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ABSTRACT 
CHANGES IN COMPOSITE TOXICITY FOLLOWING  

EXPOSURE TO PULP CAPPING MATERIALS 
 
 

Audra M. Long, DDS 
 

Marquette University, 2015 
 
 

Introduction: Direct pulp capping involves placing a material over the exposed pulp in 
order to maintain its vitality. For decades, calcium hydroxide (CH) has served as the gold 
standard for this purpose, but its toxicity to the pulp may negatively impact treatment 
outcomes. Mineral Trioxide Aggregate (MTA) has become a popular alternative based 
partly on its excellent biocompatibility. Pulp-capped teeth are often restored with highly 
toxic composite materials, but the pulp capping material’s ability to alter these toxic 
effects has never been investigated. The purpose of this in vitro study is to determine the 
effects of Dycal, a CH-based cement, and ProRoot MTA on the toxicities of two popular 
restorative composites, Flow Line and Durafill VS. 

Materials and Methods: Human dental pulp cells were cultured and exposed to Dycal or 
MTA for 48 hours. Dycal and MTA were then removed and either Flow Line or Durafill 
VS was added to cell cultures for 24 hours. Toxicity was determined using the LDH 
release assay before and after the addition of the composite material.   
 
Results: Dycal demonstrated a high level of toxicity that correlated with the amount of 
material placed in cell culture. MTA was nontoxic even in amounts at which Dycal was 
highly toxic. Exposure of pulp cells to Dycal resulted in decreased toxicity of Durafill VS 
and had no effect on Flow Line toxicity. MTA exposure resulted in enhanced Flow Line 
toxicity and had no effect on the toxicity of Durafill VS.  
 
Conclusions: These results show that calcium hydroxide and MTA are capable of 
altering the toxicity of composite restorative materials. MTA may enhance the toxicity of 
some composites, while Dycal may have an inhibitory effect.  More studies are needed to 
determine the clinical significance of these effects.
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CHAPTER I 

 
INTRODUCTION 

 Direct pulp capping is a form of vital pulp therapy wherein a material is placed 

directly over the exposed pulp with the goal of preserving its vitality.  Success with this 

procedure is dictated by the formation of a reparative dentin bridge with minimal 

communication between the capping material and the pulp (1). Clinical studies have 

demonstrated favorable long-term success rates under appropriate conditions (2-5) 

However, the toxicities of dental materials used for the direct pulp cap and the restoration 

that covers it are concerning. Even in the absence of bacteria, these materials can cause 

severe inflammation and necrosis when placed in direct contact with the pulp leading to 

failure of the pulp cap and the need for root canal treatment (6). Cytotoxicity of dental 

materials may pose insurmountable challenges to the pulp’s defense mechanisms, 

especially when there is pre-existing inflammation due to trauma, caries, bacterial 

contamination, or iatrogenic damage (7). Therefore, dental materials placed in close 

proximity to the pulp should ideally possess excellent biologic properties and encourage 

healing if they are to be predictably successful in maintaining pulpal vitality.     

 For decades, calcium hydroxide (CH) has served as the material of choice for 

direct pulp capping. Its high alkalinity creates an environment that promotes therapeutic 

benefits such as mineralization of hard tissue and inhibition of bacterial growth. 

However, the alkalinity is also extremely toxic to pulp cells. When in direct contact with 

the pulp, CH produces inflammatory changes and a superficial layer of coagulative 

necrosis, leaving it up to the subadjacent pulp to generate healing and form a hard tissue 
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barrier (8). Therefore, despite CH’s ability to preserve pulpal vitality in the face of injury, 

it lacks inherent biocompatibility, and its damaging effects may result in failure of the 

procedure (6, 9).  

 Mineral Trioxide Aggregate (MTA) is a newer material that has gained favor 

among clinicians for numerous endodontic applications, including direct pulp capping. 

Interestingly, CH is formed during MTA’s setting reaction, which imparts MTA with 

antibacterial and regenerative properties. For this reason, MTA and CH are thought to 

share a similar mechanism of action (10). However, studies show less inflammation, 

better dentin bridging, and minimal cytotoxicity with MTA (11-15). These findings imply 

an MTA-specific mechanism, which studies have strongly suggested involves the 

formation of hydroxyapatite upon exposure of MTA to physiologic solutions (10, 16). 

