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Gamma-set Domination Graphs I:
Complete biorientations of g-extended stars
and wounded spider graphs

Kim A. 8. Factor
Marquette University
P.0O. Box 1881, Milwaukee, WI 53201-1881
kim factor@marquette.edu

Abstract

_ The domination oumber of a graph G, ¥(G), and the domina-
tion graph of a digraph D, dom(D) are integrated in this paper.
The y-set Eominatir;n graph of the complete biorientation of a graph
G, dom,(G) is created. All y-sets of specific trees T are found, and

dom, (T) is characterized for those classes.

Keywords: ¥-set domnination graphs, domination, unipathic digraphs,
wounded spider graphs, g-extended stars, complete biorientations, trees.

1 Introduction

Let Dbe a digraph with vertex set V(D) and arc set A(D). If (z,y) € A(D),
then.z dominates y. A vertex is also considered to dominate itself. The
domination graph of D, dom(D), is the graph where V(dom(D)) = V(D)
i)nd =y} e E{domn(D)) whenever r and y dominate all other vertices in

. Fisher, et al. ([8),{9],{10],[11],{12]) first introduced dominated graphs
™0 terms of diagraphs that are tournaments. Further tournament related
fesearch includes papers from Cho, et al. ([1], [2]) along with Lundg}'en and
Jimenez [16]. Recently, Factor and Factor [6], Factor (7]}, and Cocking and
P.‘mr [4] have extended these concepts to tournaments that may include
Yies, and the biorientation of graphs. )

It i the pature of domination graphs to represent pairs of vertices that
d"_“finate all others in a digraph. This is done without observance of the
MURimum number of vertices required to dominate in the digraph. For
“Wihing other than digraphs where exactly two vertices are needed to
dommate, we have either an over-representation of domination or a null
domination graph that gives no insight as to the true nature of domination

8 the digraph jt represents. . L

easy example of the over-representation of domination is that of
t_he Otientation of Ky .._; where the center is oriented toward the other
Fertices. Clearly, the‘center vertex is able to dominate alone. However,
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the domination graph of this digraph is K3 ,-1 since the center forms a
dominant pair with each of the other vertices. The information regarding
how many vertices are needed to dominate is not available in the traditional
domination graph where only dominating pairs are considered. In order to
represent this relationship accurately, a new concept must be developed.
Here, the minimum-set domination graph is introduced.

For a diagraph D, let M be a subset of the vertices in V(D) ‘f‘hel’e
Yve V(D), v € M or (u,v) € A(D) for u € M, and M has the minimuot
cardinality of all such subsets. The set M is referred to as a minuntim
dominating set ). The minimum-set domination graph of D is created
using the vertices of D, with a copy of K|s formed by the vertices of each
minimum dominating set. o

In the case where D is the complete biorientation of a graph GD=G,
the minimum-set domination graph depends upon the domination number
of G, ¥(G). The complete biorientation of a graph G is created by replacing
every edge {u, v} in G with arcs (u, v) and (v, ). In graphs, ¥(G) representa
the minimum number of vertices necessary to dominate all vertices the
graph. b

A wide range of results have been obtained regarding the dominatio?
number of a graph. Haynes, Hedetniemi and Slater [14] bave br_OUght g
gether many of the basic concepts and results of domination m_g.mphs
and in [15} examine advanced results. ~+{G) translates into f_{le minimum
number of vertices needed to dominate all other vertices in G. Thus, thi
minimum-set domination of I in general can be referred to as the 15
domination of G for biorientations of graphs. The resulting y-set donn;
nation graph is denoted dom.,(a) where each y-set in G forms 2 C_OW y
K, in dom., (3). Although other digraphs may have the characteristic t'l_m
the cardinality of their minimum.-domination set is y(G) for the underty?8
graph G, it is not generally the case. Therefore, dom.(G) will be used only
when an entire class has that characteristic. N all

The problem of finding the domination number of a graph 13 _gener tﬁ
N P-complete, as first shown by Johnson [17]. Since that number 15 used
determine the size of dominating sets for dom. (G ), it becomes 3 Proble®
of selecting classes of graphs where 7(G) can be determined. Fortunat );
there are a variety of linear algorithms available that will find (1) for
tree 7. These include a linear-time algorithm by Mitchell, Cockayae: a.nw
Hedetniemi {18]. This makes the class of trees a highly desirable place
begin to explore y-set domination graphs. the

This paper characterizes v-set domination graphs specifically for ed
classes of wounded spider graphs and g-extended stars. Each class1s f"r‘,nns
by special subdivisions of the branches of a star and ave defined in S6¢tO
3 and 4 respectively. In conclusion, the biorientations of trees for the SP



cases of v = 1,2 are examined.

2 Results governing the general structure of v-set dom-
ination graphs

First, we explore general concepts that will be used in characterizing further
results for y-set domination graphs. Any tree is isomorphic to a rooted tree
of minimum height. Here, the notation T will represent a rooted tree of
minimum height that is isomorphic to a tree 7". For example, the star is
isomorphic to a rooted tree of height 1.

In a tree, pendant vertices can be referred to as leaves. A vertex that
15 adjacent to another vertex, but is one level closer to the ro'ot will E_Je
called the parent. The leaves and parents of leaves play a major ro}e m
constructing vy-sets for a tree. Only one vertex other than the leaf itself

dominates the leaf, and that is its parent.

Proposition 2.1 For any vertez p € V(T') where deg(p) = 2 ““_dp i
the parent of ezactly one leaf, then p or its adjacent leaf must be in any
dominating set of T.

Proof: At least one vertex in the dominating set must (}ominate the le?jf
= pisin the dominating set or the leaf is in the dominating set.

Corollary 2.2 For any vertex p € V(T'} where deg{p) = 2 ““di’ i th:
Parent of exactly one leaf, either P or its adjacent leaf (but not both) mus
n any minimal dominating set.

Let W C V be any subset of vertices in a graph G = (V, B), a.pfd let
VEW. The vertex w € V — (W — {v}) is a private neighbor of v i ana)J'
vertex other than y in W does not dominate u. Note that u can be eqtus
to v. The set of private neighbors of a vertex u with_ respect tC; ia-f s
of vertices is denoted ifu,S]. A set Wis r:onsidered_mt_edundﬁ'u e"eel'i
vertex in W has a private neighbor. Cockayne, Hedetniemi and Mi e; tz;s
these concepts to characterize a minimum dominating set for a graph G.

Proposition 2.3 [3] A dominating set S is ¢ minimal dominating set if
end only if it 45 dominating and irredundant.

1
The restriction that p have degree 2 and be the pareat of exffﬁ,ﬁzfe;f::
Placed upon p in Corollary 2.2 is necessary in part beca’usebe laced in a
Of- more than one leaf will not allow for any of the Jeaves ta be p
Minimal dominating set. '
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Proposition 2.4 If p € V(T') where p is the parent of at least two leaves,
then p must be in any minimal dominating set and none of the leaves will
be in the set.

