
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Dissertations (1934 -) Dissertations, Theses, and Professional 
Projects 

Theoretical Analysis of Laterally Vibrating Hammerhead Theoretical Analysis of Laterally Vibrating Hammerhead 

Microcantilever Sensors in a Viscous Liquid Microcantilever Sensors in a Viscous Liquid 

Jinjin Zhang 
Marquette University 

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu 

 Part of the Electrical and Electronics Commons, and the Electronic Devices and Semiconductor 

Manufacturing Commons 

Recommended Citation Recommended Citation 
Zhang, Jinjin, "Theoretical Analysis of Laterally Vibrating Hammerhead Microcantilever Sensors in a 
Viscous Liquid" (2013). Dissertations (1934 -). 313. 
https://epublications.marquette.edu/dissertations_mu/313 

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/272?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/272?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/dissertations_mu/313?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

THEORETICAL ANALYSIS OF LATERALLY VIBRATING HAMMERHEAD 

MICROCANTILEVER SENSORS IN A VISCOUS LIQUID  

 

 

 

 

 

 

 

 

 

 

By 

 

Jinjin Zhang, B.E., M.E. 

 

 

 

 

 

 

 

 

 

 

A Dissertation submitted to the Faculty of the Graduate School,  

Marquette University,  

in Partial Fulfillment of the Requirements for  

the Degree of Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 

Milwaukee, Wisconsin 

 

December 2013 

  



 

 

ABSTRACT 

THEORETICAL ANALYSIS OF LATERALLY VIBRATING HAMMERHEAD 

MICROCANTILEVER SENSORS IN A VISCOUS LIQUID  

 

 

Jinjin Zhang, B.E., M.E. 

 

Marquette University, 2013 

 

 

Dynamically driven prismatic microcantilevers excited in the in-plane flexural 

mode have been investigated and used in liquid-phase sensing applications. However, the 

performance is restricted due to their limited surface sensing area and higher stiffness in 

shorter and wider prismatic microcantilevers. To increase the surface sensing area, and 

further improve sensing characteristics, it has been proposed to investigate symmetric 

hammerhead microcantilevers vibrating laterally in viscous liquid media. In this work, a 

theoretical model is proposed and the characteristics of the microcantilevers with 

symmetric shaped hammerheads (isosceles trapezoid, semi-circle, uniform rectangle and 

composite rectangle) are investigated. In the analysis, the stem of the structure is modeled 

as an Euler-Bernoulli beam while the head is modeled as a rigid body. Since the arbitrary, 

symmetric head has a varying width, 2b2(x), in the length direction, a new semi-analytical 

expression for the hydrodynamic function in terms of the Reynolds number, Re(x), and 

aspect ratio, h/[2b2(x)] is obtained and the resonance frequency, quality factor and mass 

sensitivity are investigated as a function of both the hammerhead microcantilever 

geometry and liquid media properties. 

For the investigated geometries, the results show that, for a hammerhead 

microcantilever with a fixed head area, as the mass center of the head moves towards the 

support end of the stem, the resulting resonance frequency and mass sensitivity will first 

increase and then decrease, because the total kinetic energy will first decrease and then 

increase. The quality factor will keep increasing, due to a more rapid decrease in the 

energy dissipation. It is also found that, hammerhead microcantilevers with wider heads 

tend to have higher quality factors. For instance, the highest quality factors are found for 

the hammerhead microcantilevers with the isosceles trapezoid-shaped, uniform 

rectangular and composite rectangular head as 140, 72 and 129, respectively, due to the 

possible shift of the mass center of the head towards the support end of the stem. Such 

trends can be used to optimize sensor device geometry and frequency stability. By further 

increasing the surface sensing area (additional mass), the resonance frequency and the 

mass sensitivity will significantly decrease. Such trade-offs must be considered when 

designing the geometry of the hammerhead microcantilever devices. For appropriately 

designed hammerhead microcantilevers, the improvement in the sensing area and quality 

factor are expected to yield much lower limits of detection in (bio) chemical sensing 

applications. 
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1. INTRODUCTION 

1.1 Microcantilevers as Chemical Sensor Platforms 

Microcantilevers are devices that are being investigated and used in sensor 

applications due to their large surface area-mass ratio, which allows ultrahigh mass 

detection sensitivity. Compared to conventional analytical techniques, microcantilever-

based sensors have several advantages which include high mass loading sensitivity, low 

cost, low analyte volume requirement, and rapid response [1-5].  

Diverse microcantilever-based sensing applications have been explored. These 

applications range from detecting toxic gases [6-18], such as mercury vapor [6-9], 

volatile organic compounds [10,11], to detection of specific biological compounds 

applications such as the detection of bacillus anthracis spores[19], specific antigens [20], 

myocardial infarction [21, 22] and glucose monitoring [23]. In addition to these 

applications in the sensor fields, many other microcantilever-based applications span 

other diverse fields such as atomic force microscopy [24-27, 28], cooling devices [29-30], 

biomimetic robotic propulsion [31-33] and micro-scale energy harvesting through smart 

materials[34-36]. 

In chemical sensing applications, a microcantilever-based sensor consists of a 

microcantilever, which is usually made of a chemically inert material, and a layer of 

chemically sensitive coating. The microcantilevers are fabricated on silicon or silicon-on-

insulator (SOI) wafers using surface micromachining and deep reactive ion etching 

processes [37-41]. The chemically sensitive polymers are deposited on the surface of the 

substrate by spin-coating [42], spray-coating [43], vapor deposition or dip-coating [44]. 

The chemically sensitive coating is used to absorb or adsorb the target molecules in the 
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surrounding medium. By coating a layer of chemically sensitive coating on the surface of 

the microcantilever, microcantilever-based sensor devices are able to detect mass in the 

range of picograms (10
-12

g) [45], with the predicted minimum detectable mass in the 

range of femtograms (10
-15

g) [6,46]. 

The polymer layer coated on the microcantilever is not only chemically sensitive but 

also partially selective. This layer selectively absorbs or adsorbs particular analyte of 

interest from the surrounding medium, which results in the changes in the polymer 

layer’s characteristics such as mass, volume and viscoelastic properties [3, 19, 23, 45-48]. 

These changes will result in the changes in the static deflection or the resonance 

frequency of the coated microcantilever. By measuring the changes in the static 

deflection or the resonance frequency of the microcantilever, the concentration of the 

target analyte in the surrounding medium can be estimated. Furthermore, applying the 

advanced signal processing schemes to the sensor’s response, the target signals can be 

relatively easier identified and characterized and the time required for the measurement 

can be significantly reduced [53-56]. 

Because the polymer coating layer is partially selective, it preferably responds to a 

particular group of analytes which have similar chemical characteristics [49]. As a result, 

the response of the chemical sensor, which includes the change of the resonance 

frequency and the amplitude of the tip deflection, is not specific to a particular analyte, 

but rather to a class of analytes [54]. One approach to solve this selectivity problem is to 

use an array of sensors, as proposed by Zaromb and Stetter in 1984 [50]. In this strategy, 

identical sensor platforms having different partially selective coatings are used to study 

multicomponent samples. The response of the entire sensor array to known chemical 
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analytes or to an unknown complex mixture forms a pattern, which can be analyzed using 

pattern recognition techniques for analyte identification, quantification and classification.  

Since microcantilevers can be fabricated with very small surface areas, the 

implementation of micro-scale arrays of microcantilever-based sensors becomes possible 

[57]. Using these arrays of microcantilever-based sensors, measurements can be carried 

out in real-time and in-situ [51-52]. Recently, the development of nanocantilevers has 

further scaled down the technology, with the capability of ultrasensitive detection of 

analytes combined with high throughput [58]. 

To-date, microcantilever devices are designed and fabricated in various shapes 

(rectangular, T-shape, inverse T-shape, V-shape, long- and short- based U-shape) for 

detecting changes in mass or surface stress[59-76], as shown in Fig. 1-1. The objective is 

to further improve the characteristics in each field of application. For instance, T-shape 

microcantilevers are designed to achieve higher sensitivity in mass detection and surface 

force measurement [60, 73]. A piezoresistive silicon microcantilever paddle is designed 

for efficiently measuring gas flow [61]. It is presented in Ref 59, that for biochemical 

applications, inverse T-shape microcantilevers can achieve higher surface stress 

sensitivity but lower displacement sensitivity compared to the T-shape microcantilevers 

with the same surface area. Composite rectangular hammerhead microcantilevers with 

two additional exciting arms are also designed and fabricated to achieve better sensing 

characteristics [76]. Besides the microcantilevers with uniform thickness, some 

microfabricated resonant structures with patterned perforations have also been 

investigated to study the liquid effects on the resonating devices [62]. The relative size of 

the perforations with respect to the depth of penetration is a key factor that determines the 
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viscous damping and the effective liquid mass effects. These two effects play an 

important role in determining the performance of the microcantilever-based sensors in 

liquid phase detection. Several theoretical and experimental investigations on the effects 

of hydrodynamic loading, which includes the viscous damping and effective liquid mass, 

have been conducted in some early studies [27, 34, 63-65]. It is found that the 

hydrodynamic loading decreases the quality factor of the microcantilever-based resonant 

sensor device, which decreases its usefulness as an effective sensor platform. As a result, 

to achieve an effective microcantilever-based sensor, several studies including optimizing 

the geometry [71], increasing the stiffness of the microcantilever [47], improving the 

fabrication process and design of the circuitry [77], and using different modes of 

operation or vibration (in-plane, torsional and longitudinal modes) have been reported 

recently [28-29, 78-80]. 

 

(a)                            (b)                               (c)

(d)                            (e)                               (f)  

Figure 1-1: Different shapes of microcantilevers including rectangular-(a), T-shape-(b), 

inverse T-shape-(c), V-shape (d), long- and short- based U-shape-(e) and (f). 
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1.2 Modes of Operation and Vibration 

Microcantilevers can be operated in two fundamental modes: the static mode and the 

dynamic mode [78-79]. In the static mode, as the microcantilever is operating in the 

target environment, the analyte molecules of interest will absorb or adsorb into the 

polymer layer. The interaction between the polymer layer and the target analyte causes 

the polymer layer to expand, which causes a stress differential between the sensing layer 

and the substrate of the microcantilever, which, in turn, causes a deformation in the 

microcantilever. By measuring the magnitude of the tip deflection, the concentration of 

the target analyte can be calculated [81-82]. Because the response time for a 

microcantilever operating in the static mode is determined by the characteristics of the 

microcantilever, the polymer, and the rate of absorption and diffusion of the analyte 

through the polymer layer [54, 82], one of the disadvantages in the static mode is the 

relatively long response time when microcantilevers are exposed to the target analytes. 

In the dynamic mode, the microcantilever is excited into its resonance frequency. 

When the polymer coating absorb or adsorb the target molecules, a change in the mass of 

the sensing layer occurs, which will change the total mass of the vibrating 

microcantilever. Because of the change in the total mass, the change in the resonance 

frequency occurs. By measuring the change of the resonance frequency, the concentration 

of the target analyte can be determined.  

Several types of mechanisms exist to excite a microcantilever into its resonance 

frequency including piezoelectric [36, 83-85], electrothermal [83-84], electromagnetic 

[84-85], electrostatic [70, 84-85] and optical [86]. The response signal is normally 

obtained by one of two methods. One method is to measure the tip deflection by optical 
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readout using a laser. In this case, a light from a laser diode is focused at the tip of the 

microcantilever and the reflected laser beam is detected by a position-sensitive detector 

(PSD) [74]. The output from the PSD is then related to the bending deflection and 

resonance frequency. 

An alternative method is to measure the voltage difference of the piezoresistors, 

which are placed near the clamped end, on both sides of the microcantilever [57, 71, 80]. 

When the microcantilever is excited into its resonance, the electrical energy is converted 

into thermal energy through the thermoresistors, which are placed near the piezoresistors. 

The thermal energy will cause the temperature to increase locally [80]. Since the input 

signal is an AC signal, during a half period of cycle, the voltage is only applied to one of 

the two thermoresistors. In this case, the increasing temperature will cause one side of the 

microcantilever to expand. As the microcantilever bends toward one direction, the 

piezoresistors will detect the expansion in one side and compression in the other. This 

deflection-induced stress will cause the resistance of the piezoresistors to change. The 

change in the resistance will change the output voltage. As a result, the voltage change 

can be related to the deflection of the beam. The largest change of the voltage occurs at 

the maximum deflection of the beam, which occurs at the resonance frequency. By 

knowing the properties of the microcantilever and medium, the magnitude of the 

deflection can be investigated as a function of the exciting frequency. Using a network 

analyzer, the frequency spectrum of the vibrating microcantilever can be determined 

during the measurement.  

Microcantilevers can be operated in three modes of vibration in the dynamic mode. 

They are described as the flexural mode [1, 5, 41, 47, 63, 64, 80, 87-89], torsional mode 
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[28, 67, 90-92], and longitudinal mode [29]. Specifically, the flexural mode consists of 

in-plane flexural mode and out-of-plane flexural mode [83, 93]. 

Microcantilevers excited into the out-of-plane flexural mode have been investigated 

both theoretically and experimentally [1, 5, 41, 47, 87, 89]. Microcantilevers vibrating in 

the out-of-plane flexural mode have been applied to a large variety of gas-phase detection 

applications due to their high mass sensitivity and frequency stability (the ability of an 

oscillator to maintain a desired operating frequency) [12-17]. However, for liquid phase 

detection, an additional liquid resistance coming from the surrounding liquid acts on the 

microcantilever and significantly decreases the frequency stability, which decreases its 

usefulness as an effective sensing platform. The liquid resistance consists of the effects of 

the inertia force associated with the liquid dragged along the microcantilever and the 

viscous force associated with the liquid damping. The inertia force acts like an additional 

mass added on the microcantilever, which decreases the resonance frequency [63, 80, 82]. 

Due to the viscosity of the liquid medium, the viscous force also decreases the resonance 

frequency. 

The quality factor is another useful characteristic utilized as a measure of the 

frequency stability of an oscillatory system. Two possible definitions of the quality factor 

can be used when studying the dynamically operated microcantilevers [24, 94]. The first 

definition is 2π times the ratio of the maximum mechanical energy stored in the system to 

the amount of energy dissipated during one cycle. The other approach is to find the ratio 

of the resonance frequency to the half power or 3-dB bandwidth of the system. The 3-dB 

bandwidth definition enables one to obtain the quality factor by merely observing the 

frequency spectrum, while the energy definition provides a more precise way to calculate 
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the quality factor. However when the quality factor is much larger than 1, the two 

definitions are equivalent [24, 94]. 

In order to decrease the effect of the liquid on a dynamically driven microcantilever 

and increase the quality factor for liquid phase detection, other modes of vibration have 

been investigated. Microcantilevers excited in the in-plane flexural mode have been 

investigated theoretically and experimentally [63-64, 88]. Both theoretical and 

experimental results in Ref [63-64, 88] show that the in-plane mode of vibration 

significantly increases the quality factor by decreasing the liquid resistance acting on the 

microcantilever. However, the surface sensing area is limited by the geometry of the 

microcantilever and the shorter and wider beams make the microcantilever difficult to 

excite thermoelectrically near their base. 

Torsional mode is another vibration mode that is being investigated for liquid phase 

detection [92, 95]. It is expected that the torsional mode of vibration will also reduce the 

liquid resistance acting on microcantilever due to the rotational motion compared to the 

out-of-plane mode. However, only few experimental investigations of the torsionally 

vibrating rectangular prismatic microcantilevers in liquids have been presented in the 

literatures. In Ref [29], the longitudinal mode has also been demonstrated to be useful in 

gas/liquid phase sensing applications, especially in highly viscous environments. In 

various fluids ranging from air to a Newtonian fluid of 300 cP viscosity, the measured 

quality factors for the first longitudinal mode range from 300 to 20 [29]. 
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1.3 Methods to Improve the Characteristics of Laterally Vibrating Rectangular 

Prismatic Microcantilevers for Liquid Phase Sensing Applications 

In order to improve the performance of laterally vibrating rectangular prismatic 

microcantilever-based chemical sensors in terms of the sensing characteristics, several 

methods have been proposed. First, higher order modes can be excited and used instead 

of the first order mode [96-99]. The quality factor achieved for higher order modes is 

larger than that of the same microcantilever operated in the fundamental mode [93]. 

However, some drawbacks of operating the microcantilever in the higher order modes 

include increase in the support loss and decrease in the magnitude of the deflection [99-

102]. In microcantilever-based sensing applications, the magnitude of the deflection is an 

important measurand of the sensor’s response. Operating the microcantilever in the 

higher order modes may decrease the performance of the sensor. Second, making the 

microcantilevers stiffer is known to increase the quality factor [47]. To make the 

microcantilevers stiffer, materials with higher Young’s modulus can be chosen or the 

microcantilevers can simply be made shorter and wider. However, the materials selected 

for the microcantilever usually depend on the fabrication process. For practical chemical 

sensors applications in liquid environments, the materials have to be water proof and 

erosion proof. Shortening the length of microcantilevers will also decrease the effective 

sensing area and widening the width of the microcantilevers will make the 

microcantilevers harder to excite. As a result, besides changing the properties of 

rectangular microcantilevers with uniform cross-sections, various non-prismatic 

microcantilever (namely T-shape, inverse T-shape, V-shape and long- and short- based 

U-shape) have been investigated [59, 70-71], as indicated earlier. It is noted that the T-

shape cantilever is also known as a rectangular hammerhead microcantilever.  
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A rectangular hammerhead microcantilever is a structure consists of a beam (also 

known as the stem) with an abrupt change in the width [60], as shown in Fig. 1-2. The 

stem, which is clamped at the support, has a length of L1 and a smaller width, b1; the head 

has a length of L2 and a width, b2, which is much larger than b1. Compared to the 

conventional rectangular prismatic microcantilevers, the rectangular hammerhead 

microcantilevers significantly improve the effective sensing area due to the larger area of 

the head. As the hammerhead microcantilever with dimensions of [L1×b1×h + L2×b2×h] 

laterally vibrates in viscous liquids, the increase in the total stored mechanical energy in 

the system may be faster than the energy dissipated during one cycle, which may improve 

the quality factor compared to that of a prismatic beam with dimensions of [(L1+ 

L2)×b1×h]. To further improve the sensor characteristics, the mass center of the 

hammerhead can be shifted towards the clamped end of the stem. The hammerhead can 

also be designed into a circular shape with two finite gaps [71], as shown in Fig. 1-3. 

 

 

L2

L1

h

b2

b1
x
y

z

 

Figure 1-2: A rectangular hammerhead microcantilever with the length and width of the 

stem being L1, b1, respectively; the length and the width of the hammerhead are L2, b2, 

respectively and the thickness is h. 
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1.4 Modeling of Laterally Vibrating Prismatic/Non-prismatic Microcantilevers 

in a Viscous Liquid Medium 

Euler-Bernoulli beam theory has been widely used to model laterally vibrating 

rectangular prismatic microcantilevers in a vacuum [63-64, 80]. However, when 

rectangular prismatic microcantilevers are immersed in a viscous liquid medium, the 

surrounding liquid will exert an additional force on the microcantilevers. Thus, the 

equation of motion in a vacuum must be modified. This additional force is defined by the 

hydrodynamic force [27].  

The hydrodynamic force consists of a pressure force and a shear force. Due to the 

symmetry of the problem, the pressure and shear force acting on the laterally vibrating 

rectangular microcantilever in the direction perpendicular to its vibration cancel each 

other out, respectively. The hydrodynamic forces from the pressure acting on the leading 

and trailing edges of the microcantilever are equal. The hydrodynamic forces from the 

shear acting on the top and bottom of the microcantilever are equal. It has been found, as 

the thickness of the microcantilever becomes small enough compared to its width, the 

 

Figure 1-3: The shape of the hammerhead proposed in Ref 71 
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microcantilever can be assumed to be a ribbon (infinitely thin) [24]. The hydrodynamic 

force coming from the pressure can then be neglected [80].  

For a prismatic microcantilever with a rectangular cross section and a very small 

thickness compared to its width, the hydrodynamic force can be approximated by the 

steady-state solution of Stokes’ second problem, which describes a semi-infinite domain 

of homogeneous incompressible liquid which occupies the space above an infinitely 

extend plate [103]. Stokes’ solution states that the hydrodynamic force consists of two 

components. The imaginary part of the hydrodynamic function, which is in phase with 

velocity, is associated with the viscous damping; the real part of the hydrodynamic 

function is out of phase with the velocity, and is associated with the effective liquid mass. 

By knowing the velocity of any point along the length of the microcantilever, an estimate 

of the hydrodynamic force exerted on the microcantilever can be analytically calculated. 

However, as the thickness increases, the pressure force acting on the small surfaces of the 

beam cannot be neglected [63]. Furthermore, Stokes’ second problem assumes an 

infinitely wide plate, so the stress singularities at the edges are ignored. However, for a 

beam with finite width, hydrodynamic forces near the edges of a finite surface are not 

uniform and the edge effect must be taken into account. As a result, it is necessary to find 

the hydrodynamic force considering both thickness and edge effects. 

Several investigations have been conducted to find the hydrodynamic force with 

thickness and edge effects for laterally vibrating beams [27, 63-64]. In Ref [63], the 

hydrodynamic function, which is a normalized hydrodynamic force per unit length, is 

found for different Reynolds number, Re, and aspect ratio, h/b. Re is a dimensionless 

number that gives a measure of the ratio of inertia force to viscous force in a liquid and 
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consequently quantifies the relative importance of these two types of forces for a given 

flow condition [24]. However, the results were found for specific aspect ratios and liquid 

environment (Re) and no attempt was made to determine a general expression for the 

hydrodynamic forces. In Ref [64], semi-analytical expressions of the real and imaginary 

parts of the hydrodynamic function are determined as functions of Re and aspect ratio. 

The expressions are determined by multiplying the steady-state solution of Stokes’ 

second problem by a set of correction factors. Thus, for any Re and aspect ratio within the 

investigated domain, the hydrodynamic force can be estimated based on these semi-

analytical expressions. 

In Ref 64, the correction factors were found by fitting the numerical results of the 

real and imaginary parts of the hydrodynamic function to the ones associated with Stokes’ 

solution. The numerical results were found by modeling a laterally vibrating rigid cross-

section in liquid domain using the FEA software ANSYS 11.0. After extracting the 

hydrodynamic force as a function of both the Reynolds number, and the aspect ratio of 

the beam (h/b), the results were validated in the limiting cases when the thickness 

approaches zero. Then the numerical results are compared with the results published in 

Ref [63]. Finally, the correction factors were found by fitting the numerical data to Stokes’ 

solution. The hydrodynamic force with thickness and edge effects and the equation of 

motion for a laterally vibrating beam in viscous liquids were determined. With the 

appropriate boundary conditions, the equation of motion was solved and the frequency 

response was obtained. 

While rectangular hammerhead microcantilevers have been mostly presented in the 

literature, it is understood that the head can be of any arbitrary symmetric shape, as 
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shown in Fig. 1-4. The stem, which is clamped at the support, has a smaller width, b1, and 

the head has an abrupt change in the width, which is determined by a function, 2b2(x). By 

abruptly increasing the width at the junction (x=L1), the sensor characteristics may be 

significantly improved. As a result, it is necessary to investigate the laterally vibrating 

symmetric hammerhead microcantilevers in viscous liquids both theoretically and 

experimentally.  

 

There have been several attempts to theoretically model a transversely vibrating 

rectangular hammerhead microcantilever in a vacuum [22, 35-36, 60, 69, 104-109]. 

Initial modeling of a transversely vibrating rectangular hammerhead microcantilever 

treated the microcantilever as an elastic beam representing the stem and a point mass 

representing the head [60, 106]. Since there is no energy loss to the surrounding medium 

in a vacuum, the maximum kinetic energy equals the maximum potential energy of the 

microcantilever. Thus, using the Rayleigh Ritz method, an analytical expression for the 

y=b2(x)

L1

b1x

y

z
o

L2  

Figure 1-4: The top view of an arbitrary symmetric hammerhead microcantilever with a 

uniform thickness of h (z direction). The length and width of the stem are L1 and b1; the 

length and half width of the head are determined by L2 and a function 2b2 (x), 

respectively. 
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resonance frequency in a vacuum was obtained in a closed form [106]. In the case of 

lateral vibration, the analytical expression of the resonance frequency for a rectangular 

hammerhead microcantilever in a vacuum can be obtained as indicated in Ref [106]. In 

this case, it is noted that the second moment of area of cross-section for the stem, Istem, is 

1/12 multiplied by the width cubed and the thickness. However, this method loses its 

accuracy when the operating medium is a liquid environment, since, by assuming that the 

head is a point mass, one does not account for the additional liquid effects acting on the 

entire system. In a viscous liquid, the hydrodynamic load on a rectangular hammerhead 

microcantilever vibrating in the in-plane direction must be appropriately modeled. When 

the aspect ratio (thickness over width) increases, the thickness effect cannot be ignored 

[20-21]. Both liquid resistances coming from the large and small surfaces of the 

microcantilever must be taken into account. The hydrodynamic function on the 

microcantilever may not be modeled as a microcantilever vibrating in the out-of-plane 

direction with only the width and thickness dimensions switched [76]. 

Another method to model a laterally vibrating rectangular hammerhead 

microcantilever in a vacuum treated the stem and head as two Euler- Bernoulli beams 

with different widths [104]. In this case, two equations of motion representing the stem 

and head were presented. A total of eight boundary conditions were required. Four 

boundary conditions represent the physical conditions at the fixed end and free end. The 

other four boundary conditions represent the continuity conditions at the junction 

between the stem and head. By solving the two fourth-order differential equations, the 

analytical expressions of the resonance frequency are obtained in a vacuum. This model 

is more appropriate for the domain (geometries) where the width of the head is only 
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slightly larger than that of the stem. Such geometry is not of interest in the present 

investigation due to its relatively low quality factor.  

In order to increase the effective surface sensing area for liquid phasing sensing 

applications, the width of the hammerhead should be much larger than the width of the 

stem. Then, the head tends to move rigidly without much deformation. Thus, a laterally 

vibrating symmetric hammerhead microcantilever can be modeled as an Euler-Bernoulli 

beam representing the stem, and a rigid body representing the head. In this case, the 

rotational effects coming from the head may be taken into account. 

When the symmetric hammerhead microcantilever vibrates laterally in viscous 

liquids, the hydrodynamic forces acting on the stem and hammerhead are different. Since 

the symmetric head has a varying width, 2b2(x), the hydrodynamic function along the 

head must be different. Since the cross-sections of the stem and head are rectangular, the 

analytical expressions of the real and imaginary parts of the hydrodynamic function 

presented in Ref [64] can be applied. However, the fitting accuracy from the numerical 

results to the obtained analytical expression in Ref [64] is relatively low. As a result, 

based on the numerical data presented in Ref [64], when analyzing the symmetric 

hammerhead microcantilever, it is necessary to find a new mathematical expression of 

the hydrodynamic function to improve the accuracy of the fitting. 

1.5 Problem Statement and Objectives 

Dynamically driven rectangular prismatic microcantilevers operating in the out-of-

plane flexural mode have been widely investigated and used in gas phase sensing 

applications due to their large surface area-mass ratio, which allows ultrahigh mass 

detection sensitivity. However, in liquid phase sensing applications, the decreased quality 
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factor and sensitivity due to the additional liquid resistance significantly affect the 

performance of the device. As noted before, several methods have been attempted to 

improve the sensing characteristics of the device, including exciting the microcantilevers 

into different vibration modes (in-plane flexural mode, torsional mode or longitudinal 

mode) or higher order modes, increasing the stiffness of the microcantilever and 

optimizing the geometry of the microcantilevers. Operating the microcantilevers in the 

in-plane mode flexural significantly reduces the liquid resistance. However, when the 

microcantilever laterally vibrates in the higher order modes, the support loss will increase 

and the magnitude of the deflection, which is an important measurand, will decrease [99-

102]. Furthermore, stiffening the rectangular prismatic microcantilever makes the 

microcantilever harder to excite. As a result, optimizing the geometry and driving the 

microcantilever in the in-plane flexural vibration mode may improve the effective 

sensing area and frequency stability. One method to possibly achieve this is to investigate 

laterally vibrating symmetric hammerhead microcantilevers with different geometries of 

the head (isosceles trapezoid, semi-circular, uniform rectangular and composite 

rectangular) to find an optimum geometry in terms of the sensing applications. 

Symmetric hammerhead microcantilevers can be treated as non-prismatic 

microcantilevers with one end perfectly fixed and the other end free. The stem, which is 

clamped at the support, has a smaller width, and the head, which is perfectly connected to 

the stem, has a larger width. By attaching a larger head to the end of the stem, the sensing 

area is increased, while the resonance frequency is decreased, which makes the 

microcantilever easier to excite electrothermally than an equivalent rectangular cantilever 
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with a larger width. As a result, it is necessary to perform a complete theoretical analysis 

of such hammerhead microcantilevers in viscous liquids. 

In order to perform a theoretically analysis of laterally vibrating symmetric 

hammerhead microcantilevers in viscous liquids, an idealized model must be set up 

according to the appropriate assumptions placed on the stem and head. In order to 

achieve a larger sensing area, the dimensions of the head must be much larger than those 

of the stem. In this case, the hammerhead microcantilever should be modeled as an elastic 

beam and a rigid body. The standard Euler-Bernoulli beam theory will be used to model 

the stem as an elastic beam. However, due to larger moment of inertia of the head, its 

rotational motion must be taken into account when analyzing the boundary conditions at 

the junction between the stem and the head. 

After the theoretical model is set up, its validity must be determined. Three-

dimensional numerical models, using FEA software Comsol 4.1, will be created to study 

the structure vibration in a vacuum. The first resonance frequencies corresponding to the 

lateral vibration will be extracted and compared to the ones from theoretical models. 

Thus, the domain (geometries) of the validity of the theoretical model can be found by 

analyzing the model in various limits (for example, by ignoring the hydrodynamic force 

acting on the hammerhead microcantilever (g1,stem/head and g2,stem/head)) and comparing the 

results to those of the FEA model in a vacuum. This necessary step may provide 

reasonable confidence in applying the theoretical model to analyze the sensor 

characteristics in liquid environments. 

In order to perform the above-mentioned theoretical analysis in liquid environments, 

the hydrodynamic forces on the stem and head must first be defined. The method to find 
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the hydrodynamic force on a symmetric hammerhead microcantilever with a varying 

head width will be analogous to that used to find the hydrodynamic force on a prismatic 

beam [64]. The hydrodynamic function, which is a normalized hydrodynamic force, 

proposed in Ref [64] cannot be directly used. The accuracy of the fitting from the 

numerical data to the analytical expression is relatively low. Thus, to improve the fitting 

accuracy, it is necessary to obtain an improved mathematical form of the analytical 

expression of the hydrodynamic function.  

To further optimize the geometry of a simple rectangular hammerhead 

microcantilever, a composite head structure, as shown in Fig. 1-5, will be investigated to 

see if such geometry can improve sensing characteristics. By varying the dimensions of 

the gaps, as defined by b4 and L3, the characteristics of laterally vibrating hammerhead 

microcantilevers will be analyzed as a function of dos, which represents the distance 

between the mass center and the tip of the stem. 
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Figure 1-5: Top view of a composite rectangular hammerhead microcantilever with two 

finite rectangular gaps. 
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The primary objective of this work is to theoretically analyze the characteristics of 

the laterally vibrating symmetric hammerhead microcantilevers in viscous liquids. The 

characteristics such as the resonance frequency, quality factor, mass sensitivity and limit 

of detection of the microcantilever will be analyzed. By treating the head as a rigid body, 

the theoretical model will be setup and these characteristics will be obtained by solving 

the equation of motion of the stem with boundary conditions at the fixed end and at the 

junction between the stem and the head. In liquid phase, the hydrodynamic forces will 

exert an additional force on the microcantilever. This will result in changes in the 

equation of motion and the boundary conditions as presented in a vacuum. To further 

accurately calculate the hydrodynamic force, a new mathematical form of the analytical 

expression for the hydrodynamic function, will be proposed and applied in the theoretical 

investigation. After obtaining the characteristics of the laterally vibrating symmetric 

hammerhead microcantilevers with particularly the isosceles trapezoid, semi-circular, 

uniform rectangular and composite rectangular heads, the trend of the characteristics will 

be investigated as functions of the geometric parameters of the hammerhead 

microcantilever and the properties of the liquid medium to provide guidelines for the 

design of the microcantilever-based sensing platform. 

1.6 Dissertation Organization 

This dissertation is organized into five chapters. In chapter 2, a general model will 

be set up to investigate the characteristics of a laterally vibrating symmetric hammerhead 

microcantilever. The solutions for the symmetric hammerhead microcantilevers with the 

isosceles trapezoid, semi-circular, uniform rectangular and composite rectangular heads 

are presented. The equation of motion will be solved based on the appropriate boundary 
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conditions. The magnitude of the deflection at the end of the stem will be expressed as a 

function of the exciting frequency, which will be used to extract the resonance frequency. 

Then, a numerical analysis to validate the theoretical model (uniform rectangular head) is 

performed. In chapter 3, Different analytical expressions of the real and imaginary parts 

of the hydrodynamic function with thickness and edge effects will be proposed for a head 

with a varying width as a function of the position along the length of the microcantilever. 

The hydrodynamic functions on the stem and hammerhead with thickness and edge 

effects will be obtained. In chapter 4, using the proposed analytical expression of the 

hydrodynamic function with thickness and edge effects, the characteristics such as 

resonance frequency, quality factor, and mass sensitivity will be calculated. The quality 

factor obtained using the energy definition is compared with the quality factor obtained 

using the 3-dB definition. Trends of these characteristics as functions of the properties of 

the hammerhead microcantilever and the properties of the medium are found. Guidelines 

of the design of the sensing platform are provided. The characteristics of these symmetric 

hammerheads excited laterally are then compared and contrasted. Finally, chapter 5 gives 

a summary of the results and identifies areas of future research. 
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2. MODELING OF LATERALLY VIBRATING SYMMETRIC 

HAMMERHEAD MICROCANTILEVERS 

2.1 Introduction 

In this chapter, a theoretical model of a laterally vibrating symmetric hammerhead 

(of arbitrary shape) microcantilever in viscous liquid media will be explicitly presented. 

In order to study a laterally vibrating symmetric hammerhead microcantilever in viscous 

liquid media, it is necessary to set up an appropriate theoretical model. This model must 

first be analyzed in a vacuum and validated for various geometrical shapes and 

dimensions of interest. Then, the model will be investigated in the in-liquid case. 

In sensor’s applications, it is often necessary to improve sensors’ characteristics and 

sensitivity of detection by increasing the dimensions of the head. Compared to the 

conventional rectangular prismatic microcantilevers, the rectangular hammerhead 

microcantilevers significantly improve the effective sensing area due to the larger area of 

the head. Since the dimensions of the head are much larger than those of the stem, the 

head will tend to move rigidly without much deformation. 

Thus, in this investigation, it is proposed to model a vibrating symmetric 

hammerhead microcantilever by treating the stem as an elastic beam and the head as a 

rigid body.  

Several different symmetric heads will be analyzed including the shapes of isosceles 

trapezoid, semi-circle, uniform and composite rectangle. These geometries will be 

investigated in both the in-vacuum and in-liquid cases. 

To validate the general model which assumes the symmetric head as a rigid body in 

a vacuum, the uniform rectangular hammerhead microcantilevers are chosen as a 
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particular case. Three-dimensional (3-D) numerical models of laterally vibrating uniform 

rectangular hammerhead microcantilevers are also created for the in-vacuum case using 

an FEA package Comsol 4.1 for comparison purpose. The first natural frequency 

corresponding to the lateral vibration are simulated and recorded. By comparing the 

numerically and analytically obtained results, the domain of the validity associated with 

the analytical model will be determined. 