MTA may also have bioinductive capabilities, stimulating the release of morphogenetic 

proteins and growth factors such as BMP-2 and TGF-β1 (17). 
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 In addition to reparative and antibacterial benefits, the pulp cap also serves as a 

physical barrier that protects the pulp from the external environment while new hard 

tissue is forming. Porosity, solubility, and poor sealing properties of the pulp capping 

material, however, may limit its ability to shield the pulp from the harmful effects of 

bacteria or toxic compounds leached from overlying restorative materials. Today, resin-

based composites are popular restorative materials due to their esthetic properties and 

ability to chemically bond to tooth structure. However, the methacrylate monomers 

contained in composite materials are highly cytotoxic and may interfere with the immune 

response of the pulp, weakening its ability to resist bacterial challenge (7, 18, 19). 

Composites have been shown to cause chronic pulpal inflammation and prevent 

reparative dentin formation when applied directly to pulp exposures (6, 20).  

 No studies to date have investigated the ability of pulp capping materials to alter 

the toxicity of composites. The purpose of this study is to determine the effects of two 

pulp capping materials: Dycal, a CH-based cement, and ProRoot MTA on the toxicities 

of Flow Line and Durafill VS, two popular composite restorative materials.  
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CHAPTER II 

BACKGROUND AND SIGNIFICANCE 

Dental pulp function and cellular composition 

 The dental pulp serves to form and nourish the dentin as well as provide a source 

of innervation and protection from injury. Anatomically, it consists of loose connective 

tissue, nerve endings and small blood vessels.  The cellular composition is complex and 

changes in the presence of inflammation. 

Chapter 2 of the textbook Endodontics by Pashley, Walton and Slavkin (2002) 

provides a thorough summary of the cellular composition of normal, healthy pulp tissue. 

In short:   

1. Fibroblasts. These cells comprise the majority of cells within the pulp and are 

responsible for the formation and degradation of collagen and ground substance. 

Unlike typical connective tissue fibroblasts, however, many pulpal fibroblasts are 

capable of forming hard tissue. 

2. Odontoblasts. Located at the periphery of the pulp, in contact with the dentinal 

interface, these are the main cells responsible for the formation of dentin.  

3. Dental Pulp Stem Cells (DPSCs). These multipotent mesenchymal cells retain the 

ability to differentiate into a number of mature cell types throughout life. They are 

responsible for reparative dentin formation beneath pulp capping materials by 

differentiating into odontoblasts for this purpose. 
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4. Dendritic cells. As the most prominent immune cell in the healthy dental pulp, they 

are responsible for activating the immune response through recognition and 

presentation of foreign antigen. 

5. Histiocytes and Macrophages. These are phagocytes that can be found within healthy 

pulp tissue. They are responsible for removing bacteria, foreign material and dead 

cells. (21). 

 With cellular injury or death, inflammatory cells rapidly migrate to the pulp from 

nearby capillaries and venules. Neutrophils are the most common leukocyte in pulpal 

inflammation. They function to clear sources of inflammation via phagocytosis, repair 

tissue damage, and amplify the immune response. This amplification, however, can 

exacerbate injury, leading to larger areas of inflammation. The presence of other 

inflammatory cell types including lymphocytes, plasma cells and mast cells signifies the 

presence of a chronic inflammatory process.	
  (21).	
  

 

The Direct Pulp Cap 

A. Objectives of Direct Pulp Capping 

 The principle goal of direct pulp capping is to maintain pulpal vitality by 

stimulating reparative dentin formation. Reparative dentin provides a natural source of 

pulpal protection from bacteria and dental materials (22). Pulp capping materials are 

therefore evaluated heavily on their ability to regenerate a hard tissue barrier. A 

successful direct pulp cap can eliminate the need for root canal treatment, thus avoiding a 

more invasive, expensive, and time-consuming intervention. Vital teeth show higher rates 



	
   6	
  

of long-term survivability than endodontically treated teeth, particularly for molars (23). 

Therefore, preservation of vital tooth structure is favorable and, when indicated, direct 

pulping capping can help attain this goal. 

 

B. Prognosis & Success Rates of Direct Pulp Capping 

Direct pulp caps are deemed successful when there is formation of a hard tissue 

bridge with minimal communication between the capping material and the pulp (1). Case 

selection is key, as direct pulp capping is not indicated for all pulp exposures. Rather, the 

decision to place a direct pulp cap should be based on the pulpal and periradicular 

diagnoses and the conditions under which the exposure occurred (24). 

 The state of pulpal health and degree of inflammation at the time of exposure 

dictates the ability for healing to occur and the direct pulp cap to be successful (21, 24). 