Proof: Suppose that p is not in the dominating set S. Each leaf adjacent
with p must then be in S. But each leaf dominates only p => at least two
elements in S do not have a private neighbor, and § is not irredundant.
Thus, by Proposition 2.3, S is not a minimal dominating set. So p must
be in 5. For similar reasons, if one of the leaves is in § also, S is not 2
minimal dominating set. =

Further observations regarding the general structure of any 7-set domi-
nation graph of the biorientation of a tree are given in the next two results.
"The first shows that any leaf vertex and its parent vertex will not form an
edge in dom, (?I;) Second is a theorem regarding the absence of any cOPY
of a K41 subgraph in dam»,(?) where 7(T) = k, regardless of how many
copies of K are in the «y-set domination graph.

Proposition 2.5 For any vertex p € V{T) where p is adjacent 0 8 verter
v of degree 1, the edge {p,v} & E(dom.,(T')).

Proof: Corollary 2.2 and Proposition 2.4 insure that either a parent of 2
leaf or in some cases the leaf itself, but not both, will be in any 7-set of a
graph. Since they never appear together in a ~y-set, thgy will never be Paﬁ
of a copy of K.,, which is the only construet in dom. ().

Remark 2.6 K, and K, ,,; are the only trees with A(T) =1

Proof: For 4(T) = 1, there must be one vertex with degree of 1

~1.In
a tree, this can only occur if " is K, or T is a star. v

Theorem 2.7 IfT is a tree on n vertices where 1(T) = k > 1, then Kit!
is not a subgraph of dmn,r(fﬁ).

Proof: (PMI) 1) Letn =1. Then by Remark 26, T =K T=

[

Ky -y = dom,(T) is the null graph (by definition of dom(T )} and K3
is not a subgraph thereof. '

2) HAssume that for n = k, k > 1 that Kp4 is not 2 subgrap
dom, (T} when 4(T) = k. ' : )

3) Consider n =k + 1. Suppose that Ky, is a subgraph of d‘fﬂ?’ (u.m
for some tree T where 4(T") = k+ 1. Let T be the rooted tree of mmlmt ’
height h that is isomorphic to T'. There exists a vertex u such th

h of
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is a leaf on level h of Ty. Either u or its parent t is in every <y-set of
T (Proposition 2.2). Remove w from Tx with all adjacent leaves and all
edges incident with w. Let the new tree be known as Th. ¥(TR) = k, as
only one parent vertex and adjacent pendant vertices was removed, giving
A net total of one less cover vertex needed for the vertices of Tf. By the
induction hypothesis, K¢,y is not a subgraph of dmm(?ﬁ) = K3 is the
largest complete subgraph of dom., (?}i). Adding in v, its adjacent pendant
vertices, and incident edges to T when we recreate 7T, does not create
lew relationships between vertices in Ty = no new edges are created in
the domination graph between those vertices in Tj => Ky must contain
two of the vertices vy, v, in V{Tr)\ V(T{) = v and v; are both leaves,
Of 1 = and v, is a leaf. The former possibility contradicts Proposition
2.4, and the latter contradicts Proposition 2.5. Thus, K;,z cannot be a

Subgraph of dom.,(T') when 4(T) = k + 1. =

3 Wounded Spider Graphs

Now that the basic set of rules have been formed that govern the construc-
tion of y-get domination grapbs of the complete biorientations of trees, we
¢an begin to examine the class of graph known as the wounded spider graph.

A subdivision of an edge {u,v)} is achieved by removing the edge and
replacing it with a new vertex w and the edges {u,w} and {w,v}. Domke,
Dunbar ang Markus [5] create a wounded spider graph by subdividing 0 to
Ff" 1 edges of the star Ky 4. Various wounded spider graphs are shown in

1gure 1.

@ () © @

Fignre 1. Examples of wounded spider graphs

* A wounded spider h with ¢~} subdivisions can be achieved with the
graph wi _
€0rona graph Ky 40 K. The corona groph is defined by Frucht and Harary
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[13] to be the graph G = G, o G, which is formed by taking one copy of
G,V (G1)| copies of Gy, and adding edges from each vertex v € V{(G1)
and every vertex in the it8 copy of G,. Figure 1(d) represents the corona
graph Ky 30 Kj. ’

Wounded spider graphs, W have a structure that makes it possible to
characterize the y-set domination graph of W. By design, there is always
at least one leaf adjacent to the root. The remaining leaves each have 2
different parent, which is adjacent to the root. The domination number,
(T is known for a wounded spider graph and is related to the maximum
vertex degree, A(1"), by the following theorem.

Theorem 3.1 [5] For any tree T, 1{T) = n — A(T) if and only f T 15 4
wounded spider.

The statement of Theorem 3.1 is written in terms of n and A(T). Since
the objective here is to count the y-sets in addition to determining ¥ (T),it1s
necessary to know how many leaves are not adjacent to the root. ‘Corolla-rg
2.2 states that either a leaf or its parent must be in every dominating set, S ¢
the number of these leaves will be used in the calculation of the number @

- o m
+-sets. The following proposition makes use of the information in Theore
3.1

Proposition 3.2 Let T be o wounded spider graph. T hasm =17
A(T} — 1 leaves that are not adjacent to the center verter.

Proof: Let T be a wounded spider graph. ~(T) = n -~ A(T) (Theﬂriz
3.1). By construction, there exists at least one leaf adjacent to the ;enﬂl
vertex r => r is in at least one y-set. For that ~y-set, there are 7~ A( 1, =
vertices that are not r and not adjacent to r, so are not covered by 0
there are n — A(T") — 1 leaves not adjacent to r.

Corollary 3.3 Let T be a wounded spider graph and m = 1~ sl -
LATY=m+1.

Now we can take the information provided by Corollary 3.3 and Char:;:d
terize the -y-set domination graphs of the complete biorientations of “’01111; -
spider graphs. For ease in delineating the three possibilities in the fg) are
ing theorem, the cases can be seen in Figure 1. Figures 1(a} and i e 2,
examples of the first case, Figure 1(d) shows the corona graph 10 ca-;ewl
and the third case where there is more than one vertex of degree 1 02
1 of the graph Tg is shown in 1(c).

Theorem 3.4 Let W be a wounded spider graph on n vertices with 7 =
n - A(T) — 1 leaves not adjacent to the centerr. :
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1. Ifm =0, then dom., (W) is the null graph.

2. IfW = Ky ;0K so that m == 1, then dom‘,(ff}) 1s the connected graph
on 2(m+1) vertices consisting of 2™+ copies of Kyny1, 2™ of which
are incident with the root r and 2™ of whick are incident with the one
leaf adjacent to r.

3. If there are at least two vertices of degree 1 adjacent to the root r in
Tq, then dﬁ?m-y{ﬁ}) is the graph of (n--2m) components on n vertices
consisting of 2™ copies of K1, of which all are incident with r, and
(A(T) ~ m) isolated vertices: namely, oll leaves adjacent to r.

Purther, K,ny5 is not a subgraph of dom.,(ﬁ:’), and for all edges {u,v} €
E(WY such that v is a leaf verter and u is its parent verter, {u,v} ¢

E(dom.,(W)).

Proof: y(W) = m +1 (Corollary 3.3) 1) Ifm = 0, then W = K; or
W = Ky ner. By definition, dom.,(ff}) has only copies of K;. Thus, it is
the null graph.

