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ABSTRACT 

CORTICAL INVOLVEMENT DURING SUSTAINED LOWER LIMB 

CONTRACTIONS 

 

 

Marnie Lynn Vanden Noven 

 

Marquette University, 2014 

 

 

Despite the critical role of the lower limb during functional tasks such as walking, 

most studies examining the role of the cortex during muscle contractions have been 

conducted in upper limb muscles.  Modulation of force by the cortex in the lower 

extremity and the influence of cortical inputs are poorly understood. The purpose of this 

dissertation was to investigate the role the cortex plays in modulating force control during 

static contractions with the lower limb and to determine the influence of manipulating 

cortical inputs.  

Aim 1 determined the cortical regions involved in force-related changes between 

low and high forces and those areas that modulate steadiness (force fluctuations) during 

sustained isometric ankle dorsiflexion contractions in young men and women.  This was 

achieved using functional magnetic imaging (fMRI).   Both motor and some typically 

associated non-motor brain areas were active during lower limb force production and 

scaled linearly as force increased. Steadiness was associated with both motor and non-

motor brain areas with minimal differences in areas activated between men and women.  

Aim 2 examined the influence of cognitive demand (null, low-cognitive demand, high-

cognitive demand) on fatigability and steadiness of low- to moderate-force isometric 

contractions in young and older men and women. Women demonstrated greater force 

fluctuations than men during both the low- and moderate-force contractions and their 

motor output was influenced by changes in cognitive demand.  Older adults were less 

steady than young during low- and moderate-force contractions, had greater age-related 

reductions in steadiness, and greater variability in fatigability when cognitive demand 

was increased.   

This dissertation shows that cortical inputs are very important to lower limb motor 

control of static voluntary contractions.  Cortical motor and non-motor regions that are 

important for control of force intensity and steadiness of lower limb contractions were 

identified and are key areas for potential cortical plasticity with impaired or enhanced leg 

function.  Steadiness was altered by increasing cortical inputs (cognitive demand) 

especially in older adults whose motor performance was impaired and more variable than 

young.  These results have important performance implications for cognitively 

demanding and low- to moderate-force tasks that are common to daily function in older 

adults. 
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INTRODUCTION 
 

 

Although steady, controlled movements in the lower extremity are imperative 

when performing a basic functional activity such as walking, the role of the cortex in 

producing and controlling movements in the lower extremity is poorly understood.  

Because most studies investigating the role of the cortex in movement production have 

been performed in the upper extremity (Dai et al., 2001; eg., Thickbroom et al., 1998; 

Vaillancourt et al., 2004; van Duinen et al., 2008), the purpose of this dissertation was to 

determine the influence of cortical input on force control and fatigability during static 

contractions in the lower extremity.    

When performing a task under more challenging conditions, such as walking 

uphill or on an uneven surface, which requires increased force production and greater 

steadiness to avoid falling, the cortex must modulate force to accommodate the increased 

force requirements of the task.  Lower limb control during static contractions differs from 

that of the upper limb (eg., Jesunathadas et al., 2012) because lower limb muscles usually 

have a larger muscle mass and motor unit ratio (Feinstein et al., 1955), and fewer direct 

corticospinal connections (Brouwer & Ashby, 1990) than upper limb muscles.   Thus, 

aim 1 (study 1) in this dissertation determined the cortical regions involved in force-

related changes between low and high forces, and modulations of steadiness (force 

fluctuations) using fMRI during sustained isometric ankle dorsiflexion contractions in 

young men and women.   

During a sustained target force contraction, force fluctuations increase as the 

muscle becomes more fatigued (Hunter, Duchateau, et al., 2004). In an effort to sustain 
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the target force, descending cortical drive will increase (Fuglevand, A. J. et al., 1993).  

While descending inputs from cortical centers to the motoneurone pool play a critical role 

in modulation of steadiness and fatigability (Dideriksen et al., 2012; Negro et al., 2009), 

many of these studies have implicated the role of descending drive with modeling 

because of the difficulty in studying the intact central nervous system in humans.   

Recent studies show that in young adults, increased cognitive demand will 

increase fatigability (decrease time to failure of a sustained contraction) and decrease 

steadiness (increase force fluctuations) in the arm muscles (Keller-Ross, Pruse, et al., 

2014; Yoon et al., 2009); the response to increased cognitive demand appears to be 

exacerbated in older adults (Christou et al., 2004; Marmon, Pascoe, et al., 2011).  Aim 2 

exposed the role and importance of the cortical centers during lower limb static 

contractions through two studies.  The first study of aim 2, varied the level of cognitive 

demand and determined the change in motor output (steadiness and fatigability) in young 

men and women (study 2).   In the second study of aim 2, we determined if age-related 

changes in cortical centers in older men and women would further disrupt motor output 

during static contractions of the lower extremity muscles (study 3). Thus, aim 2 examined 

the influence of cognitive demand (null, low-cognitive demand, high-cognitive demand) 

on fatigability and steadiness of low- to moderate-force isometric contractions in young 

and older men and women.  
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CHAPTER 1 

 

 

BACKGROUND 
 

 

Cortical control of voluntary motor tasks with human muscles has been widely 

studied and yet is still not well understood.  This is partly due to the limitations with 

accessing the central nervous system in awake humans during voluntary movement. In 

1968, Evarts published a series of articles showing that the cerebral cortex of macaque 

monkeys, specifically the pyramidal tract neurons that originate in the motor cortex, were 

directly involved in wrist flexion and extension force production and direction of 

displacement.  Interestingly, however, despite their role in force production, the 

pyramidal tract neurons were not responsible for sensing the amount of force needed to 

perform the movement, indicating that this must occur somewhere else in the brain 

(Evarts, 1968). Although many of the studies examining motor control have been 

performed using the upper limb muscles, the exact role of the motor cortex in 

force/torque production, limb position, velocity and direction of the upper limb still 

remain unclear (Hatsopoulos, 2005; Sergio et al., 2005).  

Movement of a limb is very complex and vulnerable to feedback from multiple 

systems.  Voluntary contractions are initiated in cortical centers upstream of motor 

centers; however, descending drive to the final common pathway (the motor unit) 

(Sherrington, 1925) is modulated by inputs from other cortical centers, afferent inputs, 

reflexes, the excitatory and inhibitory spinal circuitry, and the characteristics of the motor 

unit itself (Enoka & Pearson, 2012).  The motoneurone originates in the spinal cord 



4 
 

 

(Squire et al., 2013) such that some inputs from corticospinal connections are direct to the 

motor unit pools while others are modulated via upper motorneurones and input to 

interneurons via upper motoneurones. The upper limb has more direct corticospinal 

connections than the lower limb (Brouwer & Ashby, 1990), therefore the area active in 

the brain during upper limb activity has a larger representation and is probably influenced 

more directly by cortical inputs (Figure 1.1).     

 

 

Figure 1.1.  Somatotopic representation in the primary motor cortex.  Panel (A) illustrates 

somatotopic order for feet, fist, and lip movements, and (B) is a somatotopic representation for 

lip, index finger, thumb, elbow, foot, and left fist movement (Lotze et al., 2000). (C) Organization 

of the primary motor cortex in the homunculus (Squire et al., 2013, p. 607). 

 

 

Fine control of discrete voluntary movements, such as reaching, requires all 

information descending from supraspinal centers to be integrated at the spinal level with 

afferent feedback to control and voluntarily modify the task towards successful 

A 

B C 
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completion (Drew et al., 2004).  Current techniques utilized to record and measure neural 

activity during discrete motor tasks provide valuable information regarding temporal 

activity [e.g., electromyography (EMG)] as well as spatial activity (e.g., fMRI) of 

motoneurones; however, very little in known about cortical contributions to lower 

extremity movements.  Thus, the first study of this dissertation investigates force-related 

changes in cortical activity across a range of force intensities during sustained isometric 

ankle dorsiflexion contractions in young men and women.   

To perform a basic motor task, such as locomotion in the lower limb, the human 

body employs the use of specific neural networks that are responsible for executing 

motor programs.  These neural networks communicate via groups of interneurons (central 

pattern generators) with motoneurones to activate the desired movement through 

activation of agonistic and synergistic muscle groups and inhibition of antagonistic 

muscle groups (Squire et al., 2013).  These specific motor programs are generally located 

in the spinal cord and brain stem and are capable of producing motor patterns like gait 

without input from the cortex as exhibited by decerebrate cat preparations (Van de 

Crommert et al., 1998; Whelan, 1996).  Although sensory input from the environment 

enables modification of motor program patterns (Whelan, 1996), coordination of more 

complex, goal-directed movements, requires input from other regions of the central 

nervous system including the sensorimotor cortex and basal ganglia (Burke et al., 2001; 

Grillner et al., 2008; Heckman et al., 2009).   

 When attempting to sustain a steady contraction, the exerted muscle force tends 

to fluctuate about the target force (eg., Galganski et al., 1993). The amplitude of force 

fluctuations (steadiness) can vary between men and women, and the magnitude of the 
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difference will depend on the conditions of the task. For example, women were less 

steady than men when performing elbow flexion contractions in multiple forearm 

positions across several force levels for a target-matching task especially at very low 

forces (Brown et al., 2010); yet, when performing  a position task, force task at a fixed 

1Newton (N), and precision grip task at a fixed 2N using the first dorsal interosseus, 

women were more steady than men (Endo & Kawahara, 2011).  In a study that compared 

sex differences in hip extension and hip flexion at very low-to-moderate forces, women 

were less steady than men at the very low forces during hip extension, but there was no 

difference during hip flexion (Grunte et al., 2009).  Attempting to sustain a task in the 

presence of increased cognitive demand may influence descending drive from the central 

nervous system and impair motor output of the upper extremity muscles (Christou et al., 

2004; Noteboom, Fleshner, et al., 2001; Yoon et al., 2009).   

Motor output can also be altered by the age-related changes within the 

neuromuscular system. As individuals age, there is a loss of motoneurones,  which 

increases the innervation ratio of surviving motor units and the density of muscle fibers 

innervated by a single motor unit (Drey et al., 2013; Kaya et al., 2013).  As a result, 

steadiness is reduced in the aging adult compared with younger adults when performing 

sustained isometric contractions at low and moderate force intensities (Galganski et al., 

1993).   

With the loss of motoneurones, older adults also experience a preferential loss of 

fast-twitch muscle fibers, increasing resistance to muscle fatigability.  When compared 

with young adults, older adults had a longer time to task failure than young adults during 

static contractions with the ankle dorsiflexor muscles (Griffith et al., 2010).  Further, 
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older adults demonstrated a greater increase in force fluctuations than young adults in 

anticipation of a noxious stressor for a precision grip task (Christou et al., 2004); however 

the influence of increased arousal (cognitive demand) during performance of a lower 

limb task is unknown.   

 

Section 1: Cortical Contributions to Voluntary Contractions 

 

 

Functional magnetic resonance imaging (fMRI) is a neuroimaging procedure that 

measures brain activity by detecting changes in magnetization between oxygen-rich and 

oxygen-poor blood in the brain that is the result of increases or decreases in neural 

activity as areas of the brain becomes more or less active, respectively. Areas with 

increased neural activity generate a blood-oxygen-level dependent (BOLD) contrast that 

can present associated brain activation graphically in the form of a color-coded map that 

indicates strength of activation across the brain or a particular region of interest (ROI).  

Changes in BOLD signal contrast are characterized by the intensity percent signal change 

(PSC, %) and volume of activation (µl) (Huettel et al., 2004).  

Early fMRI studies were able to confirm the somatotopic organization of the 

primary motor cortex by having participants perform voluntary movements of different 

joints; the maps created confirmed that the lower limb is represented medially, the upper 

limb is represented more laterally, and the hand occupies a large portion of the 

somatotopic map of the primary motor cortex (M1) due to the precise fine motor 

movements it performs (Lotze et al., 2000; Rao et al., 1995).  fMRI studies have also 

established the relationship between changes in brain activation and force production.  

For example, activation in several motor areas of the cortex has been demonstrated 
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during submaximal and fatiguing handgrip tasks (Dai et al., 2001; Liu et al., 2003).  

Further, during sustained, graded contractions of the hand and first dorsal interosseus 

abduction, BOLD signal intensity in motor areas, such as the sensorimotor cortex, 

premotor areas and cerebellum, have also been shown to increase linearly with increased 

force production (Spraker et al., 2007; van Duinen et al., 2008).    

Most studies evaluating cortical function during force production use the upper 

limb; however, the relationship between cortical activation and force intensity in the 

lower limb has not been determined.   Differences exist in cortical activation patterns and 

intensity between upper and lower limb movement (Luft et al., 2002; Miyai et al., 2001), 

in part because the lower limb has: 1) a different somatotopic location, 2) reduced fine 

motor control, 3) larger muscle mass to motor unit ratios (Feinstein et al., 1955), and 4) 

fewer direct corticospinal connections compared with upper limb muscles (Brouwer & 

Ashby, 1990).   

Movement in the lower limb has been shown to correlate with changes in BOLD 

signal intensity (cortical activation) in the primary motor cortex and sensory cortex (Huda 

et al., 2008; Orr et al., 2008).  Active and passive ankle dorsiflexion and plantarflexion 

tasks also activated similar cortical regions (Ciccarelli et al., 2006; Dobkin et al., 2004), 

and graded dorsiflexion movements of the right ankle have produced graded BOLD 

signal changes in motor areas (MacIntosh et al., 2004); however, the relation between 

cortical activation and force intensity has not been systematically determined.   

The intensity, volume and location of cortical activation produced during force 

production will vary based on many factors, including the amplitude of movement, 

intensity of force exerted and complexity of the task required.  For example, it has been 
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demonstrated that the basal ganglia plays a significant role in the control of force in hand 

muscles (Kinoshita et al., 2000; Spraker et al., 2007) and BOLD signal activity can vary 

substantially in the different nuclei of the basal ganglia according to the task selection 

and prediction, and amplitude and rate of force development (Prodoehl et al., 2009; 

Spraker et al., 2007).  Further, anatomical regions associated with cortical activation 

during force production and control can be anticipated based on previous evidence.  See 

Table 1.1 for examples of relevant anatomic regions of interest during static contractions 

in the lower limb across multiple force levels.   
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Table 1.1.  Regions of interest.  ROI for control of lower limb function during static contractions across forces.  

Cortical Region Function 

Primary Motor 

Cortex (M1) 
 Production and control of voluntary movement; May specify muscle activation levels or 

could be transformed into muscle-specific signals in the spinal cord (Kalaska, 2009) 

 May also adapt to the aging neuromuscular system to assist with production of muscle 

strength  (Plow et al., 2013) 

Supplemental 

Motor Area 

(SMA) 

 Contralateral M1 fibers converge with ipsilateral SMA (Luft et al., 2002)   

 Helps with assembly of central motor programs, sequences simple movements and 

execution of a motor sequence test (Roland et al., 1980). 

Basal Ganglia  Does not initiate movement as previously thought, but:  

 Contributes to automatic execution of movement sequences, adjust magnitude of globus 

pallidus internal (GPi) inhibitory output to increase or decrease movement, and permits 

desired movements and inhibit unwanted competing movements (Squire et al., 2013) 

 Assists with task selection, prediction, and amplitude and rate of force development 

(Prodoehl et al., 2009) 

 Portions scale in activation intensity with increasing force amplitude with upper limb 

(Grafton & Tunik, 2011; Spraker et al., 2007; Vaillancourt et al., 2004; Vaillancourt et 

al., 2007) 

 Prepares motor readiness state in response to danger, transforms emotional responses to 

behavioral responses (Butler et al., 2007) 

 May play a role in subcortical fight or flight programs (Marchand et al., 2009).   

Cerebellum  Adapts goal-directed arm movements (Tseng et al., 2007), coordinated movement, motor 

learning, reflex adaptation (Glickstein, 2007), sensorimotor control (Manni & Petrosini, 

2004; Stoodley & Schmahmann, 2009; Stoodley & Schmahmann, 2010), and has been 

shown to scale with force in the hand (Keisker et al., 2009; Kuhtz-Buschbeck et al., 

2008)  

 Control of agonist-antagonist activity and inhibiting co-contraction of antagonist 

muscles (Mari et al., 2014) 

 May influence cognitive and emotional function (O'Reilly et al., 2010; Stoodley & 

Schmahmann, 2010).   

Visual Cortex  Classifies and interprets environment stimuli enabling appropriate responses to external 

visual stimuli (Squire et al., 2013) 

 Lingual gyrus may assist target recognition (Gron et al., 2000) 

 Calcarine gyrus (V1) may assist with the central visual field and spatial attention 

(Martínez et al., 1999) 

 Ipsilateral parietal lobule may assist with oculomotor and attention processes and 

contribute to appropriate motor output in response to visual sensory input (Clower et al., 

2001) 

Prefrontal Cortex 

(PFC) 
 Synthesizes sensory information from internal (affect, memory, reward) and external 

(sensory, cortical and subcortical motor systems) environment to produce goal-directed 

movement; Assists with planning, decision-making, behavioral control, emotions, 

moods, and working memory; Communicates with M1 through premotor area and basal 

ganglia (Squire et al., 2013).   

 Critical in executive function and top-down control of behavior (Miller & Cohen, 2001) 

Anterior Cingulate 

Cortex (ACC) 
 Associated with autonomic responses (greater in men than women) (Wong et al., 2007) 

 Conflict and error monitoring and detection, response selection, attention control, as well 

as emotions, mood, action, anticipation, working memory, visuospatial orientation, and 

navigation of body in space (Torta & Cauda, 2011) 

Right Inferior 

Temporal Gyrus 
 Visual perception (Ishai et al., 1999) 

 Pattern recognition (Herath et al., 2001) 

 Modulation of neural responses that have become motivationally significant (Mesulam, 

1998) 

Left Superior 

Frontal Gyrus 
 Key component in working memory and involved in coordinating responses to increased 

executive demand in working memory (Boisgueheneuc et al., 2006) 
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Sex Differences in Cortical Activation during Voluntary Contractions 

 

  

Sex differences in cortical activity have also been shown during performance of 

cognitive tasks.  For example, men demonstrated asymmetric prefrontal activity in 

response to a difficult mental-math task, whereas women did not demonstrate correlated 

activity in prefrontal cortex, but instead demonstrated increased activation in limbic 

regions (Wang et al., 2007).  Further, women have demonstrated greater amounts of 

BOLD signal activity in the ipsilateral frontal and parietal lobes than men during visually 

guided reaching tasks that required arm and eye movements in the same direction (Gorbet 

& Sergio, 2007) with greater bilateral distribution (Gorbet et al., 2010); as well as greater 

frontoparietal activity during a visuospatial navigation task (Gron et al., 2000) than men. 

However, sex differences in brain activation patterns during lower-extremity motor tasks 

are unknown.  Various indirect measures of motor unit activity (EMG) and assessments 

of voluntary activation (e.g. techniques of stimulation along the neuraxis to determine 

neural drive to the muscle and to the motor cortex), indicate no sex difference in 

activation output from the motor cortex (Hunter et al., 2006; Hunter & Enoka, 2001; 

Keller et al., 2011).   

Cortical Contributions to Changes in Motor Output 

 

 

 In order to execute a voluntary goal-directed motor task, the cerebral cortex 

communicates with a desired muscle via the corticospinal tract.  The corticospinal 

neurons originate in the primary motor cortex (M1) and project their axons through the 

midbrain and pons, decussate in the medulla to the opposite side of the spinal cord.  The 

majority of these neurons terminates in the dorsolateral ventral horn of the spinal cord 
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and communicates with interneurons or motoneurones (decussation of the corticospinal 

axons will result in activation of the left motor cortex during performance of a right side 

task and vice versa) (Squire et al., 2013).  Motoneurones synapse on multiple muscle 

fibers via neuromuscular junctions that convert the descending neural input into force 

output forming a motor unit (a single motoneurone and all of the muscle fibers it 

innervates (Sherrington, 1925).  A single motoneurone will synapse with multiple muscle 

fibers and a single muscle will be innervated by multiple motor units.  Force generation 

occurs via two strategies: recruitment of motor units (predominantly at lower forces) and 

rate coding or optimal discharge frequency of the motor unit (predominantly at higher 

forces) (De Luca et al., 1982a; Monster & Chan, 1977; Van Cutsem et al., 1997).  

However, for the tibialis anterior muscle, motor unit recruitment is of greater significance 

across the full range of contraction force intensity because of its large recruitment range 

(up to ~90% MVC) (Van Cutsem et al., 1997) compared with intrinsic muscles of the 

hand such as the first dorsal interosseus which has a lower recruitment range to ~50% 

MVC (De Luca et al., 1982a). Thus, because the motor unit communicates with the motor 

cortex, factors that influence motor cortex output (descending drive), motor unit 

recruitment, or motor unit discharge rates will directly influence the motor output of that 

muscle. 

Section II: Contributions to Motor Output in the Lower Limb 

 

 

Force Fluctuations during Voluntary Contractions 

 

 

Sustained isometric contractions are important for a wide variety of functional, 

vocational, and sporting tasks, particularly at submaximal levels (Grabiner & Enoka, 
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1995).  In the upper limb, sustained submaximal contractions may be used to grip a pen 

or hold a glass, or to perform a complex surgical procedure; sustained contractions in the 

lower extremity may include accelerating or decelerating a vehicle, or walking over 

various surfaces.  Variability of force about an average value can be quantified in 

absolute terms as the standard deviation (SD) or in relative terms as the coefficient of 

variation (CV) (Enoka et al., 2003). The SD of force fluctuations characterizes the 

magnitude of fluctuations in the system output and serves as an index of the average 

deviation of scores in the distribution from the distribution mean; while the CV indicates 

the scatter of responses relative to the mean response amplitude and illustrates the way 

the system output changes over time independent of the magnitude of response (Enoka et 

al., 2003).  Typically, the standard deviation of force increases linearly with increased 

force production (Figure 1.2) and is usually lowest at the lowest forces (Enoka et al., 

2003; Moritz et al., 2005; Taylor, A. M. et al., 2003; Tracy, 2007a).  The variation in 

force (CV) controls for force and is greatest at lower force levels, decreasing as 

contraction intensity increases (Figure 1.2) (Galganski et al., 1993; Slifkin & Newell, 

1999).   
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Figure 1.2.  Standard Deviation and Coefficient of Variation of Force.  Standard deviation (A) 

and coefficient of variation (CV; B) for force during constant-force isometric trials performed at 

2, 5, 10, and 50% MVC in young and old subjects. Values are means ± SE. *p < 0.05 between 

age groups. From Tracy and Enoka (2002). 

 

At low-to-moderate forces, force fluctuations appear to be the result of primarily 

two factors that influence the output of motoneurones: synaptic noise and common drive 

to the motoneurones (De Luca et al., 2009; Dideriksen et al., 2012; Hamilton et al., 

2004).  In order to sustain a low target force during an isometric contraction, motor units 

are recruited and the discharge rates modulated in unison through a centrally mediated 

common drive (De Luca et al., 2009; De Luca et al., 1982b).  This modulation of motor 
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unit discharge is characterized as a low-frequency oscillation of 2-3 Hz and is thought to 

be a major contributor to the force fluctuations during isometric contractions at low to 

high forces (Mottram et al., 2005; Negro et al., 2009). At very low forces the variability 

in discharge rate is thought to be the primary contributor to force fluctuations 

(Jesunathadas et al., 2012; Negro et al., 2009). Relative to muscles in the upper limb 

(FDI, elbow flexors), the tibialis anterior has fewer synaptic inputs onto motoneurones 

(Brouwer & Ashby, 1990) which decreases synaptic noise in the system; thus, at low 

forces, motor unit discharge rate variability probably has its greatest influence on the CV 

in upper limb muscles and lesser effects in the tibialis anterior (Jesunathadas et al., 2012).  

