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Abstract 

 
Resonance Raman (RR) spectroscopy is used to help define active site 

structural responses of nanodisc-incorporated CYP3A4 to the binding of three 

substrates: bromocriptine (BC), erythromycin (ERY), and testosterone (TST). 

We demonstrate that nanodisc-incorporated assemblies reveal much more 

well-defined active site RR spectroscopic responses as compared to those 

normally obtained with the conventional, detergent-stabilized, sampling 

strategies. While ERY and BC are known to bind to CYP3A4 with a 1:1 

stoichiometry, only the BC induces a substantial conversion from low- to high-

spin state, as clearly manifested in the RR spectra acquired herein. The third 

substrate, TST, displays significant homotropic interactions within CYP3A4, 

the active site binding up to 3 molecules of this substrate, with the functional 

properties varying in response to binding of individual substrate molecules. 

While such behavior seemingly suggests the possibility that each substrate 

binding event induces functionally important heme structural changes, up to 

this time spectroscopic evidence for such structural changes has not been 

available. The current RR spectroscopic studies show clearly that 

accommodation of different size substrates, and different loading of TST, do 

not significantly affect the structure of the substrate-bound ferric heme. 

However, it is here demonstrated that the nature and number of bound 

substrates do have an extraordinary influence on the conformation of bound 

exogenous ligands, such as CO or dioxygen and its reduced forms, implying 

http://dx.doi.org/10.1021/ja105869p
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an effective mechanism whereby substrate structure can impact reactivity of 

intermediates so as to influence function, as reflected in the diverse reactivity 

of this drug metabolizing cytochrome. 

Introduction 

The membrane-bound human cytochrome P450 3A4 (CYP3A4), 

the most abundant P450 expressed in liver and intestine, is involved in 

the metabolism of almost 50% of all known pharmaceuticals and is 

one of the most studied of the 57 human P450s.1-3 Its large active site 

can accommodate substrates of diverse sizes, structures, and 

affinities; depending on substrate size, it is also able to simultaneously 

bind multiple substrate molecules, a situation that sometimes gives 

rise to cooperative functional behavior.3-7 Homotropic cooperativity is 

observed when an increasing concentration of substrate leads to 

higher activity and atypical kinetics,3-7 while heterotropic cooperativity 

is manifested when binding of an effector or second substrate molecule 

can impact (stimulate or inhibit) catalytic activity toward a substrate.3-

7 

 

This ability to accommodate a wide range of substrate 

structures, yet still retain active site structural constraints adequate to 

impart regio- and stereoselectivity toward certain substrates,3-9 implies 

the existence of a complex interplay between substrate structure and 

active site structural elements, the understanding of which carries 

important implications for drug development research.3-9 The practical 

significance of this issue, coupled with a relatively small amount of 

reliable structural data,10-14 has fueled a large number of 

computational and modeling studies searching for insight into the 

structural basis for substrate recognition and manipulation of the 

inherent reactivity of CYP3A4.15-17 

 

Although early crystallographic studies provided useful data for 

the substrate-free form, efforts to acquire structures for substrate-

bound forms were disappointing in that the substrates employed either 

did not bind to the enzyme or bound in apparently unproductive 

modes.10,11 However, recent studies have revealed that binding of 

ketoconazole and erythromycin (ERY) causes dramatic, but different, 

changes in protein conformation.12,13 Specifically, while the active site 

volume increased by more than 80% in both cases, erythromycin 

http://dx.doi.org/10.1021/ja105869p
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binding resulted in a nonproductive complex, while two ketoconazole 

molecules are accommodated within the heme active site. These 

crystallographic data clearly support the position that drug-

metabolizing cytochromes P450, such as CYP3A4, possess relatively 

“malleable” pockets and that its active site structure and reactivity can 

“adjust” in response to substrate structure. Given these observations 

and the physiological importance of these enzymes, it is evident that 

the development of successful protocols for application of a solution 

phase technique capable of faithfully revealing active site structural 

changes associated with binding of substrates, inhibitors, and 

heterotropic effectors to mammalian cytochromes P450 is of immense 

value. 

 

Of the many spectroscopic techniques that have been effectively 

applied to study heme proteins, resonance Raman (RR) has proven 

itself to be quite versatile in documenting several types of critical 

heme site structural changes.18,19 High frequency marker modes 

respond to changes in oxidation- or spin-state of the central iron in 

well-established and documented ways, while low frequency modes 

indicate changes in protein interactions with the heme periphery.20-25 

This is important, because the presence of the propionic acid and 

(potentially conjugated) vinyl peripheral substituents has long been 

considered as possibly important structural determinants of heme 

reactivity, whose influence may be sensitively manipulated by 

protein−heme interactions.23,26-28 Moreover, excitation within the 

strong Soret band of the heme can lead to efficient enhancement of 

internal modes of Fe−XY fragments, providing a very effective probe of 

the key linkages between the heme prosthetic group and exogenous 

ligands, including the CO molecule18,19,29-35 and the physiologically 

relevant dioxygen and bound peroxo- and hydroperoxo fragments.36-42 

 

While this powerful spectroscopic technique has long offered 

great promise for application to mammalian P450s, certain 

complications have persisted, one of the most problematical being the 

propensity of these membrane-bound enzymes to aggregate in 

solution in undefined and uncontrolled ways.43 In fact, this annoying 

tendency toward aggregation is a general problem that has plagued all 

biophysical studies of these systems. Fortunately, the so-called 

“nanodisc” technology has been developed for use in mammalian 

http://dx.doi.org/10.1021/ja105869p
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cytochrome P450 research, permitting membrane-bound P450 

enzymes to be studied in an environment that eliminates aggregation. 

