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ABSTRACT 

INVESTIGATION OF SURFACE TOPOGRAPHY EFFECTS ON METAL FLOW 

UNDER LUBRICATED HOT COMPRESSION OF ALUMINUM 

 

 

Justin Irvin Kurk, B.S. 

 

Marquette University, 2015 

 

An investigation was conducted to study the effects of die surface topography, 

specifically surface roughness and lay, on metal flow and the friction factor under 

lubricated hot compression.  6061-T6 aluminum rings and square bar stock specimens 

were compressed on H-13 tool steel platens machined with a unidirectional lay pattern to 

six different roughnesses between aR  10 and 240 μin.  A lab based hydraulic press 

mounted with an experimental die set was used for all testing.  Repeated trials were 

conducted using high temperature vegetable oil and boron nitride lubricants.  Metal flow 

was quantified as a function of surface roughness, lay orientation, and die temperature.  

Approximate plane strain cigar test specimens were compressed at platen temperatures of 

300 °F and 400 °F and at orientations of 0°, 45°, and 90° between the longitudinal axis 

and unidirectional platen surface lay.  The friction factor was assessed using the ring 

compression test under varying platen roughness conditions and die temperatures 

between 250 °F and 400 °F.  Results indicate metal flow is optimized at low platen 

roughnesses and orientations parallel to the surface lay of the platen.  Die temperature 

was not found to influence metal flow within the temperature range investigated.  The 

friction factor was observed to be minimized at lower die temperatures and platen 

roughnesses.
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1. Introduction 

Optimization of die designs to achieve complete die fill and simultaneously 

maintain reasonable die life are substantial challenges faced by forging engineers.  

Consequently, the ability to control metal flow during a forging operation represents an 

important means at the hands of a designer to help accomplish these goals.  Process 

variables demonstrating the greatest influence on material flow during forging include: 

preform, cavity, and flash land geometries, die and work piece temperatures, and friction.  

While the finished part geometry primarily influences the majority of these variables, 

friction is a fundamental component during all forging processes.  High frictional forces 

at the interface between the work piece and the dies tends to resist metal flow during 

forging operations, thereby increasing the difficulty of achieving complete die fill and 

resulting in a part of poor or unacceptable quality. 

As the ease of metal flow is key to achieving die fill, common industry practice is 

to minimize interface friction through the use of forging lubricants and also rely on back 

pressure from the flash land.  In contrast to existing die design practices, it is 

hypothesized that the selective use of die surface topography represents an additional 

method of controlling metal flow in a forging process.  For example, a forging engineer 

may specify a non-uniform finish on a die surface such that some regions have a 

topography characterized by high levels of friction while other areas have lower or 

reduced friction.  Through this variation of surface topography, metal flow may be 

selectively hindered in easily filled regions such that more difficult to fill cavity locations 

will experience improvement, thereby facilitating overall metal flow.  This concept can 

be extended to localized regions as well.  Consider that by inhibiting flow in one 
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direction, such that flow is promoted in a perpendicular direction, a forging engineer 

would be able to further optimize die fill.  It is important to note however, the use of non-

uniform die topography is not envisioned to replace the flash land in die design.  Rather, 

it is intended to complement existing techniques and provide a forging engineer with an 

additional means to promote die fill. 

The resistance to metal flow, or friction, in forging processes is represented 

mathematically as the shear stress, i , present at the die-work piece interface.  This 

interfacial shear stress is quantified with either the Coulomb friction or the interface 

friction factor models.  Traditionally the Coulombic model is used in engineering work 

and is presented as the coefficient of friction,  .  In this model the frictional force, ,F  is 

treated as proportional to the normal force, ,N  applied to a surface.  However, under the 

severe deformation and material flow often required in forging processes, i  may 

approach the yield shear stress of the work piece, .yield   The Tresca and Von Mises 

failure criterion each describe yield  as being equal to 0.5 and 0.577 times the flow stress 

of the work piece material, respectively.  Under these conditions, the work piece will 

begin to deform at sub-surface layers, as this behavior minimizes the energy of 

deformation.  This phenomena is often referred to as sticking friction due to the lack of 

relative movement between the die and the work piece surfaces.  It should be noted 

however that this sub-surface flow is the result of increased frictional conditions at the 

die-work piece interface and not physical adhesion between the work piece and the die 

surfaces.  
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When work piece deformation no longer occurs at the surface, but rather at sub-

surface levels, the coefficient of friction,  , becomes invalid as it is calculated based 

upon the relative movement of surfaces.  The continued use of this model under static 

interface conditions results in artificially high calculation for the coefficient of friction as 

it neglects the possibility of yielding within the work piece.  In reality, the work piece 

will shear internally if the frictional force acting upon its surface exceeds its flow stress.  

Hence it is necessary to describe friction with an alternative model, characterized by the 

interface friction factor m  or friction factor for short, by which it will be referred to 

hereafter in this work.  When characterizing frictional forces under conditions of high 

normal stress, the friction factor is a preferable alternative to .   Rather than representing 

frictional force as a proportion of normal force, m  conveniently quantifies it as a 

percentage of the yield strength of the work piece.  This allows for a convenient 

characterization of the friction factor such that a friction factor of 0 equates to frictionless 

conditions at the die-work piece interface while a friction factor of 1 represents a pure 

sticking friction conditions such that all metal flow during deformation is occurring 

internally. 

Of these two mathematical models that are used to quantify friction at the die-

work piece interface, the friction factor model is considered to be more conducive to the 

accurate characterization of frictional forces occurring during a hot forging process.  

Friction, as quantified in accordance with the Coulombic model, is generally determined 

experimentally using the pin on disk test, in which a stationary pin under a constant load 

is placed in contact with a rotating disk.  The coefficient of friction is calculated from the 

known applied load and the measured force resisting the rotation of the disk that is a 
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result of the loading on the pin.  This testing methodology is not well suited for 

determining friction under the high die-work piece interface pressures present in forging 

processes.  The friction factor, however, characterizes interfacial friction based upon 

shear and flow stresses, which may be experimentally determined through the use of the 

ring test.  In the ring test, a work piece having a fixed ratio of 6:3:2 between its outer 

diameter, inner diameter, and height dimensions is compressed [1,2].  The resulting 

change in the inner diameter and height are then used to calculate of the friction factor.  

Because the friction factor is capable of accurately characterizing frictional forces under 

both sliding and sticking friction conditions, it is well suited for the higher pressures and 

temperatures encountered during forging processes. 

The topography of any surface is characterized by several defining features 

including roughness height and width, waviness, and lay direction which are depicted in 

Figure 1.1.  All surfaces have an inherent roughness that can be described by finely 

spaced deviations from the nominal surface.  These deviations are commonly referred to 

as asperities and have variable height and width dimensions.  Asperities on surfaces are 

most often the result of the machining processes and tool geometries used.  Similarly, the 

waviness of a surface is also defined by deviations which have significantly greater 

spacing than roughness.  These larger deviations are caused by phenomena such as work 

piece deflection and machine tool vibration during the machining process.  Lastly, the lay 

of a surface is the predominant direction of both the finely spaced roughness asperities 

and the larger waviness deviations.  The lay of a surface is influenced by both the 

manufacturing operation used, as well as the orientation of the surface relative to the 

motion of the tool during machining. 
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Figure 1.1 - Defining Features of Surface Topography (After Ref. [3]) 

For purposes of specifying a particular finish or comparing multiple samples 

surface roughness is most commonly quantified in terms of aR , which is a measure of the 

average peak-valley distance between asperities in units of μin or μm.  Figure 1.2 

illustrates a cross sectional close up image of an example surface and identifies the 

important parameters used to determine the numerical value of aR . 
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Figure 1.2 - Example Surface Cross-Section 

Although it seems logical to assume that increased surface roughness will result in a 

corresponding increase in friction and reduction in metal flow, previous work has shown 

otherwise [4].  Rather than a constant increase in friction with respect to surface 

roughness, it is possible that an optimum range of surface roughnesses exist in which 

friction is minimized and metal flow is maximized.  Generally die topographies in 

commercial forging processes are characterized by roughnesses around Ra 60 μin.  As 

roughness and lay are defining features of a machined surface, they are important 

characteristics to consider with respect to metal flow.  In Figure 1.3 a plot is presented of 

the coefficient of friction,  , vs. surface roughness aR  in in  as found during testing of 

unlubricated contact of copper on copper [4].  Notice that  was found to decrease to a 

minimum value as surface roughness increase from aR  5 to 20 .in   The minimum value 

of   occurring between aR  20 to 50 in  then begins to increase at roughnesses beyond 

aR  50 .in  These findings serve to, at minimum, present the possibility of the existence 

of an optimum range of surface roughnesses that can be utilized to minimize friction and 

maximize metal flow. 
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Figure 1.3 – Plot of the Coefficient of Friction ( ) vs. Roughness ( in  ) (After Ref. [4]) 

Surface topography, particularly roughness and lay, of both the die and work 

piece are hypothesized to have an effect on frictional resistance.  In a metal forming 

process, local frictional forces will act in two perpendicular directions on a plane parallel 

to the die faces and will influence the primary direction of movement.  Therefore, the 

relationships between die roughness and lay and friction should be recognized as key 

parameters relating to the optimization of metal flow in a forging process.  The improved 

characterization of topographical effects, specifically roughness and lay, on both friction 

and metal flow could result in improved process control and may yield a complementary 

method of achieving complete die fill.  Additionally, if a correlation between surface 

roughness and lay and metal flow is found, a more comprehensive friction model for 
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metal forging may be developed.  Improvements in friction modeling would in turn 

advance the current state of process modeling that is utilized in industry, as a forging 

engineer would have a more detailed picture of die topographical effects on friction and 

metal flow during the design process. 

Considering the hypothesized relationship between frictional forces and die 

topography, the overall goal of this investigation is to characterize the effects of die 

topography on material flow during hot forging processes.  Specifically, the die 

parameters of surface roughness and lay will each be investigated for their effects on 

metal flow.  In addition to sensitivity with respect to the surface roughness and lay, the 

interface temperature is also known to influence friction and, in turn, metal flow.  

Because frictional forces vary with die temperature, it too must be considered whether or 

not any topographical effects on metal flow are further influenced by the temperature at 

the interface of the work piece and the dies.  Interface temperature in hot forging 

processes is dictated by the preheating temperature, work piece and die temperatures, and 

the rate at which the work piece is deformed.  Through the use of a constant heating 

temperature and deformation rate, the variable of interface temperature can be isolated 

for the purpose of investigating temperature effects on the friction factor. 
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2. Literature Review 

A review of experimental studies that have been published on the topic of how 

tool surface topography influences material flow suggests that few researchers have 

considered deformation under hot working conditions.  Rather, existing research appears 

to have been focused on drawing, rolling, and upsetting processes at cold working 

temperatures and limited to consideration of surface roughness effects.  A number of 

these investigations which considered upsetting have been reviewed previously by 

Nowak [5] and will not be duplicated in the current survey.  However, review of the 

literature related to die topography effects on material flow during drawing and rolling 

investigations may provide useful insights in the context of the current investigation. 

The following review will focus on published work that has considered both die 

surface roughness and lay effects on material flow and/or friction as this is most relevant 

to the current investigation.  Although the deformation processes and friction 

measurement methodologies of the investigations surveyed differ somewhat from those 

used in the current study, it is still beneficial to review these as the mechanisms 

responsible for frictional conditions at the die-work piece interface are thought to be 

comparable.  The fundamental differences between metal flow in two dimensional plane 

strain rolling, axisymmetric drawing, and upsetting processes must be considered, 

however, when comparing the reported topographical effects among the different metal 

forming processes. 
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2.1 Metal Flow During Hot Compression 

As interfacial friction is key to the optimization of metal flow, there is a need to 

understand how it is affected by die topography.  In previous work by Nowak [5], the 

relationship between surface topography and both metal flow and the friction factor under 

hot compression conditions was studied.  The majority of Nowak’s tests were conducted 

under dry conditions though a few exploratory trials were also performed using a water 

graphite lubricant.  Specifically, Nowak compressed 6061-T6 aluminum specimens on 

machined H-13 tool steel platens which had been prepared with a unidirectional surface 

lay and surface roughnesses ranging from aR  4 to 250 in .  Platens were heated to 

temperatures from 250 to 400 °F and both ring and rectangular geometries were 

compressed to experimentally determine the effects of die topography on the friction 

factor and material flow. 

Based on his results, Nowak concluded that the friction factor increased in direct 

proportion to die temperature under the conditions studied.  Further, a clear relationship 

between platen roughness and metal flow was not observed as the strain varied linearly at 

high platen roughnesses and non-linearly at low ones.  Third, the orientation between the 

work piece and the platen surface lay was found to yield mixed results with respect to 

metal flow.  Under lower roughness values of aR  4 and 40 in , the maximum strains in 

both the length and width directions were observed when the longitudinal axis of the 

specimen was oriented at 45° to the platen surface lay.  However, a transition appeared to 

occur at a platen roughness of aR  60 in  resulting in maximum metal flow at a 90° 

orientation between the longitudinal axis of the work piece and the platen surface lay for 
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the higher roughness aR  125 and 250 in  platens.  Because of the variation present 

within these results, platen surface roughness was concluded by Nowak to be more 

influential than lay on overall metal flow. 

The majority of Nowak’s compression tests were performed without lubrication 

resulting in metal to metal contact between the work piece and dies.  It is hypothesized 

that this contact resulted in sticking friction.  A clear indication of this sticking 

phenomena was seen upon examining the horizontal surfaces of the deformed ring and 

cigar specimens.  The outline of the undeformed specimen geometry was visible on the 

top and bottom surfaces of the compressed specimens.   Beyond the original specimen 

outline, surface marks similar to the topography of the dies developed as the metal was 

forced to flow in the radial, longitudinal, and transverse directions during compression of 

the ring and cigar specimens.  The majority of the marks were aligned parallel to the 

unidirectional surface lay of the platens.  Because an outline of the original specimen 

geometry was visible, it is hypothesized that flow occurred on a subsurface level as a 

result of adhesion between the die and the work piece. 

Because aluminum and tool steel were selected, for the work piece and platen 

materials respectively, sticking friction between them was likely encouraged, particularly 

under dry conditions.  Due to the reactive nature of aluminum, elevated temperatures and 

physical contact are known to result in a chemical reaction between aluminum and iron.  

This chemical reaction was likely the cause of the adhesion that occurred between the 

work piece and dies, contributing to the visible outline of the original specimen geometry 

that appeared on the surface of the compressed specimens.  Although H-13 is a 

commonly selected die material during the forming of aluminum, it is normally used in 
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conjunction with a lubricant which minimizes the reaction between aluminum and steel.  