Further, at very low force levels (< 5% MVC), descending input from the visual cortex 

has also been demonstrated to influence the steadiness of sustained voluntary 

contractions in the lower extremity (Tracy, 2007b).  As force increases to moderate and 

higher levels, the number of recruited motor units decreases (Fuglevand, A. J.  et al., 

1993) and amplitude of force fluctuations decreases (Moritz et al., 2005).  As a result, 

force fluctuations at higher force levels are related to variability in descending drive from 

the central nervous system, not synaptic noise or intrinsic motoneurone properties 

(Dideriksen et al., 2012).   

Sex Differences in Motor Output 

 

 

The ability to sustain steady low and moderate force contractions can be 

influenced by a variety of factors: age (Galganski et al., 1993; Laidlaw et al., 2000), 

fatigue (De Luca et al., 1982b; Singh et al., 2010), arousal (Lorist et al., 2002; Noteboom, 

Barnholt, et al., 2001),  intensity and type of contraction (Cresswell & Loscher, 2000; 

Griffith et al., 2010; Semmler et al., 2007), and muscle group (Hunter, Yoon, et al., 2008; 
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Jesunathadas et al., 2012; Tracy, Mehoudar, et al., 2007).  It is unclear whether sex 

differences contribute to decreased steadiness because in many studies, sex differences 

are not assessed.  When performing submaximal isometric contractions, women have 

been reportedly more (Endo & Kawahara, 2011), less (Brown et al., 2010; Brown et al., 

2009; Grunte et al., 2009), or similarly (Baweja et al., 2009) steady when compared with 

men. For example, women demonstrated greater overall force fluctuations than men 

across multiple force levels (2.5, 5, 10, 25, 50 and 75% of maximal voluntary contraction 

(MVC) force (Brown et al., 2010).  In a target-matching task across similar target forces 

(2.5, 5, 10, 30, 50 and 80% of MVC force),  Tracy (2007a) found differences in force 

fluctuations between ankle muscle groups (ankle dorsiflexion and plantarflexion), but 

there were no sex differences between young or older adults.  Given the lack of mention 

in the literature and disparity of results, it remains unclear if women are less steady than 

men when performing submaximal isometric contractions.   

Mechanisms related to sex differences in steadiness are equally unclear.  Women 

have been reported to have lower motor unit discharge rates and higher discharge rate 

variability than men during isometric elbow flexion contractions (Brown et al., 2009).  

Both of these factors would result in a significant increase in force fluctuations when 

compared with men (Moritz et al., 2005); however, there is very little additional evidence 

to support this finding in the literature.   

Age Differences in Motor Output 

 

 

Greater force fluctuations with advanced age have also been observed across 

various muscle groups and particularly at the lower intensity contractions (Enoka et al., 

2003; Tracy, Dinenno, et al., 2007; Tracy et al., 2005).  With advanced age, the 
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motoneurone pool undergoes remodeling that results in decreased motor units numbers 

and altered relations between discharge rates and recruitment thresholds (Barry et al., 

2007); the age difference in force fluctuations therefore appears to be due to age-related 

changes in the inputs to the motoneurone pool (Barry et al., 2007) with possibly some 

influence of  motor unit discharge rate variability in older adults (Barry et al., 2007; 

Kornatz et al., 2005; Laidlaw et al., 2000; Tracy et al., 2005).  Age-related changes in 

visual-motor processing may also contribute to altered motoneuronal inputs causing 

increased force fluctuations during static contractions with age (Fox et al., 2013; 

Henningsen et al., 1997; Seidler-Dobrin & Stelmach, 1998; Tracy, Dinenno, et al., 2007).   

Influence of Muscle Fatigue on Motor Output 

 

 

As an isometric contraction is sustained, motor output becomes progressively 

more variable, the muscle begins to fatigue, and descending cortical drive increases in an 

effort to sustain the required force (Missenard et al., 2009; Riley et al., 2008).  Muscle 

fatigue is defined as an exercise-induced reduction in muscle force or power caused by 

impairments within the neuromuscular system that is reversible with rest (Enoka & 

Duchateau, 2008; Fitts, 1994). It begins at the onset of exercise, progresses during 

exercise and starts to recover once exercise stops.  The magnitude of muscle fatigue 

caused by exercise, such as a target-matching task, can be quantified as the decline in the 

maximal force or power measured immediately after the fatiguing contraction (Hunter, 

Critchlow, Shin, et al., 2004; Taylor, J. L. et al., 1996).  If the contraction is sustained it 

will eventually result in task failure (Gandevia, 2001). As fatigability in a muscle 

increases, electromyography (EMG) activity will also increase progressively throughout 
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the contraction as the already active fibers lose force and more motor units are recruited 

(Enoka & Duchateau, 2008; Hunter, Duchateau, et al., 2004) (Figure 1.3). 

 

Figure 1.3. Characteristics of a Force Task Performed to Failure. Representative EMG data 

for a force tasks as performed by one individual using the first dorsal interosseus muscle. The 

data comprise the EMG for the antagonist (second palmar interosseus), agonist (first dorsal 

interosseus) muscles, and the abduction force.  EMG and force fluctuations increase as 

fatigability increases (Enoka & Duchateau, 2008). 

 

Mechanisms of muscle fatigue are task dependent and will vary based on sex, 

muscle group, task, and age (Enoka & Duchateau, 2008).  For example, when participants 

performed a sustained isometric contraction of the elbow flexor muscles at 20% and 80% 

MVC to task failure, men demonstrated a shorter time to task failure than women during 

the 20% MVC task, but similar times to failure for the 80% MVC task (Yoon et al., 

2007).  When performing sustained isometric contractions with the elbow flexor muscles 

and ankle dorsiflexor muscles, participants  demonstrated longer times to task failure 

when performing a force task compared to the position task, and there were no sex 

differences (Hunter et al., 2002; Hunter, Yoon, et al., 2008).  Hunter, et al (2005) found 

that time to task failure was shorter for a position task compared to a force task for older 

adults when compared with young adults for elbow flexor muscles (Hunter et al., 2005).  

However, there was no difference in time to task failure between loads when similar tasks 

were performed in the lower extremity (Griffith et al., 2010).   
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Similar central mechanisms that contribute to increased force fluctuations will 

also contribute to muscle fatigue, including suboptimal activation of the motor cortex 

(Gandevia et al., 1996), decreased neural drive or excitatory input to the motoneurone 

(Taylor, J. L. & Gandevia, 2008), and decreased responsiveness in motoneurone 

activation (Herbert & Gandevia, 1999).  As a muscle progressively fatigues, descending 

drive increases, as evidenced by increased EMG and ratings of perceived exertion (Riley 

et al., 2008), and progressively declines in voluntary activation (level of voluntary drive 

to the muscle) (Gandevia, 2001).  Although various measures of motor unit activity 

(EMG) and assessments of voluntary activation (e.g. techniques of stimulation along the 

neuraxis to determine neural drive to the muscle and to the motor cortex), indicate no sex 

difference in motor cortex output activation (Hunter et al., 2006; Hunter & Enoka, 2001; 

Keller et al., 2011) women may be more sensitive to changes in common drive than men.  

This is plausible because women demonstrate differences in motor unit discharge rates 

and discharge rate variability compared with men at similar intensity contractions (Brown 

et al., 2009), however, this relationship requires has not been previously investigated.   

Influence of Cognitive Demand on Motor Output 

 

 

Imposition of increased cognitive demand can increase descending drive, 

particularly when cognitive demand in increased simultaneously with a sustained 

isometric contraction, a dual-task.  The influence of dual tasks has been shown previously 

in the literature using multiple combinations of tasks.  In young adults, for example, 

cognitive performance declines and force fluctuations increase when a cognitive task was 

imposed (reaction time) during sustained isometric tasks with hand muscles (Lorist et al., 

2002; Zijdewind et al., 2006);  however, force fluctuations were affected more during the 
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isometric fatiguing contractions than during a 5% submaximal non-fatiguing contraction 

(Lorist et al., 2002).  Further, steadiness of the elbow flexor muscles declined (increased 

force fluctuations) and time to failure of a sustained 20% MVC submaximal task was 

reduced (increased fatigability) in young adults when simultaneously performing a 

demanding cognitive task that increased anxiety (counting backwards by 13) (Keller-

Ross, Pruse, et al., 2014; Yoon et al., 2009).  Individuals who were weaker (primarily 

women) show the largest decrement in time to task failure when the stressful cognitive 

task was imposed during the fatiguing contraction (Keller-Ross, Pruse, et al., 2014; Yoon 

et al., 2009).  However, it is not known how changes in cognitive demand in the presence 

of various force levels would influence steadiness in men and women.   

Decrements in dual-task performance are also exacerbated with age (Springer et 

al., 2006).  For example, when older and young adults performed an n-back task and a 

force-tracking task, older and young adults performed each task in isolation similarly; 

however, during simultaneous performance, older adults demonstrated significantly 

greater losses in force control than young (Voelcker-Rehage et al., 2006).  Older adults 

are typically weaker than young adults, with older women being weaker than older men 

for upper and lower limb muscles (Galganski et al., 1993; Laidlaw et al., 2000; Tracy & 

Enoka, 2002), possibly increasing susceptibility to increased fatigability when a cognitive 

task is imposed.  However, it is not known whether fatigability with increased cognitive 

demand is exacerbated with advanced age.  Furthermore, the effects of increased 

cognitive demand on lower limb fatigability in young or older adults are not known. 

Given that fatigue and increased arousal increase descending drive from the central 

nervous system (Missenard et al., 2009; Noteboom, Fleshner, et al., 2001), potentially 
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further increasing force fluctuations, and that mechanisms that modulate steadiness occur 

in different areas of the central nervous system, we utilized both fatigue and increased 

cognitive demand to influence descending drive to determine differences in steadiness 

between men and women.  Therefore, aim 2 of this dissertation examines the influence of 

cognitive demand on fatigability and steadiness of low- to moderate-force isometric 

contractions of the lower extremity in young and old men and women.   

Dual-Tasks 

 

 

Information from multiple areas of the cortex can influence motor output.  For 

example, the primary motor cortex (M1, where production and control of voluntary 

movements occur) receives information from the cerebellum (which coordinates 

movement), while the supplemental motor area (responsible for postural stabilization, 

sequencing of events) will receive input from the basal ganglia (which regulates 

inhibitory output to regulate movement) (Squire et al., 2013).  Further, input from the 

prefrontal cortex, which receives and synthesizes input from the major sensory systems, 

basal ganglia and limbic system, provides information to the motor cortex via the 

premotor cortex to assist with planning, decision-making, and executive function tasks 

(Squire et al., 2013; Takahara et al., 2012).  Executive function (which includes volition, 

planning, purposive action, and action monitoring), anxiety, and stress are modulated in 

prefrontal cortical regions and the anterior cingulate cortex (Banich et al., 2009; Miller, 

2000; Owen et al., 2005; Schweizer et al., 2013).  Changes in performance for older 

adults in dual-tasks appear to be especially sensitive to cognitive tasks that require 

executive function (Yogev-Seligmann et al., 2008).  Furthermore, increased 

monoaminergic drive and neuromodulatory inputs potentially increase motor unit 
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discharge rate variability and therefore force fluctuations at very low forces. If a 

cognitive demand task is perceived to be more of a stressor for the older adults than the 

young, motor output may become more variable and steadiness may decrease.  Thus, 

there are many different pathways through which the neural connections from areas 

associated with cognition and anxiety, particularly the cingulate and prefrontal cortices, 

could directly alter motor function.   

The sensorimotor cortex provides information to the motor cortex based on 

stimuli it has interpreted from the environment.  Bottom-up processing occurs if the 

sensory information is perceived to be novel or salient, thus requiring attention or a 

response.  If, however, it is necessary to ignore irrelevant distractions by enhancing or 

inhibiting neural activity that will ensure successful task completion through premotor 

cortex modulation , top-down modulation has occurred (Gazzaley & D'Esposito, 2007; 

Gazzaley & Nobre, 2012).   

The effort of sustaining attention on a task is affected by fatigue and stress 

(McDowd, 2007) and can lead to diminished motor and cognitive performance, 

particularly when the motor and cognitive task are performed simultaneously, or as a 

dual-task.  For example, when performing an auditory choice reaction task and fatiguing 

submaximal finger abduction simultaneously, increased motor fatigue resulted in a 

drastic deterioration in the choice reaction task performance and increased force 

variability compared to when the tasks were performed in isolation (Lorist et al., 2002).  

Capacity theories of attention assume that there are attentional resource limitations on the 

ability to perform multiple tasks simultaneously (Hiraga et al., 2009; Kahneman, 1973; 

McDowd, 2007) and that attempting to perform two tasks simultaneously will result in 
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diminished performance in either one or both of the tasks (Tombu & Jolicoeur, 2003).  

Thus, attentional limitations during performance of dual-tasks have been demonstrated in 

both young and older adults and the capacity theory of attention may provide an 

explanation for decrements in performance found in young and older adults under dual-

task conditions. Changes in cognitive demand and stress (Christou et al., 2004; Yoon et 

al., 2009) have also resulted in increased motor output variability in the upper extremity; 

however, the influence of changes in cognitive demand and age on motor output to the 

lower extremity is not known.   

The central theme of this dissertation is to answer questions regarding the 

influence of cortical input on force output during isometric contractions of the lower 

limb.  The purpose of aim 1 was to determine the force-related changes in cortical regions 

across a range of high and low force intensities in the BOLD signal (intensity and 

volume) during sustained isometric ankle dorsiflexion contractions in young men and 

women.  Thus, study 1, aim 1 in this dissertation determined the cortical regions involved 

in force-related changes between low and high forces and those areas of the cortex that 

modulate steadiness (force fluctuations) using fMRI during sustained isometric ankle 

dorsiflexion contractions in young men and women.  Aim 2 was to examine the influence 

cognitive demand on fatigability and steadiness of low- to moderate-force isometric 

contractions in young and old men and women.  To address aim 2, two different studies 

were conducted.  Study 2, aim 2 exposed the role and importance of the cortical centers 

during lower limb static contractions, this dissertation used varying levels of cognitive 

demand and determined the change in motor output (steadiness and fatigue) in young 

men and women.   These experiments were also performed in older men and women 
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(study 3, aim 2) and compared with young adults to determine if age-related changes in 

cortical centers would further disrupt motor output during the static contraction with the 

leg muscles. 
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DISSERTATION AIMS AND HYPOTHESES 

 

 

Central Question:   
 

What is the influence of cortical input on force output during isometric contractions in 

the lower extremity? 

Central Hypothesis: 

Force output of the lower extremity muscles is controlled by cortical inputs that vary with 

the intensity of contraction, sex, age and cognitive demand. 

Specific Aims 

Aim 1: To determine the force-related changes in cortical regions across a range of 

high and low force intensities in the BOLD signal (intensity and volume) during 

sustained isometric ankle dorsiflexion contractions in young men and women.   

Sub aims: 

1. To determine if intensity and volume of activation in the motor areas of the brain 

demonstrates a linear increase in activity as with increased force intensity.  

Hypothesis:  Motor areas of the brain will scale linearly in intensity and volume 

with increased force intensity of the ankle dorsiflexor muscles. 

2. To identify cortical areas that correlate with the modulation of force fluctuations 

across a range contraction intensities. Hypothesis:  At lower intensities of 

contraction, larger fluctuations in force will be associated with greater activation 

of cortical motor areas. 

3. To determine whether there were any sex differences that could be detected in 

brain activity and modulation of the low- and high-force isometric contractions 
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with the lower limb.  Hypothesis:  Men and women will demonstrate similar 

changes in brain activity during static contractions of the lower extremity. 

Aim 2:  To examine the influence cognitive demand on fatigability and steadiness of 

low- to moderate-force isometric contractions in young and old men and women.   

Sub aims: 

1. To compare both fatigability and amplitude of force fluctuations for a low- to 

moderate-force isometric contractions in the presence and absence of varying 

levels of cognitive demand in men and women. Hypotheses: Women will show 

greater fatigability and fluctuations in force during the low-force fatiguing 

contraction than men in the presence increased cognitive demand (a difficult 

mental-math task). 

2. To compare both the amplitude of force fluctuations and fatigability for low- to 

moderate-force isometric contractions in the presence and absence of varying 

levels of cognitive demand in young and old adults.  Hypothesis: Old adults will 

show greater reductions in time to task failure and greater fluctuations in force 

than young as cognitive demand increased.   

3. To compare variability of motor performance (steadiness and time to task failure) 

between and within young and old adults with increased cognitive demand.  

Hypothesis:  Old adults will exhibit both greater between- and within-subject 

variability in motor performance as cognitive demand increased. 
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CHAPTER II 

 

 

Brain areas associated with force steadiness and intensity during 

isometric ankle dorsiflexion in men and women 

 
 

SUMMARY 

 

 

Although maintenance of steady contractions is required for many daily tasks, 

there is little understanding of brain areas that modulate lower limb force accuracy.  

Functional magnetic resonance imaging (fMRI) was used to determine brain areas 

associated with steadiness and force during static (isometric) lower limb target-matching 

contractions at low and high intensities.  Fourteen young adults (6 men, 8 women; 27.1 ± 

9.1 years) performed three sets of 16 s isometric contractions with the ankle dorsiflexor 

muscles at 10, 30, 50 and 70% of maximal voluntary contraction (MVC).  Percent signal 

changes (PSC, %) of the blood oxygenation level dependent (BOLD) response were 

extracted for each contraction using region of interest (ROI) analysis.  Mean PSC 

increased with contraction intensity in the contralateral primary motor area (M1), 

supplementary motor area (SMA), putamen, pallidum cingulate cortex, and ipsilateral 

cerebellum (p<0.05).  The amplitude of force fluctuations (SD) increased from 10 to 70% 

MVC but relative to the mean force (coefficient of variation, CV %) was greatest at 10% 

MVC. The CV of force was associated with PSC in the ipsilateral parietal lobule (r = -

0.28), putamen (r = -0.29), insula (r = -0.33), and contralateral superior frontal gyrus (r = 

-0.33, p<0.05). There were minimal sex differences in brain activation across the 

isometric motor tasks indicating men and women were similarly motivated and able to 



28 
 

 

activate cortical motor centers during static tasks. Control of steady lower limb 

contractions involves cortical and subcortical motor areas in both men and women and 

provides insight into key areas for potential cortical plasticity with impaired or enhanced 

leg function. 

INTRODUCTION 

 

 

Steady postural contractions that stabilize a limb with accuracy are required for 

successful performance of many daily tasks including carrying objects, driving and 

walking.  Stabilizing contractions across a range of force intensities requires appropriate 

neural activity in cortical centers.  Early work in monkeys established the central role of 

discharge rates of primary motor cortex (M1) cells during graded voluntary movements 

of distal upper limb muscles (Evarts, 1968).  Subsequent development of imaging 

techniques in humans including functional magnetic resonance imaging (fMRI) have 

established positive associations between contraction force intensity of the upper limb 

and cortical activation indicated by the blood oxygenation level dependent (BOLD) 

response [e.g. (Keisker et al., 2009; Spraker et al., 2007; Thickbroom et al., 1998; van 

Duinen et al., 2008)]. However, there remains uncertainty as to the role of intensity and 

volume of cortical activation in force regulation (Dai et al., 2001) and the motor areas 

involved with increased activation especially among lower-to-moderate force 

contractions, which are forces that many daily tasks are performed (Keisker et al., 2009; 

Spraker et al., 2007; van Duinen et al., 2008).  

Despite the primary role of lower limb muscles as agonists and stabilizers during 

functional tasks such as driving and walking, most studies have studied upper limb 

muscles and little is understood about cortical activation during leg movements. 
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Understanding key cortical areas associated with control of the lower leg in healthy 

young adults establishes a foundation for identifying the plasticity of these areas with 

impaired motor function that can occur with aging and neurological conditions as well as 

enhanced function that is possible with physical exercise in all populations. Some studies 

have determined areas of activation during foot exercise [e.g. (Ciccarelli et al., 2005; 

Huda et al., 2008; MacIntosh et al., 2004)] but the relation between activation and force 

intensity has not been systematically determined.  For lower limb muscles however, 

activation strategies within the cortex (shown as the intensity of the BOLD signal and 

volume of activation) may differ to that of the more commonly studied hand muscles: the 

lower limb muscles have a reduced need for fine motor control compared with hand 

muscles, they have a the larger muscle mass and motor unit ratio (Feinstein et al., 1955), 

and fewer direct corticospinal connections (Brouwer & Ashby, 1990) compared with 

upper limb muscles.  Further, the tibialis anterior has a greater motor unit recruitment 

range than for example, the first dorsal interosseus (De Luca et al., 1982a; Moritz et al., 

2005; Van Cutsem et al., 1997).  Therefore, a purpose of this study was to determine 

force-related changes across a range of high and low forces in the BOLD signal (intensity 

and volume) of cortical regions during isometric ankle dorsiflexion contractions in 

healthy young adults.  Because the rate of movement during dynamic or repetitive short 

isometric contraction mode can affect the BOLD signal (Rao et al., 1996), we used 

sustained isometric contractions between 10% and 70% of maximal strength.  We 

hypothesized that motor areas of the brain would scale linearly with an increase in force 

intensity of the ankle dorsiflexor muscles. 
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When sustaining a postural static contraction as is often required during standing, 

the force exerted to maintain the isometric contraction fluctuates around a mean target 

force and is often referred to as steadiness (Enoka et al., 2003). The amplitude of the 

force fluctuations (standard deviation (SD) of the force) increases with force intensity due 

to activation of more motor units.  When the standard deviation is normalized to the mean 

force (coefficient of variation, CV), the force fluctuations do not increase with intensity 

and are usually larger at lower intensities of contraction [e.g. (Jesunathadas et al., 2012; 

Moritz et al., 2005; Taylor, A. M. et al., 2003; Tracy, Mehoudar, et al., 2007).  CV of 

force is mostly mediated by low-frequency oscillations in neural drive (< 2-3 Hz) seen as 

the oscillations of the trains of motor unit action potentials (Dideriksen et al., 2012; 

Negro et al., 2009), with a greater influence of synaptic noise and motor unit discharge 

rate variability at low forces (Jesunathadas et al., 2012).  The low-frequency oscillating 

neural drive reflects an integration of both descending and afferent inputs (Dideriksen et 

al., 2012; Farina et al., 2012; Negro et al., 2009).  A novel aspect of this study was to 

identify and understand those cortical areas that are related to the force fluctuations 

across a range of forces in young adults. We hypothesized that at lower intensities of 

contraction, larger fluctuations in force (CV) would be associated with greater activation 

of cortical motor areas. 