The nanodisc approach utilizes an encircling amphipathic membrane 

scaffold protein (MSP), which can stabilize a phospholipid bilayer by 

forming a kind of “belt” around the hydrophobic core,44,45 the essential 

point being that this unique sampling methodology can now be used to 

permit quite detailed characterization of the structure and function of 

mammalian P450s in an environment that, for the first time, closely 

mimics the native environment (Figure 1). In fact, the application of 

the “nanodisc” technology to mammalian P450 research has already 

enabled detailed studies of nanodisc-incorporated stoichiometric 1:1 

complexes of CYPs and their natural reductases to form functional 

organized catalytic assemblies.46-50 

 

 
Figure 1. The nanodisc−CYP3A4 asembly. The CYP3A4 molecule is green, cartoon 

representation, with heme shown in red sticks. Lipids are shown as sticks with 
nitrogen atoms colored blue and oxygen in red, while the scaffold protein 
encompassing the lipid bilayer is shown as a blue semitransparent surface with dark 
blue sticks. 

In this Article, attention is focused on the interactions of 

nanodisc-incorporated CYP3A4 (designated ND:CYP3A4) with three 

substrates, bromocriptine (BC), erythromycin (ERY), and testosterone 

(TST), the functional properties for each of which have been 

thoroughly documented (see Figure 2 for structures). The first of 

these, BC, is a frequently studied 3A4 inhibitor/substrate that is 

especially effective in inducing an almost complete change to the high 

http://dx.doi.org/10.1021/ja105869p
http://epublications.marquette.edu/
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spin (HS) state (∼95%).46,51 The choice of ERY stems from the fact 

that, even though it does not induce a substantial spin state 

conversion (only ∼20% HS), it is used in diagnostics as a test 

substrate for CYP3A4.52 Those two substrates bind tightly to the 

protein in the ratio of 1:1 with dissociation constants of ∼0.15 and 

∼120 μM, respectively (unpublished results). Testosterone, an 

important substrate of the steroid hydroxylases, is metabolized by 

CYP3A4 and has been employed as a useful target for the study of 

homotropic interactions within CYP3A4,46,49,50 which can bind up to 

three molecules of this substrate. In these previous works, it was 

found that the substrate-free nanodisc assembly is essentially a low 

spin system, containing only 7% HS component; while binding of the 

first TST substrate causes a small conversion to HS state and some 

increase in consumption of NADPH reductant, there is no product 

formed. Addition of the second substrate causes an almost complete 

(98%) conversion to a HS state, but still yields rather low (5%) 

coupling efficiency. Finally, the addition of the third substrate, while 

not giving significant changes in spin state or turnover rate, does 

improve coupling (up to 14%). Such observations obviously suggest 

the likely possibility that each substrate binding event induces 

functionally important heme structural changes, but up to this time 

spectroscopic evidence for such structural changes has not been 

available. 

 

 
Figure 2. The structures of testosterone (A), bromocriptine (B), and erythromycin 
(C). 

Here, we present data for ferric resting states of the protein, in 

both the substrate-free and the substrate-bound forms, which show 

http://dx.doi.org/10.1021/ja105869p
http://epublications.marquette.edu/
javascript:void(0);
javascript:void(0);
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 133, No. 5 (February 9, 2011): pg. 1357-1366. DOI. This article is © 
American Chemical Society and permission has been granted for this version to appear in e-Publications@Marquette. 
American Chemical Society does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from American Chemical Society. 

7 

 

remarkable differences in RR spectra collected for samples prepared in 

commonly employed detergent and those acquired for ND:CYP3A4; 

that is, while no substantial effects of substrate binding could be 

observed in conventional media, quite distinct spectra were obtained 

for the substrate-free and substrate-bound forms in these nanodisc 

assemblies. More importantly, it is evident from the RR data acquired 

here, for the first time, that the occupation of the distal pocket by 

multiple substrates does not lead to structurally different high spin 

states. However, the nature and number of bound substrates do have 

a substantial influence on the conformation of bound exogenous 

ligands, an observation that implies that substrate occupation may 

impact mechanism by influencing the disposition of bound exogenous 

ligands, such as dioxygen and its reduced (peroxo- and hydroperoxo-) 

forms. 