Proper pulpal diagnosis is essential, and vitality testing should always precede treatment 

of any tooth where there is evidence or suspicion of caries approximating the pulp. Direct 

pulp caps can be considered for teeth with viable and healthy or reversibly inflamed pulp 

status and are contraindicated in permanent teeth with closed apices and evidence of 

irreversible pulpitis or pulpal necrosis (25). Determining whether a pulp is reversibly vs. 

irreversibly inflamed using vitality tests and patient-reported symptoms can be difficult 

and inaccurate (26-28). The ability to control pulpal hemorrhage at the time of exposure 

may be a more reliable indicator of inflammatory status (4). If uncontrollable bleeding 

exists in a permanent tooth with a closed apex, irreversible pulpitis is the likely diagnosis, 

and root canal therapy is the appropriate treatment.  
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 The presence of bacteria in the pulp is the greatest cause of direct pulp cap 

failures (29). This is best judged clinically by whether the exposure occurred during 

caries removal (carious exposure) vs. cavity preparation on noncarious tooth structure 

(mechanical exposure).  Most practice guidelines including those published by the 

American Association of Endodontists advise that direct pulp caps are indicated only for 

mechanical exposures (30). However, a recent systematic review found direct pulp caps 

placed on carious exposures to have high long-term success rates ranging from 87.5% to 

95.4% (3). This is comparable to the 70-98% success rates seen with noncarious 

mechanical exposures (2). 

 Other important factors to consider are degree of isolation at the time of exposure 

and the ability to provide a well-sealed definitive restoration in a timely manner. 

Bacterial contamination from saliva during cavity preparation or as a result of 

microleakage beneath the restoration and pulp cap will reduce success rates considerably 

(7, 31). For this reason it is imperative that a rubber dam be used during any restorative 

procedure wherein pulp exposure is a suspected outcome, and care should be taken to 

optimize the marginal seal of the final restoration (32). To increase the likelihood of 

long-term success, the permanent restoration should be placed within 2 days of the direct 

pulp cap (5).  

 Dental materials used for pulp capping and restorative procedures have been 

shown to elicit cytotoxic and immunosuppressive effects on the pulp (6). The closer the 

material is to the pulp, the greater effect (33). Therefore, choosing materials that limit 

damage and promote healing are optimal for situations where direct contact between pulp 

and dental material is unavoidable.   
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Direct Pulp Capping Materials and Toxicity 

A. Calcium hydroxide (CH) 

 CH was introduced to dentistry in 1920 by Hermann (34). Today it has a number 

of clinical applications and is considered the gold standard among pulp capping 

materials. CH’s main activity comes from the dissociation of calcium (Ca2+) and 

hydroxyl (OH-) ions when CH is in contact with aqueous fluids. The pH values of most 

current CH-based cements such as Dycal range from 10-12 (9). The alkalinity stimulates 

reparative dentin formation and kills bacteria, but is also extremely toxic to pulp cells (1). 

When in direct contact with the pulp, CH produces a superficial layer of coagulative 

necrosis up to 2mm in depth as well as inflammatory changes in deeper tissue (8).  

 Reparative dentin formation is a result of the pulp’s defense mechanisms against 

CH’s irritating effects (15). The exact mechanism of induced hard tissue formation is 

poorly understood.  Not only does the dentin barrier serve to protect the pulp from future 

injury but is also a sign of biological recovery (35). Several in vitro and animal studies 

have detected tunnel defects in dentin bridges that form in response to CH (36). Such 

disruptions in the dentin barrier could compromise its protective benefits by serving as 

conduits for microleakage (35). However, Hilton reported in a 2009 review that tunnel 

defects related to CH were a less common finding in human studies(37).  

 Another advantage of CH is its ability to inhibit bacterial growth. This effect is 

produced by the hydroxyl ions released from CH in an aqueous environment (38). 

Hydroxyl ions are highly oxidant free radicals, with extreme reactivity capable of causing 

bacterial cell death (38). 
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 Despite its advantages, CH is highly soluble and lacks inherent sealing 

capabilities. These properties can create opportunities for bacterial contamination (39). 

Therefore, CH pulp caps require placement of an overlying hard setting liner such as a 

glass ionomer (GI) or composite-based cement to provide an adequate seal and reduce 

microleakage.    

 Studies have identified two undesirable consequences of CH pulp caps. First, CH 

can produce a persistent stimulating effect on dentin formation, leading to pulpal 

obliteration (8, 24). If root canal treatment is needed in the future, the hypercalcification 

can make this procedure difficult if not impossible. Another potential adverse effect of 

direct pulp caps with CH is chronic inflammation, which can eventually lead to internal 

resorption (8, 24). 