Both men and women were tested, so we also determined whether there were any 

sex differences that could be detected in brain activity and modulation of the low- and 

high-force isometric contractions with the lower limb.  Sex differences have been shown 

in brain activity during cognitive tasks of equal performance in men and women, such 

that women have greater brain activation for the same task (Wang et al., 2007) and some 
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differences in motor control during finger tapping (Lissek et al., 2007).  Whether there 

are sex differences in brain activation during motor tasks with the lower limb has not 

been assessed. Various indirect measures of motor unit activity (electromyography, 

EMG) and assessments of voluntary activation (e.g. techniques of stimulation along the 

neuraxis to determine neural drive to the muscle and to the motor cortex), indicate no sex 

difference in the output of activation from the motor cortex (Hunter et al., 2006; Hunter 

& Enoka, 2001; Keller et al., 2011).  We hypothesized therefore, that men and women 

would have similar PSC during graded and controlled static contractions. 

METHODS AND MATERIALS 

 

 

Fourteen healthy young adults (6 men and 8 women; mean ± SD; 27.1 ± 9.1 

years, 170.5 ± 9.5 cm in height, 66.5 ± 11.2 kg in body mass) volunteered to participate 

in the study.   All participants were healthy with no known neurological or cardiovascular 

diseases and were naive to the protocol. Each participant provided informed consent, and 

the protocol was approved by the institutional review boards at Marquette University and 

Medical College of Wisconsin. Participants reported to the laboratory once for a 

familiarization session and then for an experimental session in the MRI scanner. 

Set Up and Mechanical Recordings. Participants laid supine in a 3.0 Tesla short 

bore MRI Scanner (General Electric Healthcare, Waukesha, WI) with the hip and knee at 

45° of flexion (full extension is 0°).  The right foot was assessed with the ankle in a 

neutral position (0° dorsiflexion).  During the static (isometric) voluntary contractions, 

force of the ankle dorsiflexor muscles was measured with a force transducer (Transducer 

Techniques, Temecula, CA) mounted at right angles under a footplate that was adjustable 

for angle and was rigidly secured to the distal end of the scanner bed (polycarbonate 
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platform).  The forefoot was secured to the footplate via a strap placed 1-2 cm proximal 

to the metatarsophalangeal joint of the toes. The forces detected by the transducer were 

recorded online at 500 samples/s with a Power 1401 A/D converter and Spike2 software 

(Cambridge Electronics Design, Cambridge, UK).  The force signal was displayed via a 

rear-projection visual display system for participant feedback.  During the submaximal 

contraction the visual display feedback was adjusted for each participant using their 

maximal strength value. A horizontal cursor representing the baseline was displayed at 

12.5% of the height of the screen and a horizontal cursor representing the required target 

force was displayed at 75% of the height of the screen. The force output was displayed at 

a refresh rate of 60 Hz and a resolution of 800 × 600 pixels.  Each participant was asked 

to trace the horizontal cursor with the force signal as steadily and accurately as possible. 

Experimental Protocol.  Once the participant was setup in fMRI environment, 

they performed at least three maximal voluntary contractions (MVC) for 3-5 s duration to 

obtain maximal strength (Figure 2.1). If peak forces from two of the three trials were not 

within 5% of each other, additional trials were performed until this was accomplished.  

The greatest force achieved by the subject was taken as the MVC and used as the 

reference to calculate the target force. Each participant performed three sets (runs) of 

isometric contractions at 10, 30, 50 and 70% of MVC in a randomized order. Each 

contraction was held for 16 s followed by 60 s rest to avoid fatigue. Participants received 

real-time force feedback during the contraction via a rear projection visual display system 

and were required to track a horizontal target line on the display screen.   
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Figure 2.1. Experimental protocol. Three maximal voluntary contractions (MVC) of the ankle 

dorsiflexor muscles were performed to determine the target torque. Each subject performed three 

sets (runs) of isometric contractions at 10, 30, 50 and 70% of MVC in a randomized order. Each 

contraction was held for 16 s followed by 60 s rest to avoid fatigue. Participants received real-

time torque feedback during the contraction via a rear projection visual display system and were 

required to track a horizontal target line on the display screen. 

 

MRI Acquisition.  Magnetic resonance images were collected in General Electric 

Signa Excite 3.0 Tesla short bore MR Scanner (GE Healthcare, Waukesha, WI). 

Functional MRI was used to quantify the blood oxygenation level dependent (BOLD) 

contrast (T2* weighted imaging) overlaid on a T1 weighted anatomical image for each 

subject. An 8-channel array Radio Frequency receive head coil (GE Healthcare, 

Waukesha, WI) was used to obtain 36 sagittal plane slices (thickness = 4 mm) across the 

entire brain volume using an echo-planar imaging sequence (64 × 64 matrix, 240 × 240 

mm
2
 field of view, TE = 25 ms, TR = 2000 ms, and flip angle = 77°). Voxel were 3.75 × 

3.75 × 4 mm. Immediately after completion of the protocol, 148 high resolution spoiled 

GRASS (gradient-recalled at steady state) anatomical images (thickness = 1 mm) were 

collected (256 × 244 matrix, TE = 3.9 ms, TR = 9.5 ms, and flip angle = 12°). 
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Data Analysis 

 

 

Mechanical Data Analysis:  The torque for each MVC and submaximal 

contractions was calculated as the product of force and the distance between the ankle 

joint and the point at which the foot attached to the middle of strap of the force 

transducer. The MVC torque was quantified as the average value over a 0.5s interval that 

was centered about the peak. The fluctuations in torque for each 16 s contraction were 

quantified in two ways: (1) the standard deviation (SD) of the torque, and (2) the 

coefficient of variation (CV = SD/mean × 100%) which normalized the absolute 

amplitude of the fluctuations to the mean torque exerted during each contraction. 

fMRI Data Analysis: The public domain software, Analysis of Functional 

NeuroImages (AFNI, http://afni.nimh.hih.gov/afni/) was used to analyze the fMRI data 

sets.  For each participant, all acquired functional 2-D images from the scanner were 

converted to AFNI format and were aligned with slice timing correction. The time series 

of functional image volumes were spatially realigned to correct the effect of head motion. 

General linear modeling [3dDeconolve, AFNI (Cox, 1996)] was used to regress a model 

of the contraction and rest blocks with the BOLD data. All contraction blocks (total 12 

contractions = 4 intensities × 3 trials) were used for the model to calculate regression 

coefficient of each voxel, and then used to create task-related activation map.  In 

addition, 3 contraction blocks at each intensity condition were also used for the model to 

create a task-related activation map at each contraction intensity separately (Figure 2.1). 

Separate amplitudes were computed for each of the four contraction intensities.  These 

amplitudes were warped to Talairach (Talairach & Tournoux 1988) space and blurred (4 

mm FWHM Gaussian), then were used as the percent signal change (PSC, %).  The 
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group analysis was performed for contraction versus rest (3dttest). The results were 

thresholded using AlphaSim (whole brain corrected p = 0.05, cluster size = 168 ul) to 

create a task-related activation map. This map was used as a mask for regions of interest 

(ROI) analysis later. The percent signal change was extracted for each contraction 

intensity for each subject. Repeated measures ANOVAs were performed to test for 

differences across force levels (10, 30, 50 and 70% of MVC: force effect) in the BOLD 

PSC of each activated area.  

To compare the activation volume in each anatomical area separately within the 

whole brain, we used the CA N27 macro level map in the AFNI toolbox as a mask rather 

than a task-related activation map. A total of 116 region of interest (ROI) masks were 

overlapped with PSC amplitude data for the 4 different torque intensities. Data were 

thresholded with the average value of all PSC calculated from ROI analysis. The volume 

in each area that showed a higher signal change than the threshold was used as the 

activation volume. Repeated measures ANOVAs were performed to test the force effect 

on the activation volume of each 116 regions. One participant was excluded from the 

study due to severe motion artifact (> 2 mm).   

Statistical Analysis.  Data are reported as means  SD within the text, and 

displayed as means  SE in the figures.  Three-way ANOVAs (Sex as a fixed factor) with 

repeated measures on individual run (1, 2, and 3) and force levels (10, 30, 50, and 70% of 

MVC) were used to test for between- and within-group differences in average torque and 

torque fluctuations.  Two-way ANOVAs (Sex as a fixed factor) with repeated measures 

on intensity of torque (10, 30, 50, and 70% of MVC) were used to test for between- and 

within-group differences in percent signal change and activation volume. When the 
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significant main effect of the force level was found, a contrast option was used to 

compare between each intensity of torque (10, 30, 50, and 70% of MVC) and the trends 

(linear, quadratic and cubic) were also determined using the tests of within-subjects 

contrasts table.  When a significant sex-related interaction and main effect of sex were 

found, preplanned t-tests were performed at each intensity to find the sex difference. 

Pearson product-moment correlations were used to determine the relationships between 

the force fluctuation and the PSCs of BOLD response in a selected area. We further 

examined trends in the percent signal change with increased intensity of force (e.g. 

logarithmic and sigmoidal trends) of using the curve estimation function in SPSS 

program as others have done (Ashe, 1997; Cheney & Fetz, 1980; Dettmers et al., 1996). 

A significance level of p < 0.05 was used to identify statistical significance.   

RESULTS 

 

 

Head Movement 

 

 

Maximal head displacements were 0.54 ± 0.5 mm, 0.27 ± 0.1 mm and 1.37 ± 1.25 

mm for anterior-posterior, right-left, inferior-superior directions, respectively. One 

participant was excluded due to excessive head motion. 

Torque (Force) and Steadiness  

 

 

Torque: MVC torque of the ankle dorsiflexors was 31.4 ± 6.8 Nm (range 21.0 Nm to 43.9 

Nm).  For the submaximal target contractions, there was no difference in torque between 

the three runs [F(2, 26) = 0.49, p = 0.62] so the three runs were averaged for each 

intensity of torque (Figure 2.2A). Average torque was significantly different between 

each target torque intensity [main effect of force, F(3, 10) = 81.4, p < 0.001]. Men were 
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stronger than women [men vs. women; 35.7 ± 6.2 vs. 28.2 ± 6.1 Nm, t(12) = 2.29, p = 

0.041), but when normalized to the absolute maximal strength (MVC) they performed the 

contractions at similar intensities.  
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Figure 2.2. Torque and steadiness. (A). 

Average torque output at 10, 30, 50, and 

70% of MVC of the ankle dorsiflexor 

muscles. Most subjects traced the target 

line so that the standard errors were 

relatively small (ranged 0.011 to 0.102 for 

10% and 70% conditions respectively) 

compared with the mean force output. 

Average torque was significantly different 

between each target torque level (p < 

0.001); (B). Standard deviation (SD) of 

torque in men (closed circle) and women 

(open circle). The SD of torque increased 

as intensity of contraction increased from 

10 to 70% of MVC (p < 0.001); (C). 

Coefficient of variation (CV) of torque in 

men (closed circle) and women (open 

circle). CV at the 10% condition was 

significantly greater than the other 

conditions (p < 0.001). The CV decreased 

and was described as a quadratic trend (p 

< 0.001). There was no difference in 

torque, SD of torque, and CV of torque 

between the three runs (p > 0.05) and so 

all run data were averaged across each 

torque level. Shown are the means (± 

SEM). 
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Torque Fluctuations (Steadiness):  The SD of torque did not differ between the three runs 

[F(2, 26) = 1.65, p = 0.21] so SD from the three runs were averaged for each intensity of 

torque. The SD of torque increased with intensity of contraction from 10 to 70% of MVC 

[main effect of torque intensity, F(3, 11) = 42.0,  p < 0.001]  in a linear [F(1, 13) = 90.4, 

p < 0.001] and quadratic trend [F(1, 13) = 12.6, p = 0.004] (Figure 2.2B). There was no 

difference SD of torques between men and women [sex effect, F(1, 12) = 0.52, p = 0.48] 

across contraction intensities [sex × intensity interaction, F(3, 36) = 0.03, p = 0.99].  

To determine the CV, the amplitude of torque fluctuations (SD) was normalized 

to the mean torque exerted for each contraction intensity, for each participant.  There was 

no difference in the CV (%) between the runs [F(2, 12) = 0.83, p = 0.46] so the CV 

values from the three runs were averaged for each intensity of torque (Figure 2.2C).  CV 

of torque differed between intensities [main effect of torque intensity, F(3, 11) = 32.7,  p 

< 0.001] because the CV at the 10% MVC was greater than the other forces and with 

difference between 30% and 70% MVC. Thus, the CV decreased with intensity of force 

and best described as a quadratic trend [F(1, 13) = 83.0, p < 0.001] (Figure 2.2C).  There 

was no difference CV of torques between men and women [sex effect, F(1, 12) = 1.37, p 

= 0.27] across contraction intensities [sex × intensity interaction, F(3, 10) = 0.36, p = 

0.78].  

Brain Activation Areas 

ROI were generated and indicated that both cortical and subcortical regions were 

significantly activated during right ankle isometric dorsiflexion (See Table 2.1 and Figure 

2.3).  
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Table 2.1. Brain activation areas. Areas of brain activation during right ankle isometric dorsiflexion (n = 6 

men and 8 women). 

Brain Regions 

Cluster 

Size 

(µl) 

Coordinates 

(mm) 

Contraction vs. 

rest 

x y z t-score z-score 

L. Putamen 3247 27 4 13 6.52 4.35 

L. Lingual Gyrus 1219 14 67 -6 6.15 4.21 

L. Calcarine Gyrus 1157 4 67 12 5.9 4.12 

R. Cerebellum (III) 1138 -12 35 -22 6.36 4.29 

L. Paracentral Lobule (M1) (5mm from L. SMA) 800 4 15 56 6.04 4.17 

L. Su. Occipital Gyrus 582 11 85 4 5.92 4.12 

R. I. Parietal Lobule 542 -33 44 45 6.07 4.18 

R. Putamen 484 -30 0 11 5.77 4.06 

L. Su. Frontal Gyrus 368 22 13 53 6.07 4.18 

R. I. Frontal Gyrus  312 -49 -4 17 5.95 4.14 

L. I. Parietal Lobule 312 29 46 49 5.79 4.07 

L. Su. Occipital Gyrus 281 17 86 20 5.75 4.05 

R. Insula Lobe (Or R.I.F. G=Opercularis) 244 -41 -11 7 6.17 4.22 

R. Insula Lobe 236 -39 13 15 6.31 4.27 

L. Middle Cingulate Cortex 232 6 4 44 5.99 4.15 

L. Pallidum (3mm for putamen; 5 for Thalamus) 205 20 5 1 6.66 4.4 

R. I. Temporal Gyrus 195 -39 60 -5 5.8 4.07 

R: Right; L: Light; Su: Superior; I: Inferior; Regions are listed accordingly to their cluster size. Coordinates 

are used in mm in T-T Atlas space. The activation regions were thresholded with p < 0.0001 and an 

activation cluster minimum of 168.8 µl so that all included voxels had a t-value > 5.32.  
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Figure 2.3. Brain Activation Areas during Right Ankle Isometric Dorsiflexion. Activation 

areas were identified from contrasts between each contraction and rest. Cortical and subcortical 

regions activated during each contraction intensity were displayed in orange to yellow colors (t = 

6 to 10) on same slice, i.e. on axial, sagittal, and coronal plane (76, 74, 112). The activation 

regions were thresholded with p < 0.0001 for each voxel and an activation cluster minimum of 

168.8 μl so that all included voxels had a t-value > 5.32. 
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ROI Analysis using Activation Map 

Percent Signal Change (Intensity of BOLD Response) and Torque 

Left Putamen: There was a main effect of torque intensity for the mean PSC [F(3, 39) = 

3.38, p = 0.028]. The PSC increased linearly with greater contraction intensity [F(1, 13) = 

5.89, p = 0.030] so that the PSC of the 70% MVC was greater than the 10% MVC (p = 

0.036). The PSC also showed logarithmic and sigmoidal increases as the torque increases 

(logarithmic and sigmoidal; p = 0.041 and 0.048, respectively; Figure 2.4A). 

Right Cerebellum (III): There was a main effect of torque intensity for the PSC [F(3, 

11) = 4.56, p = 0.026]. The PSC increased linearly as contraction intensity increased 

[F(1, 13) = 12.4, p = 0.004] so that  PSC for the 50% and 70% MVC were greater than 

the 10% MVC (p = 0.032 and p = 0.003, respectively). The PSC also showed logarithmic 

and sigmoidal increases as the torque increases (logarithmic and sigmoidal; p = 0.001 and 

p < 0.001, respectively; Figure 2.4B). 

Left paracentral lobule/SMA: There was a main effect of torque intensity for the mean 

PSC [F(3, 39) = 6.28, p = 0.001].  PSC increased linearly with the increase in contraction 

intensity [F(1, 13) = 9.08, p = 0.010] so that the PSC for the 50% and 70% MVC were 

greater than for the 10% MVC (p = 0.022 and p = 0.011, respectively). The PSC also 

showed logarithmic and sigmoidal increases as the torque increases (logarithmic and 

sigmoidal; p = 0.045 and 0.037, respectively; Figure 2.4C). 

Left middle Cingulate Cortex: There was a main effect of torque intensity for the PSC 

[F(3, 39) = 4.34, p = 0.010]. PSC increased linearly with increased contraction intensity 

[F(1, 13) = 6.43, p = 0.025] so that the PSC for the 70% MVC was greater than for the 
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10% and 30% MVC (p = 0.040, 0.013 respectively). The PSC also showed logarithmic 

and sigmoidal increases as the torque increases (logarithmic and sigmoidal; p = 0.018 and 

0.011, respectively; Figure 2.4D). 

Left Pallidum: There was a main effect of torque intensity for the mean PSC [F(3, 11) = 

8.00, p  < 0.001]. The PSC increased linearly with increased contraction intensity [F(1, 

13) = 34.4, p < 0.001] so that the PSC for the 70% MVC was greater than all the other 

conditions (p = 0.001 to 0.035).  PSC for the 50% MVC was also greater than during the 

10% MVC (p = 0.049). The PSC also showed logarithmic and sigmoidal increases as the 

torque increases (logarithmic and sigmoidal; p = 0.002 and 0.008, respectively; Figure 

2.4E). 
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Figure 2.4. Percent signal change in Regions of Interest.  Percent signal change of regions of 

interest (ROI) that scaled with torque intensity. Shown are group mean (± SEM) of percent signal 

change during 10, 30, 50, and 70% of MVC torque conditions. (A). Left putamen (effect of 

torque, linearity respectively; p = 0.028, p = 0.03); (B). Right cerebellum III (p = 0.026, p = 

0.004); (C). Left paracentral lobule (p = 0.001, p = 0.01); (D). Left middle cingulate cortex (p = 

0.01, p = 0.025); (E). Left pallidum (p < 0.001, p < 0.001). 



45 
 

 

Sex Differences in Activation 

There were no sex differences in intensity of activation (PSC) in the activated 

areas tested except right inferior temporal gyrus where men showed a greater PSC than 

women during the 70% MVC [0.65 ± 0.25 vs. 0.32 ± 0.21 respectively; t(12)=2.623, p = 

0.022].   

Activation Volume (Voxel Number) 

Several regions showed activation of additional voxels as force increased from 

low to high intensities of contraction (See Table 2.2). These areas are detailed below.  

 

Table 2.2. Brain Areas with Increased Activation Volume.   Brain areas with increased 

activation volume during submaximal contractions with the right ankle isometric dorsiflexor 

muscles.  Areas that had significant linear increases in voxel number with increased force are 

shown.  

Regions for CA_N27_ML atlas Effect of Force Linear Trend 

L. Precentral Gyrus (primary motor cortex, M1) p > 0.05 p = 0.029 

R. Inferior Frontal Gyrus (p. Orbitalis) p = 0.02 p = 0.052 

L. Anterior Cingulate Cortex p = 0.002 p = 0.033 

L. Para Hippocampal Gyrus p > 0.05 p = 0.038 

L. Amygdala p > 0.05 p = 0.047 

R. Amygdala p > 0.05 p = 0.026 

L. Su. Occipital Gyrus p > 0.05 p = 0.069 

R. Su. Occipital Gyrus p = 0.037 p = 0.048 

R. Fusiform Gyrus p > 0.05 p = 0.044 

L. Postcentral Gyrus p > 0.05 p = 0.059 

R. Paracentral Lobule p > 0.05 p = 0.083 

L. Putamen p = 0.059 p > 0.05 

L. Thalamus p > 0.05 p = 0.094 

R. Inferior Temporal Gyrus p = 0.053 p > 0.05 

L. Cerebellum (IV-V) p = 0.085 p > 0.05 

R. Cerebellum (IV-V) p = 0.04 p = 0.023 

R. Cerebellum (VI) p = 0.059 p > 0.05 

R: Right; L: Light; Su: Superior; I: Inferior; The activation regions were thresholded with the 

average PSC value of whole activation area.  
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Right inferior frontal gyrus (p. Orbitalis): Activation volumes were 3928 ± 1544, 3077 

± 2010, 4663 ± 1973, 5091 ± 1930 voxels at 10, 30, 50, and 70% MVC intensities 

respectively. Activation volume increased with a greater torque intensity [main effect of 

torque intensity, F(3, 11) = 3.67, p = 0.020] in a strong linear trend [F(1, 13) = 4.01, p = 

0.052].  

Right superior occipital gyrus: Activation volumes were 2070 ± 1538, 1895 ± 1276, 

3105 ± 1586, 2949 ± 1771  voxels at 10, 30, 50, and 70% MVC intensities respectively. 

Activation volume increased with a greater torque intensity [F(3, 11) = 3.12, p = 0.037] 

in a linear trend [F(1, 13) = 4.781, p = 0.048]. 

Right cerebellum (IV-V): Activation volumes were 1725 ± 910, 1543 ± 1308, 2157 ± 

1045, 2580 ± 1032  voxels at 10, 30, 50, and 70% MVC intensities respectively. 

Activation volume increased with a greater torque intensity [F(3, 11) = 3.12, p = 0.040] 

in a linear trend [F(1, 13) = 6.64, p = 0.023]. 

Left anterior cingulate cortex:  Activation volumes were 3363 ± 1432, 1975 ± 1260, 

2471 ± 1186, 2120 ± 1099 voxels at 10, 30, 50, and 70% MVC intensities respectively. In 

contrast to other areas, the left anterior cingulate cortex showed a decrease in activation 

volume as torque intensity increased [main effect of torque intensity, F(3, 11) = 6.18, p = 

0.002]. The decrease was linear [F(1, 13) = 5.69, p = 0.033] so that the activation volume 

for 30, 50, and 70% MVC were significantly smaller than  for the 10% MVC (p = 0.002, 

p = 0.016, and p = 0.013, respectively). 
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Torque Fluctuations and BOLD PSC  

To gain insight into which areas of the brain were associated with the torque 

fluctuations during the submaximal contractions, we tested the association between the 

brain activity (BOLD signal intensity) and the magnitude of torque fluctuations, first with 

the SD of torque and then the CV. When all four intensities of contraction were pooled 

into the one analyses (n = 56), there were significant associations between the absolute 

torque fluctuations (SD) and mean PSC in several areas including the left putamen [r(56) 

= 0.36, p =0.007], left calcarine gyrus [r(56) = 0.30, p = 0.027], right cerebellum [r(56) = 

0.47, p < .001], M1/SMA (left paracentral lobule) [r(56) = 0.45, p < 0.001], left superior 

frontal gyrus, [r(56) = 0.29, p = 0.03], right insula [r(56) = 0.28, p = 0.031], left 

SMA/left middle cingulate cortex  [r(56) = 0.43, p = 0.001], and left pallidum [r(56) = 

0.42, p = 0.001] (Table 2.3). When the correlation analysis was performed at each 

contraction intensity (n = 14), significant associations were found at the 10% MVC in the 

left lingual gyrus [r(14) = -0.607, p = 0.021] , at the 30% MVC in the left occipital gyrus 

[r(14) = 0.740, p = 0.002] and right insula lobe [r(14) = 0.650, p = 0.012]. 