Because of the sticking friction between the die and work piece that developed under dry 

testing conditions, flow occurred at sub-surface levels within the work piece, likely 

nullifying any topographical effects on material flow.  Therefore, it cannot be determined 

with certainty whether the resulting changes in strain or spread ratio were the result of 

topographical conditions at the die-work piece interface or simply the result of sub-

surface metal flow. 

Nowak repeated compression testing using graphite lubricant suspended in water, 

which was manually sprayed onto the platen surfaces.  Nowak concluded that the overall 

friction factor was lowered, but the mixed results previously seen in material flow with 

respect to platen roughness and lay remained.  While the use of a water based graphite 

lubricant was appropriate, achieving a consistent, uniform layer proved difficult.  The 

spray nozzle used to manually apply the lubricant mixture prevented Nowak from 

achieving the desired thin layer of graphite on the platen surfaces.  Rather, a buildup of 

excess lubricant developed after each trial and tended to increase with repeated trials.  

This was indicated by the visible layers of dark graphite that remained on the platen and 

work piece surfaces after testing.  Additionally, graphite suspended in water is known to 

separate, further increasing the difficulty of application as there was no provision in the 

experimental set-up to ensure the mixture was uniform.  This variability was present 

throughout the test conditions and potentially influenced the results described previously. 
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2.2 Friction in Drawing and Rolling Processes 

 In a study conducted by J.O. Kumpulainen [6], the effects of tool surface 

topography and temperature on friction and galling behavior in sheet metal drawing were 

investigated.  It should be noted that the pressures present in sheet metal drawing 

processes are significantly less than those in forging.  Additionally, the drawing tests 

were conducted at room temperature.  In Kumpulainen’s investigation various grades of 

steel, brass, and aluminum sheet were deformed using a tension type friction tester.  Both 

lubricated and non-lubricated conditions were investigated.  Several blends of lubricants 

were used including: pure mineral oil and commercial mixtures of compounded mineral 

oil, wax, and paste.  The coefficient of friction in this experiment was quantified under 

these various test conditions with an equation incorporating the thickness of the sheet, the 

radius of the bend over which the sheet was drawn, and the measured drawing, back 

tension, and bending forces during the test. 

From this investigation Kumpulainen found that the influence of die temperature 

on friction coefficient tended to be dependent on the lubricant used.  Some combinations 

of materials and lubricants showed a reduction of the friction coefficient with respect to 

increasing die temperature while others demonstrated an opposite trend.  Kumpulainen 

hypothesized that it was not die temperature influencing friction in these tests, but rather 

the properties of the lubricants.  Depending on the additives in the lubricant, and their 

ability to react with the metal surfaces, the viscosity could change drastically with respect 

to temperature.  Lubricants that upheld their viscosity as temperatures increased were 

able to maintain a boundary layer between the work piece and the dies, thus minimizing 

metal to metal contact and reducing friction.  Conversely, lubricants that broke down at 
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higher temperatures caused an increase in the contact ratio between the die and the work 

piece surfaces, resulting in increased friction.  From these results it can be concluded that 

lubricant selection is a crucial factor effecting frictional conditions present at the die-

work piece interface in sheet metal forming. 

With respect to the relationship between die surface topography and the 

coefficient of friction, Kumpulainen conducted a series of drawing tests and reached two 

important conclusions.  First, the coefficient of friction was found to be minimized in all 

tests when the surface lay of the tool was perpendicular to the drawing direction.  Second, 

for all but one condition, as the surface roughness of the tool increased the coefficient of 

friction increased.  The exception to this conclusion was the scenario in which a sheet 

having a poor surface finish, i.e. a high surface roughness, was drawn over a die having a 

perpendicular surface lay.  It was possible in this scenario to observe a decrease in the 

coefficient of friction with respect to increasing sheet surface roughness.  However, this 

was not observed when the test sheets were of a good surface quality prior to drawing.  

This anomaly is particularly important as it indicates that metal flow may be influenced 

not only by the surface topography of the tool, but also the surface topography of the 

work piece. 

Wolff et al. [7] and W. Rasp and C.M. Wichern [8] reached similar conclusions 

while investigating the influence of surface lay on frictional behavior using plane strain 

and asymmetric friction upsetting tests respectively.  Wolff et al. tested specimens with 

unidirectional surface grooves oriented at angles of 0°, 45°, 60°, and 90° to the drawing 

direction under lubricated conditions.  Friction was found to be minimized at 90° surface 

lay orientations relative to the drawing direction and increased with respect to the surface 
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roughness of the tool.  Rasp and Wichern simulated the roll gap of a rolling process with 

an asymmetric friction upsetting apparatus under dry and lubricated conditions.  Rasp and 

Wichern’s findings again concluded that a tool surface lay oriented 90° to the rolling 

direction minimized friction for all tests except under dry conditions and at low strain 

rates.  Friction was also again found to also rise with respect to increasing tool surface 

roughness. 

All of the findings published by Kumpulainen [6], Wolff et al. [7], and Rasp and 

Wichern [8] show consistent agreement in their conclusions that, under high strain rates 

and lubricated conditions, friction is minimized when the surface lay of the tool is 

oriented at 90° relative to the working direction.  Furthermore, the authors all offer a 

similar hypothesis that this is a result of better lubricant entrapment under 90° surface lay 

orientations, which lead to a hydrodynamic boundary layer within the microscopic 

grooves between the surfaces.  It is hypothesized that as a result of this lubricant film 

between the die and the work piece, metal is prevented from flowing into and filling the 

microscopic voids between asperities on the tool surface.  This in turn reduces the 

frictional resistance in drawing or rolling as the work piece deforms along the tool 

surface on the boundary layer of lubrication separating it from the tool.  Therefore, as 

deformation occurs, the work piece is able to flow without continuously filling the voids 

between tool surface asperities.  A study by Rasp and Häfele [9], where the influence of 

surface lay on lubricant film thickness during cold rolling of sheets was investigated, 

further supports this hypothesis as they concluded that surface lays oriented 90° relative 

to the working direction developed a thicker lubricant film and reduced friction between 

the work piece and the die at all rolling velocities. 
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References [6,7,8] all reported friction to be minimized for tests conducted at high 

strain rates or using lubrication.  However, at lower strain rates and under dry conditions 

the authors observed differing results.  Under these conditions a 0° orientation, not a 

surface lay oriented at 90°, resulted in the lowest friction coefficients.  Furthering their 

hypothesis that the minimization of friction under lubricated conditions and at high strain 

rates was because of lubricant entrapment, the change in surface lay resulting in 

minimized friction under dry conditions or lower strain rates was explained.  Under dry 

conditions or at lower rolling or drawing velocities a lack of lubricant entrapment occurs.  

Even if lubricant is used at lower velocities, any lubricant present at the die-work piece 

interface will escape the die work piece interface rather than becoming entrapped.  Under 

these conditions, friction becomes a function of the mechanical contact between the 

surfaces.  As such, a 90° orientation relative to the tool surface lay becomes detrimental 

to metal flow because it increases the number of surface asperities over which the work 

piece must flow, thereby increasing the friction. 

The increase in friction noted by the Kumpulainen [6], Wolff et al. [7] and Rasp 

and Wichern [8] with respect to increasing surface roughness could also be explained by 

this hypothesis.  A surface characterized as having a high surface roughness contains 

asperities larger, specifically in height, than that of a smoother surface.  As such, these 

asperities are capable of puncturing the boundary layer of lubricant that forms at the die-

work piece interface resulting in mechanical friction between the peaks of the asperities 

and the surface of the work piece.  Therefore, as the surface roughness of the tool 

increases, so too does the mechanical friction between the asperities and the work piece 

resulting to an overall increase in friction. 
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Generally, there is agreement among references [6,7,8] that friction, under well 

lubricated conditions, is minimized with a surface lay oriented at 90° relative to the 

working direction during drawing and rolling processes.  Similarly, under dry conditions 

or at lower strain rates references [6,7,8] also agreed that a 0° surface lay orientation 

resulted in a minimization of the friction factor.  Under all test conditions it was 

concluded that frictional coefficients were found to rise with respect to increasing surface 

roughness.  Unfortunately the findings of compression tests conducted in reference [5] do 

not show agreement with these conclusions reached from the rolling or drawing 

experiments used by references [6,7,8].  As noted earlier, however, the normal pressures 

and temperatures used in the flat drawing and rolling investigations are far less than those 

seen in [5].  Because of these fundamental differences between the upsetting process 

described earlier and these drawing and rolling investigations, further investigation is 

warranted to identify the effects of die surface topography on metal flow under the higher 

pressures seen in forging. 

2.3 Other Friction Testing Related to Die Topography 

 In contrast to the investigations discussed in the previous section, Menzes et al. 

[10,11] examined the relationship between both surface roughness and surface lay and 

friction through the use of an inclined pin on plate friction tester.  Tests were conducted 

on experimental surfaces machined such that their lay was unidirectional.  Duplicate 

trials were repeated under both dry and lubricated conditions.  Based upon the work of 

Bowden and Tabor [12], Menzes et al. [10,11] characterized the frictional forces acting 

between the pin and the plate in their investigations as being comprised of both adhesion 
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and plowing components.  The adhesion component was found to depend on the 

composition of the materials in contact, the lubrication conditions, and the real area of 

contact.  Additionally, the plowing component was found to depend on the degree of 

plastic deformation taking place between the microscopic asperities of each surface 

during relative movement between them.  The coefficient of friction was calculated by 

measuring the angle between the pin and the test surface and using a load cell to measure 

forces in the transverse and normal directions.  The pin was slid 10 mm across steel 

plates of various prescribed roughness reaching a maximum normal load of 120 N.  This 

translates to a pressure of over 29,000 psi based upon the measured width of the wear 

track left behind after each test. 

Menzes et al. [10] conducted tests on five different plate roughnesses and at 

orientations of 0° and 90° relative to their surface lay.  Five repetitions were performed 

under each test condition to ensure consistency within the results.  It was determined that 

under dry conditions both adhesion and plowing components of friction were present, as 

there was no lubricant to prevent direct metal to metal contact between the pin and the 

plate.  Additionally it was concluded that under lubricated conditions, the adhesion 

friction component was all but negligible, as the lubricant created a boundary layer 

between the pin and the plate surface.  By analyzing the results of the friction tests 

Menzes et al. were able to conclude that the adhesion and plowing components of friction 

responded differently to surface topography.  The plowing component of friction was 

found to be greatest when measured at a 90° orientation relative to the surface lay.  

Conversely, the adhesion component was found to be greatest when measured at a 0° 

orientation with respect to the surface lay. 
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Upon considering the nature of each frictional component, the reasons for these 

contrasting trends becomes clear.  The plowing component of friction is the force 

opposing movement past the microscopic peaks on the test surfaces.  If movement is 

oriented perpendicular to the surface lay the pin used in the test will cross the maximum 

amount of peaks over the test length, leading to the greatest amount of plowing friction.  

Similarly, the adhesion component of friction is dictated by the force opposing movement 

during metal to metal contact, or adhesion, between surfaces.  When the pin is oriented 

parallel to the surface lay it is essentially in continuous contact with the test surface as 

fewer microscopic peaks that intermittently separate the surfaces are encountered.  These 

conclusions were further solidified in the results of [10] where Menzes et al. noted stick 

slip friction conditions indicated by oscillations of the friction measurement, during 

lubricated testing at a 90° orientation relative to the tool surface lay, as the plowing 

component of friction dramatically increased each time the pin encountered a 

microscopic peak.  When the test was rotated to a 0° orientation with respect to surface 

lay, stick slip friction was no longer observed as contact between the pin and the test 

surface was uninterrupted. 

 In [11], Menzes et al. conducted a similar study, this time using four different 

unidirectional surface lay orientations of 0°, 20°, 45°, and 90° relative to the direction of 

pin movement.  The measured friction during testing was again separated into 

components of plowing and adhesion.  Using the results of both dry and lubricated tests, 

and assuming the adhesion component of friction was negligible under lubricated 

conditions, the plowing component of friction was found to have a significantly greater 

influence on the overall friction measurement. 
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An effective indication of plowing friction during testing is stick slip phenomena 

indicated by oscillations of the friction measurement.  Stick slip was not observed during 

any of the dry tests conducted but did appear under lubricated conditions, at a surface lay 

orientation of 25° or greater, where adhesive friction is minimized.  The stick slip 

phenomena continued to rise in magnitude until it reached a maximum value at a 90° 

orientation relative to the tool surface lay.  Therefore, Menzes et al. determined that 

variations in overall friction are primarily due the surface topography, more specifically 

the orientation of the surface lay to the direction of metal flow.  This conclusion was 

reached due to the dominance of the plowing versus adhesive component of friction and 

the finding that it was most influenced by the orientation of the surface lay at which it 

was measured. 

2.4 Comparison of Literature Results 

Overall there appears to be some disagreement between the findings of the 

drawing and rolling [6-9], upsetting [5], and pin on plate investigations [10,11].  The 

drawing and rolling investigations reported that friction was minimized if the surface lay 

of the tool was oriented 90° relative to the working direction under lubricated conditions 

and at higher strain rates.  Kumpulainen also reported that temperature did not directly 

affect friction in drawing processes, but rather the characteristic of some lubricants to 

break down at higher temperatures led to an increase in friction.  Conversely, in both dry 

and lubricated compression testing, friction was found by Nowak to be minimized in 

scenarios when the surface lay of the die was oriented at angles of 0° and 45° relative to 
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the direction of metal flow.  Lastly, Menzes et al. measured the lowest friction values at 

0° surface lay orientations during their pin on plate friction testing. 

Due to the disagreement in these findings, the differences between drawing and 

rolling, upsetting processes, and pin on plate friction testing must be considered.  The 

compression testing performed by Nowak was done on a hydraulic press at low strain 

rates, at normal forces higher than seen in sheet metal drawing, and resulted in significant 

bulk deformation of the work piece.  In the drawing and rolling investigations, sheet 

metal was drawn at higher strain rates, under lower forces, and resulted in minimal bulk 

deformation of the work piece.  In the pin on plate friction testing, the work piece was not 

physically deformed, rather a pin was slid across the investigated surface under a 120 N 

load resulting in a large difference in flow stress conditions.  Additionally, the only 

component interacting with the investigated surface was the end of the pin tester, 

resulting in a very small area of contact.  The differences in strain rates, pressures, and 

areas of contact between the work piece and dies in all three of these investigations are 

likely the cause the vastly different findings between metal flow and die surface 

topography. 

During compression testing, the slow strain rate and substantial pressures will 

minimize any lubricant retention achieved by a 90° relative to the surface lay of the 

tooling.  In the absence of boundary layer lubrication at the die-work piece interface, 

metal flow is predominantly dictated by the physical contact between the components.  

