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Gamma-set Domination Graphs 1: 
Complete biorientations of q-extended stars 

and wounded spider graphs 

Kim A. S. Factor 
Marquette University 

P.O. Box 1881, Milwaukee, WI 53201-1881 
kim.factor@marquette.edu 

Abstract 

. The domination number of a graph G, -y(G), and the domina­
tion graph of a digraph D, dom(D) are integrated in this paper. 
The 'Y-set !!omination graph of the complete biorientation of a graph 
G, d~-y(G) is created. All-y-sets of specific trees Tare found, and 
dom-y(T) is characterized for those classes. 

Keywords: -y-set domination gmphs, domination, unipathic digmphs, 
wounded spider gmphs, q-extended stars, complete biorientations, trees. 

1 Introduction 

~tDbea~graphwithvertexsetV(D)andarcsetA(D). If(x,y) E A(D), 
den x dommates y. A vertex is also considered to dominate itself. The 
omination gmph of D, dom(D), is the graph where V(dom(D)) = V(D) 
~d {x,y} E E(dom(D)) whenever x andy dominate all other vertices in 

. Fisher, et al. ([8],[9],[10],[11],[12]) first introduced dominated graphs 
m terms of diagraphs that are tournaments. Further tournament related 
r:search includes papers from Cho, et al. ([1], [2]) along with Lundgren and 
:unenez [16]. Recently, Factor and Factor [6], Factor [7], and Cocking and 
.actor [4] have extended these concepts to tournaments that may include 

ttes, ~d the biorientation of graphs. . 
I~ IS the nature of domination graphs to represent pairs of vert1ces that 

d~~ate all others in a digraph. This is done without observance of the 
Illiniznum number of vertices required to dominate in the digraph. For 
anyt!-Ung other than digraphs where exactly two vertices are needed to 
doiiUnate, we have either an over-representation of domination or a null 
~0Inination graph that gives no insight as to the true nature of domination 
In the digraph it represents. 

An easy example of the over-representation of domination is that of 
the Orientation of K where the center is oriented toward the other 
Yerr l,n-l · a1 H tees. Clearly, the center vertex is able to dommate one. owever, 
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the domination graph of this digraph is Kt,n-l since the center forms a 
dominant pair with each of the other vertices. The information regarding 
how many vertices are needed to dominate is not available in the traditional 
domination graph where only dominating pairs are considered. In order to 
represent this relationship accurately, a new concept must be developed. 
Here, the minimum-set domination graph is introduced. 

For a diagraph D, let M be a subset of the vertices in V(D) where 
Vv E V(D), v EM or (u, v) E A( D) for u E M, and M has the minimum 
cardinality of all such subsets. The set M is referred to as a minimum 
dominating set D. The minimum-set domination graph of D is created 
using the vertices of D, with a copy of KIMI formed by the vertices of each 
minimum dominating set. +t 

In the case where D is the complete biorientation of a graph G, D = G • 
the minimum-set domination graph depends upon the domination num~er 
of G, -y( G). The complete biorientation of a graph G is created by replacmg 
every edge {u, v} in G with arcs (u, v) and {v, u). In graphs, -y(G) represents 
the minimum number of vertices necessary to dominate all vertices in the 
graph. 

A wide range of results have been obtained regarding the domination 
number of a graph. Haynes, Hedetniemi and Slater (14) have brought to­
gether many of the basic concepts and results of domination in graphs 
and in (15] examine advanced results. -y( G) translates into the minintum 
number of vertices needed to dominate all other vertices in G. Thus, the 
minimum-set d~mination of D in general can be referred to as the 7-s~t 
domination of G for biorientations of graphs. The resulting -y-set doiill­
nation graph is denoted dam

7
(G) where each -y-set in G forms a copy of 

K . ++ ·rthat 
7 m dom7 (G). Although other digraphs may have the charactens lC • 

the cardinality of their minimum-domination set is -y( G) for the underl)''1Ilg 
graph G, it is not generally the case. Therefore, dom7 (G) will be used onlY 
when an entire class has that characteristic. 

The problem of finding the domination number of a graph is generallY 
N P-complete, as first shown by Johnson (17]. Since that number is used to 
determine the size of dominating sets for dom (G) it becomes a probleiil 
of selecting classes of graphs where -y(G) can be de~ermined. Fortunately, 
there are a variety of linear algorithms available that will find -y{T) for a 
tree T. These include a linear-time algorithm by Mitchell, Cockayne, and 
H~etniemi [18]. This makes the class of trees a highly desirable place to 
begm to explore -y-set domination graphs. 

This paper characterizes -y-set domination graphs specificallY for t~ 
classes of wounded spider graphs and q-extended stars. Each class is for:n 
by special subdivisions of the branches of a star and are defined in SectlO~ 
3 and 4 respectively. In conclusion, the biorientations of trees for the special 



cases of 'Y = 1, 2 are examined. 

2 Results governing the general structure of 1-set dom-
ination graphs 

First, we explore general concepts that will be used in characterizing further 
results for 'Y-set domination graphs. Any tree is isomorphic to a rooted tree 
of minimum height. Here, the notation TR will represent a rooted tree of 
~nimum height that is isomorphic to a tree T. For example, the star is 
ISomorphic to a rooted tree of height 1. 

In a tree, pendant vertices can be referred to as leaves. A vertex that 
is adjacent to another vertex, but is one level closer to the root will be 
called the parent. The leaves and parents of leaves play a major role in 
constructing 'Y-sets for a tree. Only one vertex other than the leaf itself 
dominates the leaf, and that is its parent. 

Proposition 2.1 For any vertex p E V(T) where deg(p) = 2 and P is 
the ~arent of exactly one leaf, then p or its adjacent leaf must be in any 
dommating set ofT. 

Proof: At least one vertex in the dominating set must dominate the leaf 
=> P is in the dominating set or th~ leaf is in the dominating set. 0 

Corollary 2.2 For any vertex p E V(T) where deg(p) = 2 and P is the 
pa~nt of exactly one leaf, either p or its adjacent leaf {but not both} must 
be m any minimal dominating set. 

Let W C V be any subset of vertices in a graph G = (V, E), and let 
v E W. The vertex u E V- (W- {v}) is a private neighbor of v if any 
vertex other than v in w does not dominate u. Note that u can be equal 
to v. ;r'he set of private neighbors of a vertex u with respect to ~ set S 
~f Vert~ces is denoted pn[u, S]. A set W is considered. irn:dundan~ if every 
ertex m W has a private neighbor. Cockayne, Hedetrueml and Mlller used 

these concepts to characterize a minimum dominating set for a graph G. 

Proposition 2.3 [3] A dominating set S is a minimal dominating set if 
and only if it is dominating and irredundant. 

The restriction that p have degree 2 and be the parent of exactly ~ne leaf 
Placed Upon p in Corollary 2.2 is necessary in part because the exist~nce 
of_ ~ore than one leaf will not allow for any of the leaves to be placed m a 
lllinimal dominating set. 
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Proposition 2.4 If p E V(T) where p is the parent of at least two leaves, 
then p must be in any minimal dominating set and none of the leaves will 
be in the set. 

