous transformation

occurs with ferric ions, by which Fe3+ undergoes hydrolysis to form Fe(OH)2+, Fe(OH)2
+,

Fe2(OH)2
4+, and others (Gomes et al., 2007). A solubility diagram of ferric iron is shown

in Figure A.2, page 85. The dominant soluble species in the pH range of natural waters

are Fe(OH)2
+ below approximately pH 8, and aqueous Fe(OH)3 and Fe(OH)4

– above pH

8. Only below pH 3 does FeSO4
+ become prevalent. In comparision, ferrous ions are far

more soluble (Bagga et al., 2008; Chen et al., 2000; Dubrawski & Mohseni, 2013a;

Tanneru & Chellam, 2012), as shown in Figure A.3, page 85. Oxidation of ferrous ions is

therefore critical for precipitation.

Both aluminum and ferric hydroxides precipitate between pH 6 and 9 (de Mello

Ferreira et al., 2013). Iron (III) hydroxide is minimally soluble near pH 8 and aluminum

hydroxide near pH 6.5 (Vepsäläinen et al., 2012), as shown in the solubility diagrams in

Appendix A.1. However, even at pH 6.5, the concentration of soluble aluminum is over

two orders of magnitude greater than that of ferric iron. Residual, soluble aluminum poses

a potential problem for EC of potable water (Dubrawski & Mohseni, 2013a; Vasudevan &

Lakshmi, 2011). The U.S. Environmental Protection Agency (EPA) provides

non-enforceable, secondary standards of 0.05 to 0.2 mg/L (1.9 to 7.4 µM) for aluminum

and 0.3 mg/L (5.4 µM) for iron. These secondary standards relate to color, odor and taste

aesthetics for drinking water (US EPA, 2009). However, high concentrations of aluminum

in drinking water have been linked to Alzheimer’s Disease (Flaten, 2001).

In reality, myriad mono- and polynuclear oxyhydroxide species are created. The

precise structure of the coagulant depends on numerous factors including pH, background

electrolytes, temperature, DO and current density (Akbal & Camcı, 2012; Dubrawski &

Mohseni, 2013a; Liu et al., 2010; Mouedhen et al., 2008; Parga et al., 2012). Aluminum

hydroxides tend to form amorphous or very poorly crystalline structures such as γ’

alumina (Gomes et al., 2007) with very large specific surface areas (Akbal & Camcı, 2012;

Chen et al., 2000). Iron crystallization in solution varies greatly with reactor parameters

and the water matrix (Dubrawski & Mohseni, 2013a; van Genuchten et al., 2014; Akbal &

Camcı, 2012). A number of crystalline and pseudo-crystalline structures have been
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identified from iron EC, such as magnetite (Fe3O4) and lepidocrocite (γ’ FeOOH)

(Dubrawski & Mohseni, 2013a; van Genuchten et al., 2014; Wan et al., 2011). Dubrawski

& Mohseni (2013a) found that long residence times with high current density and DO

availability gave rise to magnetite, whereas low DO and low current density gave rise to a

loosely-defined compound called green rust (GR). Between extremes, loosely crystalline

products (lepidocrocite and pseudo-lepidocrocite) are commonly formed (Dubrawski &

Mohseni, 2013a; van Genuchten et al., 2014; Wan et al., 2011). In fact, to synthesize

lepidocrocite in the lab (e.g., for adsorption studies), ferrous iron is oxidized in the

presence of DO at ambient temperature (Wan et al., 2011). Consisting of both ferric and

ferrous hydroxides, with alternating positively and negatively charged layers, GR is an

important intermediate in the Fe0 oxidation, both in EC and in nature. Anions are

incorporated into the structure as Fe2+ is oxidized to Fe3+. This internal reactive area

gives GR a very high specific surface area (Moreno et al., 2007). Highly crystalline species

have smaller specific surface areas than amorphous species and therefore fewer sorption

sites (Gomes et al., 2007). Sorbed contaminants may also affect the overall crystalline

structure, as when arsenic and iron form the mineral scorodite (FeAsO4 · 2 H2O) by EC

(Gomes et al., 2007; van Genuchten et al., 2014).

1.4.4 Metal adsorption and precipitation

Metal contaminants are removed by adsorption to flocs, precipitation and/or

chemical transformation. Both aluminum and iron hydroxides have a strong affinity for

charged metallic ions (de Mello Ferreira et al., 2013; Gomes et al., 2007; van Genuchten

et al., 2014). Dissolved metal cations themselves complex with ligands like OH– and

precipitate (de Mello Ferreira et al., 2013). Contaminant ions and hydroxides may also

co-precipitate by replacing ions in the floc matrix (Arroyo et al., 2009; Moreno et al.,

2007). Metal hydroxide formation is most prevalent at high pH, so the region of elevated

pH near the cathode may play an important role (de Mello Ferreira et al., 2013; Fernandes

et al., 2014). Charged colloids, particles and ions are transported by the field between

electrodes. The electrophoretic movement of negative charges to the anode and postitive
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charges to the cathode helps to concentrate contaminant and coagulant species for greater

contact (Parga et al., 2005).

Iron electrodes have been shown to promote redox transformations of metal

oxoanions like arsenite and dichromate (Arroyo et al., 2009; Li et al., 2012). Dichromate

ions may be reduced directly by ferrous ions generated at the anode (Arroyo et al., 2009):

Cr2O
2–
7 + 14 H+ + 6 Fe2+ 2 Cr3+ + 6 Fe3+ + 7 H2O (Rxn 1.13)

Chromium (VI) reduction by ferrous ions and iron minerals like magnetite also occurs in

the environment (Ellis et al., 2002). For reduced species like arsenite, the probable

mechanism of oxidation is a transient iron oxidant formed during the O2-mediated

oxidation of ferrous ions (Li et al., 2012).

AsO 3–
3 + 2 Fe4+ AsO 3–

4 + 2 Fe3+ (Rxn 1.14)

Direct oxidation and reduction of contaminants may also occur at the electrodes and in

solution (Holt et al., 2005). However, evidence suggests that oxidation and reduction in

bulk solution is far more important than contaminant transformations at the electrode

surface (Noubactep, 2010).

1.5. Reactor operation

EC reactors are typically operated galvanostatically, i.e., maintaining constant

current, to allow simple calculation of charge. As mentioned earlier, CLR is charge per

unit time per unit volume (e.g., C/s-L); for constant current, CLR can be expressed as the

current normalized for the treated volume (A/L) (Dubrawski & Mohseni, 2013b; Chen

et al., 2000). CLR is the only variable parameter for most reactors and determines the

rate of anode dissolution and electrolytic gas production (Dubrawski & Mohseni, 2013b;

Liu et al., 2010). Current density (i) is the current per unit area. However, instead of

referring to the area of the vector field between electrodes, current density in EC is taken
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as the area of the reactive anode surface. Current density determines the flux of

electrolytic gas bubbles and anodic cations. Equally crucial, current density determines

the conditions of the microenvironment around the anode and cathode (e.g., pH,

advection and concentration gradients) (Cataldo Hernández et al., 2012; Liu et al., 2010).

As a matter of convenience, investigators typically choose to express results as

functions of either CLR or current density. Many authors therefore tend to equivocate the

two concepts, in that both CLR and current density are varied but results are attributed

to one or the other. Chen et al. (2000), varied the cell current and volume flow rate in

order to determine the effect of current density. The authors found that removal

efficiencies for fats, oils and grease were affected by varying CLR, but not current density.

However, increased current density requires greater applied voltage and therefore

decreased power efficiency. At the same time, a low current density reactor must occupy a

greater footprint (Chen et al., 2000; Vepsäläinen et al., 2012). Dubrawski & Mohseni

(2013a,b) used a more robust approach by constructing a cell with replaceable baffles into

which a varying number of electrodes could be inserted. By this method, current density

could be altered without affecting the CLR or the flow of the cell. Lower current density

was associated with greater removal efficiency of natural organic matter (NOM), the

contaminant studied. For drinking water applications, a large electrode surface area (i.e.,

low current density) may be preferential to reduce resistance across the electrolyte (ohmic

dissipation), but flux of electrolytic gas bubbles would decrease. Lower bubble flux

reduces mixing at the electrode surface and decreases removal by flotation (Dubrawski &

Mohseni, 2013b; Cataldo Hernández et al., 2012; Liu et al., 2010).

To further confound the conversation, researchers often refer to CLR when

assuming constant residence time. The operable variable in this case is coagulant dose

normalized per unit volume, not CLR or residence time per se. The same specific dosage

may be generated slowly by a low CLR and high residence time or quickly by a high CLR

and low residence time. Dubrawski & Mohseni (2013a) analyzed each of these strategies

and found that high CLR and low residence time enhanced flotation, while low CLR and

high residence time allowed settling to occur. However, greater NOM removal efficiencies

were found at lower CLRs, because a high CLR required either a higher coagulant dose or
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post-treatment flocculation for maximum removal (Dubrawski & Mohseni, 2013b).

1.5.1 Power consumption

The power used by the reactor can be simply modeled as the product of the

current and applied potential. In reality, the potential varies throughout galvanostatic

reactor operation, so the parameters must be integrated over time. The applied potential

required to maintain constant current is equivalent to the sum of three factors:

ηAP = ηk + ηMt + ηIR (1.3)

where ηAP is the applied overpotential (measured cell potential), ηk is the kinetic

overpotential, ηMt is the mass transfer overpotential and ηIR is the overpotential from

ohmic dissipation, or IR drop. The kinetic, or activity, overpotential is the required

potential to drive the numerous half-reactions that take place in the reactor, particularly

for electrode dissolution and hydrolysis. Mass transfer, or concentration, overpotential is

the added potential required to overcome localized depletion of charge-carrying ions near

the electrode surface due to high reaction rates. Agitation from stirring or bubble flux can

alleviate concentration overpotential (Liu et al., 2010; Cataldo Hernández et al., 2012).

Ohmic dissipation can be reduced by increasing electrolyte conductivity, minimizing

distance between electrodes or maximizing the area of the electrodes:

R =

(
1

κ

)(
l

A

)
effective

(1.4)

where R is resistance, κ is the conductivity of the electrolyte, l is the distance between

electrodes, and A is the cross-sectional area of the electric field. For large, plate electrodes

spaced closely together, the cross-sectional area between electrodes approximates that of

the electric field (Wright, 2007). By Ohm’s Law, the theoretical applied voltage required

to overcome the IR drop is the product of the current (I) and resistance (R):

V = IR (1.5)
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1.5.2 Post-treatment

EC treatment may be followed by gravitational separation as a clarification step.

In many treatment conditions, flocs float to the surface, buoyed by electrolytic gas

(Cataldo Hernández et al., 2012; Fernandes et al., 2014; Holt et al., 2005; Liu et al., 2010).

This flotation layer can be skimmed from the surface as an alternate means of

clarification. Several authors have also investigated EC in combination with membrane

filtration, including reverse osmosis (Den & Wang, 2008), ultrafiltration (Ben-Sasson

et al., 2011, 2013) and microfiltration membranes (Bagga et al., 2008; Ben-Sasson et al.,

2011, 2013). Pretreatment of filtration source water by aluminum and iron EC has been

shown to reduce membrane fouling (Ben-Sasson et al., 2011, 2013; Den & Wang, 2008),

although a settling step between EC and filtration may be required (Bagga et al., 2008).

In a field trial, Wan et al. (Wan et al., 2011) used a 1 µm filter after iron EC to remove

arsenic from groundwater. The team found that filtration was necessary to reliably

achieve removal below the Indian drinking water standard of 50 µg-As/L.

1.6. Effect of background electrolytes

Background electrolytes are those ions in the source water other than the

contaminants of concern. In concert, electrolytes contribute to the ionic strength of the

water and increase the solution conductivity. However, many electrolytes also have

important individual effects on EC reactions.

1.6.1 pH

The solubility and speciation of coagulants is highly dependent on pH. Aluminum

and ferric hydroxides are least soluble near and slightly above neutral pH (Arroyo et al.,

2009; de Mello Ferreira et al., 2013). Likewise, many metal contaminants have decreased

solubility in mildly basic environments (de Mello Ferreira et al., 2013; Fernandes et al.,

2014). However, as pH transitions from acidic to basic pH, the surface charge of ferric and
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aluminum oxides decreases from positive to negative, while contaminants with

exchangeable hydrogen moieties (e.g., H2AsO4
–) become more negatively charged. Thus,

affinity decreases between negatively charged ions and coagulants (Li et al., 2012). pH

also strongly affects the oxidation of not only ferrous iron (Li et al., 2012), but also redox

transformations of contaminant species like chromium (VI) (Arroyo et al., 2009).

