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Abstract: Many RNA-processing events in the cell nucleus involve the 

Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the poly(A) 

polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. 

TRAMP polyadenylates RNAs designated for processing by the nuclear 

exosome. In addition, TRAMP functions as an exosome cofactor during RNA 

degradation, and it has been speculated that this role involves disruption of 

RNA secondary structure. However, it is unknown whether TRAMP displays 
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RNA unwinding activity. It is also not clear how unwinding would be 

coordinated with polyadenylation and the function of the RNA helicase Mtr4p 

in modulating poly(A) addition. Here, we show that TRAMP robustly unwinds 

RNA duplexes. The unwinding activity of Mtr4p is significantly stimulated by 

Trf4p/Air2p, but the stimulation of Mtr4p does not depend on ongoing 

polyadenylation. Nonetheless, polyadenylation enables TRAMP to unwind RNA 

substrates that it otherwise cannot separate. Moreover, TRAMP displays 

optimal unwinding activity on substrates with a minimal Mtr4p binding site 

comprised of adenylates. Our results suggest a model for coordination 

between unwinding and polyadenylation activities by TRAMP that reveals 

remarkable synergy between helicase and poly(A) polymerase. 

Keywords: ATP, surveillance, kinetics, decay, metabolism 

The Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex is involved 

in nuclear RNA surveillance, 3′-end processing of rRNA, small nucleolar 

RNAs (snoRNAs), and snRNAs, and in gene silencing and chromatin 

maintenance (1–3). The TRAMP complex consists of three subunits 

that are highly conserved in eukaryotes: a noncanonical poly(A) 

polymerase (Trf4p or Trf5p in Saccharomyces cerevisiae), a Zn-

knuckle protein (Air2p or Air1p), and the RNA helicase Mtr4p (4–7). 

TRAMP assists RNA degradation by the nuclear exosome, most notably 

by appending short (∼4–5 nt) oligo(A) tails at the 3′ ends of RNAs 

slated for exosome-mediated degradation (4, 5, 8–10). In addition, it 

has been speculated that TRAMP enables the nuclear exosome to 

efficiently degrade structured RNA through unwinding activity 

associated with Mtr4p (1, 2, 11–13). 

However, RNA helicase activity has not been demonstrated for 

TRAMP. Though Mtr4p alone has been shown to unwind RNA duplexes 

in vitro (12, 13), it is not known whether binding of Trf4p/Air2p 

abolishes, decreases, increases, or otherwise alters this helicase 

activity. This question is important for TRAMP function, because Mtr4p 

and Trf4p operate with opposite polarities. Mtr4p only unwinds 

duplexes with a 3′ unpaired region, i.e., with a 3′ to 5′ polarity (12, 

13). Trf4p polyadenylates the 3′ end of RNA and thus possesses 5′ to 

3′ polarity (4, 5). How unwinding and polyadenylation with opposite 

polarities are coordinated in one complex is not readily apparent. 

Moreover, Mtr4p controls the lengths of poly(A) tails appended 

by TRAMP (9). This role of Mtr4p requires ATP, but does not involve 

unwinding (9). Instead, Mtr4p binds to the 3′ end of the RNA, detects 

http://dx.doi.org/10.1073/pnas.1201085109
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r10
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/#r9


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the national Academy of Sciences, Vol. 109, No. 19 (2012): pg. 7292-7297. DOI. This article is © National 
Academy of Sciences and permission has been granted for this version to appear in e-Publications@Marquette. National 
Academy of Sciences does not grant permission for this article to be further copied/distributed or hosted elsewhere 
without the express permission from National Academy of Sciences. 

3 

 

the number of 3′-terminal adenosines, and, in response, modulates 

ATP affinity and adenylation rate constants of Trf4p (9). These 

observations suggest an intricate functional interplay between helicase 

and polymerase during polyadenylation. 

Here we show that TRAMP possesses robust unwinding activity 

that is also directed by complex functional interplay between Mtr4p 

and Trf4p/Air2p. Using recombinant S. cerevisiae TRAMP, we find that 

Trf4p/Air2p significantly stimulates the unwinding activity of Mtr4p. 

However, this stimulation does not depend on ongoing 

polyadenylation. Nonetheless, polyadenylation by Trf4p enables Mtr4p 

to unwind substrates that it otherwise cannot separate. Our data show 

optimal unwinding activity of TRAMP on substrates that contain just a 

minimal binding site for Mtr4p, preferably consisting of adenylates. 

Together with previous results, our findings suggest a model for the 

coordination between unwinding and polyadenylation by TRAMP that 

highlights remarkable synergy between helicase and polymerase 

activities with opposite polarities. 

Results 

Unwinding Activity of Mtr4p Is Stimulated in the TRAMP 

Complex.  