 
B. Mineral Trioxide Aggregate (MTA) 

 Mineral Trioxide Aggregate (MTA) was originally developed in 1993 by 

Torabinejad et al. as a root end filling material and is now a popular choice among 

clinicians for direct pulp capping as well. MTA is a refined Portland cement with bismuth 

oxide added for radiopacity.  Portland cement is the main ingredient in mortar and 

concrete. It contains calcium silicate, tricalcium silicate, tricalcium aluminate, gypsum, 

and tetracalcium aluminoferrite (10). MTA exists as a powder that is mixed with water in 

a 3:1 powder/liquid ratio to form a silicate hydrate gel that hardens as it sets. Calcium 

hydroxide is also formed during this hydration reaction, resulting in the high alkalinity of 

MTA. Its pH increases from 10.2 during manipulation to 12.5 after setting (40).  

 MTA has a number of properties that are desirable in a pulp capping material. 

First, it is recognized as one of the most biocompatible dental materials available (41). In 
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fact, its cytotoxicity has been likened to that of titanium alloy, which is chemically inert 

(41, 42). It induces limited tissue necrosis and inflammation in vivo and is also capable of 

inducing hard tissue formation at a faster rate and of greater thickness and quality than 

CH-based materials (13, 43-45). MTA is also able to form an excellent seal with tooth 

structure that protects against bacterial leakage (41, 46, 47). This is a major advantage 

over CH-based materials, as bacterial contamination is the greatest threat to the pulp’s 

healing capacity (48). Finally, MTA has an antibacterial effect, although it is less robust 

than that of CH (15). 

  Despite its many advantages, MTA has some important drawbacks that may limit 

its effectiveness. Perhaps its greatest drawback is a prolonged setting time of up to 4 

hours (49, 50). For this reason, it is ideal to place a moist cotton pellet and temporary 

restoration over the unset MTA to allow for complete setting and avoided disturbance 

before the definitive restoration is placed, usually at a consecutive visit. To avoid the 

need for an additional visit, another acceptable approach is to place a hard-set lining 

material over the unset MTA, followed immediately by the definitive restoration (37, 50). 

Another shortcoming of MTA is its porosity, which may limit its ability to shield the pulp 

from bacteria and other irritants (51).  The porosity increases with the amount of water 

added, incorporation of air bubbles when mixing, and the acidity of the local environment 

(47).  
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 Like CH, MTA’s mechanism of action lacks detailed understanding. Many 

investigators believe that because CH is formed during the setting reaction, their 

mechanisms are similar or identical (43, 52). However, MTA’s enhanced biologic 

properties suggest activity that is unique to MTA. While only a few studies have 

investigated the specific quality of MTA that provides its favorable biocompatibility, 

there is strong evidence that it is due to its ability to form hydroxyapatite in physiologic 

solutions (10). MTA has also demonstrated bioinductive capabilities, promoting the 

formation of morphogenetic proteins and growth factors such as BMP-2 and TGF-β1(17). 

  

 Clinical Success Rates: CaOH vs. MTA 

 A recent Cochrane Review found a lack of evidence as to the most effective pulp 

capping material(53). MTA was not considered in this review, as no long-term 

randomized controlled trials were available for inclusion. 

 A 2009 systematic review comparing short-term treatment outcomes of CH vs. 

MTA direct pulp caps concluded that due to a lack of high quality studies on MTA, CH 

should still be considered the gold standard for direct pulp capping (37). However, in 

2014, Mente et al. published the largest controlled clinical trial to date comparing long-

term outcomes of direct pulp caps performed with MTA and CH (5). The authors found 

direct pulp caps performed with CH had a failure rate 2.5 times that of MTA and 

concluded that MTA was a superior material.  

 While these results seem promising for MTA, the results of another long-term 

clinical trial conducted in 2013 by Hilton et al. were less convincing (54). This study was 

conducted in a practice-based research network where adherence to study protocol could 
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not easily be monitored. While the authors reported higher failure rates for direct pulp 

caps carried out with CH (31.5%) vs. MTA (19.7%), exclusion of one practice with an 

inordinate number of failures from the data pool reduced the difference in failure rate 

between the two materials to statistically insignificant values. Interestingly, the study by 

Mente et al. (2014) required rubber dam isolation as part of the treatment intervention 

while the Hilton et al. study (2013) reported rubber dam use in only 19% of cases on 

average (15% of CH pulp caps and 22% of MTA pulp caps).  

 While there is sufficient evidence to support MTA’s safety and efficacy as a 

direct pulp capping material, additional studies of high quality that clearly indicate 

superior outcomes with MTA are needed before it can officially replace CH as the gold 

standard. More studies of MTA applied to carious exposures are especially needed in 

order to evaluate its full potential in clinically relevant situations.  