Proof: Suppose that pis not in the dominating setS. Each leaf adjacent 
with p must then be inS. But each leaf dominates only p =?at least two 
elements inS do not have a private neighbor, and Sis not irredundant. 
Thus, by Proposition 2.3, Sis not a minimal dominating set. Sop must 
be in S. For similar reasons, if one of the leaves is in S also, Sis not a 
minimal dominating set. 0 

Further observations regarding the general structure of any -y-set domi­
nation graph of the biorientation of a tree are given in the next two results. 
The first shows that any leaf vertex and its parent vertex will not form an 

++ 
edge in dom-y(T). Second is a theorem regarding the absence of any copy 

of a Kk+l subgraph in dom-y(T) where -y(T) = k, regardless of how many 
copies of K k are in the -y-set domination graph. 

Proposition 2.5 For any vertex p E V[) where p is adjacent to a vertex 

v of degree 1, the edge {p,v} ¢ E(dom-y(T)). 

Proof: Corollary 2.2 and Proposition 2.4 insure that either a parent of a 
leaf or in some cases the leaf itself, but not both, will be in any -y-set of a 
graph. Since they never appear together in a -y-set, th;r will never be part 
of a copy of K-y, which is the only construct in dom7 (T). 

0 

Remark 2.6 K1 and K 1,n-1 are the only trees with -y(T) = 1. 

Proof: For -y(T} = 1, there must be one vertex with degree of n - 1. In 
a tree, this can only occur if T is K 1 or T is a star. 

0 

Theorem 2.7 lfT is a tree on n vertices where -y(T) = k ~ 1, then Kk+1 

is not a subgrnph of dom7 (T). 

Proof: {PMI) U Let n = 1. Then by Remark 2.6, T = j<1 or T:::: 
K1,n-1 => dom-y(T) is the null graph (by definition of ciomy(T)), and K'J 
is not a subgraph thereof. 

2) ++Assume that for n = k, k ~ 1 that Kk+l is not a subgraph of 
dom-y(T) when -y(T) = k. ... 

3) Consider n = k + 1. Suppose that Kk 2 is a subgraph of dom'T(T) 
for some tree T where -y(T) = k+ 1. Let Tn b; the rooted tree ofminiiDUIJl 
height h that is isom9rphic to T. There exists a vertex u such that u 
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is a leaf on level h of TR. Either u or its parent w is in every -y-set of 
T (Proposition 2.2). Remove w from TR with all adjacent leaves and all 
edges incident with w. Let the new tree be known as TR_. -y(TR.) = k, as 
only one parent vertex and adjacent pendant vertices was removed, giving 
a net total of one less cover vertex needed for the vertices of TR_. By the 

induction hypothesis, Kk+l is not a subgraph of domy(T.R) => Kk is the 

largest complete subgraph of dorn.y(T_R). Adding in u, its adjacent pendant 
vertices, and incident edges to TR when we recreate TR, does not create 
new relationships between vertices in TR. => no new edges are created in 
the domination graph between those vertices in TR. => Kk+2 must contain 
two of the vertices v~, t12 in V(TR) \ V(TR) => vi and v2 are both leaves, 
or VI = u and v2 is a leaf. The former possibility contradicts Proposition 
2.4, and the latter contradicts Proposition 2.5. Thus, Kk+2 cannot be a 
subgraph of dom'Y(T) when -y(T) = k +I. D 

3 Wounded Spider Graphs 

Now that the basic set of rules have been formed that govern the construc­
tion of 'Y-set domination graphs of the complete biorientations of trees, we 
can begin to examine the class of graph known as the wounded spider graph. 

A subdivision of an edge { u, v} is achieved by removing the edge and 
replacing it with a new vertex w and the edges { u, w} and { w, v }. Domke, 
Dunbar and Markus [5] create a wounded spider graph by subdividing 0 ~o 
t-: 1 edges of the star KIt· Various wounded spider graphs are shown m 
Ftgure 1. ' 

• 

(a) (b) (c) (d) 

Figure 1. Examples of wounded spider graphs 

· A wotmded spider graph with t-1 subdivisions can be achieved with the 
corona graph KI,t o K 1• The corona graph is defined by Fhlcht and Harary 
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[13] to be the graph G = G1 o G2 , which is formed by taking one copy of 
G1, IV(Gl)l copies of G2, and adding edges from each vertex v1 E V(G1) 
and every vertex in the ith copy of G2 • Figure 1(d) represents the corona 
graph K1,3 o K1. 

Wounded spider graphs, W have a structure that makes it possible to 
characterize the -y-set domination graph of W. By design, there is always 
at least one leaf adjacent to the root. The remaining leaves each have a 
different parent, which is adjacent to the root. The domination number, 
-y(T) is known for a wounded spider graph and is related to the maximum 
vertex degree, Ll(T), by the following theorem. 

Theorem 3.1 [5] For any tree T, -y(T) = n- Ll(T) if and only ifT is a 
wounded spider. 

The statement of Theorem 3.1 is written in terms of n and Ll(T). Since 
the objective here is to count the-y-sets in addition to determining -y(T), it is 
necessary to know how many leaves are not adjacent to the root. Corollary 
2.2 states that either a leaf or its parent must be in every dominating set, so 
the number of these leaves will be used in the calculation of the number of 
-y-sets. The following proposition makes use of the information in Theorem 
3.1. 

Proposition 3.2 Let T be a wounded spider graph. T has m = n -
Ll(T) - 1 leaves that are not adjacent to the center vertex. 

Proof: Let T be a wounded spider graph. -y(T) = n - Ll(T) (Theorem 
3.1). By construction, there exists at least one leaf adjacent to the cent~ 
vert~ r => r is in at least one -y-set. For that -y-set, there are n- Ll(T) -'* 
vert1ces that are not r and not adjacent to r, so are not covered by r 

0 
there are n- Ll(T) -1leaves not adjacent tor. 

Corollary 3.3 Let T be a wounded spider graph and m = n - Ll(T) -
1. -y(T) = m + 1. 

_Now we can tak7 th: information provided by Corollary ~.3 and char:ed 
tenze the-y-set dommat10n graphs of the complete biorientatwns of woun 
spider graphs. For ease in delineating the three possibilities in the follow­
ing theorem, the cases can be seen in Figure 1. Figures 1(a) and 1(b) ~ 
examples of the first case, Figure 1(d) shows the corona graph in case j 
and the third case where there is more than one vertex of degree 1 on Ieve 
1 of the graph TR is shown in l(c). 

·thm-Theorem 3.4 Let W be a wounded spider graph on n vertices u:t -
n- Ll(T) -1 leaves not adjacent to the center r. 
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1. If m = 0, then dom-y(W) is the null graph. 

2. IfW = K1,toK1 so that m = t, then dom-y(WJ is the connected graph 
on 2(m+ 1) vertices consisting of2m+l copies of Km+b 2m of which 
are incident with the root r and 2m of which are incident with the one 
leaf adjacent to r. 

9. If there are at least two vertices of degree 1 adjacent to the root r in 
++ 

TR, then dom-y(W) is the graph of (n- 2m) components on n vertices 
consisting of 2m copies of Km+l, of which all are incident with r, and 
(A(T)- m) isolated vertices: namely, all leaves adjacent tor. 

Further, Km+2 is not a subgraph of dom-y(WJ, and for all edges {u,v} E 
E(W) su~ that v is a leaf vertex and u is its parent vertex, { u, v} fl. 
E(dom-y(W)). 

Proof: "Y(W) = m + 1 {Corollary 3.3) 1) If m = 0, then W = K1 or 
W = Kt,n-1· By definition, dom-y(W) has only copies of K 1 • Thus, it is 
the null graph. 