1.6.2 Hardness

van Genuchten et al. (2014) found that the presence of calcium and magnesium

increased the size and density of iron flocs. The team also found that calcium and

magnesium enhanced uptake of oxyanions (arsenate and phosphate) due to bonding

between the cation and an oxygen from the anion.

1.6.3 Alkalinity

In a study of arsenic removal, Li et al. (2012) found that bicarbonate had no effect

from 3 - 50 mM HCO3
–. The presence of bicarbonate ions may encourage more ordered

crystalline structures (e.g., goethite) than found in poorly-adsorbing, monovalent

electrolytes (van Genuchten et al., 2014).

1.6.4 Chloride

The presence of chloride accelerates both iron and aluminum dissolution by pitting

corrosion (Arroyo et al., 2009; Mouedhen et al., 2008). Chloride ions have been also shown

to be necessary for the formation of GR during EC (Dubrawski & Mohseni, 2013a;

Moreno et al., 2007). Chloride also prevents the formation of a passivating oxide layer on

aluminum electrodes. Passivation acts as an insulator on the electrode surface and

increases the required potential and power consumption. Mouedhen et al. (2008)

determined by potentiometric polarization that the minimum chloride concentration to

prevent aluminum passivation was 60 mg/L (1.69 mM). de Mello Ferreira et al. (2013)
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found no difference in electrode polarization curves between 0 and 5 mM chloride for

current densities less than roughly 10 mA/cm2. Therefore, below 5 mM chloride and 10

mA/cm2, chloride should not significantly affect passivation or aluminum dissolution.

1.6.5 Sulfates

Sulfate has a low affinity for iron hydroxides and does not significantly affect

contaminant removal or floc structure at natural concentrations (less than 200 mg/L)

(Meng et al., 2002). Presumably for this reason, some researchers have used sulfate as a

background electrolyte to maintain solution conductivity as other electrolyte

concentrations are varied (de Mello Ferreira et al., 2013; Mouedhen et al., 2008).

1.6.6 Competing ions

Ions such as phosphate and silica reduce the number of available sorption sites for

removal of the desired contaminant. Decreased sorption may be due to direct competition

for sorption sites, as with phosphate (Li et al., 2012; van Genuchten et al., 2014; Wan

et al., 2011), or restricted access to the internal surface area of the floc by polymeric

structures on the floc surface, as with silica (Wan et al., 2011). As little as 1 mg/L

phosphate has been shown to inhibit arsenic uptake (Wan et al., 2011), whereas silica may

have negligible inhibition below relatively high concentrations (less than 36 mg/L) (Meng

et al., 2002). Silica has also been shown to inhibit crystal formation by iron hydroxides

(van Genuchten et al., 2014; Wan et al., 2011).

1.7. Heavy metal contamination in drinking water

1.7.1 Chromium

Chromium in natural waters exists in trivalent and hexavalent forms. While

chromium (III) is an essential micronutrient, chromium (VI) is a highly toxic carcinogen
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(Arroyo et al., 2009; World Health Organization, 2003a). The U.S. EPA specifies a

Maximum Contaminant Level (MCL) for drinking water of 100 µg/L total chromium (US

EPA, 2009). Chromium is generally not found in significant concentrations in

uncontaminated, natural waters (World Health Organization, 2003a). Hexavalent

chromium is used as a corrosion inhibitor and is found in wastewater from tanning,

electroplating, wood preservation and mining and smelting. In the developed world,

chromium discharge in wastewater is tightly controlled (Arroyo et al., 2009). Chromium

(III) readily adsorbs to solids and complexes to form insoluble precipitates (Ellis et al.,

2002; World Health Organization, 2003a), as shown near neutral pH in Figure A.4, page

86. As shown in Figure A.5, page 86, chromium (VI) remains soluble in pH ranges where

chromium (III) precipitates. Therefore, reduction to chromium (III) not only reduces

chromium toxicity, but also total chromium concentration.

1.7.2 Nickel

Nickel in drinking water arises primarily from plumbing, although natural sources

and pollution from industries like nickel-cadmium battery manufacturing and

electroplating may also be responsible. Though nickel may take on various valence states,

aqueous nickel exists primarily as bivalent ions (Ni2+) at environmental conditions. As

shown in Figure A.6, page 87, presence of carbonate increases nickel solubility and leads

to the formation of aqueous NiCO3. Long-term ingestion of nickel may result in kidney or

liver damage (World Health Organization, 2005). High nickel concentrations in drinking

water have been linked to lung and bladder cancers in humans (Cantor, 1997). While the

EPA does not regulate nickel in drinking water, the World Health Organization (WHO)

advisory concentration for nickel is 70 µg/L (World Health Organization, 2005). The

National Science Foundation/American National Standard Institute (NSF/ANSI) protocol

for drinking water treatment units cites a maximum drinking water level (MDWL) of 100

µg/L nickel (NSF/ANSI, 2012).



18

1.7.3 Copper

Copper is a ubiquitous metal in electrical wiring, metallurgy, pesticides,

electroplating, fertilizers, animal feed and numerous other uses (World Health

Organization, 1996). A common contaminant in mine tailings (Lim et al., 2008), copper

also enters the environment from printed circuit board manufacturing wastewaters

(Cheung et al., 2003). Copper sulfate may be intentionally introduced to surface waters as

an aquatic biocide (World Health Organization, 1996). Corrosion of household plumbing

may also lead to unhealthy levels of copper in drinking water (US EPA, 2009). In water,

copper typically forms bivalent ions (Cu2+) (World Health Organization, 1996). Above pH

6, copper solubility drops off sharply and is primarily influenced by carbonate, as shown in

Figure A.9, page 87. Copper in sediments is not stable and is likely to reenter the aquatic

environment when pH decreases (Cheung et al., 2003).

Copper is an essential nutrient, with a recommended daily allowance of 900 µg/day

for adults (World Health Organization, 1996). However, long-term ingestion of water with

excessive copper can result in liver or kidney damage (US EPA, 2009). The action level

specified by the EPA for copper in drinking water is 1.3 mg/L (US EPA, 2009).

1.7.4 Zinc

Zinc contamination in the environment arises from smelting, galvanization and

diecasting industries (Cheung et al., 2003; Lim et al., 2008; Terres-Martos et al., 2002).

Zinc contamination also arises from non-industrial sources like geologic deposits,

household plumbing and solid waste leachate (Terres-Martos et al., 2002). When

contaminated surface water is used for irrigation, zinc accumulates in soils and can then

leach into the underlying groundwater (Terres-Martos et al., 2002). Soluble zinc between

pH 6.5 and 8.5 occurs primarily as Zn2+ ions, although zinc also readily forms species

with sulfate, carbonate and hydroxide ligands, as shown in Figure A.10, page 89. Like

copper, residual zinc is likely to reenter solution when pH drops (Cheung et al., 2003).

The EPA has a non-enforceable, secondary MCL of 5 mg/L zinc (US EPA, 2009).
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1.7.5 Arsenic

Arsenic is a drinking water contaminant of high concern. Anthropogenic sources

like mining and smelting, pesticide application and wood preservation contribute to

arsenic contamination (Jarup, 2003). However, geologic sources of arsenic are very

common worldwide. The earth’s crust contains 1.8 mg/kg arsenic (Crittenden et al.,

2013), and the rate of arsenic cycling in the environment is increasing due to human

activity (Anawar et al., 2002). Arsenic deposits threaten drinking water supplies in the

western United States, Mexico, Chile, Argentina, England, Hungary, Japan, China, India

and Bangledesh (Anawar et al., 2002; Cantor, 1997; Jarup, 2003; Parga et al., 2005).

Drinking water is the primary route of human exposure to inorganic arsenic (Jarup, 2003).

In the U.S., 13 million people are exposed to arsenic levels above the EPA standard of 10

µg/L (Crittenden et al., 2013). Arsenic contamination in Bangladesh and West Bengal,

India constitutes a humanitarian crisis and has been called the largest environmental

disaster in human history (Anawar et al., 2002; Smith et al., 2000). Of Bangladesh’s

population of 125 million, an estimated 35 to 77 million people are at risk for arsenic

poisoning from groundwater (Anawar et al., 2002; Smith et al., 2000).

Arsenic has both carcinogenic and non-carcinogenic toxicity (Anawar et al., 2002).

No effective treatment is available for arsenic poisoning (Parga et al., 2005). Chronic

arsenic ingestion results in skin lesions and cancer, internal cancers and diseases of the

skeletal, neural and vascular systems (Cantor, 1997; Jarup, 2003; Smith et al., 2000). The

World Health Organization (WHO) recommends a maximum drinking water

concentration of 10 µg/L arsenic, and chronic ingestion of as little as 50 µg/L has been

shown to cause precancerous lesions (Jarup, 2003; Smith et al., 2000). Groundwater

arsenic concentrations in India and Bangladesh can range in the thousands of µg/L

(Anawar et al., 2002; Cantor, 1997).

Though arsenic is a metalloid, it is often considered a heavy metal (Jarup, 2003).

Arsenic speciation is highly dependent on environmental redox potential (Eh) and pH

(Anawar et al., 2002; Crittenden et al., 2013). In natural waters, arsenic occurs primarily
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as pentavalent arsenate (AsO4
–) or trivalent arsenite (AsO3

3–) (Gomes et al., 2007; Parga

et al., 2005; Wan et al., 2011). At pH levels between 4 and 10, arsenite species are

predominantly neutral, while arsenate is negatively charged (Crittenden et al., 2013;

Parga et al., 2005), as shown in Figures A.11 and A.12, page 90. For this reason, arsenate

more readily adsorbs and can be more easily removed than arsenite (Wan et al., 2011).

Thus, oxidation is generally considered a required pre-treatment for arsenite mitigation

(Crittenden et al., 2013; Wan et al., 2011). At a high redox potential, arsenite is readily

oxidized to arsenate at any pH (Gomes et al., 2007). Arsenite exists in significant

concentrations under anaerobic conditions (as in groundwater), while arsenate is prevalent

in surface waters with high DO concentrations (Crittenden et al., 2013; Parga et al., 2005).

1.7.6 Cadmium

Cadmium contamination arises from electroplating and the manufacture of

rechargeable nickel-cadmium batteries (Cheung et al., 2003; Jarup, 2003). Cadmium is

also used industrially as a pigment, a stabilizer in PVC, a by-product of fuel combustion,

and an anti-corrosive. However, most cadmium released to the environment comes from

non-ferrous metal smelting. Chronic ingestion of low levels of cadmium leads to kidney

damage or failure, as well as skeletal deterioration. Cadmium is also likely to increase risk

of cardiovascular disease and death and is classified as a human carcinogen (Jarup, 2003).

The MCL for cadmium in drinking water is 5 µg/L (US EPA, 2009). Cadmium has been

detected in surface water and sediments at high levels downstream of mining operations

(Cheung et al., 2003; Lim et al., 2008). Near neutral pH, Cd2+ ions dominate, as shown in

Figure A.13, page 91. Given sufficient chloride concentration, CdCl+ ions are also

prevalent. Cadmium solubility dips between pH 8 and 12. The majority of cadmium in

sediments is stable and unlikely to become bioavailable (Cheung et al., 2003).
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1.7.7 Lead

Though most developed countries have banned the use of tetraethyl lead in

gasoline, ”leaded” gasoline remains a major source of lead contamination internationally

(Cheung et al., 2003; Jarup, 2003). Lead enters surface waters from both urban runoff and

the settling of lead in auto exhaust (Cheung et al., 2003; Jarup, 2003). Other sources of

lead are mines and smelting, glass and battery manufacture, and geologic deposits (Lim

et al., 2008; Jarup, 2003; US EPA, 2009). In the developed world, lead contamination in

drinking water often comes from corrosion of residential plumbing (US EPA, 2009). Lead

is acutely poisonous, and chronic exposure can lead to kidney damage. Lead is also a

potential human carcinogen. Inorganic lead passes through the blood-brain barrier in

children but not adults. Thus, chronic exposure is more hazardous to children and leads

to permanent behavior, learning and concentration disorders (Jarup, 2003). The EPA

specifies an action level for lead in drinking water of 15 µg/L (US EPA, 2009), while the

WHO specifies an advisory concentration of 10 µg/L (World Health Organization, 2003c).

1.7.8 Current methods of heavy metal removal

Conventional removal of metal contaminants from water involves chemical

precipitation, such as lime softening; sorption or filtration, such as granular media

filtration; ion exchange (IX); and reverse osmosis (RO). Chemical precipitation requires

bulk chemical inputs up to twice the stoichiometrically determined mass, produces a high

volume of sludge and generally only reduces contaminants to the part per million level

(Akbal & Camcı, 2012; Daous & El-Shazly, 2012; Dermentzis et al., 2011). As seen in the

previous sections, many metal contaminants have drinking water limits in the low parts

per billion. Therefore, chemical precipitation is likely inadequate to achieve drinking

water standards.