Because the SD of force covaries with intensities of contraction, the torque 

fluctuations were normalized to the mean torque (i.e. CV of torque) and associations with 

the various brain areas determined.  There were significant correlations with the mean 

PSC in several areas including the right inferior parietal lobule [r(56) = -0.278, p = 

0.038], right putamen [r(56) = -0.293, p = 0.028],  left superior frontal gyrus [r(56) = -

0.331, p = 0.013], and right insula [r(56) = -0.330, p = 0.013] (Table 2.4).  When a 

separate correlation analysis was performed for each contraction intensity, positive 

correlations were found for the 10% MVC in the right inferior parietal lobule [r(14) = -
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0.721, p = 0.004]; and for the 30% MVC, in the left superior frontal gyrus [r(14) = -

0.548, p = 0.042], left postcentral gyrus [r(14) = -0.793, p = 0.001], left SMA [r(14) = -

0.548, p = 0.042], and right middle supramarginal gyrus [r(14) = -0.672, p = 0.008].  

 

 

 

Table 2.3.  Correlations between torque fluctuations (SD) and PSC (N = 56; All 

torque conditions pooled) 

  
SD of 

Force 

L. 

Putamen 

L. 

Calcarine 

Gyrus 

R. 

Cereb 

L. 

M1 / 

SMA 

L. S. 

Frontal 

Gyrus 

R. 

Insula 

L.M. 

Cing 

Cortex 

L. 

Pallidum 

SD of 

Torque 
1 

        
L. Putamen .359** 1 

       
L. 

Calcarine 

Gyrus 

.295* 0.251 1 
      

R. 

Cerebellum 
.472** .613** .550** 1 

     
L. 

M1/SMA 
.451** .708** .582** .737** 1 

    
L. Su. 

Frontal 

Gyrus 

.290* .617** .530** .674** .815** 1 
   

R. Insula .277* .428** .735** .492** .700** .696** 1 
  

L.M. 

Cingulate 

Cortex 

.433** .545** .680** .668** .693** .546** .654** 1 
 

L. 

Pallidum 
.418** .426** .421** .601** .553** .479** .384** .561** 1 

Note. Cereb: Cerebellum; Cing Cortex: Cingulate Cortex; L: Left; R: Right; Su: Superior, M: Middle; * 

p < 0.05, **p < 0.01. 

 
 

Table 2.4.  Correlations between torque fluctuations (CV) and PSC (N 

= 56; All torque conditions pooled) 

  
CV of 

Torque 

R. I. 

Parietal 

Lobule 

R. 

Putamen 

L. S. 

Frontal 

Gyrus 

R. Insula 

CV of Torque 1 
    

R. I. Parietal Lobule -.278
*
 1 

   
R. Putamen -.293

*
 .567

**
 1 

  
L. Su. Frontal Gyrus -.331

*
 .477

**
 .615

**
 1 

 
R. Insula -.330

*
 .417

**
 .571

**
 .444

**
 1 

Note. L: Left; R: Right; Su: Superior; I: Inferior; * p < 0.05, **p < 0.01. 
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DISCUSSION 

This study determined those areas of the brain that were associated with lower 

limb force and steadiness during isometric contractions over a range of intensities in 

young men and women.  We found that activation in the primary motor and sensory 

cortices, basal ganglia and cerebellum scaled linearly with increased torque of the ankle 

dorsiflexor muscles, and similarly in men and women.  A unique and important finding of 

this study was that several motor areas (basal ganglia, cerebellum, M1/SMA, and insula) 

and some typically non-motor areas (superior frontal gyrus, cingulate cortex), increased 

in activation as fluctuations in torque increased in higher intensity contractions. 

Furthermore, in order to account for the increased intensity of contraction, we determined 

those areas of the brain that were associated with the fluctuations in torque when 

normalized to the mean target torque (CV).  The results indicate that the putamen, insula, 

contralateral superior frontal gyrus and ipsilateral inferior lobes play an important role in 

control of steadiness of the lower limb during target matching contractions.  The minimal 

sex differences in brain activation during the steady isometric contractions explain the 

similar steadiness of men and women during ankle dorsiflexion; these findings also 

corroborate other work (Hunter et al., 2006) that indicates men and women are similarly 

motivated and able to activate cortical centers during maximal and submaximal 

performance of motor tasks. 

Brain Areas Associated with Increased Contraction Intensity During Isometric 

Ankle Dorsiflexion  
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This study extended the current literature that has examined cortical activation of 

foot movements (Ciccarelli et al., 2005; Dobkin et al., 2004; Francis et al., 2009; Huda et 

al., 2008; MacIntosh et al., 2004; Orr et al., 2008) by identifying those activated areas 

that control for contraction intensity during an isometric task with the lower limb.  The 

BOLD PSC increased linearly as the level of contraction intensity increased for the lower 

limb in several cortical and subcortical regions including contralateral primary motor 

cortex/SMA, the putamen and palladium in the basal ganglia, the cingulate cortex, and 

ipsilateral cerebellum, with the greatest differences occurring between the 10% and 70% 

MVC contraction torques.  Activation volume did not increase in several of the motor 

regions (e.g. M1/SMA, basal ganglia) that showed greater PSC of the BOLD as 

contraction force increased.  Typically, the central nervous system uses two strategies to 

increases force: recruitment of motor units and rate coding of the motor unit (De Luca et 

al., 1982a; Monster & Chan, 1977; Van Cutsem et al., 1997).  For the tibialis anterior 

muscle recruitment of motor units is adopted to increase force across up to ~90% MVC 

(Van Cutsem et al., 1997) which is a larger recruitment range than intrinsic muscles of 

the hand such as the first dorsal interosseus which has a recruitment range to ~50% MVC 

(De Luca et al., 1982a). Our findings suggest that increased force of the tibialis anterior 

muscle and the recruitment of motor units are achieved by increased intensity of cortical 

activation in several key motor areas.  These areas are addressed below.  

BOLD signal intensity in M1/SMA increased linearly with intensity of 

contraction. This change in BOLD signal intensity for the low and moderate contraction 

intensities was also observed in several fMRI studies of the hand (Noble et al., 2011; 

Spraker et al., 2007; van Duinen et al., 2008). Although we did not see a significant 
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difference between 10 and 30% MVC as was observed by Keisker, et al, (2009) for 

dynamic power grip task, the increase was linear across the forces indicating that brain 

activation scaled appropriately between low and high forces to achieve greater motor unit 

recruitment required to increase the contraction intensity.    

The basal ganglia played a significant role in the control of force of the ankle 

dorsiflexor muscles similar to what is shown for hand muscles (Kinoshita et al., 2000; 

Spraker et al., 2007).  BOLD signal activity during hand contractions can vary 

substantially in the different nuclei of the basal ganglia according to the task 

requirements such as task selection and prediction, and amplitude and rate of the force 

(Prodoehl et al., 2009).  For example, Spraker, et al (Spraker et al., 2007) found that both 

the globus pallidus external (GPe) and the subthalamic nucleus scaled in activation 

intensity with increasing force amplitude, however, this was not the case for the globus 

pallidus internal (GPi), putamen and caudate nucleus.  Our results show a linear increase 

in activation intensity in the putamen with increased force with the lower limb muscles. 

Although we did not divide the globus pallidus into internal and external portions as 

others have for the hand exercise (Prodoehl et al., 2009; Spraker et al., 2007; Vaillancourt 

et al., 2007), we showed that the globus pallidus (pallidum) had a linear increase in 

BOLD signal with the increase of the force level as others have shown for the hand 

(Grafton & Tunik, 2011; Spraker et al., 2007; Vaillancourt et al., 2004; Vaillancourt et 

al., 2007).  

The cerebellum scaled linearly in intensity of activation as contraction force 

increased and in contrast to other motor areas, the volume of activation increased in this 

motor region.  Others have shown increased cerebellum activation with increased hand 
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muscle force (Keisker et al., 2009; Kuhtz-Buschbeck et al., 2008). The force-related 

activation in our study was mainly found in the anterior portion of the cerebellum, which 

is related to sensorimotor control (Manni & Petrosini, 2004; Stoodley & Schmahmann, 

2009; Stoodley & Schmahmann, 2010).  We also found force-related activation in the 

ipsilateral anterior lobe (lobule III and IV) which is thought to be related to sensory 

function in detecting pain (Iadarola et al., 1998). A growing number of studies support 

the hypothesis that the cerebellum influences not only the sensorimotor control of 

movement but also cognitive and emotional function (O'Reilly et al., 2010; Stoodley & 

Schmahmann, 2010).  Thus, the cerebellum along with other motor areas including the 

primary motor cortex, SMA and basal ganglia play a key role in modulating intensity of 

force of the lower limb, but the increase in activation and volume also may reflect its role 

in sensorimotor integration.   

Appropriate visual cortical centers were activated during the motor task 

performance because participants were required to utilize visual feedback and trace a 

horizontal cursor with the target torque presented via a rear-projection visual display 

system.  These visual areas activated however did not scale linearly with intensity of 

contraction. The visual areas activated during right ankle dorsiflexion during all tasks 

included the lingual gyrus, calcarine gyrus, and parietal lobule in both parietal and 

occipital lobes and each of these areas is known to be active in visual processing. The 

lingual gyrus was likely responsible for assisting with visual recognition of the target 

(Gron et al., 2000),  the calcarine gyrus (V1) for the central visual field and spatial 

attention (Martínez et al., 1999) and the parietal lobule likely contributed to the ability of 
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participants to respond to visual sensory input with appropriate motor output  (Clower et 

al., 2001).   

Cortical Areas Associated with Steadiness During an Isometric Contraction 

A novel finding of this study was the identification of brain areas that control 

maintenance of a steady contraction during a target matching task with the lower limb of 

young adults.  As expected the amplitude of the torque fluctuations (SD of torque) 

increased linearly with the level of absolute contraction force (Galganski et al., 1993; 

Moritz et al., 2005; Tracy, 2007a).  Accordingly, those motor areas of the brain that 

increased activation intensity between low and high forces, the basal ganglia, M1, SMA 

and cerebellum, were also those associated with the SD of the torque in both men and 

women.  One exception was the positive correlation with the PSC in contralateral 

calcarine gyrus where the primary visual cortex is located (Rajimehr & Tootell, 2008).  

Despite the linear correlation found in the visual area when all intensity conditions were 

pooled, the left lingual gyrus, which is also a visual area, showed a negative relation 

when correlation analysis was performed separately at each contraction intensity. The 

reduced activity of some visual areas as force increased may be related to the importance 

of the visual feedback in maintaining a steady contraction at the lower forces, although in 

young adults the effect of visual feedback is minimal compared with other populations 

such as older adults (Tracy, 2007b).    

Because the intensity of the PSC with increased SD of torque in several motor 

areas covaried with the contraction intensity, we also examined the CV of torque 

(amplitude of the fluctuations normalized to the mean torque). The CV of torque was 

greatest at the lowest intensity of contraction (10% MVC) (see Fig. 2C) for both men and 
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women as found for several upper and lower limb muscles  (Burnett et al., 2000; 

Jesunathadas et al., 2012; Jones et al., 2002; Laidlaw et al., 1999; Taylor, A. M. et al., 

2003; Tracy, 2007b).  Several areas including two motor areas, the putamen and 

contralateral superior frontal gyrus, as well as the insula, and ipsilateral inferior lobes 

were associated with the CV of force when all the contraction intensities were pooled.  

The putamen, in the basal ganglia, also showed increased PSC as contraction intensity 

increased (Fig 2.4A). Although not in this current study, the activation in the left superior 

frontal gyrus was also large during a lower force task of the hand (Kuhtz-Buschbeck et 

al., 2001), and was associated with force during a power grip task (Kuhtz-Buschbeck et 

al., 2008).   CV of force during isometric contractions is thought to be mostly mediated 

by low-frequency oscillations in neural drive (< 2-3 Hz) (Dideriksen et al., 2012; Negro 

et al., 2009) across a range of forces.  Thus, our data raises possibility that these motor 

regions, the putamen and the superior frontal gyrus, are sources or significant conduits of 

the low-frequency oscillating neural drive that influences the trains of action potentials 

and ultimately the CV of force.  

Both the left superior frontal gyrus motor region and the ipsilateral inferior lobes 

however showed the largest correlations between CV of force and activation for the 10% 

MVC task, which is the intensity that CV was largest across the intensities (r = -0.55 and 

-0.72 respectively).  The ipsilateral parietal lobule is typically involved in oculomotor and 

attention processes (Clower et al., 2001). This new finding with the lower extremity 

control supports the previous observation that visual processes can have a large influence 

on the motor variability and ability to hold a steady contraction at the lower forces 

(Aagaard, 2003; Prodoehl & Vaillancourt, 2010; Sosnoff & Newell, 2006b; Tracy, 
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2007b).  Further, at low forces up to 10%, synaptic noise and the resultant more variable 

motor unit discharge rates can contribute to the large CV of force (Dideriksen et al., 

2012; Negro et al., 2009). Motor unit discharge rate variability, however probably has its 

greatest influence on the CV at low forces in upper limb muscles and lesser effects in the 

tibialis anterior (Jesunathadas et al., 2012).   These findings also raise the possibility that 

along with the superior frontal gyrus (motor region), the ipsilateral parietal lobule, is also 

an important brain area involved in the increased CV at the lower forces during ankle 

dorsiflexion. 

No Sex differences in Brain Activation During Ankle Dorsiflexion 

Although men were stronger than women, there were no differences in the 

normalized motor performance tasks indicating that men and women contracted their 

ankle dorsiflexor muscles at similar relative intensities of force and displayed similar CV 

and changes in force fluctuations with contraction intensity.  Although there are 

widespread sex differences reported in the brain during cognitive and some motor tasks, 

we found that activation was similar for young men and women during ankle dorsiflexion 

for most motor areas. Only in the right inferior temporal gyrus did men display greater 

activation than the women during the highest contraction intensity (70% MVC).  The 

greater activation of temporal gyrus for men in this study is consistent with that for a 

finger tapping (Lissek et al., 2007). Our task was relatively simple; sex differences may 

become more apparent when the task complexity and greater cognitive component are 

involved (Lissek et al., 2007) or different muscle groups and postures are adopted.  Our 

results also indicate that men and women are similarly motivated and able to activate 

cortical motor centers during static tasks over a range of forces.    
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Conclusion 

Activation intensity (PSC) of several cortical and subcortical regions increased 

with contraction intensity during static ankle dorsiflexion including the primary motor 

cortex, basal ganglia and cerebellum. In general, activation volume did not increase in 

motor areas that demonstrated greater activation intensity, and indicating a minimal role 

of volume of activation in motor unit recruitment to achieve high forces.  Activation of a 

visual (ipsilateral parietal lobule) and motor (contralateral superior frontal gyrus) area 

were associated with the greater torque fluctuations (CV) at low forces, and therefore 

may play a role in control of steadiness especially during low intensity contractions in 

young adults.  Activation of the putamen (basal ganglia) was associated with both the CV 

of force and contraction intensity suggesting this area also plays a central role in the 

control of steady contractions across the range of forces.  Although men were stronger 

than women, they had similar normalized fluctuations in torque (steadiness) when 

executed in the supine position and primarily similar areas and intensities of brain 

activation across the range of low and high intensity contractions.  The minimal sex 

differences in brain activation during the steady isometric contractions indicate that 

young men and women are equally motivated and able to activate cortical motor centers 

during static tasks.   Therefore, the key cortical and subcortical brain areas that were 

identified in healthy men and women for control of lower limb steady contractions, could 

be targeted in future to determine impaired such as occurs with aging and neurologic 

conditions and enhanced function that can occur with physical training. 
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CHAPTER III 

 

 

Women are less steady than men during low-force isometric 

contractions of the lower extremity  

 
 

SUMMARY  

Although steady, controlled movements in the lower extremity are imperative 

when performing a basic functional activity such as walking, it is unclear if changes in 

cortical involvement during motor task performance influences lower limb force 

production and control in men and women differently.  To expose sex differences in 

cortical involvement during motor performance, we compared steadiness (force 

fluctuations) and fatigability of submaximal isometric contractions with the ankle 

dorsiflexor muscles in young men and women and with varying levels of cognitive 

demand imposed.  Sixteen young (8 men, 21.5 ± 2 yr., 8 women, 19.3 ± 1.5 yr.) attended 

three sessions in which they performed a 40 s isometric contraction at 5% maximal 

voluntary contraction (MVC) force followed by an isometric contraction at 30% MVC 

until task failure.  The cognitive demand required during the submaximal contractions in 

each session differed as follows: 1) high-cognitive demand session where difficult mental 

math was imposed (counting backward by 13 from a 4-digit number); 2) low-cognitive 

demand session which involved simple mental math (counting backward by one); and 3) 

control session with no mental math. Anxiety was elevated during the high-cognitive 

demand session compared with other sessions more so for the women than men (p<0.05).  

Women demonstrated greater force fluctuations than men during the very low (5% MVC) 
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force task (p = 0.005) and the moderate-force (30% MVC) fatiguing contraction (p = 

0.002) regardless of cognitive demand compared with men.  Women also demonstrated a 

similar time to task failure as men for the moderate-force task regardless of cognitive 

demand (6.2 ± 2.4 and 6.7 ± 2.1, respectively; p = 0.060).  These findings suggest that 

both young men and women are more able to successfully achieve a difficult cognitive 

task and a target matching motor task with the lower limb than with the upper limb. 

INTRODUCTION 

Decreased steadiness (increased force fluctuations) during sustained low-to-

moderate force isometric contractions can negatively impact achievement of a goal-

directed movement (Enoka et al., 2003), and potentially interfere with performance of 

work-related or functional tasks.  For example, decreased hand steadiness diminishes 

manual task precision (Endo & Kawahara, 2011) and decreased ankle steadiness may 

increase postural sway in the lower extremity (Kouzaki & Shinohara, 2010), potentially 

leading to increased fall risk particularly in adults with neurological disorders such as 

multiple sclerosis (Cameron & Lord, 2010; Findling et al., 2011) and with older adults 

(Fernie et al., 1982).  The ability to sustain steady low and moderate force contractions 

can be influenced by a variety of factors which can include advanced age (Galganski et 

al., 1993; Laidlaw et al., 2000), fatigue (De Luca et al., 1982b; Singh et al., 2010), 

arousal (Lorist et al., 2002; Noteboom, Barnholt, et al., 2001),  intensity and type of 

contraction (Cresswell & Loscher, 2000; Griffith et al., 2010; Semmler et al., 2007), and 

muscle group (Hunter, Yoon, et al., 2008; Jesunathadas et al., 2012; Tracy, Mehoudar, et 

al., 2007).  The participant’s sex may also contribute to decreased steadiness when 
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contractions are sustained at the same relative intensity; however the influence of sex is 

still unknown. 

It is unclear if there is a steadiness sex difference because much of the literature 

on steadiness neglects to examine if sex differences exist or reports mixed results.  For 

example, when performing submaximal isometric contractions, women are reported to be 

more (Endo & Kawahara, 2011), less (Brown et al., 2010; Brown et al., 2009; Grunte et 

al., 2009), or similarly (Baweja et al., 2009) steady compared with men. For example, 

women demonstrated greater overall force fluctuations during isometric elbow flexion 

contractions than men across multiple force levels (between 2.5 and 75% of maximal 

voluntary contraction (MVC) force (Brown et al., 2010).  In contrast, Tracy (2007a) 

found differences in force fluctuations between opposing ankle muscle groups (ankle 

dorsiflexion and plantarflexion) but no sex differences between young or older adults for 

forces ranging between 2.5% and 80% MVC force.  The first study of this dissertation 

showed minimal differences in CV of force between the sexes for the ankle dorsiflexors 

in a stable supine position.  Given the disparity of results and the lack of attention to the 

possibility of sex differences in steadiness, it remains unclear if women are less steady 

than men when performing submaximal isometric contractions.   

Mechanism responsible for force fluctuations across the range of forces between 

low and high intensities isometric contractions is primarily the low frequency oscillations 

of trains of motor units with some contribution  of the motor neuron discharge rate 

variability and motor unit properties especially at low forces (Barry et al., 2007; 

Dideriksen et al., 2012; Jesunathadas et al., 2012; Moritz et al., 2005; Negro et al., 2009).  

At low forces (< 10% MVC) several muscles including those in the lower limb have 
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larger force fluctuations normalized to the target force (CV of force) than moderate to 

high force fluctuations (Dideriksen et al., 2012).  The low frequency oscillations of the 

trains of motor units appear to originate from descending and afferent inputs (Negro et 

al., 2009).  The first study of this dissertation suggests some of those descending inputs to 

the motor neuron pool may originate from or are associated with both motor and non-

motor areas of the brain including the ipsilateral parietal lobule, putamen, insula, and 

contralateral superior frontal gyrus (Chapter 2) (Yoon et al., 2014).  How these inputs 

differ between populations (e.g. men and women, young and older adults) who differ in 

motor unit properties (Doherty, 2003; Hunter, 2014), and their effects on steadiness is not 

known.    

Altering descending inputs to the motoneurone pool occurs during altered states 

of arousal and fatigue.  Women have reduced steadiness with upper limb muscles 

compared with men when arousal is increased by electric shocks to the back of the hand 

(Christou et al., 2004), and increased cognitive demand (mental math) (Noteboom, 

Fleshner, et al., 2001).  Further, for the elbow flexor muscles, steadiness is reduced and 

fatigability increased for both men and women when the cognitive demand is imposed 

during a low-force (20% MVC) isometric task (Keller-Ross, Pruse, et al., 2014; Yoon et 

al., 2009).  However, women demonstrated increased in fatigability compared with men 

and the increased fatigability was related to initial absolute strength (Keller-Ross, Pruse, 

et al., 2014; Yoon et al., 2009). Whether such differences in fatigability exist for a lower 

limb muscle where the number of corticospinal connections are less than for the upper 

limb (Brouwer & Ashby, 1990) and fatigability is less dependent on initial strength than 

the elbow flexor muscles (Hunter, 2014) is not known.   
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The first purpose of this study was to determine the influence of increased 

cognitive demand on the time to task failure for a submaximal contraction of the ankle 

dorsiflexors in men and women. The second purpose was to examine the influence of 

varying levels of cognitive demand on the amplitude of force fluctuations during a very 

low force (5% MVC) and moderate-force (30% MVC isometric contractions in the ankle 

dorsiflexor muscles in men and women.  Increased cognitive demand has been shown to 

increase force fluctuations in women more so than in men prior to contractions in the 

elbow flexors; thus, we hypothesize that women will demonstrate greater force 

fluctuations than men during ankle dorsiflexion and this would increase even further with 

exposure to high cognitive demand.    