Experimental Section 

Sample Preparation 

 

Materials 

 

All chemicals were purchased from Sigma Aldrich, with the 

exception of chelating Sepharose FF and Superdex 200 (GE 

Healthcare), Coomassie G-250 reagent (Pierce), Emulgen 913 (Karlan 

Research Products, Santa Rosa, CA), and palmitoyl-oleoyl-

phosphatidylcholine (POPC) (Avanti Polar Lipids, Alabaster, AL). 

 

Protein Expression and Purification 

 

Cytochrome P450 3A4 was expressed from the NF-14 construct 

in the PCWori+ vector with a C-terminal pentahistidine tag generously 

provided by Dr. F. P. Guengerich, as previously described.53 The 

presence of the histidine-tag has been shown to not perturb the 

measured turnover parameters of CYP3A4.54 Heterologous expression 

and purification from E. coli was carried out using a modified 

procedure46 as described in the Supporting Information of ref 55. 

  

http://dx.doi.org/10.1021/ja105869p
http://epublications.marquette.edu/
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 133, No. 5 (February 9, 2011): pg. 1357-1366. DOI. This article is © 
American Chemical Society and permission has been granted for this version to appear in e-Publications@Marquette. 
American Chemical Society does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from American Chemical Society. 

8 

 

Preparation of Nanodiscs Incorporated Protein 

 

The application of the nanodisc system for solubilization of 

integral membrane proteins incorporated into nanoscale bilayers has 

been described in detail in several publications.46,56-60 Assembly of 

human CYP3A4 in nanodiscs was accomplished using the scaffold 

protein MSP1D1 with the poly(histidine) tag61 removed as described 

previously.46 Briefly, purified CYP3A4 from the E. coli expression 

system was solubilized by 0.1% Emulgen 913 and mixed with the disk 

reconstitution mixture containing MSP1D1, POPC,1 and sodium cholate. 

A molar mixing ratio of 0.1:1:65:130 (CYP3A4:MSP1D1:POPC:cholate) 

was chosen to favor formation of monomeric CYP3A4 incorporated into 

nanodiscs with the proper stoichiometry of scaffold protein and lipid. 

Detergents are removed by absorption on the AmberliteXAD-2 (Sigma 

Aldrich, Milwaukee, WI), which initiates self-assembly of nanodiscs. 

Purification of the fraction of nanodiscs with incorporated CYP3A4 was 

achieved using Ni-NTA affinity column followed by size exclusion 

chromatography as previously described.55 The result of this self-

assembly reaction is a monomer of CYP3A4 contained in a discoidal 

POPC bilayer ∼10 nm in diameter stabilized by the encircling 

amphipathic membrane scaffold protein belt. The CYP3A4-nanodiscs 

were prepared in substrate-free form and kept at 4 °C. For 

comparison, spectra also have been measured using CYP3A4 

solubilized in 0.1% Emulgen 913. 

 

Resonance Raman Measurements 
 

Preparation of Samples for RR Measurements 

 

The concentration of nanodisc-incorporated protein was ∼100 

μM, unless otherwise specified. Electronic absorption spectroscopy 

showed that this incorporated substrate-free (SF) sample contains 

∼11% of high spin component, noting, however, that these absorption 

measurements were performed on samples that were only 10−15 μM 

in nanodisc concentration.51 The samples containing the relatively 

large substrates were prepared by addition of 200 μM bromocryptime 

(BC) or 800 μM erythromycin (ERY). To investigate the effect of TST 

loading on the RR spectra, different concentrations of substrate were 

added to substrate-free samples to give final concentrations of 100, 

http://dx.doi.org/10.1021/ja105869p
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130, 200, 350, 600, and 1200 μM; the ND:CYP3A4 samples were in 

100 mM potassium phosphate buffer, pH 7.4. Concentrated solutions 

of substrates in methanol-containing buffer solutions, where the final 

concentration of methanol was always less than 1%, were added to 

the substrate-free form. 

 

The carbonmonoxy ferrous ND:CYP3A4 samples were prepared 

in the following manner. Approximately 100 μL of ∼100 μM ferric 

ND:CYP3A4 sample was placed in a 5 mm NMR tube (WG-5 Economy, 

Wilmad) and closed with a rubber septum (Sigma-Aldrich, Milwaukee, 

WI). The tube was connected to a vacuum line via a needle 

connection, and the sample was degassed by three cycles of 

alternating application of vacuum and filling with argon gas. Following 

the final evacuation, CO gas was introduced to the NMR tube, and the 

ferric sample was reduced by addition of ∼2 mol equiv (∼5 μL)62 of 

sodium dithionite dissolved in freshly degassed 100 mM potassium 

phosphate buffer, pH 7.4. 

 

Samples were also prepared in so-called conventional media, 

which consisted of 50 mM potassium phosphate, pH 7.4 buffer 

containing 20% of glycerol, 1 mM DTT, and 0.1% of Emulgen 913 to 

help ensure solubilization of CYP3A4 as a monomer. The concentration 

of ferric samples of substrate-free CYP3A4 was 60 μM, and the 

concentration of testosterone in the substrate-bound sample was 600 

μM. 