Granular media filtration and lime softening can be effective in removing arsenate,

chromic ions, copper and lead, but are not effective against chromate and arsenite. Novel

sorbents such as granular ferric hydroxide and activated alumina have also been
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investigated for arsenic removal. Despite successful trials, such sorbents are

cost-prohibitive, work in a narrow pH range and require pre-oxidation of arsenite

(Crittenden et al., 2013).

IX is effective against charged ions like arsenate, chromic ions, chromate, copper

and lead. However, uncharged species like arsenite are not removed by IX, and a single

medium will only remove either anions or cations (Crittenden et al., 2013). In addition,

exchange media require expensive chemical or physical regeneration (Dermentzis et al.,

2011; Garćıa-Lara et al., 2009). RO provides the most consistent removal of heavy metals

and does not require pre-oxidation of arsenite (Crittenden et al., 2013). However,

removing metals to ultra-low concentrations entails high energy and membrane

replacement costs (Garcia et al., 2013).

1.8. Electrocoagulation for heavy metal removal

Several authors have investigated EC for removing heavy metals from industrial

wastewaters (Akbal & Camcı, 2012; Arroyo et al., 2009; Dermentzis et al., 2011; Li et al.,

2014). In wastewaters, operators may increase conductivity and prevent electrode

passivation by addition of salts (de Mello Ferreira et al., 2013). In addition, typical metal

concentrations and regulatory limits are far higher for wastewater than drinking water.

Relatively few authors have considered EC for water potabilization. Initial results

indicate that EC can achieve removal of nickel, copper, zinc, chromium and arsenic to

below regulatory levels (Cataldo Hernández et al., 2012; de Mello Ferreira et al., 2013; Li

et al., 2012; Garćıa-Lara et al., 2009). Most studies of EC in potable water have tested

removal of contaminants from a natural water source. Cataldo Hernández et al. (2012)

tested a 400 mL batch reactor with aluminum plate electrodes for removal of very low

levels of nickel and chromium from two groundwater sources in Italy. After 120 minutes

treatment at a charge density of 0.8 to 1.6 mA/cm2, nickel concentrations were lowered

from 41 to 22 µg/L, and chromium from 23 to 20 µg/L. In another study, de Mello

Ferreira et al. (2013) tested copper, nickel and zinc removal from Grenoble tap water. The

team used relatively high initial concentrations (12 mg Cu/L, 20 mg Zn/L, 20 mg Ni/L).
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After 60 minutes of treatment at 1 A (1.4 mA/cm2), all three metals were removed by

95%. Ratna Kumar et al. (2004) tested arsenic removal from tap water. Iron electrodes

achieved near 100% removal of arsenite with approximately 250 C/L charge loading, or 86

mg/L coagulant dose. Arsenate was also shown to temporarily rise at the beginning of

treatment, indicating that arsenite was oxidized prior to removal. Garćıa-Lara et al.

(2009) used a continuous flow reactor to treat Mexico groundwater containing 133 µg/L

total arsenic (10.5 µg/L arsenite) and found removal to below 10 µg/L arsenic after two

minutes of treatment at a flow rate of 0.875 L/min and current density of 3 mA/cm2. Air

was sparged in the reactor at a rate of 1.6 L/min for mixing and to encourage arsenic and

iron oxidation.

At least two field trials have been conducted on arsenic removal from groundwater

by EC. Parga et al. (2005) used a pilot-scale, mobile EC unit (Lamar Mobil Pilot Plant)

with iron and carbon steel electrodes to remove arsenic from Mexico groundwater. The

pilot plant had a flow rate of 30 L/min and was operated at 4 to 5 A and 20 to 40 V, with

injected air sparging. After a 90 second residence time, total arsenic was reduced from

2.24 mg/L to 5 µg/L. The unit’s energy expenditure was estimated to cost 0.2 cents per

cubic meter treated. In a field trial in West Bengal, India, Wan et al. (2011) distributed

household EC units to 17 homes. The units used iron electrodes, aquarium pumps for air

sparging, with post-treatment filtration by 1 µm filters. Households used the units for one

week to treat groundwater containing an average of 400 µg/L arsenic with a treatment

time of 3 hours. The units used approximately 0.75 kWh/m3 water treated, or about

$0.11 in local costs. The team also found that 3 units were not used properly, indicating

that training is integral for the success of low-tech, point-of-use units.

Other investigators have used simple electrolytes to better characterize the

fundamental mechanisms behind EC. Mouedhen et al. (2008) tested removal of high

concentrations of zinc, nickel and copper (67, 59 and 67 mg/L, respectively) from a

sodium sulfate and sodium chloride electrolyte with an initial pH of 4.9. All three metals

were removed 40 to 60% after 20 minutes at 0.25 A (5 mA/cm2) and 100% after 75

minutes. In another test of EC in synthetic water, Nouri et al. (2010) showed zinc and

copper removal from a 1.6 mS/cm potassium chloride electrolyte. The team found greater
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than 90% removal near neutral pH after 15 minutes of treatment at 30 V, but decreasing

removal efficiency with lower initial concentrations (from 500 to 5 mg/L). Gomes et al.

(2007) tested arsenic removal in sodium chloride electrolyte and reduced arsenic

concentration from 1.42 mg/L to less than 0.10 mg/L after 60 minutes of treatment at 30

mA/cm2. Li et al. (2012) created a synthetic groundwater for testing. The team used a

reactor with iron electrodes (1 to 24 C/L-min CLR) and found reduction in arsenic

concentration from 500 µg/L to below 50 µg/L. The team found a pattern of a temporary,

initial increase in arsenate concentration, as also noted by Ratna Kumar et al. (2004).

1.9. Research goal

The research in this study is unique in that it addresses seven different metal

contaminants at the trace concentrations of concern to human consumption. In addition,

this study investigates the wide range of possible source water compositions. Most

research of metal contaminant removal by EC has used contaminant concentrations and

water matrices applicable to wastewater but not potable water. To date, the few studies

of EC treatment of drinking water have focused on a single metal or small suite of

contaminants. The wide range of operating parameters makes comparison between studies

difficult. In addition, research to date has used either a single natural water source or

simple electrolyte solutions. Thus, the wide variation in natural waters has not been

examined. As described above, electrolytes in the water matrix, such as calcium,

magnesium, bicarbonate and chloride ions, have the potential to radically influence floc

formation, contaminant removal and power consumption. In addition, post-treatment

with microfiltration may provide additional contaminant removal compared to settling or

flotation.

The overarching goal of this study was to determine the feasibility of aluminum

and iron EC to remove trace heavy metals from a wide range of drinking water sources.

This work was carried out in accordance with three specific objectives:
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Objective 1: Demonstrate removal of contaminants to below regulatory levels.

The first objective of this study was to investigate whether EC can remove

contaminant metals to regulatory levels (MCLs or secondary standards) established by the

U.S. EPA. In the first phase of tests, individual metal contaminants were tested for

removal based on NSF/ANSI protocol for drinking water treatment units. Maximum

removal of each contaminant metal was sought. To this end, very high coagulant doses

were used to bypass potential restabilization by charge reversal and ensure removal by

sweep flocculation. The second phase of tests sought to show simultaneous removal of a

cocktail of contaminant metals. One potential benefit of EC over IX would be

simultaneous removal of both anions (e.g., arsenate and dichromate) and cations (e.g.,

divalent nickel, cadmium and lead ions). Contaminant metals were expected to show

poorer removal in mixed-contaminant tests than in single-contaminant tests due to

competition for sorption sites.

Objective 2: Determine the effects of reactor design on metal removal.

The second objective was to determine the effects of major reactor design choices

on contaminant metal removal. Specifically, the use of iron or aluminum electrodes and

post-treatment settling or microfiltration were investigated. To this end, aluminum and

iron electrode performance was compared through a series of repeated tests using

solutions of mixed contaminants. After EC, samples were treated by microfiltration or

settling alone. Iron was expected be more effective than aluminum in removing arsenic

and chromium when spiked as arsenite and dichromate, respectively, due to iron’s ability

to drive redox transformations. Iron was also expected to benefit most from filtration,

based on initial observations that iron electrodes formed smaller, less dense flocs than

aluminum electrodes.
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Objective 3: Determine the effects of the gross water matrix on metal removal.

The final objective was to determine the effects of influent water quality on

contaminant metal removal. Instead of varying a single background ion or using a single

natural water, four synthetic waters were created to represent the ionic composition of a

wide range of natural waters, as described in Section 2.2. Of these four representative

waters, two were tested at two different pH levels.

Poorer contaminant removal was expected with increasing chloride, sulfate and

carbonate anion concentrations due to increased metal speciation and solubility, as well as

competition for sorption sites. Divalent cations (Ca2+ and Mg2+) were expected to

generally decrease removal by disrupting the coagulant matrix and reducing floc surface

charge by substitution. For iron electrodes, EC was expected to achieve greater arsenic

removal in high hardness waters due to Ca-O-As complexation (van Genuchten et al.,

2014).

Cadmium and lead were expected to show the greatest removal at high pH due to

low solubility, as shown in Figures A.13 and A.14, pages 91 and 91. Also, iron was

expected to outperform aluminum at pH 8.5. Iron (III) is minimally soluble near pH 8.5,

as shown in Figure A.2, page 85, whereas aluminum is minimally soluble below pH 6.5, as

shown in Figure A.1, page 84. However, because low pH promotes oxidation of ferrous

ions to ferric ions (Li et al., 2012), iron was also expected to perform better at pH 6.5

than pH 8.5.
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2. METHODS

2.1. Reactor design and operation

Electrocoagulation tests were conducted in a bench-scale, batch reactor with a

retention volume of 300 mL. The reactor was constructed of plastic and was stirred at 60

rpm with a magnetic stir bar measuring 5 cm long and 0.8 cm in diameter. Plate

electrodes consisting of aluminum or iron (>90% purity) were used for both the anode and

cathode. Each electrode had a submerged surface measuring 9 x 6 x 0.3 cm (115 cm2

effective surface area). The inter-electrode distance was 1 cm. Power was supplied by a

330 W DC power supply (Sorensen LH 110-3) with a constant current of 0.50 A (100

C/L-min CLR, 4.3 mA/cm2 current density). The electrode polarity was alternated every

30 seconds to prevent electrode passivation. The reactor apparatus, electrodes and

polarity-alternating controller were kindly provided by A.O. Smith Water Products

Company. Initial and final applied potential readings were taken from the digital reading

on the power supply. Power consumption (P ) in watts was estimated as the product of

the constant current (Ic) in amperes and mean applied potential (V̄ ) in volts:

P = IcV̄ (2.1)

2.2. Test water formulation

Contaminant removal was tested in synthetic waters. Four different synthetic test

waters were prepared by spiking ultrapure (Milli-Q) water with American Chemical

Society (ACS) grade reagents to approximate major ion concentrations in representative

source waters. The pH was adjusted to desired levels by addition of hydrochloric acid or

sodium hydroxide. The test waters modeled the low and high range of ionic concentration

for both surface and groundwater. Thus, the progression from lowest to highest total

dissolved solids (TDS) was as follows: “surface low,” “surface high,” “ground low,” and

“ground high,” as shown in Table 2.1.
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Table 2.1: Synthetic test waters and range of water quality parameters investigated.

Test Water pH TDS (mg/L) Hardness Guidance

Surface low 6.5, 8.5 160 60
NSF/ANSI

53:2011Surface high 6.5, 8.5 300 120

Ground low 6.5 880 370
Snoeyink &

Jenkins, 1980

Ground high 6.5 2,110 470
Delhi test

well
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The reagents and quantities used to formulate each test water are provided in

Appendix A.2, page 93. “Surface low” and “surface high” test waters were formulated to

represent a range of surface water conditions based on parameters for metal contaminant

removal conditions required by NSF/ANSI 53:2011a (NSF/ANSI, 2012). However, to

allow comparison between metals, two composite surface waters were created to

approximate many of the different “challenge” waters for individual metals outlined in the

NSF/ANSI protocol. In addition, the low solids water outlined by the protocol was not a

realistic candidate for treatment by EC due to the very low (< 100 mg/L) TDS

concentration stipulated. The extremely low conductivity of the water specified in the

protocol required over 100 V of applied potential to pass 0.5 A of current, and initial tests

showed that the water heated to 35°C within minutes. Thus, “surface low” was modeled

to require less than 50 V applied potential based on Equation 1.4, page 13, and Ohm’s

Law (Equation 1.5, page 13), while aligning as closely as possible to the characteristics

outlined in NSF/ANSI 53:2011a.