To examine RNA unwinding activity by the TRAMP complex, we 

performed pre–steady-state unwinding reactions with a substrate 

containing a 16-bp duplex and a 3′ single-stranded extension of 25 nt 

(Fig. 1A). This substrate had been previously used for unwinding 

measurements by Mtr4p (13). To preclude complications in data 

analysis and interpretation caused by simultaneous polyadenylation, 

we conducted unwinding reactions with dATP, which promotes Mtr4p-

driven unwinding but not polyadenylation by Trf4p (Fig. 1A). 
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Fig. 1. The unwinding activity of Mtr4p is stimulated in the TRAMP complex. (A) 

Representative PAGE for unwinding reaction (RNA: 16-bp duplex with 3′ 25-nt single-

stranded region, 0.5 nM, 2 mM equimolar dATP-Mg2+) by 200 nM Mtr4p (Left) and 200 

nM TRAMP (Right). Aliquots were removed at 1, 3, 10, 20, and 60 min for Mtr4p, and 

at 0.5, 1, 3, 10, and 20 min for TRAMP. (B) Time courses for unwinding reactions with 

Mtr4p (○) and TRAMP (●). Conditions were as in A. Data show averages from three 

independent experiments; error bars represent one SD. Curves represent best fits to 

the integrated first-order rate law, yielding observed rate constants (kobs). For Mtr4p, 
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kobs, unw = 0.06 ± 0.01 min−1; for TRAMP, kobs, unw = 0.59 ± 0.06 min−1. (C) 

Dependence of unwinding rate constants (2 mM dATP-Mg2+) on enzyme concentrations 

for Mtr4p (open circles), WT TRAMP (filled black circles), and TRAMPTrf4-236p (filled gray 

circles). Rate constants were determined from multiple independent reactions; error 

bars represent one SD. Curves represent the best fit to the binding isotherm, kunw = 

kmax, E [E]/([E] + K1/2, E). [E], enzyme concentration. For Mtr4p, kmax, Mtr4p = 0.090 ± 

0.003 min−1, K1/2, Mtr4p = 105 ± 36 nM. For WT TRAMP, kmax, TR = 0.84 ± 0.10 min−1, 

K1/2, TR = 94 ± 31 nM. For TRAMPTrf4-236p, kmax, TR(m) = 0.76 ± 0.06 min−1, K1/2, TR(m) = 

105 ± 20 nM. (D) Dependence of unwinding rate constants on ATP and dATP 

concentrations for Mtr4p (800 nM). Rate constants were determined from multiple 

reactions; error bars represent one SD. Curves represent the best fit to a binding 

isotherm, kunw = kmax, dATP [dATP]/([dATP] + K1/2, dATP). With ATP, kmax, ATP = 0.11 ± 

0.03 min−1, K1/2, ATP = 1.74 ± 0.75 mM. With dATP, kmax, dATP = 0.11 min−1, K1/2, dATP = 

2.08 ± 0.27 mM. (E) Dependence of unwinding rate constants on ATP and dATP 

concentrations for TRAMPTrf4-236p and WT TRAMP (both at 300 nM). Rate constants 

were determined from multiple reactions; error bars represent one SD. Curves 

represent the best fit to the Hill equation kunw = kmax, dATP [dATP]n/([dATP]n + (K1/2, 

dATP)n). For WT TRAMP, kmax, dATP = 0.56 ± 0.04 min−1, K1/2, dATP = 0.77 ± 0.08 mM, n = 

1.9 ± 0.2. For TRAMPTrf4-236p with dATP, kmax, dATP = 0.40 ± 0.01 min−1, K1/2, dATP = 0.56 

± 0.03 mM, n = 3.4 ± 0.7. For TRAMPTrf4-236p with ATP, kmax, ATP = 0.43 ± 0.03 min−1, 

K1/2, ATP = 0.65 ± 0.08 mM, n = 1.9 ± 0.3. 

Unwinding was seen with Mtr4p alone (Fig. 1A), consistent with 

previous data (13). No unwinding was observed with only Trf4p/Air2p. 

The complete TRAMP complex unwound the substrate faster than 

Mtr4p at identical enzyme concentrations (Fig. 1 A and B). Unwinding 

rate constants extrapolated to enzyme saturation were approximately 

ninefold higher for TRAMP than for Mtr4p (Fig. 1C). Functional 

substrate affinities of TRAMP and Mtr4p (K1/2) did not differ 

significantly (Fig. 1C). 

The use of dATP in the unwinding reactions did not alter reaction 

parameters for Mtr4p alone, compared with ATP (Fig. 1D). To measure 

parameters with dATP and ATP for TRAMP, we generated TRAMP with 

Trf4p mutations (Trf4-236p) in the polymerase active site that abolish 

polyadenylation activity (5). TRAMPTrf4-236p displayed unwinding activity 

highly similar to WT TRAMP with dATP (Fig. 1C). The activity was 

virtually unchanged with ATP (Fig. 1E). The data also revealed that the 

stimulation of the unwinding activity of Mtr4p by Trf4p/Air2p does not 

require an intact active site in the poly(A) polymerase. 

Both WT TRAMP and TRAMPTrf4-236p displayed a slightly higher 

affinity for dATP/ATP [K1/2
(dATP) = 0.74 ± 0.04 mM] compared with 

Mtr4p alone [K1/2
(dATP) = 2.08 ± 0.27 mM; compare Fig. 1D with Fig. 
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1E]. This increase in dATP/ATP affinity contributes to the observed 

stimulation of Mtr4p by Trf4p/Air2p (Fig. 1C). Notably, dATP/ATP 

binding by TRAMP and TRAMPTrf4-236p was cooperative (n = 1.9 ± 0.2; 

Fig. 1E). No clear cooperativity was seen for Mtr4p (n = 1.5 ± 0.1; Fig. 