 

Resonance Raman Measurements 

 

The ferric CYP3A4 samples were measured with the 406.7 nm 

excitation line from a Kr+ laser (Coherent Innova model 100-K3), while 

the Fe(II)−CO adducts were excited using the 441.6 nm line provided 

by a He−Cd laser (Liconix model 4240). The RR spectra of all samples 

were measured using a Spex 1269 spectrometer equipped with an 

Andor Newton EMCCD detector (model DU971, Andor Technologies). 

The slit width was 100 μm, and the 1200 g/mm and 2400 g/mm 

gratings were used for lower resolution and high resolution 

measurements, respectively. The laser power at the sample was 

adjusted to ∼8 mW for ferric samples, while the power of ∼1 mW was 

maintained for the CO adducts to minimize photodissociation. To avoid 

http://dx.doi.org/10.1021/ja105869p
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laser-induced heating and protein degradation, the samples were 

contained in spinning NMR tubes (5 mm DO, WG-5 ECONOMY, 

Wilmad). Measurements were done using a 180° backscattering 

geometry, and the laser beam was focused onto the sample using a 

cylindrical lens to form a line image.63 Spectra were calibrated with 

fenchone and processed with Grams/32 AI software (Galactic 

Industries, Salem, NH). Data were obtained at 4 and 30 °C. The 

sample-containing NMR tube was placed in a homemade quartz Dewar 

flask filled with water, and the temperature was monitored using a 

thermocouple and did not change by more than ±2 °C during the 

measurements. 

 

Peak Fitting Procedure 

 

The ν(Fe−CO) bands in the absolute spectra of substrate-free 

and TS-bound samples exhibit clearly visible asymmetry, implying the 

presence of several Fe−C−O conformers, an observation that was 

confirmed by the appearance of distinct ν(C−O) stretches in the high 

frequency region. To document the fractional population of these 

multiple Fe−CO conformers, the low frequency RR spectra of ferrous 

CO adducts were analyzed with Grams 32/AI software using a peak 

fitting procedure, employing 50/50% Gaussian/Lorentzian functions.64 

The fitting was performed in a manner that restricts the number of 

peaks to the minimum, noting that this region also contains a well-

known heme mode.24,25 Thus, to obtain satisfactory fitting of Fe−CO 

envelope, it was necessary to include this feature. First, its frequency 

(and bandwidth) was derived by fitting of the less complex spectra of 

the BC and ERY, yielding values of 501 cm−1 (15 ± 0.5 cm−1); it is 

noted that these two fitting operations also produced virtually identical 

relative intensities with respect to the ν7 mode at 673 cm−1, as would 

be expected. Therefore, the parameters of this band, including its 

intensity relative to the ν7 mode, were held constant in fitting all of the 

other (more complex) spectra. The intensities, bandwidths, and 

frequencies of the peaks associated with the ν(Fe−C) modes in the 

spectra of the substrate-free sample and of the sample with high 

concentration of TST were allowed to change during iteration cycles, 

and it was found that their ν(Fe−C) envelopes were best fitted with 

two ν(Fe−C) modes, results confirmed by the observation of two 

ν(C−O) modes in the high frequency region. It is also noted that the 
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ν(C−O) modes in the spectra of samples with smaller TST 

concentrations have the same frequencies as the ν(C−O) modes in the 

spectra of SF sample and sample containing a high concentration of 

TST. Accordingly, while fitting spectra of those samples containing low 

amounts of TST, the frequencies of the two ν(Fe−C) modes were kept 

the same as extracted from the spectra of SF and high concentration 

TST, while the bandwidths and intensities were allowed to change 

during iteration cycles. Significantly, it is also noted that (within a 

given spectrum) the relative intensities of the ν(Fe−C) modes are 

consistent (within experimental error) with the relative intensities of 

the two high frequency ν(C−O) modes. 

Results and Discussion 

Ferric P450 3A4 and Its Interaction with Substrates 
 

Complications Arising from Detergent Solubilization 

 

To document the differences in the RR spectra between CYP3A4 

prepared in so-called “conventional” media and that assembled in 

nanodiscs, two samples of cytochrome CYP3A4 were prepared in 

detergent solution; as explained in the Experimental Section, these 

contained Emulgen 913, which is commonly employed for enhancing 

the solubility of mammalian cytochromes P450.43,50,64,65 The spectra of 

the substrate-free enzyme, as well as that bound with 10 mol equiv of 

testosterone, are shown in Figure 3 (traces A and B, “CM” stands for 

“conventional media”, as opposed to nanodisc-incorporated proteins 

that are the main subject of this Article). The so-called spin state 

marker bands in these spectra are expected to occur near 1500 (v3), 

1590 (ν2), and 1640 cm−1 (ν10) for the LS state and near 1490, 1570, 

and 1630 cm−1 for the HS state.18,19,23-25,32 As can be readily seen in 

the top trace, the ν3 spin state marker bands of the substrate-free 

state indicate the presence of substantial amounts of both low (1502 

cm−1) and high (1488 cm−1) spin components; however, it is noted 

that the intensity ratio cannot be assumed to be directly proportional 

to the spin state populations due to differences in inherent RR cross 

sections. Given this fact, efforts were made here to deduce the relative 

populations of LS and HS states by establishing the relative RR 

scattering cross sections of the ν3 modes from studies of Cytochrome 
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P450cam (CYP101), where it was possible to generate virtually pure HS 