“Ground low” test water was modeled on well water in Dayton, Ohio, as

characterized in Snoeyink & Jenkins (1980). “Ground high” test water was modeled on

brackish water from a well in Delhi, India. Sampling data for the well was provided by

A.O. Smith Corporation. For each test water, calcium and magnesium hardness,

bicarbonate alkalinity and sulfate concentrations were matched as closely as possible to

the source water. Reproducing these concentrations in the lab at standard temperature

and pressure required an excess of chloride and sodium ions above reported

concentrations. These excesses were as follows: “surface low”, 0.8 mM chloride and 0.7

mM sodium; “surface high,” 1.6 mM chloride and 1.7 mM sodium; “ground low,” 5.4 mM

chloride and 5.2 mM sodium; and “ground high,” no excess chloride or sodium. Given the

current density used in this study (4.3 mA/cm2), absolute chloride concentrations below 5

mM should not affect electrode polarization (de Mello Ferreira et al., 2013). “Ground low”

slightly exceeded this level (5.6 mM Cl–). “Ground high” greatly exceeded 5 mM chloride

but matched the chloride concentration found in the brackish Delhi well (18.9 mM Cl–).

Metal contaminants were spiked into the water at the challenge concentrations

established in NSF/ANSI 53-2011a, as shown in Table 2.2, page 30. Nickel and zinc were
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not addressed in NSF/ANSI 53-2011a. For these metals, spiking concentrations were

chosen to ensure solubility while exceeding regulatory limits by a factor of at least 3.

Table 2.2: Spiking concentrations and target concentration levels for the seven metal con-
taminants of interest.

Species Spiking Compound

Influent challenge
concentration

(µg/L as element)

U.S. EPA Maximum
contaminant level (MCL)

(µg/L as element)

As AsNaO2 300 10

Cd CdCl2 30 5

Cr KCr2O7 300 100

Cu CuCl2 · 2 H2O 3,000 1,300

Ni NiCl2 · 6 H2O 500 100a, 70b

Pb Pb(NO3)2 150 10

Zn ZnCl2 15,000 5,000b

a Maximum Drinking Water Level (MDWL), NSF/ANSI 53:2011a

b WHO advisory concentration, not MCL

2.3. Chemical equilibrium modeling

Speciation of coagulant and contaminant metals was modeled in each of the four

test waters with MINEQL+, version 4.6. Metal solubilities were modeled assuming the

potential to form all species provided in MINEQL+. Thus, the calculated solubilities are

conservative and may be higher in reality due to non-equilibrium conditions. Speciation

diagrams are for metals at the spiking concentrations in Table 2.2 in “ground high” water,

unless otherwise specified. Initial concentrations above 10 M were not allowed by the

program. Therefore, the solubility of ferrous iron could only be modeled above pH 5.

2.4. Post-treatment and analysis

After EC treatment, the flotation layer (if present) was removed with a pipet. The

bulk solution was then stirred gently to homogenize and transferred to 50 mL centrifuge

tubes. In the interest of time, settling by gravitation was simulated by centrifugation for 5
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minutes at 2,910 x g. These centrifugation parameters were similar to those described by

Matsui et al. (2003). The supernatant was then decanted. Approximately half of the

supernatant was next filtered through a dead-end, 0.45 µm cellulose nitrate filter.

Filtration was performed using a vacuum manifold (approximately 50 kPa gauge). To

ensure metal solubility for analysis, 50 mL samples of both the permeate (microfiltered)

and the supernatant (settled only) were digested on a hot plate with 5 mL concentrated

nitric acid according to Standard Method 3030 E (American Public Health Association

et al., 1998). Sample volumes were reduced to approximately 10 mL, then reconstituted in

Milli-Q water. Samples were then diluted for analysis in a solution of 2% OmniTrace

Ultra nitric acid (EMD Millipore #MNX0408) and 0.5% Aristar Ultra hydrochloric acid

(BDH #20401) for metals analysis. Dilution factors were chosen to achieve less than 5

mg/L total analyte concentration. In all tests, iron or aluminum was the limiting analyte

in determining appropriate dilutions. For this reason, lower coagulant doses allowed for

less dilution and thus improved the method detection limits (MDLs, see Section 2.8).

Metal concentrations were analyzed by inductively coupled plasma mass

spectrometry (ICP-MS, Agilent 7700 series) according to Standard Method 3120 B

(American Public Health Association et al., 1998). An AS X-500 ICP-MS auto-sampler

was used. The instrument blanks consisted of 2% nitric, 0.5% hydrochloric acid as

described above. An internal standard mix of bismuth, germanium, indium, lithium,

scandium, terbium and yttrium (Agilent #5183-4681) was used throughout the analysis.

Samples were calibrated and analyzed with Mass Hunter Workstation software, version

B.01.01.

2.5. Phase 1: single-contaminant removal

Metal removal was addressed in two distinct phases. In the first phase, removal of

each of seven metal contaminants was tested separately. These contaminants were

chromium, nickel, copper, zinc, arsenic, cadmium and lead. The first objective of these

tests was to show removal of contaminants to below regulatory levels. Therefore, retention

times of 15, 30 and 60 minutes (1500, 3000 and 6000 C/L, respectively) were chosen.
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These operating conditions exceed typical coagulant doses, but allowed evaluation of

maximum contaminant removal. Samples were taken only at the end of each test, not

continuously during EC treatment. A single test was run for each retention time. The

second objective was to determine operating conditions, particularly CLR and retention

time. In this phase, two test waters were used: “surface low” and “surface high.” “Surface

low” was tested at pH 6.5, and “surface high” was tested at pH 8.5, as outlined by the

challenge conditions for metal removal provided in NSF/ANSI 53-2011a (NSF/ANSI,

2012).

2.6. Phase 2: mixed-contaminant removal

In the second phase, the removal of metal contaminants was tested simultaneously

using mixed solutions of five metals (chromium, nickel, arsenic, cadmium and lead). Zinc

and copper were not included in this phase, because the high spiking concentrations of the

two metals influenced the solubility of the remaining species. The reduction of metal

solubility was shown both by equilibrium modeling and experimentally in the lab. Upon

addition of all seven metals in solution, a bright yellow precipitate formed that was easily

removed by filtration. The remaining five metals did not significantly influence the

solubility and speciation of the others, as evidenced by metal concentrations in filtered

samples and equilibrium models shown in Figures A.4 - A.14, pages 86 - 91.

Four independent variables were tested in this phase: electrode material

(aluminum or iron), post-treatment (microfiltration or settling alone), initial pH and test

water type. Triplicate tests were performed for each test condition. The retention time

was held constant at 2 minutes (200 C/L) for all tests. This retention time was chosen to

ensure less than 50 mg/L of total analytes in all samples, based on concentrations found

in previous tests. After a 10x dilution, all samples would then meet the required

maximum concentration of 5 mg/L total analytes for ICP-MS analysis. A 10x dilution was

chosen to achieve MDLs appreciably lower than the regulatory limits (see Section 2.8).

Metal removal efficiency in all four test waters was tested in this phase. Mixed

contaminant removal in “surface low” and “surface high” waters was tested at both pH
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6.5 and pH 8.5. “Ground low” and “ground high” waters were tested only at pH 6.5.

According to equilibrium modeling, lead solubility at pH 6.5 varies considerably with

carbonate concentration, as shown in Figure A.15, page 92. As the difference in lead

solubility between pH 6.5 and 8.5 was greatest for the high solids waters, the surface

waters were chosen to test at two pH levels. Other metals did not show pronounced

differences in solubility between waters in the pH range tested. Ground waters were tested

at pH 6.5 to ensure solubility of all metals at the initial, spiking concentrations.

2.7. Data analysis

In determining the effectiveness of EC treatment, both the post-treatment

concentrations and removal efficiency for each metal were considered. The removal

efficiency (ηremoval) for each contaminant was calculated as follows:

ηremoval = 1 − Cpost−treatment

Cinitial
(2.2)

The initial concentration (Cinitial) was measured in the pre-treatment, filtered sample, and

the post-treatment concentration (Cpost−treatment) was measured in the microfiltered and

unfiltered samples after EC. Thus, removal was calculated based solely on the initial

concentration of dissolved metal in solution.

Comparisons of the resulting removal efficiencies (means of triplicate tests in the

second phase of metal testing) were performed using four-way (multivariate) analysis of

variance (ANOVA) tests to determine the effects of four, categorical independent

variables: water matrix composition, pH, electrode material and post-treatment (settling

versus microfiltration). Removal efficiency for each metal was first analyzed as a full

matrix of two-, three- and four-way interactions between variables. Interactions with

conservatively low significance (p > 0.10) were then disregarded and pooled into the error

term. Type III sum of squares was used for all tests. Significant effects for each

combination of independent variables were checked for normality using the one-sample

Kolmogorov-Smirnov test and homogeneous variance using the Bartlett test. Where
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groups with significantly different means were non-normal and/or heteroscedastic, data

were transformed using the Box-Cox method and analyzed again by ANOVA. ANOVA

assumptions of normality and homoscedacity were again checked for the transformed

results. Because only two of the four test waters ( “surface low” and “surface high”) were

tested at different pH levels, testing pH alongside the other variables could result in

non-rank comparisons. Where a non-rank or heteroscedastic groups showed a significant

interaction (e.g., pH x test water), the data were divided into groups by the relevant

variable(s) and reanalyzed by ANOVA to determine significant effects of remaining

variables within those groups. Where data are displayed in “box and whisker” plots within

this paper, whiskers represent the full range of data up to 1.5 times the interquartile range

(1.5 IQR rule). The effect of electrode material on power consumption was analyzed by

comparing mean applied potential for aluminum and iron in each test water using a

two-tailed, paired t-test. All analyses were performed in MATLAB®, version R2013b.

2.8. Quality control

Reactors and all glassware were cleaned in a 5% hydrochloric acid bath and rinsed

four times with Millipure water. Solution pH was adjusted in the reactor to ensure that

any residual acid would not affect pH. Electrodes were polished before each test with 400

grit, waterproof, silicon carbide sandpaper under tap water to remove any adherent metals

and ensure a uniform surface. Electrodes were then wiped clean and triple-rinsed with

Milli-Q water. “Blanks” were sampled from each batch of test water prior to spiking with

contaminant metals. Blank samples were subjected to the same pretreatment and analysis

as experimental samples. Blank concentrations were not subtracted from the experimental

concentrations because metals were frequently removed to near the blank concentrations.

Instead, method detection limits (MDLs, 99% confidence) were determined from analyte

concentrations in the blanks, as shown in Table 2.3, page 35. MDLs were calculated by

the following formula for a series of single analyses:

MDL = sst

√
n+ 1

n
(2.3)
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where ss is the standard deviation of blank samples, t is the critical t-value (p = 0.01,

two-tailed), and n is the number of samples (Sawyer et al., 2003).

Table 2.3: Method detection limits (MDLs, in µg/L) for the seven metal contaminants of
interest by sample dilution.

Dilution: 10 X 20 X 100 X

Metal ss n MDL ss n MDL ss n MDL

Cr 3.24 10 11.0 4.11 8 14.4 6.34 11 21.0

Ni 45.0 10 153 153 8 535 1,160 11 3,840

Cu 33.9 10 116 5.82 8 20.4 227 11 751

Zn 136 10 464 110 8 385 3,180 11 10,500

As 1.54 10 5.26 n.d.* 8 n.d.* 1.22 11 4.03

Cd 0.831 10 2.83 0.802 8 2.81 4.48 11 14.8

Pb 1.36 10 4.64 4.05 8 14.2 24.5 11 81.1

* Arsenic was not detected (< 0.001 µg/L) in blanks at this concentration.
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3. RESULTS AND DISCUSSION

3.1. Coagulant dose

The rate of coagulant dosing was tested using aluminum and iron electrodes at 2

minutes and 15 minutes of treatment at 0.50 A. “Surface high” water was used as the

supporting electrolyte. The Faraday efficiency for each metal was determined according to

Equation 1.2, page 5. The dosing rate for aluminum was 3.96 mg/min (0.147 mmol/min),

with a Faraday efficiency of 142%. Faraday efficiencies for aluminum in excess of 100%

have been reported, and likely arise from chemical degradation of electrodes (e.g., by pH

or chloride) in addition to electrolytic degradation (Mouedhen et al., 2008; Kuokkanen

et al., 2013). Iron had a similar dosing rate by mass – 3.07 mg/min (0.055 mmol/min) –

but a much lower Faraday efficiency of 35.4%. Previous authors reporting high Faraday

efficiencies (approaching 100%) for iron have used high chloride electrolytes and washed

electrodes with acid to remove iron bound to the electrode surface (Dubrawski & Mohseni,

2013a). This experiment was concerned with the available coagulant throughout the

reactor rather than the mass balance of iron, so the low Faraday efficiency is not a

concern. In addition, the difference in molar dosing between aluminum and iron is of

secondary concern to the performance of each electrode material for a given CLR and

retention time. In optimizing an EC reactor for contaminant removal, these operating

parameters are of greater importance. The reaction stoichiometry can inform as to the

dissolution rate of the electrodes.