1D). These observations raise the possibility that unwinding by TRAMP 

involves dATP binding to both the helicase and the polymerase, 

although no polyadenylation took place. Collectively, our data show 

robust unwinding activity by TRAMP and reveal that Trf4p/Air2p 

stimulates the helicase activity of Mtr4p by increasing the ATP affinity 

and the strand-separation rate constant (kunw
max), without significantly 

changing RNA affinity of Mtr4p. 

Unwinding Rate Constants by Mtr4p and TRAMP Depend 

on Duplex Length.  

We next examined the impact of duplex length on the unwinding 

rate constants for TRAMP and Mtr4p using a substrate with a 36-bp 

duplex region (Fig. 2). Both Mtr4p and TRAMP unwound the substrate, 

but TRAMP showed significantly higher activity (Fig. 2). Unwinding of 

this duplex by Mtr4p is notable, despite the modest reaction 

amplitude, because other RNA helicases, especially members of the 

DEAD-box family, do not separate duplexes of this length to an 

appreciable degree (14, 15). Both Mtr4p and TRAMP also facilitated 

strand annealing, which accounts for the lower reaction amplitudes of 

the 36-bp duplex, compared with the reaction with the 16-bp complex 

(Fig. S1). Unwinding rate constants for both TRAMP and Mtr4p were 

roughly fourfold lower for the 36-bp substrate than for the 16-bp 

substrate (Fig. 2 C and D). Sensitivity of unwinding rate constants to 

duplex length and stability is a hallmark of DEAD-box RNA helicases, 

which unwind duplexes in a nonpolar fashion (16–20). In contrast, the 

viral RNA helicases of the NS3/NPH-II family, which unwind duplexes 

with strict polarity, show comparably small or no effects of duplex 

length or stability on unwinding rate constants (21, 22). 
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Fig. 2. Mtr4p and TRAMP unwind a 36-bp RNA duplex. (A) Representative PAGE for 
unwinding reaction (RNA: 36-bp duplex with 3′ 25-nt single-stranded region, 0.5 nM, 
2 mM equimolar dATP-Mg2+) by 200 nM Mtr4p. Aliquots were removed at 1, 3, 10, 20, 
and 60 min. (B) Representative PAGE for unwinding reaction (RNA and conditions as in 
A) by 200 nM TRAMP. Aliquots were removed at 0.5, 1, 3, 10, and 20 min. (C) Time 

course for unwinding of the 36-bp duplex RNA by Mtr4p (conditions as in A). Data 
show averages from three independent experiments; error bars indicate one SD. For 
curve fitting, see Fig. S1 (observed unwinding rate constant kobs, unw = 0.02 ± 0.02 

min−1). (D) Time course for unwinding of the 36-bp duplex RNA by TRAMP (conditions 
as in A). Data show averages from three independent experiments; error bars indicate 
one SD. For curve fitting, see Fig. S1 (kobs, unw = 0.22 ± 0.05 min−1). 

Duplex Unwinding by Mtr4p and TRAMP Requires an 

RNA Loading Strand.  

To further probe the extent to which duplex unwinding by Mtr4p 

and TRAMP resembled unwinding by the nonpolar DEAD-box RNA 

helicases, we examined unwinding of RNA/DNA hybrids. DEAD-box 

helicases separate DNA/RNA hybrids, regardless of which strand is 

DNA (19, 20, 23). In contrast, RNA helicases that act with defined 

polarity, such as viral NS3/NPH-II RNA helicases or the DEAH/RHA 

helicase Prp22p, usually require the loading strand to be RNA (24, 25). 

Both Mtr4p and TRAMP readily unwound the hybrid substrate with the 

RNA loading strand, but not the substrate with a DNA loading strand 
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(Fig. 3). These characteristics clearly differ from DEAD-box helicases 

(15). 

 
Fig. 3. Duplex unwinding by Mtr4p and TRAMP requires an RNA bottom strand. Time 

courses of unwinding reactions of DNA/RNA hybrid duplexes by Mtr4p (A) and TRAMP 

(B) (conditions as in Fig. 1). In the 16-bp RNA duplex with the 25-nt single-stranded 

region (Fig. 1A), top, bottom, or both RNA strands (R) were replaced by DNA (D), as 

indicated. Duplexes with DNA bottom strands were not unwound. Mtr4p unwound the 

substrate with the DNA top strand at kobs, unw = 0.07 ± 0.01 min−1; TRAMP at kobs, unw 

= 0.54 ± 0.07 min−1. 

The data thus show that duplex unwinding by Mtr4p and TRAMP 

shares major similarities with the unwinding mode of polar NS3/NPH-II 

or DEAH/RHA helicases. However, the duplex length dependence of 

unwinding rate constants resembles DEAD-box proteins. Together, 

these observations suggest that unwinding by Mtr4p and TRAMP 

involves binding of the helicase to the duplex/single-stranded region in 

a defined, polar fashion. However, it is not clear whether strand 

separation involves translocation over many steps, as in NS3/NPH-II 

RNA helicases (26). We were not able to experimentally evaluate 

processivity or translocation in the unwinding reaction for either Mtr4p 

or TRAMP, because no unwinding activity could be detected under 

single-cycle reaction conditions with excess scavenger RNA. 

Presumably, Mtr4p and TRAMP dissociate from the substrate 

significantly faster than they separate the duplex. 
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Simultaneous Unwinding and Polyadenylation Reveals 

Minimal Overhang Length for Strand Separation by 

TRAMP.  

