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ABSTRACT 

FAILURE MECHANISMS AND KEY PARAMETERS OF FRP 

DEBONDING FROM CRACKED CONCRETE BEAMS 

 

 
Tayyebeh Mohammadi, B.S., M.S. 

Marquette University, 2014 

 

 

Intermediate crack (IC) induced debonding failure of Fiber Reinforced Polymer 

(FRP)-strengthened reinforced concrete beams starts at the tip of flexural/shear cracks 

within the shear span and propagates towards the FRP plate termination. In this study, 

experimental and numerical programs are performed to characterize and predict the 

failure mechanisms of IC debonding failure, and identify the key parameters affecting 

such failure. It is found that the bond-slip relation obtained from the pullout test does not 

represent the bond-slip relation of the FRP/concrete interface in the FRP-strengthened 

concrete beams, and it cannot be directly used for predicting the load capacity of the 

FRP-strengthened concrete beams. A mathematical and systematic method is also 

successfully established to predict the variation of the FRP-bonded concrete specimens’ 

capacities. 

In the experimental program, the bond-slip behavior of the FRP/concrete interface 

is obtained by single shear pullout and beam tests. In the beam specimens, a notch at the 

mid-span of the beam represents the main flexural/shear crack. In order to study the 

sensitivity of the IC debonding failure to the location of the major flexural/shear crack, 

the notch is located at different locations along the shear span of the beam. In all beam 

specimens, a concrete wedge located at the edge of the notch detached with the FRP 

debonding failure. This phenomenon shows that the initiation of debonding is due to a 

diagonal crack formation close to the major flexural/shear crack inside the concrete.    

Numerical analyses are performed using the experimentally-obtained bond-slip 

relations to model the shear pullout and beam tests. The application of concrete damaged 

plasticity model in XFEM is proposed to model the constitutive behavior of concrete. The 

numerical analyses show that the boundary conditions of the concrete block at the loaded 

end play an important role in the resulting bond-slip relationship and stress state of the 

FRP/concrete interface in the pullout tests. According to the numerical analyses, the 

diagonal crack formation observed in the experiments is due to a local moment at the tip 

of the notch. This causes the difference in behaviors of beam specimens than pullout 

specimens. 

The variation of localized FRP stiffness and concrete strength is combined into a 

single parameter as the variation of the interfacial fracture energy. A systematic method 

using the concept of Brownian motion is successfully established to determine the range 

of the interfacial fracture energies and load carrying capacities of the FRP-bonded 

concrete specimens.   
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Chapter 1 Introduction 

The serviceability and safety of building and bridge structures may gradually 

degrade due to long term use, natural environmental deterioration, poor initial design 

and/or construction, increased design loads, extreme events such as earthquakes, and/or 

lack of maintenance. More than 30 percent of the existing bridges in the United States are 

in need of various levels of repairs, rehabilitation, or replacement (FHWA 2011).  

The effects of severe winters and the extensive use of road salt often worsen the 

deterioration causing spalling of concrete and exposure of the steel reinforcement. In 

addition to the bridge superstructure elements, there is also need to address deteriorating 

elements in parking structures, masonry walls, load-bearing walls and even concrete 

facades. It is needed to use materials that are not susceptible to the same causes that 

trigged the deterioration in the first instance. Since the rebuilding of old infrastructure is 

very expensive and time consuming, cost-efficient and durable techniques of 

strengthening/rehabilitating are needed. 

There is a growing interest in the use of Fiber Reinforced Polymer (FRP) 

composite materials for the strengthening and retrofitting of concrete beams. This 

strengthening technique involves the bonding of a FRP plate/sheet to the tensile face of 

the beam in order to provide additional external reinforcement. FRPs are composite 

materials comprised of high strength fibers embedded in a polymer matrix. The result is a 

rigid material that has high strength and stiffness, yet light weight. The fibers provide the 

stiffness and strength of the composite in the direction of their primary orientation while 
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the polymer matrix holds the fibers in alignment, transfers loads between fibers and 

serves to protect the fibers from mechanical and environmental damages. 

The first time that carbon fiber reinforced polymers (CFRP) were used to retrofit 

a damaged bridge was in Switzerland in 1991(Meier 1995). Since then, externally bonded 

FRP plate/sheet for repair/strengthening of concrete structures have been widely used in 

civil engineering due to the good material properties of FRP for this application (e.g., 

Bakis et al. 2002, Teng et al. 2002, Bank 2006, Hollaway 2010). Main advantages of FRP 

composites are their very high strength- and stiffness-to-weight ratios, corrosion 

resistance, easy installation, and outstanding fatigue behavior, (ACI 440.2R 2008). 

Although the material cost of FRP composites is higher than traditional strengthening 

material such as steel, their life cycle cost including: equipment, time, detours, and the 

most important maintenance is lower.  

Along with the advantages, the use of externally bonded FRP plates/sheets 

introduces a new and unique mode of failure in the strengthened structures, which has not 

been fully understood. Failure of FRP-strengthened reinforced concrete (RC) beams 

subjected to flexural loading is often caused by debonding of FRP with a thin layer of 

concrete that is a sudden and brittle failure (e.g., Aprile et al. 2001, Buyukozturk et al. 

2004, Oehlers and Seracino 2004, Rosenboom and Rizkalla 2008, Teng and Chen 2009). 