3.2. Aluminum and iron residuals

After two minutes of treatment with aluminum electrodes, microfiltered samples

contained an average of 0.42 mg/L aluminum (standard deviation (SD) = 0.53, n = 17),

while centrifuged samples contained an average of 3.05 mg/L (SD = 2.21, n = 16). After

two minutes of treatment with iron electrodes, microfiltered samples contained an average

of 0.35 mg/L iron (SD = 0.55, n = 18), while centrifuged samples contained an average of
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4.45 mg/L (SD = 4.20, n = 18). Given these averages across all test conditions, both

residual aluminum and iron exceeded secondary standards for drinking water of 0.2 and

0.3 mg/L, respectively (US EPA, 2009). Iron exceeded the standard by an average of 0.05

mg/L, while aluminum exceeded the maximium standard by a factor of 2.

Grouping the results by initial pH paints a different story, however. At pH 6.5,

residual aluminum concentrations averaged 0.11 mg/L (SD = 0.059, n = 12) in filtered

samples, versus 1.15 mg/L (SD = 0.37, n = 5) in filtered samples at pH 8.5. On the other

hand, filtered iron samples at pH 8.5 contained less residual iron (M = 0.043mg/L,

SD = 0.010, n = 6) than at pH 6.5 (M = 0.50mg/L, SD = 0.62, n = 12). Unfiltered

samples showed the same trends by pH, but no division of unfiltered samples met the

secondary MCLs for aluminum or iron.

Whereas the secondary standard for iron is an aesthetic limit (US EPA, 2009),

chronic ingestion of aluminum in drinking water has been linked to Alzheimer’s Disease

(Flaten, 2001). Iron levels above 0.3 mg/L may discolor laundry and plumbing, but

humans ingest far more iron in food (10 to 14 mg/day on average) than in drinking water

(World Health Organization, 2003b). Therefore, slightly elevated levels of iron in drinking

water are of little health concern. Microfiltration reduced both iron and aluminum

concentrations by approximately one order of magnitude.

3.3. Objective 1: Contaminant removal

In the first, exploratory phase of metal contaminant testing, reduction to below

the MCL was observed for the most toxic metals, as shown in Figures 3.1 - 3.7, pages 39 -

43. In these initial tests, aluminum and iron electrodes showed similar performance, with

the notable exceptions of chromium and arsenic. Chromium, copper and cadmium were

reduced to below the MCL within 15 minutes (1,500 C/L) with both aluminum and iron

electrodes. Iron electrodes achieved greater removal of both chromium and arsenic.

Arsenic was reduced to below the MCL within 15 minutes using iron electrodes but

required 60 minutes of treatment (6,000 C/L) using aluminum electrodes.

At the dilution required for ICP-MS analysis, both nickel and zinc had MDLs in
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excess of the target metal concentrations. For this reason, a reduction to the MCL could

not be shown. Because nickel and zinc were spiked at high levels compared to other

contaminants, the error likely arose from contamination rather than instrument limits.

Contamination may have been introduced from the lab environment and digestion acids,

despite acid washing reactors and glassware. The electrodes themselves contained

impurities that may have been introduced into solution by electrolysis. In the first phase,

lead was spiked at too high a concentration due to gross error. However, as reduction to

below the MCL was shown in the second phase of metal testing, these tests were not

repeated.

The first phase showed that metal removal to low µg/L levels was possible for the

metals of highest toxicity – arsenic, chromium and cadmium – as well as copper. In

addition, the results from the first phase served to determine an appropriate retention

time for further investigation into the effect of reactor and water quality parameters on

metal removal. Even in the challenging, mixed-contaminant conditions in the second

phase of testing, chromium, arsenic, cadmium and lead showed repeatable (95%

confidence) removal to below the MCL for some test conditions after only two minutes

(400 C/L), as shown in Figures 3.8 - 3.16, pages 45 - 66.
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Figure 3.1: Chromium removal by aluminum and iron electrocoagulation, a.) pH 6.5, and
b.) pH 8.5. Data points for each retention time represent individual tests.
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Figure 3.2: Nickel removal by aluminum and iron electrocoagulation, a.) pH 6.5, and b.) pH
8.5. Data points for each retention time represent individual tests. Due to sample dilution,
the MDL for nickel (3, 840 µg/L) was higher than the initial spiking concentration and is
not shown in this figure. In b), the slight increase in concentration after 15 minutes with
iron electrodes is likely due to chance variation between tests.
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Figure 3.3: Cadmium removal by iron electrocoagulation, a.) pH 6.5, and b.) pH 8.5. Data
points for each retention time represent individual tests. Aluminum electrodes were not
tested at pH 8.5 due to the similar removal of both electrode materials at pH 6.5.
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Figure 3.4: Copper removal by aluminum and iron electrocoagulation, pH 6.5. Data points
for each retention time represent individual tests.

Figure 3.5: Zinc removal by aluminum and iron electrocoagulation, pH 6.5. Data points for
each retention time represent individual tests.
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Figure 3.6: Arsenic removal by aluminum and iron electrocoagulation, pH 6.5. Data points
for each retention time represent individual tests. Blank samples at this dilution (x20)
showed no measurable concentration of arsenic, so the MDL was not calculable.

Figure 3.7: Lead removal by aluminum and iron electrocoagulation, pH 6.5. Data points
for each retention time represent individual tests.
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3.4. Effects of reactor and water matrix parameters by metal

This section discusses how the four independent variables tested in Phase 2

(electrode material, post-treatment, pH and test water type) affect the removal of each

metal contaminant. Metal contaminants are considered individually to show the process of

data analysis. The emphasis in this section is on determining significant effects and

explaining those effects with regard to each metal contaminant. To that end, only the

relevant figures and tables will be presented to illuminate how significance was

demonstrated. The following Sections 3.5 and 3.6 synthesize the results in this section and

discuss the broad trends in reactor and water matrix variables.

3.4.1 Chromium

The results for chromium removal in Phase 2 are shown in Figure 3.8, page 45.

Chromium removal efficiency was compared between test conditions by 4-way ANOVA.

Chromium removal efficiency in each test was tranformed using the Box-Cox method to

correct for normality and homogeneous variance. Where post-treatment concentrations

were slightly higher than the corresponding filtered, initial concentration, the resulting

removal efficiency was negative. Therefore, unity (1) was added to all removal efficiencies

before transformation to yield only positive values, because the Box-Cox transformation

does not allow negative values. Significant effects (α > 0.05) were shown for all four

independent variables: post-treatment (F (1, 59) = 11.11, p = 0.0015), pH (F (1, 59) = 6.99,

p = 0.011), test water (F (3, 59) = 9.05, p = 0.0001), and electrode material

(F (1, 59) = 805.5, p < 0.0001). In addition, significant interactions were shown for

electrode material and each of the remaining three variables: electrode x post-treatment

(F (1, 59) = 7.75, p = 0.0072), electrode x pH (F (1, 59) = 5.27, p = 0.025), and electrode x

test water (F (3, 59) = 6.87, p = 0.0005). Even with transformed data, the distribution of

all filtered samples and all samples at pH 6.5 were determined to be non-normal by the

Kolmogorov-Smirnov test. Post-treatment and pH were tested again by nonparametric,

Kruskal-Wallis ANOVA. By Kruskal-Wallis, post-treatment was determined to be
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Figure 3.8: Chromium removal by a.) aluminum, and b.) iron electrocoagulation in six
synthetic water matrices spiked with mixed contaminants. Note the dramatic removal of
chromium with iron electrodes compared to that with aluminum electrodes. Test water
types were abbreviated as follows: SL (“surface low”), SH (“surface high”), GL (“ground
low”), GH (“ground high”). See Section 2.2 for a description of the four test water types.
Values shown are means of triplicate tests; error bars are ±1 standard deviation.
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significant (X2(1, 69) = 3.96, p = 0.047), but pH was not (X2(1, 69) = 0.15, p = 0.69).

Data grouped by electrode material failed to meet the assumption of equal

variance for ANOVA. Grouping data by electrode material and any other variable(s) did

not result in sets of equal variance either. The source of unequal variance

(heteroscedacity) can be clearly seen in Figure 3.9, page 48. With iron electrodes and

post-treatment microfiltration, chromium saw repeatable, near-complete removal,

regardless of test water or pH. Because the data cannot spread past 100% removal, the

variance was compressed. Despite failing the assumption of homoscedacity, electrode

material clearly had a significant effect on chromium removal, given the comparatively

poor performance of aluminum electrodes, the very low probability of the difference

between electrode materials occurring by chance (as determined by ANOVA), and the fact

that the narrow variance resulted from consistently excellent removal. Even so, the data

were grouped by post-treatment, and the group receiving only settling was compared by

three-way ANOVA (pH, test water and electrode material). In the subset of settled

samples, Box-Cox transformations of the data resulted in homoscedastic, normal

distributions. Significant effects were found for test water (F (3, 29) = 4.61, p = 0.0094)

and electrode material (F (1, 29) = 274.7, p < 0.0001).

Chromium removal efficiency with iron electrodes (mean (M) = 0.92, SD = 0.090)

was drastically greater than with aluminum electrodes (M = 0.23, SD = 0.15). The

extreme difference in electrode performance explains the large standard deviations across

other variables when lumping together results for aluminum and iron electrodes. Iron was

expected to perform better than aluminum, as previous authors had postulated that

ferrous iron released at the anode reduces dichromate ions in solution (Arroyo et al., 2009).

In general, chromium removal was significantly enhanced by microfiltration

(M = 0.61, SD = 0.39) over settling alone (M = 0.55, SD = 0.35). However,

enhancement from microfiltration was evident only for iron electrodes, as shown in Table

3.1, page 48. This electrode by post-treatment interaction agrees with observations that

iron flocs were smaller and less dense than aluminum flocs. Iron particles often remained

in suspension after centrifugation or became re-suspended with the slightest movement.

Chromium removal efficiency was greatest in low-solids waters: from “surface low”
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(M = 0.61, SD = 0.34) and “surface high” (M = 0.62, SD = 0.35), to “ground low”

(M = 0.53, SD = 0.43) and finally “ground high” (M = 0.48, SD = 0.43). However, due

to consistently high chromium removal with iron electrodes regardless of other variables,

the trend is only apparent for aluminum electrodes, as shown in Table 3.2, page 49.

Though pH was not shown to be have a significant effect, the mean removal efficiency was

greater at pH 6.5 (M = 0.642, SD = 0.309) than pH 8.5 (M = 0.585, SD = 0.379) when

comparing data from surface waters alone. Given the failure of the Kruskal-Wallis test to

confirm the significance of pH and the relatively minor difference in group means, pH was

not a relevant factor over the range tested.
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Figure 3.9: Chromium removal efficiency by treatment with aluminum versus iron elec-
trodes, and post-treatment microfiltration versus settling only. Note that the samples
treated by iron EC and microfiltration show very little variation due to nearly complete
removal.

Table 3.1: Chromium removal efficiency, interaction between post-treatment and electrode
material. Microfiltration significantly enhanced removal of chromium with iron electrodes,
but not with aluminum electrodes.

Electrode Material

Post-treatment Aluminum Iron

Settling

n 17 18

M 22% 86%

SD 17% 8.8%

Microfiltration

n 18 18

M 23% 99%

SD 13% 0.88%
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Table 3.2: Chromium removal efficiency, interaction between test water and electrode ma-
terial, pH 6.5. Only data from pH 6.5 is shown to avoid confounding the effect of water
matrix with the effect of pH on the two surface waters. EC with aluminum electrodes shows
a clear trend of decreasing chromium removal with increasing ionic strength of the electrolyte
from “surface low” to “ground high”. Iron does not show the same trend, possibly due to
consistently excellent removal.

Electrode Material

Test water Aluminum Iron

Surface Low

n 6 6

M 39% 89%

SD 7.9% 14%

Surface High

n 6 6

M 32% 97%

SD 11% 3.0%

Ground Low

n 6 6

M 13% 94%

SD 3.8% 7.0%

Ground High

n 6 6

M 8.0% 89%

SD 2.1% 12%
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3.4.2 Nickel

ANOVA analysis of nickel removal efficiency showed significant effects for pH

(F (1, 63) = 100.1, p < 0.0001) and test water (F (3, 63) = 7.18, p = 0.0003). In addition,

results showed a significant interaction between pH and electrode material

(F (1, 63) = 10.82, p = 0.0016). However, groundwater tests showed significantly lower

variation than tests in surface water, as shown in Figure 3.11, page 53. Separating

groundwater tests by other significant variables and combinations of variables did not

resolve the difference in variation. In addition, transformations did not reduce the

heteroscedacity. Aluminum flocs were observed to be larger in groundwater than surface

water tests. Regardless of electrode material, flocs in groundwater may have been larger,

denser and more likely to be removed consistently by settling and filtration. Groundwater

tests were performed last chronologically, and the test methods had likely grown more

consistent as well. Were nickel solubility lower in surface waters over the pH range tested,

kinetic differences in precipitate formation could make nickel removal more variable in

surface waters. Based on equilibrium modeling, nickel should remain soluble at the spiked

concentration between pH 6.5 and 8.5, regardless of the test water used. A comparison of

solubility in the four test waters is shown in Figure A.7, page 87. Therefore, differences in

nickel solubility between waters is unlikely to result in the difference in variation.