 

Composite Restorative Materials 

 The key to the long-term success with direct pulp capping is a well-sealed 

restoration (37). Resin-based composites are a popular choice of restorative material due 

to their esthetic properties and ability to chemically bond to tooth structure. They consist 

of a resin matrix usually containing bis-GMA in addition to inorganic glass fillers and 

silane coupling agents (55). 

 A major disadvantage to the use of composite materials is their toxicity to the 

pulp. Several studies have confirmed the cytoxicities of various composite restorative 

materials (7, 12, 56). The mechanism appears to involve the impairment of mitochondrial 

function, producing irreversible effects on cellular metabolism (56, 57). In vivo studies 
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have shown composite restorations to be associated with pulpal irritation and necrosis 

(6). The organic monomers contained in the resin phase of composite materials such as 

bisphenol A-glycidyl methacrylate (Bis-GMA), urethane dimethacrylate (UDMA), 

triethylene glycol dimethacrylate (TEGDMA), and 2-hydroxyethyl methacrylate 

(HEMA) are thought to be largely responsible for these toxic effects (6). These 

monomers are leached from composites that have not reached complete conversion and 

can diffuse through dentin tubules as well as porous or poorly sealed pulp caps to reach 

the pulp (6). 

 The toxicity of composite materials may interfere with the regenerative goals of 

direct pulp capping. Studies point to the ability of composites to prevent reparative dentin 

formation following pulp exposure by inhibiting odontoblast differentiation (18). Lack of 

a hard tissue barrier greatly reduces the pulp’s ability to combat bacterial and chemical 

irritants and over the long-term will almost certainly result in vitality loss. Therefore, 

placing composite materials in close proximity to pulp may negatively influence 

outcomes of vital pulp therapy. 

  In spite of this, composite materials are commonly used for deep restorations 

including those that require a direct pulp cap. If the definitive restoration is to be placed 

immediately after an MTA pulp cap, a hard setting composite-based liner is often used to 

protect the unset MTA from disturbance during the restorative process. Composite liners 

are also recommended for placement over CH pulp caps for the purpose of providing an 

adequate seal, which CH-based cements inherently lack. A composite restoration is often 

placed on top of the lining material.  
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 A review of the literature produced no studies that have investigated the ability of 

pulp capping materials to protect against or alter the toxicity of composites. This 

information is greatly relevant to the clinical picture, as pulp capping materials and 

composites are frequently used together in practice.  
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CHAPTER III 

MATERIALS AND METHODS 

Materials 

 Serum was obtained from Atlanta Biologicals (Atlanta, GA, USA).  Flow Line 

and Durafill VS were obtained from Henry Schein Inc. (Melville, NY, USA).  MTA and 

Dycal were obtained from Densply (Milford, DE, USA). All other chemicals were 

obtained from Sigma (St. Louis, MO, USA).  

 

Subjects and human dental pulp cell cultures 

 Normal human impacted third molars were collected from adults at the  

Marquette University School of Dentistry Surgical Services Department. After the 

external surfaces were cleaned, the teeth were sectioned and pulp tissue was removed 

using sterile hand instruments in a cell culture hood. The pulp tissue was digested in a 

solution of 3 mg/ml collagenase type I and 4 mg/ml dispase for 1 hour at 37ºC (58, 

59).  The cells were plated onto 24-well plates coated with poly-D-lysine and laminin in 

Eagle’s medium supplemented with 20% fetal calf serum / 100 µM L-ascorbic acid 2-

phosphate / 2 mM L-glutamine / 100 units/ml penicillin / 100 µg/ml streptomycin, and 

then incubated at 37ºC with 5% CO2.  Experiments were performed on cultures 7-9 days 

in vitro. 
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Preparation of dental materials and exposure to cell cultures 

 Dycal, ProRoot MTA, Flow Line, and Durafill VS were dispensed onto a sterile 

glass slab and prepared according to the manufacturer’s instructions. ProRoot MTA 

powder was gradually added to the liquid provided in the ProRoot micro-dose ampoule 

(3:1 powder:liquid ratio) and mixed for 1 minute to ensure adequate hydration. Equal 

volumes of Dycal base and catalyst pastes were mixed until a uniform color was 

achieved. Composites were polymerized with a visible light curing unit from 3M Unitek 

for 60 seconds and cut into uniformly sized pieces. Testing was conducted 30 minutes 

after initial mixing or light curing. 