2) If W = K1,t o K 1, then m = t. Let TR be the rooted tree where 
the root r is a vertex with maximum degree. By construction, there is 
exactly one leaf v adjacent to r. Corollary 2.2 dictates that either vertex 
r or vertex v will be in every ')'-set, but not both. In either case, r and 
v are dominated by the selection. The remaining m vertices of degree 1 
are on level 2 of TR. Again, either the leaf or its parent must be in every 
')'-set. Thus, a ')'-set will contain anywhere from 0 to m of these m leaves. 

There are E~o ( 7 ) = 2m ways to select the m leaves for ')'-sets. With 

the choice of either r or v for each ')'-set, we have 2m+1 ')'-sets in W · By 
definition, each forms a copy of Km+l in dom-y(W}. Vertex r is in 2m copies 
~d vertex vis in the other 2m copies by virtue of each of the vertices being 
In 2m ')'-sets. All vertices are in ')'-sets with both r and v, so the 2m+1 
co· 

Pies of Km+l form one component. 
3) This case is quite similar to that in part (2), except that root r must 

he in every ')'-set {Proposition 2.4). Thus, there are half as many copies of 
Km+I in the dom-y(W). This gives 2m copies that are all adjacent tor since 
r is in every ')'-set, forming one component in dom-y(W}. No leaf adjacent 
~0 r is in 2fY ')'-set (Proposition 2.4), so each of these is an isolated vertex 
m dom-y(W). There are m leaves on level 2 of TR with one parent each, so 
there are n-2m- 1 = A(T)- m leaves adjacent to r. None of these leaves 

will be in a ')'-set so are isolated vertices in the dom-y(lVJ. 
The further r~rictions follow directly from Theorem 2.7 and Proposi-
~U o 
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4 q-extended stars 

H each pendant edge of a star is subdivided one time, the resulting graph is 
referred to as a 1-extended star and is isomorphic to a rooted tree of height 
2. H the pendant edges of a !-extended star are each subdivided one time, 
the resulting graph will be referred to as a 2-extended star and is isomorphic 
to a rooted tree of height 3. In general, if the subdivisions occur q times on 
each edge, we have a q-extended star isomorphic to a rooted tree of height 
q + 1. Examples of !-extended and 2-extended stars represented by rooted 

trees are shown in Figure 2. 

Figure 2. !-extended and 2-ex.tended stars with 4 branches each 

The unique structure of a-path lends itself well to the task of counting 
the· number of -y-sets in a graph. Thus, the structure of a q-extended. star 
can be examined as a collection of paths of length q + 2 joined by a sm~e 
vertex. This vertex can be referred to as the center of the star or' as ~ 
be the case more often in this paper while using rooted trees, as the root 0 

the star. 
We will see that results for all q-extended stars can be generated ~m 

the basis graphs of 1-, 2-, and 3-extended stars. Each subclass has a differ­
ent -y-set structure that affect the characterization of their associated -y-set 
domination graphs. To separate into these three subclasses, it is advanta­
geous to represent q in the following manner: q = q0 + 3m for qo == 1, 

2
• 
3 

and m ~ 0 a nonnegative integer. For all but the case when qo = 3, the 
approach is to find the domination number for a basis graph, count the 
number of {-sets in the graph, then create the subclass of extended ~ 
generated using each basis graph by extending each branch of the st~ Wl: 
three vertices and three edges. The general results for a subclasS will th 
be used to classify the associated 1-set domination graphs of the complete 
biorientations of th~ graphs. . 

For ease in understanding the development of this section, the folio~ 
notation and concepts will be adopted. The basis graphs for the q-extend 
star are the !-extended, 2-extended and 3-extended stars that will generate 
all possible q-extended stars. An extension block of a q-extended star .for 
a given qo denotes a block of three additional vertices and edges b~g 
adjoined to every branch of an existing q-extended star. The first extetlSlon 

72 



block occurs when m = 1, and in general the kth extension block occurs 
when m = k. Each star will be said to have b branches as the number 
of rays of the star, where bi refers to the ith branch. A branch has q + 2 
vertices, which includes the root. 

In a q-extended star, all branches are of equal length, making the root 
the exact middle of the union of two branches. As a result, there are an 
odd number of vertices in the union of any pair of branches in the graph. 
The eccentricity of a vertex u is the distance of the vertex farthest from 
u. In this graph, the eccentricity of each end vertex is the length of the 
longest path in the graph: e = 2(q + 1). Thus, e is an even length and 
the longest path in the graph, P2k+I, is obtained by the union of any two 
branches. This is important when determining the 1-sets, as the number 
and selection of vertices needed to cover the longest path in our rooted tree, 
will bound general results. 

4.1 qo = 3 

To begin the generation of the subclasses, let us examine the case where 
~ = 3 +3m = 3{1 + m ), m ~ 0. This case begins the investigation because 
lt possesses only one 1-set. The example given in Figure 3 shows a 3-
extended star where q0 = 3, b = 4, m = 0, 1 = 5, and the longest path is 
p2k+t = Pg. The vertices forming the unique /"'Set are circled. Following 
are results pertaining to this subclass. 

Figure 3. 3-extended star with~ branches and a unique r -set 

Proposition 4.1.1 LetT be a q-e:rtended star wh~ q = qo +3m for 
qo = 3, m ~ 0. If P2k+1 is the longest path in T, then 2k + 1 = 6m + 9. 

Proof: The length of the longest path in T is the eccentricity _of an end 
vertex, so has an odd number of vertices, 2k + 1, as discussed earlier. There 
are q+2 vertices in each branch ofT each including the root, giving 2q+3 
\'ertices in the longest path. Since q '= qo + 3m and f/0 = 3, m ~ 0 => q = 
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3 +3m and 2q + 3 = 6m + 9. Thus, 2k + 1 = 6m + 9. 0 

To begin establishing the uniqueness of the 1-set for the 3(m + I)­
extended star, the following proposition begins by examining the unique 
1-set of P3k· 

Proposition 4.1.2 A path on 3k vertices where k ~ 1 has a unique 7-set, 
and 1 = k. 

Proof: In a path, a vertex can dominate at most 3 vertices: itself and its 
two neighbors =? there are at least k vertices in any 1-set of P3k. Label the 
vertices of the path: 1, 2, ... , 3k. To form a 1-set, select vertices {3i-1 H::l" 
Each vertex covers exactly 3 vertices, thus maximizing the coverage. There 
are k vertices in the set, so 1 = k. Suppose that there is another 7-set. 
Every vertex in this set must dominate 3 vertices - all 3 must be its private 
neighbors- in order for the 3k vertices to be covered in k. Both sets must 
have vertex 2 to cover vertex 1, because 1 would not cover 3 vertices and 
is not an option for any 1-set. Remove vertices I, 2, and 3 since they are 
already represented in the 1-set. Consider the remaining path. Vertex 5 

must be chosen for the same reasons as the previous choice of verte:' 2• 
Continuing in this fashion leads to the only possible 1-set being comprised 
of vertices {3i - I J:=1 . 0 

The previous two results lead to the following corollary that stands as 
a foundation for this subclass of q-extended stars. 

Corollary 4.1.3 Any 3(m +!)-extended star where m ~ 0 with b == 2 

bmnches has a unique 1-set, and 1 = 2m + 3. 

From the uniqueness of the 1-set and the structure of the rooted :r:e 
associated with the 3(m +I)-extended star, an important characterist~~ 
surfaces regarding the root of the star. This result is one that separates 

1 

from the other subclasses of q-extended stars. 

Lemma 4.1.4 If T is a 3(m + I)-extended star where b = 2 and m ;?: O, 
then the root ofT is in the unique 1-set. 