The results for nickel removal in Phase 2 are shown in Figure 3.10, page 51. Due

to the heteroscedacity between surface water and groundwater tests, the results for surface

waters and groundwaters were analyzed separately. In surface waters, nickel removal

showed significant effects from pH, as well as an interaction between pH and electrode

type. The Kolmogorov-Smirnov test showed that results for aluminum electrodes at pH

6.5 were non-normal due to a single outlier. When this outlier was removed, pH

(F (1, 40) = 92.79, p < 0.0001) and the pH x electrode material interaction

(F (1, 40) = 13.16, p = 0.0008) remained significant, but the groups were no longer

homoscedastic. Transformations did not correct for non-normality or heteroscedacity. The

complete surface water data for the four combinations of electrode material and pH were
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Figure 3.10: Nickel removal by a.) aluminum, and b.) iron electrocoagulation in six syn-
thetic water matrices spiked with mixed contaminants. Test water types were abbreviated
as follows: SL (“surface low”), SH (“surface high”), GL (“ground low”), GH (“ground
high”). See Section 2.2 for a description of the four test water types. Values shown are
means of triplicate tests; error bars are ±1 standard deviation.
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next analyzed by Kruskal-Wallis ANOVA. The Kruskal-Wallis analysis showed a

significant difference between the combinations (X2(3, 43) = 33.5, p < 0.0001). A post hoc

Bonferroni multiple comparison showed significant differences in nickel removal at pH 6.5

and pH 8.5 for both aluminum and iron electrodes. Aluminum and iron electrodes did not

differ significantly at a given pH, though iron electrodes at pH 6.5 differed significantly

from aluminum electrodes at pH 8.5. For both electrodes, removal was signficantly greater

at pH 8.5 than pH 6.5, as shown in Table 3.3, page 53. The point estimates of mean

removal also suggest the pH x electrode material interaction may be valid, with iron

outperforming aluminum at pH 8.5 and aluminum outperforming iron at pH 6.5.

Aqueous NiCO3 comprises approximately 1.5% of soluble nickel (II) at pH 6.5 in

high alkalinity waters, as shown in Figure A.6, page 87. Postitive Ni2+ ions attracted to

the cathode would experience more basic conditions. As shown in Figure A.6, NiCO3(aq)

continues to increase in concentration until pH 9.5, where nickel (II) carbonate accounts

for approximately 85% of soluble nickel (II). In surface waters, however, Ni2+ ions account

for nearly all soluble nickel (II) in the pH range tested, as shown in Figure A.8, page 88.

Because NiCO3 is uncharged, adsorption to flocs was expected to be lower at higher pH.

However, NiCO3 may be more likely to form precipitates or a scale layer in the basic

environment of the cathode.

In groundwaters, Box-Cox transformations of nickel removal showed significant

effects for post-treatment (F (1, 20) = 11.75, p = 0.0027), test water (F (1, 20) = 4.58,

p = 0.045), and electrode material (F (1, 20) = 9.48, p = 0.0059). Ground waters were

tested only at pH 6.5. Nickel removal in groundwater was significantly higher after

microfiltration (M = 19.4%, SD = 6.44%) than settling alone (M = 12.4%, SD = 7.30%).

Aluminum electrodes (M = 19.6%, SD = 8.49%) routinely outperformed iron electrodes

(M = 12.3%, SD = 4.46%). Finally, removal was greater in “ground high” than “ground

low” test waters. Removal in all four test waters is shown in Table 3.4, page 54. Lower

removal with increasing solids supports the hypothesis that nickel removal was inhibited

by formation of charge-neutral NiCO3 in solution.
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Figure 3.11: Nickel removal at pH 6.5 in the four synthetic test waters used in this study:
“surface low” (SL), “surface high” (SH), “ground low” (GL), and “ground high”. High-
solids groundwaters show significantly less variation and poorer removal efficiencies than
surface waters. Data are shown only for tests at pH 6.5 to accurately compare variance
between test water types.

Table 3.3: Nickel removal efficiency, interaction between pH and electrode material. Alu-
minum outperformed iron electrodes at pH 6.5, while iron outperformed aluminum at pH
8.5. Values are for nickel removal from “surface low” and “surface high” test waters only.

Electrode Material

pH Aluminum Iron

6.5

n 12 12

M 35% 28%

SD 18% 11%

8.5

n 11 12

M 61% 74%

SD 16% 10%
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Table 3.4: Nickel removal efficiency, summary matrix of test water and pH results. Re-
moval efficiencies at pH 8.5 were greater than those at pH 6.5 for both surface waters.
Nickel trended toward poorer removal with increasing ionic strength of the electrolyte, from
“surface high” to “ground high”.

pH

Test water 6.5 8.5

Surface Low

n 12 11

M 29% 67%

SD 19% 14%

Surface High

n 12 12

M 34% 68%

SD 10% 16%

Ground Low

n 12 0

M 19% NA *

SD 9.2% NA *

Ground High

n 12 0

M 13% NA *

SD 4.5% NA *

* Groundwaters were tested only at pH 6.5.



55

3.4.3 Arsenic

The results for arsenic removal in Phase 2 are shown in Figure 3.12, page 57.

ANOVA analysis of arsenic removal efficiency under various test conditions showed

potential effects from post-treatment, test water, and electrode material, as well as

post-treatment x test water and post-treatment x electrode material interactions.

However, grouping data by electrode type and post-treatment failed the assumptions of

heteroscedacity and normality. Box-Cox transformations of the data were reanalyzed.

Even after transformation, grouping data by significant variables continued to result in

heteroscedastic and non-normal groups. In particular, the variation for settled samples

using iron electrodes was too broad compared to settled samples for aluminum and filtered

samples for either electrode material. Also, the tests using aluminum electrodes formed a

non-normal distribution of results.

Transformed data were therefore analyzed separately by post-treatment

(microfiltration versus settling only) with three-way ANOVA (pH, test water and

electrode material). Analysis of filtered samples showed a strong effect from electrode

material (F (1, 30) = 848.4, p < 0.0001). Analysis of settled samples showed effects from

both electrode material (F (1, 29) = 87.8, p < 0.0001) and test water (F (3, 29) = 3.22,

p = 0.037). In no analysis of the data was pH shown to have an effect.

As with chromium removal, iron electrodes (M = 0.831, SD = 0.139) drastically

outperformed aluminum electrodes (M = 0.173, SD = 0.174). The superiority of iron

electrodes was anticipated. Previous authors had proposed that ephemeral iron species

oxidize arsenite to form arsenate, which is readily adsorbed to flocs (Li et al., 2012). Also

like chromium, arsenic showed enhanced removal from microfiltration with iron electrodes

but not with aluminum electrodes, as shown in Table 3.5, page 58. As previously

mentioned, iron flocs were observed in suspension after centrifugation. The stochastic

inclusion of these tiny flocs likely increased the overall arsenic concentration in digested

samples. The lack of a significant difference between filtered and unfiltered samples after

aluminum EC explains the interaction between electrode material and post-treatment.
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Between test water types, arsenic removal followed the same trend seen in previous

metals of decreasing performance with increasing TDS concentration: “surface low”

(M = 0.521, SD = 0.406), “surface high” (M = 0.578, SD = 0.373), “ground low”

(M = 0.442, SD = 0.332), “ground high” (M = 0.403, SD = 0.307). Though filtered

samples did now show a significant effect from test water, point estimates (group means)

show the same approximate trend, as shown in Table 3.6, page 58.
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Figure 3.12: Arsenic removal by a.) aluminum, and b.) iron electrocoagulation in six
synthetic water matrices spiked with mixed contaminants. Note the dramatic removal of
arsenic with iron electrodes compared to that with aluminum electrodes. Test water types
were abbreviated as follows: SL (“surface low”), SH (“surface high”), GL (“ground low”),
GH (“ground high”). See Section 2.2 for a description of the four test water types. Values
shown are means of triplicate tests; error bars are ±1 standard deviation.
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Table 3.5: Arsenic removal efficiency, interaction between post-treatment and electrode ma-
terial. Arsenic showed enhanced removal from microfiltration after EC with iron electrodes,
but not aluminum electrodes.

Electrode Material

Post-treatment Aluminum Iron

Settling

n 17 18

M 20% 76%

SD 24% 15%

Microfiltration

n 18 18

M 15% 91%

SD 7.7% 7.0%

Table 3.6: Arsenic removal efficiency, interaction between test water and post-treatment.
Values shown summarize data at pH 6.5 only to avoid confounding the effects of pH with
those of test water type. Arsenic showed a trend of poorer removal with increasing ionic
strength of the electrolyte, from “surface high” to “ground high,” though this trend was
significant only for unfiltered samples (“Settling”).

Post-treatment

Test water Settling Microfiltration

Surface Low

n 6 6

M 47% 57%

SD 38% 44%

Surface High

n 6 6

M 52% 53%

SD 35% 41%

Ground Low

n 6 6

M 40% 49%

SD 31% 38%

Ground High

n 6 6

M 32% 49%

SD 22% 38%
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3.4.4 Cadmium

The results for cadmium removal in Phase 2 are shown in Figure 3.13, page 60.

Box-Cox transformations of the cadmium removal showed a significant interaction between

pH and test water by ANOVA. Because not all test waters were tested at multiple pH

levels, the data were further analyzed separately by both pH and surface versus ground

water. In the four-way ANOVA of only synthetic “surface waters”, pH (F (1, 40) = 132.2,

p < 0.0001) and post-treatment (F (1, 40) = 8.86, p = 0.0049) effects were both significant

variables. The test water x pH interaction remained significant when limited to results

from the “surface” waters (F (1, 40) = 4.87, p = 0.033), along with an interaction between

pH and electrode material (F (1, 40) = 7.45, p = 0.0094). In the three-way ANOVA of only

synthetic “groundwaters”, all three variables were very significant, with no significant

interactions: post-treatment (F (1, 20) = 27.96, p < 0.0001), test water (F (1, 20) = 74.19,

p < 0.0001), and electrode material (F (1, 20) = 214.24, p < 0.0001).

At pH 6.5, post-treatment (F (1, 39) = 30.14, p < 0.0001), test water

(F (3, 39) = 22.3, p < 0.0001), and electrode material (F (1, 39) = 114.9, p < 0.0001) were

all significant, with a significant interaction between test water and electrode material

(F (3, 39) = 18.07, p < 0.0001). While the transformed data did not meet the assumption

of homoscedacity when grouped by water type, grouping by combinations of electrode and

water type resulted in homogeneous variance. At pH 8.5, only post-treatment was

significant (F (1, 19) =, p = 0.0056), while electrode material was only significant for an α

value of 0.1 (F (1, 19) =, p = 0.086).

Because cadmium was spiked at a low initial concentration (30 µg/L), the mean

removal at pH 8.5 (86.0%) resulted in very low post-treatment concentrations (<5 µg/L

Cd). Since the MDL for cadmium is 2.83 µg/L, removal efficiencies were most likely

compressed beyond approximately 91.6% removal. In addition, cadmium is theoretically

about 35% as soluble at pH 8.5 as it is at pH 6.5, as shown in Figure A.13, page 91. At

pH 8.5, cadmium solubility was modeled to be approximately 10 µg/L assuming the

potential to form all precipitates within the duration of the experiment. Microfiltered,
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Figure 3.13: Cadmium removal by a.) aluminum, and b.) iron electrocoagulation in six
synthetic water matrices spiked with mixed contaminants. Test water types were abbrevi-
ated as follows: SL (“surface low”), SH (“surface high”), GL (“ground low”), GH (“ground
high”). See Section 2.2 for a description of the four test water types. Values shown are
means of triplicate tests; error bars are ±1 standard deviation.
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untreated samples show that soluble concentrations of approximately 30 µg/L were

achieved even at pH 8.5. However, cadmium may have formed colloidal precipitates that

were able to pass through a 0.45 µm filter. Such precipitates would have a higher density

and lower charge density than truly aqueous species and would therefore be more readily

destabilized. Cadmium removal may have been driven primarily by solubility, and the

effect of other test variables would then be muted. Therefore, the significance of test water

at pH 6.5 only (i.e., the interaction between pH and test water) was likely an artifact of

experimental design and not necessarily descriptive of actual EC performance.