QAW = K140 Ky, then mn = ¢. Let Tg be the rooted tree where
the root r is a vertex with maximum degree. By construction, there is
€Xactly one leaf v adjacent to r. Corollary 2.2 dictates that either vertex
T Or vertex v will be in every +y-set, but not both. In either case, r and
v are dominated by the selection. The remaining m vertices of degree 1
are on level 2 of Tr. Again, either the leaf or its parent must be in every
¥-5et. ‘Thus, a y-set will contain anywhere from 0 to m of these m leaves.

There are 3 ™ ) == 2™ ways to select the m leaves for y-sets. With
i

the choice of gither r or v for each y-set, we hgve 27+t y.sets in W. By
definition, each forms a copy of Ky in dom, (W). Vertexr Is in 2™ copies
and vertex v is in the other 2™ copies by virtue of each of the vertices being
n 2.m v-sets. All vertices are in -sets with both r and v, so the 2™+1
€oples of Ko yq form one component.

3) This case is quite similar to that in part (2}, except that root r .must
be in every ¥-set (Proposition 2.4). Thus, there are half as many copies of
Kmyy in the dom,(ﬁ”). This gives 2™ copies that are ::.!’l adjacent to r since
T i8 in every y-set, forming one component in dom. (W). No leaf adjacent
_to T i3 in any ~y-set {Proposition 2.4), so each of these is an isolated vertex
in d"m-r(ﬁ)- There are m leaves on level 2 of T with one parent each, so
there are 51— 2m — 1 = A(T) —m leaves adjacent to r. None of these leaves
¥ill be in 5 -set, so are isolated vertices in the dom, (W) )
; The further restrictions follow directly from Theorem 2.7 and Pmpos;

ton 2.5,
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4 q-extended stars

If each pendant edge of a star is subdivided one time, the resulting graph is
referred to as a 1-extended stor and is isomorphic to a rooted tree of he'ight
2, If the pendant edges of a 1-extended star are each subdivided one tune,
the resulting graph will be referred to as a 2-extended star andis isoxflorphlc
to a rooted tree of height 3. In general, if the subdivisions occur g times on
each edge, we have a g-extended star isomorphic to a rooted tree of beight
g+ 1. Examples of 1-extended and 2-extended stars represented by rooted
trees are shown in Figure 2.

i i)

Figure 2. 1-extended and 2-extended stars with 4 branches each

The unique structure of a.path lends itself well to the task of countitg
the number of y-sets in a graph. Thus, the structure of a q-extended_stﬂf
can be examined as a collection of paths of length g + 2 joined by 2 single
vertex. This vertex can be refested to as the center of the star or, 85 i
be the case more often in this paper while using rooted trees, a8 the root0
the star.

We will see that results for all g-extended stars can be generated fro
the basis graphs of 1-, 2-, and 3extended stars. Each subclass has a differ
ent y-set structure that affect the characterization of their associated ¥-5¢¢
domination graphs. To separate into these three subclasses, it is admzta3
geous to represent ¢ in the following manner: g =¢qo + 3nforg = L, t;le
and m > 0 a nonnegative integer. For all but the case when g = 3, the
approach is to find the domination number for a basis graph, count
rumber of y-sets in the graph, then create the subclass of extended Sta:;
generated using each basis graph by extending each branch of the staf w:eﬂ
three vertices and three edges. The general results for a subclass will ete
be used to classify the associated v-set domination graphs of the cotp
biorientations of the graphs. .

For ease in understanding the development of this section, the foI!ow;neg
notation and concepts will be adopted. The basis graphs for the g-exten e
star are the l-extended, 2-extended and 3-extended stars that will genﬂf‘;
all possible q-extended stars. An extension block of a g-extended St 7
a given go denotes a block of three additional vertices and edges be8
adjoined to every branch of an existing g-extended star. The first extensiol
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block occurs when m = 1, and in general the FB extension block occurs
when m = k. Each star will be said to have b branches as the number
of rays of the star, where b; refers to the it® branch. A branch has g+2
vertices, which includes the root.

In a g-extended star, all branches are of equal length, making the root
the exact middle of the union of two branches. As a result, there are an
odd number of vertices in the wunion of any pair of branches in the graph.
The eccentricity of a vertex u js the distance of the vertex farthest from
. In this graph, the eccentricity of each end vertex is the length of the
longest path in the graph: e = 2(g -+ 1). Thus, € is an even length and
the longest path in the graph, Poiyy, is obtained by the union of any two
branches. This is important when determining the -sets, as the number
and selection of vertices needed to cover the longest path in our rooted tree,
will bound general results.

41 qy=3

To begin the generation of the subclasses, let us examine the case where
973+ 3m=23(1+4m), m > 0. This case begins the investigation because
It possesses only one y-set. The example given in Figure 3 shows a 3-
extended star where gy = 3, b =4, m = 0, v = 5, and the longest path is
Poiyy = Py The vertices forming the unique <-set are circled. Following
are results pertaining to this subclass.

Figure 3. 3-extended star with 4 branches and a unique y -set

Proposition 4.1.1 Let T be a g-extended star where ¢ = go + 3m for
g 33, m>0. IfPZLI»I is the Igngestpaﬂl in T, then 2k + 1 = 6m +D.

Proof: 7The] in T' is the eccentricity of an end
: ength of the longest path in 7' is the | )

Yertex, 50 has an odd number of vertices, 2k-+1, as discussed earlier. There

& ¢+ 2 vertices in each branch of T, each including the root, giving 2¢+3

vertices in the longest path. Since g = go+3mand o =3 m20=>¢=



3+3mand 2¢+3=6m+9. Thus, 2k+1=6m+9. o

To begin establishing the uniqueness of the 7-set for the 3(m + 1)-
extended star, the following proposition begins by examining the unique
~-set of Pu;.

Proposition 4.1.2 A path on 3k vertices where k > 1 has & unique y-sel,
and ¥ = k.

Proof: In a path, a vertex can dominate at most 3 vertices: itself an;itll';:
two neighbors = there are at least k vertices in any y-set Of'P:sk- L_abe A
vertices of the path: 1,2, ...,3k. To form a -y-set, select vertices {31—1}};:18-
Each vertex covers exactly 3 vertices, thus maximizing the coverage. T e‘;
are k vertices in the set, so ¥ = k. Suppose that there is anot-her Tvs:té
Every vertex in this set must dominate 3 vertices - all 3 must be its prl e
neighbors - in order for the 3k vertices to be covered in k. Both se:‘ts mand
have vertex 2 to cover vertex I, because 1 would not cover 3_ vertices -
is not an option for any -set. Remove vertices 1, 2, and 3 since theyex :
already represented in the y-set. Consider the remaining Path. Vert )
must be chosen for the same reasons as the previous chmcg of vertex &
Continuing in this fashion leads to the only possible y-set being comp G
of vertices {3i — 1}5,.

a8
The previous two results lead to the following corollary that stands
a foundation for this subclass of g-extended stars.

ith b = 2
Corollary 4.1.3 Any 3(m + 1)-extended star where m > 0 with
branches has a unique y-set, and y = 2m + 3.