At the higher strain rate utilized during drawing processes lubricant has less time to 

escape as the tool quickly passes over the work piece, preventing metal to metal contact 

between the tool and the work piece which are separated by the entrapped lubricant.  
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However, as the surface roughness increased, the asperities of the tool began to penetrate 

the boundary layer of lubricant, initiating metal to metal contact between the die and the 

work piece that resulted in an increase in friction.  Under the lower pressures of the pin 

on plate test the contact between the pin and the test surface is minimal, and friction is in 

turn driven by the plowing component that occurs when the pin has to traverse 

microscopic peaks.  Therefore, friction is minimized under conditions where the plowing 

component is reduced, hence the greatest amount of metal flow is expected when 

movement occurs at a 0° orientation relative to the test surface lay. 

The inherent differences in how the work piece and die interact in these processes 

may also offer an explanation for the lack of consistent findings on the relationship 

between friction and temperature.  Kumpulainen’s drawing tests found that it was the 

ability of the lubricant to maintain its properties, and not the temperature itself that 

affected friction with respect to temperature.  Alternatively, Nowak reported a direct 

increase in friction with respect to temperature during compression testing.  The different 

conditions present at the die-work piece reveal a logical explanation for these ambiguous 

findings.  Metal flow in drawing and rolling processes is driven by the lubricant present 

at the interface.  Under upsetting processes the layer of lubricant is no longer present 

resulting in physical contact between the die and work piece.  When a poor quality 

lubricant, having the tendency to break down at increased temperatures, is used in a 

drawing or rolling processes, tribological conditions similar to upsetting develop such 

that metal to metal contact occurs.  At elevated temperatures, the constitutive elements of 

the materials in contact will then have an increased tendency to react with one another, 
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resulting in the likely increase of friction noted by Kumpulainen in some instances and in 

Nowak’s investigation. 

Based upon the literature reviewed, the test conditions observed in both the 

upsetting and pin on plate friction testing seem to most closely match those of the current 

investigation.  Because of the low strain rate and high pressures, one would not expect 

lubricant to be entrapped between the die and work piece surfaces in this study.  

Therefore friction will likely become a function of the mechanical contact between 

surface asperities at the die-work piece interface.  As noted previously, under these 

conditions friction appears to be minimized when the working direction is oriented at a 0° 

angle relative to the surface lay of the tooling.  As such, it is hypothesized that the results 

of this investigation will demonstrate an increase in metal flow in directions parallel to 

the die surface lay.  With respect to increasing roughness, an increase in overall friction 

will also be expected to rise as more asperities will be forced to traverse each other 

during metal flow.  Lastly, as a full film boundary layer of lubrication is not anticipated 

to develop due to the low strain rates and high pressures, friction is predicted to increase 

with respect to temperature as the result of chemical reactions between the constituent 

elements of the aluminum alloy work piece and the tool steel die that are in contact. 
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3. Experimental Setup 

 The experimental set-up and methodologies used in this investigation are 

described in detail in this chapter.  Two types of compression tests were conducted and 

the geometries of the deformed specimens from each were used to investigate the 

relationship between surface topography and metal flow.  Ring tests were used to 

determine the friction factor, while cigar testing was employed to examine the effects of 

part orientation and die roughness on metal flow.  Descriptions of the procedures used to 

perform both types of compression testing, including the preparation of the experimental 

equipment, are presented in the following sections. 

3.1 Compression Platens 

Six platens, each with a different surface roughness, but all having a 

unidirectional surface lay, were used in both the ring and cigar compression tests.  Two 

different ranges of roughness values were used.  Roughnesses spanning aR  10 through 60 

in  (termed low surface roughness) were selected as they are typical of the die finishes 

employed in industry.  Additionally, larger roughness values of aR  130 and 240 in  

(termed higher surface roughness) were employed and were intended to simulate worn 

die surfaces.  A comprehensive list of the six surface roughnesses used in this 

investigation is shown in Table 3.1. 
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Table 3.1 - Summary of the average surface roughnesses used in compression testing of 

aluminum specimens. 

Platen Set Surface Roughness ( in ) 

1 Ra 10 

2 Ra 20 

3 Ra 40 

4 Ra 60 

5 Ra 130 

6 Ra 240 

Each compression platen was circular and was approximately 1 inch thick with a 

4 inch diameter.  All platens were machined with a single 0.375 inch through hole 

parallel to the working surface and a 0.25 inch wide groove on their working surface as 

shown in Figures 3.1 and 3.2.  The through hole was located in the middle of the 

thickness and diameter dimensions of the platen and allowed for the insertion of a 

cartridge heater.  The surface groove was incorporated into the die design in order to 

mechanically orient the unidirectional surface lays of both the top and bottom platens 

symmetrically.

 

Figure 3.1 – Through hole drilled in 

platen’s vertical face. 

 

Figure 3.2 – Alignment groove on 

platen’s working surface.
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AISI H-13 alloy tool steel was selected as the platen material for the investigation 

as it is widely used as a die material in hot forming operations and retains several 

favorable forging tool characteristics including: high hardenability, hot hardness, and 

fatigue and wear resistance.  To maintain a consistent surface finish and minimize surface 

wear, each platen underwent a hardening heat treatment process presented by Diehl Steel 

[13], achieving a Rockwell C hardness between 50 and 55.  As heating H-13 tool steel in 

air results in excessive oxidation, the hardening heat treatment was conducted in an 

ammonia atmosphere furnace. 

3.1.1 Machining Procedure Used to Achieve Low Surface Roughness 

 Platens having a surface roughnesses of aR  60 in  or less were machined using a 

standard surface grinder.  Surface grinding is commonly employed in the manufacturing 

of commercial die surfaces, making it an appropriate selection for this investigation.  All 

grinding passes were limited to a single direction as this allowed a uniform, uni-

directional surface lay to be achieved.  This was accomplished by maintaining a constant 

orientation between the grinding wheel and platen surface during each machining pass. 

3.1.2 Machining Procedure Used to Achieve High Surface Roughness 

 To simulate worn die surfaces, roughness values of aR  130 and 240 in  were 

used in this study.  As these roughness values could not be machined using a grinding 

wheel, a 0.5 inch diameter ball end mill was used to make repeated linear parallel passes 

across the platen surface.  For the aR  130 in  surface, each pass was made at a depth of 
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0.003 inch and spaced 0.017 inches apart.  Similarly, to achieve the aR  240 in  surface, 

passes with the 0.5 inch diameter ball end mill were again made at a depth of 0.003 

inches and this time spaced 0.03 inches apart.  Because each pass of the ball end mill was 

made parallel to the previous, a unidirectional lay was generated on the platen surfaces.  

Figures 3.3 and 3.4 show the finished aR  130 and 240 in  surfaces respectively.

 

Figure 3.3 – Machined aR  130 in  

Platen Surface. 

 

Figure 3.4 – Machined aR  240 in  

Platen Surface.

3.2 Compression Testing and Press Setup 

All compression tests performed in this study were completed using a lab-based 

hydraulic press and experimental die set, which are shown in Figure 3.5.  Specifically, a 

Technovate 10 ton hydraulic press (Technovate Inc., Pompano Beach, FL) capable of a 

three-inch stroke was employed.  The relief valve incorporated into the hydraulic circuit 

of the press was adjusted to limit the working pressure to 1,700 psi, as this operating 

pressure was found necessary to achieve the desired 0.7 in/in upset strain for specimens 

deformed during ring and cigar testing.  A four post die set (Superior Corp. Oak Creek, 
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WI) mounted with upper and lower 4 inch diameter, 1 inch thick, H-13 tool steel platens, 

were securely attached to the press bed and ram. 

  

Figure 3.5 - Photo of experimental setup equipment with major systems identified.  From 

top to bottom: A) Technovate 10 ton hydraulic press, B) Superior four post 

die set, and C) Omega PID temperature controllers. 

As aluminum is commonly forged using heated dies, platen heating was 

performed using two 0.25 inch diameter 100 W Incoloy sheathed cartridge-style 

resistance heating elements (Omega HDC08691, Omega Engineering, Stamford, CT) 

A 

B 

C 
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which are shown in Figure 3.6.  To minimize thermal conduction between the die tooling 

and press frame, 1 inch thick granite backing plates were incorporated between the 

platens and die set.  Die temperature was measured using sheathed type K thermocouples, 

welded to the platen surfaces, and rated to an accuracy of   1 °F. Platen surface 

temperature was monitored and maintained to within   4° F using two attached feedback 

loops, cartridge heaters, and proportional-integral-derivative (PID) controllers, previously 

highlighted in Figure 3.5, and constructed from Omega components.  Each PID controller 

monitored the die temperature for a single platen using an output supplied by the 

thermocouple and energized the individual resistance heating elements on and off 

accordingly.  A block diagram of the PID controller setup, as well as the measurement 

and command signals necessary for its operation, is shown in Figure 3.7. 

 

Figure 3.6 – Close up image of the experimental die setup used with important 

components identified. 
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Figure 3.7 – Block diagram of PID controllers used to regulate platen temperature during 

hot compression. 

The platen surface temperatures, measured by type K thermocouples, were 

verified using Tempilstiks.  Four indicators, rated at 250 °F, 300 °F, 350 °F, and 400 °F 

respectively, were used.  Each Tempilstik was placed in contact with the platen at various 

surface locations, thereby ensuring uniform temperature conditions.  This verification 

process is shown in Figure 3.8. 
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Figure 3.8 – Image of die temperature verification process. 

3.3 Work Piece Material and Geometry 

 6061-T6 aluminum was selected as the work piece material used for all 

compression testing due its low flow stress and minimal oxide layer thickness.  Unlike 

carbon, alloy, and stainless steels, which form Fe2O3 oxide layers, the Al2O3 oxide 

surface layer present on 6061 does grow slightly during heating, but substantially less 

than that of steel work pieces and does not flake off during upsetting.  This characteristic 

was particularly important to the investigation, as the development of a thick or flaking 

surface oxide layer would lead to increased die wear, due to its abrasiveness, and have 

the potential to locally disrupt the metal flow.  Both of these effects during testing would, 

in turn, affect the repeatability of the metal flow observed during the experiment. 

The dimensions selected for the ring test specimens were 1.125 by 0.5625 by 

0.375 inches for the outer diameter, inner diameter and height respectively.  These 

dimensions were selected as they resulted in a ratio of 6:3:2 between the outer diameter, 

inner diameter, and height dimensions.  For the cigar compression tests, 2” long 
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specimens with an initial 0.25” by 0.25” square cross were chosen.  These dimensions 

were selected because the ratio of the length and width dimensions was 8:1, which 

reasonably approximates plane strain conditions.  A full 10:1 ratio was not used due to 

limitations in platen size, as the longer specimens would have approached the 

thermocouple connection point during deformation.  The thermocouple connection could 

not be relocated as it was important to measure the surface temperature of the platen to 

which the work pieces would be exposed.  Additionally, the increased size of the longer 

specimen that would achieve the 10:1 ratio would prevent the desired 0.7 in/in upset 

strain from being achieved due to the limited press tonnage that was available.  Scale 

images of both the ring and cigar test specimens that were used are shown for reference 

in Figure 3.9. 

 

Figure 3.9 – Scale image of aluminum work pieces used in the investigation.  From left to    

right: A) ring compression test specimen and B) rectangular cigar specimen. 
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3.4 Experimental Methodologies 

 The effect of die topography, specifically surface roughness and lay, on metal 

flow during lubricated hot compression was investigated using ring and side pressing 

tests.  Both tests are based on compression of a work piece between flat, parallel die 

surfaces.  The ring test is commonly used in forging studies to experimentally determine 

the friction factor at the interface between die and work piece surfaces.  The side pressing 

test, also known as the cigar test, because the resulting shape of the compressed samples 

closely resemble that of a cigar, was used to quantify metal flow under the various 

roughness and lay conditions that were used.  Because the cigar test is designed to 

emulate plane strain compression, the width, or transverse, dimension is expected to 

demonstrate the greatest strain.  Therefore, metal flow can be easily quantified through a 

measurement of true strain in the transverse dimension of the compressed specimens and 

used as a means to compare the effects of surface roughness and lay on material flow. 

 To eliminate the possibility that the surface topography or directionality of the 

work pieces would affect the results, the surfaces of all aluminum specimens were treated 

in a vibratory bowl prior to compression testing.  Treatment consisted of a two-step 

process using a mixture of abrasive ceramic media and water.  The samples were 

processed for a duration of 45 minutes on timer control and resulted in an average surface 

roughness of aR  35 μin.  Upon completion, each batch of samples was verified to have a 

non-directional surface finish by comparing the measured surface roughness in the 

transverse and radial directions of the ring specimens and the length and width 

dimensions of the cigar specimens using a profilometer.  The surface finish was deemed 

non-directional if the roughness was consistent in both measured directions.  After 
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undergoing a vibratory finishing process, the initial dimensions of each sample was 

measured and recorded. 

All work pieces were preheated to 855 °F in a Cress CH133/PM4 resistance type 

box furnace (Cress Mfg, Carson City, NV) prior to compression testing.  This 

temperature was selected as it is the mid-range value of the recommended hot working 

range of 810 °F – 900 °F [14].  A single preheating temperature was used for the purpose 

of limiting the scope of the investigation.  The furnace is capable of continuous heating at 

temperatures up to 2,000 °F.  The temperature was maintained to + 1% of the set point 

using a Watlow EZ-Zone proportional-integral-derivative (PID) controller (Watlow 

Electric Manufacturing Company, St. Louis, MO) and a type K thermocouple mounted 

within the furnace.  Furnace temperature was verified using an additional type K 

thermocouple mounted through the back of the furnace chamber and attached to a digital 

temperature readout.  An image of the furnace and verification readout both at the 6061 

hot working temperature can be seen in Figure 3.10.  To ensure that each work piece was 

heated to a uniform temperature, specimens were held in the furnace for 60 minutes. 
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Figure 3.10 – Cress Furnace used to preheat compression test specimens.  From left to 

right: A) The readout of from the independent type K thermocouple probe.  

B) The Watlow temperature controller integrated into the furnace. 

 Because hot forging temperatures are known to promote chemical reactions 

between the aluminum work pieces and H-13 tool steel platens that results in sticking, 

lubrication was applied to both platen surfaces prior to each compression test.  

Lubrication was necessary as the resulting adhesion between the test specimens and the 

die surfaces, would have masked the effects of surface roughness and lay on metal flow 

that were under investigation.  Specifically, high temperature vegetable oil and boron 

nitride lubricants were employed due to their ease of application, as they do not require a 

complex pressurized spray system.  Additionally, these chemicals are also utilized in 

A 
B 
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short production runs of closed die aluminum forging processes, which made them 

appropriate selections for use in this study. 