Because of the FRP debonding, the capacity of the FRP plate/sheet may not be fully 

engaged and the utilization of FRP materials is relatively inefficient as compared to the 

hypothetical case having ‘perfect bond’. Therefore, characterizing and prediction of the 

failure mechanisms of FRP debonding from strengthened concrete beams, and identifying 

the key parameters affecting such failure, are required. 
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1.1  Debonding Failure of Concrete Members Strengthened with FRP  

In civil infrastructure applications, FRP composite materials have been mainly 

used for rehabilitation or repair of deteriorated structures. When used for these purposes, 

FRP is usually bonded to the exterior surface or mounted inside but close to the surface 

of the repaired member (so called, near-surface mounted or NSM). Debonding along the 

FRP/concrete interface is one of the principal failure mechanisms of concrete beams 

externally strengthened with FRP. 

Generally, FRP debonding along the FRP/concrete interface can be categorized 

into two main failure modes (Teng et al. 2003) as shown in Figure 1.1.  The first failure 

mode is plate-end (PE) debonding (Figure 1.1a) which initiates at the ends of the FRP 

plate and propagates in the direction of increasing moment. This failure mode results 

from the high interface stresses at the end of discontinuities. Many studies have been 

carried out to investigate and predict this type of debonding failure mode (e.g., 

Abdelouahed 2006, Yao and Teng 2007, Teng and Yao 2007, Tounsi et al. 2009). End 

wrapping and mechanical anchorage have been found to be efficient methods of 

mitigating the PE debonding failure in FRP repaired or retrofitted concrete beams. The 

second failure mode is the intermediate crack induced debonding (IC debonding) which 

initiates at a flexural/shear crack (intermediate crack) in the concrete within the shear 

span and propagates towards the plate end in the direction of decreasing moment as 

shown schematically in Figure 1.1b. This type of FRP debonding failure, unlike PE 

debonding, is difficult to prevent. Therefore, it must be taken into consideration in the 

design process and addressed as a limit state. 
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(a) (b) 

 

Figure 1.1 FRP debonding failure: (a) PE debonding, (b) IC debonding 

There are no universally accepted standards for determining bond capacity 

between FRP and concrete. Currently, the bond between FRP and concrete is tested by 

applying shear stress to the FRP/concrete interface of a FRP bonded concrete specimen. 

According to Chen and Teng (2001) and Chen et al. (2001), suitable general test methods 

include: double pullout tests (e.g., Brosens and Gemert 1997, Yoshizawa et al. 2000, 

Nakaba et al. 2001, Serbescu et al. 2013), single shear pullout tests (e.g., Chajes et al. 

1996, Taljsten 1997, Bizindavyi and Neale 1999, Leung and Tung 2006, Mazzotti et al. 

2008 ), and beam tests (e.g., Fukuzawa et al. 1997, Benjeddou et al. 2007, Gartner et al. 

2011). These test methods are presented in Figures 1.2a through c. There are a number of 

variations of the beam tests; these are summarized by Harries et al. (2012).  

The test results are applied to determine the bond-slip (interface shear stress vs. 

relative slip between FRP and concrete) relationship of FRP/concrete interfaces. Such a 

relationship is then used to model and predict the debonding failure of the FRP/concrete 

joints. A typical bond-slip curve is shown in Figure 1.3. The area under the bond-slip 

curve is defined as the mode II fracture energy,     , which is a property of the FRP-

concrete system. 
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Figure 1.2 Bond test methods: (a) double pullout, (b) single pullout, and (c) beam  

 

 

 
Figure 1.3 Typical bond-slip curve of a FRP/concrete interface 

 In the double or single pullout test, the in-plane shear stress is applied to the 

FRP/concrete interface by applying a uniaxial tension load in the plane of the FRP, 

typically in the strong or longitudinal direction of the FRP fiber orientation. The tensile 

strain gradient in the FRP (representing the shear strain along the interface) is recorded 

and is used to determine the bond-slip relation. Often the obtained bond-slip relation is 
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used for nonlinear fracture mechanics or cohesive crack models in numerical analyses to 

predict FRP debonding from the concrete substrate. 

IC debonding failure in FRP-strengthened RC beams is due to the development of 

high interfacial stresses at locations of flexure/shear cracks in concrete. Although the 

interface is usually modeled as an FRP/concrete joint subjected to shear, the real loading 

condition at the crack tip includes both shear and normal stresses. The use of pullout test 

results to predict the behavior of FRP-strengthened concrete beams may not represent the 

in situ phenomenon. Therefore, some studies have used beam bond tests to study the 

debonding behavior in FRP-strengthened RC beams. In this study, the application of 

shear test results for predicting the IC debonding failure in FRP-strengthened concrete 

beams is investigated experimentally and numerically.  

 

1.2  Research Objectives 

The overall objective of this dissertation is to characterize and predict the failure 

mechanisms of IC debonding failure, and identify the key parameters affecting such 

failure. In order to achieve this objective, experimental tests and finite element 

simulations are performed on FRP bonded concrete specimens.  

Experiments are designed to obtain the bond-slip behavior of the FRP/concrete 

interface. The numerical approach is focused on the application of fracture mechanics 

and the finite element (FE) method for predicting FRP debonding failure. In order to 

validate the FE model, the numerical predictions are compared to the experimental results 

obtained from two types of bond tests (i.e., single shear pullout and beam tests). The 

ultimate failure load, strain distribution, load vs. displacement curve, and failure 
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mechanism are considered in the comparison. To achieve the general objective of this 

research, the following more specific objectives are identified:  

1. Apply different methods in FE analysis to find the best approach to model and 

predict IC debonding failure in concrete beams strengthened by FRP plates.  