 

Cell death assay 

 Cell death was assessed in mixed cultures by the measurement of lactate 

dehydrogenase (LDH) released from damaged or destroyed cells 24 or 48 hours after the 

beginning of the insult.  Control LDH levels were subtracted from insult LDH values and 

results normalized to 100% cell death caused by 20 µM of the calcium ionophore A23187 

added 24 hours before the assay.  Control experiments have shown previously that the 

efflux of LDH occurring from either necrotic or apoptotic cells is proportional to the 

number of cells damaged or destroyed (60, 61). Advantages of the LDH assay for the 

current study are its ability to be performed at multiple time points and act as a measure 

of true cell death.  The MTT metabolism assay commonly used in toxicity studies can 

only be performed at one time point and is a measure of cell activity, which does not 

always correlate to cell survival (61). 
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Testing 

I. Dose-Dependent Toxicity of Dycal and ProRoot MTA 

 Variously weighted pieces of freshly prepared Dycal and MTA were placed on 

top of cultured human pulp cells for 48 hours. The LDH release assay was performed to 

assess cell death. 

 
II. Toxicity of Composites  

  Cultured pulp cells were exposed to standardized sized pieces of Durafill VS 

(0.0113 + .0002 g) and Flow Line (0.0104 + .0003 g) for 24 hours. The LDH release 

assay was used to assess the toxicity of the composite materials.  

 
III. Toxicity of Composites Following Exposure to Dycal or ProRoot MTA  

 Nontoxic, uniform sizes of Dycal (0.0007 + .0002 g) or MTA (0.0049 + .0001 g) 

were placed on top of cultured pulp cells. After 24 hours of exposure, Dycal and MTA 

were removed and standardized sized pieces of Durafill VS (0.0113 + .0002 g) or Flow 

Line (0.0104 + .0003 g) were added to the cell cultures for 24 hours. The LDH release 

assay was performed once again to assess cytotoxicity.  

 

Statistical analysis 

 Statistical analysis was performed using one-way ANOVA followed by the 

Bonferroni post-hoc comparison.  P-value <0.05 was considered to indicate significant 

difference.  

 

  



	
   18	
  

CHAPTER IV 

RESULTS 

 

Dose-Dependent Toxicity of Dycal vs. MTA 

 First, we set out to determine if there is a relationship between the toxicity of 

Dycal or MTA and the amount of material placed in cell culture. Various weighted pieces 

of Dycal (Fig. 1) and MTA (Fig. 2) were prepared and placed on top of cultured human 

pulp cells for 48 hours. The LDH release assay was performed to assess cell death. Dycal 

demonstrated a significantly higher degree of toxicity than MTA. Dycal’s toxicity 

increased accordingly with greater amounts of material (Fig. 3), while MTA was 

relatively nontoxic even in amounts much larger (heavier?) than those at which Dycal 

was highly toxic (Fig. 4). These findings are consistent with those of previous studies 

comparing toxicities of CH- and MTA-based materials (13-15, 62). 
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Figure	
  1.	
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Figure 2. Weights of ProRoot MTA placed in cell cultures. 
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Figure 3. Dose-dependent Toxicity of Dycal. The toxicity of Dycal was positively	
  
correlated with the amount of material placed in cell culture. * denotes significant 
difference from control (BL) (p<0.05).	
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Figure	
  4.	
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Toxicity of composites following Dycal or MTA exposure    

 We next set out to test the toxicity of composites to human pulp cells following 

prior exposure to either Dycal or MTA. To rule out incidence of cell death resultant of 

exposure to Dycal alone, we used a nontoxic-sized piece of Dycal, as determined in the 

first part of the experiment.  When cultured pulp cells were exposed to standardized sized 

Durafill VS (0.0113 + .0002 g) and Flow Line (0.0104 + .0003 g) for 24 hours, the result 

was approximately 30-40% cell death. When nontoxic, uniform sizes of Dycal 

(0.0007 + .0002 g) or MTA (0.0049+ .0001 g) were placed on top of cultured pulp cells 

for 24 hours prior to their exposure to the composite materials, the results were different. 

Exposure to Dycal had no effect on Durafill toxicity but decreased Flow Line toxicity 

(Fig 5). Exposure to MTA enhanced Durafill toxicity and had no effect on the toxicity of 

Flow Line (Fig 6).  
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Figure 5. Effect of Dycal on toxicities of Durafill VS and Flow Line. Dycal did not 
significantly alter the toxicity of Durafill VS, while it significantly decreased the toxicity 
of Flow Line (p<0.05). *denotes significant difference from control; # denotes significant 
difference between samples. 
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CHAPTER V 
 

DISCUSSION 

 This in vitro study is the first to investigate the toxic effects of pulp capping 

materials and restorative composites when applied consecutively to the same dental pulp 

cells. Cultured pulp cells were exposed to either Dycal, a CH-based cement, or ProRoot 

MTA followed by either Flow Line or Durafill VS, two popular composite materials. The 

results indicate the ability of CH- and MTA-based cements to differentially alter the 

toxicities of these composites: Dycal exposure offered some protection from the toxicity 

of Flow Line, and ProRoot MTA exposure augmented the toxicity of Durafill VS.  