and LS samples, each containing 0.25 M sulfate ion as an internal 

standard (the concentration of substrate-free sample was 11.7 μM, 

and that of the substrate-bound was 11.1 μM); the relative cross 

sections of the ν3 mode were determined to be IHS/ILS = 1.23 

(unpublished data). This ratio was used to compute the HS and LS 

popuations for spectra A and B of Figure 3, yielding HS/LS population 

ratios of 30/70 for both. See Table S1 of the Supporting Information 

for a summary of calculated spin state distributions for all samples 

studied in this work. It is noted that the HS components of the ν2 and 

ν10 modes are not readily observed, because of overlaps with other 

modes (i.e., ν37 and ν(C═C)vinyl modes). Most interestingly, it can be 

seen that the addition of substrate (testosterone in a 10-fold excess) 

to this conventionally solubilized protein does not substantially affect 

the spin state distribution of the enzyme (trace B), a result in stark 

contrast to results normally obtained for most soluble bacterial 

cytochromes P450, where binding of typical substrates causes 

conversion of an almost pure LS state to population having 90−98% 

HS component.25,32 The spectroscopic behavior observed here for these 

detergent-solubilized proteins suggests that the “substrate-free” 

sample shows some conversion to HS state due to the presence of the 

Emulgen 913, which has been suggested to be a substrate for 

mammalian P450s,64 but that the added TST substrate is to some 

extent blocked from entering the active site, as reflected in the total 

absence of further conversion to the HS state. The point to be made is 

that the influence of Emulgen 913 and similar types of solubilizing 

agents can introduce complications in studying the structural effects of 

physiologically relevant substrates. As can be seen by inspection of the 

data acquired here (e.g., Figure 3, traces C−F), such complications are 

largely avoided for the nanodisc-incorporated systems. 

http://dx.doi.org/10.1021/ja105869p
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Figure 3. The high frequency RR spectra of 60 μM ferric cytochrome CYP3A4 in 
detergent without substrate (A), and with 600 μM testosterone (B), as well as RR 
spectra of ferric cytochrome 3A4 in nanodiscs (100 μM) without substrate (C), with 
1200 μM of testosterone (D), bromocriptine (E), and erythromycin (F). The RR spectra 
were measured at 30 °C; excitation line 406 nm. Spectra were normalized to the ν3 

mode. The “CM” stands for “conventional media” (traces A and B) as opposed to 
spectra of protein incorporated in nanodiscs (traces C−F). 

Effect of Substrate Structure on the Nanodisc-Incorporated Ferric 

Enzyme 

 

High Frequency Resonance Raman Spectra 

 

The high frequency RR spectrum of the substrate-free form of 

nanodisc-incorporated CYP3A4 (ND:CYP3A4) is presented in Figure 3, 

trace C, exhibiting core size and spin state markers bands at 1502 

cm−1 (ν3), 1568 cm−1 (ν2), and 1643 cm−1 (ν10), all being characteristic 

of a low spin 6-coordinated state (LS6c), consistent with a thiolate 

ligand coordinated on the proximal heme side and a water molecule on 

the distal side, as is typical for substrate-free P450s.18,19,23-25,32 It is 

emphasized here that, contrary to the samples prepared in detergent 

solution, this sample is largely LS state (∼85%; Table S1). The 

addition of high concentrations of testosterone (trace D), as well as 

bromocriptine (trace E), causes significant increases in the HS 

component, as judged by the strong intensities of the ν3 mode at 1488 

cm−1 and the ν2 mode at 1570 cm−1. On the other hand, the addition 

of ERY to the SF sample causes only slight spin state changes, the 

http://dx.doi.org/10.1021/ja105869p
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spectra of ERY-bound sample (trace F) looking esentially like that of 

the substrate-free form, except for a very slightly enchanced HS ν3 

mode at 1488 cm−1. These results are consistent with the UV−vis data 

showing that the ERY-bound ND:CYP3A4 samples are only about 20% 

high spin state.51 

 

Returning attention to the results for the TST and BC-bound 

forms, as shown in Table S1, the apparent HS population of the TST-

bound form is 75%, while that of the BC-bound form is 80%. It is 

noted that these values are slightly lower than those previously 

reported for 1 μM ND:CYP3A4 samples containing 1 μM BC and high 

concentrations of TST. As is explained further in the Supporting 

Information, these small apparent discrepancies are most reasonably 

attributed to the large differences in substrate and protein 

concentrations, as well as small errors introduced by uncertainties in 

the relative RR cross sections between the HS and LS bands (see the 

Supporting Information). 