Having defined basic characteristics of the unwinding reaction 

by TRAMP in the absence of polyadenylation, we next examined duplex 

unwinding with ongoing polyadenylation. Continuous adenylation 

creates a population of substrates with increasing single-stranded 

extensions at the 3′ end (9). It was therefore important to first probe 

whether and how the number of appended adenylates affected the 

ability of TRAMP to unwind duplexes. To this end, we simultaneously 

monitored unwinding and polyadenylation, using the 16-bp duplex with 

a single unpaired nucleotide at the 3′ end (Fig. 4A). The single 

unpaired nucleotide is necessary for efficient polyadenylation, but does 

not support unwinding in the absence of polyadenylation (9). The 

duplex was immobilized on streptavidin beads via a biotin moiety at 

the 3′ end of the top strand. Duplex unwinding released adenylated 

loading strands into the supernatant, whereas the species not 

unwound remained on the beads (Fig. 4A). The distribution of 

unwound vs. not unwound species was then analyzed on denaturing 

PAGE (Fig. 4B). 

 
Fig. 4. Simultaneous polyadenylation and unwinding reaction by TRAMP reveals the 
oligo(A) length required for duplex unwinding. (A) Experimental design for 
simultaneous polyadenylation and unwinding reaction. A 16-bp duplex with a single 
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unpaired nucleotide at the 3′ terminus was immobilized via a biotin moiety (gray dot; 

asterisk marks the radiolabel) on streptavidin beads. The Reaction was started by 
adding TRAMP (300 nM final, 2 mM ATP-Mg2+). After 10 min, the sample was 
centrifuged, and beads and supernatant were separated and then analyzed on 

denaturing PAGE. The circled numbers refer to samples and controls analyzed in B. (B) 
Representative denaturing PAGE (Left) and quantification of unwinding for each RNA 
species (Right). Lane 1: RNA before reaction; lane 2: RNA after reaction and before 
centrifugation; lane 3: RNA on beads sample after centrifugation; lane 4: RNA in 
supernatant after centrifugation. The number of adenines appended (A0 … An) is 
indicated. The plot (Right) shows the fraction of unwound duplex for individual 
adenylated species (signals from lane 4 of the PAGE, divided by the sum of signals 

from lanes 3 and 4 for each species). The sum of signals in lanes 3 and 4 faithfully 
represents the distribution of species in the unsedimented RNA in lane 2 (Fig. S3). The 
dashed line indicates A4. (C) Unwinding reactions (10 min, conditions as in Fig. 1) for 
16-bp substrates with defined overhangs of three, four, and five adenylates (A3–A5, 4- 
to 6-nt overhang) corresponding to RNAs in B. The lane marked 95 °C shows heat-
denatured duplexes. 

We observed exclusively species with at least four adenylates in 

the supernatant and a concurrent decline of the fraction of species 

with four and more adenylates in the duplex (Fig. 4B). This result 

indicates a minimum of five unpaired nucleotides (one protruding 

nucleotide + A4) to be required for unwinding. Virtually identical 

results were obtained by examining polyadenylation and unwinding 

reactions simultaneously without immobilization (Fig. S2). This control 

confirmed that the observed minimum of five unpaired nucleotides was 

not caused by the experimental setup involving substrate 

immobilization. 

To further verify the overhang length required for unwinding, we 

generated three 16-bp duplexes with defined unpaired extensions of 4 

(U + A3), 5 (U + A4), and 6 (U + A5) nt and measured unwinding of 

these substrates by TRAMP without polyadenylation (Fig. 4C). Little 

unwinding was seen for the substrate with the 4-nt extension, whereas 

significant unwinding was observed for the substrate with a 5-nt 

extension, and even more strand separation for the substrate with the 

6-nt extension (Fig. 4C). These observations are clearly consistent 

with the results obtained when measuring unwinding and 

polyadenylation simultaneously, and thus confirm that efficient duplex 

unwinding by TRAMP requires five unpaired nucleotides. Collectively, 

the data define a minimal overhang length for unwinding by TRAMP 

and indicate that this minimal overhang length is independent of the 

actual process of polyadenylation. 
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TRAMP and Mtr4p Preferentially Unwind Substrates with 

Short Poly(A) Tails.  

The minimal overhang length coincides roughly with the length 

of poly(A) tails where Mtr4p starts to inhibit polyadenylation by 

Trf4p/Air2p (9). We therefore tested whether TRAMP and Mtr4p also 

preferred adenylates in unwinding substrates with minimal overhangs. 