Fig. 2-1 shows a typical symmetric, arbitrary shape hammerhead microcantilever 

with a uniform thickness of h. The length and width of the stem are L1 and b1; the length 

and half width of the head are determined by L2 and a function 2b2 (x), respectively. The 

origin is located at the center of the stem-support interface with the x-axis, y-axis, and z-

axis in the direction of the microcantilever’s length, width, and thickness, respectively. O 

is noted as the mass center of the head. The hammerhead microcantilever is clamped at 

x=0 and free at x=L1+L2. 
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In order to set up the theoretical model for the problem, several assumptions are 

made throughout this work: 

 The hammerhead microcantilever is assumed to be homogeneous and made of a 

material which is linear elastic and isotropic. (Silicon, often used as cantilever 

substrate, is an anisotropic material, thus, its Young’s modulus is different in 

different crystalline directions, i.e. [100], [110] and [111]. In this investigation, 

the appropriate value of Young’s modulus (169 GPa) in the [110] direction is 

used) 

 The hammerhead microcantilever is perfectly fixed at the clamped end. (For a 

stem that is relative short and wide, the stem is very stiff relative to the support 

structure; and thus this assumption may be questionable due to support 

compliance [115]) 

y=b2 (x)

L1

b1x

y

z
o

L2  

Figure 2-1: The top view of a typical symmetric hammerhead microcantilever with a 

uniform thickness of h (z direction). The length and width of the stem are L1 and b1; the 

length and half width of the head are determined by L2 and a function 2b2 (x), 

respectively. 
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 Only the first lateral mode is investigated and the other modes or mode 

couplings are not taken into account. 

 Euler-Bernoulli beam theory is valid for the stem. i.e. b1<<L1, such that the 

shear deformation and rotational inertia of the stem are negligible [114].  

 The in-plane flexural stiffness of the head in both the x and y direction are 

assumed to be much greater than the in-plane flexural stiffness of the stem in 

the y direction, thus, the head can be treated as a rigid body. 

 The deflection and rotation of the stem and head are very small, so the 

displacement in the x direction is negligible. 

 The forced vibration is assumed to be due to electrothermal excitation which is 

caused by two thermal resistors placed on the stem near the support end, as 

shown in Fig. 2-2. This is modeled by an equivalent support end rotation which 

is harmonic in time [80]. 

 The liquid is incompressible and Newtonian. 

 The governing equations for the liquid domain are linearized Navier-Stokes’ 

equations. 

 The hydrodynamic forces on the stem and head are obtained from a two-

dimensional numerical model which assumes rigid rectangular cross-sections 

for either part [110]. 
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2.2 Modeling the Stem as an Euler-Bernoulli Beam 

In order to apply the standard Euler-Bernoulli beam theory on the stem, there are 

several assumptions that are placed on the stem: 

 The cross-sectional area of the stem is uniform over the length of the stem. 

 The length of the stem is much larger than the width of the stem. (It is noted 

in Ref 114 that if the length-to-width ratio of the beam is roughly 7 or higher, 

the Timoshenko beam effects may be considered negligible) 

 The amplitude of the vibration of the stem is far smaller than any length scale 

of the stem. 

By modeling the stem as an Euler-Bernoulli beam, the equations of motion (EOMs) 

for the stem in a vacuum and viscous liquid medium can be set up, respectively. To solve 

the EOMs for the in-vacuum and in-liquid cases, appropriate boundary conditions (BCs) 

 

Figure 2-2: Schematic of the heating excitation resistors and the piezoresistive 

Wheatstone bridge for vibration detection [80]. 
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are used in either case, respectively. According to the assumptions made in Sec. 2.1, two 

BCs can be found at the fixed end (x=0), which will be discussed in Sec 2.2.1. 

2.2.1 EOM and BCs at the Fixed End 

In a vacuum, based on the standard Euler-Bernoulli beam theory, the EOM for the 

stem is presented as: 

 
4 2

14 2

( , ) ( , )
0stem stem

stem b

v x t v x t
EI b h

x t


 
 

 
， (2.1) 

Eq. 2.1 is a fourth-order partial differential equation (PDE) that describes the in-

vacuum motion of the stem in terms of its displacement (vstem). E is the modulus of 

elasticity of the material. Istem is the second moment of area of cross section 

corresponding to the stem. ρb is the density of the stem.  

When laterally vibrating rectangular hammerhead microcantilevers are immersed in 

viscous liquid media, the surrounding liquid will impose hydrodynamic forces on the 

stem and head. As a result, the EOM for the stem is modified as: 

 
   

 
4 2

1 ,4 2

, ,
, .

stem stem

stem b stem liquid

v x t v x t
EI b h F x t

x t


 
 

 
 (2.2) 

The hydrodynamic force on the stem, Fstem.liquid, is a force per unit length, which is 

partially out-of-phase with the displacement and is given by [110] 

  
   2

, 1, 2, 2

, ,
, .

stem stem

stem liquid stem stem

v x t v x t
F x t g g

t t

 
  

 
 (2.3) 

In Eq. 2.3, g1,stem is a coefficient associated with the viscous damping coming from 

the liquid and g2,stem is a coefficient associated with the effective mass coming from the 

liquid. Both g1,stem and g2,stem are time-independent coefficients and they are functions of 
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Restem and the aspect ratio, h/b1. The expressions of g1,stem and g2,stem will be obtained and 

investigated in chapter 4. 

It is shown in Eq. 2.1 and Eq.2.2 that the EOMs presented in a vacuum and viscous 

liquid are fourth-order PDEs. In order to solve a fourth-order PDE, a total of four BCs are 

needed. In a vacuum and viscous liquid medium, two BCs can be defined at the fixed end 

(x=0). One of them describes the zero deflection at the fixed end, and is given by 

  0, 0stemv t  ， (2.4) 

The other BC at the fixed end can be obtained differently according to the free 

vibration and forced vibration. For a free vibration, the bending slope (rotational angle) at 

the support end of the hammerhead microcantilever is expressed as: 

 
 

0

,
0

stem

x

v x t

x






， (2.5) 

For the forced vibration, since the exciting force is due to an equivalent, harmonic 

support rotation, the bending slope (rotational angle) of the support end of the 

hammerhead microcantilever is expressed as: 

 
 
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,
.

stem j t

x

v x t
e

x







 (2.6) 

In Eq. 2.6,  and  are the amplitude and angular frequency of the effective support 

rotation [80]. This BC is originally inspired by a model of the electrothermal excitation 

that was first applied in another work [80].  

The remaining two BCs, which describe the physical conditions at the junction 

between the stem and head (x=L1), will be discussed in Sec. 2.3.1. 
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2.3 Modeling the Head as a Rigid Body 

For a laterally vibrating hammerhead microcantilever, as the dimensions of the head 

become much larger than those of the stem, the head tends to move rigidly without any 

deformation in itself. This rigidity of the head causes two motions to occur: one is a 

translational motion and one is a rotational motion. The translational velocity of the mass 

center of the head is equal to the translational velocity at the tip of the stem plus the 

angular velocity at the end of the stem times the distance to the mass center. The angular 

velocity at any point on the head is the same as the angular velocity at the tip of the stem 

(x=L1). In this work, the deflection and rotation of the head are assumed to be very small, 

so that the displacement in the x direction is negligible. By analyzing the motions of the 

head, the remaining two BCs can be found.  

2.3.1 BCs at the Tip of the Stem 

In a vacuum, to find the remaining two BCs, which describe the physical conditions 

at the junction (x=L1), the forces and moments exerted at the boundary between the stem 

and head must be analyzed. A free body diagram of a laterally vibrating symmetric head 

in a vacuum is presented in Fig. 2-3, in which all the forces and moments are shown in 

their positive directions: 
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Based on the free body diagram presented in Fig. 2-2, the force and moment 

equilibrium at the junction (x=L1) result in the following force and moment balance 

equations: 

 
, 0 ,stem I headS F   (2.7) 

 
, 0 ,stem I head rotationM M M    (2.8) 

where  
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, , ,I head I head osM F d  (2.10) 
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v x t
M J
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
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with mhead, the mass of the head, and Jhead, the rotational inertia about the mass center of 

the head. In Eq. 2.7 and Eq. 2.8, S is noted as the shear force and M is noted as the 

x
o

Sstem

Mstem

Mrotation

FI,head

dos

b2 (x)

 

Figure 2-3: The free body diagram of the laterally vibrating symmetric hammerhead in a 

vacuum. 



31 

 

moment. FI,head is noted as the force due to the mass inertia of the head. Since the shape 

of the head is symmetric with respect to the x-axis, the mass of the head and the distance 

from the mass center of the head to the tip of the stem, dos, can be found, respectively, as 

follows: 

  
1 2

1

22

L L

head b

L

m h b x dx
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   (2.12) 
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 2.head z head ozJ J m d   (2.14) 

where 
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L L
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L

J h x b x b x dx


 
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 
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1 ,oz osd L d   (2.16) 

In Eq. 2.12, b2 (x) is noted as half width of the head. In Eq. 2.14, Jhead is determined 

based on the parallel axis theorem. Jz is the rotational inertia of the head about the z-axis, 

and is given by Eq. 2.15. doz is the distance from the mass center of the head to the origin 

of the support, and can be found from Eq. 2.16.  

Since the deflection and rotation of the hammerhead in the x direction are assumed 

to be negligible, only the deflection and rotation in the y direction are taken into account. 

As a result, the translational velocity at the mass center of the head is the translational 

velocity at the tip of the stem plus the angular velocity at the end of the stem times the 

distance to the mass center, and is given by: 
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The acceleration is the first derivative of the translational velocity with respect to 

time, and is given by 
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Applying Eq. 2.9 through Eq. 2.18 to Eq. 2.7 and Eq. 2.8, the expressions for the 

force and moment equilibrium, respectively, are as follows: 
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 (2.20) 

For convenience, the four BCs in a vacuum are rewritten as follows: 

For the free vibration: 

  0, 0stemv t  ， (2.21) 
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For the forced vibration which is due to an equivalent, harmonic support rotation, 

The BCs associated with the displacement at the fixed end, moment and shear 

equilibriums at the junction between the stem and head are the same. Only the BC 

corresponding to the bending slope of the support end of the microcantilever is different 

from the one by Eq. 2.22. For convenience, the four BCs are presented as: 

  0, 0stemv t  ， (2.25) 
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 (2.28) 

In a viscous liquid medium, the remaining two BCs can be found at the junction 

between the stem and head (x=L1). To obtain the force and moment equilibrium 

conditions at the junction, a free body diagram of a laterally vibrating symmetric 

hammerhead in viscous liquid media is presented in Fig. 2-4, in which all the forces and 

moments are shown in their positive directions: 
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In Fig. 2-4, the hydrodynamic force is separated into two effective forces and these 

forces result in corresponding moments. One effective force is the inertia force (FI,liquid) 

coming from the effective mass and the other one is the damping force (FV,liquid) coming 

from the liquid viscous damping. Then the force equilibrium and moment equilibrium are 

obtained as follows: 

 
, , , 0 .stem I head I liquid V liquidS F F F     (2.29) 

 
, , , 0 ,stem I head I liquid V liquid rotationM M M M M      (2.30) 

The inertia force (FI,liquid) and viscous force (FV,liquid) are proportional to the velocity 

and acceleration of the head, respectively. To find the total inertia, damping forces and 

resulting moments due to the liquid resistance, the force and moment acting on each 

differential element, dx (shown in Fig. 2-5), must be integrated from L1 to L1+L2. Fig. 2-5 

shows the inertia, damping forces and resulting moments due to viscous liquids on a 

differential element, dx, of a hammerhead. 

x
oSstem

Mstem

Mrotation

FI,head

dos

b2 (x)

FI,liquid

FV,head

 

Figure 2-4: The free body diagram of a laterally vibrating symmetric hammerhead in 

viscous liquids. 
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For each differential element, dx, the inertia/damping forces and resulting moments 

due to the liquid resistance are expressed as: 
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where 
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y=b2 (x)
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,V liquidF

,I liquidF
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(a) (b)

 

Figure 2-5: (a) A laterally vibrating hammerhead in a viscous liquid with its acceleration 

in positive y direction. (b) A differential element on the head with the hydrodynamic 

forces and resulting moments in their positive direction. 
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The total inertia, damping forces and resulting moments due to the liquid resistance 

can be found by taking the integral from the tip of the stem (x=L1) to the free end of the 

microcantilever (x= L1+L2) as: 
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Substituting Eq. 2.31 to Eq. 2.36 into Eq. 2.37 and Eq. 2.38, the specific expressions 

for the force and moment equilibrium can be obtained as follows: 
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For convenience, the four BCs in a viscous liquid medium are rewritten as follows: 

  0, 0stemv t  ， (2.41) 
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It is noted that g2,head and g1,head are both functions of Re(x) and the aspect ratio, 

h/b(x) in this case. Since g2,head and g1,head are functions of the position x, these two terms 

must not be taken out of the integrals shown in Eq. 2.43 and Eq. 2.44. However, for a 

rectangular head, b(x) = constant, Eq. 2.43 and Eq. 2.44 can be further simplified. This 

particular case will be discussed in Sec 2.4.3 and Sec 2.4.4. 

2.4 Solutions in a Vacuum and Viscous Liquid Medium 

Solutions in a Vacuum: For the free vibration in a vacuum, the solution to Eq. 2.1 is 

sought by separation of time and space variables as follows: 

    , ,j t

stemv x t X x e   (2.45) 

where X(x) is the shape function of the vibrating stem. Substituting Eq. 2.45 into Eq. 2.1 

gives: 
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The general solution of Eq. 2.46 is of the form: 

   1 2 3 4cosh sinh cos sin .X x A Kx A Kx A Kx A Kx     (2.48) 

where A1-A4 are coefficients associated with the geometrical and material properties of 

the hammerhead microcantilever in a vacuum. 

Using Eq. 2.45, the BCs equations in Eq. 2.21 to Eq. 2.24 can be simplified as: 

   ,0 0X   (2.49) 
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 (2.52) 

Imposing these four BCs (Eq. 2.49 to Eq. 2.52) on the general solution presented in 

Eq. 2.48, leads to the following algebraic system:  

  1 2 1 2 1 2 3 4( , , , , ) , , , 0 ,D K L L b b E A A A A   (2.53) 

where 

  1 2 1 2 1 2 3 4( , , , , ) , , , ,D K L L b b D D D D  (2.54) 
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For the solution of the resulting algebraic eigenvalue problem, the frequency 

equation is obtained by setting the determinant of the coefficient matrix equal to zero as: 
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1 2 1 2( , , , , ) 0 .D K L L b b   (2.61) 

As a result, the natural frequency of a laterally vibrating symmetric hammerhead 

microcantilever in a vacuum can be obtained by solving Eq. 2.61. 

For the forced vibration in a vacuum due to an equivalent, harmonic support rotation 

which is mathematically expressed in Eq. 2.6, the BC presented in Eq. 2.50 associated 

with the bending slope of the support end of the microcantilever is modified as: 

 
 

0 0 .x

dX x

dx
   (2.62) 

Then, imposing the BCs (Eq. 2.49, Eq. 2.51, Eq. 2.52, and Eq. 2.62) on Eq. 2.48 

gives the (complex) shape of the vibrating stem under an imposed (complex) harmonic 

rotation θ0e
jωt

: 

       0
1 2cosh cos sinh sin sin ,X x A Kx Kx A Kx Kx Kx
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with 
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K, α1, α2, α3 and α4 remain the same as in Eq.2 47 and Eq. 2.60. Then, the amplitude 

of the deflection at the tip of the stem can be characterized as: 

       0
1 1 1 2 1 1 1

1

1 0 1 0

cosh cos sinh sin sin

.

A KL KL A KL KL KLX L K

L L



 

   

  (2.71) 

In Eq. 2.71, the amplitude of the deflection at the tip of the stem is normalized by 

the maximum tip deflection corresponding to a slowly applied (quasistatic) harmonic 

support rotation. The magnitude in Eq. 2.71 reaches its maximum at the resonance 

frequency. Thus, from the frequency spectrum, the first resonance frequency of a laterally 

vibrating hammerhead microcantilever in a vacuum under a forced vibration can be easily 

determined.  

Solution in Viscous Liquid Media: For a symmetric hammerhead microcantilever 

laterally vibrating in viscous liquid media, the procedure to obtain the frequency response 

at the tip of the stem is analogous to the procedure described above. The normalized 

amplitude of the deflection at the tip of the stem can be characterized by Eq. 2.71, in 

which the coefficients from Eq. 2 64 to Eq. 2.70 remain the same. However, Eq. 2.47 and 

Eq. 2.60 are modified due to the additional resistance coming from the viscous liquid 

media are now given as: 
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As a result, Using Eq. 2.64 to Eq. 2.73, the resonance frequency can be extracted 

from the frequency spectrum of a laterally vibrating symmetric hammerhead 

microcantilever in viscous liquid media. Several cases of symmetric heads will be next 

investigated as particular cases of the general model in Sec. 2.4.1 to Sec 2.4.4. 

2.4.1 Hammerhead Microcantilever with an Isosceles Trapezoid Head 

The isosceles trapezoid-shaped hammerhead microcantilever is a particular case of 

the symmetric hammerhead microcantilever. Thus, the frequency response of a laterally 

vibrating isosceles trapezoid hammerhead microcantilever in a viscous liquid medium 

can be obtained based on the general model using Eq. 2.64 to Eq. 2.73. For convenience, 

Fig. 2-6 shows a typical hammerhead microcantilever with an isosceles trapezoid head. 
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In Fig 2-6, one side of the isosceles trapezoid above the x-axis is determined by the 

function, b2 (x), associated with the geometrical parameters of the isosceles trapezoid 

hammerhead microcantilever as. This function is given by: 

  
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For this geometry, the mass of the head, the distance from the mass center of the head to 

the tip of the stem and the rotational inertia of the head about its mass center are found, 

respectively, as: 
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Figure 2-6: The top view of an isosceles trapezoid-shaped hammerhead microcantilever. 

The uniform thickness is h (z direction); the length and width of the stem are L1 and b1. 

The length of the head is L2. The width of the head is determined by function 2b2(x). 
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 (2.77) 

Substituting Eq. 2.74 to Eq. 2.77 into Eq. 2.73, the resonance frequency can be 

extracted from the frequency spectrum of a laterally vibrating isosceles trapezoid 

hammerhead microcantilever in viscous liquid media. 

2.4.2 Hammerhead Microcantilever with a Semi-circular Head 

The hammerhead microcantilever with a semi-circular head is another particular 

case of the symmetric hammerhead microcantilever. Thus, the frequency response of a 

laterally vibrating semi-circular hammerhead microcantilever in a viscous liquid medium 

can be obtained based on the general mode using Eq. 2.64 to Eq. 2.73. For convenience, 

Fig. 2-7 shows a typical semi-circular hammerhead microcantilever. 
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In Fig 2-7, the quarter-circle above the x-axis is determined by the function, b2(x), 

expressed as: 

    
22

2 1 ,b x R x L    (2.78) 

For this geometry, the mass of the head, the distance from the mass center of the head to 

the tip of the stem and the rotational inertia of the head about its mass center are found, 

respectively, as: 
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Figure 2-7: The top view of a semi-circular hammerhead microcantilever. The uniform 

thickness is h (z direction); the length and width of the stem are L1 and b1. The radius of 

the head is R. The width of the head is determined by a function b(x) = 2b2(x). 
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Substituting Eq. 2.78 to Eq. 2.81 into Eq. 2.73, the resonance frequency can be 

extracted from the frequency spectrum of a laterally vibrating semi-circular hammerhead 

microcantilever in viscous liquid media. 

2.4.3 Hammerhead Microcantilever with a Uniform Rectangular Head  

The uniform rectangular hammerhead microcantilever is another particular case of 

the symmetric hammerhead microcantilever. Thus, the frequency response of a laterally 

vibrating uniform rectangular hammerhead microcantilever in a viscous liquid medium 

can be obtained based on the general mode using Eq. 2.64 to Eq. 2.73. For convenience, 

Fig. 2-8 shows a typical uniform rectangular hammerhead microcantilever. 

 

L1
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b1 b2
x

y

z

 

Figure 2-8: The top view of a uniform rectangular hammerhead microcantilever with a 

uniform thickness of h (z direction); the length and width of the stem are L1 and b1; the 

length and width of the head are L2 and b2, respectively.  
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For this geometry, the mass of the head, the distance from the mass center of the 

head to the tip of the stem and the rotational inertia of the head about its mass center are 

found, respectively, as: 
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For a uniform rectangular head, the width of the head is a constant, 2b2. In this case, 

g2,head and g1,head  are not functions of the position, x. Then, Eq. 2.73 can be further 

simplified by taking g2,head and g1,head out of the integrals as: 
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Substituting Eq. 2.82 to Eq. 2.85 into Eq. 2 85, the resonance frequency can be 

extracted from the frequency spectrum of a laterally vibrating uniform rectangular 

hammerhead microcantilever in viscous liquid media. 
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2.4.4 Hammerhead Microcantilever with a Composite Rectangular Head 

In order to further increase sensing area and improve sensor characteristics, other 

geometrical shapes of the hammerhead microcantilever have been proposed [71]. An 

example of such geometries is shown in Fig. 2-9, where the shape of the head is a semi-

circle. Near the tip of the stem, there are two rectangular gaps between the stem and the 

head. In the following investigation, a similar geometry but with a composite rectangular 

head is analyzed.  

 

 

The geometry of the composite rectangular hammerhead microcantilever 

investigated in this work is shown in Fig. 2-10. This model can be considered as an 

extension of the model discussed in Sec. 2.4.3. By adding two small rectangular areas to 

the larger uniform rectangle, the sensing area is further improved and the mass center of 

the head is shifted towards the tip of the stem. This will affect the resonance frequency 

and further increase the quality factor, which is desired in liquid-phase chemical or 

 

Figure 2-9: The proposed hammerhead microcantilevers, where the shape of the head is 

a half circle [71] 
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biochemical sensing applications. In order to perform the theoretical analysis of this 

composite rectangular hammerhead microcantilever laterally vibrating in viscous liquids, 

it is assumed that the gap effects are neglected, so the numerical results of the 

hydrodynamic function proposed in Ref 64 can be applied. 

In Ref 64, it is assumed the liquid domain must be large enough to ensure the 

hydrodynamic force acting on the rigid oscillating rectangle to be independent on the 

domain size. Thus, the outer boundary of the liquid domain is set far away enough from 

the vibrating beam to neglect the squeezing and slide film effects. As a result, to apply 

the numerical results of the hydrodynamic function reported in Ref 64, the width of the 

gap must be large enough, so that the gap effects (squeezing and slide film effects due to 

the liquid trapped inside the gaps) can be neglected. Due to the composite rectangular 

hammerhead, a different method of finding the mass of the composite head, distance 

from the mass center of the head to the tip of the stem and the rotational inertia of the 

head about its mass center, is proposed. 
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In Fig. 2-10, the dimensions of the gap are determined by L3 and b4, respectively. 

Since the shape of the head is a composite rectangle, the previously defined width 

function b(x) is directly replaced by b2 for convenience. dol is an intermediate parameter, 

which represents the distance between the mass center of the head and the left side of the 

head, as shown in Fig. 2-9. 

 
 

 

32
2 2 3 1 4

2 2 3 1 4

2
2 2 .

2
ol

LL
L b L b b

d
L b L b b

 


 

 (2.86) 

and  

 
3 ,os old d L   (2.87) 

In Eq. 2.87, dos can be a positive or negative value. When it is positive, it indicates 

that the mass center is on the head. When it is negative, it indicates that the mass center is 

on the stem. These two cases are described in Fig. 2-11: 

 

b1 b2

L2

L1

L3

b3

dos

dol

x

y

b4

 

Figure 2-10: Top surface of a composite rectangular hammerhead microcantilever with 

two rectangular gaps. 
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The mass of the composite rectangular head can be found as follows: 

  2 2 3 1 4( 2 ) .head bm h L b L b b    (2.88) 

In order to find the rotational inertia of the head, the parallel axis theorem and 

superposition theorem will be applied. Based on the theorems, the mathematical 

expression for the rotational inertia about the mass center of the composite rectangular 

head can be found as:  

 
, ,( ),head rectangle I rectangle IIJ J J   (2.89) 

where 
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and 
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 (2.91) 

dos
dol

(a) (b)

dol

dos

 

Figure 2-11: Possible positions of the mass center of the head as the dimensions of the 

gaps vary 
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In Eq. 2.90 and Eq. 2.91, Jrectangle,I and Jrectangle,II represent the rotational inertia of the 

large and small rectangles about the mass center of the composite rectangular head, 

respectively, shown in Fig. 2-12. The circles in Fig. 2-12 represent the mass center of 

either rectangle. 

Since the shape of the head is a composite rectangular, when analyzing the force and 

moment equilibrium at the junction (x=L1), the head can be divided into three small 

rectangles for convenience, as shown in Fig 2-13. The procedure in finding the force and 

moment equilibrium is analogous to the procedure described in Sec 2.3.1. 

 

II

I

L2

b1+2b4

L3

b2

 

Figure 2-12: Geometry used in analyzing the rotational inertia of the composite 

rectangular hammerhead about its mass center. 
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Due to the symmetry of the problem with respect to the x-axis, the total inertia, 

damping forces and resulting moments in Eq. 2.29 and Eq. 2.30 can be explicitly 

expressed as: 

 
/ , / , ,1 / , ,2 / , ,3

/ , ,1 / , ,22 ,

I V liquid I V liquid I V liquid I V liquid

I V liquid I V liquid

M M M M
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where 
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Figure 2-13: Geometry (three small rectangles make up a composite rectangle) used 

in finding the force and moment equilibrium in a viscous liquid medium 
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The subscript, I/V, liquid, 1or2, indicates the forces or moments due to the effective 

mass/viscous damping associated with rectangle 1 or 2. Substituting Eq. 2.92 to Eq. 2.101 

into Eq. 2.29 to Eq. 2.30, the BCs at the junction (x=L1) are obtained as follows: 
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By applying the BCs (Eq. 2.4, Eq. 2.6, Eq.2.102 and Eq.2.103), the EOM presented 

in Eq. 2.2 can be solved. The procedure for finding the frequency response at the tip of 

the stem is analogous to the procedure described in Sec 2.4. The normalized amplitude of 

the deflection at the tip of the stem can be characterized by Eq. 2.71, in which the 

coefficients from Eq. 2.64 to Eq. 2.70 and Eq. 2.72 remain the same. Eq. 2.73 is 

simplified due to the composite rectangular head as: 
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Substituting Eq. 2.87 to Eq. 2.89 into Eq. 2 104, the resonance frequency can be 

extracted from the frequency spectrum of a laterally vibrating composite rectangular 

hammerhead microcantilever in viscous liquid media. 

2.5 Validation of the Theoretical Model in a Vacuum 

The objective in this section is to validate the general theoretical model which 

assumes the hammerhead microcantilever as an elastic beam with a rigid body before 

further calculations of sensor’s characteristics. It is convenient to validate the model in a 

vacuum, since the in-liquid theoretical model will reduce to the in-vacuum case if all the 

g1,stem/head and g2,stem/head are neglected. In this section, the theoretical model of a laterally 

vibrating uniform rectangular hammerhead microcantilever in a vacuum is carefully 

validated using numerical analysis. For other symmetric heads (shapes of isosceles 
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trapezoid, semi-circle and composite rectangle), the procedures of validation are 

analogous to the method used for a uniform rectangular hammerhead microcantilever. 

Thus, the validations of those geometries will not be repeated in this section. 

To validate the model of a rectangular hammerhead microcantilever, the finite 

element analysis software COMSOL 4.1 is used to create 3-D structures of rectangular 

hammerhead microcantilevers in a vacuum and simulate the first natural frequencies 

corresponding to the in-plane vibration. Then the results obtained numerically are 

compared to those obtained from the analytical model. The domain of the validity of the 

theoretical model can be found. Conclusions are made and the ranges/domains of validity 

of the analytical model are given. 

To model the problem numerically, a 3-D rectangular hammerhead microcantilever 

model is created in a vacuum and the material of the microcantilever is chosen. Then, the 

BCs are specified and the mesh density is determined so that the result is ensured to be 

convergent. Finally, the first natural frequency corresponding to the in-plane vibration is 

recorded. The above procedure is iterated for all the geometries of rectangular 

hammerhead microcantilevers that are of interest. 

In this analysis, the space dimensions are selected as three dimensions, so that the 

numerical models are analogous to the physical microcantilevers. The hammerhead 

microcantilever model is set up in a vacuum and the physics in Comsol is chosen as Solid 

Mechanic. Then, the eigenfrequency is selected as the study type, so the frequencies will 

be directly recorded for all cases.  

After the modeling environment is set up, a 3-D geometric model of a rectangular 

hammerhead microcantilever is created. In the material library, the material chosen for 
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the microcantilever is Si (silicon). The density and Young’s modulus of the silicon must 

be consistent with the values used in the theoretical analysis (ρb = 2330 kg/m
3
 and E = 

169 GPa). Then, it is specified that the displacements in all three directions (x, y and z) of 

the stem at the clamped end are zero and all of the other surfaces are set to be free. 

After specifying the BCs, the mesh density must be tested to ensure that it is high 

enough to produce a good estimate of the natural frequencies. As the mesh density 

increases, the estimated natural frequencies should converge to a specific value. Physics-

controlled meshing, which automatically creates meshes that are adapted to the physics in 

the model, is chosen in the mesh setting. In the setting, there are nine different meshing 

types which are predefined as “extremely coarse”, “extra coarse”, “coarser”, “coarse”, 

“normal”, “fine”, “finer”, “extra fine”, and “extreme fine”. In this work, all of these 

physically controlled meshing types are tested for the rectangular hammerhead 

microcantilevers investigated as indicated in Table 2-1: 

 

Stem 

Dimensions 

[um
2
] 

Length of the 

Hammerhead 

Microcantilever [µm] 

Width of the  

Hammerhead 

Microcantilever  [µm] 

Thickness of the  

Hammerhead 

Microcantilever  [µm] 

150×45 50~300 60~300 1~15 

200×45 50~300 60~300 1~15 

250×45 50~300 60~300 1~15 

300×45 50~300 60~300 1~15 

400×45 50~300 60~300 1~15 

600×45 50~300 60~300 1~15 

 

Table 2-1: The dimensions of the rectangular hammerhead microcantilevers 

investigated in this work. 
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For all the investigated hammerhead microcantilever of the dimensions indicated in 

Table 2-1, the first natural frequencies corresponding to the lateral vibration are 

compared using all the predefined meshing types. It is found that the largest percent 

difference of the first natural frequencies between using the “extreme coarse” and 

“extreme fine” are less than 4%. It indicates that applying the “extreme coarse” meshing 

type will ensure the results to be convergent. In this work, the meshing type is chosen as 

“finer”. In the domain of the analysis, the percent differences of the first natural 

frequencies corresponding to the lateral vibration between using “finer” and “extreme 

fine” meshing types are less than 0.2%. Thus, meshing the 3-D models using the 

predefined meshing type, “finer”, will ensure the results to be convergent. Fig. 2-14 

shows the “finer” mesh density of the hammerhead microcantilever of dimensions 

[(200×45×12) + (300×300×12)] µm
3
.  

Table 2-2 shows the first natural frequencies for a particular rectangular 

hammerhead of dimensions [(200×45×12) + (300×300×12)] µm
3
 using different 

predefined meshing types. It is found that as the mesh density increases, the solutions to 

 

Figure 2-14: The “finer” mesh density of a rectangular hammerhead microcantilever 

of dimensions [(200×45×12) + (300×300×12)] µm
3
. 
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the first natural frequencies converge. The same trend is also seen for all the investigated 

dimensions. 

To find the domain of the validity of the analytical model, the first natural 

frequencies corresponding to the lateral vibration obtained numerically and theoretically 

are compared. The percent difference of the first natural frequencies between the 

numerical and analytical results is defined as: 

 , ,

,

.
na theoretical result na numerical result

na numerical result

f f
percent difference

f


  (2.105) 

Using Eq. 2.105, the distribution of the percent differences can be found as a 

function of the dimensions of the head. The distribution can be used to predict the trend 

of the percent differences. For instance, the distribution for one particular stem of 

dimensions [200×45×12µm
3
] is shown in Fig. 2-15: 

Element 

Size: 

Extreme 

Coarse 

Extra 

Coarse 
Coarser Coarse Normal Fine Finer 

Extra 

Fine 

Extreme 

Fine 

First natural 

frequency 

[Hz] 

98527 97678 96927 96553 96504 96472 96352 96366 96245 

 

Table 2-2: The first natural frequencies obtained by using different predefined 

element sizes. 
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The percent differences of the first natural frequencies are calculated for the 

practical ranges of dimensions of the hammerhead microcantilevers. It is found that, the 

results obtained using Comsol are always smaller than those obtained using the 

theoretical model presented in this work. This is due to the stem being modeled using the 

standard Euler-Bernoulli beam theory which neglects shear deformation and rotatory 

inertia of the stem [114]. Among all the investigated cases, the largest percent difference 

is 5.8%. The largest difference is found for the rectangular hammerhead microcantilever 

with the shortest stem (L1=150 µm, b1= 45 µm), longest and narrowest head (L2=300 µm, 

b2= 60 µm), and smallest thickness (1µm). This is due to the limit of using the standard 

Euler-Bernoulli beam theory to model shorter and wider beams (Timoshenko beam 

effects) [114]. Furthermore, in the presented analysis, only the displacement in the y 

direction is taken into account, however, in the 3-D numerical analysis, as the 

microcantilever vibrates in the y direction, the material of the microcantilever will 

expand or compress in the x and z directions. Although the head is assumed to be 

 

Figure 2-15: The distribution of the percent differences of the first natural 

frequencies corresponding to the lateral vibration for one particular stem of 

dimensions [200×45×12µm
3
]. 
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perfectly rigid in the analytical model, in the numerical analysis, as the microcantilever 

laterally vibrates, the head still slightly deforms due to its material property. The above 

reasons mainly contribute to the difference between the analytical and numerical results. 

It is found, in the 3-D numerical analysis, that if only the thickness changes (1~15 

µm), the percent differences will change by 0.2%~0.3%. Table 2-3 shows the maximum 

and average percent differences of the first natural frequencies for the investigated 

hammerhead microcantilevers of thickness 12 µm: 

In Table 2-3, the maximum of the percent difference (5.5%) occurs at the shortest 

stem (L1=150 µm, b1= 45 µm), longest and narrowest head (L2=300 µm, b2= 60 µm). As 

the length of the stem increases, the standard Euler-Bernoulli beam theory becomes more 

appropriate in modeling longer beams and the largest and average percent differences 

decrease. For all the dimensions of the stems investigated in this study, as the width of 

the head becomes more than twice the width of the stem (b2/b1>2), the percent 

differences are always less than 4%.  

Using the proposed analytical model, for the investigated ranges/domains, as the 

width ratio between the head and stem is larger than 4/3, the maximum percent difference 

is always less than 6%, which is acceptable in predicting the first natural frequency 

Stem [um
2
] 600×45 400×45 300×45 250×45 200×45 150×45 

PDmax 0.2% 0.7% 1.5% 2.2% 3.4% 5.5% 

PDaverage 0.1% 0.3% 0.7% 1.0% 1.7% 2.6% 

 

Table 2-3: Maximum and average percent differences (PD) of the first natural 

frequencies for the investigated hammerhead microcantilevers of thickness 12 µm. 
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corresponding to the lateral vibration. Although the investigated domain (geometries) of 

the rectangular hammerhead microcantilevers is limited in this study, as the dimensions 

of the head keep increasing, the analytical model is still valid. However, in practical 

fabrication and application, the dimensions of the head should not be too large compared 

to the dimensions of the stem.  

Although this section mainly focuses on the model validation of uniform rectangular 

hammerhead microcantilevers in a vacuum, the method of validating other symmetric 

head (shapes of isosceles trapezoid, semi-circle and composite rectangle) are analogous 

to the method discussed in this section. 

It is also found from the 3-D numerical simulations that, depending on the geometry 

and dimensions, the first natural frequency of in-plane mode may come after the second 

or third natural frequency associated with the out-of-plane or torsional mode. This often 

occurs when the hammerhead microcantilever becomes thinner and the head becomes 

larger. Such phenomenon can be further investigated to avoid mode coupling in design. 