 

Low Frequency Resonance Raman Spectra 

 

The low frequency RR spectra of ferric samples of substrate-

free, BC- and ERY-bound, as well as that of a sample containing a 

large amount of TST (1200 μM) are shown in Figure 4. The low 

frequency spectrum of substrate-free ND:CYP3A4 (Figure 4, trace A) 

exhibits two modes associated with “propionate bending” at 370 and 

378 cm−1, and two modes assigned to “vinyl bending” modes, a lower 

intensity one at 411 cm−1 and higher intensity mode at 423 cm−1; the 

quotation marks are included in these descriptions in compliance with 

more recent studies that have documented involvement of other 

pyrrole substituents, as reflected in the rather substantial isotopic 

shifts observed upon deuteration of the peripheral methyl groups.66,67 
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Figure 4. The low frequency RR spectra of ferric cytochrome 3A4 in nanodiscs without 
substrate (A), with 1200 μM of testosterone (B), bromocriptine (C), and erythromycin 
(D). The RR spectra were measured at 30 °C; excitation line 406 nm. Spectra were 
normalized to the ν8 mode. 

The addition of BC or high concentrations of TST, which caused 

substantial changes in spin-state marker modes, leads to small, but 

definite, changes in the modes associated with heme peripheral group 

dispositions or out-of-plane macrocycle distortion. Thus, the traces for 

TST and BC bound samples exhibit only slight increases in the 

intensities of the out-of-plane heme modes observed near 315−330 

cm−1 and at ∼500 cm−1. Similarly, binding of substrate seems to 

induce a rather small decrease of the lower frequency propionate 

bending mode near 370 cm−1 and a corresponding increase in the 

stronger propionate mode at 378 cm−1; it is interesting to note that 

this effect on propionate modes is opposite of that observed for 

bacterial P450s, where binding of substate led to activation of the 

lower frequency propionate bending mode.23,25 The only obvious effect 

on the vinyl modes is that the substrate-bound forms seem to have 

larger intensities in the lower frequency component (near 410 cm−1) as 

compared to the feature near 420 cm−1. The binding of ERY does not 

induce any detectable enhancement of out-of-plane modes, but 

slightly increases the lower frequency vinyl bending mode intensity, 

relative to the 423 cm−1 feature. 
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Effects of Loading of Smaller Substrates on Ferric CYP3A4 

 

Inasmuch as it has been shown that up to three testosterone 

molecules can bind within the large distal pocket of CYP3A4,46,50 it is of 

interest to probe this system at different levels of TST loading so as to 

provide an evaluation of the effect of pocket crowding on heme 

structure. As is shown in Figures S1 and S2 of the Supporting 

Information, while addition of increasing concentrations of TST causes 

HS markers and low frequency oop modes to increase and LS markers 

to decrease, there is no evidence for more than one type of HS 

component. Thus, the results obtained argue that one molecule of TST 

is apparently insufficient to trigger a spin state conversion, two bound 

TST molecules generate a substantial HS population, which is further 

populated by the third TST without causing any further distinct heme 

structural changes. 

 

Ferrous CO P450 3A4 and Its Interaction with 

Substrates 
 

The RR spectra of relatively stable ferrous CO adducts of 

cytochrome P450 provide useful information about distal side pocket 

structure and ligand protein interactions. Moreover, the changes in the 

modes associated with the Fe−C−O fragment reflect not only strength 

of the proximal trans ligand, but also the polarity of the distal pocket 

environment, such as H-bond interaction with the distal amino acids, 

water molecules, or substrates. It is well-known that back-donation of 

the Fe(II) dπ electrons to ligands π* orbitals increases the Fe−C while 

weakening the C−O bond strengths, resulting in a negative linear 

correlation between the C−O and Fe−C stretching frequencies.18,19,29-

32,35 The ν(Fe−C) and ν(C−O) stretching modes are usually observed 

in the regions of 460−490 and 1920−1970 cm−1, respectively, while 

the δ(Fe−C−O) bending mode is seen at around 560−570 cm−1.18,19,29-

32,35 The spectra of ferrous CO samples were measured with the 442 

nm excitation line at 4 °C; in all cases, there were no observed 

differences in the spectra measured at 4 and 30 °C. 

  

http://dx.doi.org/10.1021/ja105869p
http://epublications.marquette.edu/
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/ja105869p#notes-1
http://pubs.acs.org/doi/full/10.1021/ja105869p#notes-1
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 133, No. 5 (February 9, 2011): pg. 1357-1366. DOI. This article is © 
American Chemical Society and permission has been granted for this version to appear in e-Publications@Marquette. 
American Chemical Society does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from American Chemical Society. 