 Lubrication was sprayed manually onto the top and bottom platen surfaces from 

aerosol canisters prior to performing each ring and cigar compression test.  Sufficient 

lubricant was applied to create ‘fully wet’ platen surfaces with no visible dry spots.  Care 

was also taken to prevent excessive lubricant buildup throughout testing as this would 

cause scatter in the data.  In spite of the extra precautions taken during lubricant 

application, the difficulty of achieving consistent lubrication conditions under lab 

conditions without the use of an automated spray system such as those used in many 

commercial forging operations should be noted. 

3.4.1 Ring Test 

The relationship between the average friction factor and surface roughness was 

experimentally determined using the ring compression test.  A summary of the conditions 

used to investigate the friction factor for each surface roughness is listed in Table 3.2.  

Each ring compression test was performed first using high temperature vegetable oil 

lubricant, then repeated using boron nitride mold release.  To verify the consistency of 

the results, three ring tests were performed using each test condition. 
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Table 3.2 - Summary of experimental conditions used to determine the relationship 

between die roughness and friction factor. 

Part Geometry (in) Die Roughness ( in ) Die Lubricant 

OD:ID:H    

1.125":0.563":0.375" 

10 
High Temperature 

Vegetable Oil 
20 

40 

60 
Boron Nitride Mold 

Release 
130 

240 

The relationship between die temperature and friction factor was also studied by 

duplicating the ring test performed at four different die temperatures between 250 °F and 

400 °F on each platen roughness.  To verify the consistency of the results, three 

replications were performed under each test condition and repeated using both types of 

lubrication.  The conditions used to investigate die temperature effects are summarized in 

Table 3.3. 

Table 3.3 - Summary of experimental conditions used to determine the relationship 

between die temperature and friction factor. 

Part Geometry (in) Die Temperature (°F) Die Lubricant 

OD:ID:H    

1.125":0.563":0.375" 

250 
High Temperature 

Vegetable Oil 
300 

350 
Boron Nitride Mold 

Release 
400 
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The friction factor at the die-work piece interface was determined in accordance 

to the procedure originally developed by Male and Cockroft [1].  An initial ring geometry 

having an outer diameter (OD), inner diameter (ID) and height in the proportion of 6:3:2 

was selected as it was reported by Dutton et al. [2] to minimize the sensitivity of the test 

results with respect to strain rate.  By constraining the platen travel through the use of 

steel spacers placed between opposing surfaces on the die set, each sample was 

compressed to a consistent height and the experimental error between repeated tests was 

minimized.  Once compressed, the final dimensions of each ring was again measured and 

recorded, allowing the dimensional changes in the outside diameter, inside diameter, and 

height to be determined.  A layout of the ring test specimen on the platen surface is 

presented in Figure 3.11 while a picture of a completed ring compression test is presented 

in Figure 3.12.

 

Figure 3.11 – Three dimensional model 

of ring test specimen on 

platen surface prior to 

compression. 

 

Figure 3.12 – A ring specimen shown 

after compression.  Note 

the change in both inner 

and outer diameter 

dimensions.
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During the ring compression test the outside diameter of the specimen expands 

outward.  The inside diameter however, either expands outwards or contracts inwards, 

depending on the frictional conditions that exist at the die-work piece interface.  Under 

conditions where the interfacial friction factor, m , is below approximately 0.09, the 

inside diameter of the ring specimen expands outwards during compression.  Conversely, 

under frictional conditions where m  is greater than 0.09, the inside diameter of the ring 

specimen contracts inwards.  The relationship, found by Male and Cockroft [1], between 

the change in internal diameter and height dimensions of the ring specimens for various 

frictional conditions is shown in Figure 3.13.  Because values for m  below 0.09 are 

uncommon in real forging processes, some reduction of the inside diameter is expected in 

the compressed ring specimens after testing.  After compression, the final dimensions of 

the inside diameter and height of the ring test specimens were measured and compared to 

the findings of Male and Cockroft [1].  The coefficient of friction and friction factor were 

then determined.  It should be noted however, that the frictional conditions found as a 

result of the ring test represent an average value, as the final ring geometry is influenced 

by frictional conditions at the interface between the entire ring specimen and the platen 

surface. 
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Figure 3.13 – Friction calibration curves in terms of m  [15].
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3.4.2 Cigar Test 

 The effect of surface roughness and lay on metal flow was analyzed using 

deformed specimens obtained from the cigar test.  Cigar specimens were compressed at 

three different orientations using surface roughnesses ranging from aR  4 to 250 in .  

The orientation was defined by the longitudinal axis of the cigar specimen, which was 

aligned parallel, at a 45° angle, and perpendicular to the lay pattern of the platen surface.  

These are referred to as 0°, 45°, and 90° respectively and are shown in Figures 3.14 a-c.  

Similar to the ring compression testing, deformation was also limited to a maximum 

strain of 0.7 in/in where stop blocks were also used to reduce variability in the deformed 

specimen heights. 

It was also of interest to determine if die temperature further enhanced or retarded 

metal flow with respect to orientation or roughness.  Therefore, cigar testing under 

various roughness and lay conditions was first performed at platen temperatures of  

300 °F, and then repeated at 400 °F.  To evaluate consistency throughout the results, five 

replications were performed for each test condition and repeated using both lubricants.  A 

summary of the experimental parameters used during cigar testing to investigate the 

relationship between metal flow and die roughness, as well as metal flow and surface lay, 

are presented in Tables 3.4 and 3.5, respectively. 
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Table 3.4 – Summary of experimental conditions used to determine the relationship 

between metal flow and die roughness. 

Part Geometry (in) Die Roughness ( in ) Die Lubricant 

Length x Width x Height                 

2.000" x 0.250" x 0.250" 

10 
High Temperature 

Vegetable Oil 
20 

40 

60 
Boron Nitride Mold 

Release 
130 

240 

Table 3.5 – Summary of experimental conditions used to determine the relationship 

between metal flow and surface lay. 

Part Geometry (in) 
Part Orientation to Die Lay 

(Degrees) 
Die Lubricant 

Length x Width x Height                 

2.000" x 0.250" x 0.250" 

0° (Parallel) High Temperature 

Vegetable Oil 

45° (Diagonal) 

Boron Nitride Mold 

Release 90° (Perpendicular) 

 

 

Figure 3.14a - Schematic of cigar 

specimen at a 0° 

orientation with respect to 

platen surface lay. 

 

 

Figure 3.14b – Schematic of cigar 

specimen at a 45° 

orientation with respect 

to platen surface lay.

Lay Direction 

Parallel 

Orientation 

Lay Direction 

45° Angle 

Orientation 
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Figure 3.14c – Schematic of cigar specimen 

at a 90° orientation with 

respect to platen surface lay. 

Due to the non-uniform shape after deformation, the length and width dimensions 

of the compressed cigar specimens were measured at their widest point.  However, 

because the upset dimension was uniform as a result of the parallel platen surfaces, it was 

measured at its midsection.  A portrayal of the measurement locations for each dimension 

of the compressed cigar specimens is presented in Figure 3.15. 

 

Figure 3.15 - Compressed cigar specimens with dimensions highlighted 

Lay Direction 

Perpendicular 

Orientation 
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Because consistent work piece orientation is important to this investigation, 

proper alignment between the cigar specimen and the die surface lay was verified prior to 

compression.  This was accomplished through the use of an alignment tool consisting of a 

laser light, fastened with a set screw, to a magnetic base.  The use of this apparatus 

resulted in the part orientation being maintained to within   5° of the desired value.  

Calibration of the alignment tool was performed by placing the flat side of a protractor 

parallel to the unidirectional surface lay and orienting the fastened laser at angles of 45° 

and 90°.  The location of the magnetic base at both orientations was then marked so that 

it could be relocated during testing.  This calibration process was repeated to ensure 

accurate alignment each time the platens were changed.  The longitudinal axis of the 

work piece was aligned parallel to the 45° laser line during the investigation of the angled 

surface lay.  During the investigation of parallel and perpendicular surface lay conditions, 

the longitudinal axis of the work piece was aligned perpendicular and parallel to the 90° 

laser line, respectively.  A photograph of the laser at the 45° orientation to the lay 

direction is presented in Figure 3.16. 
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Figure 3.16 – Photo of the laser beam projected onto platen surface used to orient the 

cigar specimen 

In summary, the experimental procedure used in this investigation involved a 

hydraulic press used in the compression of ring and cigar specimens under lubricated 

conditions.  Six platen sets, characterized by roughnesses between aR  10 and 240 in  

and having by a unidirectional surface lay, were utilized.  The dimensional changes of the 

ring specimens after compression were then measured to evaluate the effects of die 

topography on the interface friction factor.  Similarly, the strain of the cigar specimens 

resulting from compression was calculated and used to quantify the effects of both die 

surface roughness and lay, as well as die temperature, on metal flow.  



46 

 

4. Results and Discussion 

 This chapter presents the experimental results obtained from ring and cigar tests 

which were conducted under various surface lay and roughness conditions.  The 

geometries of the compressed ring specimens were used to evaluate the effects of 

temperature and tool surface roughness on the friction factor.  The compressed cigar 

specimens were used to calculate the true strain in the length and width directions.  The 

true strains were then used to investigate the effects of temperature and tool surface 

topography and were used to assess the metal flow.  The results obtained from each test 

will be presented and discussed individually. 

4.1 Ring Test Results and Discussion 

 The effects of die temperature and surface roughness on the friction factor are 

presented separately in the following sub sections.  Friction factor values were obtained 

from ring compression tests conducted using platens at different temperatures and 

roughnesses.  All ring tests were conducted in accordance with the methodology 

developed by Male and Cockcroft [1]. 

4.1.1 Friction Factor vs. Die Temperature 

 The results obtained from ring compression tests conducted on aR  240 in  

roughness platens are presented in Figure 4.1.  Platen temperatures of 250 °F, 300 °F,  

350 °F, and 400 °F were used with three repetitions conducted at each temperature.  To 

better portray the experimental results between platen temperature and friction factor, 
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only the results obtained from a single platen roughness are shown in Figure 4.1.  As seen 

from the data, the friction factor, m , was found to increase with platen temperature 

during tests conducted using each lubricant.  For the high temperature vegetable oil 

lubricant, the friction factor increased approximately linearly from 0.29 to 0.39 as the 

platen temperature was varied from 250 °F to 400 °F.  For the boron nitride lubricant, a 

similar rise in friction factor from 0.15 to 0.19 was observed under the same conditions.  

It should be noted that this increase in friction factor was observed for eight of the twelve 

test conditions investigated. 

 

Figure 4.1 – Ring compression test results demonstrating the average friction factor m  as 

a function of die temperature completed on aR  240 in  platens using both 

high temperature vegetable oil and boron nitride lubricants.  Bars 

representing the standard deviation of the three repetitions at each 

temperature are shown for all data points. 

While eight of the twelve tests demonstrated an approximately linear increase in

m , four trials showed somewhat different behavior.  Specifically, the test conditions 

0.12

0.17

0.22

0.27

0.32

0.37

0.42

200 250 300 350 400 450

F
ri

ct
io

n
 F

a
ct

o
r 

(m
) 

Temperature (°F) 

Vegetable Oil

Boron Nitride



48 

 

under which a linear increase in m  was not observed were conducted with both 

lubricants on the aR  10 in  platen roughness as well as using the high temperature 

vegetable oil lubricant on aR  60 and 130 in  roughness platens.  Figure 4.2 shows that 

for the trials conducted with vegetable oil on aR  10 in  roughness platens, the friction 

factor showed a steady decrease between 250 °F and 350 °F which was followed by a 

marked increase at 400 °F.  This rise was potentially due to breakdown of the lubricant 

occurring at the highest platen temperature.  The high temperature vegetable oil used for 

lubrication was comprised mostly of cottonseed oil which was reported by D.A. Morgan 

[16] to have a smoke point temperature of 420 °F.  The 855 °F work piece temperature is 

hypothesized to have increased the temperature of the lubricant at the die work piece 

interface beyond the reported smoke point.  However, the same tests conducted on the aR  

10 in  platens using boron nitride lubricant demonstrated contrasting results.  An 

increase in the friction factor was noted from die temperatures between 250 °F and 350 

°F followed by a decrease at 400 °F. 
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Figure 4.2 - Ring compression test results demonstrating the average friction factor m  as 

a function of die temperature completed on aR  10 in  platens using both 

high temperature vegetable oil and boron nitride lubricants.  Bars 

representing the standard deviation of the three repetitions at each 

temperature are shown for all data points. 

When the high temperature vegetable oil lubricant and aR  60 in  roughness 

platens were used, the friction factor actually decreased with platen temperature.  This 

decrease is presented in Figure 4.3 and presents a consistent negative trend in the 

relationship between the friction factor and platen temperature. 
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Figure 4.3 - Ring compression test results demonstrating the average friction factor m  as 

a function of die temperature completed on aR  60 in  platens using high 

temperature vegetable oil lubricant.  Bars representing the standard deviation 

of the three repetitions at each temperature are shown for all data points. 

In Figure 4.4, an increase in friction factor was again noted between 250 °F to  

350 °F die temperatures followed by a sharp decrease at 400 °F.  These tests were 

conducted using vegetable oil lubricant on aR  130 in  roughness platens. 
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Figure 4.4 - Ring compression test results demonstrating the average friction factor m  as 

a function of die temperature completed on aR  130 in  platens using high 

temperature vegetable oil lubricant.  Bars representing the standard deviation 

of the three repetitions at each temperature are shown for all data points. 

Table 4.1 summarizes the relationship between the friction factor and die 

temperature for all test conditions indicating whether an increase, decrease, or a 

combination of both was observed.  While four of the trials showed disagreement in the 

relationship between friction factor and die temperature, the majority of ring compression 

tests revealed an increase in the friction factor with respect to die temperature.  The 

results indicating an increase in friction factor are in agreement with the conclusions 

reached by Nowak [5].  In Nowak’s investigation, ring compression tests were completed 

at identical platen temperatures of 250 °F, 300 °F, 350 °F, and 400 °F on aR  60 in  

roughness platens without lubrication.  An increase in the friction factor from 

approximately 0.6 to 0.8 as the die temperature rose from 250 °F to 400 °F was observed.  
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Under the lubricated conditions used in this investigation, a similar relationship was 

observed for eight of the twelve trials. 

Table 4.1 - Ring compression test results summarizing the change observed in average 

friction factor m
 as a function of die temperature for all test conditions 

lubricant.  An increase and decrease in m
 is indicated by ‘Increased’ and 

‘Decreased’ respectively.  When both an increase and decrease in m  was 

observed, it is indicated by ‘Both’. 