 We first tested the relative toxicities of Dycal and MTA using the LDH release 

assay. Dycal was toxic while MTA was not. Furthermore, Dycal’s toxicity was dose-

dependent, while MTA was nontoxic even at doses where Dycal was extremely toxic. 

Clinically, capping materials should be applied conservatively to the precise area of pulp 

exposure. Dentin covered with Dycal or MTA will not chemically bond to composite, 

leaving gaps at the tooth-restoration interface that weaken the integrity of the restoration 

and allow bacteria to penetrate. Based on our findings, it would seem another potential 

benefit of conservative Dycal application would be to limit its toxicity to the pulp.  

 Next, the LDH release assay was used to determine the toxicities of Flow Line 

and Durafill VS after pulp cell exposure to either Dycal or ProRoot MTA. Small, 

nontoxic pieces of Dycal and MTA were used to ensure cell death was primarily due to 

the addition of the composite. While MTA exposure enhanced the toxicity of Durafill 

VS, no effect was observed between MTA and Flow Line. Conversely, Dycal inhibited 

the toxicity of Flow Line but had no effect on the toxicity of Durafill VS. These findings 
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are counter to MTA’s reputation for excellent biocompatibility and Dycal’s inherent 

toxicity. If reproducible in the clinical setting, such interactions could contribute to 

overwhelming the pulp’s defense mechanisms, especially when there is already 

inflammation present due to other causes. The pulp is able to recover from inflammation 

due to dental material toxicity, bacterial contamination, trauma, and iatrogenic damage, 

but the extent of total inflammation from all sources is what determines the pulp’s ability 

to make a full recovery and form reparative dentin.  

 The results of this study call for explanation of the differences in composition 

between the composite materials used. Durafill VS is a microfilled flowable composite 

produced on the basis of Bis-GMA, TEGDMA, and UDMA. Flow Line is classified as a 

hybrid flowable composite containing Bis-GMA and TEGDMA monomers. When these 

monomers were studied on mouse fibroblasts in vitro, the toxicity rank order was as 

follows: Bis-GMA (most toxic) > UDMA > TEGDMA (least toxic)  (19). When 

combinations of these monomers were tested, synergistic, additive, and antagonistic 

interactions were found, depending on the constituents and their concentrations (19). It is 

therefore reasonable to propose the potential for MTA and CH to undergo similar types 

of interactions with composite monomers, which may help explain the findings of the 

current study.   

 As a novel investigation, the intent of this study was to determine if the cytotoxic 

response of pulp cells exposed to capping materials and composites was additive, 

synergistic or antagonistic.  Tests performed on cell cultures lack the complex and 

dynamic nature of in vivo experiments and cannot be translated directly into clinical 

practice. For example, the protective and defensive features of the pulpal inflammatory 
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response were largely unaccounted for in this study, as was the barrier effect of the pulp 

cap to pulpal contact with the restorative material. Clinically, the pulp cap is placed in a 

layer between the pulp and restoration. The toxicities of the restorative materials tested in 

this study, wherein composites were placed in direct contact with pulp cells, may 

therefore be more robust than those attained clinically.  

  The results of this study are most relevant if compounds leached from composites 

are able to breach the pulp space by navigating through or around a pulp cap.  While no 

studies have investigated microleakage of capping materials to methacrylate monomers 

leached from composites or the amount of monomer necessary to elicit a cytotoxic 

response, many studies have identified deficiencies in the physical properties of pulp 

capping materials that may allow leakage to occur. Calcium silicate based cements such 

as MTA demonstrate a high degree of porosity and solubility, which increase 

significantly when higher water-to-powder ratios are used to mix the cement (51, 63, 64). 

Porosity and solubility are significantly less problematic in CH-based cements like Dycal 

(51). An in vitro study comparing the porosities and solubilities of Dycal and ProRoot 

MTA at 70% of final setting time found Dycal to be significantly less porous (9% vs. 