2. Investigate the important factors affecting the behavior of strengthened beams by 

numerical analysis. 

3. Establish the bond-slip behavior experimentally by single shear pullout test and 

compare it with that calculated using well-accepted methods from available 

literature. 

4. Establish the bond-slip behavior experimentally by beam test and compare it with 

that obtained from shear pullout test. 

5. Experimentally study the sensitivity of the behavior and failure of FRP-

strengthened concrete beams to variations in the location of the major 

flexural/shear crack that triggers the IC debonding failure. 

6. Numerically study of the behavior of FRP-strengthened concrete beams by FE 

analyses.  

7. Use Brownian motion and white noise concepts from probability theory to predict 

the interfacial fracture energy and load carrying capacity variation in FRP bonded 

concrete specimens. 

Many researchers have assumed that the FRP/concrete interface is subjected to a 

pure Mode II loading (in-plane shear) condition when IC debonding failure occurs.  

Therefore, they use the single shear pullout test results to predict the IC debonding failure 

in beams. However, there is no systematic study to validate if the shear test results can be 
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directly used to predict the debonding failure of FRP-strengthened concrete beams. In 

this study, the behavior of FRP-strengthened concrete beams is studied experimentally 

and numerically to verify the application of shear test results in strengthened beam 

design. 

 

1.3  Outline and Organization of the Dissertation  

In this dissertation, experimental and analytical procedures are proposed to 

predict the debonding failure of concrete elements externally strengthened with bonded 

FRP composite materials. The objectives conducted during this dissertation are organized 

in chapters as following: 

Chapter 1 presents an introduction to the subject, highlighting current 

experimental and numerical needs, and the objectives of this study. 

Chapter 2 presents a literature review covering experimental, analytical, and 

numerical methods to obtain the mechanical properties of FRP/concrete joints. The 

applicability of such methods when predicting the debonding failure of these joints is 

discussed. Also, key factors affecting the FRP/concrete bond strength are summarized 

according to different methods in the literature. 

Chapter 3 presents the theoretical basis for the application of damage mechanics 

principles to the study of concrete behavior. Application of a concrete damaged plasticity 

model in the extended finite element method (XFEM) is proposed for modeling the 

cracking behavior of concrete in tension.  

Chapter 4 introduces different constitutive models for simulating FRP debonding 

failure in finite element analyses. These methods including cohesive elements, Virtual 
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Crack Closure Technique (VCCT), cohesive surface, and Extended Finite Element 

Method (XFEM)-based cohesive method are validated by experimental results obtained 

by other researchers to determine the most accurate and applicable method to predict IC 

debonding failure in strengthened concrete beams. Then, the mechanical properties 

required for using the selected method (XFEM) are discussed.  

Chapter 5 presents the experimental method and results of single shear pullout 

tests to establish the bond-slip behavior. The FE model using the experimentally obtained 

bond-slip relationship is validated by experimental results, and is then used to study the 

stress state of the FRP/concrete interface and the sensitivity of single shear test results to 

changes in boundary conditions. 

Chapter 6 presents, firstly, the experimental results from beam tests conducted to 

investigate the behaviour and bond-slip relationship of concrete beams strengthened 

externally by FRP plates. The beams are notched at different locations to study the 

sensitivity of the strengthened beams to the location of a major flexural/shear crack. 

Secondly, numerical model validated by experimental results is applied to find the stress 

state of the FRP/concrete interface in beams. This stress state is compared with the one 

obtained in the shear tests to verify the application of the bond-slip relationship obtained 

using the shear test in the analysis of strengthened beams. 

Chapter 7 presents the prediction of interfacial fracture energy variation in FRP 

bonded concrete specimens using Brownian motion and white noise concepts adapted 

from probability theory. In an effort to effectively model the effects of the variation of 

interfacial fracture energy on the load versus deflection responses of FRP bonded 

concrete specimens subjected to Mode I and Mode II loading, a random white noise using 



10 
 

a one-dimensional standard Brownian motion is added to the governing equations, 

yielding a stochastic differential equation. By solving this stochastic equation, the bounds 

of load carrying capacity variation with 95% probability are found for different 

experimental tests. 

Chapter 8 presents the conclusions of this research and recommendations for 

future research work. 

  



11 
 

Chapter 2 Literature Review 

In the case of concrete flexural members strengthened with FRP composite 

materials, the behavior of FRP/concrete interface, hereafter called the bond-slip behavior, 

often governs the structural performance of elements being repaired. In the present study, 

experimental and numerical procedures are proposed to find the bond-slip behavior of 

strengthened concrete beams in order to predict the debonding behavior at the tip of a 

flexural/shear crack.  

Generally there are two types of test procedures used to find the bond-slip 

behavior reported in the literature: shear pullout tests, and beam tests. Often, empirical 

and analytical equations are developed by using the test results from these two 

experimental methods. Numerical analyses using finite element techniques are also 

validated by these test results.    