Platen Roughness   

( in ) aR  10 aR  20 aR  40 aR  60 aR  130 aR  240 

Using Veg. Oil 

Lubricant 
Both Increased Increased Decreased Both Increased 

Using Boron 

Nitride Lubricant 
Both Increased Increased Increased Increased Increased 

 

Nowak [5] noted in his investigation that, for an aluminum work piece and tool 

steel pairing, higher die temperatures led to an increased affinity for a chemical reaction 

resulting in adhesion.  Naturally an increase in adhesion, as it is an identified component 

of friction, will contribute to an overall increase in the friction factor observed. 

In this investigation all trials were performed using lubrication.  Menzes et al. 

[10,11] reported that under lubricated conditions friction is dictated primarily by the 

mechanical interaction between surfaces and any adhesive friction is negligible in 

comparison.  In spite of this, an increase in the friction factor similar to Nowak’s findings 

under dry conditions [5] was still observed for most, but not all conditions.  The pressures 

and strain rates characteristic of the ring tests in this investigation were almost identical 

to those used in Nowak’s study.  Therefore, these similarities offer a potential 

explanation for the agreement between the studies in spite of the differing lubrication 

conditions.  With or without lubrication, only the peaks of the work piece and die surface 
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asperities initially make contact during compression.  However, the use of a lubricant 

does affect the conditions at the die-work piece interface during initial contact.  Due to 

the lubricant film thickness and surface roughnesses used throughout their inclined pin on 

plate friction experiments, Menzes et al. [10,11] reported that the surface contact between 

the work piece and dies was reduced under lubricated conditions.  This reduction in 

contact was deemed a result of boundary lubrication conditions allowing the die and 

work piece surfaces to be separated in the valleys between their respective asperities.  

These findings are not however directly applicable to compression with a hydraulic press.  

The slow strain rates and high pressures inherent of a hydraulic press allow the lubricant 

sufficient time to escape the die-work piece interface.  With less lubricant remaining 

between the contact surfaces, a greater number of surface asperities are forced into 

contact during compression.  This asperity contact is then susceptible to the same 

adhesion reported by Menzes et al. [10,11] to have occurred under dry conditions.  As the 

platen temperature increases it acts as a catalyst accelerating the chemical reaction 

between the portions of the aluminum work piece and tool steel platen that are in metal to 

metal contact resulting in adhesion.  Therefore, as platen temperatures are increased and 

the die and work piece asperities become in direct contact, the increase in the friction 

factor due to adhesion between the aluminum work piece and tool steel platen remains, 

even with the use of lubrication. 

4.1.2 Friction Factor vs. Die Roughness 

 Figures 4.5 and 4.6 show friction factors acquired from ring compression tests 

conducted at a platen temperature of 350 ˚F under surface roughnesses ranging from     
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aR  10 to 240 in .  The results displayed in Figures 4.5 and 4.6 were obtained using high 

temperature vegetable oil and boron nitride lubricants respectively.  While ring 

compression tests were conducted at platen temperatures of   250 °F, 300 °F, 350 °F, and 

400 °F, only the results from one platen temperature are shown for clarity as all other 

temperatures demonstrated a similar relationship between friction factor and platen 

roughness. 

 

Figure 4.5 – Ring compression test results demonstrating the average friction factor m
 as 

a function of die roughness completed on platens heated to 350 °F using 

high temperature vegetable oil lubricant.  Bars representing the standard 

deviation of the three repetitions at each temperature are shown for all data 

points. 
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Figure 4.6 - Ring compression test results demonstrating the average friction factor m
 as 

a function of die roughness completed on platens heated to 350 °F using 

boron nitride lubricant.  Bars representing the standard deviation of the three 

repetitions at each temperature are shown for all data points. 

Two characteristics appear when the relationship between the friction factor and 

platen roughness for both lubricants are compared in Figures 4.5 and 4.6.  First, the 

friction factor is seen to increase as tests were conducted on higher roughness platens.  

The greatest friction factor was observed on the aR  240 in  platens for all platen 

temperatures and lubricants used.  In addition to the increase in friction factor with 

respect to platen roughness, a local decrease in the friction factor appeared for tests 

conducted at a aR  40 in  platen roughness.  The aR  40 in  roughness platens are 

approximately the same as the roughness of the work piece which is aR  35 in .  In some 

cases, a friction factor equal to or less than that observed under compression tests on the 

smoothest aR  10 in  platens was noted.  Again this trend appeared consistently, this 

time for seven of the eight trials conducted.  The exception occurred when high 
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temperature vegetable oil was used at a platen temperature 400 °F. In this instance, the 

friction factor remained relatively constant between platen roughnesses of aR  20 and     

40 μin and then increased sharply as the platen roughness was changed to aR  60 in .  

However, because an abrupt change was observed at a platen roughness greater than the 

work piece, it is likely that an increase in the friction factor between the aR  20 and        

40 in  platens was mitigated by similar die and work piece roughness conditions. 

As discussed previously in Chapter 2, Kumpulainen [6] also noted an increase in 

friction with respect to surface roughness during sheet metal drawing experiments.  This 

increase in friction factor is most likely a result of the increased asperity contact at the 

die-work piece interface when higher roughness platens are used.  As the surface 

roughness of the test platens is increased, a similar rise in the magnitude of the surface 

asperities occurs.  This rise in asperity size leads to an increase in the plowing component 

of friction, as the work piece is forced to flow over larger surface imperfections.  The 

findings reported by Menzes et al. [10,11] offer further support for this hypothesis as they 

identified that under lubricated conditions the friction generated due to surface asperities 

plowing into one another offer the greatest contribution to total friction.  Therefore, as the 

surface roughness of the platen increases, so too does the resulting plowing friction and 

overall friction factor.  Figures 4.7a-b present sketches illustrating the increase in asperity 

contact at higher roughnesses that result in greater plowing friction.  Note that the 

topography of the work piece remains constant in Figures 4.7a and 4.7b.  The asperity 

contact that develops in Figure 4.7b is a result of the increased asperity size on the platen 

surface that is characteristic of higher surface roughnesses.  The larger asperities pierce 
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through the film of lubricant resulting in metal to metal contact between the work piece 

and the die. 

 

Figure 4.7a - Sketch demonstrating 

asperity interaction 

between work piece and 

low roughness platen 

during lubricated 

compression. 

 

Figure 4.7b - Sketch demonstrating 

asperity interaction 

between work piece and 

high roughness platen 

during lubricated 

compression.

While Menzes et al. [10,11] offer strong support for the increase in the friction 

factor observed with respect to platen roughness, they do not provide a justification for 

the dramatic decrease in the friction factor that occurred at the aR  40 in  platen 

roughness.  Interestingly, while Kumpulainen generally observed a rise in the friction 

factor with respect to roughness, he also noted an exception during his drawing 

experiments [6].  Kumpulainen reported that the friction factor actually decreased with 

surface roughness when the initial sheet was of poor surface quality, i.e. had a high 

surface roughness.  In this scenario as the surface roughness of the tool increased it likely 

approached that of the work piece.  A possible explanation for the decrease in friction 

observed as the surface finish of the tool and work piece approach one another is 

provided by Rabinowicz [4].  Rabinowicz evaluated the coefficient of friction by 

Lubricant 

Asperity 

Contact 
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Platen 
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conducting unlubricated copper on copper experiments at surface roughnesses from aR  5 

to 100 in  and the resulting relationship was shown previously in Figure 1.3 of Chapter 

1.  First, a decrease in the coefficient of friction occurred as the surface roughness 

increased from aR  5 to 40 in  followed by relatively constant frictional conditions.  

However, as the surface roughness rose beyond aR  50 in , the coefficient of friction 

subsequently increased.  Rabinowicz reported that the initial decrease in friction resulted 

from a reduction of the contact area between the surfaces due to an increase in asperity 

magnitude.  However, beyond aR  40 in  the asperities grew so large that interlocking 

occurred between the copper surfaces.  Applying Rabinowicz’s findings to the results 

shown in Figure’s 4.5 and 4.6 it is likely that the decrease in the friction factor observed 

at aR  40 in  was due to the reduction in contact area between the work piece and dies.  

At the aR  40 in  platen roughness, where the roughness of the work piece and dies were 

approximately the same, metal flow appeared to be the greatest.  The surface asperities of 

the tool and the work piece appeared to be optimized such that they were large enough in 

magnitude to minimize adhesion at the interface and small enough to prevent mechanical 

interlocking between the asperity peaks.  At the same time these asperities were not too 

large in magnitude thereby preventing mechanical interlocking between the asperity 

peaks. 

Another interesting observation was made when ring compression tests were 

conducted on platens of various roughnesses.  Figures 4.8a-f show an outline of the 

resulting geometry of the ring compression specimens compressed under each of the six 

platen roughnesses used in the investigation.  It can be seen from Figure 4.8 that the final 
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ring geometry varied depending on the platen roughness used in each test.  Both the 

inside and outside diameters deformed greatest in the direction parallel to the surface lay 

of the die and least in the direction perpendicular.    Because of this eccentric geometry, 

the inside diameter dimension of the deformed ring used to determine the friction factor 

was measured at the largest and smallest distances, and the resulting average was used to 

calculate the friction factor.

  



60 

 

 

Figure 4.8a – Ring 

compressed on aR  10 in , 

400 °F platen using veg. oil 

lubricant. 

 

Figure 4.8b - Ring 

compressed on aR  20 in , 

400 °F platen using veg. oil 

lubricant. 

 

Figure 4.8c - Ring 

compressed on aR  40 in , 

400 °F platen using veg. oil 

lubricant.

 

Figure 4.8d - Ring 

compressed on aR  60 in , 

400 °F platen using veg. oil 

lubricant. 

 

Figure 4.8e - Ring 

compressed on aR  130 in , 

400 °F platen using veg. oil 

lubricant. 

 

Figure 4.8f - Ring 

compressed on aR  240 in , 

400 °F platen using veg. oil 

lubricant. 

At the smoothest platen test condition of aR  10 in , both the inside and outside 

diameters of the compressed ring take on an elliptical shape.  The major diameter aligns 

parallel to the platen surface lay while the minor diameter is at a perpendicular 

orientation.  This elliptical geometry is most noticeable for the rings compressed using 
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the aR  20 and 60 in  roughness platens.  Looking back at Figures 4.3 and 4.4 that 

presented the relationship between friction factor and platen roughness, a sharp increase 

in friction factor is observed for tests conducted at these platen roughnesses.  The 

elliptical geometry of the compressed ring specimens dissipates at the higher platen 

roughnesses of aR  130 and 240 in .  To better portray this phenomena Table 4.2 lists 

the difference, labeled Delta, between the major and minor diameters measured from the 

compressed specimens.  Delta values are provided for all candidate platen roughnesses 

investigated. 

Table 4.2 – Summary of the average difference between the major and minor outside and 

inside diameters of compressed ring specimens using high temperature 

vegetable oil lubricant at a platen temperature of 400 °F.  The major and 

minor diameters are defined by their orientation parallel and perpendicular 

to the platen surface lay respectively. 

Platen Roughness 

( in ) aR  10 aR  20 aR  40 aR  60 aR  130 aR  240 

Delta Outside 

Diameter (in) 
0.1265 0.1570 0.1020 0.1755 0.0250 0.0330 

Delta Inside 

Diameter (in) 
0.1120 0.1405 0.0880 0.1390 0.0350 0.0300 

Figure 4.9 further demonstrates the changes in the delta values reported in Table 

4.2 through a graphical representation.  Both the delta outside and inside diameters are 

plotted for each of the surface roughness conditions investigated. 
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Figure 4.9 – Difference between the measured major and minor diameters for ring 

specimens compressed at each surface roughness investigated.  Both the 

outside diameter (OD) and inside diameter (ID) are presented. 

The results of the ring compression tests with respect to platen roughness differ 

significantly from those reported by Nowak [5], who found roughness to have a minimal 

impact on friction factor.  Upon examination of the experimentally determined friction 

factors and the compressed rings themselves it becomes clear that platen roughness does 

indeed influence friction during lubricated hot compression.  The least friction, and in 

turn greatest metal flow, is observed for platens having the lowest possible surface 

roughness as well as platens having a surface roughness closest to that of the work piece.  

Additionally, the surface lay of the tool appears to be most influential at platen 

roughnesses just above and below that of the work piece and become insignificant at very 

high roughnesses. 

In addition to identifying the plowing component as the most significant 

contribution to overall friction under lubricated conditions, Menzes et al. [10,11] also 
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concluded that the plowing component of friction was minimized in directions parallel to 

the surface lay.  This conclusion offers a possible explanation for the larger increase in 

diameter of the compressed rings in the direction parallel to the platen surface lay.  

During compression, the metal will naturally flow via the path of least resistance.  Based 

upon the elliptical geometry observed in both the inside and outside diameters of the 

compressed ring specimens, flow parallel to the platen surface lay demonstrated 

decreased friction.  This was likely because the work piece material was able to flow in 

alignment with the platen lay thereby minimizing the resistance to flow introduced by the 

platen surface asperities. 

4.2 Cigar Test Results and Discussion 

  The individual effects of platen roughness and lay on metal flow are presented 

and discussed in the following sections.  To facilitate the analysis, metal flow was 

quantified using true strains calculated from cigar test specimens deformed under 

compression.  The geometry of the cigar specimens were machined to have a length to 

width ratio of 8:1, which approaches the minimum ratio of 10 to 1 commonly accepted as 

plane strain conditions.  Because a full 10 to 1 length to width ratio was not achieved, due 

to constraints in press size and capabilities, measureable strain was anticipated in both the 

length (longitudinal) and width (transverse) directions of the cigar specimens.  As the 

length of the specimen was 8 times that of the width, the majority of flow was expected 

to occur in the transverse direction.  Therefore, the transverse direction is considered the 

primary flow direction, as more deformation is expected to occur in that direction.  
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Because less flow is anticipated in the longitudinal direction, it is referred to as the 

secondary flow direction. 

 The metal flow of the deformed specimens in the transverse and longitudinal 

directions was described using true strain.  The true strain in the primary flow or 

transverse, w , and in the secondary flow or longitudinal, l , directions was calculated 

according to equations 4.1 and 4.2 [17]. 

  𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑇𝑟𝑢𝑒 𝑆𝑡𝑟𝑎𝑖𝑛 = 
0

ln
f

w

w

w


 
  

 
 (4.1) 

  𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑇𝑟𝑢𝑒 𝑆𝑡𝑟𝑎𝑖𝑛 = 
0

ln
f

l
 

  
 

 (4.2) 

 Where the initial and final measured dimensions are represented by the subscripts 

“0 ” and “ f ” respectively.  As these strain calculations quantify the deformation in the 

transverse and longitudinal directions individually, more comprehensive characterization 

of metal flow in the cigar specimen as a whole called the spread ratio, 
rS , was calculated 

using equation 4.3. 