From the uniqueness of the y-set and the structure of the IOO‘edﬁt;i
associated with the 3(m + 1)-extended star, an important Chaxadem it
surfaces regarding the root of the star. This result is one that separd
from the other subclasses of ¢-extended stars.

>0,
Lemrma 4.3.4 If T is a 3(m + 1)-extended star where b = 2 and m Z
then the root of T is in the unique y-set.

Proof: By labeling the vertices and selecting the unique y-set constm;ti
in the proof of Proposition 4.1.2, consider the labeling of the rOCft 2’;
The root vertex has an odd label, so is [#5t2], or 3m + 5. This roat iS
written as 3(m + 2) - 1, which is included in {3i — 1}5.,. Thus, the 0% _
in the y-set.

g for
The previous result is important in establishing the general result 107
the 3{m + 1)-extended star for the general value of b.
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Theorem 4.1.5 IfT isg 3(m+1)-extended star where b > 2 is the number
of branches of T and m > 0, then the root of T is in the unique y-set.
Further, 4(T) = b(m + 1) + 1.

Proof: Let T" be a tree as described above. By the principle of mathe-
matical induction, for the case when b = 2, Lemma 4.1.4 insures that the
root is in the y-set. Also, Corollary 4.1.3 says that v = 2m + 3, giving
2m o+ 3= 2m 4 1)+ 1 = b(m + 1) + 1. If we assume for b = k that T
bas 2 unique y-set consisting of k(m + 1) + 1 vertices of which the root is a
member, then consider the case when b = k+ 1. Examine any k branches of
T. They have a unique y-set consisting of k{m + 1) + 1 vertices, including
the root. The (k + 1)** branch has g = 3(m + 1) vertices that cannot be
covered by any vertices in the previous set, and which cannot cover any
vertices outside of those on the branch. It will take a minimum of (m+1)
vertices to dominate those on this branch. The branch with 3(m + 1) ver-
tices has a unique ~y-set {Proposition 4.1.2). Therefore, the union of these
Creates a unique -set. Further, it takes k(m +1) + 1 + (m + 1) vertices to

dominate this graph, giving (k + 1)(m + 1) 4+ 1 vertices needed in the -set.
(]

All of the preceding results give support to the ultimate goal of de-
scribing the ~y-domination graph associated with the biorientations of these
3(m + 1)-extended stars. Together with the outcome obtained in the next
two subclasses of graphs, the characterization for all y-domination graphs
associated with g-extended stars is made.

Theorem 4.1.6 Let T be a 3(m + 1)-extended stor where b > 2 is the
number of branches of T and m > 0. The dom,(T) consists of one copy of
Kﬁ(m+1)+1, which includes the root, and the rest isolated vertices,

Proof: From Theorem 4,15 it is known that there is a unique y-set of size
bm + 1) +1, and that the root is in the set. By definition, these vertices

form a copy of Kppmp1y41 in dmn.,{f). There will be no other edges in
dom, (7). Thus, all vertices not included in Kjpmy1)4: are isolated. O

Remark 4.1.7 If at least one parent in a l-ettended star s adjacent to
"ote than one leaf, the resulting graph is referred to as o l-extended star
with multiple leaves. Any perent of a leaf in ¢ 3(m + 1)-extended star
ay be adjacent to more than one leaf without changing the -y value, as the
Parent vertices are all included in the y-set ond will daminqt‘:: all leaves.
The only addition to the ~-set domination graph is the addition of more
Solated yertices representing those additional pendant vertices.
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4.2 (g == 1

The 3(m + 1)-extended stars have a unique ~y-set. This: makes the resut};:
of the general case easier to obtain without first determining all results :
m = 0, and then extending them to the case for general m. However, In
both the cases for go = 1 and go = 2 there are many ~y-sets to copnt {ﬂ
the basis block prior to examining the extension block rtapre'sentatwes ell;
each y-set. Fortunately, the extension blocks are less varied in the ver;ed
selection, so work well as an expansion of the y-sets in the 1- and 2-exten ”
stars. Thus, the method for boththe g=1+3m and ¢ = 2:“ Im mflw
to count all possible ¥-sets for the basis blocks, then generalize the res

to any m > 0.

I.nythis—section, we will consider the case where go = 1. An e:.ca.utliplne
of a 1-extended star with its biorientation and associated «-set dor::m?o roT
graph is shown in Figure 4. Here, 4(T) = 3 and b = 3. The ¥-s¢ i 2.6}
are given as follows: {1,2,3},{1,2,6},{1,5,3},{4,2,3},{1,5,6}, {4:2:0):
{4,5,3}.

r= 0 F- 0 dom, (T)=
Ty 4y =
4 6
4 S 6 4 5 6
(a) ®) ©

3 -gef
Figure 4. 1-extended star, its complete biorientation and the assaciated ¥
domination graph

: and
The domination number of a l-extended star is easy to obsexve
given in the following proposition.

oy : thout
Proposition 4.2.1 If T is o I-extended stor with b > 2, with or ¥

maultiple leaves, where r is the center of the star, then Y(T) = b-

s ces of T
Proof: The collection of & vertices adjacent to r cover all Wﬂ;‘ﬁé‘:‘f or
so ¥(T) £ b. Corollaries 2.2 and 2.4 require at least one parent 0__ 5. O
its adjacent leaf be in every y-set of T, so 4(T) > b. Thus, v{T) =%

iaal-

As opposed to the subclass of 3(m + 1)-extended stars, w.henmeI:S ihe
extended star the oot is not an option in any v-set. Its incluston 10 ition
set containing it to have a cardinality of 4 + 1. The following ProP
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formalizes the exclusion of the root in any 7-set of a 1-extended star with
or without multiple leaves.

Proposition 4.2.2 Jf T is a I-extended star with b > 2, with or without
multiple leaves, then the center of the ster is not in any y-set of T'.

Proof: Let T be a 1-extended star with or without multiple leaves where
b > 2. Label the center of the star r. Then deg{r) = b. Proposition
42.1 gives 7{(T") = b. If r is chosen for a domination set, then there are at
least b branches with leaves not covered = the cardinality of that minimal
domination set is b+ 1 and it does not form a ~-set. Thus, r is not in any
¥-set of T, a

With the absence of the root in a 7-set, one parent of a leaf must always
be included so that the root is covered.

Proposition 4.2.3 IfT is q I-estended star with b > 2, with or without
’_'n““fpfe leaves, then every y-set of T must contain at least one vertex that
15 the parent of a leaf.

Proof: The center of T, vertex r, is not in any y-set of T. Therefore, at
least one vertex adjacent to r must be in every 7-set in order to cover 7.
These vertices are all parents of leaves. d

With the structure of our -sets now defined, we can commence to count
how many there are.

Lemma 4.2.4 Let T be o 1-extended stor with b > 2 branches where
YT)=b. Then T has 20 — 1 y-sets.

Proof: Here, the number of vertices is 2b + 1 and 4(T) = . Corollary
2.2 guarantees that each leaf or the parent of the leaf is a member of every
¥-set. The center of the star, vertex r, is not in any 7-set (Proposition
4.2.2}, and one parent of a leaf must be in every y-set. Thus, we can choose

5
. by 2
1p £0 b of the parents of leaves for each 7-set. This equals 3 ( { ) -

=}

5
(E(?))—l:?—lunique'y—sets. u

=0

Remark 4.2.5 IfT isa 1-extended star withb > 2 branches where (T} =
band B parents of leaves have multiple leaves, then the number of y-sets
for T is veduced 1o 95—F — 1. This is because only the parent vertez for

those B parenis can be selected for any y-set.
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The characterization of 4-set domination graphs for 1-extended stars is
included in the general result at the end of this subsection.