We compared unwinding rate constants for substrates with unpaired 

4-, 5-, and 6-nt extensions containing adenylates (U + A3–5) to 

unwinding rate constants of substrates with the same overhang length 

without adenylates (Fig. 5A). For both, Mtr4p and TRAMP unwinding 

rate constants increased with the number of nucleotides in the 

overhang. For a given overhang length, the substrate with adenylates 

was unwound with a higher rate constant than the substrate without 

adenylates (Fig. 5A). The similarities between Mtr4p and TRAMP 

suggest that Mtr4p is involved in the detection of overhang length and 

adenine bases. 
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Fig. 5. Mtr4p and TRAMP preferably unwind substrates with short single-stranded 
regions containing adenylates. (A) Unwinding of 16-bp duplexes (Fig. 1) with 4- to 6-
nt single-stranded overhangs containing adenosines (●) or a sequence without 
adenosines (○) by Mtr4p (400 nM; Left) and TRAMP (400 nM; Right). Observed 

unwinding rate constants (kunw) are averages from three independent measurements 

(2 mM dATP-Mg2+; other conditions as in Fig. 1); error bars represent the SD. (B) 
Observed unwinding rate constants for a 16-bp duplex with a 6-nt single-stranded 

http://dx.doi.org/10.1073/pnas.1201085109
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/figure/fig05/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/figure/fig01/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358879/figure/fig01/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the national Academy of Sciences, Vol. 109, No. 19 (2012): pg. 7292-7297. DOI. This article is © National 
Academy of Sciences and permission has been granted for this version to appear in e-Publications@Marquette. National 
Academy of Sciences does not grant permission for this article to be further copied/distributed or hosted elsewhere 
without the express permission from National Academy of Sciences. 

13 

 

overhang containing adenosines (●) or a sequence without adenosines (○) as a 

function of Mtr4p (Left) and TRAMP (Right) concentration. Conditions were as in A, 
observed unwinding rate constants (kunw) are averages from multiple independent 

measurements; error bars represent the SD. Curves represent best fits to the binding 
isotherm, kunw = kmax, E [E]/([E] + K1/2, E). [E], enzyme concentration; K1/2, functional 
affinities; kmax, E, unwinding rate constant at enyzme saturation. Obtained values were 
as follows: Mtr4p, A-rich substrate; kmax, Mtr4p = 0.66 ± 0.10 min−1; K1/2, Mtr4p = 477 ± 
145 nM; Mtr4p, the non-A substrate, kmax, Mtr4p = 0.55 ± 0.21 min−1, K1/2, Mtr4p = 1,697 
± 908 nM; TRAMP, A-rich substrate; kmax, TR = 2.81 ± 0.81 min−1; K1/2, TR = 225 ± 126 
nM; TRAMP, non-A substrate; kmax, TR = 1.15 ± 0.10 min−1; K1/2, TR = 657 ± 81 nM. (C) 

Functional affinities and unwinding rate constants at enzyme saturation for substrates 
with 6-nt and 25-nt overhangs containing adenosines (A) or a sequence without 
adenosines (R) for Mtr4p (Left) and TRAMP (Right). 

To investigate the basis for the adenylate preference, we 

determined unwinding rate constants for the two substrates with 6-nt 

extensions at increasing concentrations of Mtr4p and TRAMP (Fig. 5B). 

These substrates were chosen because substrates with shorter 

overhangs could not be saturated with enzyme. Both Mtr4p and TRAMP 

displayed higher functional affinity (K1/2) for the substrate with the 

adenylate tail, compared with the substrate with the tail of a different 

sequence (Fig. 5B). In addition, an adenylate tail increased the 

unwinding rate constant at enzyme saturation (kmax, TR = 2.81 ± 0.81 

min−1), compared with a tail with a different sequence (kmax, TR = 1.15 

± 0.10 min−1). No significant effect on the unwinding rate constant at 

enzyme saturation was seen for Mtr4p (Fig. 5B). 

The preference for adenylates in substrates with 6-nt overhangs 

prompted us to examine whether similar differences were seen for 

substrates with longer overhangs. We compared unwinding rate 

constants and functional affinities for two substrates with 25-nt 

overhangs, one with an adenylate tail and the other with a tail of a 

different sequence (Fig. 5C). For both Mtr4p and TRAMP, a slightly 

higher functional affinity was measured for the 25-nt substrate with 

adenylates compared with the substrate without adenylates in the 

overhang (Fig. 5C). No significant difference was seen in the 

unwinding rate constant at enzyme saturation for TRAMP (Fig. 5C). 

However, for Mtr4p unwinding rate constants at enzyme saturation 

were significantly lower for the substrates with 25-nt overhangs than 

for the substrates with 6-nt overhangs (Fig. 5C). For TRAMP, the 

unwinding rate constant at enzyme saturation for the substrate with 

the 6-nt overhang containing adenylates was significantly higher than 

for all other substrates (Fig. 5C). Collectively, these data reveal a 
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preference of TRAMP and Mtr4p for substrates with short overhangs 

that contain adenylates. 

Discussion 

In this study, we have demonstrated that TRAMP displays robust 

ATP-driven RNA unwinding activity. Trf4p/Air2p stimulates the inherent 

unwinding activity of the RNA helicase Mtr4p through increases in ATP 

affinity and in the rate constant for strand separation. For substrates 

with short (6 nt), but not with longer (25 nt), overhangs, TRAMP also 

increases the RNA affinity of Mtr4p. The stimulation of Mtr4p by 

Trf4p/Air2p argues that TRAMP, rather than Mtr4p alone, is the 

preferred agent for duplex unwinding. 

Trf4p/Air2p modulates multiple reaction parameters of Mtr4p, 

indicating that Trf4p/Air2p are not simply RNA binding adaptors for 

Mtr4p. Instead, the alteration of ATP affinity and unwinding rate 

constant of Mtr4p by Trf4p/Air2p suggest an intricate functional 

coupling between helicase and Trf4p/Air2p. This observation expands 

the scope of functional coupling between helicase and polymerase that 

is seen during polyadenylation by TRAMP, where Mtr4p modulates 

Trf4p activity, notably also by altering ATP affinity and adenylation 

rate constants of Trf4p (9). 