 𝑆𝑝𝑟𝑒𝑎𝑑 𝑅𝑎𝑡𝑖𝑜 = w
rS





 
  
 

 (4.3) 

The use of the spread ratio allowed for a comparison between the strain in the 

transverse and longitudinal directions, yielding a final ratio characterizing the relative 

amount of flow occurring in the each direction.  As such, an increase in flow in one 

direction was expected to result in a decrease of flow in the perpendicular direction.  For 

example, a low spread ratio would indicate that only slightly more strain occurred in the 

primary compared to the secondary flow direction.  Conversely, a large spread ratio 
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indicated the opposite effect, i.e. significantly more flow was observed in the primary as 

opposed to the secondary flow direction. 

4.2.1 Spread Ratio vs. Die Roughness 

 In the following section the results demonstrating the relationship between platen 

roughness and spread ratio will be presented.  Specifically, the spread ratio will be plotted 

against the range of platen roughnesses from aR  10 and 240 in  that were used in this 

investigation.  To verify whether the relationship between spread ratio and platen 

roughness is further influenced by work piece orientation, separate curves will be 

displayed in each figure.  All tests were conducted under platen temperatures of 300 °F 

and 400 °F with high temperature vegetable oil and boron nitride being used as the 

lubricants.  The results obtained at each platen temperature are presented separately 

allowing for the influence of die temperature on metal flow to also be investigated. 

As described previously, the spread ratio was developed to compare the relative 

metal flow in the longitudinal and transverse directions.  Therefore it will be used to 

quantify the effect of platen roughness on the relative true strain in the primary and 

secondary flow directions.  The relationship between platen roughness and the individual 

longitudinal and transverse strains is presented in Appendices A and B. The relationship 

between spread ratio and roughness at platen temperatures of 300 °F and using each 

lubricant is displayed in Figures 4.10 and 4.11. 
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Figure 4.10 - Cigar test results showing the average spread ratio as a function of die 

roughness for aluminum specimens compressed on platens heated to  

300 °F.  High temperature vegetable oil was used as the lubricant in all 

tests. 

 

 

Figure 4.11 - Cigar test results showing the average spread ratio as a function of die 

roughness for aluminum specimens compressed on platens heated to  

300 °F.  Boron nitride was used as the lubricant in all tests. 
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 Upon examination of the trends between the spread ratio and platen roughness 

shown in Figures 4.10 and 4.11, it can be seen that the high temperature vegetable oil and 

boron nitride lubricants yielded different results.  At the low range of platen roughnesses 

(between aR  10 to 60 in ) the spread ratio of tests conducted with high temperature 

vegetable oil lubricant increased in a similar fashion for all work piece orientations.  

However, the magnitude of the spread ratio appeared to be influenced by work piece 

orientation as each orientation showed a distinct trend and the highest and lowest values 

occurred at 90° and 0° respectively.  As platen roughness was increased beyond            

aR  60 in  the spread ratio appeared less influenced by platen roughness for all 

orientations as a minimal increase in the spread ratio between aR  130 and  240 in  was 

observed.  Interestingly, the trials conducted at a 90° orientation actually demonstrated a 

localized drop in the spread ratio between aR  60 and 130 in .  This was followed by a 

similar slight increase in the spread ratio that was observed for the other orientations 

under identical roughness conditions.  While all work piece orientations showed a 

generally consistent rise in spread ratio over the range of platen roughnesses investigated, 

a clear plateau developed at values beyond aR  60 in . 

When the boron nitride lubricant was used, a gradual linear increase in spread 

ratio was again noted for the low range of platen roughnesses.  In contrast to the high 

temperature vegetable oil results, the spread ratio for all three orientations appeared to be 

grouped more closely together.  As the roughness was increased to the higher aR  130 and 

240 in  values, the spread ratio for the 0° orientation appeared to plateau while the 45° 

and 90° results appeared to continue increasing at a lower rate.  Based upon these results, 
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it appears as though at higher roughnesses the spread ratio is less influenced by platen 

roughness. 

 Figures 4.12 and 4.13 display a similar relationship between spread ratio and 

platen roughness for both lubricants, this time for tests conducted at a platen temperature 

of 400 °F.  When using high temperature vegetable oil, an increase in spread ratio was 

again observed over the lower range of roughnesses investigated.  Furthermore, the 

magnitude of the spread ratio appeared to be influenced by work piece orientation as 

distinct curves were observed for each.  The 90° orientation yielded the highest spread 

ratio while the lowest was observed at 0°.  As the roughness was increased to the higher 

values investigated, the spread ratio again appeared less influenced by the platen 

roughness as a plateau in the spread ratio values was observed for all orientations.  

However, a decrease in spread ratio occurred again for the 90° orientation between aR  60 

and 130 in  roughnesses.  As roughness was increased from aR  130 and 240 in  

however, a gradual rise in spread ratio again developed and was similar for all 3 

orientations. 

When the boron nitride lubricant was employed, at the 400 °F platen temperature, 

the spread ratio was found to increase steadily through the low range of roughnesses and 

for all orientations.  As the platen roughness moved beyond aR  60 in  a slight decrease 

in spread ratio developed for the 45° and 90° orientations followed again by a steady 

increase for all orientations at aR  240 in .  While the localized decrease in the spread 

ratio observed at 400 °F platen temperatures with boron nitride lubricant was not present 
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at 300 °F conditions, the overall relationship between roughness and spread ratio appear 

very similar for both temperatures investigated. 

 

Figure 4.12 - Cigar test results showing the average spread ratio as a function of die 

roughness for aluminum specimens compressed on platens heated to 

400 °F.  High temperature vegetable oil was used as the lubricant in all 

tests. 
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Figure 4.13 - Cigar test results showing the average spread ratio as a function of die 

roughness for aluminum specimens compressed on platens heated to 

400 °F.  Boron nitride was used as the lubricant in all tests. 

 The general relationship between spread ratio and platen roughness demonstrates 

a transition in the direction of metal flow as roughness is increased.  The highest spread 

ratios were observed at 90° work piece orientations.  At this orientation transverse metal 

flow occurred parallel to the platen surface lay and longitudinal flow was perpendicular.  

A decrease in longitudinal flow was noted at increasing platen roughnesses.  Conversely, 

a slight increase in transverse flow occurred under the same conditions.  The change in 

the individual longitudinal and transverse strain is described in detail in Appendices A 

and B.  The contrasting changes in longitudinal and transverse strain indicate that at 

greater platen roughnesses metal flow shifts from the longitudinal to the transverse 

direction.  Therefore, the increase in spread ratio observed at higher platen roughnesses is 

the result of a decrease in longitudinal strain accompanied with a corresponding increase 

in transverse strain. 
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Due to the approximate plane strain conditions utilized in this investigation, it was 

anticipated that a reduction of strain in either the length or width dimension would result 

in a corresponding increase in strain in the flow direction perpendicular.  Therefore, upon 

observing a decrease in longitudinal strain with respect to platen roughness, the 

corresponding increase in transverse strain with respect to roughness was not surprising.  

However, upon closer analysis of change longitudinal and transverse strain shown in 

Appendices A and B, it appears as though the slight increase in transverse strain is not 

sufficient to account for the decrease in flow in the longitudinal direction.  Considering 

the original geometry of the cigar compression specimens does provide a potential  

explanation.   Because the length of the undeformed cigar specimen is eight times the 

width, the changes in strain are not directly comparable.  Therefore, a decrease in 

longitudinal strain will result in a corresponding increase in transverse strain one eighth 

in magnitude. 

The decrease in longitudinal strain and increase in transverse strain with respect to 

increasing die roughness differs from the findings of Nowak [5].  Under dry and 

lubricated conditions, Nowak noted a decrease in both the longitudinal and transverse 

strain with respect to increasing platen roughness.  Nowak concluded that in spite of the 

decrease in both the measured longitudinal and transverse strains with respect to 

roughness, conservation of volume was maintained as a result of work piece bulging.  

However, adhesion likely occurred in the previous investigation, adding further resistance 

to flow in the primary direction and possibly introducing a confounding variable to the 

results.  The lubricated conditions at the die-work piece interface in this investigation 

likely alleviated the majority of possible adhesion and seemingly allowed metal to 
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consistently flow thereby revealing the apparent increase in transverse strain with respect 

to platen roughness. 

Overall, the increase in spread ratio with respect to platen roughness confirmed 

that material flow was influenced by roughness.  This observation was further supported 

through an analysis of the individual strains in the longitudinal and transverse directions 

with respect to platen roughness.  A decrease in longitudinal strain, accompanied by a 

corresponding increase in transverse strain, shows that metal flow shifts away from the 

longitudinal direction and towards the transverse direction as platen roughness increases.  

Additionally, increasing platen temperature from 300 °F to 400 °F did not appear to 

influence metal flow as similar relationships between the spread ratio and platen 

roughness were noted at both platen temperatures.  Similarly, both lubricants 

demonstrated similar trends, further supporting that the shift in metal flow observed was 

the result of platen topography and not lubrication conditions. 

4.2.2 Spread Ratio vs. Lay Orientation 

 While metal flow, primarily in the longitudinal direction of the cigar specimen, is 

certainly affected by platen roughness, the work piece orientation may also influence it.  

As such, the following section contains plots of the relationships observed between the 

spread ratio and the work piece orientation.  Because the spread ratio is derived from both 

the transverse and longitudinal strain, it will be used solely to demonstrate the 

relationship between work piece orientation and metal flow.  Additionally, only the 

results obtained using the high temperature vegetable oil lubricant at a single die 

temperature are displayed in this chapter, as the relationship between spread ratio and 
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work piece orientation appeared to be unaffected by the type of lubrication or the platen 

temperature.  The results obtained using boron nitride lubricant and at additional 

temperatures are shown in Appendices C and D.  To better portray the observed behavior, 

results will be separated into two different ranges of surface roughness.  Specifically, 

plots of the spread ratio vs orientation at low roughnesses, between aR  10 and 40 in , 

and high roughnesses, aR  130 and 240 in , will be shown separately.  The aR  60 in  

platen roughness values will be included in both figures to allow for an accurate 

comparison between the results obtained on the smoother and rougher platens. 

 The relationship between spread ratio and work piece orientation obtained from 

cigar compression tests at a 300 °F platen temperature and using high temperature 

vegetable oil lubricant is shown in Figures 4.14 and 4.15 for the smoother and rougher 

platens respectively.  Each data point represents the average of 5 repetitions under each 

test condition respectively while the standard deviation obtained from those repetitions is 

portrayed by error bars.  The work piece orientation is again characterized by the 

alignment of the longitudinal axis of the cigar specimen with the unidirectional surface 

lay of the platen. 
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Figure 4.14 - Cigar compression test results for smoother dies demonstrating the average 

spread ratio as a function of work piece orientation completed on platens 

heated to 300 °F using high temperature vegetable oil lubricant. 

 

Figure 4.15 - Cigar compression test results for rougher dies demonstrating the average 

spread ratio as a function of work piece orientation completed on platens 

heated to 300 °F using high temperature vegetable oil lubricant. 
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 Based upon the relationship shown in Figures 4.14 and 4.15 where spread ratio is 

plotted as a function of orientation for each platen roughness, two trends are evident.  The 

first is that there is an essentially linear relationship between spread ratio and orientation.  

The spread ratio increases linearly as the work piece is rotated from 0° to 90° for all 

roughnesses investigated where the minimum and maximum spread ratios consistently 

occurred at the 0° and 90° work piece orientations respectively.  In Table 4.3 the slopes 

of the linear relationship observed in Figures 4.14 and 4.15 for each platen roughness are 

listed.  Additionally, Figure 4.16 shows a plot of the data listed to further highlight the 

platen roughnesses at which the greatest increase in spread ratio was observed. 

Table 4.3 - Summary of the slope observed for the relationship between the spread ratio 

and work piece orientation during cigar compression testing.  All tests were 

conducted using high temperature vegetable oil lubricant at a platen 

temperature of 300 °F. 

Platen Roughness 

( in ) 
Ra 10 Ra 20 Ra 40 Ra 60 Ra 130 Ra 240 

Slope of Spread Ratio 

vs. Orientation  

(0° to 90°) 

0.0389 0.0656 0.0589 0.0633 0.0256 0.0300 
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Figure 4.16 – Graphical representation of the data shown in Table 4.3.  Each data point 

represents the average slope resulting from the increase in spread ratio that 

occurs as the cigar specimen was rotated from a 0° to a 90° orientation. 

Through plotting the increase in spread ratio as the work piece is rotated from 0° 

to a 90° it becomes clear that the greatest transition in metal flow from the longitudinal to 

transverse direction occurs at platen roughnesses of aR  20, 40, and 60 in .  While an 

increase in the spread ratio with respect to work piece orientation was observed at all 

roughnesses, the rise in spread ratio that occurred on the platens closest in roughness to 

the aR  35 in  work piece demonstrated an increase nearly twice that observed on the aR  

10, 130, and 240 in  platens.  It is hypothesized that, at similar surface roughnesses, the 

asperities present on the work piece and the dies closely interact with each other due to 

their similar magnitude and geometries.  At the aR  10, 130, and 240 in  platen 

roughnesses the difference in asperity magnitude between the work piece and dies leads 
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to less interaction between them, thereby reducing the rise in spread ratio observed as the 

work piece is rotated. 

As a result of the relationships identified between spread ratio and work piece 

orientation observed for all roughnesses, temperatures, and lubricants, it is clear that 

metal flow is influenced by surface lay conditions.  As mentioned previously, the spread 

ratio characterizes the metal flow in the transverse direction relative to that in the 

longitudinal direction.   Therefore, the increase in spread ratio observed with respect to 

work piece orientation indicates that additional flow is occurring in the transverse 

direction while metal flow in the longitudinal direction is reduced.  The greatest increase 

in spread ratio was observed for platen roughnesses of aR  20 and 60 in  while the 

smoothest aR  10 in  and roughest aR  130 and 240 in  platens did also demonstrate an 

increase, it was not as pronounced. 