Proof: By labeling the vertices and selecting the unique 1-set constructed 
in the proof of Proposition 4.1.2, consider the labeling of the root vertex­
The root vertex has an odd label, so is f 6~±9 1, or 3m+ 5. This can ~ 
~tten as 3(m +2) -I, which is included in {3i -1}~=1 • Thus, the root 18 

m the 1-set. D 

The previous result is important in establishing the general result for 
the 3{m +I)-extended star for the general value of b. 
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Theorem 4.1.5 IfT is a 3(m+l)-extended starwhereb ~ 2 is the number 
of branches of T and m ~ 0, then the root of T is in the unique 'Y-set. 
Further, 'Y(T) = b(m + 1) + 1. 

Proof: Let T be a tree as described above. By the principle of mathe­
matical induction, for the case when b = 2, Lemma 4.1.4 insures that the 
root is in the 'Y-set. Also, Corollary 4.1.3 says that 'Y = 2m+ 3, giving 
2m+ 3 = 2(m + 1) + 1 = b(m + 1) + 1. H we assume for b = k that T 
has a unique 'Y-set consisting of k(m + 1) + 1 vertices of which the root is a 
member, then consider the case when b = k+ 1. Examine any k branches of 
T. They have a unique 'Y-set consisting of k(m + 1) + 1 vertices, including 
the root. The (k + l) 8 t branch has q = 3(m + 1) vertices that cannot be 
covered by any vertices in the previous set, and which cannot cover any 
vertices outside of those on the branch. It will take a minimum of (m + 1) 
vertices to dominate those on this branch. The branch with 3(m + 1) ver­
tices has a unique 'Y-set (Proposition 4.1.2). Therefore, the union of these 
creates a unique 'Y-set. Further, it takes k(m + 1) + 1 + (m + 1) vertices to 
dominate this graph, giving (k + l)(m + 1) + 1 vertices needed in the 'Y-set. 

0 

.~ll of the preceding results give support to the ultimate goal of de­
scnbmg the 'Y-domination graph associated with the biorientations of these 
3(m +I)-extended stars. Together with the outcome obtained in the next 
two subclasses of graphs, the characterization for all 'Y-domination graphs 
associated with q-extended stars is made. 

Theorem 4.1.6 LetT be a 3(m +!)-extended star where b ~ 2 is the 
number of branches ofT and m ~ 0. The dom7 (T) consists of one copy of 
Kb(mH)H, which includes the root, and the rest isolated vertices. 

Proof: From Theorem 4.1.5 it is known that there is a unique 'Y-set of size 
b(m + 1) + 1, and that the root is in the set. By definition, these vertices 
form a copy of Kb{m+I)+l in dom..,{T). There will be no other edges in 

dom..,(T). Thus, all vertices not included in K&{m+l)+l are isolated. 0 

Remark 4.1.7 If at least one parent in a 1-extended star is adjacent to 
m_ore than one lea/, the resulting graph is referred to as a !-extended star 
With multiple leaves. Any parent of a leaf in a 3(m + !)-extended star 
may be adjacent to more than one leaf without changing the 'Y value, as the 
parent vertices are all included in the. 'Y-set and will dominate all leaves. 
!he only addition to the 'Y-set domination graph is the a~dition of more 
ISolated vertices representing those additional pendant vertzces. 

75 



4.2 Qo = 1 

The 3(m +I)-extended stars have a unique 1-set. This makes the results 
of the general case easier to obtain without first determining all results for 
m = 0, ~d then extending them to the case for general m. However, in 
both the cases for q0 = 1 and q0 = 2 there are many 1-sets to count in 
the basis block prior to examining the extension block representatives in 
each [-set. Fortunately, the extension blocks are less varied in the vertex 
selection, so work well as an expansion of the 1-sets in the 1- and 2-extend~ 
stars. Thus, the method for both the q = 1 + 3m and q = 2 + 3m cases J.S 

to count all possible [-sets for the basis blocks, then generalize the results 
to any m ~ 0. 

In this section, we will consider the case where q0 = 1. An example 
of a !-extended star with its biorientation and associated 1-set domination 
graph is shown in Figure 4. Here, 'Y(T) = 3 and b = 3. The -y-sets for T 
are given as follows: {1, 2,3}, {1, 2, 6}, {1,5, 3}, {4, 2, 3}, {1, 5,6}, {4,2,6}, 
{4,5,3}. 

4 5 6 4 5 

(a) (b) 

6 

dom7 (r)= 0 
• l$3 

4 6 
5 

(c) 

Figure 4. I -extended star, its complete biorientation and the associated r-set 

domination graph 

The domination number of a !-extended star is easy to observe and 
giVen in the following proposition. · 

Proposition 4.2.1 If T is a 1-extended star with .b ~ 2, with or without 
multiple leaves, where r is the center of the star, then -y(T) = b. 

Proof: The collection of b vertices adjacent to r cover all vertices ofT, 
~o 'Y(l) :$ b. Coroll~es 2.2 and 2.4 require at _least one parent of a leaf~ 
xts adJacent leaf be m every 1-set ofT, so -y(T) ~b. Thus, [(T) =b. 

As opposed to the subclass of 3(m + I)-extended stars, when T is a !­
extended star the root is not an option in any [-set. Its inclusion fo~ ~e 
set containing it to have a cardinality of 'Y + 1. The following propOSltion 
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formalizes the exclusion of the root in any 1-set of a !-extended star with 
or without multiple leaves. 

Proposition 4.2.2 If T is a 1-extended star with b ;::: 2, with or without 
multiple leaves, then the center of the star is not in any 1-set ofT. 