17 

 

Effect of Substrate Structure on the Ferrous CO Adducts 

 

The oxidation and spin-state marker bands of these low spin 6-

coordinate CO adducts occur at virtually identical positions, regardless 

of substrate occupation, as expected (Figure S3, Supporting 

Information); that is, the ν4 mode is located at 1371 cm−1, the ν3 

mode at 1496 cm−1, and the ν2 mode at 1586 cm−1. In accordance 

with this observation, it is also seen by inspection of Figure 5 that 

there are no significant effects of substrate binding or substrate 

structure on the low frequency heme modes that occur between 200 

and 850 cm−1. However, substrate binding does have a definite impact 

on the disposition of the Fe−C−O fragment, as judged by obvious 

changes in its vibrational parameters; that is, the ν(Fe−C) modes shift 

between 476 and 491 cm−1 and in certain cases appear to be 

asymmetric, implying the existence of two or more conformers. To 

evaluate these possibilities, the low frequency spectra were 

deconvoluted and supplemented by spectra acquired between 1800 

and 2100 cm−1, where corresponding ν(C−O) modes are expected to 

occur, these spectra being displayed in Figure 6. 

 

Figure 5. The low frequency RR spectra of ferrous CO adducts of cytochrome 3A4 in 
nanodiscs without substrate (A), with 1200 μM of testosterone (B), bromocriptine (C), 

and erythromycin (D). The RR spectra were measured at 4 °C; excitation line 442 nm. 
Spectra were normalized to the ν7 mode. 
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In the low frequency spectrum of the substrate-free sample, the 

asymmetric peak at around 476 cm−1 is fit best with two peaks of 23 

cm−1 bandwidth corresponding to two ν(Fe−C) conformers positioned 

at 476 and 491 cm−1 (Figure 6, trace A). This assignment is supported 

by the observation of two ν(C−O) stretches in the high frequency 

region, at 1929 and 1953 cm−1 (inset of trace A). It is also important 

to note that the relative intensities of these modes are well correlated; 

that is, the modes at 476 and 1953 cm−1 are more intense and 

represent one Fe−CO conformer, while the less intense pair of modes 

at 491 and 1929 cm−1 corresponds to the second conformer. 

 

Upon binding the relatively large BC substrate, it appears that 

only one conformer is generated; that is, the feature observed at 484 

cm−1 is fitted well with only one peak, whose 23 cm−1 bandwidth is 

consistent with those seen for the two conformers of the substrate-

free form. Again, this interpretation is clearly supported by the 

observation of a single ν(C−O) mode appearing at 1935 cm−1. The 

presence of only one mode in BC-bound sample implies that this 

substrate occupies a large portion of heme pocket, permitting only one 

Fe−C−O conformer. The spectra of ERY-bound sample also show only 

one ν(Fe−C) stretch occurring at 479 cm−1 and its corresponding 

single ν(C−O) mode at 1948 cm−1. Interesting aspects of this ν(Fe−C) 

mode of the ERY-bound sample are that it possesses a very narrow 

bandwidth (14 cm−1) and exhibits a remarkably high intensity, being 

comparable to the intense ν7 mode (Figure 5, trace D). The narrowing 

and high intensity of this mode is possibly associated with a very rigid 

conformation of the Fe−CO fragment and possible hydrogen bonding 

to the ERY substrate, a suggestion that is consistent with previously 

reported X-ray crystallographic data.68 
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Figure 6. High-resolution low frequency RR spectra of ferrous CO adducts of 
cytochrome 3A4 in nanodiscs without substrate (A), with 200 μM bromocriptine (B), 
with 800 μM erythromycin (C), with 130 μM of testosterone (D), with 200 μM of 
testosterone (D), and with 350 μM of testosterone (E). Note the samples with 350, 
600, and 1200 μM of testosterone give the same spectra. The RR spectra were 

measured at 4 °C; excitation line 442 nm. Spectra were normalized to the ν7 mode 
and deconvoluted as described in text. Black solid line, experimental data; green solid 
line, fitted spectra; red dotted line, modes associated with ν(Fe−CO) modes; black 
dotted line, other modes in this region. The insets show the high frequency region of 
corresponding samples. 

Effect of Substrate Loading on Ferrous CO Adducts 

 

Also shown in Figure 6 are the spectra of ND:P4503A4 with 

different loadings of TST. The ν(Fe−C) envelope observed for the 130 

μM TST sample (Figure 6, trace D) is very wide and asymmetric, 

requiring application of the deconvolution procedures. Inasmuch as the 

corresponding ν(C−O) modes are seen at the same frequencies 

observed for the substrate-free form (i.e., at 1929 and 1953 cm−1), it 

was deemed most appropriate to also use the same initial ν(Fe−C) 

frequencies observed for the substrate-free form and then attempt 

different fitting strategies. First, the frequencies and intensities were 

allowed to vary, while holding the bandwidths constant, the net result 

being that a satisfactory fit was not attainable. On the other hand, 

when the frequencies were held constant, allowing the intensities and 

bandwidths to vary, a satisfactory fit was quickly attained, yielding two 

ν(Fe−C) modes having bandwidths of 23 and 17 cm−1 for the 476 and 

491 cm−1 features, respectively; that is, a selective narrowing of the 
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high frequency component was observed. The addition of TS to a total 