To obtain the characteristics of the laterally vibrating symmetric hammerhead 

microcantilevers in viscous liquids, Eq. 2.71 must be solved to obtain the frequency 

spectrum. The remaining unknown terms in Eq. 2.71 are g1,stem(Restem, h/b1), g2,stem(Restem, 

h/b1), g1,head[Rehead(x), h/b(x)] and g2,head[Rehead(x), h/b(x)]. The analytical expressions of 

g1,stem(Restem, h/b1), g2,stem(Restem, h/b1), g1,head[Rehead(x), h/b(x)] and g2,head[Rehead(x), h/b(x)] 

will be discussed in chapter 3. 
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3. HYDRODYNAMIC FORCE ON LATERALLY VIBRATING 

SYMMETRIC HAMMERHEAD MICROCANTILEVERS IN VISCOUS LIQUID 

MEDIA 

3.1 Introduction 

In order to analyze the characteristics of laterally vibrating symmetric hammerhead 

microcantilevers in viscous liquid media, the hydrodynamic force acting on the 

microcantilevers must be found. The hydrodynamic force is defined by the resistance 

force acting on the microcantilever, when it is vibrating in liquid media. The 

hydrodynamic force acting on a laterally vibrating prismatic beam can be approximated 

by the steady-state solution of Stokes’ second problem [80]. The solution provides a 

simpler analytical expression for the hydrodynamic function, which is a normalized 

hydrodynamic force per unit length. However, this analytical expression of the 

hydrodynamic function neglects the pressure force on the small surfaces of the 

microcantilever (thickness effects) and stress singularities on the edge of the 

microcantilever (edge effects) [64]. To consider the thickness and edge effects in the 

hydrodynamic force, a numerical analysis, which models a laterally vibrating rigid 

rectangular cross-section, has been first conducted [64]. In Ref 64, it is then proposed that 

the hydrodynamic function of a rectangular cantilever of finite dimensions can be 

obtained by multiplying Stokes’ solution by a set of correction factors found from the 

numerical results to account for the thickness and edge effects. However, using the semi-

analytical expression proposed in Ref 64, the differences between the hydrodynamic 

function obtained analytically and numerically are still high for some cases. This 

indicates that using the obtained semi-analytical expression for the hydrodynamic 

function would produce relatively high inaccuracy than directly using the numerical 
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results, especially for some range of aspect ratio, h/b, and Reynolds number, Re. To 

minimize the differences between the hydrodynamic functions obtained analytically and 

numerically for a wider range of the aspect ratio, h/b, and Reynolds number, Re, t is 

proposed to find a different analytical expression for the hydrodynamic function. 

In this chapter, a different mathematical form of the analytical expression for the 

hydrodynamic function is proposed. Using this new approach, the differences between 

the analytical expression and numerical results of the hydrodynamic function for the 

investigated range of the aspect ratio, h/b, and Reynolds number, Re, are significantly 

minimized. Due to the composite shape of the hammerhead, a different method is 

proposed to find the total hydrodynamic force acting on the symmetric head. Then, using 

the semi-analytical expressions for the hydrodynamic force on the stem and head, 

respectively, the characteristics of the laterally vibrating symmetric hammerhead 

microcantilever can be calculated. 

3.2 Review of the Hydrodynamic Function for a Laterally Vibrating Prismatic 

Beam 

When a prismatic beam vibrates in an infinitely large liquid domain in the in-plane 

direction, the surrounding liquid will impose a resistance force on the beam. The 

resistance force is defined by the hydrodynamic force [27]. The hydrodynamic force, as 

shown in Fig. 3-1, consists of two components and is given by Eq. 3.1. One force is the 

pressure force which is perpendicular to the surface of the microcantilever; the other 

force is the shear force which is parallel to the surface of the microcantilever.  
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,medium lat pressure shearF F F   (3.1) 

As shown in Fig. 3-1, due to the symmetry of the problem, all pressure forces per 

unit length in the z direction cancel each other out while the pressure forces per unit 

length acting on the leading and trailing edges of the cross-section of the microcantilever 

are equal. Thus, the total remaining hydrodynamic force per unit length coming from the 

pressure is twice the pressure force acting on the leading or trailing edge: 

    
/2

/2

2 / 2,

h

pressure

h

F x P b z dz


   (3.2) 

with P representing the pressure. 

The remaining pressure force acting on the leading or trailing edges is partially out-

of-phase with the velocity of the microcantilever. The component which is in-phase with 

the velocity is defined as the viscous damping while the component which is out-of-phase 

with the velocity is defined as the effective liquid mass of the system. Both the effective 

liquid mass and the viscous damping are functions of Re and the aspect ratio, h/b. As Re 

increases (or the viscosity decreases), the viscous damping becomes negligible. Then, the 

 

Figure 3-1: Hydrodynamic forces acting on the surfaces of a cross-section of a 

laterally vibrating microcantilever in fluid [64]. 



67 

 

pressure force only contributes to the effective liquid mass of the system. If the aspect 

ratio also approaches zero (or the thickness approaches zero), the pressure force becomes 

negligible for a laterally vibrating microcantilever. 

In addition to the pressure force, the shear force is obtained by taking the shear 

stress over the entire contour of the cross-section of the microcantilever. The shear stress 

due to the liquid is defined as: 

 
du

dn
   (3.3) 

In Eq. 3.3, u is the velocity of the liquid in the vicinity of the beam-liquid interface 

and n is a coordinate in the direction normal to the surface [64]. It is shown that the shear 

stress is proportional to the dynamic viscosity, η. As noted before, the total shear force 

per unit length is obtained by taking the integral over the entire contour of the cross-

section of the microcantilever as: 

 
shear

C
F d    (3.4) 

where C is the contour of the cross-section of the microcantilever. 

Due to the symmetry of the problem, all shear forces in the z direction cancel each 

other out. The hydrodynamic forces from the shear acting on the top and bottom surfaces 

of the microcantilever are equal. Thus, the total remaining hydrodynamic force per unit 

length coming from the shear forces acting on the microcantilever is twice the shear force 

acting on the top or bottom surface of the microcantilever: 

    
/2

/2

2 , / 2

b

shear

b

F x y h dy


   (3.5) 

Utilizing Eq. 3.1, Eq. 3.2 and Eq. 3.5, the total hydrodynamic force per unit length 

on a laterally vibrating rectangular prismatic microcantilever in a viscous liquid medium 
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can be calculated. If the thickness of the microcantilever is small enough, the pressure 

force on the small surface can be neglected and only the shear force contributes to the 

hydrodynamic force. Then, the effective liquid mass and the viscous damping only come 

from the shear component. If Re also approaches infinity, the liquid medium becomes 

highly inviscid, and both the effective liquid mass and the damping from the shear 

component approach zero. The total hydrodynamic force acting on the beam is zero. 

There have been several attempts to analytically express the hydrodynamic force 

acting on a laterally vibrating prismatic microcantilever [63, 80, 110, 64]. As indicated 

earlier, to account for the effects of thickness in viscous liquid environment, numerical 

analysis have been conducted as a first step to obtain a semi-analytical expression for the 

hydrodynamic function in terms of both Re and the aspect ratio of the beam, h/b [64]. 

Another relatively simpler expression is found by assuming that the thickness of the 

microcantilever is small enough compared to its width. Then the microcantilever is 

approximated as a laterally vibrating ribbon. The problem of a laterally vibrating ribbon 

reduces to the steady-state solution of Stokes’ second problem if the width of the 

microcantilever is much wider compared to the boundary layer thickness of the liquid 

[80]. In this case, the hydrodynamic function can be obtained from the solution of Stokes’ 

second problem and it is only a function of Re.  

Stokes’ second problem describes a semi-infinite domain of homogeneous 

incompressible liquid which occupies the space above an infinitely wide plate [103]. By 

solving the EOM for the liquid, the total hydrodynamic force per unit length can be found 

as: 

 
   2 2

2

, , 2

2 , ,
2

f

medium lat Stokes f

b v x t v x t
F b

t t


 



 
  

 
 (3.6) 
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Eq. 3.6 indicates that, when the thickness and edge effects are neglected, the total 

hydrodynamic force is 45° out of phase with the velocity of the beam and dependent on 

the exciting frequency, ω, the width, b, the square-root of the product of the dynamic 

viscosity, η, and liquid density, ρf. The real part of the hydrodynamic force per unit length 

is associated with the effective displacement mass (g2); while the imaginary part of the 

hydrodynamic force per unit length is associated with the viscous damping (g1): 

 2

1, 2Stokes fg b   (3.7) 

 
2

2,

2 f

Stokes

b
g




  (3.8) 

By normalizing the total hydrodynamic force per unit length, the hydrodynamic 

function can be found as 

 
*

, ,

,

0

2 2
(Re) (1 )

Re Re

medium lat Stokes

lat Stokes j t

F
j

j U e  


     (3.9) 

In Eq. 3.9, F
*
medium,lat,Stokes is the complex conjugate of the hydrodynamic force 

obtained from Stokes’ second problem. It is noted that, for the liquid resistance predicted 

by Stokes, the real and imaginary parts of the hydrodynamic function are numerically 

equal.  

When the edge effects become negligible, Eq. 3.9 is good enough to give an 

approximation for the hydrodynamic function from the shear due to the liquid resistance. 

However, when the thickness is not small enough compared to the width and Re is not 

large enough, Eq. 3.9 fails to account for the thickness and edge effects. Thus, it is 

necessary to find a different analytical expression for the hydrodynamic function with 

these effects taken into account. 
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By fitting the numerical results to the hydrodynamic function presented in Eq. 3.9, a 

set of correction factors was found. Then, the real and imaginary parts of the 

hydrodynamic function with thickness and edge effects taken into account were obtained 

as [110]:  

 
1.83 0.85

,

2 2
(Re ) 1.658 Re 3.08 1

Re
real lat

h h h

b b b

    
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，  (3.10) 
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     
         

      

，  (3.11) 

It is noted that, the previously obtained numerical results of the hydrodynamic 

function are found for the range of aspect ratio, h/b, [0.02, 1] and the range of Re [10, 

10000]; thus, calculations of the hydrodynamic function using Eq. 3.10 and Eq. 3.11 are 

mainly accurate in these ranges. In Ref 110, the analytically obtained hydrodynamic 

functions are also compared to the data in Ref 63. The maximum percent differences 

between the two methods for the real and imaginary parts of the hydrodynamic function 

are 5.88% and 9.85%, respectively, within the defined range of aspect ratio and Reynolds 

number. The average absolute percent differences between the two techniques for the real 

and imaginary parts are 1.37% and 3.8%, respectively. This provides the confidence in 

using the previously obtained numerical data to find a different mathematical form of the 

hydrodynamic function to further improve the fitting accuracy from the numerical data to 

the semi-analytical expression. 

3.3 Hydrodynamic Function for a Symmetric Hammerhead Microcantilever 

Laterally Vibrating in Viscous Liquids 

When a laterally vibrating symmetric hammerhead microcantilever is immersed in a 

viscous liquid medium, the liquid will impose hydrodynamic forces on the hammerhead 
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microcantilever (stem and head). To obtain the total hydrodynamic force acting on the 

stem and head, respectively, the hydrodynamic function for any cross-section of the 

microcantilever must be analyzed. Due to the difference in the dimensions of the stem 

and head, the hydrodynamic functions on the stem and head are different. Since the 

symmetric, arbitrary hammerhead microcantilever can be discretized into infinitely small 

rectangles, the hydrodynamic function for any cross-section (infinitely small rectangle) of 

the microcantilever can be obtained as a function of Re(x) and h/b(x). Since the 

rectangular stem has a constant width of b1, the hydrodynamic function for any cross-

section of the stem can be obtained as a function of Restem and h/b1. Similarly, since the 

shape of the head is symmetric, the hydrodynamic function for each infinitely small 

rectangle of the head can be found as a function of Rehead(x) and h/[2b2(x)]. Thus, the 

general hydrodynamic force per unit length on the symmetric, arbitrary hammerhead 

microcantilever can be expressed as: 

 
2

1 2 2liquid

v v
F g g

t t

 
  

 
 (3.12) 

For the stem: 
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where 
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For the head: 
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where 
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In the above equations: 

 
2

1
Re

4

f

stem

b 


   and   

 
2

22
Re

4

f

head

b x
x

 



    (3.19) 

The above equations define the hydrodynamic force per unit length on the stem and 

head. From these equations, the expressions for the real part (ΓR) and imaginary part (ΓI) 

of the hydrodynamic function can be obtained. The previously obtained semi-analytical 

expressions for the real and imaginary parts of the hydrodynamic function are provided in 

Eq. 3.10 and Eq. 3.11 [64]. However, the largest percent differences between the 

analytical expression and the numerical results for the real and imaginary parts are still 

relatively high, and are 20.5% and 5.7%, respectively. As a result, there is a need to find 

a more accurate expression for the hydrodynamic function. 

To improve the fitting accuracy from the numerical data to the analytical expression 

for the hydrodynamic function, a different analytical expression is proposed. Each 

coefficient and power index for the analytical expression is determined simultaneously to 

obtain the optimum fitting results. The surface fitting tool in Matlab R2011a is used to fit 

the numerical data to the predefined mathematical form of the hydrodynamic function. 

The predefined mathematical forms of the real and imaginary parts of the hydrodynamic 
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function are proposed as a product of a function of Re and a function of the aspect ratio, 

h/b, as follows: 

 Re, Re, Re,R I

h h h
j

b b b

     
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In Eq. 3.21, ΓR1(Re) or ΓI1(Re) are expected to depend on the boundary layer 

thickness [112].The boundary layer thickness is the thickness of the thin viscous layer 

surrounding the microcantilever, in which the velocity has dropped by a factor of 1/e 

[112]. Since the boundary layer thickness is associated with Re
 -0.5

, ΓR1(Re) or ΓI1(Re) are 

both expected to be functions in terms of Re
 -0.5

. ΓR2(h/b) or ΓI2(h/b) can be expanded into 

a summation of multiple h/b terms, which is similar to Taylor series expansion. The 

proposed real and imaginary parts of the hydrodynamic function are as follows: 
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In Eq. 3.22 and Eq. 3.23, the coefficients (Cm, Dn, Ep, Fq) and power indices (mmax, 

nmax, pmax, qmax) are determined by Matlab to minimize the differences between the 

numerical data and the proposed analytical expression. Using the surface fitting, the 

power indices and coefficients are found as mmax=2, nmax=4, pmax=1, qmax=4, C0=0.9003, 

C1=0.6105, C2=2.1722, D0=0, D1= -0.0021, D2= -0.1459, D3=0.8255, D4= -1.3388, 

E0=2.5758, E1= -1.3388, F0=0.9003, F1= -0.7121, F2=1.6845, F3=0.8236 and F4=0.4178. 
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It is noted that, a more complicated hydrodynamic function can be found by expanding 

the function of ΓR2(h/b) or ΓI2(h/b) with more terms to improve the fitting accuracy. 

However, the fitting results do not change significantly. 

After obtaining the semi-analytical expression for the hydrodynamic function, the 

expressions for the real and imaginary parts are validated in the limiting cases. For 

instance, as h/b approaches zero, the analytical expression for the real part of the 

hydrodynamic function presented in Eq. 3.22 reduces to the hydrodynamic function 

corresponding to Stokes’ solution [103]. The analytical expression for the imaginary part 

of hydrodynamic function presented in Eq. 3.23 will not exactly reduce to the 

hydrodynamic function corresponding to Stokes’ solution due to edge effect [110]. 

Stokes’ second problem assumes that the plate is infinitely wide such that the stress 

distribution along the contour of the beam cross section is uniform. However, in FEA 

model, the stress distribution is much denser near the edges compared to that in the 

middle of the plate.  As the liquid medium becomes highly inviscid (Re→∞) and h/b 

approaches zero, which indicates that both the viscous damping and the effective mass 

approach zero, the real and imaginary parts of the hydrodynamic function approach zero. 

As the liquid medium becomes highly viscous (Re→0) and h/b approaches zero, both the 

real and imaginary parts of the hydrodynamic function approach infinity. 

After validating the expressions in the limiting cases, the obtained semi-analytical 

expressions for the hydrodynamic functions are compared with the numerical data for 

different aspect ratios, h/b, and Reynolds number, Re. Fig. 3-2 shows the comparison of 

the expression and numerical results for the real and imaginary parts of the hydrodynamic 

function. 
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In the above figures, the percent difference between the hydrodynamic function 

obtained numerically and semi-analytically is defined as 

 analytical expression numerical results

numerical results

percent difference
 




 (3.24) 

The results show that the differences between the semi-analytical expression and the 

numerical data are quite small. The ranges of the percent differences of the real and 

imaginary parts are [-3.8%, 6.1%] and [-2.0%, 2.8%], compared to [-5.9%, 20.6%] and [-

5.7%, 2.4%] when using the originally proposed hydrodynamic function in Ref 110.  

Compared with the results in Ref 63, the average percent differences of the real and 

imaginary parts are -0.56% and 4.22%, respectively. The ranges of the percent 

differences for the real and imaginary parts are [-3.34%, 1.28%] and [-1.7%, 13.23%]. 

The highest absolute percent differences for the real and imaginary parts of the 

hydrodynamic function, 3.34% and 13.23%, occur at Re =10 and h/b=0.02. This is 

because, at very small Re, the liquid becomes very viscous and the amount of liquid 

 

Figure 3-2: Comparison of the real and imaginary parts of the hydrodynamic function 

obtained numerically and analytically as functions of the aspect ratio, h/b and Reynolds 

number Re. 
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excited by the beam increases, thus the thickness of the boundary layer increases. 

Furthermore, when h/b becomes smaller, the mesh density used in performing the 

numerical analysis increases. The above two conditions make it relatively difficult to 

achieve convergence in the numerical analysis of the hydrodynamic function, which 

results in the relatively high percent differences between the two methods. 

After obtaining the analytical expressions for the hydrodynamic function, shown in 

Eq. 3.22 and Eq. 3.23, the hydrodynamic force on a laterally vibrating symmetric 

hammerhead microcantilever can be found by substituting the aspect ratio, h/b(x), and 

Reynolds number, Re(x), associated with the stem and head of the hammerhead 

microcantilever into Eq. 3.22 and Eq. 3.23. In this case, the width of the stem is constant, 

b(x)=b1; the width of the head is defined by a function of 2b2(x), as shown in Fig 2-1. The 

characteristics of the laterally vibrating symmetric hammerhead microcantilevers in 

viscous liquids will be analyzed in chapter 4. 
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4. CHARACTERISTICS OF LATERALLY VIBRATING SYMMETRIC 

HAMMERHEAD MICROCANTILEVERS IN VISCOUS LIQUIDS 

4.1 Introduction 

The characteristics of laterally vibrating symmetric hammerhead microcantilevers 

(isosceles trapezoid, semi-circle, uniform rectangle and composite rectangle) in viscous 

liquids are theoretically analyzed in this chapter. These four geometries are repeated and 

shown in Fig. 4-1 for convenience. 

 

 

To characterize and make relatively fair comparisons between these different head 

geometries, it is proposed to analyze microcantilevers with the same stems and head areas. 

In order to present the results conveniently, the investigated geometries in this work are 

(A)-Isosceles Trapezoid - IT (B)-Semi Circular - SC

(C)-Uniform Rectangle - UR (D)-Composite Rectangle - CR

b1 b1

b1 b1

L1 L1

L1 L1

b3

b2

R

b2

L2

L2

b2

L2
L3

b3

b4

 

Figure 4-1: Four investigated symmetric hammerhead microcantilevers (isosceles 

trapezoid - IT, semi-circle - SC, uniform rectangle - UR and composite rectangle - CR) 
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indicated in Table 4-1. From section 4.2 to section 4.4, these cases will be noted using 

their reference numbers, as indicated in Table 4-1. For example, for an isosceles 

trapezoid head shaped hammerhead microcantilever with a stem (surface dimensions of 

150×45 um
2
) and a head (surface area of 10000 um

2
), the reference number is (A-1-a). 
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The characteristics investigated in this work include the resonance frequency, 

quality factor, and mass sensitivity of the microcantilever. These characteristics are 

evaluated based on the frequency response at the tip of the stem (x=L1). The magnitude of 

the deflection occurs at the tip of the stem is obtained from the frequency spectrum of the 

system. It is recalled here that the head is considered as a rigid body in the analysis. The 

Geometry Stem Surface Dimension [um
2
] Head Area [um

2
] 

(A)-Isosceles Trapezoid-IT 

(1)-150×45 

(a)-10000 

(b)-25000 

(c)-40000 

(2)-200×45 

(a)-10000 

(b)-25000 

(c)-40000 

(3)-300×45 

(a)-10000 

(b)-25000 

(c)-40000 

(B)-Semi Circular-SC 

(1)-150×45 

(a)-10000 

(b)-25000 

(c)-40000 

(2)-200×45 

(a)-10000 

(b)-25000 

(c)-40000 

(3)-300×45 

(a)-10000 

(b)-25000 

(c)-40000 

(C)-Uniform Rectangle-UR 

(1)-150×45 

(a)-10000 

(b)-25000 

(c)-40000 

(2)-200×45 

(a)-10000 

(b)-25000 

(c)-40000 

(3)-300×45 

(a)-10000 

(b)-25000 

(c)-40000 

(D)-Composite Rectangle-CR 

(1)-150×45 

(a)-10000 

(b)-25000 

(c)-40000 

(2)-200×45 

(a)-10000 

(b)-25000 

(c)-40000 

(3)-300×45 

(a)-10000 

(b)-25000 

(c)-40000 

 

Table 4-1: Investigated cases of different geometries in this work. 



80 

 

results are analyzed as a function of the dimensions of the microcantilevers and the 

properties of the liquid media (density and viscosity). The quality factors are calculated 

and compared using two different methods which are based on the energy definition and 

the 3-dB bandwidth definition. The results of these symmetric hammerhead 

microcantilevers (isosceles trapezoid, semi-circle, uniform rectangle and composite 

rectangle) are achieved and compared. 

4.2 Resonance Frequency 

For a particular vibration mode, the resonance frequency is defined as the exciting 

frequency which maximizes the amplitude of the corresponding vibration. In 

microcantilever-based sensor applications, the changes in the resonance frequency of a 

dynamically driven microcantilever are used to detect the changes in the operational 

environment or molecules present in that environment. By coating a polymer layer on the 

surface of the substrate of the microcantilever, the sensing layer will absorb or adsorb the 

target molecules in the operational environment. Then, the resonance frequency will shift 

due to the change in the total mass of the microcantilever. By determining the resonance 

frequency and its shift due to the liquid environment (density and viscosity), other sensor 

characteristics including the quality factor, mass sensitivity and limit of detection can be 

obtained. 

It is noted that, Eq. 2.71 is used to determine the maximum deflection which occurs 

at the junction between the stem and head. The displacement associated with the 

microcantilever at x=L1 is a function of the exciting frequency, geometrical properties of 

the hammerhead microcantilever and the liquid medium. For convenience, a non-
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dimensional model in viscous liquid media is developed by introducing the dimensionless 

parameters as follows: 

 
0 1

stem
stem

v
v

L
 ,  (4.1a) 

 
1

x

L
  ,  (4.1b) 

 t    (4.1c) 

In Eq. 4.1, stemv is noted as the normalized deflection of the stem,  is noted as the 

normalized length and  is noted as the normalized time. 

The normalized frequency response at the tip of the stem can be obtained as follows: 
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with 

 

 

 

1 2

1

1 2

1

2 2
2 2

1 1 2,
1

1

2

1 1 1,

,

L L

head
Lhead os

stem stem

L L

head
L

stem

L x L g dxm d L

EI EI

j L x L g dx

EI











 








 (4.6a) 

 

 

 

1 2

1

1 2

1

22
2 2

1 1 2,
1

2

2
2

1 1 1,
1 ,

L L

head
Lhead os

stem stem

L L

head
L head

stem stem

L x L g dxm d L

EI EI

j L x L g dx L J

EI EI




 






 


 





 (4.6b) 

 

1 2 1 2

1 1

2 3 3
2 3

1 2, 1 1,
1

3 ,

L L L L

head head
L Lhead

stem stem stem

L g dx j L g dxm L

EI EI EI

 


 

   
 

 (4.6c) 

 

 

 

1 2

1

1 2

1

2 2
2 2

1 1 2,
1

4

2

1 1 1,

.

L L

head
Lhead os

stem stem

L L

head
L

stem

L x L g dxm d L

EI EI

j L x L g dx

EI











  








 (4.6d) 

For a uniform rectangular hammerhead microcantilever (see Fig. 2-8), 1 , 2 , 3  

and 4 are simplified as: 
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For a composite rectangular hammerhead microcantilever (see Fig. 2-9), 
1 , 

2 , 
3  

and 4  are simplified as: 
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The normalized tip deflection of the stem is used to evaluate the frequency response 

of the symmetric hammerhead microcantilever, as given by Eq. 4.2. For a given 

hammerhead microcantilever, the dimensions of the structure are known, leaving only the 

unknown terms including the viscous damping and effective liquid mass per unit length 

associated with the stem (g1,stem and g2,stem) and head (g1,head and g2,head), respectively.  

As is noted in chapter 3, the general expressions for the viscous damping and 

effective liquid mass are given by 

For the stem: 
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with Re given by 
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The real (ΓR) and imaginary (ΓI) parts of the hydrodynamic function are found as a 

function of the Reynolds number, Re, and the aspect ratio, h/b, corresponding to any 

cross-section of the microcantilever, and are given, respectively, by 
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The power indices and coefficients are determined, and repeated here for 

convenience, as mmax=2, nmax=4, pmax=1, qmax=4 and C0=0.9003, C1=0.6105, C2=2.1722 

and D0=0, D1=-0.0021, D2=-0.1459, D3=0.8255, D4=-1.3388 and E0=2.5758, E1=-1.3388 

and F0=0.9003, F1=-0.7121, F2=1.6845, F3=0.8236, F4=0.4178.  

In this work, an assumed mass density of 2330 kg/m
3
 and Young’s modulus of 169 

GPa for silicon will be utilized through the entire simulation. It is also assumed that the 
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density and viscosity of water are 1000 kg/m
3
 and 1 cP at 20°C, respectively. The density 

and viscosity of air are assumed to be 1.205 kg/m
3
 and 0.01827 cP for 20°C, respectively.  

Fig. 4-2 shows the normalized maximum deflections at the tip of the stem when the 

symmetric hammerhead microcantilevers [isosceles trapezoid, semi-circle, uniform 

rectangle and composite rectangle] laterally vibrate in air and water. The geometrical 

parameters that are associated with the investigated geometries are indicated in Table 4-2 

for convenience.  

 

 

Surface 

Dimensions 

[um
2
] 

h [um] 
L2 (R) 
[um] 

b2 [um] b3 [um] 
L3=b4 

[um] 
dos [um] 

A-2-c 12 200 30.77 369.23 N/A 71.7949 

B-2-c 12 159.5769 N/A N/A N/A 67.7265 

C-2-c 12 200 200 N/A N/A 100 

D-2-c 12 200 282 38.5 80 44.46 

 

Table 4-2: The investigated geometries of hammerhead microcantilevers for the 

frequency spectra in Fig. 4-2. 
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It is shown in Fig. 4-2 that the resonance frequency for each laterally vibrating 

hammerhead microcantilever in water is always lower than that in air due to the 

additional liquid resistance. The liquid resistance comes from both the effective liquid 

mass and viscous damping. Due to the effect from the viscous damping, the frequency 

spectrum is broadened compared to the one in air. Since there are no analytical 

expressions for the resonance frequency in transverse and torsional modes in fluid (air 

and water), the undamped natural frequencies corresponding to the transverse and 

torsional modes in a vacuum are simulated using the numerical software (Comsol 4.1a). 

Since the differences between the resonance frequency in a vacuum and in air are very 

small, the resonance frequency in air can be approximated by that in a vacuum, for this 

group of geometries; the smallest difference of the resonance frequency between the first 
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Figure 4-2: Calculated frequency spectra of four particular symmetric hammerhead 

microcantilevers, as indicated in Table 4-2, laterally vibrating in air and water.  
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torsional mode (in a vacuum) and first lateral mode (in air) is 17% for the rectangular 

hammerhead microcantilever. Thus, the hammerhead microcantilever geometry should be 

carefully designed to avoid the mode coupling issue. It is also found that the distance 

from the mass center of the uniform rectangular, isosceles trapezoid, semi-circular and 

composite rectangular head to the tip of each stem are 100 um, 71.7949 um, 67.7265um 

and 44.46 um, respectively. As the distance decreases, the resonance frequencies and 

quality factors increases for this particular studied group. However, this trend (for any 

particular head geometry) in the resonance frequency does not always hold true. The 

percent changes from air to water for the microcantilevers -uniform rectangle, isosceles 

trapezoid, semi-circle, and composite rectangle- are 4.4%, 4.56%, 3.62% and 3.14%, 

respectively. It is noted that the resonance frequency for the isosceles trapezoid 

hammerhead microcantilever is higher than that of the uniform rectangular hammerhead 

microcantilever in water; however, the percent difference from air to water for the 

isosceles trapezoid hammerhead microcantilever is slightly lower. This is due to the 

difference in the hydrodynamic force on the two different head geometries. As a result, 

further investigations regarding the trends of the sensor characteristics (resonance 

frequency, quality factor and mass sensitivity) as a function of the liquid properties and 

geometrical parameters are performed in the following sections. 

To obtain these trends, a Matlab code is developed to determine the peak value 

corresponding to the frequency spectrum. This peak value also determines the resonance 

frequency of a laterally vibrating symmetrical hammerhead microcantilever. Then, the 

other sensor characteristics including resonance frequency, quality factor and mass 

sensitivity can be found. 
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4.2.1 Effects of the Liquid Properties on the Resonance Frequency  

Effects of the density and viscosity of the liquids can be investigated individually by 

fixing one as a constant and varying the other property. However, these quantities are not 

associated with realistic examples of the operational liquid medium. For practical cases, 

different concentrations of glycerol-water and ethanol-water solution at 20°C are used to 

investigate the effects of liquid properties on the resonance frequencies for laterally 

vibrating symmetric hammerhead microcantilevers (isosceles trapezoid-shaped, semi-

circular, uniform rectangular and composite rectangular head). The geometries of the 

microcantilevers studied in this section are those indicated in Table 4-2. 

Table 4-3 indicates different concentrations of the glycerol-water solutions as well 

as the respective density and viscosity. It is shown in Fig. 4-3 that as the glycerol 

concentration in water increases, both density and viscosity will increase and the 

resonance frequency will decrease. It is due to the increase in the hydrodynamic force on 

the microcantilever (decrease in the Reynolds number) [110]. It is also noted that for 

most chemical sensors, the viscosity of operational liquid environment is lower than the 

high end of the glycerol-water solution. 
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Glycerol [%] Density [kg/m
3
] Viscosity [cP] 

Resonance Frequency [KHz] 

IT SC UR CR 

0 (pure water) 1000 1.01 196.7 202.4 178.2 218.89 

10 1022 1.31 195.7 201.6 177.3 218.08 

20 1047 1.76 195.5 200.5 176.1 217.03 

30 1073 2.50 192.9 198.9 174.5 215.59 

40 1099 3.72 190.6 196.9 172.3 213.61 

50 1126 6.00 187.2 193.7 169.0 210.61 

60 1154 10.8 181.8 188.6 163.5 205.75 

65 1168 15.2 177.7 184.8 159.6 202.18 

70 1181 22.5 172.7 179.7 154.1 197.23 

75 1195 35.5 164.1 172.2 146.3 190.09 

80 1209 60.1 152.5 161.3 135.0 179.59 

85 1222 109 135.6 145.6 119.2 164.24 

 

Table 4-3: Calculated resonance frequencies of a particular group of symmetric 

hammerhead microcantilevers (microcantilever geometries as indicated in Table 4-2) 

laterally vibrating as a function of different concentrations of glycerol-water 

solutions at 20°C. Values of the density and viscosity of the glycerol-water solutions 

are from Ref 119. 
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Table 4-4 indicates different concentrations of the ethanol-water solutions as well as 

the respective density and viscosity. It is shown in Fig. 4-4 that as ethanol concentration 

in water increases, the density increases, however, the viscosity first increase then 

decrease. The resonance frequency first decreases then increases. This is due to the fact 

that the change in the resonance frequency mainly comes from the change in the change 

in the liquid medium’s viscosity [110]. In Ref 110, it was also mentioned that, 

microcantilevers with higher Reynolds number would occasionally have lower resonance 

frequency due to the effect coming from the liquid density. 
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Figure 4-3: Trends of calculated resonance frequencies of a particular group of 

symmetric hammerhead microcantilevers (microcantilever geometries as indicated in 

Table 4-2) laterally vibrating as a function of different concentrations of glycerol-water 

solutions at 20°C. 
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Ethanol [%] Density [kg/m
3
] Viscosity [cP] 

Resonance Frequency [KHz] 

IT SC UR CR 

0 (pure water) 1000 1.01 196.7 202.4 178.2 218.89 

10 984 1.54 195.5 201.3 177 217.78 

20 970 2.18 194.3 200.1 175.8 216.7 

30 956 2.71 193.4 199.4 175 215.95 

40 937 2.91 193.3 199.2 174.8 215.8 

50 915 2.87 193.5 199.4 175 215.98 

60 893 2.67 194 199.8 175.5 216.4 

70 869 2.37 194.7 200.5 176.2 217 

80 845 2.01 195.6 201.2 176.9 217.72 

90 819 1.61 196.5 202.1 177.9 218.56 

100 791 1.2 197.6 203.1 179 219.46 

 

Table 4-4: Calculated resonance frequencies of a particular group of symmetric 

hammerhead microcantilevers (microcantilever geometries as indicated in Table 4-2) 

laterally vibrating in different concentrations of ethanol-water solutions at 20°C. 

Values of the density and viscosity of the glycerol-water solutions are from Ref 119. 
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4.2.2 Effects of Dimensions of the Hammerhead Microcantilevers on the 

Resonance Frequency  

In this section, the resonance frequency will be investigated as a function of the 

geometrical parameters of the hammerhead microcantilevers, indicated in Table 4-1. Due 

to the differences in the investigated head geometries, it is not trivial to find a general 

normalizing parameter which the resonance frequency depends on. Thus, the resonance 

frequency will be investigated in terms of the geometrical parameters for each case. 

To solely study the effects of the thickness in the range of [2~15 (um)] on the 

resonance frequency, the geometries investigated are indicated in Table 4-5. It is shown 

in Fig. 4-5 that as the thickness increases, the resonance frequency will first increase at a 

high rate, then reaches a maximum and starts to slowly decrease. This trend was also 

noted for prismatic beams [110]. 
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Figure 4-4: Trends of calculated resonance frequencies of a particular group of 

symmetric hammerhead microcantilevers (microcantilever geometries as indicated in 

Table 4-2) as a function of different concentrations of ethanol-water solutions at 

20°C. 
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Isosceles Trapezoid-shaped Hammerhead Microcantilever: 

For an isosceles trapezoid-shaped hammerhead microcantilever [see Fig. 4-1 (A)] 

with a fixed stem and head, the parameters associated with its head include b2, b3 and L2. 

For a constant surface head area, the change in these parameters will affect the distance 

Surface 

Dimensions 

[um
2
] 

L2 (R) 
[um] 

b3/ b2 
L3=b4 

[um] 
dos [um] 

A-2-c 200 1/12 N/A 71.7949 

B-2-c 159.5769 N/A N/A 67.7265 

C-2-c 200 1 N/A 100 

D-2-c 200 1 80 44.46 

 

Table 4-5: Geometries of hammerhead microcantilevers used for the investigation of 

the effects of thickness on the resonance frequency. 
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Figure 4-5: Trends of calculated resonance frequencies of a particular group of 

symmetric hammerhead microcantilevers, as indicated in Table 4-5, laterally vibrating in 

water with respect to different thicknesses. 
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between the mass center of the head and the tip of the stem, dos, which will change the 

resonance frequency. Thus, to investigate the effect of dos on the resonance frequency, 

cases of [A-(1~3)-(a~c)], as indicated in Table 4-1, will be analyzed and the thicknesses 

of the microcantilevers will be fixed at 12 [um]. The ratio of b3 and b2 is constant and 

equal to 1/4. As the length of the head increases, in order to maintain the same surface 

area of the head, the length of b2 and b3 will decrease. It is shown in Fig.4-6, Fig. 4-7 and 

Fig. 4-8 that, for nine different cases, as L2 increases, the distance between the mass 

center of the head and the tip of the stem will increase; the resonance frequency will first 

increase and then decrease. 
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(a)                                                                         (b) 

Figure 4-6: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated resonance frequency as a function of L2 for three cases [A-(1~3)-a]. 
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Semi-circular Hammerhead Microcantilever: 
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(a)                                                                         (b) 

Figure 4-7: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated resonance frequency as a function of L2 for three cases [A-(1~3)-b]. 
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(a)                                                                         (b) 

Figure 4-8: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated resonance frequency as a function of L2 for three cases [A-(1~3)-c]. 
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For semi-circular hammerhead microcantilevers [see Fig. 4-1 (B)], the radius of the 

head is determined for a fixed surface area of the head. Table 4-6 indicates the 

investigated cases [B-(1~3)-(a-c)]. It is found that, as the surface area of the semi-circular 

head increases, the radius of the semi-circular head and the distance between the mass 

center of the semi-circular head and the tip of the stem will increase, but the resonance 

frequency will decrease. This is due to the increase in the head mass. 