Proof: LetT be a !-extended star with or without multiple leaves where 
b ~ 2 .. Label the center of the star r. Then deg(r) = b. Proposition 
4.2.1 gives r(T) =b. H r is chosen for a domination set, then there are at 
least b branches with leaves not covered => the cardinality of that minimal 
domination set is b + 1 and it does not form a 1-set. Thus, r is not in any 
~~~~ 0 

With the absence of the root in a 1-set, one parent of a leaf must always 
be included so that the root is covered. 

Proposition 4.2.3 lfT is a 1-extended star with b;::: 2, with or without 
multiple leaves, then every 1-set ofT must contain at least one vertex that 
is the parent of a leaf. 

Proof: The center of T, vertex r, is not in any 1-set of T. Therefore, at 
least one vertex adjacent to r must be in every 1-set in order to cover r. 
These vertices are all parents of leaves. 0 

With the structure of our 1-sets now defined, we can commence to count 
how many there are. 

Lenuna 4.2.4 Let T be a 1-extended star with b ;::: 2 bmnches where 
"Y(T) = b. Then T has 26 - 1 1-sets. 

Proof: Here, the number of vertices is 2b + 1 and 1(T) = b. Corollary 
2.2 guarantees that each leaf or the parent of the leaf is a member of every 
")'-set. The center of the star, vertex r, is not in any 1-set (Proposition 
4.2.2), and one parent of a leaf must be in every 1-set. Thus, we can choose 

1 up to b of the parents of leaves for each 1-set. This equals t ( ~ ) = 
a=l 

(t U ) ) -1 = 26 
- 1 unique 7-sets. 0 

Remark 4.2.5 IfT is a 1-extended star with b;::: 2 bmnches where r(T) = 
b and B parents of leaves have multiple leaves, then the number of 1-sets 
for T is reduced to 2b-B _ 1. This is because only the parent vertex for 
those B parents can be selected for any 1-set. 

77 



The characterization of 1-set domination graphs for !-extended stars is 
included in the general result at the end of this subsection. 

ITT is a !-extended star with b branches, Proposition 4.2.1 tells us that 
i(T) = b. What happens when an extension block is added to the basis 
block? Each branch has 3 new vertices. At best, a vertex in any 1-set 
chosen in the basis block can cover only one of these new vertices. Any 
leaf or parent of a leaf chosen in the extension will not dominate any of the 
vertices in the basis block. Therefore, each branch in the extension must 
have at least one vertex in the 1-set. By choosing the parent of a leaf in the 
extension, all three vertices can be dominated by one vertex independent of 
what is happening in the other blocks. When m extensions are added, each 
branch will require one vertex per each of the m extensions to dominate 
all vertices not covered by a vertex in the basis block. Figure 5 shows a 
4-extended star consisting of one basis block (a !-extended star) and one 
extension block. The circled vertices represent one of the -y-sets. 

} Basis block: 1-<XtendOO s!M 

} m~I exremion block 

Figure 5. A 4-extended star and one r -~et 

Lemma 4.2.6 IfT is a (1 + 3m)-extended star with b ~ 2 branches and 
m ~ 0, then -y(T) = b(m + 1). 

Proof: Using induCtion on m, let m:::: 0. Proposition 4.2.1 states that 
/{T) = b(O+ 1). Form= k, assume that -y(T) = b(k+ 1). Now consider~he 
case where m = k+l. The [1+3(k+l)]-extended star is obtained by t~ 
a (1 + 3k)-extended star and adding an extension block of three yertlee8· 

!(T) = b(k+l) for the (1+3k}-extended star. Each new extension bran~ 
requires at I~ one vertex to dominate. By choosing the parent vertex~ 
each leaf, this can be done in exactly one vertex per branch. Each select 
vertex covers two vertices that cannot be covered by any vertex in the 7-set 
of the (1 + 3k )-extended star, and cannot cover any of the vertices in that 
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star=> b additional vertices are necessary to cover the (k + 1)st extension 
=> 'Y = b(k + 1) + b = b[(k + 1) + 1]. D 

Now that -y(T) has been identified for the (1 + 3m)-extended star, we 
must count the number of -y-sets in this subclass. In order to do this 
successfully, it is important to understand the nature of vertex selection in 
the basis block and all extension blocks. In each branch of a block, the 
selection of a leaf L or the parent of a leaf P determines possible selections 
in the subsequent level. To illustrate the process, a decision tree consisting 
of outcomes L and P can be used. An example of this representation is 
shown in Figure 6 where a decision tree is constructed for one branch of a 
10-extended star when a leaf is chosen in the basis block. 

Level 0: basis block 
l 

/" 
L p Level 1: 1st extension block 

/\ "' l p p Level2: 2nd extension block 

/ \ \ "\ 
l p p p Level 3: 3rd extension block 

Figure 6. Decision tree representing the choices of vertices fora r -set in one 
branch of a 10-extended star where a leaf is chosen in the basis block.· 

. Both the previous two figures give a clear idea of what is happening 
m our vertex selection. In the first, Figure 5, one branch has a parent P 
chosen in the basis block. There is no other way to cover the vertices in 
the first extension of that branch other than to choose a parent vertex in 
the extension as well. This is home out in Figure 6 where once a parent is 
chosen, the path never branches again. 

Remark 4.2. 7 Once a parent of a leaf, P is chosen in a branch, all future 
~elections in that path must also be P. This is true because once P is cho~en 
In extension m, no vertices in eztension m + 1 are dominated, thus leamng 
3 vertices to be covered, and only the middle verle:r: P can cover all three. 

The selection of a leaf increases the number of choices at each level of the 
decision tree by 1. A leaf generates the possible selection of an Lor P. Only 
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the L branches out at each level. It increases the choices by 1 each time as it 
replicates itself once and generates a new P. The relationship between the 
decision tree and selection of vertices for a 7-set is given in the following 
remark. Future collections of vertices for 7-sets use this relationship to 
count the sets. 

Remark 4.2.8 LetT be a decision tree representing the choices of L or P 
that follows the restrictions of vertex selection for a 7-set. The collections of 
vertices generoted by each path from root to leaf ofT represents a selection 
for the 7-sets of a {1 + 3m)-extended star. 

Proposition 4.2.9 LetT be a {1 +3m)-extended star with b ~ 2 branches 
and m ~ 0. There are m + 1 collections of vertices generoted in a branch 
where a leaf in the basis block has been chosen for a 7-set. 

Proof: There are two possibilities, Land P, generated in the first ext~­
sion where m = 1, so 2 = m + 1. One more is generated in each successive 
extension by each L branch ::::} there are m + 1 branches generated by the 
leaf in the basis block when q = 1 + 3m. 

0 

At this time, we can pull together the results garnered for the !-extended 
star and those relationships determined for the extensions to generalize the 
domination number of the {1 +3m )-extended star. The '}'-sets will be chosen 
for the I -extended star, then decision trees constructed for each branch that 
has a leaf in the basic block. Since choosing a leaf is the only option that 
gives a branch, and thus more choices for vertex selection, the combinatorial 
argument centers around the selection of leaves. Proposition 4.2.3 insistS 

that one parent from the basis block be chosen also. 

Theorem 4.2.10 If T is a {1 + 3m)-extended star with b ~ 2 branches 
and m ~ 0, then there are (m + 2)6 - (m + 1)6 7-sets ofT. 

Proof: LetT be a (1+3m)-extended star with b ~ 2 branches and m ~ 0· 
For a leaf chosen in branch bi in the basis block there are m + 1 selections 
of vertices that can be used in a '}'-set for T (Pr~position 4.2.9). There are 
( ~ ) ways to choose i leaves in the basis block. There must be at least 

one parent chosen in the 7-set for th~ basis block so the number of leaves 

::3::::~-~i<=·:~:(;)~~r~~=-::)7Gr-
(m+l}6=(m+2)6-(m+l),_ 0 
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Corollary 4.2.11 LetJ be a {1 + 3m)-extended star with b? 2 branches 
and m? 0. The dom7 (T) consists of (m+2)11 - (m+ 1)11 copies of Kb(m+l) 

and mb + 1 isolated vertices. Further, _Theorem 2. 7 guarantees no copy of 
a larger complete graph. 

Note that the first vertex in each extension of a branch will never be 
chosen in a ')'-set, as it cannot dominate all three of the vertices in one 
extension. There are m extension blocks, b branches and one root, which 
gives the number of isolated vertices listed in the corollary. 

4.3 q0 = 2 

To complete the discussion of the class of q-extended stars, we now turn to 
the final subclass: q0 = 2. This has been saved as the final example because 
')'-sets for this subclass may include the root or may not. This makes for 
an interesting counting experience using a variety of techniques. 

As in the case where q0 = 1, we will begin by finding the number 
of ')'-sets in the 2-extended star, which is the basis block. Then we will 
look at the general {2 + 3m)-extended star. Figure 7 illustrates two ')'-sets 
associated with the 2-extended star possessing 4 branches. 7{a) shows a 
collection of vertices that includes the root, while the root is not a member 
of the collection in 7{b). 

(a) (b) 

Figure 7. Two r -sets of a 2-extended star with 4 branches 

To begin, the following proposition gives the domination number of a 
2-extended star. 

Proposition 4.3.1 If T is a 2-extended star with b ? 2 branches, then 
"Y(T) =b+I. 

Proof: There are 3b+ 1 vertices in T. H the root r is in a 7-set, then there 
:u-e b leaves not covered by r. Therefore, at least b more ~rtices are needed 
In the dominating set. H r is not in the 7-set, the maxunum number of 
vertices that any other vertex can dominate is 3. Thus, it will take at least 

81 



r3btt l = b + 1 vertices to dominate in T =? '"Y(T) ~ b + 1. Select rand all 
leaf vertices for a dominating set =? ')'(T) :::; b + 1. Therefore, ')'(T) = b + 1. 

0 

Now to the central question: How many ')'-sets are in a 2-extended 
star? This can be split into the problem of counting the sets containing the 
root r and those not containing r. In the case where r is not in a ')'-set, 
the following lemma describes the other vertices that must be contained 
therein. 

Lemma 4.3.2 LetT be a 2-extended star with b > 2 branches and root r, 