of 200 μM caused further increases in the relative intensity of the 

higher frequency component, noting the interesting fact that a 

satisfactory fit could only be obtained by permitting a comparably 

narrow bandwidth to the lower frequency Fe−C mode. Further 

additions of TST to 350 μM yielded higher percentages of the 491 cm−1 

component, but no further narrowing of either feature. Finally, it is 

emphasized that the observed intensity variations of the corresponding 

ν(C−O) modes upon loading of TST are entirely consistent with the 

parameters extracted from the low frequency deconvolution 

procedure. These observations lead to the conclusion that higher TST 

loadings reduce, although not completely eliminate, the population of 

Fe−CO conformer that is dominant in the substrate-free form. 

Furthermore, the apparently crowded distal pocket leads to more 

restricted conformations, as reflected in the narrower bandwidths 

observed at higher loadings of TST. 

 
Figure 7. The inverse correlation between the ν(Fe−C) and ν(C−O) frequencies. The 
“” represent points for the ND:CYP3A4, and the “◆” are for the CYP101 proteins 

(from refs 31,32,69−71). 

Plots of the ν(C−O) versus the ν(Fe−C) frequencies represent 

the FeCO backbonding correlation and provide very useful information, 

not only about proximal ligand effects, but also the distal heme pocket 

environment, including steric distortions of the Fe−C−O fragment and 

polarity of the distal heme pocket. It is generally accepted that a 

positive polar distal environment, including H-bonding, causes 

lowering of the ν(CO) and a corresponding increase of the ν(Fe−C) 
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frequency, yielding points to the left side of the correlation. As shown 

in Figure 7, the ν(C−O)/ν(Fe−C) points observed for the ND:CYP3A4 

preparations studied here document increases in positive polarity upon 

binding of various substrates. Behavior similar to this has been 

observed for CYP101, as shown in the lower correlation line in Figure 

7, and interpreted as being indicative of H-bond formation with distal 

pocket Thr and Asp residues upon exclusion of the distal pocket water 

clusters present in the substrate-free form.31,32,69-72 Addition of BC and 

TST substrates to the ND:CYP3A4 samples results in more polar 

environments in the vicinity of the Fe−CO fragment, with the TST 

having the strongest effect. Binding of the ERY substrate leads to 

formation of an apparently weaker, but highly directed H-bonding 

interaction that results in narrow and intense ν(Fe−C) and ν(C−O) 

features. The observed ability of this protein to accommodate three 

such structurally different substrates reflects the anticipated flexibility 

of the large distal pocket. On the other hand, the observed differential 

effects of these substrates on the vibrational parameters (disposition) 

of the Fe−CO fragment imply that the structure of substrate can 

indeed impact the CYP3A4 reactivity and function. 

Conclusions 

Several important findings have emerged from the present 

work. First, the use of the nanodisc sampling methodology, which had 

previously been shown to elicit more well-behaved functional 

properties, is now shown to lead to a system with well-defined spectral 

parameters that are indeed responsive to substrate binding in a 

manner that is consistent with observed functional changes. The 

binding of TST in high concentrations, as well as binding of BC, result 

in large spin shifts, while binding of ERY causes only a slight spin shift. 

In the low frequency region, there are only minor changes in the 

modes associated with out-of-plane macrocycle distortion or heme 

peripheral group dispositions, a finding that contrasts with the 

behavior typically observed for bacterial P450s. Significantly, although 

several new RR features associated with out-of-plane or peripheral 

group bending modes appear in the LF spectral region when TST is 

added, it is noted that there is apparently only one type of high-spin 

state, whose structure is not sensitive to the number of bound TST 

molecules. 
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Although there are no noticeable effects of substrate structure 

or loading on the heme spectral features, there are definite differences 

observed for the modes associated with the Fe−CO fragment, with 

shifts of up to 15 cm−1 being seen. This strong effect of some 

substrates on the vibrational spectra of Fe−CO unit in cytochromes 

P450 is usually attributed to the steric and/or electronic perturbation 

caused by interactions with the bound ligand. While comparable shifts 

upon substrate binding are commonly observed for bacterial 

P450s,18,19,25 they are generally not seen for most mammalian 

cytochromes P450, when studied in conventional media; for example, 

very small effects on the vibrational modes of the Fe−C−O fragments 

were observed for CYP2B4 upon binding of substrates.24 Although it is 

true that relatively large changes in the Fe−C and C−O stretching 

modes have been reported for the CO adduct of CYP19 upon binding of 

its substrate, 19-oxo androstenedione,73 it is noted that this is a type 

of steriodogenic cytochrome P450 that typically exhibits high 

sterospecificity, implying a tightly organized binding site more similar 

to those of bacterial P450s. 
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