Uniform Rectangular Hammerhead Microcantilever: 

For a uniform rectangular hammerhead microcantilever [see Fig. 4-1 (C)] with a 

fixed stem and head, the change in b2 or L2 will affect the distance between the mass 

center of the head and the tip of the stem, dos, which will change the resonance frequency. 

Thus, to investigate the effect of the position of the mass center of the head on the 

resonance frequency, cases of [C-(1~3)-(a~c)], as indicated in Table 4-1, will be analyzed 

and the thicknesses of the microcantilevers are fixed at 12 [um]. By varying the ratio 

between the width and length of the head (b2/L2), the distance between the mass center of 

the head and the tip of the stem and the resonance frequency can be found. As the length 

or width of the head increases, in order to maintain the same surface area of the head, the 

Stem [um
3
] 

Resonance Frequency [KHz] 

Head Area=10000 [um
2
] Head Area=25000 [um

2
] Head Area=40000 [um

2
] 

150×45×12 713 493.7 279.3 

200×45×12 384.1 281.4 171.8 

300×45×12 269.2 202.4 128.3 

 

Table 4-6: Calculated resonance frequency for investigated cases [B-(1~3)-(a-c)]. 
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width or length of the head will decrease, respectively. It is shown in Fig. 4-9, Fig 4-10 

and Fig. 4-11 that, for nine different cases, as the ratio of b2/L2 increases, the mass center 

of the head will shift towards the tip of the stem; the resonance frequency will first 

increase and then decrease.  
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(a)                                                                         (b) 

Figure 4-9: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated resonance frequency as a function of b2/L2 for three cases [C-(1~3)-a]. 
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Composite Rectangular Hammerhead Microcantilever: 
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(a)                                                                         (b) 

Figure 4-10: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated resonance frequency as a function of b2/L2 for three cases [C-(1~3)-b]. 
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(a)                                                                         (b) 

Figure 4-11: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated resonance frequency as a function of b2/L2 for three cases [C-(1~3)-c]. 
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For a composite rectangular hammerhead microcantilever [see Fig. 4-1 (D)] with a 

fixed stem and head, the change in the dimensions of the gap (b4×L3) will affect the 

distance between the mass center of the head and the tip of the stem, dos, which will 

change the resonance frequency. Thus, to investigate the effects of position of the mass 

center of the head on the resonance frequency, cases of [D-(1~3)-(a~c)], as indicated in 

Table 4-1, will be analyzed and the thicknesses of the microcantilevers are fixed at 12 

[um]. By varying the dimensions of the gap (assuming b4=L3), the resonance frequency 

can be found as a function of the distance between the mass center of the head and the tip 

of the stem. As the dimensions of the gap increase, in order to maintain the same surface 

area of the head, the width the head (b2) will increase for a head with a constant length 

(L2). It is shown in Fig. 4-12, Fig 4-13 and Fig. 4-14 that, for nine different cases, as the 

dimensions of the gap increases, the mass center of the head will shift towards the 

support end of the stem; the resonance frequency will first increase and then decrease. 

-20

-10

0

10

20

30

40

50

10 20 30 40 50 60 70 80

Area=10000 [um^2]

d
o
s
 [

u
m

]

L
3
 [um]

    

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80

Stem=150*45 [um^2]
Stem=200*45 [um^2]
Stem=300*45 [um^2]

R
e
s
o

n
a

n
c
e

 F
re

q
u

e
n

c
y
 [

k
H

z
]

L
3
 [um]

 

(a)                                                                         (b) 

Figure 4-12: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated resonance frequency as a function of L3 for three cases [D-(1~3)-b] and 

L2=100 [um]. 
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(a)                                                                         (b) 

Figure 4-13: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated resonance frequency as a function of L3 for three cases [D-(1~3)-a] and 

L2=100 [um]. 
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(a)                                                                         (b) 

Figure 4-14: (a) Distance between the mass center of the head and the tip of the stem 

and (b) calculated resonance frequency as a function of L3 for three cases [D-(1~3)-c] 

and L2=150 [um]. 
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For the investigated cases including A-(1~3)-(a~c), C-(1~3)-(a~c) and D-(1~3)-

(a~c), as the distance between the mass center of the head and the tip of the stem 

increases, the resonance frequency will first increase and then decrease. Such trend has 

been also found for the undamped case and confirmed using numerical analysis (Comsol 

4.1a). This trend for the damped system may be explained based on the undamped system. 

For an undamped oscillating system, the resonance frequency is defined by the square 

root of the total potential energy divided by the total kinetic energy [60]. The total 

potential energy does not change due to a fixed stem. For a fixed head area, as dos 

decreases, the change in the geometrical parameters of the head will cause the total 

kinetic energy to first decrease and then increase, which may yield the resonance 

frequency to first increase and then decrease. For example, for a uniform rectangular 

hammerhead microcantilever, the kinetic energy of the head consists of the translational 

kinetic energy and the rotational kinetic energy. As the mass center of the head moves 

towards the tip of the stem (ratio of b2/L2 increases), the translational kinetic energy of 

the head will keep decreasing (down to a constant value), but the rotational kinetic energy 

of the head will first decrease and then increase. Thus, the total kinetic energy of the head 

will first decrease and then increase, which means that the resonance frequency will first 

increase and then decrease. For the investigated cases [B-(1~3)-(a-c)], it is found that, as 

the surface area of the semi-circular head increases, the radius of the semi-circular head 

and the distance between the mass center of the semi-circular head and the tip of the stem 

will increase, but the resonance frequency will decrease. This is due to the increase in the 

head mass. 
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4.3 Quality Factor 

For microcantilevers operated in a viscous liquid, the liquid resistance will decrease 

the performance of the microcantilevers. The increase in the viscous damping 

significantly broadens the frequency spectrum, hence causes the quality factor to decrease. 

There are two approaches used in defining the quality factor. The first definition is 2π 

times the ratio of the maximum mechanical energy stored in the system to the amount of 

energy dissipated in one cycle, and is given by Eq. 4.16. The second definition is the ratio 

of the resonance frequency to the 3dB bandwidth of the resonating system, and is given 

by Eq. 4.17. 

 
 

max2 2
total total

energy

U TMaximum Mechanical Energy
Q

Energy Dissipated per Cycle W
 


 


 (4.16) 

 
3
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db
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f
Q

f

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 (4.17) 

In Eq. 4.16, Utotal and Ttotal designate, respectively, the total potential energy and 

total kinetic energy of an arbitrary, symmetric hammerhead microcantilever. Since the 

head is assumed to be rigid, the total potential energy only comes from the potential 

energy of the stem. The total kinetic energy of the hammerhead microcantilever consists 

of the kinetic energy from the stem and head. Since the head has both translational 

motion and rotational motion, the kinetic energy of the head consists of the translational 

and rotational kinetic energy, and is given by Eq.4.18 and Eq. 4.19: 

  
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In practical applications, a real harmonic load of the equivalent support rotation, 

cosτis considered, so the normalized displacement of the stem is given by [101] 

    , j

stemv real X e        (4.20) 

In Eq. 4.20,  X   is noted as the normalized shape function of the stem. 

Substituting Eq. 4.20 into Eq. 4.18 and Eq.4.19 gives the corresponding energies of the 

hammerhead microcantilever as follows: 
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where 
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Since the total mechanical energy of the hammerhead microcantilever does not 

change over one cycle in the steady state response, the energy lost due to the surrounding 

liquid per cycle is equal to the work done in imposing the support end rotation over one 

cycle, given by [101]: 
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where 
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Substituting Eq. 4.18 - Eq. 4.26 into Eq. 4.16 yields the quality factor as follows: 
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4.3.1 Effects of the Liquid Properties on the Quality Factor 

In this section, the quality factor using the energy definition and 3-dB bandwidth 

definition are calculated and compared for different concentrations of glycerol-water and 
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ethanol-water solutions. A Matlab code is written to evaluate Eq. 4.27. The results of 

trend of the quality factor as a function of different concentrations of glycerol-water and 

ethanol-water solutions are shown in Fig. 4-15. The geometries of the hammerhead 

microcantilevers are the same as those investigated in Sec. 4.2.1. 

It is shown in Fig. 4-15 that the range of the percent differences between the quality 

factors obtained using the two definitions is [0~29%]. It is found that the highest percent 

difference occurs at the highest viscosity (smallest quality factor). In this study, for the 

values of the quality factors which are greater than 10, the percent differences are always 

below 5%, which means either of these methods can be used to obtain the quality factors. 

For convenience, the 3-dB definition of quality factor will be applied in obtaining the 

quality factors in the following sections.  
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Figure 4-15: Trends of the calculated quality factors (two methods) of a particular group 

of symmetric hammerhead microcantilevers laterally vibrating in different concentrations 

of glycerol-water and ethanol-solutions at 20°C.  
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4.3.2 Effects of Dimensions of the Hammerhead Microcantilevers on the Quality 

Factor 

In this section, the quality factor will be investigated as a function of the geometrical 

parameters of the hammerhead microcantilevers, as indicated in Table 4-1. To solely 

study the effects of the thickness in the range of [2~15 (um)] on the quality factor, the 

investigated geometries are indicated in Table 4-5. Fig. 4-16 shows that the quality factor 

appears to be linearly dependent on the thickness. In general, it is found that, when 

exciting a microcantilever laterally, shorter, thicker and wider beams will have higher 

quality factors [110]. 

 

 

Isosceles Trapezoid-shaped Hammerhead Microcantilever: 
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Figure 4-16: Trends of calculated quality factors for a particular group of symmetric 

hammerhead microcantilevers (geometries same as in Fig. 4-5) as a function of the 

thickness. 
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The quality factor for an isosceles trapezoid-shaped hammerhead microcantilever 

will be investigated as a function of the distance between the mass center of the head and 

the tip of the stem in this part. The investigated cases of [A-(1~3)-(a~c)] are indicated in 

Table 4-1. The thicknesses of the microcantilevers are fixed at 12 [um] and the ratio of b3 

and b2 is constant and equal to 1/4. It is shown in Fig.4-17, Fig. 4-18 and Fig. 4-19 that, 

for nine different cases, as L2 increases, the distance between the mass center of the head 

and the tip of the stem will increase, but the quality factor will decrease. 
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(a)                                                                         (b) 

Figure 4-17: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of L2 for three cases [A-(1~3)-a]. 
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Semi-circular Hammerhead Microcantilever: 

Table 4-7 indicates the investigated cases of [B-(1~3)-(a-c)] and their quality factors. 

It is found that, as the surface area of the semi-circular head increases, the radius of the 
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(a)                                                                         (b) 

Figure 4-18: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of L2 for three cases [A-(1~3)-a]. 
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(a)                                                                         (b) 

Figure 4-19: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of L2 for three cases [A-(1~3)-a]. 
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semi-circular head and will increase, but the quality factor will decrease. This is due to a 

more rapid decrease in the resonance frequency compared to the 3-dB bandwidth. 

 

Uniform Rectangular Hammerhead Microcantilever: 

For a uniform rectangular hammerhead microcantilever [see Fig. 4-1 (C)] with a 

fixed stem and head, the change in b2 or L2 will affect the distance between the mass 

center of the head and the tip of the stem, dos, which will change the quality factor. Thus, 

to investigate the effects of the position of the mass center of the head on the quality 

factor, cases of [C-(1~3)-(a~c)], as indicated in Table 4-1, will be analyzed and the 

thicknesses of the microcantilevers are fixed at 12 [um]. By varying the ratio between the 

width and length of the head (b2/L2), the distance between the mass center of the head and 

the tip of the stem and the quality factor can be found. It is shown in Fig. 4-20, Fig 4-21 

and Fig. 4-22 that, for nine different cases, as the ratio of b2/L2 increases, the mass center 

of the head will shift towards the tip of the stem; the quality factor will increase. 

 

Stem [um
3
] 

Quality Factor 

Area=10000 [um
2
] Area=25000 [um

2
] Area=40000 [um

2
] 

150×45×12 32.3 25.8 18.7 

200×45×12 27.8 22.5 16.7 

300×45×12 25.2 20.7 15.5 

 

Table 4-7: Calculated quality factor for investigated cases [B-(1~3)-(a-c)]. 
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(a)                                                                         (b) 

Figure 4-20: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of b2/L2 for three cases [C-(1~3)-a]. 
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(a)                                                                         (b) 

Figure 4-21: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of b2/L2 for three cases [C-(1~3)-b]. 
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Composite Rectangular Hammerhead Microcantilever: 

To investigate the effects of position of the mass center of the head on the quality 

factor for a composite rectangular hammerhead microcantilever [see Fig. 4-1 (D)], cases 

of [D-(1~3)-(a~c)], as indicated in Table 4-1, will be analyzed and the thicknesses of the 

microcantilevers are fixed at 12 [um]. By varying the dimensions of the gap (assuming 

b4=L3), the quality factor can be found as a function of the distance between the mass 

center of the head and the tip of the stem. It is shown in Fig. 4-23, Fig 4-24 and Fig. 4-25 

that, for nine different cases, as the dimensions of the gap increases, the mass center of 

the head will shift towards the support end of the stem; the quality factor will keep 

increasing.  
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(a)                                                                         (b) 

Figure 4-22: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of b2/L2 for three cases [C-(1~3)-c]. 
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(a)                                                                         (b) 

Figure 4-23: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of L3 for three cases [D-(1~3)-a] and L2=100 

[um]. 
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(a)                                                                         (b) 

Figure 4-24: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of L3 for three cases [D-(1~3)-b] and L2=100 

[um]. 
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For the investigated cases [A-(1~3)-(a~c), C-(1~3)-(a~c) and D-(1~3)-(a~c)], as the 

distance between the mass center of the head and the tip of the stem decreases, the quality 

factor will keep increasing. Based on the energy definition, the increase of the quality 

factor may come from the increase of the total mechanical energy or the decrease in the 

energy dissipation. It is noted in Sec. 4.2 that, the kinetic energy of the head may first 

increase and then decrease. Thus, the total mechanical energy may first increase and then 

decrease. However, the dominating term in the quality factor may come from a more 

rapid decrease in the energy dissipation. The energy dissipation is proportional to the 

square of the translational velocity of the microcantilever. The translational velocity at 

the mass center of the head is equal to the translational velocity at the tip of the stem plus 

the angular velocity at the end of the stem times the distance to the mass center. As the 

distance between the mass center of the head and the tip of the stem decreases, the 

translational velocity at the mass center of the head will decrease and the energy 
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(a)                                                                         (b) 

Figure 4-25: (a) Distance between the mass center of the head and the tip of the stem and 

(b) calculated quality factor as a function of L3 for three cases [D-(1~3)-c] and L2=150 

[um]. 
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dissipation will decrease as well. It is also noted that, as the distance between the mass 

center of the head and the tip of the stem decreases, the Reynolds number associated with 

the hammerhead microcantilever will increase (Re is a function of the square of the cross 

section), which means that the hydrodynamic force (both real and imaginary parts) acting 

on the microcantilever will decrease. Thus, the quality factor will increase. 

For composite hammerhead microcantilevers, as the dimensions of the gap keep 

increasing, the position of the mass center of the head will further move past the tip of the 

stem and towards the support end of the stem, which significantly increases the quality 

factor. Such trends can be used to optimize the performance of the device for chemical 

sensing applications in liquid environments.  

For the investigated cases of [B-(1~3)-(a-c)], it is found that, as the surface area of 

the semi-circular head increases, the radius of the semi-circular head and will increase, 

but the quality factor will decrease. This is due to a more rapid decrease in the resonance 

frequency compared to the 3-dB bandwidth. 

When applying this model, it should be noticed that, although the quality factor will 

keep increasing as the mass center moves towards the support end of the stem, the 

validity of the assumption (rigidity of the head) may not hold true as the length of the 

head becomes too small. For example, for a uniform rectangular hammerhead 

microcantilever with a large, constant head area, as the ratio of b2/L2 becomes too large 

(L2 becomes too small), it is found in numerical analysis that, deformation of the head in 

the x-direction occurs. 
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4.4 Mass Sensitivity 

In microcantilever-based sensor applications, a polymer coating on the surface of the 

substrate of the microcantilever absorbs or adsorbs the target molecules in the operational 

liquid environment. The absorbed or adsorbed molecules will increase the total mass of 

the microcantilever-based sensor device, which will change the resonance frequency. The 

sensitivity of the resonance frequency to the changes in the total mass of the 

microcantilever, or the mass sensitivity, is given by [110] 

 r
m

f
S

m





,  (4.29) 

In Eq. 4.29, ∆fr is the change in the resonance frequency due to the added mass in 

the polymer coating and ∆m is the change in the total mass of the microcantilever. 

It is assumed that the thickness of the polymer coating is very small (h polyer coating << 

h microcantilever). After absorption or adsorption, the total thickness of the microcantilever is 

still dominated by the thickness of the substrate. Thus, the only change considered in ∆m 

is the change in the effective density of the microcantilever (∆ρb) in Eq. 4.29. Since the 

method in finding the resonance frequency shift is to exact two peak values 

corresponding to the frequency spectra using Eq. 4.2, an analytical expression for ∆fr is 

not necessarily required. Thus, the sensitivity of the resonance frequency (∆f) can be also 

found using Eq. 4.2.  

Based on the above analysis, a Matlab code is developed to extract the mass 

sensitivity of the hammerhead microcantilever. Fig. 4-26 shows the change in the 

resonance frequency, ∆f, for of a uniform rectangular hammerhead microcantilever with 

dimensions (L1×b1×h+ L2×b2×h) of (200×45×12) +(50×200×12) [µm
3
] due to added mass 

in the polymer coating. 
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For four different hammerhead microcantilevers [isosceles trapezoid-(A-2-c), semi-

circle-(B-2-c), uniform rectangle-(C-2-c) and composite rectangle-(D-2-c)] with the same 

thickness of 12 um, Fig. 4-27 shows the change in the resonance frequency, ∆fres, as a 

function of ∆m. The slope of ∆fres for each microcantilever is defined as the mass 

sensitivity. It is found that the composite rectangular hammerhead in this group of study 

has the highest mass sensitivity due to its highest resonance frequency.  
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Figure 4-26: Calculated shift in the resonance frequency spectra of a uniform 

rectangular hammerhead microcantilever of dimensions (200×45×12)+(50×200×12) 

[µm
3
] laterally vibrating in water, when the total mass of the microcantilever is 

uniformly increased by 1%. 
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Due to the additional mass attached at the end of the stem, the resonance frequency 

for the hammerhead microcantilever drastically decreases as the dimensions of the head 

become much larger. The change of the resonance frequency (∆f) is expected to decrease, 

correspondingly. Thus, the mass sensitivity for a hammerhead microcantilever [L1×b1×h+ 

L2×b2×h] may be lower compared to that of a rectangular prismatic beam [L1×b1×h] 

without an additional mass attached to its end. In the following sections, the mass 

sensitivity will be investigated as a function of the dimensions of the hammerhead 

microcantilever. 
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Figure 4-27: Calculated mass sensitivity as a function of ∆m for four different 

hammerhead microcantilevers [isosceles trapezoid-(A-2-c), semi-circle-(B-2-c), 

uniform rectangle-(C-2-c) and composite rectangle-(D-2-c)] 
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4.4.1 Effects of Dimensions of the Hammerhead on the Mass Sensitivity  

To solely study the effects of the thickness on the mass sensitivity, the geometries 

investigated are those indicated in Table 4-5. For the range of the thickness [2~15 (um)] 

considered, it is shown in Table 4-8  that as the thickness increases, the mass sensitivity 

will decrease, which is due to the microcantilever mass dominating over the liquid mass 

[110].  

 

Isosceles Trapezoid Head Shaped Hammerhead Microcantilever: 

Thickness [um] 
Mass Sensitivity [Hz/pg] 

A-2-c B-2-c C-2-c D-2-c 

2 0.30 0.30 0.24 0.35 

3 0.24 0.24 0.18 0.27 

4 0.20 0.18 0.17 0.21 

5 0.14 0.16 0.13 0.17 

6 0.13 0.14 0.11 0.14 

7 0.11 0.12 0.09 0.13 

8 0.10 0.10 0.09 0.11 

9 0.09 0.09 0.08 0.10 

10 0.08 0.08 0.07 0.09 

11 0.07 0.08 0.06 0.08 

12 0.07 0.07 0.06 0.08 

13 0.06 0.06 0.06 0.07 

14 0.06 0.06 0.05 0.06 

15 0.05 0.05 0.05 0.06 

 

Table 4-8: Calculated mass sensitivity as a function of the thickness for investigated 

cases [A-2-c, B-2-c, C-2-c and D-2-c]. 
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The mass sensitivity for an isosceles trapezoid-shaped hammerhead microcantilever 

will be investigated as a function of L2. The investigated cases of [A-(1~3)-(a~c)] are 

indicated in Table 4-1. The thicknesses of the microcantilevers are fixed at 12 [um] and 

the ratio of b3 and b2 is constant and equal to 1/4. It is shown in Table 4-9, Table 4-10 and 

Table 4-11 that, for nine different cases, as L2 increases, the mass sensitivity will first 

increase and then decrease. Because the mass sensitivity depends on the change in the 

resonance frequency, the trend of the mass sensitivity is similar to that predicted for the 

resonance frequency. This trend is also more obvious for hammerhead microcantilevers 

with shorter stems due to their higher resonance frequencies. 

 

Geometry 

[um
3
] 

Mass Sensitivity [Hz/pg] 

L2=50 

[um
2
] 

L2=60 

[um
2
] 

L2=70 

[um
2
] 

L2=80 

[um
2
] 

L2=110 

[um
2
] 

L2=140 

[um
2
] 

L2=170 

[um
2
] 

L2=200 

[um
2
] 

A-1-b 0.171 0.186 0.202 0.210 0.210 0.194 0.179 0.163 

A-2-b 0.123 0.131 0.145 0.145 0.145 0.131 0.123 0.116 

A-3-b 0.077 0.077 0.077 0.077 0.077 0.070 0.064 0.058 

 

Table 4-9: Calculated mass sensitivity as a function of L2 for investigated cases [A-

(1~3)-b]. 

Geometry 

[um
3
] 

Mass Sensitivity [Hz/pg] 

L2=40 

[um
2
] 

L2=45 

[um
2
] 

L2=50 

[um
2
] 

L2=60 

[um
2
] 

L2=80 

[um
2
] 

L2=110 

[um
2
] 

L2=140 

[um
2
] 

L2=170 

[um
2
] 

L2=200 

[um
2
] 

A-1-a 0.722 0.728 0.751 0.736 0.692 0.618 0.545 0.486 0.442 

A-2-a 0.445 0.452 0.454 0.441 0.415 0.389 0.337 0.311 0.285 

A-3-a 0.200 0.201 0.210 0.199 0.189 0.178 0.157 0.147 0.147 

 

Table 4-10: Calculated mass sensitivity as a function of L2 for investigated cases [A-

(1~3)-a]. 
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Semi-circular Hammerhead Microcantilever: 

Table 4-12 shows the investigated cases of [B-(1~3)-(a-c)] and their mass 

sensitivities. It is found that, as the surface area of the semi-circular head increases, the 

radius of the semi-circular head and will increase, but the mass sensitivity will decrease, 

due to a more rapid decrease in the resonance frequency. 

 

Uniform Rectangular Hammerhead Microcantilever: 

For a uniform rectangular hammerhead microcantilever [see Fig. 4-1 (C)] with a 

fixed stem and head, the change in b2/L2 will change the mass sensitivity. Thus, to 

investigate the effects of the ratio of b2/L2 on the mass sensitivity, cases of [C-(1~3)-

Geometry 

[um
3
] 

Mass Sensitivity [Hz/pg] 

L2=50 

[um
2
] 

L2=60 

[um
2
] 

L2=70 

[um
2
] 

L2=80 

[um
2
] 

L2=110 

[um
2
] 

L2=140 

[um
2
] 

L2=170 

[um
2
] 

L2=200 

[um
2
] 

A-1-c 0.063 0.074 0.084 0.09 0.095 0.100 0.095 0.090 

A-2-c 0.050 0.060 0.065 0.065 0.075 0.071 0.070 0.065 

A-3-c 0.032 0.037 0.040 0.041 0.041 0.041 0.041 0.037 

 

Table 4-11: Calculated mass sensitivity as a function of L2 for investigated cases [A-

(1~3)-c]. 

Cases [um
3
] 

Mass Sensitivity [Hz/pg] 

Area=10000 [um
2
] Area=25000 [um

2
] Area=40000 [um

2
] 

150×45×12 0.692 0.415 0.189 

200×45×12 0.194 0.138 0.078 

300×45×12 0.095 0.065 0.037 

 

Table 4-12: Calculated mass sensitivity for investigated cases [B-(1~3)-(a-c)]. 
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(a~c)], as indicated in Table 4-1, will be analyzed and the thicknesses of the 

microcantilevers are fixed at 12 [um]. Table 4-13 shows that as the ratio of b2/L2 

increases, the mass sensitivity will first increase and then decrease. 

 

Composite Rectangular Hammerhead Microcantilever: 

To investigate the dimensions of the gap on the mass sensitivity for a composite 

rectangular hammerhead microcantilever [see Fig. 4-1 (D)], cases of [D-(1~3)-(a~c)], as 

indicated in Table 4-1, will be analyzed and the thicknesses of the microcantilevers are 

fixed at 12 [um]. By varying the dimensions of the gap (assuming b4=L3), the mass 

sensitivity can be found as a function of L3. It is shown in Table 4-14, Table 4-15 and 

Table 4-16 that, for nine different cases, as the dimensions of the gap increases, cases of 

[D-(1)-(a)], [D-(1~3)-b] and [D-(1~2)-c] show that the mass sensitivity will first increase 

Geometry 

[um
3
] 

Mass Sensitivity [Hz/pg] 

b2/L2=10 b2/L2=8 b2/L2=6 b2/L2=4 b2/L2=2 b2/L2=1 b2/L2=1/2 b2/L2=1/4 

C-1-a 0.721 0.736 0.751 0.736 0.692 0.618 0.500 0.397 

C-2-a 0.441 0.454 0.454 0.441 0.428 0.376 0.324 0.259 

C-3-a 0.199 0.199 0.199 0.199 0.189 0.168 0.157 0.136 

C-1-b 0.186 0.202 0.210 0.210 0.202 0.171 0.140 0.101 

C-2-b 0.138 0.138 0.145 0.145 0.138 0.116 0.094 0.080 

C-3-b 0.083 0.077 0.077 0.077 0.077 0.064 0.058 0.045 

C-1-c 0.084 0.090 0.095 0.100 0.095 0.084 0.063 0.047 

C-2-c 0.065 0.065 0.070 0.070 0.070 0.060 0.045 0.035 

C-3-c 0.037 0.041 0.041 0.041 0.037 0.032 0.028 0.023 

 

Table 4-13: Calculated mass sensitivity as a function of b2/L2 for investigated cases 

[C-(1~3)-(a~c)]. 
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and then decrease. Cases of [D-(2~3)-(a)] and [D-3-c] show that the mass sensitivity 

starts to increase slowly after L3 increases beyond 60 um. It is expected that the mass 

sensitivity will start to decrease if L3 keeps increasing. 

 

 

 

Geometry [um
3
] 

Mass Sensitivity [Hz/pg] 

L3=10 L3=20 L3=30 L3=40 L3=50 L3=60 L3=70 L3=80 

D-1-a 0.642 0.670 0.670 0.721 0.745 0.765 0.770 0.756 

D-2-a 0.392 0.406 0.417 0.431 0.441 0.452 0.462 0.465 

D-3-a 0.176 0.183 0.186 0.188 0.193 0.196 0.198 0.201 

 

Table 4-14: Calculated mass sensitivity as a function of L3 for investigated cases [D-

(1~3)-a] and L2=100 [um]. 

Geometry [um
3
] 

Mass Sensitivity [Hz/pg] 

L3=10 L3=20 L3=30 L3=40 L3=50 L3=60 L3=70 L3=80 

D-1-b 0.216 0.224 0.230 0.234 0.234 0.230 0.221 0.209 

D-2-b 0.146 0.149 0.156 0.158 0.160 0.160 0.157 0.153 

D-3-b 0.076 0.079 0.080 0.082 0.083 0.084 0.086 0.085 

 

Table 4-15: Calculated mass sensitivity as a function of L3 for investigated cases [D-

(1~3)-b] and L2=100 [um]. 

Geometry [um
3
] 

Mass Sensitivity [Hz/pg] 

L3=10 L3=30 L3=50 L3=70 L3=80 L3=90 L3=100 L3=110 

D-1-c 0.100 0.105 0.112 0.113 0.112 0.110 0.106 0.101 

D-2-c 0.069 0.074 0.078 0.082 0.082 0.081 0.081 0.077 

D-3-c 0.040 0.042 0.0438 0.046 0.046 0.046 0.046 0.046 

 

Table 4-16: Calculated mass sensitivity as a function of L3 for investigated cases [D-

(1~3)-c] and L2=150 [um]. 
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For the investigated geometries [A-(1~3)-(a~c), C-(1~3)-(a~c) and D-(1~3)-(a~c)], 

as the distance between the mass center of the head and the tip of the stem decreases, the 

mass sensitivity will first increase and then decrease. For the investigated cases of [B-

(1~3)-(a-c)], it is found that, as the surface area of the semi-circular head increases, the 

radius of the semi-circular head and will increase, but the mass sensitivity will decrease, 

due to a more rapid decrease in the resonance frequency. This trend is similar to that of 

the resonance frequency, which is due to the fact that the mass sensitivity is a function of 

the change in the resonance frequency. By attaching an additional mass to the tip of the 

stem, the resonance frequency of a hammerhead drops significantly, which decreases its 

mass sensitivity.  
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5. Summary, Conclusions and Future Work 

5.1 Summary 

The primary objective of this work is to theoretically analyze and compare the 

characteristics of laterally vibrating arbitrary, symmetric hammerhead microcantilever-

based sensors for chemical or bio-chemical applications in viscous liquids. In particularly, 

various cases of different symmetric hammerhead geometries including isosceles 

trapezoid, semi-circle, uniform rectangle, composite rectangle were investigated and 

compared.  

Dynamically driven prismatic rectangular microcantilevers excited in the in-plane 

direction have been investigated and used in liquid-phase sensing applications. However, 

in bio-chemical sensing applications, the performance of prismatic microcantilever-based 

sensors is restricted due to their limited surface sensing area. The increase in the surface 

area of hammerhead microcantilevers may also improve the sensing characteristics and 

make microcantilevers easier to excite due to lower frequency.  

In order to perform the theoretically analysis of laterally vibrating symmetric 

hammerhead microcantilevers in viscous liquids, a model was set up based on the 

appropriate assumptions placed on the head. To achieve a larger sensing area, the 

dimensions of the head must be much larger than those of the stem. Thus, the symmetric 

hammerhead microcantilever was modeled as an elastic beam and a rigid body attached 

at the tip of the stem. The standard Euler-Bernoulli beam theory was used to model the 

stem as an elastic beam. Due to the rigidity of the head, negligible deformation occurs in 

the head and its translational and rotational motions were taken into account when 

analyzing the boundary conditions at the junction between the stem and the head. 
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After the theoretical model was set up, the validity of the model was determined for 

the ranges of dimensions considered, and also by reducing it to that of a uniform 

rectangular hammerhead microcantilever. Three-dimensional numerical models, using 

FEA software Comsol 4.1, were developed in a vacuum. The first resonance frequencies 

corresponding to the lateral vibration were extracted and compared to the ones from the 

theoretical models developed in this work. Then, the domain (range of parameters) of the 

validity of the model was found. This necessary step provided confidence in applying the 

theoretical model to analyze the sensor characteristics in liquid environments. 

In order to perform the above-mentioned theoretical analysis in liquid environments, 

the analytical expressions for the hydrodynamic forces on the stem and head were 

derived. The method to find the hydrodynamic force on a rectangular hammerhead 

microcantilever was analogous to that used to find the hydrodynamic force on a prismatic 

beam [64]. The hydrodynamic function, which is a normalized hydrodynamic force, 

proposed in Ref [64] could be used. However, because the discrepancy between the 

analytical and numerical results is relatively large for small thicknesses and high Re, a 

new mathematical form of the analytical expression of the hydrodynamic function was 

proposed. Since the arbitrary, symmetric head has a varying width, 2b2(x), the semi-

analytical expression for the hydrodynamic function was obtained in terms of the 

Reynolds number, Re(x), and aspect ratio, h/[2b2(x)]. 

Finally, the analytical expression for the frequency response at the tip of the stem 

was obtained as a function of the properties of hammerhead geometry and liquid media. 

The trends in the resonance frequency, quality factor and mass sensitivity were analyzed 

and the improvement in the sensing characteristics when using laterally vibrating 
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symmetric hammerhead microcantilevers was given, particularly for the four different 

head geometries (isosceles trapezoid, semi-circular, uniform rectangular, composite 

rectangular). Some design guidelines were provided for the hammerhead microcantilever 

geometries. 

5.2 Conclusions 

One of the major contributions in this work is the form of the theoretical model of a 

symmetric hammerhead microcantilever as an Euler-Bernoulli beam and a rigid body in 

viscous liquids. This modeling approach is more appropriate compared to merely treating 

the head as a point mass at the tip of the stem, especially when the hammerhead 

microcantilevers are immersed in viscous liquids and the surrounding liquid imposes 

hydrodynamic forces on the microcantilevers. It is noted that the hydrodynamic function 

for a hammerhead microcantilever is described in terms of its dimensional parameters.  

The validity of the theoretical model for the range of dimensions considered was 

determined by also performing a numerical analysis of the vibrating devices. In particular, 

the first undamped natural frequency corresponding to the lateral vibration of uniform 

rectangular hammerhead microcantilevers was obtained in Comsol 4.1. Using the 

proposed analytical model, for the investigated ranges/domains, it is found that, as both 

length and width of the head increase, the maximum percent difference of the first natural 

frequency corresponding to the lateral vibration between the analytical and numerical 

result decreases; as the width ratio between the head and stem is larger than 4/3, the 

maximum percent difference is found to be always less than 6%, which indicates that it is 

appropriate to model a hammerhead microcantilever as an elastic beam and a rigid body. 

It is also found that from the 3-D numerical simulations, depending on the geometry and 
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dimensions, the first natural frequency of the in-plane mode may come after the second 

or third natural frequency associated with the out-of-plane or torsional mode. This often 

occurs as the thickness becomes smaller and the head becomes larger. This observation 

should be taken into account when choosing the dimensions of the hammerhead 

microcantilevers to avoid mode coupling issues. 

The proposed hydrodynamic function for a laterally vibrating symmetric 

hammerhead microcantilever is another significant contribution from this work. Since the 

arbitrary head has a varying width, 2b2(x), which is a function of the position along the 

length of the microcantilever, the proposed hydrodynamic function was found in terms of 

the Reynolds number, Re(x) and the aspect ratio, h/[2b2(x)]. Both terms depend on the 

function which defines the width of the stem and head. The new semi-analytical 

expressions for the real and imaginary part were found as a product of a function of Re(x) 

and a function of h/[2b2(x)]. The coefficients and indices associated with this 

hydrodynamic function were determined simultaneously to minimize the errors in the 

hydrodynamic functions obtained numerically and analytically. For the same ranges of 

the Reynolds number and the aspect ratio investigated in Ref 110, the ranges of the 

percent differences of the real and imaginary parts were found as [-3.8%, 6.1%] and [-

2.0%, 2.8%], compared to [-5.9%, 20.6%] and [-5.7%, 2.4%] if using the originally 

proposed hydrodynamic function in Ref 110.  