If T'is a 1-extended star with b branches, Proposition 4.2.1 tells us that
~{T) = b. What happens when an extension block is added to the basis
block? Each branch has 3 new vertices. At best, a vertex in any ¥-seb
chosen in the basis block can cover only one of these new vertices. Any
leaf or parent of a leaf chosen in the extension will not dominate any of the
vertices in the basis block. Therefore, each branch in the extension must
have at least one vertex in the y-set. By choosing the parent of a leaf in the
extension, all three vertices can be dominated by one vertex independent of
what is happening in the other blocks. When m extensions are added, each
branch will require one vertex per each of the m extensions to dominate
all vertices not covered by a vertex in the basis block. Figure 5 shows a
4-extended star consisting of one basis block (a I-extended star) and ose
extension block. The circled vertices represent one of the v-sets.

l Basis block; 1-extended star

4 =] extension block

Figure 5. A 4-extended star and one y -set

- Lemma 4.2.86 IfT is a (1 + 3m)-extended star with b > 2 brunches and
m 2 0, then 7(T) = b(m +1).

Proof: Using induction on m, let m = 0. Proposition 4.2.1 states that
4{(T) = b(0+1). For m = k, assume that 1(T) = b(k+ 1). Now consider the
case where m = k+-1. The [1+3(k-+1)l-extended star is obtained by t2K25
a (1 + 3k)-extended star and adding an extension block of three vertic®
7(T). = b(k-+1) for the (1 + 3k)-extended star. Each new extension branch
requires at least one vertex to dominate. By choosing the parent vertex of
each leaf, this can be done in exactly one vertex per branch. Each selected
vertex covers two vertices that cannot be covered by any vertex in the 758t
of the (1 4 3k)-extended star, and cannot cover any of the vertices i ¢
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star => b additional vertices are necessary to cover the (k + 1)** extension
Fy=bk+1)+b=b(k+1)+1]. =

Now that v{T") has been identified for the (1 4 3m)-extended star, we
must count the number of vy-sets in this subclass. In order to do th_.ls
successfully, it is important to understand the nature of vertex selection in
the basis block and all extension blocks. In each branch of a bIock,'the
selection of a leaf L or the parent of a leaf P determuines possible sele(_:tu_ms
in the subsequent level. To illustrate the process, a decision tree consisting
of outcomes L and P can be used. An example of this representation is
shown in Figure 6 where a decision tree is constructed for one branch of a
10-extended star when a leaf is chosen in the basis block.

Leve] 0: basis block L
7\
L P
/N N\
L P p
NN N

Level 3: 3 extension block L P P P

Level 1: 1* extension block

Level 2: 2* extension block

Figure 6. Decision tree representing the choices of vertices fof a y -set il? one
branch of a 10-extended star where a leaf is chosen in the basis block

Both the previous two figures give a clear idea of what is bappening
n our vertex selection. In the first, Figure 5, one branch has a parent P
chosen in the basis block. There is no other way to cover the vertices in
the first. extension of that branch other than to choose a parent vertex L
the extension as well. This is borne out in Figure 6 where once & patent is
thosen, the path never branches again.

Remark 4.2.7 Once a parent of a lesf, P i3 chosen in o branch, ?H future
selections in that path must also be P. This is true beoau:se once P is chas_en
in extension m, no vertices in eztension m+ 1 are dominated, thus leaving
J vertices to be covered, and only the middle vertez P can cover all three.

The selection of a leaf increases the number of choi_ces at each lex;l oé ;ille
decision tree by 1. A leaf generates the possible selection of an Lor P. Oaly
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the I branches out at each level. It increases the choices by 1 each time asit
replicates itself once and generates a new P. The relationship between the
decision tree and selection of vertices for a y-set is given in the following
remark. Future collections of vertices for y-sets use this relationship to
count the sets.

Remark 4.2.8 Let T be a decision tree representing the choices of L or P
that follows the restrictions of vertex selection for ay-set. The collections of
vertices generated by each path from root to leaf of T represents & selection
for the y-sets of a {1 + 3m)-extended star.

Proposition 4.2.9 Let T be a (14-3m)-extended star with b 2_2 bm““hz;
and m > 0. There are m + 1 collections of vertices generated in 6 bran
where o leaf in the basis block has been chosen for @ y-sel.

Proof: There are two possibilities, I, and P, generated in the first exten-
sion where 7 = 1, so 2 = m -+ 1. One more is generated in each successive
extension by each I branch = there are m + 1 branches generated by th;
leaf in the basis block when g = 1 -+ 3m.

At this time, we can pull together the results garnered for the l*eﬂ_end;d
star and those refationships determined for the extensions to ggnerallze the
domination number of the (1+3m)-extended star. The y-sets will be Chosel:
for the I-extended star, then decision trees constructed for each bl'al_mh that
has a leaf in the basic block. Since choosing a leaf is the only option th_ﬂ
gives a branch, and thus more choices for vertex selection, the combinater
argument centers around the selection of leaves. Proposition 4.2.3 insists
that one parent from the basis block be chosen also.

Theorem 4.2.10 JfT is a {1 + 3m)-extended star with b 2 2 branches
and m > 0, then there are (m + 2)% - (m 4 1)® y-sets of T

Proof: Let T be a (1+3m)-extended star with b > 2 branches and 7 _233'
For a leaf chosen in branch b; in the basis block, there are m +1 selectlt;re
of vertices that can be used in a y-set for T (Proposition 4.2.9)- There

( f ) ways to choose 1 leaves in the basis block. There must be 2t 165

one parent chosen in the y-set for the basis block, so the number of leag
chosen can be at most — 1. Thus, 0 < § < b— 1. The number of y-sets

a(l+3m)—ext&nd9d3tari3§(m+1)i (b ) = [i(m"'l)i ( t: )] )

m+1t=(m+2)’—(m ﬁ;b_ = .
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Corollary 4.2.11  Let 7' be o {1 + 3m)-extended star with b > 2 branches
andm > 0. The dom.(T') consists of (m-+2)b - (m+1)* copies of Kymsn)
end mb + 1 isolated vertices. Further, Theorem 2.7 gquarantees no copy of
a larger complete graph.

Note that the first vertex in each extension of a branch will never be
chosen in a y-set, as it cannot dominate all three of the vertices in one
extension. There are m extension blocks, b branches and one root, which
gives the number of isolated vertices listed in the corollary.

4-3 (ID = 2

To complete the discussion of the class of g-extended stars, we now turn to
the final subclass: go == 2. This has been saved as the final example because
¥-sets for this subclass may include the root or may not. This makes for
an interesting counting experience using a variety of techniques.