MATERIALS AND METHODS 

Sixteen young adults (8 men, 8 women; 18 - 24 years) participated in the study 

(see Table 3.1 for physical characteristics).  All participants were healthy with no known 

neurological or cardiovascular diseases and were naïve to the protocol.  Both men and 

women had low-to-moderate levels of anxiety (trait) (29.0 ± 8.1; 34.8 ± 7.9; p 0.16) 

according to the State-Trait Anxiety Inventory (STAI) (Spielberger, 2010) and reported 

no history of or current mental or psychological pathology, including anxiety or 

depressive disorders. Participants were right-leg dominant (0.72 ± 0.22 vs.0.77 ± 0.17 for 

men and women respectively, with a ratio of 1 indicating complete right-leggedness) as 

estimated using the Edinburgh Handedness Inventory (Oldfield, 1971).   The physical 

activity level for each participant was assessed with a questionnaire that estimated the 

relative kilocalorie expenditure of energy per week (Kriska & Bennett, 1992).  Prior to 
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participation, each subject provided informed consent, and the protocol was approved by 

the Institutional Review Board at Marquette University.   
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Table 3.1.  Participant Physical Characteristics and Results.   Participant characteristics and age group 

means for control, low-cognitive demand (Low-CD) and high-cognitive demand (High-CD) sessions for 

women and men. Variables reaching significance for main effect of sex are indicated by the asterisk (*).   

 
* Variables reaching statistical significance for main effect of age (p < 0.05).  PAQ = Physical Activity 

Questionnaire, STAI = State-Trait Anxiety Index, MVC = Maximal Voluntary Contraction, CV = 

Coefficient of Variation, TA = Tibialis Anterior, Gastroc = Gastrocnemius, EMG = Electromyography. 

Variable  Session Women Men P

Number of subjects 8 8

Age (years) 19.3 ± 1.5 21.5 ± 2 0.024*

Height (cm) 170 ± 6.2 167.8 ± 33.9 0.861

Weight (kg) 60.1 ± 6.0 88.8 ± 34.1 0.034*

Physical Activity (PAQ) 73.3 ± 44.7 45.7 ± 26.7 0.156

Baseline Trait STAI Scores 39.1 ± 7.5 33.8 ± 5.7 0.129

Baseline State  STAI Scores  34.9± 7.9 29 ± 8.1 0.163

Control 16.8 ± 2.7 28.1 ± 4.9 0.0001*

Low-CD 17.01 ± 2.4 27.3 ± 5.3 0.0001*

High-CD 16.9 ± 2.4 28.6 ± 6.5 0.0001*

Total 16.9 ± 2.5 28.0 ± 5.4 0.0001*

Control 95.6 ± 3.1% 96.8 ± 10.3% 0.757

Low-CD 94.1 ± 2.3% 96.6 ± 4.5% 0.19

High-CD 94.5 ± 3.9% 95.1 ± 4.1% 0.787

Total 96.2 ± 6.6% 94.7 ± 3.1% 0.476

Control 6.4 ± 1.7 5.8 ± 2.6 0.575

Low-CD 6.1 ± 2.2 6.1 ± 1.9 0.974

High-CD 7.4 ± 2.5 6.8 ± 2.7 0.627

Total 6.7 ± 2.1 6.2 ± 2.4 0.748

Control 5.4 ± 1.1 3.6 ± 0.5 0.001*

Low-CD 5.1 ± 0.8 3.8 ± 0.4 0.002*

High-CD 5.3 ± 0.7 3.9 ± 0.6 0.001*

Total 5.26 ± 0.8 3.8 ± 0.5 0.0001*

Control 23.2 ± 3.3 23.7 ± 5.6 0.826

Low-CD 23.2 ± 3.1 23.6 ± 6.8 0.885

High-CD 25 ± 2.4 23.3 ± 3.9 0.308

Total 23.8 ± 2.9 23.6 ± 5.3 0.882

Control 8.1 ± 8.2 12.5 ± 11.1 0.381

Low-CD 12.2 ± 10.8 10.7 ± 11 0.791

High-CD 6.8 ± 7.8 12.0 ± 10.9 0.292

Total 9.0 ± 8.9 11.7 ± 10.5 0.473

Control 1.5 ± 1.1 0.93 ± 0.25 0.142

Low-CD 1.2 ± 0.51 0.92 ± 0.39 0.231

High-CD 1.0 ± 0.36 0.87 ± 0.15 0.254

Control 0.87 ± 0.49 0.91 ± 0.29 0.84

Low-CD 0.77 ± 0.25 0.80 ± 0.21 0.809

High-CD 0.76 ± 0.30 0.71 ± 0.16 0.672

Coactivation Ratio – TA:Gastroc 

Coactivation Ratio – TA:Soleus 

MVC Torque* (Nm)

MVC Torque Recovery               

(mean % of initial)

Time to Task Failure (min)

30% MVC CV of Torque* (%)

TA EMG* (% MVC)

TA EMG Bursting Activity 

(bursts/min)
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Each participant reported to the laboratory on four occasions to perform a 

protocol that involved a fatiguing contraction with the left ankle dorsiflexor muscles: 

once for a familiarization session and three experimental sessions (control, low-cognitive 

demand and high-cognitive demand sessions), with each experimental session being at 

least 5 days apart.  During the low-cognitive demand and high-cognitive demand 

sessions, each participant performed either a simple mental math task (low-cognitive 

demand session) or difficult mental math task (high-cognitive demand session) at rest, 

and also while  performing isometric contractions at 5% maximum voluntary contraction 

(MVC) force (40 s duration) and a 30% MVC for as long as possible until task failure 

(Figure 3.1).  During the control session, each participant performed the motor tasks 

without performing any mental math.  Session order was counterbalanced among 

participants within each age group.   

 

 

 
 

Figure 3.1. Experimental protocol. The top panel illustrates the order of tasks performed by each 

participant with the ankle dorsiflexor muscles. Maximal voluntary contractions (MVC) (solid bars) were 

performed at the beginning of the experimental session and during recovery (immediately after the 

fatiguing contraction and at 1, 2, 5, and 10 min of recovery).  The fatiguing contraction (30% MVC), 

symbolized by the hatched rectangle, was performed until task failure by each participant. The bottom 

panels indicate with arrows when the State-Trait Anxiety Inventory (STAI; 4 times) was performed and the 

Visual Analog Scale (VAS) for anxiety and stress were recorded (at 7 time points, T1 – T7).  The 

schematic is not to scale for time or force. 
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Mechanical Recording of Force. Each participant was seated upright in an 

adjustable chair (Biodex Medical Systems, NY) with the hip and knees at 90° of flexion. 

The setup is similar to that described elsewhere (Griffith et al., 2010).  In brief, the left 

foot rested on a footplate in a custom made dynamometer to measure forces of the lower 

leg, with the ankle in a neutral position (0° dorsiflexion).  The foot was secured to the 

footplate via a strap placed over the anterior aspect of the ankle and another strap placed 

1–2 cm proximal to the metatarsophalangeal joint.  Isometric force of the dorsiflexor 

muscles was recorded using a force transducer (Transducer Techniques, Temecula, CA) 

and recorded online at 500 Hz using a Power 1401 analog-to-digital (A/D) converter and 

Spike2 software (Cambridge Electronics Design (CED), Cambridge, UK).  Force 

displayed on a 19-inch monitor was located at eye level 1.5 m in front of the participant.  

Each participant was asked to trace a horizontal cursor placed in the middle of the screen 

with the force signal as it appeared on the screen from the right side of the monitor.  

Electrical Recordings. Whole muscle EMG signals of the tibialis anterior, medial 

head of the gastrocnemius, soleus, and rectus femoris were recorded using bipolar surface 

electrodes (sintered pellet Ag-AgCl, 8mm diameter, with 20 mm between electrodes) 

taped to the skin over the bellies of each muscle.  Reference electrodes were placed on 

the patella. The recording electrodes on each muscle were placed in line with the muscle 

fibers and in accordance with locations recommended by the European 

Recommendations for Surface Electromyography (Hermens et al., 2000). The EMG 

signals were amplified (1,000 x) and band-pass filtered (13 –1,000 Hz) with Coulbourn 

bioamplifiers (Coulbourn Instruments, Allentown, Pennsylvania) prior to being recorded 

directly to a computer using the Power 1401 and Spike2 software (CED). The EMG 
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signals were digitized at 2,000 samples/s and analyzed offline using Spike2 software 

(CED). 

Cardiovascular Measurements. Heart rate and blood pressure were monitored 

during submaximal and fatiguing contractions and periods of rest or mental math with an 

automated beat-by-beat blood pressure monitor (Finapres 2300, Datex-Ohmeda, 

Louisville, CO). The blood pressure cuff was placed around the middle finger of the left 

hand, and the arm was placed on a platform to maintain the hand at heart level. Blood 

pressure was sampled at 500 samples/s and collected online to PC using Spike2 software 

(CED). 

Cognitive Assessment of Anxiety and Stress. Cognitive levels of anxiety and stress 

were assessed throughout the protocol using a visual analogue scale (VAS) (Yoon et al., 

2009) and the state portion of the STAI questionnaire (Spielberger, 2010).  Each VAS 

(one for anxiety and another for stress) had a 10-cm line anchored at the far left by 

“none” and at the far right by “as bad as it could be.”  The right anchor corresponded to 

the most stressful or most anxious moment in the life of the participant. Anxiety was 

defined as the participant’s negative feelings regarding the immediate future, whereas 

stress represented the physical changes (e.g., increase in heart rate and perspiration) 

occurring during the test perceived by the participant that were above and beyond the 

expectation for their level of exertion (Christou et al., 2004). VAS for anxiety and stress 

were recorded at seven time points (T1 - T7) during the protocol: one baseline assessment 

before intended arousal (T1); during the rest period after each 2 × 2-min bout of mental 

math (low-cognitive demand or high-cognitive demand  session) or quiet rest (control 

session) (T2, T3); immediately after the 5% MVC submaximal contraction (T4); 
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immediately after the fatiguing contraction/MVC (T5); and 5 and 10 min after the 

fatiguing contraction (T6, T7) (Figure 3.1).  

The state portion of the STAI- questionnaire consisted of 20 statements that 

required a response on a four-point Likert-type scale. Baseline trait and state assessments 

were conducted during the familiarization session.  There was no significant difference 

between young and older adults in baseline trait STAI scores (p = 0.54) or baseline state 

STAI scores taken during the familiarization session (p = 0.66) (Table 3.1).  State STAI 

assessments were also conducted at four different time points during the experimental 

protocol: baseline assessment before arousal; after 2 × 2-min bouts of quiet sitting 

(control session) or mental math (low-cognitive demand and high-cognitive demand 

sessions); immediately after the fatiguing contraction/MVC; and 10 min after completion 

of the fatiguing contraction (Figure 3.1). 

Cognitive Demand Conditions. Difficult mental math is an established 

psychosocial technique used to induce cognitive demand (Kajantie & Phillips, 2006) and 

was used for the high-cognitive demand task (Noteboom, Fleshner, et al., 2001).  Each 

participant performed serial subtraction from a four-digit number by 13 with one 

response required every 3 s (Noteboom, Fleshner, et al., 2001). If the participant made an 

error in serial subtraction or was unable to provide the correct answer within 3 s, they 

were asked to restart the mental math from the first number in the series. After three 

errors, the investigator asked the participant to begin with a new four-digit number.  The 

simple mental math task, performed during the low-cognitive demand session, was 

designed to increase cognitive demand above control without elevating arousal.  

Participants serially counted backward by 1’s from 50 to 0 at a slow, even pace.  If the 
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participant made an error in counting, they were asked to restart counting from 50.  

During the control session participants were instructed to rest quietly during the 2 × 2-

min bouts, 5% MVC submaximal contraction (40 s) and 30% MVC fatiguing contraction.  

During the low-cognitive demand and high cognitive demand sessions, participants 

performed the mental math task while at rest (2 × 2-min bouts), and then continuously 

during the 5% MVC submaximal contraction and 30% MVC fatiguing contraction until 

task failure.   

Experimental protocol. The protocol for each experimental session (control, low-

cognitive demand and high-cognitive demand sessions) involved procedures in the 

following order: 1) MVCs of the ankle dorsiflexor, ankle plantarflexor and knee extensor 

muscles; 2) assessment of cognitive and physiological arousal before and after 2 × 2-min 

bout of either quiet sitting (control session), simple mental math (low-cognitive demand 

session), or difficult mental math (high-cognitive demand session); performance of: 3) 

one submaximal isometric contraction at 5% MVC force sustained for 40 s with 

assessment of cognitive and physiological arousal immediately following the contraction; 

4) a submaximal fatiguing isometric contraction at 30% MVC force sustained until task 

failure; and 5) recovery MVCs immediately following the fatiguing contraction, and at 1, 

2, 5, and 10 min recovery with assessment of anxiety and stress levels (Figure 3.1). 

Participants performed two MVCs of the knee extensor and plantar flexor muscles 

each at the beginning of each experimental session in order to obtain peak EMG for the 

gastrocnemius, soleus and rectus femoris muscles. Participants rested for 60 s between 

each trial. For both muscle groups, MVCs were performed with the participant seated in a 

position the same as for testing the ankle dorsiflexors muscles (described above). The aim 
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was to obtain peak EMG values for each muscle group: forces were not recorded during 

these contractions for knee extension and plantar flexion.  Each participant was asked to 

push as hard as possible against an immovable restraint for 3–4 s to activate either the 

knee extensor or ankle plantar flexor muscles.  For the knee extensor muscles, manual 

resistance was applied to the distal leg (just above the lateral malleolus) so that the lower 

leg was restrained at 90° of flexion while the participant performed maximal knee 

extension.  For the ankle plantar flexor muscles, the foot of each participant was placed 

on the footplate, and vertical movement was minimized during each MVC by a block that 

eliminated movement of the footplate. The MVC trial with the greatest amount of EMG 

activity was used to normalize the EMG recordings during the fatiguing contractions of 

the rectus femoris, medial head of the gastrocnemius, and soleus muscles. 

Participants performed three to four MVC trials with the ankle dorsiflexors while 

their foot was attached to the footplate. Each participant was asked to dorsiflex as hard as 

possible for 3–4 s. Participants were given visual feedback on a display monitor and 

strong verbal encouragement to achieve and maintain maximal force. Participants rested 

for 60 s between each trial. If the peak force achieved for two of the first three trials was 

not within 5% of each other, additional trials were performed until this criterion was met. 

The greatest MVC force achieved with the ankle dorsiflexor muscles was used as the 

reference to calculate the target level for both the submaximal contractions at 5% MVC 

and the fatiguing contraction at 30% MVC.  The MVC with the greatest amount of EMG 

activity was used to normalize the EMG recordings during the fatiguing contractions of 

the tibialis anterior muscle.  MVCs of the ankle dorsiflexor muscles were also performed 

during recovery (Figure 3.1).   



70 
 

 

A fatiguing contraction was performed with the ankle dorsiflexor muscles at 30% 

MVC during each experimental session.  Each participant was asked to trace a horizontal 

cursor with the force signal as it appeared on the screen from the left side of the monitor 

in order to match the vertical target force as displayed on the monitor.  Participants were 

encouraged to sustain the force for as long as possible.  The fatiguing contraction was 

terminated when the force declined by 10% of the target force. To minimize the influence 

of transient fluctuations in motor output on the criteria for task failure, the task was 

terminated only after force fell below the predetermined threshold for 2.5 s of a 5 s 

interval. Participants were not informed of their time to task failure.  

Rating of perceived effort (RPE) was assessed using the modified Borg 10-point 

scale (Borg, 1982). Each participant was instructed to focus their assessment of effort on 

the ankle muscles performing the fatiguing task. The scale was anchored so that 0 

represented the resting state and 10 corresponded to the strongest contraction that the 

ankle muscles could perform. The RPE was recorded at the beginning of the fatiguing 

contraction and every minute thereafter until task failure. In order to obtain RPE while 

the participant was performing mental math during the low-cognitive demand and high-

cognitive demand sessions, the participant was interrupted and asked to report their RPE. 

After reporting their RPE, participants resumed the mental math task of serial counting 

from 50 to 0 during the low cognitive demand session or serial subtraction using a new 4-

digit number during the high cognitive demand session. 

Data Analysis 

All data collected during the experiments were recorded online using a Power 

1401 A/D converter and analyzed using Spike2 (CED).  The MVC torque was quantified 
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as the average value over a 0.5-s interval that was centered about the peak.  The torque 

for the MVCs, submaximal and fatiguing contractions was calculated as the product of 

force and the distance between the ankle joint and the point at which the ankle was 

attached to the force transducer.  The maximal EMG for each muscle was determined as 

the root mean square (RMS) value over a 0.5-s interval about the same peak interval of 

the MVC torque measurement. The maximal EMG value of the involved muscles was 

then used to normalize the RMS EMG values recorded during the fatiguing contraction. 

The RMS value of the 5% MVC dorsiflexion task was averaged for each muscle over the 

middle 30 s of the 40 s contraction for the tibialis anterior, medial gastrocnemius, soleus 

and rectus femoris. During the 30% MVC fatiguing contraction, the RMS EMG signal 

for each muscle was quantified at the following time intervals: the first 30 s; 15 s on both 

sides of 25, 50, and 75% of time to task failure; and the last 30 s of the task duration. The 

EMG activity of each muscle was normalized to the RMS EMG value obtained during 

the MVC for each respective muscle. The level of coactivation was quantified by 

calculating the ratio between the RMS EMG (% peak) of the agonist muscle (tibialis 

anterior) and antagonist muscle (medial gastrocnemius or soleus) (Coactivation = 

antagonist/agonist x 100) [e.g. (Griffith et al., 2010)]. 

To quantify the bursts of EMG activity of the tibialis anterior during the 30% 

MVC fatiguing contraction, the EMG signal was first rectified, smoothed (averages of 1-s 

duration, 500 data points), and then differentiated over 0.25-s averages.  The 

differentiated signal represents the rate of change and was used to identify rapid changes 

in the rectified and smoothed EMG signal. The threshold for establishing if a burst of 

EMG had occurred was determined by first finding the minimum SD of the differentiated 
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EMG during the fatiguing contraction using a 30-s moving window; the threshold was 

then defined as the mean + 3 SD of the minimum differentiated signal. The minimal burst 

duration was 0.1 s. The EMG bursting activity (bursts/min) was quantified for five 

continuous intervals of 20% of the time to task failure. 

The amplitude of the force fluctuations was quantified as the coefficient of 

variation (SD/mean × 100) for the 5% MVC task and 30% MVC fatiguing contraction. 

The fluctuations in force during the 5% MVC task were quantified over the middle 30 s 

of the 40 s contraction and for the fatiguing contraction at 30% MVC for five continuous 

intervals of 20% of the time to task failure.     

Mean arterial pressure (MAP) and heart rate (HR) were evaluated only on 

participants not currently taking blood pressure medications with normal blood pressure.  

MAP and HR recorded during the 30% MVC fatiguing contraction were analyzed by 

comparing ~15 s averages at 25% intervals throughout the fatiguing contraction; during 

the 5% MVC submaximal contraction they were quantified over the middle 30s of the 

40s contraction. For each interval, the blood pressure signal was analyzed for the mean 

peaks [systolic blood pressure (SBP)], mean troughs [diastolic blood pressure (DBP)], 

and number of pulses per second (multiplied by 60 to determine heart rate). MAP was 

calculated for each epoch with the following equation: MAP = DBP + ⅓ (SBP - DBP).  

Rate pressure product (RPP) was calculated as the product of heart rate and MAP for the 

equivalent time periods as stated above.   

Statistical Analysis  

Data were reported as means ± SD within the text and displayed as means ± SE in 

the figures. Repeated measures ANOVAs, with sex (men and women) as a between-
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subject factor, were used to compare the various dependent variables. Repeated measures 

factors during different tests included session (control, low-cognitive demand and high-

cognitive demand) and either fatigue (pre-, post-fatiguing contraction), recovery 

(immediately after fatiguing task failure, 1 min, 2 min, 5 min, and 10 min after fatiguing 

task failure) or time (state STAI scores were taken at baseline, after 2 × 2-min of quiet 

sitting or dual task, fatiguing contraction and 10 min recovery; VAS was taken at 

baseline, after each 2 min of quiet sitting or dual task, 5% submaximal contraction, 

immediately after task failure, and at 5 min and 10 min of recovery (T1 – T7; Figure 3.3).  

Post hoc analyses (Tukey) were used to test for differences among pairs when 

appropriate. Independent t-tests (one-tailed) were used to compare subject physical 

characteristics, percent decline in MVC force across the fatiguing tasks, and rates of 

increase in various dependent variables as a function of absolute time. A significance 

level of p < 0.05 was used to identify statistical significance.  Time to task failure was 

compared across sessions using repeated measures ANOVA with sex as a between group 

factor. The contribution of several variables to time to task failure was analyzed using 

multiple linear regressions. These variables included the rate of change in RMS EMG 

activity of each muscle, EMG bursting activity of the tibialis anterior, MAP, heart rate, 

RPE, fluctuations in force, and MVC force (SPSS version 22). 

RESULTS 

MVC Torque 

At baseline, men were stronger than women (28.0 ± 5.4 Nm vs. 16.9 ± 2.5 Nm; 

sex effect, p = 0.0001) on all three days of testing (Table 3.1).  The relative reduction (%) 
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in MVC torque after the fatiguing contraction was similar across sessions (session effect, 

p = 0.539), and similar for men and women (sex effect, p = 0.0476). During recovery, 

MVC torque increased to near baseline levels within 10 minutes of completing the 

fatiguing contraction similarly for men and women across all sessions (session × sex, p = 

0.407; Table 3.1). Furthermore, at the end of the recovery period, relative strength was 

similar men and women (p > 0.05). 

Arousal 

State STAI Scores.  Men and women demonstrated similar baseline state STAI 

scores prior to each experimental session (p = 0.163; Table 3.1).  State STAI scores taken 

immediately after the 2×2-min bout were significantly elevated after the high-cognitive 

demand session compared with the control and low-cognitive demand sessions (p < 

0.0001), but there was no interaction (session × sex, p = 0.064), or difference between 

men and women (sex effect, p = 0.140).  State STAI scores taken immediately after the 

fatiguing were significantly elevated for women compared to men across sessions 

(session × sex, p = 0.003; Figure 3.2), but there was no main effect of sex (p = 0.318); 

scores taken during recovery were similar across sessions for men and women (session, p 

= 0.349; sex effect, p = 0.995; session × sex, p = 0.334).  State STAI scores were higher 

for women than men after the fatiguing contraction during the high-cognitive demand 

session (women, 56.6 ± 11.9; men, 42.6 ± 11.1; p = 0.029). 
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State STAI Scores
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Figure 3.2.  State STAI scores.  State STAI scores for men (closed symbols) and women (open 

symbols) during the control, low-cognitive demand (low-CD) and high-cognitive demand (high-

CD) sessions.  The values shown are mean ± SE.  State STAI scores taken immediately after the 

fatiguing were significantly elevated for women compared to men across sessions (session × sex, 

p = 0.003). 

 

VAS for Stress and Anxiety. There was no difference between men and women for 

baseline stress and anxiety VAS taken at the beginning of each session (p > 0.05).  Stress 

and Anxiety VAS were greater during the high-cognitive demand session than control 

and low-cognitive demand sessions (session, p = 0.0001), and over time (time, p = 0.001, 

p = 0.002), but there were no sex differences (sex effect, p = 0.744, p = 0.899) and no 

interactions (p > 0.05).  VAS for stress and anxiety were elevated after the 2×2 bout, and 

5% MVC contraction during the high-cognitive demand session compared with the 

control and low-cognitive demand sessions (session, p < 0.05), but there were no sex 

differences (sex effect, p > 0.05) and no interactions (session × sex, p > 0.05; Figure 3.3). 