Analyzing the characteristics for laterally vibrating hammerhead microcantilevers 

(isosceles trapezoid-shaped head, semi-circular head, uniform rectangular head, 

composite rectangular head), it was found for a constant head surface area, that a change 

in the length or width of the head would cause the position of the mass center of the head 
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to change. The change in the position of the mass center of the head would cause the 

resonance frequency, quality factor and mass sensitivity to change. Such trends can be 

used to optimize the design of the microcantilever geometries and improve these 

characteristics. Based on the dimensions considered in this work, some conclusions 

regarding the sensing characteristics of different hammerhead microcantilevers are made 

as following: 

Resonance Frequency 

For a hammerhead microcantilever with a constant head area, it is found that, as the 

mass center of the head shifts towards the support end of the stem, the resonance 

frequency will first increase and then decrease. This is due to the kinetic energy of the 

system first decreasing and then increasing (effective mass first decreases and then 

increases). The resonance frequency is found to be slightly dependent on the thickness in 

the range of [2~15 (um)]. For thicknesses in the range of [2~12 (um)], as thickness 

increases, the resonance frequency will increase. This is due to the fact that the mass of 

the microcantilever being less than the effective mass of the viscous liquid. However, as 

the thickness keeps increasing in the range of [13~15 (um)], the resonance frequency will 

decrease slowly, which is due to the mass of the microcantilever being larger than the 

mass coming from the viscous liquid [110]. Such trends can be used to find the optimal 

thickness with respect to the resonance frequency, if the properties of the operational 

liquid are known.  

Quality Factor 

For a hammerhead microcantilever with a constant head area, it is found that, as the 

distance between the mass center of the head and the tip of the stem decreases, the quality 
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factor will keep increasing. For composite hammerhead microcantilevers, the position of 

the mass center of the head can further move past the tip of the stem and towards the 

support end of the stem, which significantly increases the quality factor. The quality 

factor is also found to be linearly dependent on the thickness in the range of [2~15 (um)]. 

As thickness increases, the quality factor will increase. It is also noticed that the 

hammerhead microcantilevers with shorter stems will have higher quality factors due to 

the higher stiffness. Such trends can be used to optimize the performance of the device 

for chemical sensing applications in liquid environments. 

When applying this model, it should be noticed that, although the quality factor will 

keep increasing as the mass center moves towards the support end of the stem, the 

validity of the assumption (rigidity of the head) may not hold true as the length of the 

head becomes too small. 

Mass Sensitivity 

For a hammerhead microcantilever with a constant head area, it is found that, as the 

mass center of the head shifts towards the support end of the stem, the mass sensitivity 

will first increase and then decrease. This trend is similar to that of the resonance 

frequency, which is due to the fact that the mass sensitivity is a function of the change in 

the resonance frequency. By attaching an additional mass to the tip of the stem, the 

resonance frequency of a hammerhead drops significantly, which decreases its mass 

sensitivity. Such tradeoff must be considered when choosing the dimensions of the 

hammerhead microcantilever in terms of achieving a larger sensing head area or higher 

mass sensitivity. 
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5.3 Future Work 

The work performed in this investigation can be expanded upon and further 

improved. Several improvements in the geometry of the head can be applied. For 

example, the thickness of the head can be made smaller than that of the stem. Thus, the 

sensing area will not be affected and the mass attached at the tip of the stem can be 

further minimized. The resonance frequency and the mass sensitivity will increase due to 

a smaller mass attached at the tip of the stem. The quality factor may also increase, as the 

rate of the increase in the resonance frequency may be faster than that of the 3-dB 

bandwidth. Since the area of the head is much larger than that of the stem, by merely 

putting the sensing layer on the head, the shift of the resonance frequency may be larger, 

which may further increase the mass sensitivity of the device. 

Other geometries of the head can also be investigated theoretically to improve the 

sensing characteristics. For instance, the geometry of a composite semi-circular 

hammerhead microcantilever proposed in Ref 113 can be analyzed. By creating two large 

gaps between the head and the tip of the stem, the mass center of the head can be further 

shifted towards the support end of the stem and the sensing characteristics may be further 

improved. To theoretically model such geometries, the position of the mass center of the 

head and the rotational inertia about the mass center of the head must be found. Both of 

these quantities depend on the dimensions of the gaps. Then the characteristics of such 

microcantilevers can be found using Eq. 2.71, which determines the frequency response 

at the tip of the stem for an arbitrary, symmetric hammerhead microcantilever.  

For hammerhead microcantilevers with two gaps between the head and the tip of the 

stem, as the dimensions of the gaps become smaller, the proposed hydrodynamic function 
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may not be appropriate due to the gap effects (squeezing and slide film effects due to the 

liquid trapped inside the gaps). Thus, the numerical analysis of the effects coming from 

the squeezing and slide films should be performed and the analytical expression for the 

hydrodynamic function may be found in terms of the Reynolds number, Re(x), the aspect 

ratio, h/[2b2(x)] and the dimensions of the gaps. 

Besides analyzing the characteristics of hammerhead microcantilevers in the in-

plane mode, several attempts have been made in investigating the advantages in driving 

the hammerhead microcantilevers in the torsional model vibration. Most of the research 

merely focused on experimental analysis. Very few theoretical studies of the torsionally 

vibrating hammerhead microcantilevers in viscous liquids have been performed. The 

characteristics can be obtained as a function of the properties of the geometrical 

parameters and liquid media. Then, these characteristics can be compared with those of 

similar geometries operating in the in-plane direction. 

For chemical sensing applications, it would be also necessary to investigate the 

effects of the coating thickness on the sensing characteristics due to the viscoelastic 

properties of the sensing layer. Since the amount of sorbed target molecules will affect 

the viscoelastic properties of the coating, the density and thickness of the polymer coating 

and its dynamic modulus must be taken into account when obtaining the frequency 

response. By performing the above theoretical analysis, the optimum thickness of the 

device can be found in terms of the sensing characteristics. 

To further improve the sensing characteristics of hammerhead microcantilevers, the 

length of the stem can be made shorter and wider to increase its stiffness. In order to 

model such hammerhead microcantilevers with shorter and wider stems, it will be 



133 

 

appropriate to apply Timoshenko beam theory on the stem. Such analysis can be 

performed by incorporating the rotational inertia and shear deformation when setting up 

the equation of motion for the stem. The frequency response at the tip of the stem can 

then be found as a function of the properties of the hammerhead microcantilever 

geometry and the liquid media. 
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APPENDIX A: MATLAB PROGRAM USED TO CALCULATE 

FREQUENCY SPECTRUM AND QUALITY FACTOR OF 

LATERALLY VIBRATING SYMMETRIC HAMMERHEAD 

MICROCANTILEVERS IN VISCOUS LIQUIDS 

Case 1: Hammerhead Microcantilever with an Isosceles Trapezoid Head 

ratio=1/4; % b3/b2 
L1=300*10^-6; % length of the stem 
L2=80*10^-6; % length of the head 
stop=128*10^3; % Ending frequency 
start=126*10^3; % Starting frequency 
A=200*200*10^-12; % area of the head  
b1=45*10^-6; % width of the stem 
b2=(2*A)/(L2*(1+ratio)); % width of the head 
b3=b2*ratio; % width of the head  
h=12*10^-6; % thickness of the cantilever 
E=169*10^9; % Young's Modulus 
Pb=2330; % density of silicon 
Pl=1000; % density of the fluid at 20C 
%Pl=1.205; % density of the air at 20C 
mm=Pb*L1*b1*h; % mass of the stem 
mmbar=Pb*b1*h; 
md=0.5*Pb*L2*(b2+b3)*h; % mass of the head 
Im=(1/12)*h*(b1)^3; % moment of inertia of the stem 
Jd=Pb*h*(144*b2+144*b3)^-

1*L2*(16*L2^2*b2*b3+4*L2^2*b2^2+4*L2^2*b3^2+3*b3^4+6*b3^2*b2^2+6*b3^3*b

2+6*b3*b2^3+3*b2^4); % moment of inertia 
etal=0.001; % viscosity of the fluid 20C 
%etal=0.00001827; % viscosity of the air 20C 
step=10*2*pi; 
% spectrum of the first lateral mode in air and water % 
tol = 1e-20; 
Lfreq = start*2*pi:step:stop*2*pi; 
 start= start*2*pi; 
for jfreq=1:length(Lfreq) 
freq = start+step;  
start=freq; 
%%%%%%%%%%%%%%%%%%%%% Finding spectrum in air %%%%%%%%%%%%%%%%%%% 
% denotes any point along the head 
%Dsy= 2*((b3-b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)); % the length in 

the y direction 
Dsc=(L2/3)*(2*b3+b2)/(b3+b2); % distance of the mass center of the 

headto the tip of the stem  
%mdbar=Pb*h*2*2*((b3-b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)); 
Reym=(Pl*freq*b1^2)/(4*etal); 
%fReyd= ((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)); 
Gammarm=Reym^-0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-

0.0021*(h/b1)^0.5-0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
Gammaim=Reym^-1*(2.5758-1.3388*(h/b1)^0.5)+Reym^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
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%fGammard=(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1+0.8255*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^2)); 
%fGammaid=(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5)+((Pa*freq*(2*(b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1+0.8236*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^2)); 
%mfpmbar=0.25*pi*Pl*b1^2*Gammarm; 
cfpmbar=0.25*pi*Pl*b1^2*Gammaim*freq; 
%fmfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2*(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1+0.8255*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^2))); 
%fcfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2*(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5)+((Pa*freq*(2*(b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1+0.8236*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^2))*freq); 
Kp=L1*((freq.^2*(mmbar+mfpmbar)-1i*freq*cfpmbar)/(E*Im)).^0.25; 
KKp=Kp; 
Cfp=cosh(KKp); 
Sfp=sinh(KKp); 
sfp=sin(KKp); 
cfp=cos(KKp); 
F1 = @(x) (freq.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-



148 

 

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
F2 = @(x) (freq.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*freq)); 
Gfp=(md*Dsc*freq^2*L1^2+quad( F1, L1, L1+L2, tol)-1i*quad(F2, L1, 

L1+L2,tol))/(E*Im); 
F3 = @(x) (freq.^2.*L1.*(x-L1).^2.*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
F4 = @(x) (freq.*L1.*(x-L1).^2.*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*freq)); 
Hfp=(md*Dsc^2*freq^2*L1+quad (F3, L1, L1+L2, tol)-1i*quad (F4,L1, 

L1+L2,tol)+freq^2*L1*Jd)/(E*Im); 
F5 = @(x) (freq.^2.*L1^3*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-
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b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
F6 = @(x) (freq.*L1^3*(0.25.*pi.*Pl.*(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*freq)); 
Ffp=(-md*freq^2*L1^3-quad (F5, L1, L1+L2, tol)+1i*quad (F6, L1, 

L1+L2,tol))/(E*Im); 
F7 = @(x) (freq.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
F8 = @(x) (freq.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*freq)); 
Kfp=(-md*Dsc*freq^2*L1^2-quad (F7, L1, L1+L2, tol)+1i*quad (F8, L1, 

L1+L2, tol))/(E*Im); 
MMfp=KKp.^2.*(Cfp+cfp)-Gfp.*(Cfp-cfp)-Hfp.*KKp.*(Sfp+sfp); 
NNfp=KKp.^2.*(Sfp+sfp)-Gfp.*(Sfp-sfp)-Hfp.*KKp.*(Cfp-cfp); 
OOfp=KKp.^(-1).*(KKp.^2.*sfp+Gfp.*sfp+Hfp.*KKp.*cfp); 
PPfp=KKp.^3.*(Sfp-sfp)-Ffp.*(Cfp-cfp)-Kfp.*KKp.*(Sfp+sfp); 
QQfp=KKp.^3.*(Cfp+cfp)-Ffp.*(Sfp-sfp)-Kfp.*KKp.*(Cfp-cfp); 
RRfp=KKp.^(-1).*(KKp.^3.*cfp+Ffp.*sfp+Kfp.*KKp.*cfp); 
A1fp=(OOfp.*QQfp-RRfp.*NNfp)/(MMfp.*QQfp-PPfp.*NNfp); 
A2fp=(OOfp.*PPfp-RRfp.*MMfp)/(NNfp.*PPfp-MMfp.*QQfp); 



150 

 

Dfpl=abs(A1fp.*(Cfp-cfp)+A2fp.*(Sfp-sfp)+KKp.^(-1).*sfp); 
Rfreq(jfreq)=freq; 
RDfpl(jfreq)=Dfpl; 
end 
[Amplitude, Location]=max(RDfpl); 
resfl=Rfreq(Location); 
for jfreq=1:length(Lfreq) 
if(jfreq==1); 
continue 
else 
if RDfpl(jfreq-1)<=Amplitude/sqrt(2); 
%%%% if the above condition is not satisfied the loop 
%%%% continues to next iteration 
if(RDfpl(jfreq)>=(Amplitude/(sqrt(2)))); 
Dfpmagprevious=RDfpl(jfreq-1); 
Dfpmagcurrent=RDfpl(jfreq);                     
Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
 [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
%   Note that if Iminlocal equals 1, then the index 
%   for Lamdbw is jlambda; if Iminlocal is 2, then the index 
%   for Lamdbw is jlambda-1. So, in general, the index for  
%   lambdabw may be written as jlambda+1-Iminlocal. 
resfbw1=Rfreq(jfreq+1-Iminlocal); 
end 
end  
if RDfpl(jfreq-1)>=Amplitude/sqrt(2); 
if RDfpl(jfreq)<=Amplitude/sqrt(2); 
Dfpmagprevious=RDfpl(jfreq-1); 
Dfpmagcurrent=RDfpl(jfreq);                     
Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
[Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
%   Note that if Iminlocal equals 1, then the index 
%   for lambdabw is jlambda; if Iminlocal is 2, then the index 
%   for lambdabw is jlambda-1. So, in general, the index for  
%   lambdabw may be written as jlambda+1-Iminlocal. 
resfbw2=Rfreq(jfreq+1-Iminlocal);                 
end 
end 
end 
end 
%%%% Quality factor is given by lambdaresonant/bandwidth 
resfl/(2*pi*10^3) 
%Qp3db=resfl/(resfbw2-resfbw1) 

 

Case 2: Hammerhead Microcantilever with a Semi-Circular Head 

L1=150*10^-6; % length of the stem 
stop=750*10^3; 
start=730*10^3; 
b1=45*10^-6; % width of the stem 
A=200*50*10^-12;% area of the head 
R=sqrt(2*A)/sqrt(pi); % Radium of the head  
h=12*10^-6; % thickness of the cantilever 
E=169*10^9; % Young's Modulus 
%Pb=(2330*(200*45*12+200*200*12)*10^-18+0*10^-

12)/((200*45*12+200*200*12)*10^-18); % density of silicon for both 
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supporting beam and hammerhead 
Pb=2330; 
%Pl=1000; % density of the fluid at 20C 
Pl=1.205; % density of the air at 20C 
mm=Pb*L1*b1*h; % mass of the stem 
mmbar=Pb*b1*h; 
md=0.5*Pb*pi*R^2*h; % mass of the head 
Im=(1/12)*h*(b1)^3; % moment of inertia of the stem 
Jd=Pb*h*(pi/4-8/(9*pi))*R^4; 
%etal=0.001; % viscosity of the fluid 20C 
etal=0.00001827; % viscosity of the air 20C 
step=30*2*pi; 
% spectrum of the first lateral mode in air and water % 
tol = 1e-20; 
Lfreq = start*2*pi:step:stop*2*pi; 
start= start*2*pi; 
for jfreq=1:length(Lfreq) 
freq = start+step;  
start=freq; 
%%%%%%%%%%%%%%%%%%%%% Finding spectrum in air %%%%%%%%%%%%%%%%%%% 
% denotes any point along the head 
%Dsy= 2*((b3-b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R)); % the length of 

the isosceles trapezoid along y direction 
Dsc=4*R/(3*pi); % distance of the mass center of the head to the tip of 

the stem  
%mdbar=Pb*h*2*2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R));Reym=(Pl*freq*b1^2)/(4*etal); 
%fReyd= ((Pa*freq*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)); 
Gammarm=Reym^-0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-

0.0021*(h/b1)^0.5-0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim=Reym^-1*(2.5758-1.3388*(h/b1)^0.5)+Reym^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
%            fGammard=(((Pa*freq*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1+0.8255*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^2)); 
%            fGammaid=(((Pa*freq*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5)+((Pa*freq*(2*(b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^1+0.8236*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^2)); 
%mfpmbar=0.25*pi*Pl*b1^2*Gammarm; 
cfpmbar=0.25*pi*Pl*b1^2*Gammaim*freq; 
%fmfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2*(((Pa*freq*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5+2.1722*(h./2*((b3-
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b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1+0.8255*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^2))); 
%fcfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2*(((Pa*freq*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5)+((Pa*freq*(2*(b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^1+0.8236*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^2))*freq); 
Kp=L1*((freq.^2*(mmbar+mfpmbar)-1i*freq*cfpmbar)/(E*Im)).^0.25; 
KKp=Kp; 
Cfp=cosh(KKp); 
Sfp=sinh(KKp); 
sfp=sin(KKp); 
cfp=cos(KKp); 
F1 = @(x) (freq.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.6105.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+2.1722.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1)+(-

0.0021.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^0.5-

0.1459.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1+0.8255.*(h./(2.*(sqrt(R.^2-

(x-L1).^2)))).^1.5+0.8144.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)))); 
F2 = @(x) (freq.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-1.*(2.5758-1.3388.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5)+((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.7121.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+1.6845.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^1+0.8236.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1.5-

0.4178.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)).*freq)); 
Gfp=(md*Dsc*freq^2*L1^2+quad( F1, L1, L1+R, tol)-1i*quad(F2,L1, L1+R, 

tol))/(E*Im); 
F3 = @(x) (freq.^2.*L1.*(x-L1).^2.*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.6105.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+2.1722.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1)+(-

0.0021.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^0.5-

0.1459.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1+0.8255.*(h./(2.*(sqrt(R.^2-

(x-L1).^2)))).^1.5+0.8144.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)))); 
F4 = @(x) (freq.*L1.*(x-L1).^2.*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-1.*(2.5758-1.3388.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5)+((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.7121.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+1.6845.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^1+0.8236.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1.5-

0.4178.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)).*freq)); 
Hfp=(md*Dsc^2*freq^2*L1+quad (F3, L1, L1+R, tol)-1i*quad (F4,L1, L1+R, 

tol)+freq^2*L1*Jd)/(E*Im); 
F5 = @(x) (freq.^2.*L1^3*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*freq.*(2.*(sqrt(R.^2-(x-
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L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.6105.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+2.1722.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1)+(-

0.0021.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^0.5-

0.1459.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1+0.8255.*(h./(2.*(sqrt(R.^2-

(x-L1).^2)))).^1.5+0.8144.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)))); 
F6 = @(x) (freq.*L1^3*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-1.*(2.5758-1.3388.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5)+((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.7121.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+1.6845.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^1+0.8236.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1.5-

0.4178.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)).*freq)); 
Ffp=(-md*freq^2*L1^3-quad (F5, L1, L1+R, tol)+1i*quad (F6, L1, L1+R, 

tol))/(E*Im); 
F7 = @(x) (freq.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.6105.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+2.1722.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1)+(-

0.0021.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^0.5-

0.1459.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1+0.8255.*(h./(2.*(sqrt(R.^2-

(x-L1).^2)))).^1.5+0.8144.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)))); 
F8 = @(x) (freq.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-1.*(2.5758-1.3388.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5)+((Pl.*freq.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.7121.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+1.6845.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^1+0.8236.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1.5-

0.4178.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)).*freq)); 
Kfp=(-md*Dsc*freq^2*L1^2-quad (F7, L1, L1+R, tol)+1i*quad (F8, L1, L1+R, 

tol))/(E*Im); 
MMfp=KKp.^2.*(Cfp+cfp)-Gfp.*(Cfp-cfp)-Hfp.*KKp.*(Sfp+sfp); 
NNfp=KKp.^2.*(Sfp+sfp)-Gfp.*(Sfp-sfp)-Hfp.*KKp.*(Cfp-cfp); 
OOfp=KKp.^(-1).*(KKp.^2.*sfp+Gfp.*sfp+Hfp.*KKp.*cfp); 
PPfp=KKp.^3.*(Sfp-sfp)-Ffp.*(Cfp-cfp)-Kfp.*KKp.*(Sfp+sfp); 
QQfp=KKp.^3.*(Cfp+cfp)-Ffp.*(Sfp-sfp)-Kfp.*KKp.*(Cfp-cfp); 
RRfp=KKp.^(-1).*(KKp.^3.*cfp+Ffp.*sfp+Kfp.*KKp.*cfp); 
A1fp=(OOfp.*QQfp-RRfp.*NNfp)/(MMfp.*QQfp-PPfp.*NNfp); 
A2fp=(OOfp.*PPfp-RRfp.*MMfp)/(NNfp.*PPfp-MMfp.*QQfp); 
Dfpl=abs(A1fp.*(Cfp-cfp)+A2fp.*(Sfp-sfp)+KKp.^(-1).*sfp); 
Rfreq(jfreq)=freq; 
RDfpl(jfreq)=Dfpl; 
end 
[Amplitude, Location]=max(RDfpl); 
resfl=Rfreq(Location); 
resfl=resfl/(2*pi*1000) 
for jfreq=1:length(Lfreq) 
if(jfreq==1); 
continue 
else 
if RDfpl(jfreq-1)<=Amplitude/sqrt(2); 
%%%% if the above condition is not satisfied the loop 
%%%% continues to next iteration 
if(RDfpl(jfreq)>=(Amplitude/(sqrt(2)))); 
Dfpmagprevious=RDfpl(jfreq-1); 
Dfpmagcurrent=RDfpl(jfreq);                     
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Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
 [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
%   Note that if Iminlocal equals 1, then the index         %   for 

Lamdbw is jlambda; if Iminlocal is 2, then the index 
%   for Lamdbw is jlambda-1. So, in general, the index for%   lambdabw 

may be written as jlambda+1-Iminlocal. 
resfbw1=Rfreq(jfreq+1-Iminlocal); 
end 
end           
if RDfpl(jfreq-1)>=Amplitude/sqrt(2); 
if RDfpl(jfreq)<=Amplitude/sqrt(2); 
Dfpmagprevious=RDfpl(jfreq-1); 
Dfpmagcurrent=RDfpl(jfreq);                     
Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
 [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
%   Note that if Iminlocal equals 1, then the index 
%   for lambdabw is jlambda; if Iminlocal is 2, then the index 
%   for lambdabw is jlambda-1. So, in general, the index for  
%   lambdabw may be written as jlambda+1-Iminlocal. 
resfbw2=Rfreq(jfreq+1-Iminlocal);                 
end 
end 
end 
end 
%%%% Quality factor is given by lambdaresonant/bandwidth 
Qp3db=resfl/(resfbw2-resfbw1) 

 

Case 3: Hammerhead Microcantilever with a Uniform Rectangular Head 

clear; 
L1=200*10^-6; % length of the stem 
b1=90*10^-6; % width of the stem 
L2=100*10^-6 : 50*10^-6 : 100*10^-6; % length of the head 
b2=300*10^-6 : 30*10^-6 : 300*10^-6; % width of the head  
%eta=0.00001827:0.00001827:0.00001827; % viscosity of the fluid 
eta=0.001:0.001:0.001; % viscosity of the fluid 
h=12*10^-6; % thickness of the cantilever 
E=169*10^9; % Young's Modulus 
Pb=2353.3; % density of silicon for both supporting beam and hammerhead 
%Pb=2330; 
%Pf=1.205; % density of the fluid 
Pf=1000; % density of the fluid 
mm=Pb*L1*b1*h; % mass of the stem 
mmbar=Pb*b1*h; % mass per unit length of stem 
Im=(1/12)*h*(b1)^3; % moment of inertia of the stem 
freq = 700000*2*pi:2*pi*1:800000*2*pi; 
%%%%%%%%%%% Using Correction Factor %%%%%%%%%%%%%% 
for jeta=1:length(eta); 
  for jL2=1:length(L2); 
    for jb2=1:length(b2) 
        for jfreq=1:length(freq) 
           md(jb2,jL2)=Pb*L2(jL2)*b2(jb2)*h; % mass of the head 
           mdbar(jb2)=Pb*b2(jb2)*h; % mass per unit length of the head 
           Jd(jb2,jL2)=(1/12)*md(jb2,jL2)*(L2(jL2)^2+b2(jb2)^2); % 

moment of inertia 
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                         %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 
                           %%%%%%%%%% Hydrodynamic function including 

thickness correction %%%%%%%%%% 
           Reym(jfreq,jeta)=(Pf*freq(jfreq)*b1^2)/(4*eta(jeta)); 
Reyd(jfreq,jb2,jeta)=(Pf*freq(jfreq)*b2(jb2)^2)/(4*eta(jeta)); 
                      Gammarm(jfreq,jeta)=Reym(jfreq,jeta)^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim(jfreq,jeta)=Reym(jfreq,jeta)^-1*(2.5758-

1.3388*(h/b1)^0.5)+Reym(jfreq,jeta)^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
           Gammard(jfreq,jb2,jeta)=Reyd(jfreq,jb2,jeta)^-

0.5*(0.9003+0.6105*(h/b2(jb2))^0.5+2.1722*(h/b2(jb2))^1)+(-

0.0021*(h/b2(jb2))^0.5-

0.1459*(h/b2(jb2))^1+0.8255*(h/b2(jb2))^1.5+0.8144*(h/b2(jb2))^2); 
           Gammaid(jfreq,jb2,jeta)=Reyd(jfreq,jb2,jeta)^-1*(2.5758-

1.3388*(h/b2(jb2))^0.5)+Reyd(jfreq,jb2,jeta)^-

0.5*(0.9003+0.7121*(h/b2(jb2))^0.5+1.6845*(h/b2(jb2))^1+0.8236*(h/b2(jb

2))^1.5-0.4178*(h/b2(jb2))^2); 
           mfpmbar(jfreq,jeta)=0.25*pi*Pf*b1^2*Gammarm(jfreq,jeta); 
cfpmbar(jfreq,jeta)=0.25*pi*Pf*b1^2*Gammaim(jfreq,jeta)*freq(jfreq); 
mfpdbar(jfreq,jb2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammard(jfreq,jb2,jeta); 
cfpdbar(jfreq,jb2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammaid(jfreq,jb2,jeta)*fr

eq(jfreq); 
Kp(jfreq,jeta)=L1*((freq(jfreq)^2*(mmbar+mfpmbar(jfreq,jeta))-

1i*freq(jfreq)*cfpmbar(jfreq,jeta))/(E*Im))^0.25; 
           KKp=Kp(jfreq,jeta); 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
                      Gfp(jfreq,jb2,jL2,jeta)=0.5*(E*Im)^(-

1)*(freq(jfreq)^2*L1^2*L2(jL2)*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfreq,jb2,j

eta))-j*freq(jfreq)*L1^2*L2(jL2)^2*cfpdbar(jfreq,jb2,jeta)); 
           Hfp(jfreq,jb2,jL2,jeta)=(12*E*Im)^(-

1)*(3*freq(jfreq)^2*L1*L2(jL2)^2*md(jb2,jL2)+4*freq(jfreq)^2*L1*L2(jL2)

^3*mfpdbar(jfreq,jb2,jeta)+12*freq(jfreq)^2*L1*Jd(jb2,jL2)-

4*j*freq(jfreq)*L1*L2(jL2)^3*cfpdbar(jfreq,jb2,jeta)); 
           Ffp(jfreq,jb2,jL2,jeta)=(E*Im)^(-

1)*(j*freq(jfreq)*L1^3*L2(jL2)*cfpdbar(jfreq,jb2,jeta)-

freq(jfreq)^2*L1^3*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfreq,jb2,jeta))); 
    Kfp(jfreq,jb2,jL2,jeta)=0.5*(E*Im)^(-

1)*(j*freq(jfreq)*L1^2*L2(jL2)^2*cfpdbar(jfreq,jb2,jeta)-

freq(jfreq)^2*L1^2*L2(jL2)*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfreq,jb2,jeta)

)); 
           MMfp(jfreq,jb2,jL2,jeta)=KKp^2*(Cfp+cfp)-

Gfp(jfreq,jb2,jL2,jeta)*(Cfp-cfp)-

Hfp(jfreq,jb2,jL2,jeta)*KKp*(Sfp+sfp);NNfp(jfreq,jb2,jL2,jeta)=KKp^2*(S

fp+sfp)-Gfp(jfreq,jb2,jL2,jeta)*(Sfp-sfp)-

Hfp(jfreq,jb2,jL2,jeta)*KKp*(Cfp-cfp); 
           OOfp(jfreq,jb2,jL2,jeta)=KKp^(-

1)*(KKp^2*sfp+Gfp(jfreq,jb2,jL2,jeta)*sfp+Hfp(jfreq,jb2,jL2,jeta)*KKp*c

fp); 
           PPfp(jfreq,jb2,jL2,jeta)=KKp^3*(Sfp-sfp)-

Ffp(jfreq,jb2,jL2,jeta)*(Cfp-cfp)-
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Kfp(jfreq,jb2,jL2,jeta)*KKp*(Sfp+sfp);QQfp(jfreq,jb2,jL2,jeta)=KKp^3*(C

fp+cfp)-Ffp(jfreq,jb2,jL2,jeta)*(Sfp-sfp)-

Kfp(jfreq,jb2,jL2,jeta)*KKp*(Cfp-cfp); 
           RRfp(jfreq,jb2,jL2,jeta)=KKp^(-

1)*(KKp^3*cfp+Ffp(jfreq,jb2,jL2,jeta)*sfp+Kfp(jfreq,jb2,jL2,jeta)*KKp*c

fp); 
A1fp(jfreq,jb2,jL2,jeta)=(OOfp(jfreq,jb2,jL2,jeta)*QQfp(jfreq,jb2,jL2,j

eta)-

RRfp(jfreq,jb2,jL2,jeta)*NNfp(jfreq,jb2,jL2,jeta))/(MMfp(jfreq,jb2,jL2,

jeta)*QQfp(jfreq,jb2,jL2,jeta)-

PPfp(jfreq,jb2,jL2,jeta)*NNfp(jfreq,jb2,jL2,jeta)); 
A2fp(jfreq,jb2,jL2,jeta)=(OOfp(jfreq,jb2,jL2,jeta)*PPfp(jfreq,jb2,jL2,j

eta)-

RRfp(jfreq,jb2,jL2,jeta)*MMfp(jfreq,jb2,jL2,jeta))/(NNfp(jfreq,jb2,jL2,

jeta)*PPfp(jfreq,jb2,jL2,jeta)-

MMfp(jfreq,jb2,jL2,jeta)*QQfp(jfreq,jb2,jL2,jeta)); 
           Dfp(jfreq,jb2,jL2,jeta)=abs(A1fp(jfreq,jb2,jL2,jeta)*(Cfp-

cfp)+A2fp(jfreq,jb2,jL2,jeta)*(Sfp-sfp)+KKp^(-1)*sfp); 
        end 
          Dfpmax(jb2,jL2,jeta)=max(Dfp(:,jb2,jL2,jeta));  
          Dfpmaxsqrt2(jb2,jL2,jeta)=Dfpmax(jb2,jL2,jeta)/sqrt(2); 
    end 
  end 
end 
%%%% find resonant frequency%%% 
for jeta=1:length(eta); 
  for  jL2=1:length(L2); 
      for jb2=1:length(b2); 
           for jfreq=1:length(freq); 
                    %LLamd(jfreq) = 

((mmbar*L1^4*(freq(jfreq))^2)/(E*Im))^0.25; 
            if(Dfp(jfreq,jb2,jL2,jeta)==Dfpmax(jb2,jL2,jeta)); 
               resf(jb2,jL2,jeta)=freq(jfreq); 
ReymR(jb2,jL2,jeta)=(Pf*resf(jb2,jL2,jeta)*b1^2)/(4*eta(jeta)); 
ReydR(jb2,jL2,jeta)=(Pf*resf(jb2,jL2,jeta)*b2(jb2)^2)/(4*eta(jeta));end 
      end 
   end 
  end 
end 
% calculating Q using 3db method % 
resfbw1=zeros(length(b2),length(L2),length(eta)); 
resfbw2=zeros(length(b2),length(L2),length(eta)); 
for jeta=1:length(eta); 
  for jL2=1:length(L2); 
    for jb2=1:length(b2) 
        for jfreq=1:length(freq) 
        if(jfreq==1); 
             continue 
        else 
              if (Dfp(jfreq-

1,jb2,jL2,jeta)<=(Dfpmaxsqrt2(jb2,jL2,jeta))); 
                %%%% if the above condition is not satisfied the loop 
                %%%% continues to next iteration 
if(Dfp(jfreq,jb2,jL2,jeta)>=(Dfpmaxsqrt2(jb2,jL2,jeta))); 
      Dfpmagprevious=Dfp(jfreq-1,jb2,jL2,jeta); 
                    Dfpmagcurrent=Dfp(jfreq,jb2,jL2,jeta);            
                    Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
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                    [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
                    %   Note that if Iminlocal equals 1, then the index 
                    %   for Lamdbw is jlambda; if Iminlocal is 2, then 

the index 
                    %   for Lamdbw is jlambda-1. So, in general, the 

index for  
                    %   lambdabw may be written as jlambda+1-Iminlocal. 
                    resfbw1(jb2,jL2,jeta)=freq(jfreq+1-Iminlocal); 
                end 
            end           
                if(Dfp(jfreq-

1,jb2,jL2,jeta)>=Dfpmaxsqrt2(jb2,jL2,jeta)); 
if(Dfp(jfreq,jb2,jL2,jeta)<=Dfpmaxsqrt2(jb2,jL2,jeta)); 
                    Dfpmagprevious=Dfp(jfreq-1,jb2,jL2,jeta); 
                    Dfpmagcurrent=Dfp(jfreq,jb2,jL2,jeta);            
                    Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
                    [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
                    %   Note that if Iminlocal equals 1, then the index 
  %   for lambdabw is jlambda; if Iminlocal is 2, then the index 
     %   for lambdabw is jlambda-1. So, in general, the index for  
                    %   lambdabw may be written as jlambda+1-Iminlocal. 
                    resfbw2(jb2,jL2,jeta)=freq(jfreq+1-Iminlocal);     
                  end 
               end 
        end 
        end 
            %%%% Quality factor is given by lambdaresonant/bandwidth 
      Qp3db(jb2,jL2,jeta)=resf(jb2,jL2,jeta)/(resfbw2(jb2,jL2,jeta)-

resfbw1(jb2,jL2,jeta)); 
  end 
  end 
end 

 

Case 4: Hammerhead Microcantilever with a Composite Rectangular Head 

clear; 
L1=300*10^-6; % length of the stem 
b1=45*10^-6; % width of the stem 
A=200*125*10^-12; 
L2=100*10^-6; % length of the head 
%b2=200*10^-6; % width of the head 
LLL3=70; 
L3=LLL3*10^-6 : 15*10^-6 : LLL3*10^-6; % length of the gap 
b4=L3; 
%b4=10*10^-6 : 1*10^-6 : 10*10^-6; % width of the gap 
%eta=0.00001827:0.00001827:0.00001827; % viscosity of the fluid 
Pf=1000; % density of he fluid 
eta=0.001:0.0012:0.001; % viscosity of the fluid 
h=12*10^-6; % thickness of the cantilever 
E=169*10^9; % Young's Modulus 
%Pb=(2330*(200*45*12+200*200*12)*10^-18+0*10^-