As in the case where gy = 1, we will begin by finding the number
of y-sets in the 2-extended star, which is the basis block. Then we will
look at the general {2+ 3m)-extended star. Figure 7 illustrates two y-sets
associated with the 2-extended star possessing 4 branches. 7(a) shows a
collection of vertices that includes the root, while the root is not a member

of the collection in 7(b).

[t 1

(=) (®)

Figure 7. Two y -sets of a 2-extended star with 4 branches

To begin, the following proposition gives the domination number of a
ded star,

Proposition 4.3.1 If T is a 2-estended star with b > 2 bronches, then
M) =b41. '

Proof: There are 35+ 1 vertices in 7. i the root risina 7-set, then there
are b leaves not covered by r. ‘Therefore, at least b more vertices are needed

I the dominating set, If r is not in the y-set, the ma.x:lmum number of
Vertices that any other vertex can dominate is 3. Thus, it will take at Jeast
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[2417 = b+ 1 vertices to dominate in T' = (T} > b+ 1. Select r and alt
Jeaf vertices for a dominating set => 4(I') < b+ 1. Therefore, ¥(T) = b+é

Now to the central question: How many v-sets are in a 2-extended
star? This can be split into the problem of counting the sets containing the
root 7 and those not containing r. In the case where r is not in 2 7:set,
the following Jemma describes the other vertices that must be contained
therein.

Lemma 4.3.2 Let T' be a 2-extended star with b > 2 branches and root T,
and let v* be a y-set of T where T € ¥* ¢ 7* consists of 1} the Pa”e’_"ts "{
leaves for at least b— 1 branches of T, and 2) ezactly one vertez u adjacen
tor.

Proof: Let T be a 2-extended star with b < 2 branches and root 1, oy s
aysetof T,

() r &+ = there is a vertex u € 4" in branch b; such that {u,r} €
E(T). The vertex u does not dominate any leaf of T => a parent of 182
vertex from each of the b branches must be an element of ¢ (Corollary 2 )
=5 u and one other vertex from b; must be in ¥* = only (b—1) other vertlcﬂ:
can be used to dominate the remaining vertices in the b — 1 branches no
incident with u. These vertices must cover both the leaves of the branches
and the vertices of the branches that are adjacent to r => the parent of the
leaves of each of the & — 1 branches must be in y*.

(¢) Let u € 7* where {u,r} € E(T), and let Py, Py, Py €7 W8
the P; € v are the parents of the i leaves in branches not incident wit
vertex u. Suppose that r is in 4*. The vertices u,r, and Ph-_--f,P"‘t
account for all 5+ 1 vertices in 4*. However, the leaf in the branch m(:Idend
with u is not covered by any of these vertices. Thus, 7" is not a ~-set, a.ﬂD
r cannot be in any y-set under such conditions.

Through the proof of Lemma 4.3.2, the template is now set for counting
the number of -sets that do not include the root of a 2.extended Stm}
The following theorem uses this information in setting forth the number &
~-sets in a 2-extended star.

Theorem 4.3.3 IfT is a 2-extended star with b > 2 branches, then T has
2% + 2b y-sets.

Prooft Let T be as described above, and let v* be a 'y-sef of T.

1. If r € 4* = the b leaves in 7" are not covered by r and there must be
b other vertices to cover them = one parent or leaf from each brar
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of T must be in 4*. Since all vertices adjacent to r are dominated by
7, no other vertex needs to cover them => 2° ways to choose a parent
or aleaf from each of the b branches.

2. Hr & v* => exactly one vertex u adjacent tor is in 4* and all branches
not incident with u have only one choice for y* {Lemma 4.3.2) . There
are 2 ways to choose a parent or a leaf from the one branch incident
with u, and b ways to choose u, giving 2b choices.

Thus, there are 2® + 2b v-sets for 7. n

As in the previous subclass, allowing multiple leaves will reduce the
total number ~-sets. Wherever there is a parent of multiple leaves, that
parent must be in every +-set.

Remark 4.3.4 If B of the parents of leaves in o Z-extended star with
b > 2 branches have multiple leaves, our number of y-sets is reduced to
28 4 9(b - B),

. The characterization of the dom. (I') when 7T is a 2-extended star is
included in the general result later in this subsection. Now the outcomes
for the 2-extended star are used to develop those general results where
9= 2+ 3m. First, the domination number of T can be obtained.

Lemma 4.3.5 Let T be o (2 + 3m)-extended star with b > 2 branches and
m20. y(T)=bm+1)+1.

Proof: Let T be as described above. Create a dominating set for I" by
1) selecting any +y-set of b + 1 vertices for the 2-extended star basis block,
and 2) adding to that collection the parent vertex for cach branch in every
one of the m extension blocks. This set contains b+ 1 -+mb = b(m +1}+1

vertices = 4(T) < b(m + 1) + 1.

L Ifr € v* = there are b leaves that need to be covered m every block,
including the basis block. This requires at least an additional(m +1)b
vertices consisting of parents or their leaves => (') 2 b(m + 1) + 1.

2lordqy o every vertex in 4* can dominate at most 3 vertices.
[V{T)) = 3b(m + 1)+ 1 = at least [i'i{?-;'—llﬂ'[ = b(m+ 1} + 1 vertices

are needed in * = 4(T) > bim +1) + 1.
Therefore, 4(T) = b(m +1) + 1. i

Consider the 2- and 5-extended stars in Figure 8 b.elow. The 2-extended
Star in 8(a) has two ~-sets represented by different circle types for each of
the different sets. In 8(b) and 8(c), possible y-sets formed using the seed sets
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in the 2-extended star are given. Arrows between vertices in the extension
block indicate a choice of vertex for the y-set. Note that the choice ofa P
vertex at any level still dictates that only P vertices can be chosen in the
subsequent extension blocks.

A

(a) ®) ()

Figure 8, y -set possibilities in selections using a 2-extended star

The interesting new choice is illustrated in part 8(c) in the first branch.
When the non-root vertex u is chosen in the 2-extended star, 2 ‘-'-hc"lce
becomes available when an extension block is attached. It is clear that Hu
in the first branch is chosen and the leaf is chosen as well, the leaf c'loes not
have to be in the expanded tree. The first vertex in the first extensio i
it V; could be chosen instead to cover the leaf without disrupting a8y o
the other selections of vertices in the basis block. This third choice, whi
happens only when the vertex u 7 r is in the basis block y-set, a,dd.s &
third branch to the decision tree method developed in the last subsectios
Figure 9 shows the decision tree for one branch of an 8-extended star tlfat'
is associated with choosing # in the -set of the 2-extended star- Notice
that V; is selected in extension block i, but a leaf, L or parent, P vertex n
that same block may be selected as well. If neither is selected for a 7'5“_!
the next Vip must be used in order to cover the leaf of extension bIOCkE
This, of course, cannot continue in the last extension block, as 3 P ot
must be included in the set in order to cover the leaf in that brancl-



Eevel 0: basis block

&
I\

) L P
PRRAN
L P P

P\P\P

Figure 9. Decision tree representing choices for y -set members in one branch
of an 8-extended star where a vertex U adjacent to the root is selected

Levei I: 1" extension block

I
, L F
v,
Level 2: 2™ extension block / \

L PL P PL

The results regarding the number of y-sets generated by a (2 + 3m)-
extended star can now be formulated. First, we must determine the number
of y-sets possible when a vertex u that is adjacent to the root is cbosen.for
the set. The proof and computation rely upon a vertex V; always produc{ng
the possibility of a leaf, L or a parent P as a choice in extension block i.