In this chapter, for the sake of clarity, the studies and analyses of shear tests and 

beam tests are described separately. The FRP/concrete interface at the tip of a major 

flexural/shear crack is subjected to mixed-mode loading conditions including in-plane 

shear and normal stresses. Therefore, the researches that have been performed to study 

the fracture of the FRP/concrete interface under mixed-mode loading conditions are also 

reviewed. The principal findings from the literature review of the FRP debonding from 

the concrete substrate are summarized at the end of this chapter. 
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2.1 Shear Pullout Tests 

In a double (Fig. 1.2a) or single (Fig 1.2b) pullout test, the in-plane shear stress is 

applied to the FRP/concrete interface by applying uniaxial tension in the plane of the FRP 

typically along the direction of principal (longitudinal) fiber orientation. Normally, the 

bond-slip relation obtained from the pullout tests is used for nonlinear fracture mechanics 

or cohesive crack models in numerical analyses to predict FRP debonding failure from 

the concrete substrate. 

The bond-slip relationships from experimental tests are commonly derived in one 

of two ways: (a) from direct measurement of FRP axial strains (that is called 

conventional method after here), or (b) from indirect analytical solutions modified by test 

results. 

In the former method many strain gauges are attached with small intervals along 

the FRP surface as shown in Figure 2.1. The bond stress and slip are then obtained from 

the following equations: 

 𝑖 =
𝑡𝑓𝐸𝑓

𝛥 
(𝜀𝑖 − 𝜀𝑖−1)                                              (2.1) 

𝛿𝑖 =
𝛥 

2
(𝜀0 + 2∑ 𝜀𝑗

𝑖−1
𝑗=1 + 𝜀𝑖)                                        (2.2) 

where  𝑖  is the average interfacial bond stress in the increment 𝑖 having length 𝛥𝑥, 𝜀𝑖 and 

𝜀𝑖−1 are the measured strain values of 𝑖th
 and (𝑖 − 1)th

 gauges arranged along the FRP 

sheet, 𝐸  and 𝑡  are the elastic modulus and thickness of the FRP plate/sheet, respectively, 

𝛿𝑖 is the local slip between the FRP sheet and concrete at the section 𝑖, 𝜀0 is the strain in 

the FRP sheet at the free end of bonded area, and 𝜀𝑗 is the strain value of the 𝑗th
 gauge.  

It has been concluded from available literature that the conventional method 
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cannot produce accurate bond-slip curves and large irregular differences are observed 

among curves along the bonded length (e.g., Dai et al. 2005, Lu et al. 2007, Baky et al. 

2012).  

 

Figure 2.1 Shear pullout test (Dai et al. 2005) 

For example, Figure 2.2 presents the local bond stress-slip relationships at 

different locations from loaded end in a pullout test reported by Dai et al. (2005). The 

large scatter of the bond-slip behavior may be due to the discrete nature of concrete 

cracks, random distribution of concrete aggregates, different concrete volumes attached 

to the FRP after initial damage affecting the stiffness of the debonding element, and/or 

local bending of FRP laminates. Therefore, many researches have been conducted to 

achieve more accurate bond-slip behavior from pullout tests. 

 

 
Figure 2.2 Local bond stress-slip relationships at different locations from loaded end 

(Dai et al. 2005) 
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A more stable analytical method in determining the bond-slip behavior of the 

FRP/concrete interfaces through single pullout bond tests, without the necessity of 

recording the strain distribution of the FRP sheet, is proposed by Dai et al. (2005). By this 

method, the local interfacial bond stress-slip model can be obtained from the relationship 

between the pullout force and the loaded end slip. Only two parameters, the interfacial 

fracture energy and the interfacial ductility index, which take into account the effects of 

all interfacial components, are necessary in this model. The proposed equations account 

for the effect of adhesive properties by considering the adhesive shear modulus (  ) and 

thickness (𝑡 ) as follows: 

    = 0.5𝐵                                                   (2.3a) 

  = 0.466 (
𝐺𝑎

𝑡𝑎
)
−0.352

 𝑐
′0.236(𝐸 𝑡 )

0.023                             (2.3b) 

𝐵 = 6.846(𝐸 𝑡 )
0.108 (

𝐺𝑎

𝑡𝑎
)
0.833

                                   (2.3c) 

where      (MPa) is the maximum shear stress (bond strength),    (N/mm) is the 

interfacial fracture energy,    (GPa) is the shear modulus of adhesive, 𝑡  and 𝑡  (mm) are 

the thicknesses of adhesive and FRP plate, respectively,  𝑐
′ (MPa) is the compressive 

strength of concrete, and 𝐸  (MPa) is the Young’s modulus of FRP. 

Since it is difficult to obtain accurate bond-slip curves from experimental tests, Lu 

et al. (2005) proposed three analytical models for the bond-slip relationship based on 

finite element analysis results. This numerical modeling approach relies on the accurate 

modeling of concrete failure close to the adhesive. To properly simulate the failure in the 

concrete close to the interface, a meso-scale finite element approach was used in 

conjunction with a fixed angle model. Debonding was simulated as the fracture of 
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concrete elements. From the meso-scale finite element results, a bond-slip relation was 

obtained with numerical smoothing calibrated by test results. This model is accurate, but 

it is too complicated for practical application. Therefore, a simplified model without a 

significant loss of accuracy was proposed in the same study. In addition, further 

simplification has been made to obtain a bilinear bond-slip curve which can be used to 

derive a simple explicit design equation for bond strength. The comparison among the 

three proposed models is shown in Figure 2.3. The bilinear version of the proposed model 

taking into account the FRP width effect is: 

    = 1.5𝛽𝑤 𝑡                                                   (2.4a) 

  =0.308 𝛽𝑤
2
√ 𝑡                                                 (2.4b) 

𝛽𝑤 = √
2.25−𝑏𝑓 𝑏𝑐⁄

1.25+𝑏𝑓 𝑏𝑐⁄
                                                  (2.4c) 

where 𝑏  and 𝑏𝑐 are the FRP plate and concrete block widths, respectively, and  𝑡 is the 

tensile strength of concrete.  