and let 'Y* be a ')'-set ofT where r ¢ ')'* ¢:> 'Y* con;ists of 1} the parents of 
leaves for at least b- 1 branches ofT, and 2} exactly one vertex u adjacent 
tor. 

Proof: Let T be a 2-e:xtended star with b :::; 2 branches and root r, 'Y* is 

a ')'-set ofT, 

( =?) r ¢ 'Y* =? there is a vertex u E 'Y* in branch bi such that { u, r} E 
E(T). The vertex u does not dominate any leaf ofT => a parent or leaf 
vertex from each of the b branches must be an element of 'Y* (Corollary 2.2) 
=? u and one other vertex from bi must be in 'Y* :} only {b-1) other vertices 
can be used to dominate the remaining vertices in the b - 1 branches not 
incident with u. These vertices must cover both the leaves of the branches 
and the vertices of the branches that are adjacent to r => the parent of the 
leaves of each of the b - 1 branches must be in 'Y*. 

(<=)Let u E ')'*where {u,r} E E(T), and let P1,P2 , ••• ,Pb-1 E 'Y* wh~re 
the Pi E 'Y* are the parents of the i leaves in branches not incident With 
vertex u. Suppose that r is in 'Y*. The vertices u, r, and P11· · · • fi-t 
ru:coun~ for all b + 1 vertices in 1'*. However, the leaf in the branch inciden~ 
wtth u lS no~ covered by any of these vertices. Thus, ')'• is not a ')'-set, anD 
r cannot be m any ')'-set under such conditions. 

Through the proof of Lemma 4.3.2, the template is now set for counting 
the number of ')'-sets that do not include the root of a 2-e:xtended star. 
The following theorem uses this information in setting forth the number of 
')'-sets in a 2-extended star. 

Theorem 4.3.3 IJT is a 2-extended star with b > 2 branches, then T has 
2b + 2b ')'-sets. -

Proof: Let T be as described above, and let 'Y* be a ')'-set of T · 

I. If r E 'Y* =? the b leaves in T are not covered by r and there must be 
b other vertices to cover them => one parent or leaf from each branch 
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of T must be in 7*. Since all vertices adjacent to r are dominated by 
r, no other vertex needs to cover them=? 2b ways to choose a parent 
or a ·leaf from each of the b branches. 

2. H r fl. 7* =? exactly one vertex u adjacent tor is in 7* and all branches 
not incident with u have only one choice for 7* (Lemma 4.3.2) . There 
are 2 ways to choose a parent or a leaf from the one branch incident 
with u, and b ways to choose u, giving 2b choices. 

Thus, there are 2b + 2b "(-sets forT. 0 

As in the previous subclass, allowing multiple leaves will reduce the 
total number "(-sets. Wherever there is a parent of multiple leaves, that 
parent must be in every 7-set. 

Remark 4.3.4 If B of the parents of leaves in a 2-extended star with 
b 2:: 2 branches have multiple leaves, our number of 7-sets is reduced to 
2b-B + 2(b- B). 

. The characterization of the dam.., (T) when T is a 2-extended star is 
mcluded in the general result later in this subsection. Now the outcomes 
for the 2-extended star are used to develop those general results where 
q = 2 + 3m. First, the domination number of T can be obtained. 

Lenuna 4.3.5 LetT be a (2 +3m)-extended star with b;::::: 2 branches and 
m 2:: 0. 7(T) = b(m + 1) + 1. 

Proof: Let T be as described above. Create a dominating set forT by 
1) selecting any "(-set of b + 1 vertices for the 2-extended star basis block, 
and 2) adding to that collection the parent vertex for each branch in every 
one of them extension blocks. This set contains b+ 1 +mb = b(m + 1) + 1 
vertices =? 7(T) ~ b( m + 1) + 1. 

1. H r E 7* =? there are b leaves that need to be covered in every block, 
including the basis block. This requires at least an additional(m + 1)b 
vertices consisting of parents or their leaves =? 7(T) 2:: b(m + 1) +I. 

2. H r fl. 7* * every vertex in 7• can dominate at most 3 vertices. 
IV(T)I = 3b(m+ 1) + 1 *at leastf3b(mjl)+ll = b(m+1) + 1 vertices 
are needed in 7* * 7(T) ~ b(m + 1) + 1. 

Therefore, 'Y(T) = b(m + 1) + 1. 0 

Consider the 2- and 5-extended stars in Figure 8 below. The 2-extended 
star in 8(a) has two -y-sets represented by different circle types for each of 
the different sets. In 8(b) and 8( c), possible -y-sets formed using the seed sets 
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in the 2-extended star are given. Arrows between vertices in the extension 
block indicate a choice of vertex for the 1-set. Note that the choice of a P 
vertex at any level still dictates that only P vertices ~ be chosen in the 
subsequent extension blocks. 

(a) (b) (c) 

Fig11re 8. r -set possibilities in selections using a 2-extended star 

The interesting new choice is illustrated in part 8(c) in the first bran~­
When the non-root vertex u is chosen in the 2-extended star, a chmce 
becomes available when an extension block is attached. It is clear that if u 
in the first branch is chosen and the leaf is chosen as well, the leaf does not 
have to be in the expanded tree. The first vertex in the first extension, call 
it Vi could be chosen instead to cover the leaf without disrupting any of 
the other selections of vertices in the basis block. This third choice, which 
happens only when the vertex u =1:- r is in the basis block 1-set, adds a 
third branch to the decision tree method developed in the last subsection. 
Figure 9 shows the decision tree for one branch of an 8-extended star that 
is associated with choosing u in the 1-set of the 2-extended star. Noti~ 
that Vi is selected in extension block i, but a leaf, L or parent, P vertex 

10 

that same block may be selected as well. If neither is selected for a 1-se~, 
the next ViH must be used in order to cover the leaf of extension block '· 
This, of course, cannot continue in the last extension block, as a P or L 
must be included in the set in order to cover the leaf in that branch. 
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Level 0: basis block 

Level 1: 1" extension block ;~ I\\ 
L~2•2"~blo~ / ;\ /\ \ 1\ \ \ 

/LPLPPL P P P 

/ L P L P P 

Figure 9. Decision tree representing choices for y -set members in one branch 

of an 8-extended star where a vertex U adjacent to the root is selected 

The results regarding the number of -y-sets generated by a (2 +3m)­
extended star can now be formulated. First, we must determine the number 
of -y-sets possible when a vertex u that is adjacent to the root is chosen for 
the set. The proof and computation rely upon a vertex Vi always producing 
the possibility of a leaf, L or a parent P as a choice in extension block i. 

Lemma 4.3.6 IfT is a (2 + 3m)-extended star with b ~ 2 branches and 
m ~ 0, 'Y* is a -y-set of T, and for a vertex u that is adjacent to root 
r, u E 'Y*, then there are (m+l~(m+4) possible -y* sets. 

Proof: Let T be as described above, and let u E -y*, a -y-set ofT, where 
u ¥: r and { u, r} E E(T). Say that u is incident with branch bi- in T. 
All other branches have only once choice for elements in -y* (Lemma 4.3.2), 
therefore we will count oruy the possibilities in the branch with u. If m = 0, 
there are only two choices in branch bi: P or L. For m ~ 1, the choice 
expands to include a vertex Vt, which is the first vertex in the first extension 
block. For choices of p or L in the basis block, previous results find that 
p gives us one path in the decision tree, and L gives us m + 1 paths. 

Now we will count the paths generated in the Vt bran~ of the decision 
tree. Within each extension block, V. produces liar Pas a possibility. Each 

• th 
of these produces a new L branch or p branch that continues to the m 
extension block. Each p branch produces only one path. Each L branch 
Vlill create k + 1 paths where k is the distance from the block in which L 
was produced to the m' extension block. This creates the following number 
of Paths created in each extension block: 
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1 + m (paths generated by P and L branches created in extension block 1) 
1 + (m -1) (paths generated by P and L branches created in extension block 2) 

1 + 1 (paths generated by P and L branches created in extension block m) 

( 
~ ·) m(m+ 1) m

2 
+3m 

m+ L....,l =m+ = . 
i=l 2 2 

=> the total number of paths generated in branch bi is 1 + ( m+ 1) + m

2

l 3
m = 

(m+I)(m+4) 0 
2 

Corollary 4.3.7 LetT be a (2 + 3m)-extended star with b ~ 2 branches 

and m ~ 0. There are b [ (m+Iym+4)] "(-sets ofT that do not include the 

root r. 

Proof: This follows from the previous lemma and the fact that there are 
b ways to choose the vertex u. 

0 

Next, the number of "(-sets including r is calculated. Together with 
Corollary 4.3. 7 above, it will finalize the results for this subclass, and com­
pletely characterize the number of "(-sets in q-extended stars. Thus, the 
"(-set domination graphs for this class will be determined. 

Lemma 4.3.8 LetT be a (2+3m)-extended star with b ~ 2 branches and 
m ~ 0. There are (m + 2)6 "(-sets ofT that include the root r. 

Proof: Let T be as described above, and consider the "(-sets of which r 
is a member. r does not cover any leaves in the basis block, so a leaf or 

parent must be chosen in each branch. There are ( ~ ) ways to choose i 

leaves in the basis block. There can be anywhere from 0 leaves selected ~0 
b leaves selected, so 0 < i < b. For each branch where a leaf is selected 1Il 

- - ed 
the basis block, there are (m + 1) possible selections of vertices produc 

for inclusion in the "(-set. This gives L~o(m+1)i ( ~ ) = (m+2)
6 

paths 

generated by the choice of leaves in the basis block of a (2 + 3m)-extended 
star. No additional choices are available from the parent branches of the 
basis block. Thus, there are (m + 2)6 "(-sets containing r. 

0 

Theorem 4.3.9 LetT be a (2 + 3m)-extended star with b ~ 2 branches 
and m > 0. T has b(m+l)(m+4) + ( + 2)b t - 2 m "(-se s. 
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. Proof: Corollary 4.3.7 and Lemma 4.3.8 together produce this result. 0 

Corollary 4.3.10 Let]' be a {2 + 3m)-extended star with b ~ 2 bronches 
and m ~ 0. dom-y(T) consists of b(m+1J(m+4) + {m + 2)b copies of 
Kb(m+l)+l· There are no isolated vertices and no copy of Kb(m+1}+2· 

Proof: The first part of the Corollary comes directly from Lemma 4.3.5 
and Theorem 4.3.9. Every vertex can be in some -y-set as the root, a parent, 
a leaf or a vi => there are no isolated vertices. Theorem 2. 7 dictates that 
no '}'-set domination graph of a tree will have a copy of a complete graph 
~~~~~~ 0 