12)/((200*45*12+200*200*12)*10^-18); % density of silicon for both 

supporting beam and hammerhead 
Pb=2363.8; 
%Pf=1.205; % density of the fluid 



158 

 

mm=Pb*L1*b1*h; % mass of the stem 
mmbar=Pb*b1*h; % mass per unit length of stem 
Im=(1/12)*h*(b1)^3; % moment of inertia of the stem 
freq = 190000*2*pi :30*2*pi: 200000*2*pi; 
for jeta=1:length(eta); 
  for jL3=1:length(L3); 
    for jb4=1:length(b4); 
        for jfreq=1:length(freq) 
        b2(jb4,jL3)=(A+L3(jL3)*(b1+2*b4(jb4)))/L2; 
        b3(jb4,jL3)=0.5*(b2(jb4,jL3)-b1-2*b4(jb4)); 
        dc(jb4,jL3)=(0.5*L2*b2(jb4,jL3)*L2-

0.5*L3(jL3)*(b1+2*b4(jb4))*L3(jL3))/(L2*b2(jb4,jL3)-

L3(jL3)*(b1+2*b4(jb4))); % distance of the mass center to the end of 

the HH rectangle 
        ds(jb4,jL3)=(0.5*L2*b2(jb4,jL3)*L2-

0.5*L3(jL3)*(b1+2*b4(jb4))*L3(jL3))/(L2*b2(jb4,jL3)-

L3(jL3)*(b1+2*b4(jb4)))-L3(jL3); % distance of the mass center to the 

end of the stem 
        dc2(jb4,jL3)=(0.5*L2*b2(jb4,jL3)*L2-0.5*L3(jL3)*(b2(jb4,jL3)-

2*b3(jb4,jL3))*L3(jL3))/(L2*b2(jb4,jL3)-L3(jL3)*(b2(jb4,jL3)-2*b3)); % 

distance of the mass center to the end of the HH rectangle 
        ds2(jb4,jL3)=(0.5*L2*b2(jb4,jL3)*L2-0.5*L3(jL3)*(b2(jb4,jL3)-

2*b3(jb4,jL3))*L3(jL3))/(L2*b2(jb4,jL3)-L3(jL3)*(b2(jb4,jL3)-2*b3))-

L3(jL3); % distance of the mass center to the end of the stem 
Jd(jb4,jL3)=(1/12)*Pb*L2*b2(jb4,jL3)*h*(L2^2+b2(jb4,jL3)^2)+(dc(jb4,jL3

)-0.5*L2)^2*Pb*L2*b2(jb4,jL3)*h-

((1/12)*Pb*L3(jL3)*(b1+2*b4(jb4))*h*(L3(jL3)^2+(b1+2*b4(jb4))^2)+(ds(jb

4,jL3)+0.5*L3(jL3))^2*Pb*L3(jL3)*(b1+2*b4(jb4))*h); % moment of inertia 

due to rotation 
        md(jb4,jL3)=Pb*h*(L2*b2(jb4,jL3)-L3(jL3)*(b1+2*b4(jb4))); % 

mass of the HH 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
        %%%%%%%%%% Hydrodynamic function including thickness 

correction %%%%%%%%%% 
           Reym(jfreq,jeta)=(Pf*freq(jfreq)*b1^2)/(4*eta(jeta)); 
Reyd1(jfreq,jb4,jL3,jeta)=(Pf*freq(jfreq)*b2(jb4,jL3)^2)/(4*eta(jeta)); 
Reyd2(jfreq,jb4,jL3,jeta)=(Pf*freq(jfreq)*b3(jb4,jL3)^2)/(4*eta(jeta)); 
           Gammarm(jfreq,jeta)=Reym(jfreq,jeta)^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim(jfreq,jeta)=Reym(jfreq,jeta)^-1*(2.5758-

1.3388*(h/b1)^0.5)+Reym(jfreq,jeta)^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
           Gammard1(jfreq,jb4,jL3,jeta)=Reyd1(jfreq,jb4,jL3,jeta)^-

0.5*(0.9003+0.6105*(h/b2(jb4,jL3))^0.5+2.1722*(h/b2(jb4,jL3))^1)+(-

0.0021*(h/b2(jb4,jL3))^0.5-

0.1459*(h/b2(jb4,jL3))^1+0.8255*(h/b2(jb4,jL3))^1.5+0.8144*(h/b2(jb4,jL

3))^2); 
           Gammaid1(jfreq,jb4,jL3,jeta)=Reyd1(jfreq,jb4,jL3,jeta)^-

1*(2.5758-1.3388*(h/b2(jb4,jL3))^0.5)+Reyd1(jfreq,jb4,jL3,jeta)^-

0.5*(0.9003+0.7121*(h/b2(jb4,jL3))^0.5+1.6845*(h/b2(jb4,jL3))^1+0.8236*

(h/b2(jb4,jL3))^1.5-0.4178*(h/b2(jb4,jL3))^2); 

            
           Gammard2(jfreq,jb4,jL3,jeta)=Reyd2(jfreq,jb4,jL3,jeta)^-

0.5*(0.9003+0.6105*(h/b3(jb4,jL3))^0.5+2.1722*(h/b3(jb4,jL3))^1)+(-
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0.0021*(h/b3(jb4,jL3))^0.5-

0.1459*(h/b3(jb4,jL3))^1+0.8255*(h/b3(jb4,jL3))^1.5+0.8144*(h/b3(jb4,jL

3))^2); 
           Gammaid2(jfreq,jb4,jL3,jeta)=Reyd2(jfreq,jb4,jL3,jeta)^-

1*(2.5758-1.3388*(h/b3(jb4,jL3))^0.5)+Reyd2(jfreq,jb4,jL3,jeta)^-

0.5*(0.9003+0.7121*(h/b3(jb4,jL3))^0.5+1.6845*(h/b3(jb4,jL3))^1+0.8236*

(h/b3(jb4,jL3))^1.5-0.4178*(h/b3(jb4,jL3))^2); 
           mfpmbar(jfreq,jeta)=0.25*pi*Pf*b1^2*Gammarm(jfreq,jeta); 
cfpmbar(jfreq,jeta)=0.25*pi*Pf*b1^2*Gammaim(jfreq,jeta)*freq(jfreq); 
mfpdbar1(jfreq,jb4,jL3,jeta)=0.25*pi*Pf*b2(jb4,jL3)^2*Gammard1(jfreq,jb

4,jL3,jeta); 
cfpdbar1(jfreq,jb4,jL3,jeta)=0.25*pi*Pf*b2(jb4,jL3)^2*Gammaid1(jfreq,jb

4,jL3,jeta)*freq(jfreq); 
mfpdbar2(jfreq,jb4,jL3,jeta)=0.25*pi*Pf*b3(jb4,jL3)^2*Gammard2(jfreq,jb

4,jL3,jeta); 
cfpdbar2(jfreq,jb4,jL3,jeta)=0.25*pi*Pf*b3(jb4,jL3)^2*Gammaid2(jfreq,jb

4,jL3,jeta)*freq(jfreq); 
Kp(jfreq,jeta)=L1*((freq(jfreq)^2*(mmbar+mfpmbar(jfreq,jeta))-

1i*freq(jfreq)*cfpmbar(jfreq,jeta))/(E*Im))^0.25; 
           KKp=Kp(jfreq,jeta); 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
        Gfp(jfreq,jb4,jL3,jeta)=0.5*(E*Im)^(-

1)*(2*freq(jfreq)^2*L1^2*ds(jb4,jL3)*md(jb4,jL3)+freq(jfreq)^2*L1^2*(L2

-L3(jL3))^2*mfpdbar1(jfreq,jb4,jL3,jeta)-

2*freq(jfreq)^2*L1^2*L3(jL3)^2*mfpdbar2(jfreq,jb4,jL3,jeta)-

j*freq(jfreq)*L1^2*(L2-

L3(jL3))^2*cfpdbar1(jfreq,jb4,jL3,jeta)+2*j*freq(jfreq)*L1^2*L3(jL3)^2*

cfpdbar2(jfreq,jb4,jL3,jeta)); 
           Hfp(jfreq,jb4,jL3,jeta)=(3*E*Im)^(-

1)*(3*freq(jfreq)^2*L1*ds(jb4,jL3)^2*md(jb4,jL3)+freq(jfreq)^2*L1*(L2-

L3(jL3))^3*mfpdbar1(jfreq,jb4,jL3,jeta)+2*freq(jfreq)^2*L1*L3(jL3)^3*mf

pdbar2(jfreq,jb4,jL3,jeta)+3*freq(jfreq)^2*L1*Jd(jb4,jL3)-

j*freq(jfreq)*L1*(L2-L3(jL3))^3*cfpdbar1(jfreq,jb4,jL3,jeta)-

2*j*freq(jfreq)*L1*L3(jL3)^3*cfpdbar2(jfreq,jb4,jL3,jeta)); 
           Ffp(jfreq,jb4,jL3,jeta)=(E*Im)^(-1)*(-

freq(jfreq)^2*L1^3*md(jb4,jL3)-freq(jfreq)^2*L1^3*(L2-

L3(jL3))*mfpdbar1(jfreq,jb4,jL3,jeta)-

2*freq(jfreq)^2*L1^3*L3(jL3)*mfpdbar2(jfreq,jb4,jL3,jeta)+j*freq(jfreq)

*L1^3*(L2-

L3(jL3))*cfpdbar1(jfreq,jb4,jL3,jeta)+2*j*freq(jfreq)*L1^3*L3(jL3)*cfpd

bar2(jfreq,jb4,jL3,jeta)); 
           Kfp(jfreq,jb4,jL3,jeta)=0.5*(E*Im)^(-1)*(-

2*freq(jfreq)^2*L1^2*ds(jb4,jL3)*md(jb4,jL3)-freq(jfreq)^2*L1^2*(L2-

L3(jL3))^2*mfpdbar1(jfreq,jb4,jL3,jeta)+2*freq(jfreq)^2*L1^2*L3(jL3)^2*

mfpdbar2(jfreq,jb4,jL3,jeta)+j*freq(jfreq)*L1^2*(L2-

L3(jL3))^2*cfpdbar1(jfreq,jb4,jL3,jeta)-

2*j*freq(jfreq)*L1^2*L3(jL3)^2*cfpdbar2(jfreq,jb4,jL3,jeta)); 
           MMfp(jfreq,jb4,jL3,jeta)=KKp^2*(Cfp+cfp)-

Gfp(jfreq,jb4,jL3,jeta)*(Cfp-cfp)-

Hfp(jfreq,jb4,jL3,jeta)*KKp*(Sfp+sfp);NNfp(jfreq,jb4,jL3,jeta)=KKp^2*(S

fp+sfp)-Gfp(jfreq,jb4,jL3,jeta)*(Sfp-sfp)-

Hfp(jfreq,jb4,jL3,jeta)*KKp*(Cfp-cfp); 
           OOfp(jfreq,jb4,jL3,jeta)=KKp^(-

1)*(KKp^2*sfp+Gfp(jfreq,jb4,jL3,jeta)*sfp+Hfp(jfreq,jb4,jL3,jeta)*KKp*c
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fp); 
           PPfp(jfreq,jb4,jL3,jeta)=KKp^3*(Sfp-sfp)-

Ffp(jfreq,jb4,jL3,jeta)*(Cfp-cfp)-

Kfp(jfreq,jb4,jL3,jeta)*KKp*(Sfp+sfp);QQfp(jfreq,jb4,jL3,jeta)=KKp^3*(C

fp+cfp)-Ffp(jfreq,jb4,jL3,jeta)*(Sfp-sfp)-

Kfp(jfreq,jb4,jL3,jeta)*KKp*(Cfp-cfp); 
           RRfp(jfreq,jb4,jL3,jeta)=KKp^(-

1)*(KKp^3*cfp+Ffp(jfreq,jb4,jL3,jeta)*sfp+Kfp(jfreq,jb4,jL3,jeta)*KKp*c

fp); 
A1fp(jfreq,jb4,jL3,jeta)=(OOfp(jfreq,jb4,jL3,jeta)*QQfp(jfreq,jb4,jL3,j

eta)-

RRfp(jfreq,jb4,jL3,jeta)*NNfp(jfreq,jb4,jL3,jeta))/(MMfp(jfreq,jb4,jL3,

jeta)*QQfp(jfreq,jb4,jL3,jeta)-

PPfp(jfreq,jb4,jL3,jeta)*NNfp(jfreq,jb4,jL3,jeta)); 
           

A2fp(jfreq,jb4,jL3,jeta)=(OOfp(jfreq,jb4,jL3,jeta)*PPfp(jfreq,jb4,jL3,j

eta)-

RRfp(jfreq,jb4,jL3,jeta)*MMfp(jfreq,jb4,jL3,jeta))/(NNfp(jfreq,jb4,jL3,

jeta)*PPfp(jfreq,jb4,jL3,jeta)-

MMfp(jfreq,jb4,jL3,jeta)*QQfp(jfreq,jb4,jL3,jeta)); 
           Dfp(jfreq,jb4,jL3,jeta)=abs(A1fp(jfreq,jb4,jL3,jeta)*(Cfp-

cfp)+A2fp(jfreq,jb4,jL3,jeta)*(Sfp-sfp)+KKp^(-1)*sfp); 
        end 
          Dfpmax(jb4,jL3,jeta)=max(Dfp(:,jb4,jL3,jeta));  
          Dfpmaxsqrt2(jb4,jL3,jeta)=Dfpmax(jb4,jL3,jeta)/sqrt(2); 
    end 
  end 
end 
%%%% find resonant frequency%%% 
for jeta=1:length(eta); 
  for  jL3=1:length(L3); 
      for jb4=1:length(b4); 
           for jfreq=1:length(freq); 
            %LLamd(jfreq) = 

((mmbar*L1^4*(freq(jfreq))^2)/(E*Im))^0.25;if(Dfp(jfreq,jb4,jL3,jeta)==

Dfpmax(jb4,jL3,jeta)); 
               resf(jb4,jL3,jeta)=freq(jfreq); 
            end 
      end 
   end 
  end 
end 
% calculating Q using 3db method % 
resfbw1=zeros(length(b4),length(L3),length(eta)); 
resfbw2=zeros(length(b4),length(L3),length(eta)); 
for jeta=1:length(eta); 
  for jL3=1:length(L3); 
    for jb4=1:length(b4) 
        for jfreq=1:length(freq) 
        if(jfreq==1); 
             continue 
        else 
              if (Dfp(jfreq-

1,jb4,jL3,jeta)<=(Dfpmaxsqrt2(jb4,jL3,jeta))); 
                %%%% if the above condition is not satisfied the loop 
                %%%% continues to next iteration 
if(Dfp(jfreq,jb4,jL3,jeta)>=(Dfpmaxsqrt2(jb4,jL3,jeta))); 
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                    Dfpmagprevious=Dfp(jfreq-1,jb4,jL3,jeta); 
                    Dfpmagcurrent=Dfp(jfreq,jb4,jL3,jeta);      
                    Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
                    [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
                    %   Note that if Iminlocal equals 1, then the index 
                    %   for Lamdbw is jlambda; if Iminlocal is 2, then 

the index 
                    %   for Lamdbw is jlambda-1. So, in general, the 

index for  
                    %   lambdabw may be written as jlambda+1-Iminlocal. 
                    resfbw1(jb4,jL3,jeta)=freq(jfreq+1-Iminlocal); 
                end 

                     
            end           
                if(Dfp(jfreq-

1,jb4,jL3,jeta)>=Dfpmaxsqrt2(jb4,jL3,jeta)); 
                  

if(Dfp(jfreq,jb4,jL3,jeta)<=Dfpmaxsqrt2(jb4,jL3,jeta)); 

                 
                    Dfpmagprevious=Dfp(jfreq-1,jb4,jL3,jeta); 
                    Dfpmagcurrent=Dfp(jfreq,jb4,jL3,jeta);              
                    Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
                    [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
                    %   Note that if Iminlocal equals 1, then the index 
                    %   for lambdabw is jlambda; if Iminlocal is 2, 

then the index 
                    %   for lambdabw is jlambda-1. So, in general, the 

index for  
                    %   lambdabw may be written as jlambda+1-

Iminlocal.resfbw2(jb4,jL3,jeta)=freq(jfreq+1-Iminlocal); end 
        end 
        end 
            %%%% Quality factor is given by lambdaresonant/bandwidth 
      Qp3db(jb4,jL3,jeta)=resf(jb4,jL3,jeta)/(resfbw2(jb4,jL3,jeta)-

resfbw1(jb4,jL3,jeta)); 
  end 
  end 
end 
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APPENDIX B: MATLAB PROGRAM USED TO CALCULATE 

QUALITY FACTOR (ENERGY DEFINATION) OF LATERALLY 

VIBRATING SYMMETRIC HAMMERHEAD 

MICROCANTILEVERS IN VISCOUS LIQUIDS 

Case 1: Hammerhead Microcantilever with an Isosceles Trapezoid-shaped Head 

ratio=1/12; % b3/b2 
L1=200*10^-6; % length of the stem 
L2=200*10^-6; % length of the head 
A=200*200*10^-12; % area of the head  
b1=45*10^-6; % width of the stem 
b2=(2*A)/(L2*(1+ratio)); % width of the head 
b3=b2*ratio; % width of the head  
h=12*10^-6; % thickness of the cantilever 
E=169*10^9; % Young's Modulus 
Pb=2330; % density of silicon for both supporting beam and hammerhead 
Pl=1022; % density of the fluid at 20C 
Pa=1.205; % density of the air at 20C 
mm=Pb*L1*b1*h; % mass of the stem 
mmbar=Pb*b1*h; 
md=0.5*Pb*L2*(b2+b3)*h; % mass of the head 
Im=(1/12)*h*(b1)^3; % moment of inertia of the stem 
Jd=Pb*h*(144*b2+144*b3)^-

1*L2*(16*L2^2*b2*b3+4*L2^2*b2^2+4*L2^2*b3^2+3*b3^4+6*b3^2*b2^2+6*b3^3*b

2+6*b3*b2^3+3*b2^4); % moment of inertia 
etal=0.00131; % viscosity of the fluid 20C 
etaa=0.00001827; % viscosity of the air 20C 
step=100*2*pi; 
% spectrum of the first lateral mode in air and water % 
tol = 1e-20; 
Lfreq = 80000*2*pi:step:150000*2*pi; 
Ltau = 0:0.5:6; 
start= 80000*2*pi; 
for jfreq=1:length(Lfreq) 
          freq = start+step;  
          start=freq; 
%%%%%%%%%%%%%%%%%%%%% Finding spectrum in air %%%%%%%%%%%%%%%%%%% 
            % denotes any point along the head 
           %Dsy= 2*((b3-b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)); % 

the length of the isosceles trapezoid along y direction 
           Dsc=(L2/3)*(2*b3+b2)/(b3+b2); % distance of the mass center 

of the head to the tip of the stem  
%            mdbar=Pb*h*2*2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)); 
           Reym=(Pl*freq*b1^2)/(4*etal); 
           %fReyd= ((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)); 
           Gammarm=Reym^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim=Reym^-1*(2.5758-1.3388*(h/b1)^0.5)+Reym^-
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0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
%            fGammard=(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1+0.8255*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^2)); 
%            fGammaid=(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5)+((Pa*freq*(2*(b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1+0.8236*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^2)); 
%  mfpmbar=0.25*pi*Pl*b1^2*Gammarm; 
  cfpmbar=0.25*pi*Pl*b1^2*Gammaim*freq; 
%            fmfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2*(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1+0.8255*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^2))); 
%            fcfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2*(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5)+((Pa*freq*(2*(b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1+0.8236*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^2))*freq); 
   Kp=L1*((freq.^2*(mmbar+mfpmbar)-1i*freq*cfpmbar)/(E*Im)).^0.25; 
           KKp=Kp; 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
F1 = @(x) (freq.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-
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b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
  F2 = @(x) (freq.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*freq)); 
  Gfp=(md*Dsc*freq^2*L1^2+quad( F1, L1, L1+L2, tol)-1i*quad(F2, L1, 

L1+L2, tol))/(E*Im); 
F3 = @(x) (freq.^2.*L1.*(x-L1).^2.*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
  F4 = @(x) (freq.*L1.*(x-L1).^2.*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*freq)); 
Hfp=(md*Dsc^2*freq^2*L1+quad (F3, L1, L1+L2, tol)-1i*quad (F4,L1, 

L1+L2,tol)+freq^2*L1*Jd)/(E*Im); 
   F5 = @(x) (freq.^2.*L1^3*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-
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b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
  F6 = @(x) (freq.*L1^3*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*freq)); 
  Ffp=(-md*freq^2*L1^3-quad (F5, L1, L1+L2, tol)+1i*quad (F6, L1, 

L1+L2,tol))/(E*Im); 
F7 = @(x) (freq.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
F8 = @(x) (freq.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*freq.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*freq)); 
Kfp=(-md*Dsc*freq^2*L1^2-quad (F7, L1, L1+L2, tol)+1i*quad (F8, L1, 

L1+L2, tol))/(E*Im); 
MMfp=KKp.^2.*(Cfp+cfp)-Gfp.*(Cfp-cfp)-Hfp.*KKp.*(Sfp+sfp); 
NNfp=KKp.^2.*(Sfp+sfp)-Gfp.*(Sfp-sfp)-Hfp.*KKp.*(Cfp-cfp); 
  OOfp=KKp.^(-1).*(KKp.^2.*sfp+Gfp.*sfp+Hfp.*KKp.*cfp); 
  PPfp=KKp.^3.*(Sfp-sfp)-Ffp.*(Cfp-cfp)-Kfp.*KKp.*(Sfp+sfp); 
  QQfp=KKp.^3.*(Cfp+cfp)-Ffp.*(Sfp-sfp)-Kfp.*KKp.*(Cfp-cfp); 
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RRfp=KKp.^(-1).*(KKp.^3.*cfp+Ffp.*sfp+Kfp.*KKp.*cfp); 
A1fp=(OOfp.*QQfp-RRfp.*NNfp)/(MMfp.*QQfp-PPfp.*NNfp); 
A2fp=(OOfp.*PPfp-RRfp.*MMfp)/(NNfp.*PPfp-MMfp.*QQfp); 
Dfpl=abs(A1fp.*(Cfp-cfp)+A2fp.*(Sfp-sfp)+KKp.^(-1).*sfp); 
Rfreq(jfreq)=freq; 
RDfpl(jfreq)=Dfpl; 
end 
 [Amplitude, Location]=max(RDfpl); 
resfl=Rfreq(Location); 
for jfreq=1:length(Lfreq) 
if(jfreq==1); 
continue 
else 
if RDfpl(jfreq-1)<=Amplitude/sqrt(2); 
                %%%% if the above condition is not satisfied the loop 
                %%%% continues to next iteration 
                if(RDfpl(jfreq)>=(Amplitude/(sqrt(2)))); 

                 
                    Dfpmagprevious=RDfpl(jfreq-1); 
                    Dfpmagcurrent=RDfpl(jfreq);                     
                    Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
                    [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
                    %   Note that if Iminlocal equals 1, then the index 
    %   for Lamdbw is jlambda; if Iminlocal is 2, then the index 
    %   for Lamdbw is jlambda-1. So, in general, the index for  
        %   lambdabw may be written as jlambda+1-Iminlocal. 
    resfbw1=Rfreq(jfreq+1-Iminlocal); 
                end 
            end           
                if RDfpl(jfreq-1)>=Amplitude/sqrt(2); 
                  if RDfpl(jfreq)<=Amplitude/sqrt(2); 
                    Dfpmagprevious=RDfpl(jfreq-1); 
                    Dfpmagcurrent=RDfpl(jfreq);                     
                    Dfpmaglocal=[Dfpmagcurrent Dfpmagprevious]; 
                    [Dfpmagmin,Iminlocal]=min(Dfpmaglocal); 
                    %   Note that if Iminlocal equals 1, then the index 
  %   for lambdabw is jlambda; if Iminlocal is 2, then the index 
   %   for lambdabw is jlambda-1. So, in general, the index for  
  %   lambdabw may be written as jlambda+1-Iminlocal. 
  resfbw2=Rfreq(jfreq+1-Iminlocal);                 
                  end 
               end 
        end 
        end 
            %%%% Quality factor is given by lambdaresonant/bandwidth 
            resfl/(2*pi*10^3) 
            Qp3db=resfl/(resfbw2-resfbw1) 
%%%% energy method %%%% 
resfl=196.7*10^3*2*pi; 
%%%%%%%%%%%%%%%%%%%%% Finding spectrum in air %%%%%%%%%%%%%%%%%%% 
            % denotes any point along the head 
           %Dsy= 2*((b3-b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)); % 

the length of the isosceles trapezoid along y direction 
           Dsc=(L2/3)*(2*b3+b2)/(b3+b2); % distance of the mass center 

of the head to the tip of the stem  
%            mdbar=Pb*h*2*2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)); 
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           Reym=(Pl*resfl*b1^2)/(4*etal); 
           %fReyd= ((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)); 
           Gammarm=Reym^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim=Reym^-1*(2.5758-1.3388*(h/b1)^0.5)+Reym^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
%            fGammard=(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1+0.8255*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^2)); 
%            fGammaid=(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5)+((Pa*freq*(2*(b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1+0.8236*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^2)); 
%            mfpmbar=0.25*pi*Pl*b1^2*Gammarm; 
cfpmbar=0.25*pi*Pl*b1^2*Gammaim*resfl; 
%            fmfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2*(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1+0.8255*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^2))); 
%            fcfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2*(((Pa*freq*(2*(b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2))).^0.5)+((Pa*freq*(2*(b3-

b2)*x./(2*L2)+(b2*L2-b3*L1+b2*L1)/(2*L2)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1+0.8236*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*L2)+(b2*L2-

b3*L1+b2*L1)/(2*L2))).^2))*freq); 
  Kp=L1*((resfl.^2*(mmbar+mfpmbar)-1i*resfl*cfpmbar)/(E*Im)).^0.25; 
           KKp=Kp; 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
     F1 = @(x) (resfl.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-
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0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
             F2 = @(x) (resfl.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*resfl)); 
           Gfp=(md*Dsc*resfl^2*L1^2+quad( F1, L1, L1+L2, tol)-

1i*quad(F2, L1, L1+L2, tol))/(E*Im); 
             F3 = @(x) (resfl.^2.*L1.*(x-

L1).^2.*(0.25.*pi.*Pl.*(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
             F4 = @(x) (resfl.*L1.*(x-L1).^2.*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*resfl)); 
    Hfp=(md*Dsc^2*resfl^2*L1+quad (F3, L1, L1+L2, tol)-1i*quad (F4,L1, 

L1+L2, tol)+resfl^2*L1*Jd)/(E*Im); 
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F5 = @(x) (resfl.^2.*L1^3*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
             F6 = @(x) (resfl.*L1^3*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^2)).*resfl)); 
   Ffp=(-md*resfl^2*L1^3-quad (F5, L1, L1+L2, tol)+1i*quad (F6, L1, 

L1+L2, tol))/(E*Im); 
   F7 = @(x) (resfl.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.6105.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+2.1722.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1)+(-

0.0021.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5-0.1459.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8255.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1.5+0.8144.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^2)))); 
  F8 = @(x) (resfl.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2))).^2.*(((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

1.*(2.5758-1.3388.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5)+((Pl.*resfl.*(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2))).^2)./(4.*etal)).^-

0.5.*(0.9003+0.7121.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^0.5+1.6845.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-

b3.*L1+b2.*L1)/(2.*L2)))).^1+0.8236.*(h./(2.*((b3-

b2).*x./(2.*L2)+(b2.*L2-b3.*L1+b2.*L1)/(2.*L2)))).^1.5-

0.4178.*(h./(2.*((b3-b2).*x./(2.*L2)+(b2.*L2-
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b3.*L1+b2.*L1)/(2.*L2)))).^2)).*resfl)); 
  Kfp=(-md*Dsc*resfl^2*L1^2-quad (F7, L1, L1+L2, tol)+1i*quad (F8, L1, 

L1+L2, tol))/(E*Im); 
           MMfp=KKp.^2.*(Cfp+cfp)-Gfp.*(Cfp-cfp)-Hfp.*KKp.*(Sfp+sfp); 
           NNfp=KKp.^2.*(Sfp+sfp)-Gfp.*(Sfp-sfp)-Hfp.*KKp.*(Cfp-cfp); 
           OOfp=KKp.^(-1).*(KKp.^2.*sfp+Gfp.*sfp+Hfp.*KKp.*cfp); 
           PPfp=KKp.^3.*(Sfp-sfp)-Ffp.*(Cfp-cfp)-Kfp.*KKp.*(Sfp+sfp); 
           QQfp=KKp.^3.*(Cfp+cfp)-Ffp.*(Sfp-sfp)-Kfp.*KKp.*(Cfp-cfp); 
           RRfp=KKp.^(-1).*(KKp.^3.*cfp+Ffp.*sfp+Kfp.*KKp.*cfp); 
           A1fp=(OOfp.*QQfp-RRfp.*NNfp)/(MMfp.*QQfp-PPfp.*NNfp); 
           A2fp=(OOfp.*PPfp-RRfp.*MMfp)/(NNfp.*PPfp-MMfp.*QQfp); 
           xi=sym('xi','real'); % denotes x/L1 
           X=A1fp*(cosh(KKp*xi)-cos(KKp*xi))+A2fp*(sinh(KKp*xi)-

sin(KKp*xi))+KKp^(-1)*sin(KKp*xi); % normalized shape function 
           Xp=KKp*(A1fp*(sinh(KKp*xi)+sin(KKp*xi))+A2fp*(cosh(KKp*xi)-

cos(KKp*xi))+KKp^(-1)*cos(KKp*xi)); % first derivative of normalized 

deflection measns X' 
Xpp=KKp^2*(A1fp*(cosh(KKp*xi)+cos(KKp*xi))+A2fp*(sinh(KKp*xi)+sin(KKp*x

i))-KKp^(-1)*sin(KKp*xi)); % second derivative of normalized deflection 

measns X'' 
            BB1=int((real(Xpp))^2, xi, 0, 1); 
            BB2=int((imag(Xpp))^2, xi, 0, 1); 
            BB3=int((real(Xpp))*(imag(Xpp)), xi, 0, 1); 
            BB4=int((real(X))^2, xi, 0, 1); 
            BB5=int((imag(X))^2, xi, 0, 1); 
            BB6=int((real(X))*(imag(X)), xi, 0, 1); 
            BB7=(real(A1fp*(cosh(KKp)-cos(KKp))+A2fp*(sinh(KKp)-

sin(KKp))+KKp^(-1)*sin(KKp)))^2; 
            BB8=(imag(A1fp*(cosh(KKp)-cos(KKp))+A2fp*(sinh(KKp)-

sin(KKp))+KKp^(-1)*sin(KKp)))^2; 
            BB9=(real(A1fp*(cosh(KKp)-cos(KKp))+A2fp*(sinh(KKp)-

sin(KKp))+KKp^(-1)*sin(KKp)))*(imag(A1fp*(cosh(KKp)-

cos(KKp))+A2fp*(sinh(KKp)-sin(KKp))+KKp^(-1)*sin(KKp))); 
            BB13=(real(KKp*(A1fp*(sinh(KKp)+sin(KKp))+A2fp*(cosh(KKp)-

cos(KKp))+KKp^(-1)*cos(KKp))))^2; 
            BB14=(imag(KKp*(A1fp*(sinh(KKp)+sin(KKp))+A2fp*(cosh(KKp)-

cos(KKp))+KKp^(-1)*cos(KKp))))^2; 
            BB15=(real(KKp*(A1fp*(sinh(KKp)+sin(KKp))+A2fp*(cosh(KKp)-

cos(KKp))+KKp^(-

1)*cos(KKp))))*(imag(KKp*(A1fp*(sinh(KKp)+sin(KKp))+A2fp*(cosh(KKp)-

cos(KKp))+KKp^(-1)*cos(KKp)))); 
            BB10=sqrt(BB7)*sqrt(BB13); 
            BB11=sqrt(BB8)*sqrt(BB14); 
            BB12=sqrt(BB7)*sqrt(BB14)+sqrt(BB13)*sqrt(BB8); 
            BB16=BB13; 
            BB17=BB14; 
            BB18=BB15; 
            BB19=-imag(2*A1fp*KKp^2); 
for jtau=1:length(Ltau)               
          F(jtau)=BB1*(cos(jtau))^2+BB2*(sin(jtau))^2-

2*BB3*(cos(jtau))*(sin(jtau))+(L1^4*mmbar*resfl^2*(E*Im)^(-

1))*(BB4*(sin(jtau))^2+BB5*(cos(jtau))^2+2*BB6*(cos(jtau))*(sin(jtau)))

+(md*L1^3*resfl^2*(E*Im)^(-

1))*(BB7*(sin(jtau))^2+BB8*(cos(jtau))^2+2*BB9*(cos(jtau))*(sin(jtau)))

+(2*md*L1^2*Dsc*resfl^2*(E*Im)^(-

1))*(BB10*(sin(jtau))^2+BB11*(cos(jtau))^2+BB12*(cos(jtau))*(sin(jtau))

)+(md*L1*Dsc^2*resfl^2*(E*Im)^(-
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1))*(BB13*(sin(jtau))^2+BB14*(cos(jtau))^2+2*BB15*(cos(jtau))*(sin(jtau

)))+(Jd*L1*resfl^2*(E*Im)^(-

1))*(BB16*(sin(jtau))^2+BB17*(cos(jtau))^2+2*BB18*(cos(jtau))*(sin(jtau

))); 
Qua(jtau)=F(jtau)/BB19; 
end 
Quaactual=max (double(Qua(:))) 

 

Case 2: Hammerhead Microcantilever with a Semi-circular Head 

L1=200*10^-6; % length of the stem 
b1=45*10^-6; % width of the stem 
A=200*200*10^-12;% area of the head 
R=sqrt(2*A)/sqrt(pi); % radius of the head  
h=12*10^-6; % thickness of the cantilever 
E=169*10^9; % Young's Modulus 
Pb=2330; % density of silicon for both supporting beam and hammerhead 
Pl=1222; % density of the fluid at 20C 
Pa=1.205; % density of the air at 20C 
mm=Pb*L1*b1*h; % mass of the stem 
mmbar=Pb*b1*h; 
md=0.5*Pb*pi*R^2*h; % mass of the head 
Im=(1/12)*h*(b1)^3; % moment of inertia of the stem 
Jd=Pb*h*(pi/4-8/(9*pi))*R^4; 
etal=0.106; % viscosity of the fluid 20C 
etaa=0.00001827; % viscosity of the air 20C 
step=20*2*pi; 
% spectrum of the first lateral mode in air and water % 
tol = 1e-20; 
Lresfl = 190000*2*pi:step:200000*2*pi; 
Ltau = 0:0.5:6; 
resfl= 145.6*1000*2*pi;       
%%%%%%%%%%%%%%%%%%%%% Finding spectrum in air %%%%%%%%%%%%%%%%%%% 
            % denotes any point along the head 
           %Dsy= 2*((b3-b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R)); % the 

length of the isosceles trapezoid along y direction 
           Dsc=4*R/(3*pi); % distance of the mass center of the head to 

the tip of the stem  
%            mdbar=Pb*h*2*2*((b3-b2)*x./(2*R)+(b2*R-b3*L1+b2*L1) 

/(2*R)); 
           Reym=(Pl*resfl*b1^2)/(4*etal); 
           %fReyd= ((Pa*resfl*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)); 
           Gammarm=Reym^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim=Reym^-1*(2.5758-1.3388*(h/b1)^0.5)+Reym^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
%            fGammard=(((Pa*resfl*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1+0.8255*(h./2*((b3-
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b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^2)); 
%            fGammaid=(((Pa*resfl*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5)+((Pa*resfl*(2*(b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^1+0.8236*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^2)); 
%            mfpmbar=0.25*pi*Pl*b1^2*Gammarm; 
cfpmbar=0.25*pi*Pl*b1^2*Gammaim*resfl; 
%            fmfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2*(((Pa*resfl*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-0.5*(0.9003+0.6105*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5+2.1722*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1)+(-0.0021*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5-0.1459*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1+0.8255*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^1.5+0.8144*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^2))); 
%            fcfpdbar= (0.25*pi*Pa*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2*(((Pa*resfl*(2*(b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-1*(2.5758-1.3388*(h./2*((b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R))).^0.5)+((Pa*resfl*(2*(b3-

b2)*x./(2*R)+(b2*R-b3*L1+b2*L1)/(2*R)).^2)./(4*etaa)).^-

0.5*(0.9003+0.7121*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^0.5+1.6845*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^1+0.8236*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^1.5-0.4178*(h./2*((b3-b2)*x./(2*R)+(b2*R-

b3*L1+b2*L1)/(2*R))).^2))*resfl); 
                  Kp=L1*((resfl.^2*(mmbar+mfpmbar)-