29% for ProRoot MTA) and less soluble (5% vs. 11% for ProRoot MTA) (65). Another 

disadvantage of MTA in this regard is its prolonged initial setting time of up to 4 hours 

with a maturation period that persists for days, weeks, or longer (10). Freshly placed 

MTA is highly susceptible to dislodgement and dissolution, and the seal it provides with 

adjacent tooth structure is weak (66). For this reason, a hard-setting liner is frequently 

placed over unset MTA to provide adequate pulpal seal and protect from bacterial 

microleakage while the tooth is being restored. Interestingly, many liners used for this 
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purpose are resin-based and capable of leaching toxic methacrylate monomers (50). Once 

MTA has achieved initial setting, its protective advantage against these events seems to 

improve greatly. An in vitro study that compared fluid leakage values of completely set 

Dycal and ProRoot MTA placed on perforated dentin discs found significantly less fluid 

conductance through ProRoot MTA (67). The excellent seal formed between set MTA 

and surrounding tooth structure is likely to account for this difference, as CH-based 

cements lack inherent adhesive properties that may contribute to significant leakage.  

 Outside of deficiencies within the pulp cap itself, methacrylate monomers are also 

capable of reaching the pulp by diffusing through dentin tubules (68, 69). Adhesive resins 

applied to dentin thicknesses less than 0.5 mm are capable of causing chronic pulpal 

inflammation, confirming the ability of these leached compounds to diffuse through 

dentin in quantities great enough to elicit a toxic response (70). Therefore, the thickness 

of the dentin lateral to a pulp exposure is an important consideration when choosing a 

restorative material and limiting its toxicity to the pulp. The results of the current study 

indicate that the choice of pulp capping material may be another variable worthy of 

consideration when limiting the toxicity of the restorative material is an important goal of 

treatment.   

 The LDH release assay was used in this study to assess cell death, and by 

extension, material toxicity. LDH is normally found intracellularly and is released into 

extracellular spaces only when the cell membrane is no longer intact, indicating cell 

death. While LDH release is a reliable marker of cell death, cell death is an incomplete 

measure of tissue viability. When cytotoxicity is used to assess overall tissue health and 

vitality, all modes of potential cellular and tissue impairment should be considered. The 
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effects of materials on cell metabolism, as measured by the MTT assay, for example, 

would be useful for evaluating the functionality and hence the viability of the surviving 

cells. Findings from more than one assay would not only allow for a more complete 

evaluation of cytotoxic effects but would also enhance the integrity of the results. It 

should also be emphasized that the results of these tests are insufficient for predicting 

clinical outcomes. Rather, the findings are meant to serve as a preliminary basis for 

further investigation.  

 The ability of ProRoot MTA and Dycal to alter the toxicities of composites used 

in this study highlights the need for further testing to identify the mechanisms involved 

and clinical implications of our findings. Detailed knowledge of the interactions between 

pulp capping and composite materials is important for outlining their appropriate use and 

developing new materials with superior properties.  Suggestions for further research 

include testing the effects of MTA and CH-based cements on the toxicities of various 

monomers found in composite materials including Bis-GMA, TEGDMA, UDMA, 

HEMA, etc. Such a study would help determine whether our results could be further 

ascribed to certain monomeric constituents, and in doing so, allow for broader application 

of our findings to entire classes of composite materials vs. only those used in this study. 

Ultimately, investigation in vivo would enable simulation of the clinical scenario with 

more relevant outcome measures. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 Dental pulp cells underwent viability screening via the LDH release assay to 

determine the effects of Dycal, a CH-based cement, and ProRoot MTA on the toxicities 

of two composite restorative materials, Flow Line and Durafill VS.  

 Dycal was toxic, while MTA was not. Dycal’s toxicity was correlated with the 

amount of material placed in culture, while MTA was nontoxic even in amounts much 

larger than those at which Dycal was highly toxic.  

 Exposure of pulp cells to Dycal significantly reduced the toxicity of Durafill but 

had no effect on the toxicity of Flow Line. Exposure of pulp cells to MTA significantly 

increased the toxicity of Flow Line but had no effect on Durafill toxicity.  

 

Conclusions:  

1. While MTA is nontoxic by itself, here we have demonstrated its potential to 

selectively enhance the toxicity of some composite materials, which may hinder the 

pulp’s ability to recover from the insult of exposure and any preexisting inflammation. 

This highlights the need for a deeper understanding of MTA’s interactions with other 

frequently used dental materials.  

2. While Dycal is inherently toxic, it may protect the pulp from the toxicities of 

certain composite materials. If reproducible in vivo, such an effect would elucidate an 

additional benefit to CH-based materials for direct pulp capping that has been 

unaccounted for in the debate over which pulp capping material (CH vs. MTA) possesses 

superior properties.  



	
   32	
  

3. Further investigation is needed to identify the existence of these findings in vivo 

and the extent to which they are clinically relevant.   
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