Lemma 4.3, IfT is a (2 + 3m)-extended star with b > 2 branches and
Mm20, yisa v-set of T, and for a verler u thet is adjacent to root

HLue 7" then t}!em are .(m_'H‘)i{m_'Hl pﬂssib!& ,r- sets.

Proof: Let T be as described above, and let ¥ € 7*, a y-set of T, V:u'here
U # rand {u,r} € E(T). Say that u is incident with branch b in 7.
All other branches have only once choice for elements in 4* (Lemma 4.3.2),
therefore we will count only the possibilities in the branch with u. If m = 0,
there are only two choices in branch bi: Por L. Form > 1, the chq:ce
2Xpands to include a vertex V;, which is the first vertex in the first extension
black. For choices of P or L in the basis block, previous resuits find that
P gives us one path in the decision tree, and L gives us m + 1 paths. N
Now we will count the paths generated in the V) branch of _ﬂf‘f decision
tree. Within each extension block, V; produces Iror P as a possibility. Eatclilx
of these produces a new L branch or P branch that continues to the m
&tension block, Fach P branch produces only one path. Ea“h L bx:a.nch
will create £ +1 paths, where k is the distance from the block-m which L
Was produced to the m extension block. This creates the following number

of paths created in each extension block: -

85



l+m (paths generated by P and L branches created in extension block 1)
1+ (m — 1} {paths generated by P and L branches created in extension block 2)

1+ 1 (paths generated by P and L branches created in extension black m}

g +1 m? + 3m
(m+zi)=m+m(m2 )z 5
i=1

. m343m —
= the total number of paths generated in branch ¥; is 1+{(m+1)+ =3
(m+1)(m+4) a
2 -

Corollary 4.3.7 Let T be a (2 + 3m)-estended star with b > 2 branches
and m > 0. There are b [ﬂ"'—llim‘ﬁl] ¥-sets of T that do not include the
root T.

Proof: This follows from the previous lemma and the fact that there ar{;
b ways to choose the vertex u.

Next, the number of y-sets including r is calculated. Together wlﬂi
Corollary 4.3.7 above, it will finalize the results for this subclass, and 00111:\(3
pletely characterize the number of 4-sets in g-extended stars. Thus, t
+-set domination graphs for this class will be determined.

Lemma 4.3.8 Let T be a (2+3m)-estended star with b > 2 branches and
m > 0. There are (m + 2)t v-sets of T that include the root 7.

Proof: Let T be as described above, and consider the 7-sets of Wlhiac;lo’;
is a member. r does not cover any leaves in the basis block, so a le .
parent must be chosen in each branch. There are f ways to choose ?

leaves in the basis block. There can be anywhere from 0 leaves snrzlect‘;e*’al :z
b leaves selected, so 0 < i < b. For each branch where a leaf is Sdecfi cod
the basis block, there are (m + 1)} possible selections of vertices procu

; !
for inclusien in the -set. This gives Ef: o(m+1) I: = (m+2) paths

generated by the choice of leaves in the basis block of a (2 + 3m)mcterfﬂ:§‘:
star. No additional choices are available from the parent branches 0 o
basis block. Thus, there are (m + 2)* y-sets containing r. .

Theorem 4.3.9 Let T be a (2 + 3m)-extended star with b > 2 branche’
andm>0. T has ﬂm—“%—bl‘—ﬂl + (m + 2)? y-sets.
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Proof: Corollary 4.3.7 and Lemma 4.3.8 together produce this result, O

Corollary 4.3,10 ZLet T be a (2 + 3m}-extended star with b > 2 branches
=

ard m > 0.  dom,(T) consists of > AU 4 (m + 2) copies of

Kyimta)+1- There are no isolated vertices and no copy of Kytmi1)+2-

Proof: The first part of the Coroliary comes directly from Lemma 4.3.5
and Theorem 4.3.9. Every vertex can be in some v-set as the root, a parent,
a leaf or a v; = there are no isolated vertices. Theorem 2.7 dictates that
Ba 7y-set, domination graph of a tree will have a copy of a complete graph
of order higher than . o

Notice that v{T) is the same for the cases when T is a {2+ 3m}-extended
star or a 3(mn + 1)-extended star, and only differs by 1 from the domination
tumber of a (1+ 3m)-extended star. However, the change in just one vertex
per branch of the basis blocks creates structures producing greatly different
numbers of y-sets,

The following corollary summarizes the collection of +-set results.

Corollary 4.3.11 Let T be o g-extended stor with b > 2 branches, where
7= qo+3m for qo = 1,2,3 and m > 0. T has the following number of
T-sets:

1. 1ifg=0 {mod3),
L {m+2 —(m+1)ifg=1 (mod3), or
3. b§m+121(m+41 +(m+2)? ifg=2 (mod3).

5 Special cases of v: v =1,2

5.1 =1

The case where « =1 is simple, yet brings to the forefront the only area in
7-set domination graphs where there is a choice to make as to representa-
tion. In Section 3, Theorem 3.4 described the v-set domination gra.ph-s of
Wounded spider graphs where n — A(T) = 1 as null graphs. To the dom.m_a—
tion graph traditionalist, this may seem contrary to previous dogma. It is.
However, by deﬁnition, only cgpies of K‘T = Kl will be in the graph The
question then becomes: How many vertices will there be in the nuli graph?
The answer must depend upon the application and upon the individual
using the graph. If n vertices are used, then there wili be more copies of
Ky in dom.( ) than the number of dominating vertices. If fewer than n
vertices are used, then the vertex set will not be that of T.
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What biorientations are subject to this choice? The answer is: 2ll bior-
ientations of graphs on n vertices that possess at least one vertex of degree
n -~ 1 Thus, K,,K, . ; and even K, will have null y-set domination
graphs.

Remark 5.1.1 IfGisa yLaph on n vertices with vertez u € V(G where
deg(u) = n 1, then dom (G} ts the null graph.

In this paper, the biorientations of trees are the only graphs being con-
sidered. As seen earlier, only K and Kj m—p are trees with v = 1. 0t

these, only dom., (ﬁ 1 ,m—l) will allow for a choice in representation. It can

be represented either with one vertex as the one dominating vertex, or a5
the null graph on n vertices.

5.2 ~(T) =2

The case where 4(T) = 2 is special because it is the only time when the
~-set. domination graph is the same as the tranditional domination | graph
for the complete biorientation of T. In this section, both dom(T) aﬂd
dom(T'} are characterized for ¥(T) = 2. One difference between dom.(T)
and dom(T') is that dom. (F) will only be null when (T) = 1, whereas
dom(?) is nuil whenever y(7°} > 3.

Remark 5.2.1 If T is a tree and v(T) > 3, then dom(T) is the null
groph.

—+
Proof: If 4(T") > 3, then no two vertices dominate, so dom(T') has nﬂo
vertices.