1i*resfl*cfpmbar)/(E*Im)).^0.25; 
           KKp=Kp; 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
             F1 = @(x) (resfl.^2.*L1.^2.*(x-

L1).*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.6105.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+2.1722.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1)+(-

0.0021.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^0.5-

0.1459.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1+0.8255.*(h./(2.*(sqrt(R.^2-

(x-L1).^2)))).^1.5+0.8144.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)))); 
             F2 = @(x) (resfl.*L1.^2.*(x-

L1).*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-1.*(2.5758-1.3388.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5)+((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.7121.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+1.6845.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^1+0.8236.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1.5-

0.4178.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)).*resfl)); 
           Gfp=(md*Dsc*resfl^2*L1^2+quad( F1, L1, L1+R, tol)-
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1i*quad(F2,L1, L1+R, tol))/(E*Im); 
             F3 = @(x) (resfl.^2.*L1.*(x-

L1).^2.*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.6105.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+2.1722.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1)+(-

0.0021.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^0.5-

0.1459.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1+0.8255.*(h./(2.*(sqrt(R.^2-

(x-L1).^2)))).^1.5+0.8144.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)))); 
             F4 = @(x) (resfl.*L1.*(x-

L1).^2.*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-1.*(2.5758-1.3388.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5)+((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.7121.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+1.6845.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^1+0.8236.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1.5-

0.4178.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)).*resfl)); 
           Hfp=(md*Dsc^2*resfl^2*L1+quad (F3, L1, L1+R, tol)-1i*quad 

(F4,L1, L1+R, tol)+resfl^2*L1*Jd)/(E*Im); 
             F5 = @(x) (resfl.^2.*L1^3*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-

(x-L1).^2))).^2.*(((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.6105.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+2.1722.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1)+(-

0.0021.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^0.5-

0.1459.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1+0.8255.*(h./(2.*(sqrt(R.^2-

(x-L1).^2)))).^1.5+0.8144.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)))); 
             F6 = @(x) (resfl.*L1^3*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-1.*(2.5758-1.3388.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5)+((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.7121.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+1.6845.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^1+0.8236.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1.5-

0.4178.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)).*resfl)); 
      Ffp=(-md*resfl^2*L1^3-quad (F5, L1, L1+R, tol)+1i*quad (F6, L1, 

L1+R, tol))/(E*Im); 
  F7 = @(x) (resfl.^2.*L1.^2.*(x-L1).*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.6105.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+2.1722.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1)+(-

0.0021.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^0.5-

0.1459.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1+0.8255.*(h./(2.*(sqrt(R.^2-

(x-L1).^2)))).^1.5+0.8144.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)))); 
             F8 = @(x) (resfl.*L1.^2.*(x-

L1).*(0.25.*pi.*Pl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2.*(((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-1.*(2.5758-1.3388.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5)+((Pl.*resfl.*(2.*(sqrt(R.^2-(x-

L1).^2))).^2)./(4.*etal)).^-0.5.*(0.9003+0.7121.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^0.5+1.6845.*(h./(2.*(sqrt(R.^2-(x-

L1).^2)))).^1+0.8236.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^1.5-

0.4178.*(h./(2.*(sqrt(R.^2-(x-L1).^2)))).^2)).*resfl)); 
  Kfp=(-md*Dsc*resfl^2*L1^2-quad (F7, L1, L1+R, tol)+1i*quad (F8, L1, 

L1+R, tol))/(E*Im); 
       MMfp=KKp.^2.*(Cfp+cfp)-Gfp.*(Cfp-cfp)-Hfp.*KKp.*(Sfp+sfp); 
           NNfp=KKp.^2.*(Sfp+sfp)-Gfp.*(Sfp-sfp)-Hfp.*KKp.*(Cfp-cfp); 



174 

 

           OOfp=KKp.^(-1).*(KKp.^2.*sfp+Gfp.*sfp+Hfp.*KKp.*cfp); 
           PPfp=KKp.^3.*(Sfp-sfp)-Ffp.*(Cfp-cfp)-Kfp.*KKp.*(Sfp+sfp); 
           QQfp=KKp.^3.*(Cfp+cfp)-Ffp.*(Sfp-sfp)-Kfp.*KKp.*(Cfp-cfp); 
           RRfp=KKp.^(-1).*(KKp.^3.*cfp+Ffp.*sfp+Kfp.*KKp.*cfp); 
           A1fp=(OOfp.*QQfp-RRfp.*NNfp)/(MMfp.*QQfp-PPfp.*NNfp); 
           A2fp=(OOfp.*PPfp-RRfp.*MMfp)/(NNfp.*PPfp-MMfp.*QQfp); 
          xi=sym('xi','real'); % denotes x/L1 
           X=A1fp*(cosh(KKp*xi)-cos(KKp*xi))+A2fp*(sinh(KKp*xi)-

sin(KKp*xi))+KKp^(-1)*sin(KKp*xi); % normalized shape function 
           Xp=KKp*(A1fp*(sinh(KKp*xi)+sin(KKp*xi))+A2fp*(cosh(KKp*xi)-

cos(KKp*xi))+KKp^(-1)*cos(KKp*xi)); % first derivative of normalized 

deflection measns X' 
Xpp=KKp^2*(A1fp*(cosh(KKp*xi)+cos(KKp*xi))+A2fp*(sinh(KKp*xi)+sin(KKp*x

i))-KKp^(-1)*sin(KKp*xi)); % second derivative of normalized deflection 

measns X'' 
            BB1=int((real(Xpp))^2, xi, 0, 1); 
            BB2=int((imag(Xpp))^2, xi, 0, 1); 
            BB3=int((real(Xpp))*(imag(Xpp)), xi, 0, 1); 
            BB4=int((real(X))^2, xi, 0, 1); 
            BB5=int((imag(X))^2, xi, 0, 1); 
            BB6=int((real(X))*(imag(X)), xi, 0, 1); 
            BB7=(real(A1fp*(cosh(KKp)-cos(KKp))+A2fp*(sinh(KKp)-

sin(KKp))+KKp^(-1)*sin(KKp)))^2; 
            BB8=(imag(A1fp*(cosh(KKp)-cos(KKp))+A2fp*(sinh(KKp)-

sin(KKp))+KKp^(-1)*sin(KKp)))^2; 
            BB9=(real(A1fp*(cosh(KKp)-cos(KKp))+A2fp*(sinh(KKp)-

sin(KKp))+KKp^(-1)*sin(KKp)))*(imag(A1fp*(cosh(KKp)-

cos(KKp))+A2fp*(sinh(KKp)-sin(KKp))+KKp^(-1)*sin(KKp))); 
            BB13=(real(KKp*(A1fp*(sinh(KKp)+sin(KKp))+A2fp*(cosh(KKp)-

cos(KKp))+KKp^(-1)*cos(KKp))))^2; 
            BB14=(imag(KKp*(A1fp*(sinh(KKp)+sin(KKp))+A2fp*(cosh(KKp)-

cos(KKp))+KKp^(-1)*cos(KKp))))^2; 
            BB15=(real(KKp*(A1fp*(sinh(KKp)+sin(KKp))+A2fp*(cosh(KKp)-

cos(KKp))+KKp^(-

1)*cos(KKp))))*(imag(KKp*(A1fp*(sinh(KKp)+sin(KKp))+A2fp*(cosh(KKp)-

cos(KKp))+KKp^(-1)*cos(KKp)))); 
            BB10=sqrt(BB7)*sqrt(BB13); 
            BB11=sqrt(BB8)*sqrt(BB14); 
            BB12=sqrt(BB7)*sqrt(BB14)+sqrt(BB13)*sqrt(BB8); 
            BB16=BB13; 
            BB17=BB14; 
            BB18=BB15; 
            BB19=-imag(2*A1fp*KKp^2); 
for jtau=1:length(Ltau)               
          F(jtau)=BB1*(cos(jtau))^2+BB2*(sin(jtau))^2-

2*BB3*(cos(jtau))*(sin(jtau))+(L1^4*mmbar*resfl^2*(E*Im)^(-

1))*(BB4*(sin(jtau))^2+BB5*(cos(jtau))^2+2*BB6*(cos(jtau))*(sin(jtau)))

+(md*L1^3*resfl^2*(E*Im)^(-

1))*(BB7*(sin(jtau))^2+BB8*(cos(jtau))^2+2*BB9*(cos(jtau))*(sin(jtau)))

+(2*md*L1^2*Dsc*resfl^2*(E*Im)^(-

1))*(BB10*(sin(jtau))^2+BB11*(cos(jtau))^2+BB12*(cos(jtau))*(sin(jtau))

)+(md*L1*Dsc^2*resfl^2*(E*Im)^(-

1))*(BB13*(sin(jtau))^2+BB14*(cos(jtau))^2+2*BB15*(cos(jtau))*(sin(jtau

)))+(Jd*L1*resfl^2*(E*Im)^(-

1))*(BB16*(sin(jtau))^2+BB17*(cos(jtau))^2+2*BB18*(cos(jtau))*(sin(jtau

))); 
   Qua(jtau)=F(jtau)/BB19; 
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end 
 Quaactual=max (double(Qua(:)))  

 

Case 3: Hammerhead Microcantilever with a Uniform Rectangular Head 

clear; 
L1=200*10^-6; % length of the stem 
b1=45*10^-6; % width of the stem 
L2=200*10^-6 : 200*10^-6 : 200*10^-6; % length of the head 
b2=200*10^-6 : 200*10^-6 : 200*10^-6; % width of the head  
eta=0.001:0.001:0.050; % viscosity of the fluid 
h=12*10^-6; % thickness of the cantilever 
E=169*10^9; % Young's Modulus 
Pb=2330; % density of silicon for both supporting beam and hammerhead 
Pf=1000; % density of the fluid 
mm=Pb*L1*b1*h; % mass of the stem 
mmbar=Pb*b1*h; % mass per unit length of stem 
Im=(1/12)*h*(b1)^3; % moment of inertia of the stem 
tau = 0:1:6; 
freq = 800000:100:1200000; 
%%%%%%%%%%% Using Correction Factor %%%%%%%%%%%%%% 
for jeta=1:length(eta); 
  for jL2=1:length(L2); 
    for jb2=1:length(b2) 
        for jfreq=1:length(freq) 
           md(jb2,jL2)=Pb*L2(jL2)*b2(jb2)*h; % mass of the head 
           mdbar(jb2)=Pb*b2(jb2)*h; % mass per unit length of the head 
           Jd(jb2,jL2)=(1/12)*md(jb2,jL2)*(L2(jL2)^2+b2(jb2)^2); % 

moment of inertia 
           %%%%%%%%%% Hydrodynamic function including thickness 

correction %%%%%%%%%% 
           Reym(jfreq,jeta)=(Pf*freq(jfreq)*b1^2)/(4*eta(jeta)); 
Reyd(jfreq,jb2,jeta)=(Pf*freq(jfreq)*b2(jb2)^2)/(4*eta(jeta)); 
           Gammarm(jfreq,jeta)=Reym(jfreq,jeta)^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim(jfreq,jeta)=Reym(jfreq,jeta)^-1*(2.5758-

1.3388*(h/b1)^0.5)+Reym(jfreq,jeta)^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
           Gammard(jfreq,jb2,jeta)=Reyd(jfreq,jb2,jeta)^-

0.5*(0.9003+0.6105*(h/b2(jb2))^0.5+2.1722*(h/b2(jb2))^1)+(-

0.0021*(h/b2(jb2))^0.5-

0.1459*(h/b2(jb2))^1+0.8255*(h/b2(jb2))^1.5+0.8144*(h/b2(jb2))^2); 
           Gammaid(jfreq,jb2,jeta)=Reyd(jfreq,jb2,jeta)^-1*(2.5758-

1.3388*(h/b2(jb2))^0.5)+Reyd(jfreq,jb2,jeta)^-

0.5*(0.9003+0.7121*(h/b2(jb2))^0.5+1.6845*(h/b2(jb2))^1+0.8236*(h/b2(jb

2))^1.5-0.4178*(h/b2(jb2))^2); 
           mfpmbar(jfreq,jeta)=0.25*pi*Pf*b1^2*Gammarm(jfreq,jeta); 
cfpmbar(jfreq,jeta)=0.25*pi*Pf*b1^2*Gammaim(jfreq,jeta)*freq(jfreq); 
mfpdbar(jfreq,jb2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammard(jfreq,jb2,jeta); 
cfpdbar(jfreq,jb2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammaid(jfreq,jb2,jeta)*fr

eq(jfreq); 
Kp(jfreq,jb2,jeta)=L1*((freq(jfreq)^2*(mmbar+mfpmbar(jfreq,jeta))-

1i*freq(jfreq)*cfpmbar(jfreq,jeta))/(E*Im))^0.25; 
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           KKp=Kp(jfreq,jb2,jeta); 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
           Gfp(jfreq,jb2,jL2,jeta)=0.5*(E*Im)^(-

1)*(freq(jfreq)^2*L1^2*L2(jL2)*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfreq,jb2,j

eta))-j*freq(jfreq)*L1^2*L2(jL2)^2*cfpdbar(jfreq,jb2,jeta)); 
           Hfp(jfreq,jb2,jL2,jeta)=(12*E*Im)^(-

1)*(3*freq(jfreq)^2*L1*L2(jL2)^2*md(jb2,jL2)+4*freq(jfreq)^2*L1*L2(jL2)

^3*mfpdbar(jfreq,jb2,jeta)+12*freq(jfreq)^2*L1*Jd(jb2,jL2)-

4*j*freq(jfreq)*L1*L2(jL2)^3*cfpdbar(jfreq,jb2,jeta)); 
           Ffp(jfreq,jb2,jL2,jeta)=(E*Im)^(-

1)*(j*freq(jfreq)*L1^3*L2(jL2)*cfpdbar(jfreq,jb2,jeta)-

freq(jfreq)^2*L1^3*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfreq,jb2,jeta))); 
           Kfp(jfreq,jb2,jL2,jeta)=0.5*(E*Im)^(-

1)*(j*freq(jfreq)*L1^2*L2(jL2)^2*cfpdbar(jfreq,jb2,jeta)-

freq(jfreq)^2*L1^2*L2(jL2)*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfreq,jb2,jeta)

)); 
           MMfp(jfreq,jb2,jL2,jeta)=KKp^2*(Cfp+cfp)-

Gfp(jfreq,jb2,jL2,jeta)*(Cfp-cfp)-

Hfp(jfreq,jb2,jL2,jeta)*KKp*(Sfp+sfp);NNfp(jfreq,jb2,jL2,jeta)=KKp^2*(S

fp+sfp)-Gfp(jfreq,jb2,jL2,jeta)*(Sfp-sfp)-

Hfp(jfreq,jb2,jL2,jeta)*KKp*(Cfp-cfp); 
           OOfp(jfreq,jb2,jL2,jeta)=KKp^(-

1)*(KKp^2*sfp+Gfp(jfreq,jb2,jL2,jeta)*sfp+Hfp(jfreq,jb2,jL2,jeta)*KKp*c

fp); 
           PPfp(jfreq,jb2,jL2,jeta)=KKp^3*(Sfp-sfp)-

Ffp(jfreq,jb2,jL2,jeta)*(Cfp-cfp)-

Kfp(jfreq,jb2,jL2,jeta)*KKp*(Sfp+sfp);QQfp(jfreq,jb2,jL2,jeta)=KKp^3*(C

fp+cfp)-Ffp(jfreq,jb2,jL2,jeta)*(Sfp-sfp)-

Kfp(jfreq,jb2,jL2,jeta)*KKp*(Cfp-cfp); 
           RRfp(jfreq,jb2,jL2,jeta)=KKp^(-

1)*(KKp^3*cfp+Ffp(jfreq,jb2,jL2,jeta)*sfp+Kfp(jfreq,jb2,jL2,jeta)*KKp*c

fp); 
A1fp(jfreq,jb2,jL2,jeta)=(OOfp(jfreq,jb2,jL2,jeta)*QQfp(jfreq,jb2,jL2,j

eta)-

RRfp(jfreq,jb2,jL2,jeta)*NNfp(jfreq,jb2,jL2,jeta))/(MMfp(jfreq,jb2,jL2,

jeta)*QQfp(jfreq,jb2,jL2,jeta)-

PPfp(jfreq,jb2,jL2,jeta)*NNfp(jfreq,jb2,jL2,jeta)); 
A2fp(jfreq,jb2,jL2,jeta)=(OOfp(jfreq,jb2,jL2,jeta)*PPfp(jfreq,jb2,jL2,j

eta)-

RRfp(jfreq,jb2,jL2,jeta)*MMfp(jfreq,jb2,jL2,jeta))/(NNfp(jfreq,jb2,jL2,

jeta)*PPfp(jfreq,jb2,jL2,jeta)-

MMfp(jfreq,jb2,jL2,jeta)*QQfp(jfreq,jb2,jL2,jeta)); 
           Dfp(jfreq,jb2,jL2,jeta)=abs(A1fp(jfreq,jb2,jL2,jeta)*(Cfp-

cfp)+A2fp(jfreq,jb2,jL2,jeta)*(Sfp-sfp)+KKp^(-1)*sfp); 
        end 
          Dfpmax(jb2,jL2,jeta)=max(Dfp(:,jb2,jL2,jeta));  
          Dfpmaxsqrt2(jb2,jL2,jeta)=Dfpmax(jb2,jL2,jeta)/sqrt(2); 
    end 
  end 
end 
%%%% find resonant frequency%%% 
for jeta=1:length(eta); 
  for  jL2=1:length(L2); 
      for jb2=1:length(b2); 
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           for jfreq=1:length(freq); 

         
            %LLamd(jfreq) = 

((mmbar*L1^4*(freq(jfreq))^2)/(E*Im))^0.25;if(Dfp(jfreq,jb2,jL2,jeta)==

Dfpmax(jb2,jL2,jeta)); 
      resf(jb2,jL2,jeta)=freq(jfreq); 
    end 
      end 
   end 
  end 
end 
for jeta=1:length(eta); 
  for jL2=1:length(L2); 
    for jb2=1:length(b2) 
            md(jb2,jL2)=Pb*L2(jL2)*b2(jb2)*h; % mass of the head 
            mdbar(jb2)=Pb*b2(jb2)*h; % mass per unit length of the 

headJd(jb2,jL2)=(1/12)*md(jb2,jL2)*(L2(jL2)^2+b2(jb2)^2); % moment of 

inertia 
                           %%%%%%%%%% Hydrodynamic function including 

thickness correction %%%%%%%%%% 
Reym(jb2,jL2,jeta)=(Pf*resf(jb2,jL2,jeta)*b1^2)/(4*eta(jeta)); 
Reyd(jb2,jL2,jeta)=(Pf*resf(jb2,jL2,jeta)*b2(jb2)^2)/(4*eta(jeta)); 
  Gammarm(jb2,jL2,jeta)=Reym(jb2,jL2,jeta)^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
  Gammaim(jb2,jL2,jeta)=Reym(jb2,jL2,jeta)^-1*(2.5758-

1.3388*(h/b1)^0.5)+Reym(jb2,jL2,jeta)^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
  Gammard(jb2,jL2,jeta)=Reyd(jb2,jL2,jeta)^-

0.5*(0.9003+0.6105*(h/b2(jb2))^0.5+2.1722*(h/b2(jb2))^1)+(-

0.0021*(h/b2(jb2))^0.5-

0.1459*(h/b2(jb2))^1+0.8255*(h/b2(jb2))^1.5+0.8144*(h/b2(jb2))^2); 
           Gammaid(jb2,jL2,jeta)=Reyd(jb2,jL2,jeta)^-1*(2.5758-

1.3388*(h/b2(jb2))^0.5)+Reyd(jb2,jL2,jeta)^-

0.5*(0.9003+0.7121*(h/b2(jb2))^0.5+1.6845*(h/b2(jb2))^1+0.8236*(h/b2(jb

2))^1.5-0.4178*(h/b2(jb2))^2); 
           

mfpmbar(jb2,jL2,jeta)=0.25*pi*Pf*b1^2*Gammarm(jb2,jL2,jeta);cfpmbar(jb2

,jL2,jeta)=0.25*pi*Pf*b1^2*Gammaim(jb2,jL2,jeta)*resf(jb2,jL2,jeta); 
mfpdbar(jb2,jL2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammard(jb2,jL2,jeta); 
cfpdbar(jb2,jL2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammaid(jb2,jL2,jeta)*resf(j

b2,jL2,jeta); 
Kp(jb2,jL2,jeta)=L1*((resf(jb2,jL2,jeta)^2*(mmbar+mfpmbar(jb2,jL2,jeta)

)-1i*resf(jb2,jL2,jeta)*cfpmbar(jb2,jL2,jeta))/(E*Im))^0.25; 
           KKp=Kp(jb2,jL2,jeta); 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
           Gfp(jb2,jL2,jeta)=0.5*(E*Im)^(-

1)*(resf(jb2,jL2,jeta)^2*L1^2*L2(jL2)*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfre

q,jb2,jeta))-

j*resf(jb2,jL2,jeta)*L1^2*L2(jL2)^2*cfpdbar(jfreq,jb2,jeta)); 
           Hfp(jb2,jL2,jeta)=(12*E*Im)^(-

1)*(3*resf(jb2,jL2,jeta)^2*L1*L2(jL2)^2*md(jb2,jL2)+4*resf(jb2,jL2,jeta

)^2*L1*L2(jL2)^3*mfpdbar(jfreq,jb2,jeta)+12*resf(jb2,jL2,jeta)^2*L1*Jd(
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jb2,jL2)-4*j*resf(jb2,jL2,jeta)*L1*L2(jL2)^3*cfpdbar(jfreq,jb2,jeta)); 
           Ffp(jb2,jL2,jeta)=(E*Im)^(-

1)*(j*resf(jb2,jL2,jeta)*L1^3*L2(jL2)*cfpdbar(jfreq,jb2,jeta)-

resf(jb2,jL2,jeta)^2*L1^3*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfreq,jb2,jeta))

); 
           Kfp(jb2,jL2,jeta)=0.5*(E*Im)^(-

1)*(j*resf(jb2,jL2,jeta)*L1^2*L2(jL2)^2*cfpdbar(jfreq,jb2,jeta)-

resf(jb2,jL2,jeta)^2*L1^2*L2(jL2)*(md(jb2,jL2)+L2(jL2)*mfpdbar(jfreq,jb

2,jeta))); 
           MMfp(jb2,jL2,jeta)=KKp^2*(Cfp+cfp)-Gfp(jb2,jL2,jeta)*(Cfp-

cfp)-Hfp(jb2,jL2,jeta)*KKp*(Sfp+sfp); 
           NNfp(jb2,jL2,jeta)=KKp^2*(Sfp+sfp)-Gfp(jb2,jL2,jeta)*(Sfp-

sfp)-Hfp(jb2,jL2,jeta)*KKp*(Cfp-cfp); 
           OOfp(jb2,jL2,jeta)=KKp^(-

1)*(KKp^2*sfp+Gfp(jb2,jL2,jeta)*sfp+Hfp(jb2,jL2,jeta)*KKp*cfp); 
           PPfp(jb2,jL2,jeta)=KKp^3*(Sfp-sfp)-Ffp(jb2,jL2,jeta)*(Cfp-

cfp)-Kfp(jb2,jL2,jeta)*KKp*(Sfp+sfp); 
           QQfp(jb2,jL2,jeta)=KKp^3*(Cfp+cfp)-Ffp(jb2,jL2,jeta)*(Sfp-

sfp)-Kfp(jb2,jL2,jeta)*KKp*(Cfp-cfp); 
           RRfp(jb2,jL2,jeta)=KKp^(-

1)*(KKp^3*cfp+Ffp(jb2,jL2,jeta)*sfp+Kfp(jb2,jL2,jeta)*KKp*cfp); 
           A1fp(jb2,jL2,jeta)=(OOfp(jb2,jL2,jeta)*QQfp(jb2,jL2,jeta)-

RRfp(jb2,jL2,jeta)*NNfp(jb2,jL2,jeta))/(MMfp(jb2,jL2,jeta)*QQfp(jb2,jL2

,jeta)-PPfp(jb2,jL2,jeta)*NNfp(jb2,jL2,jeta)); 
           A2fp(jb2,jL2,jeta)=(OOfp(jb2,jL2,jeta)*PPfp(jb2,jL2,jeta)-

RRfp(jb2,jL2,jeta)*MMfp(jb2,jL2,jeta))/(NNfp(jb2,jL2,jeta)*PPfp(jb2,jL2

,jeta)-MMfp(jb2,jL2,jeta)*QQfp(jb2,jL2,jeta)); 
           xi=sym('xi','real'); % denotes x/L1 
           X(jb2,jL2,jeta)=A1fp(jb2,jL2,jeta)*(cosh(KKp*xi)-

cos(KKp*xi))+A2fp(jb2,jL2,jeta)*(sinh(KKp*xi)-sin(KKp*xi))+KKp^(-

1)*sin(KKp*xi); % normalized shape function 
Xp(jb2,jL2,jeta)=KKp*(A1fp(jb2,jL2,jeta)*(sinh(KKp*xi)+sin(KKp*xi))+A2f

p(jb2,jL2,jeta)*(cosh(KKp*xi)-cos(KKp*xi))+KKp^(-1)*cos(KKp*xi)); % 

first derivative of normalized deflection measns X' 
Xpp(jb2,jL2,jeta)=KKp^2*(A1fp(jb2,jL2,jeta)*(cosh(KKp*xi)+cos(KKp*xi))+

A2fp(jb2,jL2,jeta)*(sinh(KKp*xi)+sin(KKp*xi))-KKp^(-1)*sin(KKp*xi)); % 

second derivative of normalized deflection measns X'' 
   BB1(jb2,jL2,jeta)=int((real(Xpp(jb2,jL2,jeta)))^2, xi, 0, 1); 
   BB2(jb2,jL2,jeta)=int((imag(Xpp(jb2,jL2,jeta)))^2, xi, 0, 1); 
BB3(jb2,jL2,jeta)=int((real(Xpp(jb2,jL2,jeta)))*(imag(Xpp(jb2,jL2,jeta)

)), xi, 0, 1); 
BB4(jb2,jL2,jeta)=int((real(X(jb2,jL2,jeta)))^2, xi, 0, 1); 
  BB5(jb2,jL2,jeta)=int((imag(X(jb2,jL2,jeta)))^2, xi, 0, 1); 
BB6(jb2,jL2,jeta)=int((real(X(jb2,jL2,jeta)))*(imag(X(jb2,jL2,jeta))),x

i, 0, 1); 
BB7(jb2,jL2,jeta)=(real(A1fp(jb2,jL2,jeta)*(cosh(KKp)-

cos(KKp))+A2fp(jb2,jL2,jeta)*(sinh(KKp)-sin(KKp))+KKp^(-

1)*sin(KKp)))^2;BB8(jb2,jL2,jeta)=(imag(A1fp(jb2,jL2,jeta)*(cosh(KKp)-

cos(KKp))+A2fp(jb2,jL2,jeta)*(sinh(KKp)-sin(KKp))+KKp^(-

1)*sin(KKp)))^2;BB9(jb2,jL2,jeta)=(real(A1fp(jb2,jL2,jeta)*(cosh(KKp)-

cos(KKp))+A2fp(jb2,jL2,jeta)*(sinh(KKp)-sin(KKp))+KKp^(-

1)*sin(KKp)))*(imag(A1fp(jb2,jL2,jeta)*(cosh(KKp)-

cos(KKp))+A2fp(jb2,jL2,jeta)*(sinh(KKp)-sin(KKp))+KKp^(-1)*sin(KKp))); 
BB13(jb2,jL2,jeta)=(real(KKp*(A1fp(jb2,jL2,jeta)*(sinh(KKp)+sin(KKp))+A

2fp(jb2,jL2,jeta)*(cosh(KKp)-cos(KKp))+KKp^(-1)*cos(KKp))))^2; 
BB14(jb2,jL2,jeta)=(imag(KKp*(A1fp(jb2,jL2,jeta)*(sinh(KKp)+sin(KKp))+A

2fp(jb2,jL2,jeta)*(cosh(KKp)-cos(KKp))+KKp^(-1)*cos(KKp))))^2; 
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BB15(jb2,jL2,jeta)=(real(KKp*(A1fp(jb2,jL2,jeta)*(sinh(KKp)+sin(KKp))+A

2fp(jb2,jL2,jeta)*(cosh(KKp)-cos(KKp))+KKp^(-

1)*cos(KKp))))*(imag(KKp*(A1fp(jb2,jL2,jeta)*(sinh(KKp)+sin(KKp))+A2fp(

jb2,jL2,jeta)*(cosh(KKp)-cos(KKp))+KKp^(-1)*cos(KKp)))); 
BB10(jb2,jL2,jeta)=sqrt(BB7(jb2,jL2,jeta))*sqrt(BB13(jb2,jL2,jeta)); 
BB11(jb2,jL2,jeta)=sqrt(BB8(jb2,jL2,jeta))*sqrt(BB14(jb2,jL2,jeta)); 
BB12(jb2,jL2,jeta)=sqrt(BB7(jb2,jL2,jeta))*sqrt(BB14(jb2,jL2,jeta))+sqr

t(BB13(jb2,jL2,jeta))*sqrt(BB8(jb2,jL2,jeta)); 
BB16(jb2,jL2,jeta)=BB13(jb2,jL2,jeta); 
   BB17(jb2,jL2,jeta)=BB14(jb2,jL2,jeta); 
  BB18(jb2,jL2,jeta)=BB15(jb2,jL2,jeta); 
  BB19(jb2,jL2,jeta)=-imag(2*A1fp(jb2,jL2,jeta)*KKp^2); 
  for jtau=1:length(tau) 
F(jtau,jb2,jL2,jeta)=BB1(jb2,jL2,jeta)*(cos(jtau))^2+BB2(jb2,jL2,jeta)*

(sin(jtau))^2-

2*BB3(jb2,jL2,jeta)*(cos(jtau))*(sin(jtau))+(L1^4*mmbar*resf(jb2,jL2,je

ta)^2*(E*Im)^(-

1))*(BB4(jb2,jL2,jeta)*(sin(jtau))^2+BB5(jb2,jL2,jeta)*(cos(jtau))^2+2*

BB6(jb2,jL2,jeta)*(cos(jtau))*(sin(jtau)))+(mdbar(jb2)*L1^3*L2(jL2)*res

f(jb2,jL2,jeta)^2*(E*Im)^(-

1))*(BB7(jb2,jL2,jeta)*(sin(jtau))^2+BB8(jb2,jL2,jeta)*(cos(jtau))^2+2*

BB9(jb2,jL2,jeta)*(cos(jtau))*(sin(jtau)))+(mdbar(jb2)*L1^2*L2(jL2)^2*r

esf(jb2,jL2,jeta)^2*(E*Im)^(-

1))*(BB10(jb2,jL2,jeta)*(sin(jtau))^2+BB11(jb2,jL2,jeta)*(cos(jtau))^2+

BB12(jb2,jL2,jeta)*(cos(jtau))*(sin(jtau)))+(1/3)*(mdbar(jb2)*L1*L2(jL2

)^3*resf(jb2,jL2,jeta)^2*(E*Im)^(-

1))*(BB13(jb2,jL2,jeta)*(sin(jtau))^2+BB14(jb2,jL2,jeta)*(cos(jtau))^2+

2*BB15(jb2,jL2,jeta)*(cos(jtau))*(sin(jtau)))+(1/12)*(mdbar(jb2)*L1*L2(

jL2)*b2(jb2)^2*resf(jb2,jL2,jeta)^2*(E*Im)^(-

1))*(BB16(jb2,jL2,jeta)*(sin(jtau))^2+BB17(jb2,jL2,jeta)*(cos(jtau))^2+

2*BB18(jb2,jL2,jeta)*(cos(jtau))*(sin(jtau))); 
Qua(jtau,jb2,jL2,jeta)=F(jtau,jb2,jL2,jeta)/BB19(jb2,jL2,jeta); 
  end 
  end 
  end 
end 
for jeta=1:length(eta); 
  for jL2=1:length(L2); 
    for jb2=1:length(b2) 
    Quaactual(jb2,jL2,jeta)=max(double(Qua(:,jb2,jL2,jeta))) 
    end 
  end 
end 

 

Case 4: Hammerhead Microcantilever with a Composite Rectangular Head 

clear; 
L1=200*10^-6; % length of the stem 
b1=45*10^-6; % width of the stem 
 L2=100*10^-6 : 100*10^-6 : 100*10^-6; % length of the head 
b2=100*10^-6 : 100*10^-6 : 100*10^-6; % width of the head  
 L3=30*10^-6 : 30*10^-6 : 30*10^-6; % length of the gap 
b4=30*10^-6 : 30*10^-6 : 30*10^-6; % width of the gap 
 eta=0.001:0.001:0.05; % viscosity of the fluid 
 h=12*10^-6; % thickness of the cantilever 
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E=169*10^9; % Young's Modulus 
Pb=2330; % density of silicon for both supporting beam and hammerhead 
Pf=1000; % density of the fluid 
mm=Pb*L1*b1*h; % mass of the stem 
mmbar=Pb*b1*h; % mass per unit length of stem 
Im=(1/12)*h*(b1)^3; % moment of inertia of the stem 
 tau = 0:0.5:6; 
freq = 950000:100:1400000; 
for jeta=1:length(eta); 
      for jL2=1:length(L2); 
         for jb2=1:length(b2); 
           for jL3=1:length(L3); 
              for jb4=1:length(b4); 
                 for jfreq=1:length(freq) 
        b3(jb4,jb2)=0.5*(b2(jb2)-b1-2*b4(jb4)); 
        dc(jb4,jL3,jb2,jL2)=(0.5*L2(jL2)*b2(jb2)*L2(jL2)-

0.5*L3(jL3)*(b1+2*b4(jb4))*L3(jL3))/(L2(jL2)*b2(jb2)-

L3(jL3)*(b1+2*b4(jb4))); % distance of the mass center to the end of 

the HH rectangle using L2,L3,b1,b4 
        ds(jb4,jL3,jb2,jL2)=(0.5*L2(jL2)*b2(jb2)*L2(jL2)-

0.5*L3(jL3)*(b1+2*b4(jb4))*L3(jL3))/(L2(jL2)*b2(jb2)-

L3(jL3)*(b1+2*b4(jb4)))-L3(jL3); % distance of the mass center to the 

end of the stem using L2,L3,b1,b4 
        dc2(jb4,jL3,jb2,jL2)=(0.5*L2(jL2)*b2(jb2)*L2(jL2)-

0.5*L3(jL3)*(b2(jb2)-2*b3(jb4,jb2))*L3(jL3))/(L2(jL2)*b2(jb2)-

L3(jL3)*(b2(jb2)-2*b3(jb4,jb2))); % distance of the mass center to the 

end of the HH rectangle using L2,L3,b2,b3 
        ds2(jb4,jL3,jb2,jL2)=(0.5*L2(jL2)*b2(jb2)*L2(jL2)-

0.5*L3(jL3)*(b2(jb2)-2*b3(jb4,jb2))*L3(jL3))/(L2(jL2)*b2(jb2)-

L3(jL3)*(b2(jb2)-2*b3(jb4,jb2)))-L3(jL3); % distance of the mass center 

to the end of the stem using L2,L3,b2,b3 
Jd(jb4,jL3,jb2,jL2)=(1/12)*Pb*L2(jL2)*b2(jb2)*h*(L2(jL2)^2+b2(jb2)^2)+(

dc(jb4,jL3,jb2,jL2)-0.5*L2(jL2))^2*Pb*L2(jL2)*b2(jb2)*h-

((1/12)*Pb*L3(jL3)*(b1+2*b4(jb4))*h*(L3(jL3)^2+(b1+2*b4(jb4))^2)+(ds(jb

4,jL3,jb2,jL2)+0.5*L3(jL3))^2*Pb*L3(jL3)*(b1+2*b4(jb4))*h); % moment of 

inertia due to rotation 
        md(jb4,jL3,jb2,jL2)=Pb*h*(L2(jL2)*b2(jb2)-

L3(jL3)*(b1+2*b4(jb4))); % mass of the HH 
        %%%%%%%%%% Hydrodynamic function including thickness 

correction %%%%%%%%%% 
           Reym(jfreq,jeta)=(Pf*freq(jfreq)*b1^2)/(4*eta(jeta)); 
           

eyd1(jfreq,jb2,jeta)=(Pf*freq(jfreq)*b2(jb2)^2)/(4*eta(jeta)); 
Reyd2(jfreq,jb4,jb2,jeta)=(Pf*freq(jfreq)*b3(jb4,jb2)^2)/(4*eta(jeta));