 

 
Figure 2.3 Bond–slip curves from meso-scale finite element simulation and proposed 

bond–slip models by Lu et al. (2005) 
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Equations 2.3a to c, which are derived from experiments, and Equations 2.4a to c, 

which are derived from numerical analyses, are popular models of the bond-slip behavior 

that have served to validate other methods in the literature (e.g., Baky et al. 2012, 

Toutanji et al. 2013) . The former consider the adhesive contribution and the latter 

consider the FRP width contribution to the bond strength and the interfacial fracture 

energy.  They are used in Chapters 4 and 5 to determine the bond strength and the 

interfacial fracture energy of the FRP/concrete interface in shear pullout specimens.  

Lu et al. (2005) assessed the existing models (up to 2005) and found that the 

bilinear bond-slip model can be a good approximation for the shape of bond-slip curves. 

It is also confirmed in other studies (e.g., Liu et al. 2007, Yuan et al. 2012, Serbescu et al. 

2013). A correct estimate of the elastic stiffness branch of the bond-slip relationship 

requires the compliances of both adhesive and a thin layer of attached concrete be taken 

into account (e.g., Ferracuti et al. 2007, Toutanji et al. 2012, Baky et al. 2012). 

Some studies have implemented expression proposed by Popovics (1973) for the 

constitutive law of concrete as bond-slip behavior of the FRP/concrete interface in shear 

pullout tests (e.g., Karbhari et al. 2006, Ferracuti et al. 2007, Toutanji et al. 2013) that is 

given as: 

 =     (
𝑠

𝑠0
)

𝑛

(𝑛−1)+(
𝑠

𝑠0
)𝑛

                                              (2.5) 

where 𝑠0 is the slip when the maximum shear stress is achieved, and 𝑛 is a parameter 

mainly governing the softening branch of the bond-slip. The interface law proposed by 

Ferracuti et al. (2007), based on the application of Popovics’s law, is depicted in Figure 

2.4 in non-dimensional form for different values of parameter 𝑛. The experimental FRP 

strains were used to calibrate the proposed bond-slip behavior for finding an appropriate 
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value of 𝑛.  

 

 

 

Figure 2.4 Proposed interface law by Ferracuti et al. (2007) for different values of 

parameter n 
 

 

Based on the experimental pullout tests, it was found that the debonding failure 

occurs at a certain depth in the concrete substrate from the FRP/concrete interface; 

typically 1-5 mm (Bank 2006). Therefore, the bond strength may be expressed as a 

function of the concrete strength. Toutanji et al. (2013) proposed a failure criterion where 

the maximum principal stress on a small element in the concrete substrate,  𝑒, shown in 

Figure 2.5, is limited to the tensile strength of concrete,  𝑡; therefore simply setting 

 𝑒 =  𝑡 can predict the debonding initiation between FRP composites and reinforced 

concrete beams. The interfacial fracture energy, the maximum shear stress, and 

corresponding local slip are required as intermediate parameters to determine the 

maximum transferable load. The maximum interfacial shear stress and the corresponding 

local slip were approximated by developing an analytical solution considering the effect 

of the adhesive thickness besides to the concrete. The predicted maximum applied load 

from the numerical solution was in good agreement with single and double plies of FRP 
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from experimental data conducted by Dai et al. (2005). For three plies, however, variation 

of 20–30% was observed which Toutanji et al. attribute to experimental uncertainties. 

More FRP plies require thicker FRP to be pinched and pulled by the testing machine 

resulting in greater kinking of the FRP plate. 

 

 
Figure 2.5 Maximum principal stress in the concrete substrate element in pullout 

test proposed by Toutanji et al. (2013) 

 

 

Baky et al. (2012) developed a 3D nonlinear micromechanics-based finite element 

model using the micro-plane theory for concrete. In their formulation, the micro-plane 

constitutive law was implemented as a user-defined subroutine in the ADINA finite 

element package to run the simulations. The numerical results showed that stress 

distribution has the same trend along the interface in the first few millimeters inside the 

concrete adjacent to the adhesive/concrete interface. Also, it was confirmed that 

FRP/concrete joints subjected to shear loading do not represent the case of pure shear 

stress, and there are normal stress components along the interface that have a significant 

effect on the local bond strength (this is analogous to the concept of shear friction). 

Therefore, a failure criterion for the interface defining the relationship between the 

maximum shear stress and the state of stress along bonded length was first defined before 
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deriving the bond-slip law. Like the study of Toutanji et al. (2013), it was assumed that 

when the maximum principal stress reaches the concrete tensile strength, the 

corresponding shear stress is equal to the maximum shear stress. Then a new 

mathematical approach was proposed by them (Baky et al. 2012) to describe the entire 

local bond–slip relationship. Their proposed interface law accounts for the nonlinear 

contributions of the FRP laminates, adhesive and concrete layers.  

As mentioned above, Baky et al. (2012) and Toutanji et al. (2013) proposed their 

models based on this assumption that the bond strength of the interface is a function of 

concrete tensile strength. This assumption is used in Chapters 5 and 6 to investigate the 

stress state of the FRP/concrete interface.  