Interestingly, the aR  20 and 60 in  platens that demonstrated the maximum 

increase in spread ratio were also found to portray the most elliptical geometry in the ring 

tests conducted in section 4.2.1 and originally shown in Figures 4.12 and 4.13.  Based 

upon these findings it appears that platen roughnesses directly above and below that of 

the work piece roughness result in the most significant influence on metal flow with 

respect to surface lay orientation.  Although the spread ratio increased as the work piece 

was rotated from 0° to 90° at all roughnesses, the smoothest ( aR  10 in ) and roughest      

( aR  130 and 240 in ) platen roughnesses appeared less influential than those closer to 

the work piece roughness. 
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  In Figures 4.17a-f the resulting geometry of the cigar compression specimens 

obtained using the six candidate platen roughnesses at 300 °F are shown.  Each figure 

portrays the three work piece orientations investigated where, from left to right, the 

longitudinal axis of the work piece was oriented at a 0˚, 45˚, and 90˚ angle to the 

unidirectional surface lay of the test platen.  The length of the cigar specimens 

compressed at a parallel orientation is by far the greatest for all test conditions.  The 45° 

specimen is slightly longer than the 90° test condition.  However, the largest notable 

difference occurs at the previously discussed aR  20 and 60 in  platens.  Also interesting 

to note is the angle formed at the end of the compressed specimens.  Those compressed at 

a 0° orientation had a somewhat rounded or pointed end.  At the 45° orientation, the ends 

appear to develop an angle in the direction of the platen surface lay.  Lastly, at the 90° 

orientation the ends appear flat, again aligning with the direction of the platen surface lay. 
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Figure 4.17a – Cigar 

compressed on aR  10 

in , 300 °F platen 

using veg. oil lubricant. 

 

Figure 4.17b - Cigar 

compressed on aR  20 

in , 300 °F platen 

using veg. oil lubricant. 

 

Figure 4.17c - Cigar 

compressed on aR  40 

in , 300 °F platen 

using veg. oil lubricant. 

 

Figure 4.17d - Cigar 

compressed on aR  60 

in , 300 °F platen 

using veg. oil lubricant. 

 

Figure 4.17e - Cigar 

compressed on aR  130 

in , 300 °F platen 

using veg. oil lubricant. 

 

 

Figure 4.17f - Cigar 

compressed on aR  240 

in , 300 °F platen 

using veg. oil lubricant. 
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As the work piece is rotated from 0° to 90°, metal flow in the length direction 

shifts from being parallel to perpendicular with the platen surface lay.  In contrast, under 

the same 0° to 90° rotation, metal flow in the width, direction shifts from being 

perpendicular to parallel with the platen surface lay.  As described previously, because 

the cigar specimen geometry was specified to approximate that of a plane strain 

specimen, metal flow primarily occurs in the transverse direction.  This was further 

evidenced by the plots of the individual length and width strains from which the spread 

ratio was calculated which can be seen in Appendix D.  The length strain decreased 

linearly while the width strain increased linearly as the cigar specimen was rotated from 

0° to 90°.   The greatest spread ratio was observed at the 90° work piece orientation for 

all conditions.  As such, a decrease in strain was observed in the longitudinal direction 

accompanied by a corresponding increase in flow in the transverse direction.  Based upon 

the plotted relationships, the final cigar specimen dimensions, and the plane strain 

geometry of the cigar specimen, it can then be concluded that under lubricated 

conditions, a surface lay parallel to the direction of material flow results in the greatest 

metal flow.  At a 90° work piece orientation, metal flow was minimized in the 

longitudinal direction when facing a perpendicular surface lay.  Similarly, at the same 90° 

work piece orientation, metal flow is maximized in the transverse direction under parallel 

surface lay conditions.  Additionally, relationship between the spread ratio and work 

piece orientation appeared unaffected by the increase in platen temperature from 300 °F 

to 400 °F and the type of lubricant used. 

While the original findings by Nowak [5] investigating the relationship between 

surface lay orientation and metal flow under dry conditions yielded overall mixed results, 



81 

 

for higher surface roughnesses of aR  125 and 250 in  he noted maximum metal flow at 

the 90° orientation.  Nowak concluded that the orientation of metal flow with respect to 

the unidirectional grooves on the platen surfaces dictated overall metal flow, thereby 

explaining why metal flow in the primary direction was maximized when oriented 

parallel to the lay.  The fewer number of grooves that material flow has to bridge, the 

more overall flow occurs.  This conclusion found by Nowak for higher roughnesses, 

appeared valid at all roughnesses under lubricated conditions based upon the results of 

this study.  The investigations conducted by Menzes et al. [10,11], which were discussed 

in Chapter 2, appear to further validate this conclusion as they reported that friction was 

maximized at a perpendicular orientation to surface lay. 

Menzes et al. [10,11] also determined that friction is mainly comprised of two 

components, adhesive and plowing friction.  Under lubricated testing conditions, 

adhesive friction becomes negligible as direct metal to metal contact is minimized due to 

the presence of a lubricant at the die-work piece interface.  Therefore, it is likely that 

friction is primarily controlled by the plowing component of friction.  The plowing that is 

referred to is specifically the interaction between the asperities of the work piece and the 

tool.  When metal flow occurs, the flow must traverse the asperities present on the platen 

surface.  Therefore, both the overall height and the angle at which the work piece surface 

interacts with the platen surface asperities dictate the overall force necessary for metal 

flow to eclipse them.  Under a parallel orientation with respect to a unidirectional surface 

lay, metal the number of asperities over which metal flow occurs will be reduced, thus 

minimizing the plowing component of friction and maximizing metal flow. 
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5. Summary and Conclusions 

 The relationship between die roughness and friction was investigated under 

lubricated hot compression conditions.  Any additional influence on friction by 

temperature was also studied.  Friction was quantified using the ring compression test and 

reported in terms of the interface friction factor.  Friction factor values were 

experimentally obtained through compression of 6061-T6 aluminum ring specimens 

between H-13 tool steel platens using a 10-ton hydraulic press.  Six different die 

roughnesses ranging from aR  10 in  to aR  240 in  and four die temperatures between 

250 °F to 400 °F were studied.   To verify that the relationship between the die 

roughness, the die temperature, and the friction factor was not a result of the lubricant 

applied, all trials were repeated using both high temperature vegetable oil and boron 

nitride lubricants.  Based upon the results obtained it can be concluded that: 

 The friction factor between 6061-T6 aluminum work pieces and H-13 tool steel 

platens increases with respect to die roughness.  A rise in friction factor with respect 

to platen roughness was observed for seven of the eight temperature and lubrication 

conditions investigated. 

 The friction factor decreases under similar work piece and die roughness conditions.  

A local decrease in the friction factor was observed for ring compression tests 

conducted at die roughnesses of aR  40 in , which approach the aR  35 in  

roughness of the 6061-T6 aluminum work pieces. 
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 The friction factor between 6061-T6 aluminum work pieces and H-13 tool steel dies 

increases with die temperature.  For eight of the twelve test roughness and lubrication 

conditions examined, a linear rise in the friction factor was observed as die 

temperature was increased from 250 °F to 400 °F.  Of the four trials where a 

consistent linear increase was not observed across all die temperatures, a rise in the 

friction factor was still apparent at three of the four die temperatures investigated. 

 The relationships identified are valid using both high temperature vegetable oil and 

boron nitride lubricants.  An increase in friction factor with respect to die roughness 

and temperature was observed under both lubrication conditions.  Similarly, the local 

decrease in the friction factor at similar die and work piece roughnesses also appeared 

regardless of the type of lubricant employed. 

The relationship between die topography, defined in this study as surface 

roughness and lay, and material flow was also investigated under lubricated hot 

compression conditions.  Again, it was of additional interest to determine whether die 

temperature further influenced the relationship between die topography and material 

flow.  Material flow was quantified through the compression of approximate plane strain 

6061-T6 aluminum cigar specimens with a 10-ton hydraulic press.  The compressed cigar 

specimens were then measured and the true strain in the longitudinal and transverse 

directions was calculated.  The ratio between true strain in the transverse and longitudinal 

directions, identified as the spread ratio, was then calculated allowing for a simple 

comparison of results obtained from the various test conditions.  The relationship 

between surface roughness and material flow was studied through compression of cigar 

specimens under six different die roughnesses ranging from aR  10 in  to aR  240 in  at 
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die temperatures of 300 °F and 400 °F.  The relationship between die surface lay and 

material flow was investigated through compression of cigar specimens at three different 

orientations of 0˚, 45˚, and 90˚ between the longitudinal axis of the cigar specimen and 

the unidirectional surface lay of the die.  These compression tests were also repeated at 

die temperatures of 300 °F and 400 °F.  As it was important to again confirm that the 

relationships between die topography and temperature and material flow were not due to 

the type of lubrication, all trials were duplicated using high temperature vegetable oil and 

boron nitride lubricants.  Based upon the true strain and spread ratio values obtained from 

the compressed cigar specimens, it can be concluded that: 

 Under two dimensional plane strain conditions, the spread ratio increases with respect 

to die surface roughness.  A decrease in longitudinal true strain of the cigar specimens 

was observed for all trials as the die roughness increased.  A corresponding slight 

increase in the true strain in the transverse direction was also observed for all trials as 

the die roughness was increased. 

 Metal flow is maximized when the flow direction is aligned parallel to the machining 

marks of die surfaces.  The largest spread ratios were consistently observed at a 90˚ 

orientation between the longitudinal axis of the work piece and the unidirectional 

surface lay of the platen.  At this orientation true strain was maximized in the 

transverse direction and minimized in the longitudinal direction. 

 A change in die temperature from 300 °F to 400 °F does not affect metal flow.  

Similar trends between the spread ratio, longitudinal, and transverse true strain, and 

platen temperature were observed at both platen temperatures and at all orientations 

for the cigar compression tests. 



85 

 

 The relationships identified are valid using both high temperature vegetable oil and 

boron nitride lubricants.  An increase in the spread ratio was observed as both the die 

roughness and orientation were increased regardless of the type lubricant applied. 
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6. Recommendations for Future Work 

 Moving beyond this study the potential exists for further investigation regarding 

the effect of die roughness, surface lay orientation, and temperature on both the friction 

factor and material flow.   In the present investigation all compression tests were 

completed using 6061-T6 aluminum work pieces and H-13 tool steel dies.  Because only 

single die and work piece materials were investigated, it is recommended that additional 

ring and cigar compression tests are performed with other die and work piece materials 

commonly used in hot compression processes.  Possible alternatives to H-13, the 

chromium hot-work tool steel used in the current investigation, include low-alloy tool 

steels in the 6G, 6F, and 6H series, tungsten hot-work tool steels ranging from H21-H26, 

and molybdenum hot-work tool steels such as H41, H42, and H43 [18].  Further, possible 

alternative test specimen materials include carbon steels from C1010 to C1095, alloy 

steels in the 2000, 3000, 4000, and 8000 series, and stainless steels [19].  It may also be 

beneficial to conduct hot compression experiments using light aluminum and titanium 

alloys, other than the 6061-T6 used in the present investigation [20].  These additional 

compression tests will verify whether the relationships observed between die surface 

topography and temperature, and the work piece, are applicable to the forming of 

alternative varieties of metals or alloys.  If the results obtained in the current investigation 

are duplicated or similar relationships are observed, it can be claimed with increased 

certainty that the trends in friction and metal flow observed were the result of die 

topography, and not the work piece or die materials used. 

 In addition to the use of alternative die and work piece materials, further 

investigation of the relationship between die and work piece topography is warranted.   
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Presently, a decrease in the friction factor was observed under test conditions when the 

work piece and die roughnesses approximated one another at values of aR  35 and 40 in

respectively.  To verify that this localized decrease in the friction factor observed was a 

result of similar die and work piece roughness conditions, ring compression tests should 

be repeated using ring test specimens having an alternative surface roughness than the  

aR  35 in  finish presently used.  The use of a more abrasive finishing media, yielding 

an alternative average work piece roughness, may reveal whether this decrease in the 

friction factor noted at similar work piece and die roughnesses is valid for other work 

piece finishes. 

Shifting the focus to material flow, additional research as to the relationship 

between material flow and surface lay is justified.  In the present investigation the work 

piece was finished in a vibratory bowl using ceramic media such that a random surface 

lay was achieved.  Conversely, the platens were machined with a unidirectional surface 

lay.  Cigar compression tests conducted at orientations of 0°, 45°, and 90°, and die 

roughnesses between aR  10 and 240 in  indicated that material flow is maximized in 

directions parallel to the platen surface lay.  As the orientation between the work piece 

and the unidirectional surface lay of the platen was found to influence material flow, the 

potential exists to further optimize it through prescribing surface lay conditions of the 

work piece.  Cigar tests should be repeated at identical orientations with the work piece in 

the as drawn condition.  This as drawn work piece finish will leave the work piece with a 

unidirectional surface lay in the longitudinal direction.  Cigar compression tests of as 

manufactured work pieces will reveal the effect of work piece topography on metal flow.  

Further, as work pieces are generally formed in their as manufactured condition, the 
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resulting relationship between surface topography and metal flow may be more 

representative of forming processes used throughout the industry. 

 Lastly, while metal flow was observed to be maximized at orientations parallel to 

surface lay with the hydraulic press used in the current investigation, previous studies 

reported opposite results.  Using flat drawing tests Kumpulainen [6] reported maximum 

metal flow to occur at an orientation perpendicular to surface lay at moderate to high 

strain rates and low tool roughnesses.  Similarly, Wolff et al. [7] and W. Rasp and C.M. 

Wichern [8] offered further agreement with these findings from their asymmetric friction 

upsetting tests intended to simulate a flat rolling process.  Therefore, conducting 

compression tests using mechanical presses or drop hammers, which are characterized by 

inherently higher strain rates than the hydraulic press used in the present investigation, 

may provide further insight regarding the applicability of the current findings to 

alternative metal forming processes.  Table 6.1 lists average strain rates for common 

types of compression presses including hydraulic, mechanical, and drop hammer variants.  

It should be noted that mechanical presses and drop hammers achieve much higher 

average strain rates than the hydraulic press used in the present investigation. 
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Table 6.1 - Summary of the average strain rate achieved by common hot compression 

equipment. 

Compression Equipment Type 
Hydraulic 

Press 

Mechanical 

Press 
Drop Hammer 

Average Strain Rate (S
-1

) 10
-4

 to 1 1 to 30 10 to 100 

Additionally, mechanical presses and drop hammers are common metal forming 

tools used throughout industry for hot compression processes.  A better understanding of 

the relationship between metal flow and die topography under strain rates characteristic 

of mechanical presses or drop hammers will clarify if the maximum metal flow observed 

at a parallel orientation was a result of the method of forming or the strain rate at which 

the work piece was compressed. 

Overall, while multiple important conclusions were reached in the present 

investigation, further investigation of the relationship between die topography and 

temperature on the friction factor and metal flow is warranted.  The exploration of 

alternative work piece materials and topographies are warranted to clarify the cause of 

the trends presently observed.  Further, repeated compression tests at alternative strain 

rates characteristic of presses commonly used by industry would provide added 

confidence that the results observed in the current study are applicable to other industrial 

processes. 
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8. Appendices 

Appendix A - Cigar test results demonstrating the relationship between true 

strain in the longitudinal direction and platen roughness at platen 

temperatures of 300 °F and 400 °F. 