At pH 6.5, aluminum electrodes outperformed iron electrodes, as shown in Table

3.7, page 62. However, the increase in performance was apparent only in ground waters,

as shown in Figure 3.14, page 62. At pH 8.5, the mean removal for iron electrodes was

slightly greater than that of aluminum electrodes. However, the three-way test at pH 8.5

found only a potentially significant (α = 0.1) effect (p = 0.086) due to electrode material.

In all cases, the mean removal efficiency was greater after filtration (M = 0.656,

SD = 0.221) than settling alone (M = 0.557, SD = 0.223).

Comparison of removal in the four synthetic test waters shows an overall trend of

decreasing removal with increasing TDS, particularly in the highest-solids water (“ground

high”), as shown in Table 3.8, page 63. This trend was particularly apparent in tests using

iron electrodes, as shown in Figure 3.15, page 62. Regardless of the pH x test water

interaction, removal at pH 8.5 was consistently greater than that at pH 6.5, as shown in

Table 3.9, page 64. As mentioned, the slight difference in removal between “surface low”

and “surface high” at pH 8.5 was not significant.
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Table 3.7: Cadmium removal efficiency, interaction between pH and electrode material.
Aluminum electrodes outperformed iron electrodes at pH 6.5 only. At pH 8.5, mean cad-
mium removal with iron electrodes is higher than that with aluminum electrodes, but this
difference was not found to be significant. Values are shown for “surface high” and “surface
low” test waters only.

Electrode Material

pH Aluminum Iron

6.5

n 12 12

M 54% 48%

SD 7.6% 9.2%

8.5

n 11 12

M 82% 90%

SD 17% 9.2%

Figure 3.14: Cadmium removal efficiency by electrocoagulation with aluminum and iron
electrodes in four synthetic water matrices (t = 2 min, I = 0.5 A). Aluminum electrodes
out-performed iron electrodes in “ground low” and “ ground high” waters. Iron electrodes
showed poorer performance with the increase in electrolyte strength from “surface low” to
“ground high.” Data are shown only for tests at pH 6.5 to accurately compare variance
between test water types.
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Table 3.8: Cadmium removal efficiency, interaction between test water and electrode mate-
rial. EC with iron electrodes showed decreasing cadmium removal efficiency with increasing
ionic strength of the electrolyte from “surface low” to “surface high.” EC with aluminum
electrodes did not show this trend. Values are shown for pH 6.5 only to avoid confounding
the effect of pH with that of water type.

Electrode Material

Test water Aluminum Iron

Surface Low

n 6 6

M 55% 54%

SD 6.2% 9.6%

Surface High

n 6 6

M 54% 42%

SD 9.5% 3.2%

Ground Low

n 6 6

M 70% 39%

SD 6.4% 7.6%

Ground High

n 6 6

M 51% 24%

SD 5.1% 9.5%

Figure 3.15: Effect of TDS on cadmium removal efficiency by electrocoagulation with iron
electrodes (t = 2 min, I = 0.5 A). Data are shown only for tests at pH 6.5. Error bars
represent one standard deviation.
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Table 3.9: Cadmium removal efficiency, interaction between pH and test water. “Ground
high” water showed significantly lower removal than the other three water types at pH 6.5.
At pH 8.5, the slight increase in mean cadmium removal from “surface low” to “surface
high” was not significant.

pH

Test water 6.5 8.5

Surface Low

n 12 11

M 54% 83%

SD 7.7% 16%

Surface High

n 12 12

M 48% 89%

SD 9.3% 12%

Ground Low

n 12 0

M 55% NA *

SD 18% NA *

Ground High

n 12 0

M 38% NA *

SD 16% NA *

* Groundwaters were tested only at pH 6.5.
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3.4.5 Lead

The results for lead removal in Phase 2 are shown in Figure 3.16, page 66. Lead

removal showed significant effects from post-treatment and pH. However, grouping data

by either variable showed that the resulting groups were heteroscedastic. Box-Cox

transformation of the data resolved for homogeneous variance and normality, but also

revealed a likely interaction between pH and test water. Data were divided by pH and

analyzed by three-way ANOVA (post-treatment, test water, electrode material), then by

surface water versus groundwater and analyzed by a four-way (post-treatment, pH, test

water, electrode material) and a three-way ANOVA test (post-treatment, test water,

electrode material), respectively. This approach allowed separation of pH effects from test

water effects.

At pH 6.5, transformed data showed significant effects from post-treatment

(F (1, 39) = 154.5, p < 0.0001), test water (F (3, 39) = 3.95, p = 0.015), and electrode

material (F (1, 39) = 9.24, p = 0.0042). Post-treatment and test water also showed a

significant interaction (F (3, 39) = 3.04, p = 0.040). At pH 8.5, transformed data showed a

potentially significant effect only from post-treatment (F (1, 19) = 3.24, p = 0.088).

Analysis of surface water data showed only an effect from post-treatment

(F (1, 41) = 21.61, p < 0.0001) and a potentially significant interaction between

post-treatment and test water (F (1, 41) = 3.93, p = 0.054). Analysis of groundwater data

indicated possible effects from post-treatment, as well as two- and three-way interactions

between test water, electrode material and post-treatment. However, data were

heteroscedastic in all combinations, including between triplicate results for individual test

conditions. Therefore, the assumptions for ANOVA were not met. Furthermore, the

potential three-way interaction between all independent variables indicates the absence of

any prevailing pattern in test treatments in groundwater tests.

Though electrode material was shown to be have a significant effect on lead

removal at pH 6.5, the magnitude of the difference between removal at pH 6.5 with iron

electrodes (M = 0.888, SD = 0.0926) and aluminum electrodes (M = 0.876, SD = 0.0623)
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Figure 3.16: Lead removal by a.) aluminum, and b.) iron electrocoagulation in six synthetic
water matrices spiked with mixed contaminants. Test water types were abbreviated as
follows: SL (“surface low”), SH (“surface high”), GL (“ground low”), GH (“ground high”).
See Section 2.2 for a description of the four test water types. Values shown are means of
triplicate tests; error bars are ±1 standard deviation.
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was not great enough to be meaningful in application. Microfiltration enhanced lead

removal, as shown in Table 3.10, page 68. While post-treatment was only significant for an

α value of 0.1 (p = 0.088) at pH 8.5, Table 3.10 shows the same trend holds for the point

estimates (group means) of lead removal.

As observed for previous metals, lead removal efficiency decreased in high-solids

waters. However, the trend was not apparent in filtered samples, which uniformly showed

greater than 90% removal, as shown in Table 3.11, page 68. Though pH was initially

suspected to be significant, further analysis of surface waters alone (the only waters tested

at multiple pH levels) revealed pH to be insignificant (F (1, 41) = 2.68, p = 0.11).
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Table 3.10: Lead removal efficiency, summary matrix of pH and post-treatment results.
Mean removal was greater after microfiltration than settling alone, though this effect was
only significant at pH 6.5. Values at pH 6.5 summarize tests in ”surface high” and ”surface
low” test waters only to avoid confounding the effect of pH with that of water type.

Post-treatment

pH Settling Microfiltration

6.5

n 12 12

M 84% 94%

SD 8.1% 2.2%

8.5

n 11 12

M 80% 88%

SD 13% 14%

Table 3.11: Lead removal efficiency, interaction between test water and post-treatment.
Settled samples show a trend of decreasing lead removal with increasing ionic strength of
the electrolyte from “surface low” to “ground high”. Microfiltered samples show no such
trend, possibly due to consistently excellent removal. Values shown summarize tests at pH
6.5 only to avoid confounding the effect of pH with that of test water type.

Post-treatment

Test water Settling Microfiltration

Surface Low

n 6 6

M 79% 94%

SD 9.2% 3.0%

Surface High

n 6 6

M 89% 94%

SD 2.4% 1.2%

Ground Low

n 6 6

M 83% 94%

SD 6.4% 1.4%

Ground High

n 6 6

M 79% 94%

SD 5.4% 1.0%
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3.5. Objective 2: Reactor parameters

3.5.1 Electrode material

Aluminum and iron electrodes starkly contrasted in removal of chromium and

arsenic, with poor removal from aluminum electrodes and greater than 90% removal from

iron. Iron’s superior performance came despite a molar loading rate nearly three times

lower than that of aluminum. In the two-minute tests with mixed contaminants, reduction

to below the MCL for these metals was achieved only with iron electrodes. Nickel,

cadmium and lead removal at pH 6.5 was greater with aluminum than iron electrodes.

Aluminum electrodes were expected to provide better cation removal at pH 6.5 because of

the negative charge of aluminum hydroxides above approximately pH 6 (see Figure A.1,

page 84), whereas iron (III) hydroxides have a positive charge below pH 9 (see Figure A.2,

page 85). In addition, aluminum is minimally soluble slightly above pH 6. However, both

nickel and cadmium showed no significant difference between electrodes at pH 8.5, with a

slightly greater mean removal by iron electrodes. Removal was also greater for both

metals at pH 8.5 than at pH 6.5. More importantly, aluminum only had a slight edge over

iron, even where that edge was statistically significant. To meet secondary standards for

aluminum and iron, aluminum is preferable at pH 6.5, and iron is preferable at pH 8.5. In

light of aluminum’s potential neurotoxicity, however, iron may be preferable for most

applications.

3.5.2 Post-treatment

Post-treatment with microfiltration increased removal of all metals, though

significance was often demonstrated only for a subset of tests. For chromium and arsenic,

microfiltration enhanced contaminant removal for iron electrodes but not aluminum

electrodes. This trend supports observations during the tests. Iron coagulants formed

small, slowly-settling flocs, while aluminum coagulants formed large, macro-flocs that

readily settled or floated to the surface. Thus, iron flocs were expected to require filtration
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beyond gravitational separation. The high variation in supernatant samples likely arose

from stochastic inclusion of small flocs. Settled samples were subjected to relatively weak

centrifugation before decanting, and the chance inclusion of small flocs in the sample

could greatly influence the contaminant concentration. This variance in settled iron

samples is likely indicative of real-world conditions and not an artifact of experimental

design. Even where microfiltration did not reduce the mean removal efficiency,

microfiltration reduced the variation in samples. Thus, microfiltration should be

considered a valuable post-treatment for EC, especially in reactors with iron electrodes.

3.6. Objective 3: Water quality parameters

3.6.1 pH

Cadmium and nickel both exhibited enhanced removal at pH 8.5 compared to pH

6.5, while the remaining metals showed no significant difference in removal over the range

tested. While cadmium was expected to be less soluble at pH 8.5 based on equilibrium

modeling, nickel was expected to be soluble at the spiked level to at least pH 9 (see Figure

A.7). Aluminum as well as iron electrodes were shown to be more effective at pH 8.5 for

cadmium and nickel, so decreased coagulant solubility is an unlikely cause for greater

removal. Speciation is also unlikely to have resulted in greater removal, as Cd2+ and Ni2+

remain the dominant species between pH 6.5 and 8.5. Close to pH 8.5, the uncharged,

aqueous species CdCO3 and NiCO3 begin to account for a relevant fraction of dissolved

species (see Figures A.13, page 91, and A.6, page 87). Of the remaining three metals

tested, lead shares a similar speciation scheme, with the exception that PbHCO3
+ may be

dominant over Pb2+ at pH 6.5 with a sufficient concentration of bicarbonate (see Figures

A.14, page 91, and A.16, page 92). However, pH was not a significant variable for lead. In

fact, mean lead removal was slightly greater at pH 6.5 than pH 8.5 (see Table 3.10, page

68).

The uncharged carbonate species were expected to be less likely to co-precipitate

in flocs, not more likely. Given the negative charge of aluminum hydroxides above pH 6
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and positive charge of iron hydroxides below pH 8.5, differential removal was expected

between electrodes if the primary mechanism of removal was adsorption or

co-precipitation. However, if the primary mechanism of removal at pH 8.5 was

enmeshment (sweep flocculation), carbonate species’ lack of charge may allow better

agglomeration. Previous experiments have shown precipitation of calcium and magnesium

carbonate onto the cathode (Malakootian et al., 2010; Vik et al., 1984). Reversing the

polarity of the electrodes was expected to re-dissolve scale or prevent its formation, but

this effect was not demonstrated. In addition, given the pH and concentration gradients

present in an EC reactor, speciation and solubility are likely more complex than can be

represented by an equilibrium model.