Notwithstanding the functional coupling between Mtr4p and 

Trf4p, the stimulation of Mtr4p in the TRAMP complex does not require 

ongoing polyadenylation by Trf4p. Similarly, the modulation of 

polyadenylation by Mtr4p does not require unwinding (9). These 

observations indicate that functional coupling between Mtr4p and Trf4p 

does not require polyadenylation and unwinding to occur 

simultaneously. This arrangement might prevent potentially 

detrimental effects caused by the opposite polarities of the two 

activities. 

Our data show that TRAMP is able to unwind duplexes with 

several helical turns (Fig. 2). Although duplexes of this length are not 

thought to occur in cellular RNA, unwinding of extended RNA duplexes 

has been seen with certain other RNA helicases, such as Prp22 of the 

DEAH/RHA family (25), or the viral HCV NS3 and NPH-II (21, 22). Like 

Mtr4p, these enzymes unwind RNA duplexes in a strictly polar fashion. 
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TRAMP and Mtr4p further share with Prp22 the requirement for RNA in 

the loading strand (Fig. 3). These findings suggest common functional 

features in Ski2-like and DEAH/RHA helicases, consistent with 

structural conservation in the C termini of both helicase families, and 

the presence of a conserved β-hairpin between the helicase motifs Va 

and VI in Ski2-like, DEAH/RHA, and viral NS3/NPH-II helicases (14, 

27–34). However, given that no activity was seen in single-cycle 

experiments with both Mtr4p and TRAMP, it would be premature to 

extrapolate from the available data that Mtr4p/TRAMP unwind 

duplexes by processive translocation. Single-molecule approaches 

might be required to probe processivity of Mtr4p and TRAMP during 

the unwinding reaction. 

A striking feature of the unwinding activity of Mtr4p/TRAMP is 

the preference for short (6 nt) unpaired overhangs (Fig. 5). Other RNA 

helicases show either increasing unwinding activity with increasing 

overhang length or little sensitivity to the overhang length beyond a 

critical number of nucleotides (19, 35). The minimal number of 

nucleotides required for unwinding by Mtr4p/TRAMP coincides with the 

Mtr4p binding-site size (11, 31), and thus most likely reflects binding 

of Mtr4p to the 3′ tail. Binding of Mtr4p in the immediate vicinity of the 

duplex potentially promotes previously proposed contacts of the 

Arch/KOW domain with the duplex (31). 

On substrates with short overhangs, both Mtr4p and TRAMP 

display higher affinity for adenylates, compared with other nucleotides 

(Fig. 5). Preferred binding to adenylates during the unwinding reaction 

correlates with higher affinity of Mtr4p for oligo(A) in equilibrium 

binding experiments (11). TRAMP, but not Mtr4p alone, unwinds 

substrates with short adenylate tails faster than substrates with short 

tails of other sequences (Fig. 5). This finding suggests that binding of 

Mtr4p to short adenylate tails in the context of TRAMP elicits further 

modulation of Mtr4p by Trf4p/Air2p. Substrates with longer overhangs 

(25 nt) are unwound slower by TRAMP and Mtr4p, compared with 

substrates with short overhangs, and the difference between functional 

affinities for adenylates vs. other sequences is far less pronounced in 

substrates with long overhangs (Fig. 5). We speculate that longer 

overhangs facilitate binding of Mtr4p farther away from the duplex, 

possibly preventing optimal positioning of TRAMP/Mtr4p for unwinding. 
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Taken together, the results from this and previous studies (9) 

suggest a model for the coordination between polyadenylation and 

unwinding by TRAMP (Fig. 6). Central to this coordination is the 

binding of Mtr4p to single-stranded 3′ extensions. Mtr4p can only fully 

bind when the 3′ extensions contain at least 5–6 nucleotides, 

corresponding to the Mtr4p binding site size (31). Substrates with 

smaller extensions are polyadenylated by TRAMP until the minimal 

binding site for Mtr4p is formed. As shown previously, Mtr4p binding to 

four or more 3′ adenylates inhibits polyadenylation by Trf4p (9). Thus, 

TRAMP inherently disfavors generation of substrates that are not 

optimal for unwinding. It was also shown that TRAMP dissociates 

frequently from the RNA during the polyadenylation process, thereby 

enabling Mtr4p to repeatedly interrogate the number of 3′ terminal 

adenylates (9). 

 
Fig. 6. Coordination between polyadenylation and unwinding activities in TRAMP. ○, 

number of added adenylates; ●, minimal number of adenylates involved in Mtr4p 

binding. See text for further explanation. 

This model for coordination between unwinding and 

polyadenylation activities highlights synergy between polyadenylation 

and unwinding activities in the TRAMP complex. The model further 

supports the notion that TRAMP is inherently optimized to append only 

a few adenylates to its targets. Despite coordination between 

polyadenylation and unwinding, the two activities do not absolutely 

depend on each other. TRAMP polyadenylates substrates that are not 

unwound, and although TRAMP preferably unwinds RNAs with short 
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adenylate tails, it does unwind substrates without adenylates in the 

single-stranded extensions. We speculate that this accommodation of 

a large variety of potential RNA substrates may be important for the 

processing of the multitude of biological TRAMP targets (10). 