Notice that -y(T) is the same for the cases when Tis a {2+3m)-extended 
star or a 3{m+ !)-extended star, and only differs by 1 from the domination 
number of a {1+3m)-extended star. However, the change in just one vertex 
per branch of the basis blocks creates structures producing greatly different 
numbers of -y-sets. 

The following corollary summarizes the collection of -y-set results. 

Corollary 4.3.11 Let T be a q-extended star with b ~ 2 bronches, where 
q = qo + 3m for q0 = 1, 2, 3 and m ~ 0. T has the following number of 
'}'-sets: 

1. 1 ifq = 0 {mod 3), 

2. (m + 2)b- (m + l)b if q := 1 (mod 3), or 

3. b(m+IJ(m+4) + (m + 2)b if q := 2 (mod 3). 

5 Special cases of 1 : 1 = 1, 2 

5.1 1 = 1 

The case where 'Y = 1 is simple, yet brings to the forefront the only area in 
~-set domination graphs where there is a choice to make as to representa­
tion. In Section 3, Theorem 3.4 described the -y-set domination graphs of 
wounded spider graphs where n- Ll(T) = 1 as null graphs. To the domina­
tion graph traditionalist, this may seem contrary to previous dogma. It is. 
However, by definition, only copies of K7 = Kt will be in the graph. The 
question then becomes: How many vertices will there be in the null graph? 
The answ~ must depend upon the application and upon the individual 
using the graRh. If n vertices are used, then there will be more copies of 
Kx in dom7 (T) than the number of dominating vertices. If few~ than n 
vertices are used then the vertex set will not be that ofT. 

' 
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What biorientations are subject to this choice? The answer is: all bior­
ientations of gra~hs ~n n vertices that ~ossess at least one vertex of. de~ee 
n- 1. Thus, K 11 K 1,n_1 and even Kn will have null -y-set dommatwn 
graphs. 

Remark 5.1.1 If G is a graph on n vertices with vertex u E V(G} where 
++ 

deg(u) = n- 1, then dom'"Y{G) is the null graph. 

In this paper, the biorientations of trees are the only graphs being con­
sidered. As seen earlier, only K 1 and K1,m_1 are trees with 'Y = 1. Of 

these, only dam'"'~ ( K1,m_1) will allow for a choice in representation. It can 

be represented either with one vertex as the one dominating vertex, or as 
the null graph on n vertices. 

5.2 "'Y(T) = 2 

The case where -y(T) = 2 is special because it is the only time when the 
-y-set domination graph is the same as the tranditional dominatio~graph 
for the complete biorientation ofT. In this section, both dam'"'I(T) a;!d 
dom(T) are characterized for -y(T) = 2. One difference between dom"''(T) 

and dom(T) is that dam'"Y(T) will only be null when -y(T) = 1, whereas 
++ 

dom(T) is null whenever -y(T) ~ 3. 

Remark 5.2.1 If T is a tree and -y(T) ~ 3, then dam(T) is the null 
graph. 

++ 
Proof: If -y(T) ~ 3, then no two vertices dominate, so dam(T) has no 
vertices. D 

It is the nature of graphs that the further in distance two vertices, t~e 
less chance they have of dominating. In the case of a tree, this is readilY 
seen by examining the eccentricity of a leaf. Actually, by taking the lon~est 
path in a tree, we will obtain the lower bound on the number of vertl~ 
needed to cover all of the vertices in the tree. Since we are interested 1ll 

this case with 'Y = 2, the following two propositions aid in the development 
of further results. 

Proposition 5.2.2 If T is a tree and -y(T) = 2, then there are exactly 
two parents of leaves. 