Benvenuti et al. (2012) presented an analysis focusing on the finite element 

modeling of debonding tests in FRP-reinforced concrete blocks using the extended finite 

element model (XFEM) approach for the first time. It takes into consideration the 

mechanical properties of concrete, adhesive and FRP. Both FRP and adhesive layers were 

considered as linear elastic materials, while the constitutive behavior of the concrete was 

governed by an elasto-damaging constitutive law. In XFEM, as soon as a critical damage 

threshold is reached in the concrete, additional degrees of freedom, representative of the 

displacement discontinuity corresponding to the debonding process, are added. 

 

2.2 Beam Tests 

As is evident from the previous discussion, the stress state in concrete close to the 

FRP/concrete interface plays an important role in the bond-slip behavior and in the 

overall debonding failure process. Since the loading type, boundary conditions, and 
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deflections are different in FRP-strengthened beams from those of the FRP/concrete joint 

under shear force in pullout tests, the stress state of the concrete along the FRP/concrete 

interface in beams may not be the same as that in the pullout specimens. Because of this, 

the use of pullout test results to predict the behavior of FRP-strengthened concrete beams 

may not represent the actual debonding phenomenon. Therefore, some researches were 

conducted to study the IC debonding behavior in FRP-strengthened concrete beams. Lu 

et al. (2007) used the meso-scale finite-element method to determine whether the bond-

slip behavior of the interface in a FRP-strengthened beam can be predicted by a bond-slip 

model derived from pullout tests. They concluded that the proposed model based on 

pullout tests can be used for the bonded region outside of the cracked constant moment 

region of a test beam. For the cracked constant moment region, a model with a more 

brittle descending branch was proposed. It is worth to mention that in real structures, 

there is rarely a constant moment region.  

The assumption of bilinear equation for the bond-slip behavior works for FRP-

strengthened beams, too. Faella et al. (2008) formulated a numerical model for simulating 

the flexural behavior of FRP-strengthened RC beams considering bilinear stress–slip 

relationships. The characteristics of this bilinear equation were determined according to 

the fib-CEB-FIP bulletin 14- approach 2 (2001). It is proved that end debonding failure 

depends only on the value of fracture energy and not on the shape of the interface law; on 

the contrary, IC debonding failure is controlled by the bond strength. 

Rabinovitch (2008) compared the application of a linear elastic fracture 

mechanics (LEFM) approach and a cohesive interface (cohesive zone) modeling 

approach in the debonding analyses of concrete beams strengthened with externally 
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bonded FRP strips.  He believes that the main advantages of the cohesive interface 

approach is its ability to predict the initiation and progress of the debonding process and 

to describe the complete spectrum of the response ranging from full bonding to complete 

separation; its major disadvantage is the computational effort and resources required for 

the numerical solution of the governing equations compared to the LEFM method. He 

reported the results of the two models were in good agreement. Thus, in cases where 

quantitative information regarding the initiation and progress of the debonding process is 

available, the LEFM model can be used for a reasonable quantitative appraisal of the 

debonding mechanism.  Its relative simplicity and the saving in computational effort 

contribute to its attractiveness. However, the LEFM model predicts lower critical values 

of the peak loads in some cases. In the cases that a reliable description of the debonding 

process is not available, and in the cases that the quantitative evaluation of the entire 

spectrum of unstable branches is of interest, the cohesive interface model overcomes the 

restrictions of the LEFM approach and provides a more comprehensive description.  

Gunes et al. (2009) developed an analytical prediction of interfacial fracture 

energy in FRP-strengthened RC beams. It was shown that all debonding at the 

FRP/concrete interface takes place sufficiently close to mode II conditions and mode II 

fracture energy of concrete is at least an order of magnitude higher than mode I fracture 

energy. It is concluded that the proposed model performs better than ACI 440.2R (2008) 

equations for estimating the debonding load. 

Harries et al. (2010) conducted experimental research in support of the 

development of a standard test method for assessing FRP-to-concrete bond. A simple 

concrete beam specimen similar to that used to determine the modulus of rupture of 
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concrete was used during the tests. To achieve controlled debonding behavior, the beam 

was notched to represent cracked concrete. This study addresses specific issues 

associated with standardizing such a test specimen including: a) the width of the FRP 

relative to the concrete substrate width; b) the geometry of the induced notch; and c) the 

effect of providing an initially un-bonded region in the vicinity of the notch. The authors 

recommend having a 51 mm wide FRP strip on a 152 mm square concrete section and a 

saw-cut notch 19 mm deep without consideration of un-bonded region. Harries et al. 

(2012) adjusted the specimen geometry so that the notch is one half of the specimen 

depth (76 mm in a 152 mm specimen and 51 mm in 102 mm prisms). They also proposed 

a set of simplified and rigorous equations based on fundamental mechanics and specimen 

geometry to predict the average bond stress over the entire bonded area to one side of the 

notch. These equations were intended for use in cases where strain measurement is 

impractical, such as in tests involving harsh environmental exposure. This method is 

presently being developed by ASTM Committee D30.10 as a standard test method. The 

experimental data from this study is used to validate the applied numerical analysis of 

FRP-strengthened beams in Chapter 4. 