Materials and Methods 

Materials.  

Recombinant TRAMP complex was purified from reconstituted 

components expressed in E. coli, as described previously (9). 

Mutagenesis of TRF4 to create trf4-236 has been described previously 

(36). Recombinant TRAMPTrf4-236p was purified using procedures 

identical to those used for WT TRAMP reconstitution. Recombinant 

Mtr4p was expressed and purified as described previously (13). 

RNAs were purchased from Dharmacon. Sequences are listed in 

SI Materials and Methods. RNA oligonucleotides were 5′ radiolabeled 

with T4 polynucleotide kinase, followed by purification on denaturing 

PAGE. The duplexes were generated by annealing top strand (R16, 

R36) to its corresponding bottom strand, followed by purification on 

nondenaturing PAGE (37). 

Unwinding Reactions.  

Unwinding reactions were performed at 30 °C in a temperature-

controlled heating block in a buffer containing 40 mM Mops (pH 6.5), 

100 mM NaCl, 0.5 mM MgCl2, 5% glycerol (vol/vol), 0.01% Nonidet P-

40 (vol/vol), 2 mM DTT, and 0.7 U/μL Protector RNase Inhibitor 

(Roche). Before the reaction, radiolabeled duplex RNA (0.5 nM final 

concentration) was incubated for 5 min with the indicated 

concentration of TRAMP. Reactions were started by addition of 

equimolar dATP (or ATP) and MgCl2. After the reaction start, aliquots 

were removed at times indicated, and the reaction was stopped by 

addition of an equal volume of 1% SDS, 0.5 mM EDTA, 20% glycerol, 

and dye markers. Samples were applied to 15% nondenaturing PAGE, 

and duplex and single-stranded RNAs were separated by 

electrophoresis at 15 V/cm. Gels were dried, bands were visualized on 

a Storm PhosphorImager (GE Healthcare) and quantified using 
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ImageQuant software (GE Healthcare). Unwinding rate constants were 

calculated as described (37). 

Simultaneous Measurement of Polyadenylation and 

Unwinding Reactions on Streptavidin Beads.  

R16-bio/R17 duplex (50 fmol) was incubated with 5 μL of 

Streptavidin UltraLink Resin (Thermo Scientific) in unwinding reaction 

buffer (200 μL) for 1 h at 4 °C. After incubation, the resin was washed 

twice with reaction buffer until no radiation could be detected in the 

wash, and resuspended to a 50% slurry. Reaction buffer (10 μL) 

containing 2 mM equimolar ATP and MgCl2 was added to the resin, 

followed by incubation for 5 min on a temperature-controlled heating 

block at 30 °C. TRAMP (300 nM final) was then added to initiate the 

reaction. At 10 min after reaction start, an equal volume of stop buffer 

(1% SDS, 50 mM EDTA) was added to terminate the reaction, the 

sample was centrifuged, and the supernatant was removed. Samples 

were applied to a 15% denaturing PAGE. Gels were dried, and 

individual bands were visualized on a Storm PhosphorImager (GE 

Healthcare) and quantified using ImageQuant software (GE 

Healthcare). 
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Supplementary Material 

Supporting Information:  
 

SI Materials and Methods 
 

Sequences of RNA oligonucleotides (duplex regions are 

underlined). Note that some sequences contain adenosines (marked A) 
and others do not (marked R). 

 
R16 (top strand for 16-bp duplex substrates): 

5′AGCACCGUAAAGACGC3′ 

R16-bio (top strand for 16-bp duplex substrates, biotin with 9-
carbon spacer at the 3′): 5′AGCACCGUAAAGACGC-C9-

biotin3′ 
R16-dd (top strand for 16-bp duplex substrates, 2′,3′-

dideoxycytosine at the 3′): 5′AGCACCGUAAAGACGddC3′ 

R41(A) (bottom strand for 16-bp duplex with 25-nt A-rich 
single-stranded region): 

5′GCGUCUUUACGGUGCUUAAAACAAAACAAAACAAAACAAAA3′ 
R41(R) (bottom strand for 16-bp duplex with 25-nt single-

stranded region containing no A): 

5′GCGUCUUUACGGUGCUUGCCUGUUCGUGUCCUGUUGCUGC
U3′ 

R22A(A) (bottom strand for 16-bp duplex with 6-nt A-rich 
single-stranded region): 5’GCGUCUUUACGGUGCUUAAAAA3′ 

R22(R) (bottom strand for 16-bp duplex with 6-nt single-
stranded region containing no A): 
5′GCGUCUUUACGGUGCUUGCCUG3′ 

R21(A) (bottom strand for 16-bp duplex with 5-nt A-rich single-
stranded region): 5′GCGUCUUUACGGUGCUUAAAA3′ 

R21(R) (bottom strand for 16-bp duplex with 5-nt single-
stranded region containing no A): 
5′GCGUCUUUACGGUGCUUGCCU3′ 

R20(A) (bottom strand for 16-bp duplex with 4-nt A-rich single-
stranded region): 5′GCGUCUUUACGGUGCUUAAA3′ 

R20(R) (bottom strand for 16-bp duplex with 4-nt single-
stranded region containing no A): 
5′GCGUCUUUACGGUGCUUGCC3′ 

R17 (bottom strand for 16-bp duplex with one unpaired 
nucleotide): 5′GCGUCUUUACGGUGCUU3′ 

R36 (top strand for 36-bp duplex substrate): 
5′AGCACCGUAAAGACGCAAUCAUGCAGGGUCUGUCAG3′ 

http://dx.doi.org/10.1073/pnas.1201085109
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the national Academy of Sciences, Vol. 109, No. 19 (2012): pg. 7292-7297. DOI. This article is © National 
Academy of Sciences and permission has been granted for this version to appear in e-Publications@Marquette. National 
Academy of Sciences does not grant permission for this article to be further copied/distributed or hosted elsewhere 
without the express permission from National Academy of Sciences. 