Both stress and anxiety scores were significantly elevated after the fatiguing contraction 
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across all three sessions (session, p = 0.0001), and although there were no interactions for 

stress (session × sex, p > 0.05), anxiety was significantly higher for women across 

sessions than men (session × sex, p = 0.040).    
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Figure 3.3.  Visual Analogue Scale (VAS) scores for anxiety (A) and stress (B).  Mean (±SE) VAS 

scores for young adults (closed symbols) and older adults (open symbols) are shown for anxiety (A) and 

stress (B) throughout the experimental protocol during the control session (circles), low-cognitive demand 

session (Low-CD, triangles), and high-cognitive demand session (High-CD, squares).  Time intervals were 

as follows: baseline (T1), after the first bout of 2 min of quiet rest/mental math (T2), after the second bout 

of 2 min of quiet rest/mental math (T3), after the 5% submaximal contraction (T4), during recovery 

immediately after task failure (T5), and then at 5 min (T6) and 10 min of recovery (T7).   
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Low-Intensity Sustained Contraction (5% MVC) 

Fluctuations in Torque. Women had greater fluctuations in torque (CV) than men 

across all three sessions (sex effect, p = 0.005).  Women demonstrated greater 

fluctuations in torque than men because the interaction did not reach significance (linear 

trend interaction, session × sex, p = 0.060; Figure 3.4).  Fluctuations in force were 

negatively correlated with strength during the control session (r
2
 = -0.863, n = 15, p = 

0.0001), and the low-cognitive demand session (r
2
 = -0.719, n = 15, p = 0.002), but not 

during the high-cognitive demand session (r
2
 = -0.437, n = 15, p = 0.104).  
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Figure 3.4.  Mean Session Coefficient of Variation (CV) of Torque during the 5% MVC Task. Mean 

Session Coefficient of Variation (CV) of Torque during the 5% MVC Task for men (closed symbols) and 

women (open symbols) during the control, low-cognitive demand (Low-CD), and high-cognitive demand 

(High-CD) sessions. Women had greater fluctuations in torque (CV) than men across all three sessions (sex 

effect, p = 0.005) during the 5% MVC task.   
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Mean arterial pressure and heart rate. Mean arterial pressure during the 5% 

MVC contraction was significantly higher during the high-cognitive demand session 

(99.4 ± 14.0 mmHg) than the low-cognitive demand session (93.9 ± 8.9 mmHg) and the 

control session (86.4 ± 10.1 mmHg; session effect, p = 0.003), but there was no influence 

of sex on mean arterial pressure (sex main effect, p = 0.258).  Heart rate was similar 

across sessions (p = 0.073) for men and women (p = 0.73). Rate pressure product was 

significantly higher during the high-cognitive demand session (session, p = 0.002), but 

there was no difference between men and women (p = 0.925).   

EMG Activity. Gastrocnemius, rectus femoris, soleus, and tibialis anterior RMS 

EMG (% MVC) were similar across sessions (p = 0.077, p = 0.446, p = 0.159, p = 0.670, 

respectively) for men and women (p = 0.855, p = 0.373, p = 0.534, p = 0.492, 

respectively).   

Fatiguing Contraction (30%MVC) 

Time to Task Failure.  There was no difference in time to task failure across 

sessions (p = 0.060), interactions (sex × sessions, p =  0.748), or between men and 

women (sex effect, p =  0.675; Table 3.1 and Figure 3.5).  There was no correlation 

between strength and time to task failure for any of the sessions. 
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Figure 3.5.  Time to task failure during the 30% MVC Task. Time to task failure during the 30% MVC 

task for men (closed symbols) and women (open symbols) are shown during the control, low-cognitive 

demand (Low-CD), and high-cognitive demand (High-CD) sessions.  There was no difference in time to 

task failure across sessions (p = 0.060) or between men and women (sex effect, p = 0.675). 

 

Fluctuations in Torque.  Fluctuations in torque (CV) increased over time across 

sessions (session × time, p = 0.0001) and women had significantly higher fluctuations in 

torque than men (sex effect, p = 0.002; Figure 3.6).  CV of torque was significantly 

higher during the high-cognitive demand session over time (session × time, p = 0.030) 

particularly for women (sex effect, p = 0.0001; Figure 3.6).  Women demonstrated 

greater fluctuations in torque than men throughout the fatiguing contraction.  CV of 

torque was negatively correlated with strength during the low-cognitive demand session 

(r
2
 = -0.642, n = 16, p = 0.007) and the high-cognitive demand (r

2
 = -0.556, n = 16, p = 

0.025) sessions, but not during the control session (r
2
 = -0.431, n = 16, p = 0.095).   



80 
 

 

Time (%)

0 20 40 60 80 100

C
V

 o
f 
T

o
rq

u
e

 (
%

)

1

2

3

4

5

6

7

8 Men Control

Women Control

Men Low-CD

Women Low-CD

Men High-CD

Women High-CD

Figure 3.6.  Coefficient of variation (CV) of force during the fatiguing contraction.  Coefficient of 

variation (CV) of force during the fatiguing contraction (30% MVC) across time for men (closed symbols) 

and women (open symbols) during the control session (circle), low-cognitive demand session (Low-CD, 

triangle), and high-cognitive demand  session (High-CD, square). The CV of torque is shown for the 

control (circle), low cognitive demand (triangle), and high cognitive demand (square) sessions for men 

(closed symbols) and women (open symbols) during five continuous intervals of 20% during the fatiguing 

contraction. The x-axis intervals indicate the last time point of data averaged in that interval (20% on the 

axis for example, is equivalent to the 0-20
% 

of the contraction, and the 100% represents 80-100% of the 

time to failure).  Fluctuations in torque (CV) increased over time across sessions (session × time, p = 

0.0001) and women had significantly higher fluctuations in torque than men (sex effect, p = 0.002). 

 

EMG Activity of Agonist Muscles.  The amplitude of the RMS EMG (% MVC) for 

the tibialis anterior (TA, ankle dorsiflexor muscle), increased during the fatiguing 

contraction (time, p < 0.001) similarly across sessions (session × time, p = 0.836) and 

between men and women (sex effect, p = 0.882).  Bursting activity (bursts per minute) 

increased over time during the fatiguing contraction across sessions (time, p = 0.005), 

similarly for men and women (sex effect, p = 0.471), with no interactions (p > 0.05).  

There was no difference in bursting activity between men and women within sessions (p 

> 0.05). 

EMG Activity of Antagonist and Accessory Muscles. The RMS EMG amplitude 

(% EMG) for the gastrocnemius, soleus, and rectus femoris increased over time during 
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the fatiguing contractions (time effect, p < 0.001 for all muscles) but was similar across 

sessions (session effect, p > 0.05 for all muscles) and sex (sex effect, p > 0.05) with no 

interactions (session × sex, p > 0.05).   

Coactivation ratios for gastrocnemius relative to the tibialis anterior were similar 

across sessions (session, p = 0.164), over time (time, p = 0.161), and for men and women 

(p = 0.129), with no interactions (p > 0.05).  Coactivation ratios for the soleus relative to 

the tibialis anterior were also similar across sessions (session, p = 0.125), over time (time, 

p = 0.245), for men and women (sex effect, p = 0.977), and there were no interactions (p 

> 0.05). 

Physiological Response during Fatiguing Contraction.  Mean arterial pressure 

(MAP) increased over time during the fatiguing contraction (time, p = 0.001), was higher 

during the high-cognitive demand session for men than women (session × sex, p = 

0.031), but there was no main effect of sex (sex effect, p = 0.170), and there were no 

interactions (p > 0.05).  Heart rate was significantly higher during the high-cognitive 

demand session (session, p = 0.004), over time (time, p = 0.0001), but there was no 

difference between men and women (sex effect, p = 0.458) and no interactions (p > 0.05).  

Rate-pressure product (RPP) was higher during the high-cognitive demand session 

(session, p = 0.014) over time (time effect, p = 0.0001), but there was no difference 

between men and women (sex effect, p = 0.856) and no interactions (p > 0.05).  Ratings 

of Perceived Exertion (RPE) increased during the fatiguing contraction (time effect, p = 

0.0001) similarly across sessions (session effect, p = 0.709).  RPE was similar for men 

and women (sex effect, p = 0.514), with no interactions (p > 0.05).   
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DISCUSSION 

This study compared the force fluctuations during very low and moderate 

intensity contractions and the time to task failure for a moderate-force fatiguing 

contractions of the ankle dorsiflexor muscles in the presence and absence of increased 

cognitive demand for young men and women.  The novel findings of this study were that 

women demonstrated: 1) greater force fluctuations than men during the very low (5% 

MVC) force task and the moderate-force (30% MVC) fatiguing contraction regardless of 

cognitive demand, and 2) a similar time to task failure as men for the moderate-force task 

regardless of cognitive demand. In contrast to the elbow flexor muscles (Keller-Ross, 

Pruse, et al., 2014; Yoon et al., 2009), the fatigability of the dorsiflexor muscles in young 

men and women was not greater with superimposition of either a high cognitive demand 

task, despite elevated levels of reported stress and anxiety.  Force fluctuations in the 

upright posture however, were greater for women than men for the low and moderate 

force contractions. 

Force fluctuations at low-to-moderate forces appear to be the result of multiple 

factors that influence the output of motoneurones including synaptic noise and the 

common input or drive to the motoneurones (Dideriksen et al., 2012; Hamilton et al., 

2004; Jesunathadas et al., 2012; Negro et al., 2009).  Synaptic noise in the motoneurone 

pool will increase motor unit discharge rates and likely influence the force fluctuations at 

the very low forces (Jesunathadas et al., 2012; Moritz et al., 2005).  The primary 

mechanism for force fluctuations however across the range of low to high forces is the 

thought to be due to centrally mediated common drive that oscillates at < 2-3 and 

influence the discharge rates of the trains of motoneurones in unison (De Luca et al., 
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2009; De Luca et al., 1982b; Negro et al., 2009).  Fluctuations in force at lower force 

levels (5% MVC) may also be exacerbated by the use of visual feedback during a 

sustained contractions (Tracy, 2007b).  Although there is some agreement on the 

mechanisms that contribute to force fluctuations during sustained contractions, the 

majority of participants in theses previous studies were men providing very little insight 

regarding the cause of greater force fluctuations found in women.   

Women demonstrated greater force fluctuations during both the low-force (5% 

MVC) and moderate-force (30% MVC) contractions with the ankle dorsiflexion.  Some 

but not all studies have shown these sex differences in the elbow flexor muscles and hip 

extensors. For example, Brown, et al (2010) demonstrated that women had overall 

decreased steadiness during elbow flexion tasks; women were also less steady than men 

while performing a target-matching task of the hip extensors, this was only seen at low 

target values (Grunte et al., 2009).  Several factors may have influenced the decreased 

steadiness found in women in this study.  Women have been reported to have lower 

motor unit discharge rates and higher discharge rate variability than men during isometric 

elbow flexion contractions (Brown et al., 2009).  Both of these factors would result in a 

significant increase in force fluctuations when compared with men (Moritz et al., 2005); 

however, there is very little additional evidence to support this finding in the literature.   

Other possible mechanisms for the sex difference in force fluctuations include 

muscle strength and simultaneous activation of the antagonist muscles.  While others 

indicate that coactivation has also been reported as a potential contributor to decreased 

steadiness during low-force tasks (Kouzaki et al., 2004), we found were no differences in 

coactivation between men and women at either low- or moderate-intensity contractions in 
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this study.  Thus coactivation did not appear to explain the sex difference in force 

fluctuations.    

We found a negative correlation between steadiness and strength during the 

control session for the 5% MVC task indicating that stronger adults (men) had a lower 

CV.  However, there was no relationship between steadiness and strength during the 30% 

MVC task.   Brown, et al (2010) also reported a strong relationship (r = -0.49) between 

increased force fluctuations and decreased strength demonstrated by women compared 

with men at all submaximal force levels across three positions of the forearm (neutral, 

pronated and supinated). Thus, although women were consistently weaker and less steady 

than men during the ankle dorsiflexion task, it is unlikely that strength influenced 

steadiness during the moderate-intensity contraction (30% MVC), but it may have been a 

factor during the low-intensity contraction (5% MVC).  This is consistent with reports in 

the literature that stronger joints generate less variable torques and that stronger muscles 

produce less force noise due to having higher motor unit numbers and firing rates than 

weaker muscles (Hamilton et al., 2004), further potentially causing women with less 

strength to perform with greater force fluctuations than men.   

In contrast to the elbow flexor muscles and small muscle of the hand, cognitive 

demand and increased stress did not increase the force fluctuations during the isometric 

contractions (Christou et al., 2004; Keller-Ross, Pruse, et al., 2014; Yoon et al., 2009).  

Unexpectedly, women appeared to have improved their steadiness during the high 

cognitive demand compared with the control and low cognitive demand, although this did 

not reach statistical significance but the men did not.  For the control and low-cognitive 

demand sessions, fluctuations in force were also negatively correlated with strength, but 
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not during the high-cognitive demand session. As a response to increased acute anxiety, 

the sympathetic nervous system may have released neuromodulators that evoked a 

response from the motor system or spinal cord that altered recruitment or rate coding of 

motor units enabling the participant to perform the motor task with greater steadiness 

(Marmon & Enoka, 2010).  However, why women appeared to improve steadiness and 

men did not, is unclear. 

Time to failure of the 30% MVC task did not alter with cognitive demand for both 

men and women.  These results for the ankle dorsiflexor muscles are in contrast to that 

for the elbow flexor muscles (Keller-Ross, Pruse, et al., 2014; Yoon et al., 2009).  The 

increased fatigability with high cognitive demand was associated with initial strength for 

the elbow flexor muscles such that weaker subjects had greater reduction in time to 

failure when the cognitive high-cognitive demand was imposed (Keller et al 2014).   For 

the ankle dorsiflexors, there was no correlation between strength and time to task failure 

[as has been seen before (Avin et al., 2010)], nor were there indications of significant 

differences in cardiovascular responses between men and women as has been observed 

for the elbow flexor muscles. For the elbow flexor muscles, one explanation for the 

reduction in time to failure was a strength-related perfusion mechanisms such that for 

weaker subjects the perfusion advantage at the start of a contraction (due to less 

intramuscular pressure) was altered with increased cognitive demand and arousal (Yoon 

et al 2009; Keller et al 2014). For the dorsiflexor muscles, the reduced association 

between strength and time to failure (Avin et al., 2010) and the slightly higher intensity 

contraction, may have ameliorated any perfusion related mechanism for influencing the 

time to task failure.      
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Alternatively, the lack of increase in the force fluctuations and no change in time 

to failure with increased cognitive demand for both young men and women may also 

have been a consequence of the reduced number of corticospinal inputs to the 

motoneurone pool in the lower limb relative to the upper limb resulting in less 

modulation at of the motor unit output.  Taken together with previous studies (Christou et 

al., 2004; Keller-Ross, Pruse, et al., 2014; Yoon et al., 2009),  our findings suggest that 

because both young men and women demonstrate similar times to task failure and force 

fluctuations during the 30% MVC fatiguing task regardless of cognitive demand as well 

and similar force fluctuations during a 5% MVC task in the presence of high-cognitive 

demand, they are more able to successfully achieve a difficult cognitive task and a target 

matching motor task with the lower limb than with the upper limb.     
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CHAPTER IV  

 

 

Motor variability during sustained contractions increases with cognitive 

demand in older adults 

 

SUMMARY  

To expose cortical involvement in age-related changes in motor performance, we 

compared steadiness (force fluctuations) and fatigability of submaximal isometric 

contractions with the ankle dorsiflexor muscles in older and young adults and with 

varying levels of cognitive demand imposed.  Sixteen young (20.4 ± 2.1 yr: 8 men, 8 

women) and 17 older adults (68.8 ± 4.4: 9 men, 8 women) attended three sessions and 

performed a 40 s isometric contraction at 5% maximal voluntary contraction (MVC) 

force followed by an isometric contraction at 30% MVC until task failure.  The cognitive 

demand required during the submaximal contractions in each session differed as follows: 

1) high-cognitive demand session where difficult mental math was imposed (counting 

backward by 13 from a 4-digit number); 2) low-cognitive demand session which involved 

simple mental math (counting backward by one); and 3) control session with no mental 

math.  Anxiety was elevated during the high-cognitive demand session compared with 

other sessions for both age groups but more so for the older adults than young adults 

(p<0.05).  Older adults had larger force fluctuations than young adults during: 1) the 5% 

MVC task as cognitive demand increased (p=0.007), and 2) the fatiguing contraction for 

all sessions (p=0.002).  Time to task failure did not differ between sessions or age groups 

(p>0.05), but the variability between sessions (standard deviation [SD] of 3 sessions) was 
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greater for older adults than young (2.02 ± 1.05 min vs. 1.25±0.51 min, P<0.05).  Thus, 

variability in lower limb motor performance for low- and moderate-force isometric tasks 

increased with age and was exacerbated when cognitive demand was imposed during a 

very low-force contraction indicating that age-related variability of sustained contractions 

can originate from central sources. These data have significant performance implications 

for cognitively demanding low-force motor tasks that are relevant to functional and 

ergonomic in an aging workforce.      

INTRODUCTION 

Aging results in marked declines in both motor performance and cognitive 

function.  For example, older adults are weaker and less steady (i.e., they exhibit greater 

fluctuations in force around a target force) than young adults (Enoka et al., 2003; Hunter, 

Todd, et al., 2008).  Decreased steadiness with age is greatest during low-intensity 

isometric contractions in lower and upper extremity muscles (Enoka et al., 2003; 

Marmon, Pascoe, et al., 2011; Tracy, 2007a) probably due to age-related changes in 

inputs to the motoneurone pool (Barry et al., 2007).  Cognitive impairment can also be 

marked but subtle and often subclinical in early stages of cognitive dysfunction (Aine et 

al., 2011; Chen et al., 2001; Morris et al., 2001); it is often observed as degradation in 

short-term memory and executive function resulting in a decreased ability to perform 

daily tasks that are dependent upon memory-related abilities (Artero et al., 2001; Farias et 

al., 2012; Morris et al., 2001), including planning and decision-making in lower limb 

activities such as gait (Yogev-Seligmann et al., 2008).  Age-related declines in motor and 

cognitive function are usually studied separately but are often performed simultaneously 

in daily tasks. The current study assessed motor function with a focus on steadiness and 
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muscle fatigability in young and older adults while they were presented with low and 

high levels of cognitive demand.     

In young adults, cognitive performance declines and force fluctuations increase 

when a cognitive task is imposed (reaction time) during sustained isometric tasks with 

hand muscles (Lorist et al., 2002; Zijdewind et al., 2006);  however, force fluctuations 

were affected more during the isometric fatiguing contractions than during a 5% maximal 

voluntary contraction (MVC) submaximal non-fatiguing contraction (Lorist et al., 2002).  

We also previously found that steadiness of the elbow flexor muscles declined (increased 

force fluctuations) and time to failure of a sustained 20% MVC submaximal task was 

reduced (increased fatigability) in young adults when simultaneously performing a 

demanding cognitive task (‘high cognitive demand’) that increased anxiety (counting 

backwards by 13). Accordingly heart rate and blood pressure, which are indices of 

increased sympathetic activity with arousal (Kajantie & Phillips, 2006), were elevated 

during the ‘high-cognitive demand’ session compared with control (Keller-Ross, Pruse, et 

al., 2014; Yoon et al., 2009). Individuals who were weaker (primarily the women) 

showed the largest decrement in time to task failure when the stressful cognitive task was 

imposed during the fatiguing contraction (Keller-Ross, Pruse, et al., 2014; Yoon et al., 

2009).  Older adults are typically weaker than young adults, and older women being 

weaker than older men for upper and lower limb muscles (Galganski et al., 1993; Laidlaw 

et al., 2000; Tracy & Enoka, 2002), possibly increasing susceptibility to increased 

fatigability when a cognitive task is imposed.  However, it is not known whether 

fatigability with increased cognitive demand is exacerbated with advanced age.  
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Furthermore, the effects of increased cognitive demand on lower limb fatigability and 

steadiness in young or older adults are not known.  

Initial evidence would suggest that age-related decrements in motor function of 

the upper limb (e.g., reduced steadiness) become larger with greater cortical involvement 

of non-motor centers (Fraser et al., 2010; Voelcker-Rehage & Alberts, 2007; Voelcker-

Rehage et al., 2006) and may increase between- and within-participant variability 

particularly in older adults (Enoka et al., 2003; Sosnoff & Newell, 2006a).  Older adults 

display greater between- and within-participant variability than young in activation of 

supraspinal centers during maximal contractions with the upper limb (Hunter, Todd, et 

al., 2008) indicating that variability within cortical motor areas is larger with advanced 

age.  Increased cognitive involvement, particularly with tasks that tax attentional 

resources and that require the use of short-term memory or executive function, may 

contribute further to age-related variability in motor performance for older adults during 

functional tasks (Sommervoll et al., 2011; Voelcker-Rehage et al., 2006; Yogev-

Seligmann et al., 2008).  

 Increased cognitive involvement however, can increase anxiety and stress levels 

(e.g., Noteboom, Fleshner, et al., 2001) which may further decrease steadiness of upper 

limb muscles in older adults compared with young.  Force fluctuations, for example, 

increased for older adults more than young when exposed to a noxious stressor 

(unpredictable electrical stimulation to the hand) prior to performing the pinch grip task 

(Christou et al., 2004).  The increased force fluctuations therefore, could be due to age-

related changes in monoaminergic drive modulating inputs to the motoneurone pool 

(Barry et al., 2007). A novel aspect of this current study is that we varied the level of 



91 
 

 

cognitive demand administered simultaneously during motor task of the lower limbs to 

determine its influence on lower limb fatigability and steadiness and any accompanying 

changes in anxiety and stress. 

The purpose of this study was to compare both the amplitude of force fluctuations 

(steadiness) and time to task failure (fatigability) for low-to-moderate-force isometric 

contractions in the presence and absence of varying levels of cognitive demand in young 

and older adults.  Participants were exposed to two different levels of cognitive load, low- 

and high-cognitive demand while performing a motor task with the ankle dorsiflexor 

muscles, which are muscles that play a functional role controlling the position of the foot 

during walking and while maintaining balance. We hypothesized that older adults would 

show greater reductions in time to task failure and greater force fluctuations than young 

as cognitive demand increased.  We also compared variability of fatigability between and 

within young and older adults with increased cognitive demand. We hypothesized that as 

cognitive demand increased, older adults would exhibit both greater between- and within-

participant variability in fatigability.  To understand the perceived and physiological 

arousal responses with the varying levels of cognitive demand in young and older adults, 

during each session we quantified perceived levels of stress and anxiety, as well as heart 

rate, blood pressure and perceived effort of contraction.    

MATERIALS AND METHODS 

Sixteen young adults (8 men, 8 women; 18 - 24 years) and 17 older adults (9 men, 

8 women; 62 - 79 years) participated in the study (see Table 3.1 for physical 

characteristics).  All participants were healthy with no known neurological or 

cardiovascular diseases, had controlled blood pressure and were naïve to the protocol.  
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Six of the older adults were on medication to control blood pressure. Both young and 

older adults had low-to-moderate levels of anxiety (trait) according to the State-Trait 

Anxiety Inventory (STAI) (Spielberger, 2010) and reported no history of current mental 

or psychological pathology, including anxiety or depressive disorders. Participants were 

right-leg dominant (0.81 ± 0.40 vs. 0.80 ± 0.54 for young and older adults, respectively, 

with a ratio of 1 indicating complete dominance of the right-leg) (Oldfield, 1971).   The 

physical activity level for each participant was assessed with a questionnaire that 

estimated the relative kilocalorie expenditure of energy per week (Kriska & Bennett, 

1992).  Prior to participation, each participant provided informed consent, and the 

protocol was approved by the Institutional Review Board at Marquette University.   