Gammarm(jfreq,jeta)=Reym(jfreq,jeta)^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim(jfreq,jeta)=Reym(jfreq,jeta)^-1*(2.5758-

1.3388*(h/b1)^0.5)+Reym(jfreq,jeta)^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
           Gammard1(jfreq,jb2,jeta)=Reyd1(jfreq,jb2,jeta)^-

0.5*(0.9003+0.6105*(h/b2(jb2))^0.5+2.1722*(h/b2(jb2))^1)+(-

0.0021*(h/b2(jb2))^0.5-

0.1459*(h/b2(jb2))^1+0.8255*(h/b2(jb2))^1.5+0.8144*(h/b2(jb2))^2); 
           Gammaid1(jfreq,jb2,jeta)=Reyd1(jfreq,jb2,jeta)^-1*(2.5758-

1.3388*(h/b2(jb2))^0.5)+Reyd1(jfreq,jb2,jeta)^-
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0.5*(0.9003+0.7121*(h/b2(jb2))^0.5+1.6845*(h/b2(jb2))^1+0.8236*(h/b2(jb

2))^1.5-0.4178*(h/b2(jb2))^2); 
           Gammard2(jfreq,jb4,jb2,jeta)=Reyd2(jfreq,jb4,jb2,jeta)^-

0.5*(0.9003+0.6105*(h/b3(jb4,jb2))^0.5+2.1722*(h/b3(jb4,jb2))^1)+(-

0.0021*(h/b3(jb4,jb2))^0.5-

0.1459*(h/b3(jb4,jb2))^1+0.8255*(h/b3(jb4,jb2))^1.5+0.8144*(h/b3(jb4,jb

2))^2); 
Gammaid2(jfreq,jb4,jb2,jeta)=Reyd2(jfreq,jb4,jb2,jeta)^-1*(2.5758-

1.3388*(h/b3(jb4,jb2))^0.5)+Reyd2(jfreq,jb4,jb2,jeta)^-

0.5*(0.9003+0.7121*(h/b3(jb4,jb2))^0.5+1.6845*(h/b3(jb4,jb2))^1+0.8236*

(h/b3(jb4,jb2))^1.5-0.4178*(h/b3(jb4,jb2))^2); 
           mfpmbar(jfreq,jeta)=0.25*pi*Pf*b1^2*Gammarm(jfreq,jeta); 
cfpmbar(jfreq,jeta)=0.25*pi*Pf*b1^2*Gammaim(jfreq,jeta)*freq(jfreq); 
mfpdbar1(jfreq,jb2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammard1(jfreq,jb2,jeta); 
cfpdbar1(jfreq,jb2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammaid1(jfreq,jb2,jeta)*

freq(jfreq); 
mfpdbar2(jfreq,jb4,jb2,jeta)=0.25*pi*Pf*b3(jb4,jb2)^2*Gammard2(jfreq,jb

4,jb2,jeta); 
cfpdbar2(jfreq,jb4,jb2,jeta)=0.25*pi*Pf*b3(jb4,jb2)^2*Gammaid2(jfreq,jb

4,jb2,jeta)*freq(jfreq); 
Kp(jfreq,jeta)=L1*((freq(jfreq)^2*(mmbar+mfpmbar(jfreq,jeta))-

1i*freq(jfreq)*cfpmbar(jfreq,jeta))/(E*Im))^0.25; 
           KKp=Kp(jfreq,jeta); 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
           Gfp(jfreq,jb4,jL3,jb2,jL2,jeta)=0.5*(E*Im)^(-

1)*(2*freq(jfreq)^2*L1^2*ds(jb4,jL3,jb2,jL2)*md(jb4,jL3,jb2,jL2)+freq(j

freq)^2*L1^2*(L2(jL2)-L3(jL3))^2*mfpdbar1(jfreq,jb2,jeta)-

2*freq(jfreq)^2*L1^2*L3(jL3)^2*mfpdbar2(jfreq,jb4,jb2,jeta)-

j*freq(jfreq)*L1^2*(L2(jL2)-

L3(jL3))^2*cfpdbar1(jfreq,jb2,jeta)+2*j*freq(jfreq)*L1^2*L3(jL3)^2*cfpd

bar2(jfreq,jb4,jb2,jeta)); 
           Hfp(jfreq,jb4,jL3,jb2,jL2,jeta)=(3*E*Im)^(-

1)*(3*freq(jfreq)^2*L1*ds(jb4,jL3,jb2,jL2)^2*md(jb4,jL3,jb2,jL2)+freq(j

freq)^2*L1*(L2(jL2)-

L3(jL3))^3*mfpdbar1(jfreq,jb2,jeta)+2*freq(jfreq)^2*L1*L3(jL3)^3*mfpdba

r2(jfreq,jb4,jb2,jeta)+3*freq(jfreq)^2*L1*Jd(jb4,jL3,jb2,jL2)-

j*freq(jfreq)*L1*(L2(jL2)-L3(jL3))^3*cfpdbar1(jfreq,jb2,jeta)-

2*j*freq(jfreq)*L1*L3(jL3)^3*cfpdbar2(jfreq,jb4,jb2,jeta)); 
           Ffp(jfreq,jb4,jL3,jb2,jL2,jeta)=(E*Im)^(-1)*(-

freq(jfreq)^2*L1^3*md(jb4,jL3,jb2,jL2)-freq(jfreq)^2*L1^3*(L2(jL2)-

L3(jL3))*mfpdbar1(jfreq,jb2,jeta)-

2*freq(jfreq)^2*L1^3*L3(jL3)*mfpdbar2(jfreq,jb4,jb2,jeta)+j*freq(jfreq)

*L1^3*(L2(jL2)-

L3(jL3))*cfpdbar1(jfreq,jb2,jeta)+2*j*freq(jfreq)*L1^3*L3(jL3)*cfpdbar2

(jfreq,jb4,jb2,jeta)); 
           Kfp(jfreq,jb4,jL3,jb2,jL2,jeta)=0.5*(E*Im)^(-1)*(-

2*freq(jfreq)^2*L1^2*ds(jb4,jL3,jb2,jL2)*md(jb4,jL3,jb2,jL2)-

freq(jfreq)^2*L1^2*(L2(jL2)-

L3(jL3))^2*mfpdbar1(jfreq,jb2,jeta)+2*freq(jfreq)^2*L1^2*L3(jL3)^2*mfpd

bar2(jfreq,jb4,jb2,jeta)+j*freq(jfreq)*L1^2*(L2(jL2)-

L3(jL3))^2*cfpdbar1(jfreq,jb2,jeta)-

2*j*freq(jfreq)*L1^2*L3(jL3)^2*cfpdbar2(jfreq,jb4,jb2,jeta)); 
           MMfp(jfreq,jb4,jL3,jb2,jL2,jeta)=KKp^2*(Cfp+cfp)-

Gfp(jfreq,jb4,jL3,jb2,jL2,jeta)*(Cfp-cfp)-
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Hfp(jfreq,jb4,jL3,jb2,jL2,jeta)*KKp*(Sfp+sfp); 
           NNfp(jfreq,jb4,jL3,jb2,jL2,jeta)=KKp^2*(Sfp+sfp)-

Gfp(jfreq,jb4,jL3,jb2,jL2,jeta)*(Sfp-sfp)-

Hfp(jfreq,jb4,jL3,jb2,jL2,jeta)*KKp*(Cfp-cfp); 
           OOfp(jfreq,jb4,jL3,jb2,jL2,jeta)=KKp^(-

1)*(KKp^2*sfp+Gfp(jfreq,jb4,jL3,jb2,jL2,jeta)*sfp+Hfp(jfreq,jb4,jL3,jb2

,jL2,jeta)*KKp*cfp); 
           PPfp(jfreq,jb4,jL3,jb2,jL2,jeta)=KKp^3*(Sfp-sfp)-

Ffp(jfreq,jb4,jL3,jb2,jL2,jeta)*(Cfp-cfp)-

Kfp(jfreq,jb4,jL3,jb2,jL2,jeta)*KKp*(Sfp+sfp); 
           QQfp(jfreq,jb4,jL3,jb2,jL2,jeta)=KKp^3*(Cfp+cfp)-

Ffp(jfreq,jb4,jL3,jb2,jL2,jeta)*(Sfp-sfp)-

Kfp(jfreq,jb4,jL3,jb2,jL2,jeta)*KKp*(Cfp-cfp); 
           RRfp(jfreq,jb4,jL3,jb2,jL2,jeta)=KKp^(-

1)*(KKp^3*cfp+Ffp(jfreq,jb4,jL3,jb2,jL2,jeta)*sfp+Kfp(jfreq,jb4,jL3,jb2

,jL2,jeta)*KKp*cfp); 
A1fp(jfreq,jb4,jL3,jb2,jL2,jeta)=(OOfp(jfreq,jb4,jL3,jb2,jL2,jeta)*QQfp

(jfreq,jb4,jL3,jb2,jL2,jeta)-

RRfp(jfreq,jb4,jL3,jb2,jL2,jeta)*NNfp(jfreq,jb4,jL3,jb2,jL2,jeta))/(MMf

p(jfreq,jb4,jL3,jb2,jL2,jeta)*QQfp(jfreq,jb4,jL3,jb2,jL2,jeta)-

PPfp(jfreq,jb4,jL3,jb2,jL2,jeta)*NNfp(jfreq,jb4,jL3,jb2,jL2,jeta)); 
A2fp(jfreq,jb4,jL3,jb2,jL2,jeta)=(OOfp(jfreq,jb4,jL3,jb2,jL2,jeta)*PPfp

(jfreq,jb4,jL3,jb2,jL2,jeta)-

RRfp(jfreq,jb4,jL3,jb2,jL2,jeta)*MMfp(jfreq,jb4,jL3,jb2,jL2,jeta))/(NNf

p(jfreq,jb4,jL3,jb2,jL2,jeta)*PPfp(jfreq,jb4,jL3,jb2,jL2,jeta)-

MMfp(jfreq,jb4,jL3,jb2,jL2,jeta)*QQfp(jfreq,jb4,jL3,jb2,jL2,jeta)); 
Dfp(jfreq,jb4,jL3,jb2,jL2,jeta)=abs(A1fp(jfreq,jb4,jL3,jb2,jL2,jeta)*(C

fp-cfp)+A2fp(jfreq,jb4,jL3,jb2,jL2,jeta)*(Sfp-sfp)+KKp^(-1)*sfp); 
        end 
Dfpmax(jb4,jL3,jb2,jL2,jeta)=max(Dfp(:,jb4,jL3,jb2,jL2,jeta));Dfpmaxsqr

t2(jb4,jL3,jb2,jL2,jeta)=Dfpmax(jb4,jL3,jb2,jL2,jeta)/sqrt(2); 
              end 
           end 
    end 
  end 
end 
%%%% find resonant frequency%%% 
for jeta=1:length(eta); 
     for jL2=1:length(L2); 
         for jb2=1:length(b2); 
             for  jL3=1:length(L3); 
                 for jb4=1:length(b4); 
                     for jfreq=1:length(freq); 
            %LLamd(jfreq) = ((mmbar*L1^4*(freq(jfreq))^2)/(E*Im))^0.25; 
            

if(Dfp(jfreq,jb4,jL3,jb2,jL2,jeta)==Dfpmax(jb4,jL3,jb2,jL2,jeta)); 
               resf(jb4,jL3,jb2,jL2,jeta)=freq(jfreq); 
            end 
      end 
   end 
  end 
         end 
     end 
end 
for jeta=1:length(eta); 
     for jL2=1:length(L2); 
         for jb2=1:length(b2); 
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             for  jL3=1:length(L3); 
                 for jb4=1:length(b4); 
        b3(jb4,jb2)=0.5*(b2(jb2)-b1-2*b4(jb4)); 
        dc(jb4,jL3,jb2,jL2)=(0.5*L2(jL2)*b2(jb2)*L2(jL2)-

0.5*L3(jL3)*(b1+2*b4(jb4))*L3(jL3))/(L2(jL2)*b2(jb2)-

L3(jL3)*(b1+2*b4(jb4))); % distance of the mass center to the end of 

the HH rectangle using L2,L3,b1,b4 
        ds(jb4,jL3,jb2,jL2)=(0.5*L2(jL2)*b2(jb2)*L2(jL2)-

0.5*L3(jL3)*(b1+2*b4(jb4))*L3(jL3))/(L2(jL2)*b2(jb2)-

L3(jL3)*(b1+2*b4(jb4)))-L3(jL3); % distance of the mass center to the 

end of the stem using L2,L3,b1,b4 
        dc2(jb4,jL3,jb2,jL2)=(0.5*L2(jL2)*b2(jb2)*L2(jL2)-

0.5*L3(jL3)*(b2(jb2)-2*b3(jb4,jb2))*L3(jL3))/(L2(jL2)*b2(jb2)-

L3(jL3)*(b2(jb2)-2*b3(jb4,jb2))); % distance of the mass center to the 

end of the HH rectangle using L2,L3,b2,b3 
        ds2(jb4,jL3,jb2,jL2)=(0.5*L2(jL2)*b2(jb2)*L2(jL2)-

0.5*L3(jL3)*(b2(jb2)-2*b3(jb4,jb2))*L3(jL3))/(L2(jL2)*b2(jb2)-

L3(jL3)*(b2(jb2)-2*b3(jb4,jb2)))-L3(jL3); % distance of the mass center 

to the end of the stem using L2,L3,b2,b3 
Jd(jb4,jL3,jb2,jL2)=(1/12)*Pb*L2(jL2)*b2(jb2)*h*(L2(jL2)^2+b2(jb2)^2)+(

dc(jb4,jL3,jb2,jL2)-0.5*L2(jL2))^2*Pb*L2(jL2)*b2(jb2)*h-

((1/12)*Pb*L3(jL3)*(b1+2*b4(jb4))*h*(L3(jL3)^2+(b1+2*b4(jb4))^2)+(ds(jb

4,jL3,jb2,jL2)+0.5*L3(jL3))^2*Pb*L3(jL3)*(b1+2*b4(jb4))*h); % moment of 

inertia due to rotation 
        md(jb4,jL3,jb2,jL2)=Pb*h*(L2(jL2)*b2(jb2)-

L3(jL3)*(b1+2*b4(jb4))); % mass of the HH 
        %%%%%%%%%% Hydrodynamic function including thickness 

correction %%%%%%%%%% 
Reym(jb4,jL3,jb2,jL2,jeta)=(Pf*resf(jb4,jL3,jb2,jL2,jeta)*b1^2)/(4*eta(

jeta)); 
Reyd1(jb4,jL3,jb2,jL2,jeta)=(Pf*resf(jb4,jL3,jb2,jL2,jeta)*b2(jb2)^2)/(

4*eta(jeta)); 
Reyd2(jb4,jL3,jb2,jL2,jeta)=(Pf*resf(jb4,jL3,jb2,jL2,jeta)*b3(jb4,jb2)^

2)/(4*eta(jeta)); 
           Gammarm(jb4,jL3,jb2,jL2,jeta)=Reym(jb4,jL3,jb2,jL2,jeta)^-

0.5*(0.9003+0.6105*(h/b1)^0.5+2.1722*(h/b1)^1)+(-0.0021*(h/b1)^0.5-

0.1459*(h/b1)^1+0.8255*(h/b1)^1.5+0.8144*(h/b1)^2); 
           Gammaim(jb4,jL3,jb2,jL2,jeta)=Reym(jb4,jL3,jb2,jL2,jeta)^-

1*(2.5758-1.3388*(h/b1)^0.5)+Reym(jb4,jL3,jb2,jL2,jeta)^-

0.5*(0.9003+0.7121*(h/b1)^0.5+1.6845*(h/b1)^1+0.8236*(h/b1)^1.5-

0.4178*(h/b1)^2); 
           Gammard1(jb4,jL3,jb2,jL2,jeta)=Reyd1(jb4,jL3,jb2,jL2,jeta)^-

0.5*(0.9003+0.6105*(h/b2(jb2))^0.5+2.1722*(h/b2(jb2))^1)+(-

0.0021*(h/b2(jb2))^0.5-

0.1459*(h/b2(jb2))^1+0.8255*(h/b2(jb2))^1.5+0.8144*(h/b2(jb2))^2); 
           Gammaid1(jb4,jL3,jb2,jL2,jeta)=Reyd1(jb4,jL3,jb2,jL2,jeta)^-

1*(2.5758-1.3388*(h/b2(jb2))^0.5)+Reyd1(jb4,jL3,jb2,jL2,jeta)^-

0.5*(0.9003+0.7121*(h/b2(jb2))^0.5+1.6845*(h/b2(jb2))^1+0.8236*(h/b2(jb

2))^1.5-0.4178*(h/b2(jb2))^2); 
           Gammard2(jb4,jL3,jb2,jL2,jeta)=Reyd2(jb4,jL3,jb2,jL2,jeta)^-

0.5*(0.9003+0.6105*(h/b3(jb4,jb2))^0.5+2.1722*(h/b3(jb4,jb2))^1)+(-

0.0021*(h/b3(jb4,jb2))^0.5-

0.1459*(h/b3(jb4,jb2))^1+0.8255*(h/b3(jb4,jb2))^1.5+0.8144*(h/b3(jb4,jb

2))^2); 
           Gammaid2(jb4,jL3,jb2,jL2,jeta)=Reyd2(jb4,jL3,jb2,jL2,jeta)^-

1*(2.5758-1.3388*(h/b3(jb4,jb2))^0.5)+Reyd2(jb4,jL3,jb2,jL2,jeta)^-

0.5*(0.9003+0.7121*(h/b3(jb4,jb2))^0.5+1.6845*(h/b3(jb4,jb2))^1+0.8236*
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(h/b3(jb4,jb2))^1.5-0.4178*(h/b3(jb4,jb2))^2); 
mfpmbar(jb4,jL3,jb2,jL2,jeta)=0.25*pi*Pf*b1^2*Gammarm(jb4,jL3,jb2,jL2,j

eta); 
cfpmbar(jb4,jL3,jb2,jL2,jeta)=0.25*pi*Pf*b1^2*Gammaim(jb4,jL3,jb2,jL2,j

eta)*resf(jb4,jL3,jb2,jL2,jeta); 
mfpdbar1(jb4,jL3,jb2,jL2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammard1(jb4,jL3,jb

2,jL2,jeta); 
cfpdbar1(jb4,jL3,jb2,jL2,jeta)=0.25*pi*Pf*b2(jb2)^2*Gammaid1(jb4,jL3,jb

2,jL2,jeta)*resf(jb4,jL3,jb2,jL2,jeta); 
mfpdbar2(jb4,jL3,jb2,jL2,jeta)=0.25*pi*Pf*b3(jb4,jb2)^2*Gammard2(jb4,jL

3,jb2,jL2,jeta); 
cfpdbar2(jb4,jL3,jb2,jL2,jeta)=0.25*pi*Pf*b3(jb4,jb2)^2*Gammaid2(jb4,jL

3,jb2,jL2,jeta)*resf(jb4,jL3,jb2,jL2,jeta); 
Kp(jb4,jL3,jb2,jL2,jeta)=L1*((resf(jb4,jL3,jb2,jL2,jeta)^2*(mmbar+mfpmb

ar(jb4,jL3,jb2,jL2,jeta))-

1i*resf(jb4,jL3,jb2,jL2,jeta)*cfpmbar(jb4,jL3,jb2,jL2,jeta))/(E*Im))^0.

25; 
           KKp=Kp(jb4,jL3,jb2,jL2,jeta); 
           Cfp=cosh(KKp); 
           Sfp=sinh(KKp); 
           sfp=sin(KKp); 
           cfp=cos(KKp); 
           Gfp(jb4,jL3,jb2,jL2,jeta)=0.5*(E*Im)^(-

1)*(2*resf(jb4,jL3,jb2,jL2,jeta)^2*L1^2*ds(jb4,jL3,jb2,jL2)*md(jb4,jL3,

jb2,jL2)+resf(jb4,jL3,jb2,jL2,jeta)^2*L1^2*(L2(jL2)-

L3(jL3))^2*mfpdbar1(jb4,jL3,jb2,jL2,jeta)-

2*resf(jb4,jL3,jb2,jL2,jeta)^2*L1^2*L3(jL3)^2*mfpdbar2(jb4,jL3,jb2,jL2,

jeta)-j*resf(jb4,jL3,jb2,jL2,jeta)*L1^2*(L2(jL2)-

L3(jL3))^2*cfpdbar1(jb4,jL3,jb2,jL2,jeta)+2*j*resf(jb4,jL3,jb2,jL2,jeta

)*L1^2*L3(jL3)^2*cfpdbar2(jb4,jL3,jb2,jL2,jeta)); 
           Hfp(jb4,jL3,jb2,jL2,jeta)=(3*E*Im)^(-

1)*(3*resf(jb4,jL3,jb2,jL2,jeta)^2*L1*ds(jb4,jL3,jb2,jL2)^2*md(jb4,jL3,

jb2,jL2)+resf(jb4,jL3,jb2,jL2,jeta)^2*L1*(L2(jL2)-

L3(jL3))^3*mfpdbar1(jb4,jL3,jb2,jL2,jeta)+2*resf(jb4,jL3,jb2,jL2,jeta)^

2*L1*L3(jL3)^3*mfpdbar2(jb4,jL3,jb2,jL2,jeta)+3*resf(jb4,jL3,jb2,jL2,je

ta)^2*L1*Jd(jb4,jL3,jb2,jL2)-j*resf(jb4,jL3,jb2,jL2,jeta)*L1*(L2(jL2)-

L3(jL3))^3*cfpdbar1(jb4,jL3,jb2,jL2,jeta)-

2*j*resf(jb4,jL3,jb2,jL2,jeta)*L1*L3(jL3)^3*cfpdbar2(jb4,jL3,jb2,jL2,je

ta)); 
           Ffp(jb4,jL3,jb2,jL2,jeta)=(E*Im)^(-1)*(-

resf(jb4,jL3,jb2,jL2,jeta)^2*L1^3*md(jb4,jL3,jb2,jL2)-

resf(jb4,jL3,jb2,jL2,jeta)^2*L1^3*(L2(jL2)-

L3(jL3))*mfpdbar1(jb4,jL3,jb2,jL2,jeta)-

2*resf(jb4,jL3,jb2,jL2,jeta)^2*L1^3*L3(jL3)*mfpdbar2(jb4,jL3,jb2,jL2,je

ta)+j*resf(jb4,jL3,jb2,jL2,jeta)*L1^3*(L2(jL2)-

L3(jL3))*cfpdbar1(jb4,jL3,jb2,jL2,jeta)+2*j*resf(jb4,jL3,jb2,jL2,jeta)*

L1^3*L3(jL3)*cfpdbar2(jb4,jL3,jb2,jL2,jeta)); 
           Kfp(jb4,jL3,jb2,jL2,jeta)=0.5*(E*Im)^(-1)*(-

2*resf(jb4,jL3,jb2,jL2,jeta)^2*L1^2*ds(jb4,jL3,jb2,jL2)*md(jb4,jL3,jb2,

jL2)-resf(jb4,jL3,jb2,jL2,jeta)^2*L1^2*(L2(jL2)-

L3(jL3))^2*mfpdbar1(jb4,jL3,jb2,jL2,jeta)+2*resf(jb4,jL3,jb2,jL2,jeta)^

2*L1^2*L3(jL3)^2*mfpdbar2(jb4,jL3,jb2,jL2,jeta)+j*resf(jb4,jL3,jb2,jL2,

jeta)*L1^2*(L2(jL2)-L3(jL3))^2*cfpdbar1(jb4,jL3,jb2,jL2,jeta)-

2*j*resf(jb4,jL3,jb2,jL2,jeta)*L1^2*L3(jL3)^2*cfpdbar2(jb4,jL3,jb2,jL2,

jeta)); 
           MMfp(jb4,jL3,jb2,jL2,jeta)=KKp^2*(Cfp+cfp)-

Gfp(jb4,jL3,jb2,jL2,jeta)*(Cfp-cfp)-
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Hfp(jb4,jL3,jb2,jL2,jeta)*KKp*(Sfp+sfp); 
           NNfp(jb4,jL3,jb2,jL2,jeta)=KKp^2*(Sfp+sfp)-

Gfp(jb4,jL3,jb2,jL2,jeta)*(Sfp-sfp)-Hfp(jb4,jL3,jb2,jL2,jeta)*KKp*(Cfp-

cfp); 
OOfp(jb4,jL3,jb2,jL2,jeta)=KKp^(-

1)*(KKp^2*sfp+Gfp(jb4,jL3,jb2,jL2,jeta)*sfp+Hfp(jb4,jL3,jb2,jL2,jeta)*K

Kp*cfp); 
  PPfp(jb4,jL3,jb2,jL2,jeta)=KKp^3*(Sfp-sfp)-

Ffp(jb4,jL3,jb2,jL2,jeta)*(Cfp-cfp)-

Kfp(jb4,jL3,jb2,jL2,jeta)*KKp*(Sfp+sfp); 
           QQfp(jb4,jL3,jb2,jL2,jeta)=KKp^3*(Cfp+cfp)-

Ffp(jb4,jL3,jb2,jL2,jeta)*(Sfp-sfp)-Kfp(jb4,jL3,jb2,jL2,jeta)*KKp*(Cfp-

cfp); 
           RRfp(jb4,jL3,jb2,jL2,jeta)=KKp^(-

1)*(KKp^3*cfp+Ffp(jb4,jL3,jb2,jL2,jeta)*sfp+Kfp(jb4,jL3,jb2,jL2,jeta)*K

Kp*cfp); 
A1fp(jb4,jL3,jb2,jL2,jeta)=(OOfp(jb4,jL3,jb2,jL2,jeta)*QQfp(jb4,jL3,jb2

,jL2,jeta)-

RRfp(jb4,jL3,jb2,jL2,jeta)*NNfp(jb4,jL3,jb2,jL2,jeta))/(MMfp(jb4,jL3,jb

2,jL2,jeta)*QQfp(jb4,jL3,jb2,jL2,jeta)-

PPfp(jb4,jL3,jb2,jL2,jeta)*NNfp(jb4,jL3,jb2,jL2,jeta)); 
A2fp(jb4,jL3,jb2,jL2,jeta)=(OOfp(jb4,jL3,jb2,jL2,jeta)*PPfp(jb4,jL3,jb2

,jL2,jeta)-

RRfp(jb4,jL3,jb2,jL2,jeta)*MMfp(jb4,jL3,jb2,jL2,jeta))/(NNfp(jb4,jL3,jb

2,jL2,jeta)*PPfp(jb4,jL3,jb2,jL2,jeta)-

MMfp(jb4,jL3,jb2,jL2,jeta)*QQfp(jb4,jL3,jb2,jL2,jeta));    
           xi=sym('xi','real'); % denotes x/L1 
X(jb4,jL3,jb2,jL2,jeta)=A1fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp*xi)-

cos(KKp*xi))+A2fp(jb4,jL3,jb2,jL2,jeta)*(sinh(KKp*xi)-

sin(KKp*xi))+KKp^(-1)*sin(KKp*xi); % normalized shape function 
Xp(jb4,jL3,jb2,jL2,jeta)=KKp*(A1fp(jb4,jL3,jb2,jL2,jeta)*(sinh(KKp*xi)+

sin(KKp*xi))+A2fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp*xi)-

cos(KKp*xi))+KKp^(-1)*cos(KKp*xi)); % first derivative of normalized 

deflection measns X' 
Xpp(jb4,jL3,jb2,jL2,jeta)=KKp^2*(A1fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp*x

i)+cos(KKp*xi))+A2fp(jb4,jL3,jb2,jL2,jeta)*(sinh(KKp*xi)+sin(KKp*xi))-

KKp^(-1)*sin(KKp*xi)); % second derivative of normalized deflection 

measns X'' 
BB1(jb4,jL3,jb2,jL2,jeta)=int((real(Xpp(jb4,jL3,jb2,jL2,jeta)))^2, xi, 

0, 1); 
BB2(jb4,jL3,jb2,jL2,jeta)=int((imag(Xpp(jb4,jL3,jb2,jL2,jeta)))^2, xi, 

0, 1); 
BB3(jb4,jL3,jb2,jL2,jeta)=int((real(Xpp(jb4,jL3,jb2,jL2,jeta)))*(imag(X

pp(jb4,jL3,jb2,jL2,jeta))), xi, 0, 1); 
BB4(jb4,jL3,jb2,jL2,jeta)=int((real(X(jb4,jL3,jb2,jL2,jeta)))^2, xi, 0, 

1); 
BB5(jb4,jL3,jb2,jL2,jeta)=int((imag(X(jb4,jL3,jb2,jL2,jeta)))^2, xi, 0, 

1); 
BB6(jb4,jL3,jb2,jL2,jeta)=int((real(X(jb4,jL3,jb2,jL2,jeta)))*(imag(X(j

b4,jL3,jb2,jL2,jeta))), xi, 0, 1); 
BB7(jb4,jL3,jb2,jL2,jeta)=(real(A1fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp)-

cos(KKp))+A2fp(jb4,jL3,jb2,jL2,jeta)*(sinh(KKp)-sin(KKp))+KKp^(-

1)*sin(KKp)))^2; 
BB8(jb4,jL3,jb2,jL2,jeta)=(imag(A1fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp)-

cos(KKp))+A2fp(jb4,jL3,jb2,jL2,jeta)*(sinh(KKp)-sin(KKp))+KKp^(-

1)*sin(KKp)))^2; 
BB9(jb4,jL3,jb2,jL2,jeta)=(real(A1fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp)-
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cos(KKp))+A2fp(jb4,jL3,jb2,jL2,jeta)*(sinh(KKp)-sin(KKp))+KKp^(-

1)*sin(KKp)))*(imag(A1fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp)-

cos(KKp))+A2fp(jb4,jL3,jb2,jL2,jeta)*(sinh(KKp)-sin(KKp))+KKp^(-

1)*sin(KKp))); 
BB13(jb4,jL3,jb2,jL2,jeta)=(real(KKp*(A1fp(jb4,jL3,jb2,jL2,jeta)*(sinh(

KKp)+sin(KKp))+A2fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp)-cos(KKp))+KKp^(-

1)*cos(KKp))))^2; 
BB14(jb4,jL3,jb2,jL2,jeta)=(imag(KKp*(A1fp(jb4,jL3,jb2,jL2,jeta)*(sinh(

KKp)+sin(KKp))+A2fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp)-cos(KKp))+KKp^(-

1)*cos(KKp))))^2; 
BB15(jb4,jL3,jb2,jL2,jeta)=(real(KKp*(A1fp(jb4,jL3,jb2,jL2,jeta)*(sinh(

KKp)+sin(KKp))+A2fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp)-cos(KKp))+KKp^(-

1)*cos(KKp))))*(imag(KKp*(A1fp(jb4,jL3,jb2,jL2,jeta)*(sinh(KKp)+sin(KKp

))+A2fp(jb4,jL3,jb2,jL2,jeta)*(cosh(KKp)-cos(KKp))+KKp^(-

1)*cos(KKp))));BB10(jb4,jL3,jb2,jL2,jeta)=sqrt(BB7(jb4,jL3,jb2,jL2,jeta

))*sqrt(BB13(jb4,jL3,jb2,jL2,jeta)); 
BB11(jb4,jL3,jb2,jL2,jeta)=sqrt(BB8(jb4,jL3,jb2,jL2,jeta))*sqrt(BB14(jb

4,jL3,jb2,jL2,jeta)); 
BB12(jb4,jL3,jb2,jL2,jeta)=sqrt(BB7(jb4,jL3,jb2,jL2,jeta))*sqrt(BB14(jb

4,jL3,jb2,jL2,jeta))+sqrt(BB13(jb4,jL3,jb2,jL2,jeta))*sqrt(BB8(jb4,jL3,

jb2,jL2,jeta)); 
            BB16(jb4,jL3,jb2,jL2,jeta)=BB13(jb4,jL3,jb2,jL2,jeta); 
            BB17(jb4,jL3,jb2,jL2,jeta)=BB14(jb4,jL3,jb2,jL2,jeta); 
            BB18(jb4,jL3,jb2,jL2,jeta)=BB15(jb4,jL3,jb2,jL2,jeta); 
            BB19(jb4,jL3,jb2,jL2,jeta)=-

imag(2*A1fp(jb4,jL3,jb2,jL2,jeta)*KKp^2); 
                                 for jtau=1:length(tau) 
F(jtau,jb4,jL3,jb2,jL2,jeta)=BB1(jb4,jL3,jb2,jL2,jeta)*(cos(jtau))^2+BB

2(jb4,jL3,jb2,jL2,jeta)*(sin(jtau))^2-

2*BB3(jb4,jL3,jb2,jL2,jeta)*(cos(jtau))*(sin(jtau))+(L1^4*mmbar*resf(jb

4,jL3,jb2,jL2,jeta)^2*(E*Im)^(-

1))*(BB4(jb4,jL3,jb2,jL2,jeta)*(sin(jtau))^2+BB5(jb4,jL3,jb2,jL2,jeta)*

(cos(jtau))^2+2*BB6(jb4,jL3,jb2,jL2,jeta)*(cos(jtau))*(sin(jtau)))+(md(

jb4,jL3,jb2,jL2)*L1^3*resf(jb4,jL3,jb2,jL2,jeta)^2*(E*Im)^(-

1))*(BB7(jb4,jL3,jb2,jL2,jeta)*(sin(jtau))^2+BB8(jb4,jL3,jb2,jL2,jeta)*

(cos(jtau))^2+2*BB9(jb4,jL3,jb2,jL2,jeta)*(cos(jtau))*(sin(jtau)))+(2*m

d(jb4,jL3,jb2,jL2)*L1^2*ds(jb4,jL3,jb2,jL2)*resf(jb4,jL3,jb2,jL2,jeta)^

2*(E*Im)^(-

1))*(BB10(jb4,jL3,jb2,jL2,jeta)*(sin(jtau))^2+BB11(jb4,jL3,jb2,jL2,jeta

)*(cos(jtau))^2+BB12(jb4,jL3,jb2,jL2,jeta)*(cos(jtau))*(sin(jtau)))+(md

(jb4,jL3,jb2,jL2)*L1*ds(jb4,jL3,jb2,jL2)^2*resf(jb4,jL3,jb2,jL2,jeta)^2

*(E*Im)^(-

1))*(BB13(jb4,jL3,jb2,jL2,jeta)*(sin(jtau))^2+BB14(jb4,jL3,jb2,jL2,jeta

)*(cos(jtau))^2+2*BB15(jb4,jL3,jb2,jL2,jeta)*(cos(jtau))*(sin(jtau)))+(

Jd(jb4,jL3,jb2,jL2)*L1*resf(jb4,jL3,jb2,jL2,jeta)^2*(E*Im)^(-

1))*(BB16(jb4,jL3,jb2,jL2,jeta)*(sin(jtau))^2+BB17(jb4,jL3,jb2,jL2,jeta

)*(cos(jtau))^2+2*BB18(jb4,jL3,jb2,jL2,jeta)*(cos(jtau))*(sin(jtau))); 
Qua(jtau,jb4,jL3,jb2,jL2,jeta)=F(jtau,jb4,jL3,jb2,jL2,jeta)/BB19(jb4,jL

3,jb2,jL2,jeta); 
   end 
end 
  end 
end 
  end 
end 
for jeta=1:length(eta); 
     for jL2=1:length(L2); 
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         for jb2=1:length(b2); 
             for  jL3=1:length(L3); 
                 for jb4=1:length(b4); 
Quaactual(jb4,jL3,jb2,jL2,jeta)=max(double(Qua(:,jb4,jL3,jb2,jL2,jeta))

)end 
             end 
         end 
     end 
end 
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