23 

 

R61 (bottom strand for 36-bp duplex with 25-nt single-stranded 
region): 

5′CUGACAGACCCUGCAUGAUUGCGUCUUUACGGUGCUUAAAA
CAAAACAAAACAAAACAAAA3′ 

 

 
Fig. S1. Strand annealing activity by Mtr4p and Trf4/Air2/Mtr4 polyadenylation 

(TRAMP). (A) Representative PAGE of strand annealing reactions with the 36-bp 
duplex substrate. Annealing reactions were performed at temperature and buffer 
conditions identical to those for unwinding reactions. Duplex RNA substrates were 
denatured at 95 °C (3 min). Denatured single strands (0.5 nM final concentration) 
were incubated in reaction buffer for 5 min with 2 mM equimolar dATP and MgCl2. 
Annealing reactions were started by addition of 400 nM Mtr4p or TRAMP. Aliquots were 
removed after 1, 3, 10, 20, and 60 min with Mtr4p (Left), and after 1, 3, 6, 10, and 20 

min with TRAMP (Right). Reactions were quenched with the same buffer used to stop 
unwinding reactions. Duplex and single-stranded RNAs were separated as described 

for unwinding reactions. No notable strand annealing was observed in the absence of 
TRAMP or Mtr4p (not shown). (B) Time courses for strand annealing reactions (○) of 
the substrate used in A (○) compared with time courses for unwinding reactions at 

identical conditions for Mtr4p (Left) and TRAMP (Right). Data points are averages from 
three independent experiments; error bars indicate one SD. Curves represent best fits 
to the integrated first-order rate law. For Mtr4p, Aann = 0.70 ± 0.15, kobs, ann = 
0.02 ± 0.01 min−1; for TRAMP, Aann = 0.35 ± 0.06, kobs, ann = 0.13 ± 0.05 min−1. 
Data for the unwinding reactions are from Fig. 2. For Mtr4p, Ampunw = 0.224 ± 
0.102, kobs, unw = 0.02 ± 0.02 min−1; for TRAMP, Ampunw = 0.733 ± 0.057, kobs, 

unw = 0.22 ± 0.05 min−1. For both Mtr4p and TRAMP, unwinding and strand 
annealing reactions reached similar amplitudes (Ampunw + Ampann ∼1), indicating a 

steady state between unwinding and strand annealing that causes the reaction 
amplitude observed in Fig. 2. 
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Fig. S2. Simultaneous measurement of polyadenylation and unwinding reaction in 
solution. (A) Reaction scheme. The cartoon shows the substrate, a 16-bp duplex 
containing a single unpaired nucleotide at the 3′ terminus that was radiolabeled on 
both strands (marked by the asterisks) .The top strand also contained a 2′,3′-dideoxy 
modification (light gray bar) at the 3′ end of the top strand to prevent polyadenylation 
of this strand. Reactions were performed with 0.5 nM RNA substrate, 150 nM TRAMP, 
and 2 mM equimolar ATP-Mg2+. Two aliquots were simultaneously removed 1, 2, 3, 4, 

5, 6, 7, and 10 min after the reaction start, and analyzed for polyadenylation and 

unwinding. (B) Denaturing PAGE to monitor polyadenylation. Schematics for the 
species observed are marked; the lines on the right highlight the species plotted in D 
(fraction of all species equal or larger than the value indicated). (C) Nondenaturing 
PAGE to monitor unwinding. Lines on the right show the respective RNA species. (D) 
Overlay of plots for polyadenylation and unwinding time courses. The fraction of 
species with at least 1, 3, 4, and 5 adenines were quantified from denaturing gels as 

illustrated in B at the times indicated (open and filled circles). The fraction of single 
strand at the same time was quantified from the nondenaturing PAGE shown in C 
(squares). Data points are averages from three independent measurements; error 
bars indicate one SD. The dashed curves mark trends. Unwinding time courses 
corresponded to polyadenylation time courses seen for species with at least three or 
four adenylates, i.e., species with four or five nucleotides. 
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Fig. S3. No significant loss of material following sample separation during 
simultaneous measurements of polyadenylation and unwinding on beads (Fig. 4). 
Quantification of sample slurry before centrifugation (●, lane 2 in Fig. 4B), and the 
sum of beads and supernatant samples after centrifugation (○, lanes 3 and 4 in Fig. 

4B) were plotted for each adenylated species (A1 . . . An). The signal from each 
species was normalized to the total signal from all species [Ai/Σ (A0 . . . An)]. Data 

are averages from three independent repeats; error bars indicate one SD. The 
substrate (A0) contained a fraction of f = 0.896 ± 0.007 of the total signal in the 
slurry before centrifugation and a fraction of f = 0.892 ± 0.020 of the total signal after 
centrifugation. 
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