It is the nature of graphs that the further in distance two vertices: t_he
less chance they have of dominating. In the case of a tree, this i3 readily
seen by examining the eccentricity of a leaf. Actually, by taking the 1ongﬁ’€
path in a tree, we will obtain the lower bound on the number of vertic®
needed to cover all of the vertices in the tree. Since we are interested i
this case with 7y = 2, the following two propositions aid in the development
of further results.

Proposition 5.2.2 If T is a tree and (T') = 2, then there ar¢ ezactly
two parents of leaves. _

Proof: . Corollary 2.2 indicates that either a leaf or its parent must b8

in every 7y-set, so there are at most two parents of leaves when AT) = 2(;
There are at least two parents of leaves on every tree, so there can be 1
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more than two parents of leaves. Thus, there are exactly two parents of
leaves on T m]

Proposition 5.2.3 IfT is a path and ¥(T) =2, then T contains at most
6 vertices.

Proof: Consider a path on n vertices. One vertex will dominate at
most three vertices on the path. An internal vertex of the path covers the
maximum number. Since each leaf or its parent must be chosen in the -set,
and only two can be chosen, choose the parents of the leaves for the y-set.
The maximum number of vertices covered is [3]1 =2=17,s0n=6is the
maximum number of vertices in the path. .

Any number of pendant vertices can be added to the parent vertex of
eath end vertex in Py to create new trees. These all have the maximum
height allowed, as no eccentricity greater than 5 will be able to generate
2 tree with (T) = 2. The following corollary applies these results to the
rooted tree Tx and bounds the maximum height of the rooted tree,

Corollary 5.2.4 Let Tr be the rooted tree of mazimum height where 1)
Ty has minimal height and 2} 4{Tr) = 2. Then the height of Tq is 3.

Proof: P is the longest path with domination number of 2 (Proposition
5.2.3). K Tq s the rocted tree with one branch of length 3 and the other of
length 2, then T is the rooted tree with minimum height that represents
Fg, and the height of Ty is 3. =

As for the minimum height of a rooted tree with ¥{T') = 2, it is 2. Any
tree with minimum height of 1 is a star and y(T) = L. .

To Summarize, we will only observe trees that are isomorphic to mini-
mum height rooted trees of height 2 or 3, which have 2 parents‘of lea‘ves.
What, then of the 7-set domination graphs of the complete biorientations
of these trees? To characterize what they may be, it is instructive to find
the limits on the number of edges in the domination graphs theruselves and
the forms they take, as well as the numerical limits of these structures.

Lemma 5.2.5 IfT is g tree with (T) = 2, then there are at most { edges
. I

in dom.,(T"),

Proof: Let T be as described above, &, &; be leaves of different parents,
and py, p, be their respective parents. Every y-set must' contain a leaf or
the parent of 5 leaf, and &, py, £2pz are not dominating pairs (Corollary 2.2)
= there are at most 4 dominant pairs possible: pip2,p1f2, Lpa, ol Thus,
there are at most 4 dominating pairs, and at most 4 edges in dom,(7'). O
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Corollary 5.2.6 If T is a tree with 4(T) = 2, then there are ot most 4
+
edges in dom(1).

Proposition 5.2.7 P, is the only tree wiih ~y = 2 where p1p2, 12, 1P
842 are dominating pairs. Further, dom(FP,) = Cs.

Proof: If #; £, is a dominating pair = p; and pa are the only other vertices
= pi1p2, 1€y and £1p; are also dominating pairs = ﬁ is the only tree whfen
7y = 2 where p,ps, 5182, £,p2, £1£; are dominating pairs, Further, these palrs
form C, in dom.(F,). o

+ .
Corollary 5.2.8 P, is the only tree with v = 2 where dom (I') contains
four edges.

Corollary 5.2.9 Py is the only tree with v = 2 where £1,£; i5 8 dominat-
tng pair.

With the limits on the number of edges in the y-set domination graphs:
it is natural to wonder if a) there is any edge that will always be 1o the
graph, and b) if there can be more than one connected component that 18
not an isolated vertex, The following two results address these issues-

Remark 5.2.10 If T is a tree where v{T) = ?_)with p1,pa being the 100
parents of leaves in T', then {p;,p2} € E(dom.,(T'}).

Proof: If p; and p, do not dominate, then 4(T7) # 2 => they dominatg
and thus, form an edge in the y-set domination graph.

Lemma 5.2.13 Let T be 6 tree where 4(T') = 2. There exsts ezactly one
connected component that is not an isolated verter in dom (T }-

Proof: {PI,PEJ € E(dom(T')), so there is at least one connected compd”
nent in dom,(T') that is not an isolated vertex. Suppose there is another
connected component = there are two vertices other than pi and p2 that
form a dominating pair => £; and £; must be a dominating pair si1¢e €1
leaf must be represented, and this is a seperate component = T must be 74
(Corollary 5.2.9), but dom.,(B,) = €y, which is one connected componest:
Thus, only one connected component exists that is not an isolated verteg

Finally, for ¥(T) = 2, we can characterize both the ¥-set dominationt
graph of T" and the domination graph of 7".
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Theorem 5.2.12 Jf T is a tree where v(T) = 2, then dmn-,(’?) is one of
the following:

1L CyfT=PFy, or

2. P, with possible fsolated vertices, or
3. P; with possible isolated vertices, or
4. Py with possible isolated vertices.

Proof: Let T be as described above. There are no paths of length greater
than 3 in dom.(T'} (Lemma 5.2.5 and Proposition 5.2.7). There are no
copies of K., m > 3 in any dom,(T') (Theorem 2.7). By definition,
dom.(T') is not a null graph, and Lemma 5.2.11 guarantees that there is

only one connected component in dom-,(?) that is not an isolated vertex.
Thus, only Cy, Py, Ps, and P; match all of these restrictions when ‘r(TL: 2.

Examples of these graphs are as follows: 1} domn,, (ﬁ) = Cy, 2) dom, (’f’s) =
P2 with isolated vertices, 3) I T is the tree in Figure 10, then dom,(T') =

Py with isolated vertices, and 4) dom.(B,) = Py with an isolated vertex.
M}

Figure 10. Tree where P, isasubgraph of dom, (f’)

Theorem 5.2.13 Let T be a tree on n vertices. dom(T') is one of the
fOHOtﬁ’iﬂg:

I) Kn ‘f n S 3, or

2) Koy if T= Kin.a forn>4, or

3} Cu, or

4} Py, P; or P, all with possible isolated vertices, or

5) the null graph on n vertices.

Proof: Let T be a tree on n vertices.
L Ifn <3, then T = Ky, K; ot Fs = dom(T) = K.
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++
2. [4]1fn >4 and T = Ky n—1, then T is a star and dom(T) = K1,n-1-
o
3. fn=dand T # Kinq = T = P = dom(T) = Ca.

4 Ifn > 5and (T) = 2, then dom(T') = dom,(T'), which by Thee-
rem 5.2.12 says that it will be Py, P3 or Py all with possible isolated
vertices.

5 Ifn > 5 and (T} > 2, then dom(%) is the null graph on n verticeDS
(Remark 5.2.1).

The algorithmic nature of some of the proofs in this paper suggeszj
computational methods for examining other classes of trees. A gener
algorithm for determining all ~-scts in trees that is modeled upon these
methods is anticipated in future research.
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