The experimental Materials and Methods for Chapter IV are identical to Chapter 

III.  To avoid redundancy, all experimental Materials and Methods information has been 

removed from Chapter IV.  Please refer to Chapter III for experimental procedures, 

protocol, data acquisition, analysis information, etc. 

Statistical Analysis  

Data were reported as means ± SD within the text, and displayed as means ± SE 

in the figures. Analyses of variances (ANOVA) models were used to compare the various 

dependent variables.  Specifically, separate ANOVAs with repeated measures on session 

(control, low-cognitive demand and high-cognitive demand), and with age (young and 

old) and sex (men and women) as fixed factors, were used to compare MVC torque and 

STAI (state) and VAS for anxiety and stress at baseline, MAP, heart rate, CV of torque 

and EMG activity during the 5% MVC task, error rates (only low- and high-cognitive 

demand sessions included for error rate analysis) during the fatiguing contraction and the 
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time to task failure of the fatiguing contraction.  This ANOVA model was also used to 

compare the SD of the time to failure from the three sessions, and the SD of the mean CV 

of torque during the fatiguing contraction obtained from the three sessions.  ANOVAs 

with repeated measures on session and time, and with age and sex as fixed factors, were 

used to compare VAS for stress and anxiety, STAI (state) and MVC torques throughout 

the sessions i.e. before and after the fatiguing contraction (see Figure 3.1 for time points).  

ANOVAs with repeated measures on session and time (five time points for each: see data 

analysis section), and with age and sex as fixed factors, were used to compare the 

following variables during the fatiguing contraction:  CV of torque, RMS EMG, EMG 

bursting activity, heart rate, MAP, rate pressure product and rating of perceived exertion.  

Post hoc analyses (Tukey) were used to test for differences among pairs when 

appropriate.   Univariate ANOVAs were used to compare young and old men and women 

for the following variables: physical characteristics (age, height and weight), physical 

activity level, handedness and STAI (trait).  The strength of an association is reported as 

the Pearson product-moment correlation coefficient (r).  The statistical significance 

adopted was 5% (p <0.05) and all analysis were performed in IBM Statistical Package for 

Social Sciences (SPSS) version 19.  
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Table 4.1.  Participant Physical Characteristics and Results.  Participant physical characteristics and 

age group means (± SD) for control, low-cognitive demand (Low-CD) and high-cognitive demand (High-

CD) sessions.  

 
* Variables reaching statistical significance for main effect of age (p < 0.05).  PAQ = Physical Activity 

Questionnaire, STAI = State-Trait Anxiety Index, MVC = Maximal Voluntary Contraction, CV = 

Coefficient of Variation, TA = Tibialis Anterior, Gastroc = Gastrocnemius, EMG = Electromyography. 

Variable  Session Young Older

Number of Participants 16 17

Age (years) 20.4 ± 2.1 68.8 ± 4.4*

Height (cm) 168.9 ± 23.6 167.5 ± 11.3 

Women Age (years) 19.3 ± 1.5 68.4 ± 3.6

Men Age (years) 21.5 ± 2.0 69.2 ± 4.9

Weight (kg) 74.4 ± 27.9 77.8 ± 15.2 

Physical Activity (PAQ) 59.5 ± 38.3 22.0 ± 21.8*

Baseline Trait STAI Scores 36.4 ± 7 34.8 ± 7.3 

Baseline State  STAI Scores 26.0 ± 6.7 26.2 ± 5.3

Control 22.4 ± 6.9 19.1 ± 6.6

Low-CD 22.2 ± 6.6 18.3 ± 5.8

High-CD 22.8 ± 7.7 18.7 ± 6.3

Total 22.5 ± 7.0 18.7 ± 6.1*

Control 96.3 ± 7.4% 97.9 ± 6.8%

Low-CD 95.4 ± 3.7% 93.2 ± 8.5%

High-CD 94.8 ± 3.9% 94.7 ± 5.5%

Total 96.2 ± 7.4% 97.6 ± 6.5%

Control 6.1 ± 2.2 8.0 ± 3.2

Low-CD 6.1 ± 2.0 7.6 ± 3.1

High-CD 7.1 ± 2.5 8.7 ± 3.8

Total 6.4 ± 2.2 8.1 ± 3.4

Control 4.5 ± 1.2 6.0 ± 3.0

Low-CD 4.5 ± 0.8 7.2 ± 4.1

High-CD 4.6 ± 2.7 6.8 ± 2.3

Total 4.5 ± 1.0 6.7 ± 3.2*

Control 23.5 ± 5.6 29.1 ± 6.0

Low-CD 23.5 ± 6.2 27.2 ± 4.7

High-CD 24.1 ± 4.8 28.7 ± 8.4

Total 23.7 ± 4.3 28.3 ± 5.9*

Control 10.3 ± 9.7 5.7 ± 5.7

Low-CD 11.5 ± 10.6 9.0 ± 9.2

High-CD 9.4 ± 9.6 7.7 ± 7.6

Total 10.4 ± 9.8 7.4 ± 7.6

Control 23.8 ± 38.9 35.6 ± 61.5

Low-CD 63.0 ± 98.9 40.1 ± 57.8

High-CD 65.5 ± 102.3 56.2 ± 63.5

Total 49.3 ± 80.8 46.6 ± 58.9

Control 26.7 ± 15.8 32.9 ± 13.8

Low-CD 26.3 ± 9.9 30.6 ± 11.8

High-CD 21.1 ± 6.1 29.9 ± 13.8

Total 24.2 ± 11.3 31.1 ± 12.9

Control 22.8 ± 42.2 30.3 ± 47.9

Low-CD 72.0 ± 124.6 51.7 ± 83.8

High-CD 73.3 ± 126.9 52.0 ± 85.9

Total 40.6 ± 82.1 46.0 ± 73.8

Soleus EMG (% MVC)

Gastrocnemius EMG (% MVC)

Rectus Femoris EMG (% MVC)

MVC Torque* (Nm)

MVC Torque Recovery               

(% of initial)

Time to Task Failure (min)

30% MVC CV of Torque* (%)

TA EMG* (% MVC)

TA EMG Bursting Activity 

(bursts/min)
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RESULTS 

MVC Torque 

At baseline, young adults were stronger than the older adults (22.5 ± 7 Nm vs. 

18.7 ± 6.1 Nm respectively: age effect, p = 0.005) and men were stronger than women 

(sex effect, p = 0.0001) on all three days of testing, with no interaction between sex and 

age (age × sex, p = 0.69; Table 4.1).  The relative reduction (%) in MVC torque after the 

fatiguing contraction was similar across sessions (session effect, p = 0.98), and similar for 

young and older adults (session × age, p = 0.26).  During recovery, MVC torque 

increased to near baseline levels within 10 minutes of completing the fatiguing 

contraction similarly for young and older adults across all sessions (session × age, p = 

0.57; Table 4.1).  Furthermore, at the end of the recovery period, the MVC (% of 

baseline) was similar for young and older men and women (p > 0.05). 

Anxiety and Stress Levels 

State STAI Scores.  Baseline state STAI scores taken at the beginning of each 

experimental session were similar for young and older men and women (age effect, p = 

0.88; sex effect, p = 0.57; Table 4.1).  State STAI scores taken after exposure to the 2 × 2 

min of difficult mental math were higher during the high-cognitive demand session 

compared with the control and low-cognitive demand sessions (control, 25.1 ± 6.6; low-

cognitive demand, 30.4 ± 10.0; high-cognitive demand, 42.8 ± 13.1; session effect, p = 

0.0001) and immediately after the fatiguing contraction (control, 36.2 ± 9.2; low-

cognitive demand, 38 ± 9; high-cognitive demand , 50.4 ± 13.8; session effect, p = 

0.0001).  There was no difference between young and older adults across all three session 
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after completing the fatiguing contraction (age effect, p = 0.72). Older adults however, 

demonstrated higher state STAI scores than young adults after the fatiguing contraction 

when exposed to the high-cognitive demand (session × time × age, p = 0.02). 

VAS for Stress and Anxiety. VAS scores for stress and anxiety were similar at 

baseline for young and older adults, and men and women (p > 0.05; Figure 4.1).  Anxiety 

VAS was significantly higher during the high-cognitive demand session compared to the 

control and low-cognitive demand sessions (session × time, p = 0.0001), and increased 

more for older adults than young over time (time × age, p = 0.01; Figure 4.1A). There 

were no other interactions.  Stress VAS scores were significantly higher for older adults 

than young during the high-cognitive demand session compared with the control and low-

cognitive demand sessions (session × age, p = 0.02; Figure 4.1B) and for older adults 

than young over time (time × age, p = 0.001).  There were no main effects of sex and no 

other interactions. 
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  Figure 4.1. Visual Analogue Scale (VAS) scores for anxiety (A) and stress (B).  Mean (±SE) VAS 

scores for young adults (closed symbols) and older adults (open symbols) are shown for anxiety (A) 

and stress (B) throughout the experimental protocol during the control session (circles), low-

cognitive demand session (Low-CD, triangles), and high-cognitive demand session (High-CD, 

squares).  Time intervals were as follows: baseline (T1), after the first bout of 2 min of quiet 

rest/mental math (T2), after the second bout of 2 min of quiet rest/mental math (T3), after the 5% 

submaximal contraction (T4), during recovery immediately after task failure (T5), and then at 5 min 

(T6) and 10 min of recovery (T7).   
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Low-Intensity Sustained Contraction (5% MVC) 

Fluctuations in Torque. Older adults had greater fluctuations in torque 

(coefficient of variation of force: CV) compared with young across all three sessions (age 

effect, p = 0.007; Figure 4.2) and women had higher fluctuations in torque than men (sex 

effect, p = 0.001).  On average, the older adults had a linear increase in fluctuations in 

torque as cognitive demand increased while young adults showed no change (linear 

interaction for session × age, p = 0.04; Figure 4.2A).  Women demonstrated higher force 

fluctuations than men (p = 0.001), but there were no other interactions (p > 0.05).  
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Figure 4.2. Mean Session Coefficient of Variation (CV) of torque during the 5% MVC task 

for young (closed symbols) and older (open symbols) adults during the control, low-

cognitive demand (Low-CD), and high-cognitive demand (High-CD) sessions (A), and 
representative force tracings of a young and older adult (B).  Older adults had significantly 

higher CV of torque than young adults (age effect, p = 0.007).  
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MAP and Heart Rate.  Cardiovascular measures were analyzed for only those 

older participants who were not currently taking blood pressure medications at the time 

of the experiment (young, n = 16; older, n = 11). During the 5% MVC task, MAP was 

higher during the high-cognitive demand session (105.1 ± 18.8 mmHg) than the low-

cognitive demand session (87.2 ± 28.3 mmHg) and the control session (88.8 ± 23 mmHg; 

session effect, p = 0.001).  There was no influence of age or sex on MAP (p > 0.05). 

Similarly, heart rate was greater during the high-cognitive demand session (79.6 ± 15 

beats.min
-1

) compared with the low-cognitive demand (71.6 ± 28 beats.min
-1

) and control 

sessions (68.2 ± 19.4 beats.min
-1

, session effect, p = 0.04) regardless of age of sex (p > 

0.05, i.e. no interactions).  Consequently, the rate pressure product was higher during the 

high-cognitive demand session than the control and low-cognitive demand sessions 

(session effect, p = 0.0001), but there was no difference between young and older adults 

(age effect, p = 0.52) or men and women (sex effect, p = 0.70).  

EMG Activity. During the 5% MVC task, older adults had higher soleus RMS 

EMG (% MVC) (antagonist muscle) than young adults during the high-cognitive demand 

session (session × age, p = 0.04), but there were no other interactions, or main effects of 

age or sex or session for soleus or any other muscles (tibialis anterior, gastrocnemius, and 

rectus femoris).   

Fatiguing Contraction (30%MVC) 

Time to Task Failure.  There was no difference in time to task failure across 

sessions or with age (p > 0.05; Table 4.1 and Figure 4.3).  There was no difference in 

time to task failure between men and women (sex effect, p = 0.96) and no interactions for 

age, sex and session (p > 0.05).  Variability between the three sessions in the time to task 
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failure (comparison of standard deviation [SD] generated from the three sessions for each 

participant) however, was greater for older adults than young adults (2.02 ± 1.05 min vs. 

1.25 ± 0.51 min respectively, p = 0.02), but similar for men and women (sex effect, p = 

0.53; sex × age, p = 0.57; Figure 4.3). Furthermore, we compared the SD for time to task 

failure between sessions (SD for control and low-cognitive demand session versus SD for 

control and high-cognitive demand session) to determine if variability increased with 

difficulty of the mental math.  While the age effect remained (age effect, p = 0.03), there 

were no effects of session (session effect, p = 0.38) or sex (sex effect, p = 0.69), and no 

interactions.  Thus, although the older adults were more variable than young between the 

three sessions due to addition of a cognitive task, the variability between the older adults 

did not increase with to the difficulty of the cognitive task.    
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Figure 4.3. Time to task failure during the fatiguing contraction for individual young (A) 

and older adults (B) during the control (circle), low-cognitive demand (Low-CD, triangle), 

and high-cognitive demand (High-CD, square) sessions.  Time to task failure is shown for 

each young (A) and older (B) man and woman for each session (separated by dashed line).  The 

aggregate mean (±SE) is shown for each session after the solid vertical line.  The range and 

variability of time to task failure among the older adults was greater than for the young adults for 

each session. Older adults were more variable than young between the three sessions due to 

addition of a cognitive task (age effect, p = 0.03), but variability did not increase with task 

difficulty (session effect, p = 0.38). 
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Fluctuations in Torque. Fluctuations in torque (CV) increased over time during 

the sustained contraction (time, p < 0.001) similarly across sessions for both age groups 

(session x time, p = 0.56; Figure 4.4C).  Older adults however, had larger fluctuations in 

torque than young adults (age effect, p = 0.002) and this difference was similar across 

sessions (session × age, p = 0.11). Women also had larger fluctuations in torque than men 

(sex effect, p = 0.005) and this sex difference was similar across sessions (session × sex, 

p = 0.69).  There were no other interactions (p > 0.05).  Because older and young adults 

can demonstrate more variability in motor performance than young adults, we evaluated 

variability of the fluctuations in torque (CV of torque) during the 30% MVC task 

(comparison of standard deviation [SD] generated from the three sessions for each 

participant) between young and older adults. Variability was greater for older adults than 

young adults (p = 0.01), and greater for women than men (sex effect, p = 0.02), but there 

were no interactions (sex × age, p = 0.94; Figure 4.4A-B). 
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Figure 4.4.  Coefficient of Variation of Force during Fatiguing Contraction.  Coefficient of variation 

(CV) of force during the fatiguing contraction (30% MVC) for individual young (A) and older adults (B), 

and across time for young and older adults (C) during the control session (circle), low-cognitive demand 

session (Low-CD, triangle), and high-cognitive demand  session (High-CD, square). CV of force is shown 

for each young (A) and older (B) man and woman for each session.  The aggregate mean is shown for each 

session after the solid vertical line.  In panel (C), the CV of torque is shown for the control (circle), low-

cognitive demand (triangle), and high-cognitive demand (square) sessions for young (closed symbols) and 

older (open symbols) adults during five continuous intervals of 20% during the fatiguing contraction. The 

x-axis intervals for panel (C) indicate the last time point of data average along in that interval (20% on the 

axis for example, is equivalent to the 0-20
% 

of the contraction, and the 100% represents 80-100% of the 

time to failure).  Older adults had significantly higher CV of torque than young adults (age effect, p = 

0.002).   
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EMG Activity of Agonist Muscles.  The amplitude of the RMS EMG (% MVC) for 

the tibialis anterior (ankle dorsiflexors), increased during the fatiguing contraction (time 

effect, p < 0.001) and similarly across sessions (session × time, p = 0.38).  Furthermore, 

tibialis anterior EMG activity was greater for the older adults than young during all three 

sessions (age effect, p = 0.002; Table 4.1), but there was no difference between men and 

women (sex effect, p = 0.80), and no interactions. 

EMG bursting activity (bursts per minute) increased over time during the 

fatiguing contraction (30% MVC) for all three sessions (time effect, p = 0.002); however, 

there was no difference across the sessions (session effect, p = 0.50). Neither age nor sex 

influenced the bursting activity during the fatiguing contraction (p > 0.05; Table 4.1).   

EMG Activity of Antagonist and Accessory Muscles. The RMS EMG amplitude 

(% MVC) for the soleus, gastrocnemius and rectus femoris increased over time during the 

fatiguing contractions (time effect, p < 0.001 for all muscles) but was similar across 

sessions (session effect, p > 0.05 for all muscles).  Older adults however, had higher 

RMS EMG for the soleus (age effect, p = 0.04), gastrocnemius (p = 0.01) and rectus 

femoris (p = 0.03) than young adults. There was no effect of sex for gastrocnemius and 

soleus (sex effect, p > 0.05) and there were no interactions (p > 0.05).  For the rectus 

femoris, however, women had higher RMS EMG amplitudes than men (sex effect, p = 

0.04), but there were no interactions (p > 0.05).  There was a correlation between rectus 

femoris RMS EMG and CV of torque for the high-cognitive demand session only, 

indicating that participants who had greater torque fluctuations during the high-cognitive 

demand session also had greater rectus femoris EMG (r33 = 0.31, p = 0.04). 
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MAP and Heart Rate. Cardiovascular measures were included only for older 

participants who were not currently taking blood pressure medications at the time of the 

experiment (young, n = 16; older, n = 11).   MAP, heart rate, and rate pressure product 

increased over time (time, p < 0.05; Figure 4.5).  MAP, heart rate and rate pressure 

product were higher during the high-cognitive demand session than the control or low-

cognitive demand sessions (session effect, p < 0.05). MAP was higher for older adults 

during the fatiguing contraction in the high-cognitive demand session over time than 

other sessions (session × time × age, p = 0.02).  Heart rate and rate pressure product, 

however, were similar for older adults over time across sessions (session × time × age, p 

> 0.05), with no main effects of age or sex (p > 0.05). 
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Figure 4.5.  Mean Arterial Pressure (MAP), Heart Rate and Rate Pressure Product.  Mean arterial 

pressure, heart rate and rate pressure product during the fatiguing contraction for young and older adults 

across sessions. The values are mean ± SE at 25% increments of time to task failure for young (closed 

symbols) and older (open symbols) adults during the control (circles), low-cognitive demand (Low-CD, 

triangles) and high-cognitive demand (High-CD, squares) sessions for mean arterial pressure (A), heart rate 

(B), and rate pressure product (C) during the fatiguing contraction.  Averages of 15-s intervals were used 

for the MAP and heart rate.  Rate-pressure product was the product of heart rate and MAP for the 

equivalent time periods in panels (A) and (B).    
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Rating of Perceived Exertion (RPE).  Perceived exertion increased during the 

fatiguing contraction (time effect, p = 0.0001) similarly across sessions (session effect, p 

= 0.59).  RPE was similar for young and older adults (age effect, p = 0.82) and men and 

women (sex effect, p = 0.62), with no interactions (p > 0.05).  Mean RPE across all three 

sessions was 4.2 ± 1.5 and 4.2 ± 1.8 at the beginning of the fatiguing contraction for 

young and older adults respectively and increased to 8.7 ± 2.3 vs. 9.1 ± 1.4 by the end of 

the fatiguing contraction. 

Error rate.  The mental math error rate during the fatiguing contraction 

(errors/min) was significantly higher during the high-cognitive demand session (2.9 ± 1.3 

errors/min) compared with the low-cognitive demand session (0.4 ± 0.4 errors/min, 

session effect, p < 0.001).  There was no main effect of age or sex (p > 0.05).  There was 

also no correlation between error rate and CV of torque during the fatiguing contraction 

for the low-cognitive demand (r33 = -0.17, p = 0.35) or high-cognitive demand (r33 = -

0.26, p = 0.14) sessions; nor were there significant associations between error rate during 

the fatiguing contraction and the time to task failure for the low-cognitive demand (r33 = -

0.12, p = 0.52) or high-cognitive demand (r33 = -0.06, p = 0.74) sessions. 

DISCUSSION 

This study imposed several levels of cognitive demand during sustained low- and 

moderate-force isometric contractions with the ankle dorsiflexor muscles to determine the 

influence of increased cortical involvement on motor function and fatigability in young 

and older adults. The novel findings of this study were that as cognitive demand 

increased, steadiness decreased (i.e. CV of torque increased) during the very low-force 

contraction (5% MVC) for older adults but did not change for the young adults.  While 
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fatigability (time to failure) of a moderate intensity contraction (30% MVC) was not 

essentially different with imposed cognitive demand for young or older adults, variability 

in the time to failure and in the torque fluctuations across sessions was greater for the 

older adults than the young adults.  These results provide evidence that increased cortical 

involvement of motor and non-motor cortical areas can disrupt motor performance of 

low-to-moderate intensity isometric contractions of the lower limb more so in older 

adults than young adults.   

Steadiness was Reduced with Age in the Lower Limb  

Torque fluctuations (CV) were greater (steadiness reduced) during the low-

intensity contraction (5% MVC) than at the start of the 30% MVC task (prior to fatigue), 

and also greater for older adults than young across all sessions.  Larger torque 

fluctuations with advanced age have also been observed under control conditions across 

various muscle groups and particularly at the lower intensity contractions for both young 

and older men and women (Enoka et al., 2003; Tracy, Dinenno, et al., 2007; Tracy et al., 

2005).  Typically, the CV (%) will decrease as contraction intensity increases (Enoka et 

al., 2003; Moritz et al., 2005; Taylor, A. M. et al., 2003; Tracy, 2007a) and as we 

observed. Because we showed increased torque fluctuations during ankle dorsiflexion for 

the older adults during both 5% MVC and 30% MVC tasks compared with young, the 

age-related mechanism for reduced steadiness under control conditions influences both 

the low- and moderate-force tasks in the ankle dorsiflexor muscles.  CV of torque across 

a range of low-to-high forces appear to be primarily modulated by low-frequency 

oscillations (< 2 -3 Hz) in neural drive found in motor unit action potentials trains 

(Dideriksen et al., 2012; Negro et al., 2009) with some contribution from increased motor 
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unit variability at very low forces (Dideriksen et al., 2012; Jesunathadas et al., 2012).  

This low-frequency oscillating neural drive likely reflects an integration of both 

descending and afferent inputs onto the motoneurone pool (Dideriksen et al., 2012; 

Farina et al., 2012; Negro et al., 2009).  With advanced age, the motoneurone pool 

undergoes remodeling that results in decreased motor units numbers and altered relations 

between discharge rates and recruitment thresholds (Barry et al., 2007); the age 

difference in torque fluctuations, therefore, appears to be due to age-related changes in 

the inputs to the motoneurone pool (Barry et al., 2007) with possibly some influence of 

greater motor unit discharge rate variability in older adults (Barry et al., 2007; Kornatz et 

al., 2005; Laidlaw et al., 2000; Tracy et al., 2005).  Age-related changes in visual-motor 

processing may also contribute to altered motoneuronal inputs causing increased torque 

fluctuations during static contractions with age (Fox et al., 2013; Henningsen et al., 1997; 

Seidler-Dobrin & Stelmach, 1998; Tracy, Dinenno, et al., 2007).   