The average values of the true strain in the longitudinal direction for all three 

work piece orientations with respect to platen roughness are shown in Figures 8.1 and 8.2 

respectively.  The results shown in Figures 8.1 and 8.2 were obtained at platen 

temperatures of 300 °F using both lubricants.  The description of the orientation 

corresponds to the alignment of the longitudinal axis with the unidirectional surface lay 

of the platen.  The average longitudinal strain, represented by the individual data points, 

was obtained from 5 replications of each test condition. 

 

Figure 8.1 – Cigar test results showing the average longitudinal strain as a function of 

die roughness for aluminum specimens compressed on platens heated to 

300 °F.  High temperature vegetable oil lubricant was used in all tests. 
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Figure 8.2 - Cigar test results showing the average longitudinal strain as a function of 

die roughness for aluminum specimens compressed on platens heated to 

300 °F.  Boron nitride lubricant was used in all tests. 

 Figures 8.1 and 8.2 demonstrate that, at platen temperatures of 300 °F, the strain 

in the longitudinal direction decreased with respect to increasing platen surface roughness 

for the majority of the work piece orientations and lubrication conditions investigated.  

Specifically, a decrease in longitudinal strain was noted using the high temperature 

vegetable oil lubricant at a 0° orientation and using the boron nitride lubricant at 0°, 45°, 

and 90° orientations.  At the 45° and 90° orientations using the high temperature 

vegetable oil lubricant, the longitudinal strain again decreased slightly, but to a lesser 

degree than noted under alternative orientation and lubrication conditions.  Table 8.1 

summarizes the difference in the longitudinal strain observed between aR  10 and 240 

in  shown in Figures 8.1 and 8.2 to better highlight the contrasting results. 
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Table 8.1 - Summary of the decrease in longitudinal strain observed between aR  10 and 

240 in  roughnesses during cigar compression testing.  Both high 

temperature vegetable oil and boron nitride lubricants were used and platen 

temperature was set to 300 °F. 

Overall, the maximum longitudinal strain of approximately 0.22 in/in was 

observed on the aR  10 in  platen, at a 0° orientation, and using the high temperature 

vegetable oil lubricant.  Additionally, the longitudinal strain is consistently maximized 

and minimized at the 0° and 90° orientations respectively, indicating that the strain in the 

longitudinal direction is influenced by the platen surface lay conditions. 

 In Figures 8.3 and 8.4 the relationship between average longitudinal strain and 

roughness is again shown.  Both high temperature vegetable oil and boron nitride 

lubricants were again used.  However, the platen temperature was increased to 400 °F.  

The same trends noted previously remained, in spite of the increase in platen temperature.  

The longitudinal strain consistently decreased at the 0° orientation using high temperature 

vegetable lubricant and at all orientations using boron nitride lubricant.  At the 45° 

orientation, a small decrease in longitudinal strain was noted when high temperature 

vegetable oil lubricant was employed.  However, at the 90° orientation the longitudinal 

strain fluctuated minimally, with minimum and maximum values of 0.07 in/in and 0.11 

in/in.  The maximum longitudinal strain of 0.20 in/in was again observed on the aR  10 

in  platen, at a 0° orientation, and using the high temperature vegetable oil lubricant. 

Work Piece Orientation 0° 45° 90° 

High Temp Veg. Oil Lubricant (in) 0.1050 0.0330 0.0150 

Boron Nitride Lubricant (in) 0.0340 0.0300 0.0360 
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Figure 8.3 – Cigar test results showing the average longitudinal strain as a function of 

die roughness for aluminum specimens compressed on platens heated to 

400 °F.  High temperature vegetable oil lubricant was used in all tests. 

 

Figure 8.4 – Cigar test results showing the average longitudinal strain as a function of 

die roughness for aluminum specimens compressed on platens heated to 

400 °F.  Boron Nitride lubricant was used in all tests. 
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 Overall the metal flow in the longitudinal direction was observed to decrease from 

strains as high as 0.22 in/in to about 0.10 in/in on the aR  10 and 240 in  platens 

respectively.  While tests conducted at the 90° orientation using the high temperature 

vegetable oil lubricant appeared to demonstrate the least sensitivity to surface roughness, 

the longitudinal strain appeared to be strongly influenced by platen roughness for all 

other test conditions.  The increase in platen temperature from 300 °F to 400 °F also did 

not appear to influence the relationship between longitudinal strain and platen roughness.  

The longitudinal strains observed at both platen temperatures appear almost identical as 

the difference between the maximum strains measured at each temperature was within 

0.02 in/in. 
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Appendix B - Cigar test results demonstrating the relationship between true 

strain in the transverse direction and platen roughness at platen 

temperatures of 300 °F and 400 °F. 

Figures 8.5 and 8.6 show the average value of the true strain in the transverse 

direction for all three cigar test orientations investigated.  These results were obtained at 

platen temperatures of 300 °F using both high temperature vegetable oil and boron nitride 

lubricants.  To maintain a consistent description of the results, the orientation again 

corresponds to the alignment of the longitudinal axis of the cigar tests specimen to the 

unidirectional platen surface lay.  Therefore, it is important to clarify that because metal 

flow in the transverse and longitudinal directions are perpendicular, their individual 

orientations with respect to surface lay are perpendicular as well.  For example, when the 

longitudinal axis of the work piece is oriented at 0° with respect to the platen surface lay, 

metal flow in the transverse direction actually occurs 90° with respect to the platen 

surface lay. 
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Figure 8.5 - Cigar test results showing the average transverse strain as a function of 

die roughness for aluminum specimens compressed on platens heated to 

300 °F.  High temperature vegetable oil lubricant was used in all tests. 

 

Figure 8.6 - Cigar test results showing the average transverse strain as a function of 

die roughness for aluminum specimens compressed on platens heated to 

300 °F.  Boron nitride lubricant was used in all tests. 
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 In contrast to the negative relationship observed between the longitudinal strain 

and platen roughness, the transverse strain observed appears to slightly increase with 

respect to surface roughness.  Table 8.2 lists the average value for the transverse strain 

observed at each orientation followed by the standard deviation obtained from the six 

trials.  Because the standard deviation of all three orientations using both lubricants never 

rises above ± 0.04 in/in it is clear that the transverse strain does not demonstrate much 

variation. 

Table 8.2 - Summary of the average transverse strain observed at each work piece 

orientation for all roughnesses during cigar compression testing.  Both high 

temperature vegetable oil and boron nitride lubricants were used and platen 

temperature was limited to 300 °F. 

Work Piece Orientation 0° 45° 90° 

High Temp Veg. Oil Lubricant 0.5724±0.04 0.6239±0.03 0.6731±0.02 

Boron Nitride Lubricant 0.5471±0.02 0.5522±0.01 0.5621±0.01 

The strain observed in the transverse direction was consistently greater than that 

occurring in the longitudinal direction.  This was to be expected, as the transverse 

direction was the primary flow direction of the plane strain cigar specimens used in this 

investigation.  Additionally, the transverse strain was greatest for all trials conducted at a 

0° work piece orientation, the same orientation at which the longitudinal strain was 

minimized.  This trend is in agreement with the plane strain test conditions discussed 

previously.  As metal flow increases in one direction, a corresponding decrease in the 

perpendicular direction was anticipated. 
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 While the transverse strain appeared to only increase slightly with respect to 

platen roughness for the entire range of platen roughnesses investigated, an interesting 

phenomena appeared at aR  20 and 40 in  platen roughnesses.  The transverse strain 

decreased, most significantly at the 0° work piece orientation, at a platen surface 

roughness of aR  40 in  when high temperature vegetable oil lubricant was used.  Again, 

this platen roughness aligns most closely to that of the work piece.  When the boron 

nitride lubricant was employed, this reduction appeared to occur at a platen roughness of 

aR  20 in  but was maintained at a platen roughness of aR  40 in  as well.  With the use 

of boron nitride lubricant, all work piece orientations demonstrated this drop in transverse 

strain, unlike the high temperature vegetable oil, that only demonstrated a decrease at the 

0° orientation. 

 Figures 8.7 and 8.8 again show the average transverse strain with respect to 

roughness using both high temperature vegetable oil and boron nitride lubricants, this 

time at a platen temperature of 400 °F.  Once again, the strain in the transverse direction 

increased very slightly when the high temperature vegetable oil lubricant was used.  In 

this trial, the transverse strain fluctuated between 0.61 in/in to 0.75 in/in.  Similarly, using 

the boron nitride lubricant at the increased platen temperature, the transverse strain 

increased to a range of 0.65 in/in to 0.70 in/in at platen roughnesses from aR  10 to 60 

in  and remained steady at a range of 0.6 in/in to 0.62 in/in for roughnesses beyond aR  

60 in .  Under both lubrication conditions the 90° orientation resulted in the greatest 

transverse strain.  Additionally, the results under both lubrication conditions again 
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showed a decrease in transverse strain at the aR  40 in  roughness platens that most 

closely resemble the roughness of the work piece. 

 

Figure 8.7 – Summary of the cigar test results showing the average transverse strain 

as a function of die roughness for aluminum specimens compressed on 

platens heated to 400 °F.  High temperature vegetable oil lubricant was 

used in all tests. 
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Figure 8.8 – Summary of the cigar test results showing the average transverse strain 

as a function of die roughness for aluminum specimens compressed on 

platens heated to 400 °F.  Boron nitride lubricant was used in all tests. 
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direction.  Because the length of the cigar specimen is eight times the width, the very 

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250

T
ra

n
sv

er
se

 T
ru

e 
S

tr
a
in

 (
in

/i
n

) 

Roughness Ra (μin) 



103 

 

slight increase in transverse strain is all that is required to accommodate for the decrease 

in longitudinal strain. 

  



104 

 

Appendix C - Cigar test results demonstrating the relationship between the 

spread ratio and platen roughness at platen temperatures of 400 °F using 

high temperature vegetable oil lubricant. 

The relationship between spread ratio and work piece orientation obtained from 

cigar compression tests is shown in Figures 8.9 and 8.10 for the smoother and rougher 

platens respectively. 

 

Figure 8.9 - Cigar compression test results for smoother dies demonstrating the average 

spread ratio as a function of work piece orientation completed on platens 

heated to 400 °F using high temperature vegetable oil lubricant. 
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Figure 8.10 – Cigar compression test results for rougher dies demonstrating the average 

spread ratio as a function of work piece orientation completed on platens 

heated to 400 °F using high temperature vegetable oil lubricant. 
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90°.  In Table 8.3 the slopes of the linear relationship observed in Figures 8.9 and 8.10 

for each platen roughness are presented. 
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Table 8.3 - Summary of the slope observed for the relationship between the spread ratio 

and work piece orientation during cigar compression testing.  All tests were 

conducted using high temperature vegetable oil lubricant at a platen 

temperature of 400 °F. 

Platen Roughness 

( in ) 
Ra 10 Ra 20 Ra 40 Ra 60 Ra 130 Ra 240 

Slope of Spread Ratio 

vs. Orientation  

(0° to 90°) 
0.0511 0.0656 0.0600 0.0567 0.0367 0.0244 

Under increased platen temperature conditions the aR  20 through 60 in  

roughness platens were again found to display the greatest rise in spread ratio with 

respect to work piece orientation having slopes of 0.0656, 0.0600, and 0.0567 

respectively.  The aR  10 in  roughness platen also showed a strong increase in spread 

ratio with respect to work piece orientation with a slope of 0.0511.  Conversely, the 

highest roughness aR  130 and 240 in  platens, while still showing an increase, where 

characterized by slopes of 0.0367 and 0.0244 respectively.  Just as occurred at 300 °F 

platen temperatures, the spread ratio was the greatest at the lowest surface roughness as 

well as the surface roughness closest that of the work piece.  The increase in spread ratio 

at these roughnesses was nearly twice that occurring on higher roughness platens. 
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Appendix D - Cigar test results examining the relationship between length 

and width strain and work piece orientation at platen temperatures of 300 °F 

using high temperature vegetable oil lubricant. 

The relationship between longitudinal strain and work piece orientation obtained 

from cigar compression tests is shown in Figures 8.11 and 8.12 for the smoother and 

rougher platens respectively. 

 

Figure 8.11 - Cigar compression test results for smoother dies demonstrating the average 

longitudinal strain as a function of work piece orientation completed on 

platens heated to 300 °F using high temperature vegetable oil lubricant. 
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Figure 8.12 - Cigar compression test results for rougher dies demonstrating the average 

longitudinal strain as a function of work piece orientation completed on 

platens heated to 300 °F using high temperature vegetable oil lubricant. 

 The relationship between longitudinal strain and work piece orientation observed 

in Figures 8.11 and 8.12 shows a linear decrease as the longitudinal axis of the work 

piece was rotated from 0° to 90°.  Tests conducted at the smoothest aR  10 in  platen 

roughness and the aR  20 and 40 in  roughnesses closest to that of the work piece 

demonstrated the greatest decrease in strain.  The aR  10, 20, and 40 in  platen 

roughnesses at which the greatest decrease in longitudinal strain was observed also 

correspond to the roughnesses at which the spread ratio showed the greatest increase. 

Figures 8.13 and 8.14 demonstrate the relationship between transverse strain and 

work piece orientation.  These results were again obtained from cigar compression tests 

and separated between smoother and rougher platens. 
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Figure 8.13 - Cigar compression test results for smoother dies demonstrating the average 

transverse strain as a function of work piece orientation completed on 

platens heated to 300 °F using high temperature vegetable oil lubricant. 

 

Figure 8.14 - Cigar compression test results for rougher dies demonstrating the average 

transverse strain as a function of work piece orientation completed on 

platens heated to 300 °F using high temperature vegetable oil lubricant. 
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Figures 8.13 and 8.14 show a linear increase in transverse strain as the 

longitudinal axis of the work piece was rotated from 0° to 90°.  Tests conducted at the  

aR  20 and 40 in  roughnesses closest to that of the work piece demonstrated the 

greatest increase.  These roughnesses also coincide with the  aR  20 and 40 in  platen 

roughnesses at which the greatest increase in spread ratio and decrease in longitudinal 

strain was observed. 

Overall, a shift in metal flow from the longitudinal to the transverse direction was 

indicated as the spread ratio was observed to increase during rotation of the longitudinal 

axis of the work piece from 0° to 90° with respect to the platen surface lay.  This shift in 

the direction of metal flow is further exemplified by the change in magnitude of the true 

strains observed in the longitudinal and transverse directions.  As the longitudinal axis of 

the work piece was rotated towards 90˚, the longitudinal strain decreased, indicating a 

decrease in metal flow in the longitudinal direction.  Alternatively, the transverse strain 

was observed to increase, revealing that the decrease in metal flow that occurred in the 

longitudinal direction resulted in an increase in metal flow into the transverse direction. 
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