FE analyses are also used to predict IC debonding failure. For instance, Obaidat et 

al. (2010) presented a finite element analysis which was validated by laboratory tests of 

eight beams under four point bending loading. The commercial numerical analysis tool 

ABAQUS was used and different material models were evaluated with respect to their 

ability to describe the behavior of the beams. A perfect bond model and a cohesive bond 

model were assumed for the concrete–CFRP interface. A plastic damage model was 

applied for the concrete. The numerical results indicated that the equation proposed by Lu 
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et al. (2005) for maximum shear stress results in too high a value. Obaidat et al. used half 

of this value in the subsequent analyses. The analytical results showed good agreement 

with experimental data in terms of the load–displacement response, crack pattern and 

debonding failure mode when the cohesive bond model was used. The perfect bond 

model failed to capture the softening behavior of the beams.  

Chang et al. (2012) presented a numerical study of single flexural crack induced 

debonding based on a progressive damage model. In practice, the adhesive layer is never 

a homogeneous medium because it contains heterogeneities, such as imperfection of FRP 

concrete bond, bubbles or voids at various length-scales, varying adhesive thicknesses 

along bond length, etc. So, they considered these local-scale heterogeneities in numerical 

modeling. To achieve this, the adhesive layer between the concrete and the FRP plate was 

assumed to be composed of many elements of the same size. The mechanical properties 

of these elements were assumed to conform to a Weibull distribution. The numerical 

results indicate that although local debonding nucleates at random heterogeneities, the 

dominant debonding ‘event’ initiates from the pre-existing crack and propagates to the 

FRP plate ends as the applied load increases.   

 

2.3 Mixed-Mode Loading Condition  

There is another group of researches on the IC debonding failure in FRP-

strengthened concrete beams following the idea that the FRP/concrete at the tip of 

flexural/shear crack is subjected to mixed-mode loading. For a crack occurring in the 

shear span (i.e., non-zero shear-to-moment ratio), the relative vertical displacement prior 

to a critical diagonal crack forming between the two faces of the crack produces peeling 



24 
 

stresses (mode I) at the interface in addition to the shear stress (mode II) due to flexural 

loading on the beam as shown in Figure 2.6. 

 

 

Figure 2.6 Typical Mixed-mode intermediate crack (IC) debonding failure 

 

Karbhari and Engineer (1996) developed a special test setup to introduce different 

interfacial peeling angles between thin flexible FRP sheet and a concrete substrate. The 

theoretical equations were derived for this test setup to separate mode I and mode II 

components of the interfacial fracture energy, and therefore establish a quantitative 

comparison of interfacial adhesion mechanisms and energies of FRP to concrete interface 

bond under mixed-mode loading conditions. It was found that there is a linear 

relationship between the critical mode I and mode II strain energy release rates when the 

FRP to concrete interface is subjected to a mixed-mode loading condition as shown in 

Figure 2.7. The test setup used by Karbhari and Engineer (1996) was limited in so far as 

the bonded FRP must be very flexible; therefore, the method is not appropriate for FRP 

materials more typical of structural applications. 
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Figure 2.7 𝑮𝑰 vs. 𝑮𝑰𝑰 for the material used by Karbhari and Engineer (1996) 

 

Wan et al. (2004) used introduced modified double cantilever beam (MDCB) 

specimens and a customized test frame to introduce different loading angles in order to 

evaluate the bond characteristics and toughness of FRP bonded to concrete under mixed-

mode loading. This method overcame some of the limitations of the technique proposed 

by Karbhari and Engineer (1996). It was shown, for materials more suited to civil 

infrastructure repair, that the FRP debonding from the concrete substrate is predominantly 

controlled by mode I deformation with a small portion of mode II deformation at the 

crack tip for loading angles between 0˚ and 60˚. The experimental data from this study is 

used to validate the applied numerical analysis of the FRP/concrete interface behavior 

under mixed-mode loading in Chapter 4. 

Niu et al. (2006) investigated mechanisms associated with diagonal cracks and 

modeled debonding initiation and propagation through a fracture mechanics based finite 

element approach. It was seen that debonding propagation is mainly caused by mode II 

fracture mechanisms and that the interfacial failure path is primarily governed by the 

relationships between concrete cracking behavior and interfacial properties. In this study, 

a bilinear elastic softening model was used to model the interface stress-slip behaviors in 
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both the shear (mode II) and normal (mode I) directions. No coupling effect between 

mode I and II stress-slip laws was considered. Since it is proved in some studies (e.g., 

Karbhari and Engineer 1996, Dai et al. 2009) that there is some relationship between 

mode I and II fracture energies, the assumption of “no coupling effect” appears to be an 

oversight in this work. 

Pan and Leung (2007) developed a specimen including a concrete block and a 

metal fixture, which were externally bonded with the same FRP sheets and were jointed 

with a steel hinge presented in Figure 2.8. Different relative vertical displacements 

between the concrete and steel parts were introduced to create combined pulling and 

peeling forces on the FRP to concrete interface. It was observed when a vertical 

displacement was applied to introduce peeling, the load for debonding to initiate 

decreased. However, for the ultimate load, the effect of peeling appeared to depend on the 

length of the FRP plate. For the relatively short FRP (150 mm in length), the peeling 

effect corresponding to 8 mm vertical displacement can reduce the ultimate debonding 

load by over 40%. For the longer FRP (450 mm in length), the same peeling effect may 

only reduce the ultimate load by about 10–25%. A new theoretical model for debonding 

analysis under such a situation was developed. In the model, the interfacial behavior was 

described by four parameters, with one of them, the interfacial shear strength, affected by 

the maximum interfacial normal stress.  
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Figure 2.8 Set up for mixed-mode debonding test used by Pan and Leung (2007) 