Cardiovascular Responses and Anxiety were Elevated with High Cognitive Demand 

While mental math was used to manipulate different levels of cognitive demand 

in this study, it can also increase anxiety and stress (Kajantie & Phillips, 2006) as it did 

for the young but more so in the older adults during the high-cognitive demand task (see 

Figure 4.1). Accordingly, MAP and heart rate were elevated when the difficult mental 

math was performed during both the 5% MVC and 30% MVC tasks, although similarly 

for the young and older adults.  Older adults have reduced maximal heart rates compared 

with young, in less than for young, explaining the similar age-related increase in heart 

rate despite older adults reporting they felt more anxious and stressed. Because both 

MAP and heart rate were elevated, rate-pressure product was elevated for both young and 
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older adults indicating increased cardiac work and myocardial oxygen consumption 

(Gobel et al., 1978; Wasmund et al., 2002) during the 5% MVC task and 30% MVC 

fatiguing contraction when cognitive demand was high.  Chronicity of high blood 

pressure has been associated with an increased risk of stroke, cognitive decline and 

dementia, especially in older adults with untreated high blood pressure (Tzourio, 

Christophe 2007; Tzourio, Christophe et al., 1999). In the short term, increased stress and 

anxiety can increase monoaminergic drive; neuromodulatory inputs alter excitability of 

the motoneurone pool (Heckman et al., 2009) and potentially alter motor neuron output 

especially at low forces.  

Steadiness Decreased with Cognitive Demand in Older Adults 

A novel finding was that the age difference in CV of torque grew linearly (i.e. 

steadiness decreased) with the increased levels of cognitive demand during a low-

intensity contraction (5% MVC) of the lower limb.  Although steadiness during the 30% 

MVC task was similar across sessions, older adults had greater variability in the CV of 

torque between sessions than the young.  Increased torque fluctuations during the 5% 

MVC task between the low- and high-cognitive demand sessions indicate that the decline 

in steadiness was not solely due to the added distraction or challenge of talking because 

the low-cognitive demand task controlled for those factors.  Because motor unit discharge 

rate variability can contribute to the force fluctuations at very low forces (Jesunathadas et 

al., 2012; Tracy et al., 2005), increased variability of the motor unit pool in the older 

adults may have been altered when high-cognitive demand was imposed.   

Our findings indicate that increased antagonist muscle activation may also have 

contributed to the larger force fluctuations in the older adults when cognitive demand was 
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high during the 5% MVC task.  The older adults had greater soleus muscle activation 

during the high-cognitive demand session relative to the other sessions and compared 

with the young adults: this suggests less inhibition of the antagonist muscle from 

descending cortical sources.  Increased antagonist muscle activity is a strategy adopted by 

older adults to stiffen joints and reduce movement variability with age (Hortobagyi & 

DeVita, 2006).   For the higher force task (30% MVC) the torque fluctuations were larger 

with age, but there was no increase in the CV of torque with cognitive demand for young 

or older adults.  Agonist (tibialis anterior), antagonist (gastrocnemius, soleus) and 

synergist (rectus femoris) activations were greater in the older adults than the young 

across all sessions, possibly contributing to the larger torque fluctuations with age.  

Because both the agonist (tibialis anterior) and antagonist activation were greater in the 

older adults compared with the young, activation differences had minimal effect on the 

greater CV of torque in the older adults.   

There are numerous age-related changes along the neuraxis that can alter inputs to 

the motoneurone pool and perhaps make it more susceptible to altering motor output 

when cognitive demand is imposed. Cortical size (Raz et al., 2007) and processing are 

diminished with age, along with reduced corticospinal fibers numbers (Eisen et al., 1996), 

and changes in spinal reflex pathways (Kido et al., 2004) which result in decreased 

cortical inhibition of both cognitive and motor processes with age (Hunter, Todd, et al., 

2008; Peinemann et al., 2001; Sale & Semmler, 2005).  Age-related changes along the 

neuraxis can also result in increased activation of antagonist muscles (Hortobagyi & 

DeVita, 2006; Macaluso et al., 2002) and may have been responsible for the greater 

activation of antagonist muscles with age in the current study.  



113 
 

 

Several theories of motor control assert that the division of attentional resources 

during a dual-task paradigm has limits and these limitations increase with advanced aging 

due to diminished cortical processing (Woollacott & Shumway-Cook, 2002). 

Consequently some studies show older adults have less ability to simultaneously perform 

a cognitive task and motor task as well as they can be performed individually (Fraser et 

al., 2010; Johnson & Shinohara, 2012; Voelcker-Rehage & Alberts, 2007).  Changes in 

performance for older adults in dual-tasks appear to be especially sensitive to cognitive 

tasks that require executive function (Yogev-Seligmann et al., 2008).  Executive function 

(which included working memory, which was varied in this study), anxiety, and stress are 

modulated in prefrontal cortical regions and the anterior cingulate cortex (Banich et al., 

2009; Miller, 2000; Owen et al., 2005; Schweizer et al., 2013). Prefrontal connections to 

motor areas (Takahara et al., 2012) along with input to neural connections between these 

and other cortical centers associated with cognition, anxiety and motor function could 

directly alter motor output, as was observed in this study.   

Capacity theories of attention that assume attentional resource limitations on the 

ability to perform multiple tasks simultaneously (Hiraga et al., 2009; Kahneman, 1973; 

McDowd, 2007) would predict even greater decrements in steadiness for older adults 

when descending drive from the motor cortex increased during the 30% MVC task and as 

the fatiguing contraction progressed.  Interestingly, error rates in mental math (executive 

function task) during the fatiguing contraction did not differ across the age groups for the 

low-cognitive demand sessions and high-cognitive demand, indicating that mental math 

performance was not diminished in the older adults compared with the young. Although 

the variability in the CV of torque across the sessions was greater for the older adults than 
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the young, the mean values in CV of torque were similar across the three sessions during 

the 30% MVC task and increased at similar rates to the young adults during the fatiguing 

contraction.  Time to failure was also similar across sessions for each age group, and the 

increase in EMG activity, EMG bursting activity and perceived effort during the 

fatiguing contraction progressed at similar rates across sessions.  Increases in EMG and 

RPE during a fatiguing contraction are the result of increased descending drive to recruit 

more motor units in an effort to maintain the required force as the working muscle 

becomes progressively fatigued (Riley et al., 2008).  Thus, while some older adults are 

clearly more affected than others by the increased cognitive demand during the sustained 

contractions (Figure 4.4B), capacity limitations in cortical regions of older adults cannot 

alone explain the loss of steadiness, especially at the very low forces when descending 

drive was not large. 

Another explanation for the reduced steadiness in older adults as cognitive 

demand increased is that descending and afferent inputs to the motoneurone pool differed 

for the older and young adults.  One input that likely differed between the young and 

older adults was monoaminergic drive (Christou et al., 2004).  Increased monoaminergic 

drive to the spinal cord from the brainstem enables motoneurone activation and is 

essential for exercise (Heckman, 2003), but monoaminergic drive is attenuated in older 

adults (Meltzer et al., 1998; Reynolds & Meltzer, 1999; Seals & Esler, 2000), potentially 

leading to decreased motor output and altered responses to increased anxiety and stress 

compared with young.   
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Sex Differences in Steadiness 

Both young and old women demonstrated heightened levels of stress and anxiety, 

and greater torque fluctuations during the very low-intensity and fatiguing contractions 

for all three sessions compared with men, regardless of the magnitude of cognitive 

demand. Similar sex differences in stress and anxiety (Christou et al., 2004) and in torque 

fluctuations have been shown previously in the upper limb (Brown et al., 2010; Keller-

Ross, Pruse, et al., 2014; Yoon et al., 2009); however, this is the first study to 

demonstrate increased torque fluctuations in women when performing submaximal 

contractions of the lower limb with varying levels of cognitive demand.  Greater torque 

fluctuations in women when performing upper extremity tasks have been attributed to 

strength difference between men and women (Brown et al., 2010), although the 

mechanism is not known. When exposed to a stressful noxious stimulus prior to task 

performance, increased torque fluctuations have been attributed to greater activation of 

central neural mechanisms in response to increased stress and anxiety (Christou et al., 

2004); however, in the current study, women demonstrated greater torque fluctuations 

and reported higher stress and anxiety than men regardless of the magnitude of cognitive 

demand (i.e. in both low- and high-cognitive demand tasks compared with control).  

Because both aging and decreased levels of estrogen in postmenopausal women possibly 

contribute to changes in monoaminergic drive (Meltzer et al., 1998), women may be even 

more vulnerable than men to diminished motor output with aging (Figure 4.4B); 

however, it remains unclear if greater torque fluctuations in women are related to 

activation of alternate neural pathways, or a strength-related mechanism. 
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Increased Variability in Fatigability with Cognitive Demand and Aging  

Fatigability (time to task failure) of the ankle dorsiflexor muscles was similar 

across age groups and sessions.  Hence, there was no systematic decrease in fatigability 

when cognitive demand was imposed during the sustained contraction with the ankle 

dorsiflexor muscles.  In contrast, the elbow flexor muscles were more fatigable when 

high-cognitive demand was imposed in young men and women (Keller-Ross, Pruse, et 

al., 2014; Yoon et al., 2009).  Similarly, handgrip muscles were more fatigable in both 

young men and women when high-cognitive demand was imposed for high intensity 

contractions (Bray et al., 2012; Bray et al., 2008) but not for relatively strong men during 

a low-intensity sustained contraction (Keller-Ross, Schlinder-Delap, et al., 2014).  The 

largest increases in fatigability were related to the initial muscle strength such that 

weaker participants experienced the greatest increases in fatigability (Keller-Ross, Pruse, 

et al., 2014; Yoon et al., 2009).  Perfusion associated changes within the muscle in 

response to a mental-math task (which was used to induce high-cognitive demand) was 

implicated but only partially explains these findings (Keller-Ross, Pruse, et al., 2014; 

Yoon et al., 2009).   In contrast to the elbow flexor muscles (Hunter, Critchlow, & Enoka, 

2004), the ankle dorsiflexor muscles exhibit lesser differences between sub-populations 

including men and women (Avin et al., 2010), and young and older adults  (Griffith et al., 

2010; Kent-Braun et al., 2002) and we show here the fatigability of this muscle group is 

also less responsive to cognitive demand.  Christie and Kamen (2009) attribute the lack 

of difference in fatigability of the dorsiflexor muscles between young and older adults to 

a lack of difference in motor unit discharge rates, suggesting young and older adults 

adopted similar neural adaptations during the fatiguing contractions.  We found that the 
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increase in EMG activity of the tibialis anterior muscle during the fatiguing contraction 

was similar across sessions for young and older adults, although older adults had greater 

EMG relative to the young.  Another possible explanation for the different responses in 

fatigability with and without cognitive demand is a decreased number of corticospinal 

connections and larger motor unit ratio (motoneurone to fibers) in large lower limb 

muscles compared with the upper limb (Feinstein et al., 1955). A reduced number of 

corticomotor inputs to the dorsiflexor muscles relative to the upper limb muscles may 

minimize the modulating inputs from higher centers imposed with high-cognitive demand 

and lessen the responsiveness during the sustained fatiguing contractions at the moderate 

intensity.  

While there was no systematic reduction in time to failure of the ankle dorsiflexor 

muscles as we have observed with the upper limb, older adults, particularly older women, 

demonstrated significantly more variability in their time to task failure between sessions 

than young adults (Figure 4.3).  Variability between trials of a motor task can be 

exacerbated with increased cognitive demand in young people (Lorist et al., 2002)  but is 

often greater with age as shown here.  The greater variability in performance with 

advanced age can be due greater variability in cortical and motor nerve activation during 

motor tasks (Hunter, Todd, et al., 2008; Yoon et al., 2008).  This greater age-related 

variability in a motor task when a cognitive task was imposed further demonstrates the 

important role of cognitive control in determining reliability of performance of motor 

tasks such as those in the work force.   
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Conclusion   

This study demonstrated that older adults exhibit more variability than young 

adults in fatigability and less steadiness while performing low-force and moderate 

isometric with the ankle dorsiflexor muscles.  For very low-force contractions, steadiness 

decreased further as greater cognitive demand increased.  The reduced steadiness in older 

adults compared with the young, may be related to modulation of synergist and 

antagonist muscles and an altered neural strategy with age.  Older adults also exhibited 

greater variability in steadiness between sessions and in fatigability as cognitive demand 

was imposed.  Increased variability in lower extremity tasks may negatively impact 

activities of daily living and work tasks that require high-cognitive demand in an aging 

population. These data also expose differences within an older adult but also between 

older adults. Our results provide evidence that increased involvement of non-motor 

cortical areas can disrupt motor performance of low-to-moderate intensity isometric 

contractions of the lower limb more so in older adults than young adults.  These findings 

have significant implications related to successful aging and performance of activities of 

daily living with advanced age especially those activities that require simultaneous 

execution of a cognitive task that involves working memory and maintenance of a static 

motor task.    
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CHAPTER V 

 

 

Discussion 

This dissertation highlights the importance of cortical involvement in lower limb 

motor function, in particular during low-to-moderate force static contractions. Despite the 

critical role of force production in the lower limb to perform functional tasks, such as 

walking, studies investigating the role of the cortex in force production have been 

predominantly performed on the upper extremity resulting in a lack of information 

regarding the role of the cortex in the lower limb.  This dissertation first investigated the 

cortical activation during static contractions of the lower limb muscles in young men and 

women using fMRI (study 1, aim 1).  This study was then followed by determining the 

influence of cortical inputs on force control in young and old men and women, 

particularly force fluctuations and fatigability (time to task failure), in the lower limb 

during static contractions by manipulating factors that potentially alter cortical inputs 

from including force intensity and cognitive demand (study 2 and study 3, aim 2).   

One of the first novel findings of this dissertation was that several motor and 

sensory areas of the cortex scaled linearly with increased torque (primary motor and 

sensory cortices, basal ganglia and cerebellum) (study 1, aim 1).  Although lower limb 

muscle control during static contractions is different from the upper limb (eg., 

Jesunathadas et al., 2012) and lower limb muscles have fewer direct corticospinal 

connections (Brouwer & Ashby, 1990) than upper limb muscles, the active areas in the 

cortex associated with lower limb muscles were not unexpected because previous studies 
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have demonstrated similar areas of activation during active ankle movements (Ciccarelli 

et al., 2005; Trinastic et al., 2014).   Previous studies have also demonstrated scaled 

cortical activity with increased  force production (in volume, intensity or both) in the 

upper limb (Spraker et al., 2007; Thickbroom et al., 1998; Vaillancourt et al., 2004; 

Vaillancourt et al., 2007), however this is the first study to demonstrate similar scaling 

with force in the lower limb.   

Furthermore, cortical areas that are important to modulation of steadiness were 

identified.  Study 1 determined that there are several motor (basal ganglia, cerebellum, 

M1/SMA, and insula) and typically non-motor (superior frontal gyrus, cingulate cortex) 

areas that increased activation with increased force fluctuations during high intensity 

contractions of the ankle dorsiflexors.  The amplitude of the force fluctuations (SD of 

torque) increased with force intensity due to activation of more motor units (Laidlaw et 

al., 2000) and corresponded with motor areas that increased activation intensity between 

low and high forces.  More importantly, the results also indicated that other areas of the 

cortex (putamen, insula, contralateral superior frontal gyrus and ipsilateral inferior lobes) 

were correlated with control of steadiness of the lower limb during target matching 

contractions.  CV of force (amplitude of the fluctuations normalized to the mean torque) 

does not increase with force intensity and is usually largest at lower intensities of 

contraction [e.g. (Jesunathadas et al., 2012; Moritz et al., 2005; Taylor, A. M. et al., 2003; 

Tracy, Mehoudar, et al., 2007)].  During the 10% MVC task the CV was largest and both 

the left superior frontal gyrus motor region and the ipsilateral inferior lobes showed the 

largest correlations between CV of force and cortical activation.  The CV of force is 

thought to be mostly mediated by low-frequency oscillations in neural drive (< 2 -3 Hz) 
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during isometric contractions (Dideriksen et al., 2012; Negro et al., 2009) across a range 

of forces.  This data raises possibility that these motor regions, particularly the putamen 

and the superior frontal gyrus, both of which are associated with limb movement 

regulation (Ciccarelli et al., 2005) and force production control (Kuhtz-Buschbeck et al., 

2008) and showed the largest correlations between CV of force and activation for the 

10% MVC task, which is the intensity that CV was largest across the intensities, may be 

the sources of the low-frequency oscillating neural drive that influences action potentials 

trains and ultimately the CV of force.  

Cognitive demand however exacerbated the age-related increases in force 

fluctuations during the light load contractions.  Contrary to the young adults, older adults 

demonstrated decreased steadiness while performing a low-force (5% MVC) ankle 

dorsiflexion contraction with increased cognitive demand (study 3, aim 2).  Increased 

force fluctuations during the 5% MVC contraction in the presence of increased cognitive 

demand in older adults appears to be the result of two age-related consequences that 

occur with normal aging in the neuromuscular system and cognitive processes.  The 

extensive alterations in the neuromuscular system with aging (Doherty, 2003; Plow et al., 

2013; Semmler et al., 2006) includes altered relations between discharge rates and 

recruitment thresholds (Barry et al., 2007), as well as increased in motor unit discharge 

rate variability (Barry et al., 2007; Kornatz et al., 2005; Laidlaw et al., 2000; Tracy et al., 

2005), resulting in increased force fluctuations.  Similar age-related changes appear to 

occur in the prefrontal cortex (Hedden & Gabrieli, 2004, 2005), making cognitive tasks 

that demand executive function (Miller & Cohen, 2001; West, 1996) and neural 

connectivity from the prefrontal cortex to other essential cortical regions during executive 
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function tasks (Madden et al., 2010) particularly vulnerable with age.  Attentional 

resource limitations alter the older adult’s ability to perform multiple tasks (motor and 

cognitive tasks) simultaneously (Hiraga et al., 2009; Kahneman, 1973; McDowd, 2007), 

subsequently resulting in diminished performance in either one or both of the tasks 

(Tombu & Jolicoeur, 2003; Yogev-Seligmann et al., 2008).  This could be particularly 

disruptive when trying to perform a low-force functional task like accelerating or 

decelerating a car while talking or answering a question.   

Unlike the elbow flexor muscles (Yoon et al 2009, Keller-Ross 2014) fatigability 

was not increased for the ankle dorsiflexor muscles for young or older adults.  Muscle 

fatigue is specific not only to the demands of the task (Hunter, 2014; Hunter, Duchateau, 

et al., 2004) but is specific to the muscle group involved. Some muscle groups such as the 

ankle dorsiflexors are less susceptible to sex and age differences (Avin & Law, 2011) but 

as shown in this dissertation, they may also be less susceptible to cortical inputs 

manipulated with cognitive demand.   

Although fatigability was not altered with imposed cognitive demand in young or 

older adults, variability in the time to failure across sessions was greater for the older 

adults than the young adults. The greater variability in performance of maximal 

contractions with advanced age can be due greater variability in cortical and motor nerve 

activation during motor tasks (Hunter, Todd, et al., 2008; Yoon et al., 2008).  The results 

in this dissertation show that this age-related variability is particularly large during 

submaximal task of the lower limb and that cognitive demand will exacerbate this 

variability for a participant and between old adults. These results indicate cortical 

involvement in the greater variability possibly due to reduced inhibition onto the 
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motoneurone pool. For example, older adults had greater soleus muscle activation during 

the high-cognitive demand session relative to the other sessions and compared with the 

young adults (study 3, aim 2): this suggests less inhibition of the antagonist muscle from 

descending cortical sources (Baudry et al., 2010). Age-related changes along the neuraxis 

can also result in increased antagonist muscle activation (Hortobagyi & DeVita, 2006; 

Macaluso et al., 2002), which may be a response to decreased intracortical inhibition that 

appears to only occur in older adults as a consequence of the increased demands place on 

the remodeled neuromuscular system (Plow et al., 2013).  Future studies that involve 

assessment of cortical inhibition [which can be done with paired pulse cortical 

stimulation (eg., McGinley et al., 2010)] with and without cognitive demand during a 

motor task may provide insight into the role of age-related cortical inhibition and its 

contribution to the increased in motor variability among older men and women.   

The results of this dissertation contribute important information to the current 

body of literature regarding the role of the cortex in force production and control in the 

lower limb.  Understanding the key cortical areas associated with force control in the 

lower leg in healthy young adults, and the influence of factors that increased descending 

drive from the cortex, such as increased cognitive demand or fatigue, establishes a 

foundation for identifying the plasticity of these areas with impaired motor function that 

can occur with neurological conditions and aging as well as enhanced function that is 

possible with physical exercise in all populations. 

These results also provide evidence that increased involvement of motor and non-

motor cortical areas can disrupt motor performance of low-to-moderate intensity 

isometric contractions in the lower limb more so in older adults than young adults.  These 
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results have important performance implications for cognitively demanding and low-to-

moderate-force tasks that are common to daily function in older adults.  Key cortical and 

subcortical brain areas associated with control of lower limb steady contractions were 

also identified in healthy men and women and could be targeted in future studies to better 

understand the influence of cortical control on neuromuscular impairments such as those 

that occurs with neurologic conditions as well as normal and pathologic aging.  

Moderate, regular exercise (Granacher et al., 2010; Krebs et al., 1998) and practice 

(Marmon, Gould, et al., 2011; Silsupadol et al., 2009; Voelcker-Rehage & Alberts, 2007; 

Yogev-Seligmann et al., 2008) may reduce variability in motor performance and 

encourage efficient adaptive allocation of cognitive resources (Schaefer & Schumacher, 

2011) to better ensure successful task performance.  In a clinical setting, it may be a 

valuable use of time to evaluate the cost of dual tasking through the use of clinical tests 

(such as Stops walking while talking, and walking while performing mental math or 

verbal fluency tasks)(Yogev-Seligmann et al., 2008) and utilize practice to ameliorate the 

effects of dual tasking particularly in older adults because they have been shown to 

improve performance with practice (Yogev-Seligmann et al., 2008). 

The information provided in this dissertation can be helpful in understanding 

cortical contributions to force control in the lower extremity, although many questions 

still remain. The adult neuromuscular system undergoes significant changes with advance 

age, and acquiring a better understanding of the associated neural processes and cortical 

control can help with design of recovery programs from conditions that impact both 

cognitive and motor function such as stroke.  Examples of age-related changes in cortical 

activity include decreased lateralization in M1 activity during motor task performance 
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(Langan et al., 2010) and the prefrontal cortex during cognitive performance (Cabeza, 

2002) found in older adults compared with young adults.  These changes can have 

implications regarding the compensatory strategies older adults utilize in order to perform 

the same tasks as young adults.  Further, because changes in cognitive demand have been 

demonstrated to influence motor performance in the older adult, understanding the 

cortical regions associated with dual-task performance in the lower limb of young and old 

men and women may provide valuable information that can be utilized to improve 

functional task performance. 
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