3.6.2 Water matrix composition

All metals showed decreasing removal efficiency with an increase in the ionic

strength of the test water. For arsenic and lead removal, the subset of microfiltered

samples did not show the same trend due to the water matrix, likely because overall

variation between filtered concentrations was low due to very high removal. Differences

between synthetic waters cannot be attributed to any one species or even broad water

quality parameters like hardness, alkalinity or ionic strength. The objective of this study

was not to delineate the fundamental water chemistry of EC, but rather to evaluate

performance across a representative range of water matrices. Nonetheless, the trend was

uniform across metals with disparate speciation schemes. In particular, arsenic and

chromium were not expected to show any speciation with the background electrolytes in

either stable valence state (see Figures A.11 - A.5, pages 90 - 86). In addition,

destabilization of charged particles from electrical double layer compression should

increase with the ionic strength of the solution. Therefore, the decreased removal

efficiency with high ionic strength is likely due to change(s) in the flocs themselves.

Bicarbonate, calcium and magnesium were expected to encourage the formation of

denser, more crystalline flocs in iron (van Genuchten et al., 2014). By observation,

aluminum flocs in high-solids waters also formed a more dense pellet after centrifugation
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and took on a dull, gray hue compared to the loose, whitish-gray pellet observed in surface

water tests. The background electrolytes likely adsorbed to or co-precipitated in the flocs,

thereby competing for sorption sites and reducing the floc surface charge.

3.6.3 Power consumption

As expected, power consumption decreased with increases in TDS concentration.

Table 3.12 on page 73 shows the mean conductivity and applied voltage for each test

water. The resistance of each test water was also calculated by Equation 1.4, page 13,

where the cell constant was estimated by the interelectrode distance and face area of the

plate electrodes ( l
A = 1cm

54cm2 ). The theoretical IR drop was calculated from this resistance

according to Ohm’s law, Equation 1.5, page 13. Power was calculated by the actual,

measured applied potential according to Equation 2.1, page 27. Applied energy was

calculated as the product of the power and the treatment time (2 minutes), normalized by

the volume of the reactor (300 mL). Aluminum and iron electrodes showed no significant

difference in applied potential.

Table 3.12 shows that the theoretical potentials required to overcome the IR drop

in each test water closely match the actual applied potentials. Thus, power can be

assumed to be primarily a function of the IR drop. This relationship is shown in Figure

3.17, page 73, in which power increases linearly with the inverse of conductivity (i.e.,

resistivity). Due to the low conductivity of potable water, the IR drop demands a much

higher applied potential than kinetic or mass transfer overpotentials alone. The reactor

used in this study was by no means optimized for energy efficiency. A smaller

interelectrode distance and larger ratio of electrode surface area to reactor volume (e.g.,

by increasing the number of electrodes) would lower the energy demand of the reactor.



73

Table 3.12: Conductivity, potential and power consumption in four test waters. Note that
in some cases the actual applied voltage was slightly less than the theoretical potential
required by the IR drop. This discrepancy indicates a small error in the cell constant,
which was estimated from electrode dimensions. Applied energy was calculated based on
two minutes of treatment.

Conductivity Resistance Potential (V) Applied Energy

(mS/cm) (ohm) IR Drop Applied Potential (MJ/m3)

Surface low

mean 0.26 72 36 32 6.4

s 0.018 1.9

n 24 24

Surface high

mean 0.47 40 20 19 3.7

s 0.013 0.82

n 24 24

Ground low

mean 1.3 15 7.3 7.9 1.6

s 0.011 0.35

n 12 12

Ground high

mean 3.1 6.0 3.0 4.9 0.84

s 0.15 0.15

n 12 12

Figure 3.17: Reactor power consumption as a function of resistivity.
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4. CONCLUSIONS

Removal to below drinking water standards was demonstrated for five of seven

metal contaminants: chromium, copper, arsenic, cadmium and lead. Removal of these

metals to below drinking water standards was also demonstrated in a mixed-contaminant

scenario, with the exception of copper, which was not tested with other contaminants. EC

apparently removed zinc to below the secondary standard of 5 mg/L. However, the

method detection limit for zinc was higher than the standard, so the post-treatment

concentrations cannot be confirmed. Nickel was not removed to below the secondary

standard, though removal to near the limit was shown after two minutes of treatment at

pH 8.5. Zinc and nickel contamination posed a significant challenge in the first phase of

testing (single contaminants). Due to the high concentration of aluminum and iron after

running the reactor for 15 minutes, samples required 100x dilution before they could be

analyzed. The high dilution dramatically exaggerated the influence of ultra-low levels of

contaminants in the diluent acid. Later tests of nickel removal in a mixed-contaminant

solution with a 2 minute retention time required only a 10x dilution. These tests had a

much lower detection limit for all contaminants, but nickel was not removed to below

drinking water limits within the retention time.

As anticipated, iron electrodes showed far greater removal of chromium and arsenic

than aluminum electrodes, most likely due to redox reactions between ferrous iron and the

contaminants. Aluminum electrodes were only slightly more effective at removing nickel,

cadmium and lead, and only at pH 6.5. Thus, the marked advantage of iron electrodes

with arsenic and chromium outweighed the small advantage of aluminum electrodes with

the remaining metals. Other factors not considered in this study, such as air sparging or

the presence of NOM, may alter the relative effectiveness of aluminum or iron electrodes.

Microfiltration improved consistency and efficiency of removal of all metals,

particularly for iron electrodes. In addition, microfiltration was required to significantly

reduce residual aluminum and iron concentrations after treatment. Residual aluminum

concentration was on average double the secondary drinking water standard, while iron
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residuals were within 0.05 mg/L of the secondary standard. At pH 6.5, aluminum

concentrations met the secondary standard of 0.20 mg/L, but not the lower range of 0.05

mg/L (US EPA, 2009). At pH 8.5, iron concentrations met the secondary standard of 0.3

mg/L. Despite the slight excess of iron at low pH levels, removal of contaminant metals to

safe levels should outweigh non-enforceable, aesthetic limits. However, considering the

potential neurotoxicity of aluminum, the Hippocratic principle, ”Do no harm,” prevails,

and aluminum electrodes should not be used in high or variable pH waters.

The initial pH of the source water was not a significant factor for chromium,

arsenic or lead. Nickel and cadmium showed markedly greater removal at pH 8.5 than pH

6.5. The reason for lower removal is uncertain, but both metals form carbonate species in

the pH range tested. Nickel or cadmium carbonate may have precipitated onto the

cathode surface, as has been observed for calcium carbonate. Alternatively, the lack of

charge on the carbonate species may have allowed for more effective destabilization.

Cadmium in particular may have also more readily precipitated at higher pH due to lower

solubility. However, the low solubility was not reflected in cadmium concentrations in

untreated, microfiltered samples.

All metals exhibited poorer removal efficiencies as the ionic strength of the water

increased, particularly in the very high-solids, synthetic groundwaters. Hardness,

alkalinity, sulfate and chloride concentrations all increased from surface waters to

groundwaters. Nevertheless, the uniform affect on all contaminants suggests that

decreased efficiency is due to alteration of aluminum and iron flocs. The background

electrolytes most likely competed with contaminants by co-precipitating in, or adsorbing

to, the flocs. The change in ionic strength between test waters also affected the applied

potential on the cell.

Unfortunately, any change in an initial reactor or water quality parameter implies

a change in numerous other parameters. For instance, holding coagulant dose, CLR and

potential constant would require integrating the charge from varying current to establish

the correct residence time. Thus, the current density and residence time would still change

between tests. Even a difference in the effective electrode area in the reactor would change

the reactor hydraulics and the dipole field driving electrophoresis. Likewise, the mass and
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molar concentrations of aluminum and iron ions in solution necessarily differed with the

same CLR because of their different valences and molecular weights. In this study, CLR

and treatment time were deemed most fundamental, because coagulant dose is directly

related to current and time but only indirectly related to voltage. A full-scale

electrocoagulation reactor would likely control these two operating parameters (e.g.,

rather than applied potential or anode surface area), regardless of the source water or

electrode material.

This research demonstrated the effectiveness of EC in removing trace heavy metals

for drinking water applications. In addition, the study provided an extensive analysis

showing the relative importance of electrode material, post-treatment, and source water

characteristics. Wherever possible, iron should be sought as an alternative to aluminum

electrodes for reasons of both effectiveness and the safety of residuals for human

consumption. Post-treatment filtration is highly recommended for contaminant polishing

and limiting coagulant residuals. However, the optimal pore size and filter design remains

to be determined. The wide range of test waters in this study demonstrated that the

increase in power due to ohmic dissipation is at least partially balanced by greater

removal in low ionic strength waters. In addition, water with higher ionic strength will

require longer treatment times to achieve similar removal efficiency. Further testing is

required to determine an optimal range of contaminant removal versus power demand.
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Garćıa-Lara, a. M., Montero-Ocampo, C., & Mart́ınez-Villafañe, F. (2009). An empirical
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A.1. Chemical equilibrium models

Figure A.1: Aluminum solubility and major soluble species, pH 2 to pH 12. Modeled with
MINEQL+ software (see Section 2.3.)
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Figure A.2: Iron (III) solubility and major soluble species, pH 2 to pH 12. Modeled with
MINEQL+ software (see Section 2.3.)

Figure A.3: Iron (II) and solubility and major soluble species, pH 5 to pH 12. Modeled
with MINEQL+ software (see Section 2.3.)
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Figure A.4: Soluble species of chromium (III) with change in pH. Chromium speciation
was modeled in a high-solids groundwater at a spiked concentration of 5.66x10−6 M Cr(III)
using MINEQL+ software (see Section 2.3.)

Figure A.5: Soluble species of chromium (VI) with change in pH. Chromium speciation
was modeled in a high-solids groundwater at a spiked concentration of 5.66x10−6 M Cr(VI)
using MINEQL+ software (see Section 2.3.)
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Figure A.6: Soluble species of nickel (II) with change in pH. Nickel speciation was modeled in
a high-solids groundwater at a spiked concentration of 8.51x10−6 M Ni(II) using MINEQL+
software (see Section 2.3.)

Figure A.7: Variation in nickel solubility with pH at a spiked concentration of 8.51x10−6 M
Ni(II) in four synthetic test waters: “surface low” (SL), “surface high” (SH), “ground low”
(GL), and “ground high.” See Section 2.2 for a description of the test waters used in this
study. Modeled with MINEQL+ software (see Section 2.3.)
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Figure A.8: Soluble species of nickel (II) with change in pH in low solids water. Nickel
speciation was modeled in “surface low” test water at a spiked concentration of 8.51x10−6

M Ni(II) using MINEQL+ software (see Section 2.3.)

Figure A.9: Soluble species of copper (II) with change in pH. Copper speciation was mod-
eled in a high-solids groundwater at a spiked concentration of 4.72x10−5 M Cu(II) using
MINEQL+ software (see Section 2.3.)
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Figure A.10: Soluble species of zinc (II) with change in pH. Zinc speciation was modeled in
a high-solids groundwater at a spiked concentration of 1.53x10−4 M Zn(II) using MINEQL+
software (see Section 2.3.)
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Figure A.11: Soluble species of arsenic (III) with change in pH. Arsenic speciation was
modeled in a high-solids groundwater at a spiked concentration of 4.00x10−6 M As(III)
using MINEQL+ software (see Section 2.3.)

Figure A.12: Soluble species of arsenic (V) with change in pH. Arsenic speciation was
modeled in a high-solids groundwater at a spiked concentration of 4.00x10−6 M As(V)
using MINEQL+ software (see Section 2.3.)
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Figure A.13: Soluble species of cadmium (II) with change in pH. Cadmium speciation was
modeled in a high-solids groundwater at a spiked concentration of 2.67x10−7 M Cd(II) using
MINEQL+ software (see Section 2.3.)

Figure A.14: Soluble species of lead (II) with change in pH. Lead speciation was modeled in
a high-solids groundwater at a spiked concentration of 7.24x10−7 M Pb(II) using MINEQL+
software (see Section 2.3.)
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Figure A.15: Variation in lead solubility with pH in four synthetic test waters: “surface
low” (SL), “surface high” (SH), “ground low” (GL), and “ground high”. See Section 2.2
for a description of the test waters used in this study. Solubility at pH 6.5 is dependent
on carbonate concentration (see also Figure A.14). Modeled with MINEQL+ software (see
Section 2.3.)

Figure A.16: Soluble species of lead (II) with change in pH in low solids water. Lead
speciation was modeled in “surface low” test water at a spiked concentration of 7.24x10−7

M Pb(II) using MINEQL+ software (see Section 2.3.)
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A.2. Test water formulations

Table A.1: Formulation of test waters using ACS-grade reagents. Concentrations are given
in mg/L.

Surface low Surface high Ground low Ground high

Salts added

MgCl2 · 6 H2O 36.8 67.8 284.4 362.2

CaSO4 9.1 31.2 119.0 286.0

CaCl2 · 2 H2O 48.9 98.4 208.9 120.3

NaCl 0.0 0.0 0.0 800.9

NaHCO3 100.8 163.8 466.7 763.3

Water quality

Hardness (as CaCO3) 58.0 123.2 369.3 470.0

TDS 164.0 301.0 876.7 2110.6
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