Proof: Corollary 2.2 indicates that either a leaf or its parent must be 
in every -y-set, so there are at most two parents of leaves when -y(T) == 2· 
There are at least two parents of leaves on every tree, 50 there can be no 
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more than two parents of leaves. Thus, there are exactly two parents of 
leaves on T. 0 

Proposition 5.2.3 If T is a path and 'Y(T) = 2, then T contains at most 
6 vertices. 

Proof: Consider a path on n vertices. One vertex will dominate at 
most three vertices on the path. An internal vertex of the path covers the 
maximum number. Since each leaf or its parent must be chosen in the '}'-set, 
and only two can be chosen, choose the parents of the leaves for the '}'-set. 
The .maximum number of vertices covered is fil = 2 = '}', so n = 6 is the 
mruomum number of vertices in the path. 0 

Any number of pendant vertices can be added to the parent vertex of 
each end vertex in P6 to create new trees. These all have the maximum 
height allowed, as no eccentricity greater than 5 will be able to generate 
a tree with 'Y{T) = 2. The following corollary applies these results to the 
rooted tree T R and bounds the maximum height of the rooted tree. 

Corollary 5.2.4 Let TR be the rooted tree of maximum height where 1} 
TR has minimal height and 2} 'Y(TR) = 2. Then the height ofTR is 3. 

Proof: P6 is the longest path with domination number of 2 (Proposition 
5.2.3). IT TR is the rooted tree with one branch of length 3 and the other of 
length 2, then TR is the rooted tree with minimum height that represents 
P6, and the height of TR is 3. 0 

As for the minimum height of a rooted tree with 'Y{T) = 2, it is 2. Any 
tree with minimum height of 1 is a star and 'Y{T) = 1. 

To summarize, we will only observe trees that are isomorphic to mini­
mum height rooted trees of height 2 or 3, which have 2 parents of leaves. 
What, then of the '}'-set domination graphs of the complete biorientations 
of these trees? To characterize what they may be, it is instructive to find 
the limits on the number of edges in the domination graphs themselves and 
the forms they take, as well as the numerical limits of these structures. 

Lemma 5.2.5 IfT is a tree with 'Y(T) = 2, then there are at most -l edge3 
in dom,.(T). 

Proof: Let T be as described above, Lt. t 2 be leaves of different parents, 
and P:t , P2 be their respective parents. Every '}'-set must contain a leaf or 
the Parent of a leaf, and t 1P:t,l2P2 are not dominating pairs (Corollary 2.2) 
=>there are at most 4 dominant pairs possible: 'P1P2•Pll2,ltP2.ltl2. Thus, 
there are at most 4 dominating pairs, and at most 4 edges in domy (T ). 0 
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Corollary 5.2.6 If T is a tree with 'Y(T) = 2, then there are at most 4 
++ 

edges in dom(T). 

Proposition 5.2.7 P4 is the only tree with 'Y = 2 where Pt1J2,Ptl2,ltP2• 
++ 

£1£2 are dominating pairs. Further, dom-,(P4 ) = C4. 

Proof: H l1l2 is a dominating pair => p1 and P2 are the only other vertices 
=> PtP2,Ptl2 and l1P2 are also dominating pairs=> P4 is the only tree when 
'Y = 2 where PtP2 1~l2 ,l11J2,l1l2 are dominating pairs. Further, these pairs 
form C4 in dom-,(P4 ). 0 

++ • 
Corollary 5.2.8 P4 is the only tree with 'Y = 2 where dom-,(T) conta1ns 
four edges. 

Corollary 5.2.9 P4 is the only tree with 'Y = 2 where lt,l2 is a dominat­
ing pair. 

With the limits on the number of edges in the ')'-set domination graphs, 
it is natural to wonder if a) there is any edge that will always be in t~e 
graph, and b) if there can be more than one connected component that 15 

not an isolated vertex. The following two results address these issues. 

Remark 5.2.10 . If T is a tree where 'Y(T) = 2 with P1>P2 being the two 
. ++ 

parents of leaves m T, then {p1,P2} E E(dom-,(T)). 

Proof: If Pl and P2 do not dominate, then 'Y(T) =F 2 => they dominate 
and thus, form an edge in the ')'-set domination graph. 

0 

Lemma 5.2.11 LetT be a tree where 'Y(T) = 2. There exists exactly one 

connected component that is not an isolated vertex in dom..,(i). 

Proof: Wt.P2J E E{dom.7 (T)), so there is at least one connected compo­
nent in dom-,(T) that is not an isolated vertex. Suppose there is another 
connected ~m~onent =>there are two vertices other than Pt .an~ P2 t~ 
form a dommatmg pair=> t 1 and t 2 must be a dominating parr smce e 
leaf must be represented, and this is a seperate component => T must be p4 

(Corollary 5.2.9), but dom-,(P4 ) = c4 , which is one connected component. 
Thus, only one connected component exists that is not an isolated vertex. [J 

Finally, for 'Y(T) = 2, we can characterize both the ')'-set domination 
graph of T and the domination graph ofT. 
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++ 
Theorem 5.2.12 IfT is a tree where 'Y(T) = 2, then dom

7
(T) is one of 

the following: 

1. C4 i/T = P4, or 

2. P2 with possible isolated vertices, or 

3. P3 with possible isolated vertices, or 

./. P4 with possible isolated vertices. 

Proof: Let T be as described above. There are no ·paths of length greater 
than 3 in dom7 (T) {Lemma 5.2.5 and Proposition 5.2.7). There are no 

copies !f Km, m 2:: 3 in any dom-y(T) (Theorem 2.7). By definition, 
dom-y(T) is not a null graph, and Lemma 5.2.11 guarantees that there is 
only one connected component in dom7 (T) that is not an isolated vertex. 
Thus, only C4, P2, P3, and P4 match all of these restrictions when 'Y(T) = 2. 

++ ++ 
Examples of these graphs are as follows: 1) dom7 (P4) = C4, 2) dom-y(~) = 
P2 with isolated vertices, 3) H Tis the tree in Figure 10, then domy(T) = 
P3 with isolated vertices, and 4) dom7 (P5 ) = P4 with an isolated vertex. 

0 

• 

Figure 10. Tree where ~ is a subgraph of dam, (f) 

Theorem 5.2.13 LetT be a tree on n vertices. dom(T) is one of the 
following: 

1 J K,. if n 5 3, or 
2) K1,n-1 if T = K1,n-1 for n 2:: 4, or 
3) c4, or 
4) P2, P3 or P4 all with possible isolated vertices, or 
5) the null graph on n vertices. 

Proof: Let T be a tree on n vertices. 

++ 
1. If n 53, then T = K 17 K 2 or P3 =? dom(T) = K,.. 
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++ 
2. [4] If n ~ 4 and T = K 1,n-t. then Tis a star and dom(T) = K1,n-1· 

++ 
3. H n = 4 and T f. K1,n-1 =? T = P4 =? dom(T) = C4. 

4. H n ~ 5 and -y(T) = 2, then dom{T) = dom"Y(T), which by Theo­
rem 5.2.12 says that it will be P2 , P3 or P4 all with possible isolated 
vertices. 

5. H n ~ 5 and -y(T) > 2, then dom(T) is the null graph on n vertices 
(Remark 5.2.1). D 

The algorithmic nature of some of the proofs in this paper suggests 
computational methods for examining other classes of trees. A general 
algorithm for determining all -y-sets in trees that is modeled upon these 
methods is anticipated in future research. 
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