 

 

Dai et al. (2009) proposed an experimental method to evaluate the fracture 

properties of the FRP/concrete interface under coupled shear (mode II) and peeling 

(mode I) loading conditions. An analytical model was developed to evaluate the mode I 

and mode II strain energy release rates and the corresponding fracture mechanisms of the 

FRP to concrete interface under a pure bending action, a pure dowel action, and the 

coupled action of both. A linear failure envelope is proposed to describe the fracture 

properties of the CFRP to concrete interface under the coupled action. The experimental 

data from this study is used to validate the applied numerical analysis of the 

FRP/concrete interface behavior under mixed-mode loading in Chapter 4. 

 

2.4 Principal Findings from Literature Review  

The principal findings, observations, and results from literature review of FRP 

debonding from concrete substrate are summarized as follows: 

1. There is a significant scatter in bond-slip behaviors along the FRP/concrete 

interface gained from direct measurement of FRP axial strains (conventional 

method) in shear pullout tests. 

2. Currently, there are different proposed bond-slip models obtained from 
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experiments, analytical methods, and numerical analysis. They represent a 

range of approaches and perspectives and consider different material 

properties. Therefore, they may give different results. Some of the well-

known models are going to be used in this study in Chapter 5 for the 

comparison with conducted experimental results. 

3. The debonding crack occurs in concrete at a few (1-5) millimeters from the 

FRP/concrete interface. 

4. Since the FRP debonding occurs in the concrete side, the bond strength may 

be considered as the function of the concrete strength.  

5. Generally, the concrete strength ( 𝑐
′), FRP tension stiffness (𝐸 𝑡 ), adhesive 

shear stiffness (
𝐺𝑎

𝑡𝑎
), and FRP plate width to concrete width ratio (𝑏 /𝑏𝑐) are 

significant parameters affecting the local bond-slip behavior of FRP/concrete 

interface subjected to in-plane shear stress in shear pullout tests. 

6. The bilinear bond-slip curve assumption does not decrease the accuracy of the 

proposed models to predict the failure load relative to the nonlinear bond-slip 

curves. 

7. In developing an analytical bond-slip curve, the shear stiffness of both the 

adhesive layer and a very thin layer of concrete attached to the debonded FRP 

should be considered. 

8. Debonding failure in FRP-strengthened concrete beams is likely to occur due 

to the development of high interfacial stresses at locations of flexure/shear 

cracks in concrete. Although the region is usually modeled as an FRP/concrete 

joint under tensile loading, the real loading condition is more complex 
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involving components of tension, shear and bending loads acting together. 

Thus the use of simple shear pullout tests for the determination of bond 

strength is a gross simplification. There is no systematic study to validate if 

the shear test results can be directly used to predict the debonding failure of 

FRP-strengthened concrete beams. 

9. There is currently no commonly accepted experimental or analytical approach 

to define the bond-slip curve to predict IC debonding failure in FRP-

strengthened beams. 

10. Typical flexural/shear cracks in the concrete substrate lead to a mixed-mode 

debonding mode. To date, the mixed-mode debonding is studied by different 

specialized experimental setups and there is no common agreed method. 

11. There is a relationship between mode I and mode II interfacial fracture 

energies in mixed-mode loading condition. The increasing of interfacial mode 

I fracture energy results in the decreasing of mode II fracture energy.  

The principal findings, mentioned above, are used in numerical and experimental 

parts of the present study in the next chapters to investigate IC debonding failure and 

mixed-mode behavior in FRP-strengthened concrete beams. The bond-slip behaviors in 

beam and shear specimens are also compared to verify the application of shear pullout 

test results in strengthened beams to predict IC debonding failure.    
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Chapter 3 Concrete Modeling in Finite Element Method 

Using Fracture Mechanics  

Concrete is a material comprised of a mixture of cement and fine (sand) and 

coarse (gravel) stone or other aggregate. When mixed with water, hydration of the cement 

occurs, forming a matrix which binds the aggregate into a composite solid. Concrete has 

a high compressive strength but a relatively weak and brittle tensile behavior. 

Fracture mechanics is the study of the response and failure of structures as a 

consequence of crack initiation and propagation. One of the outstanding advantages of 

fracture mechanics is that stiffness and size effects are naturally included in the analysis.  

Without additional tensile reinforcement, cracking of concrete represents a 

catastrophic failure. When reinforced, cracking occurs but may be controlled and 

distributed within the structural member. This fact points the research community to 

apply fracture mechanics for concrete cracking modeling.  

The conventional finite element method (FEM) is well-known as a reliable 

numerical technique for studying the behavior of an extensive range of engineering and 

physical problems. For problems comprising a continuous or homogenous media without 

discontinuities, the FEM is a well-suited as a method of analysis. However, for problems 

having non-smooth and non-regular solution characteristics, the extended finite element 

model (XFEM) technique is more appropriate.  

In this chapter, the application of fracture mechanics in the FEM to model the 

cracking behavior of concrete is first explained. Then, the XFEM and its formulations are 

presented. Finally, the combination of XFEM-based cohesive method and concrete 

damaged plasticity model to simulate the cracking of concrete is proposed. 
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3.1 Application of Fracture Mechanics in Concrete Behavior Modeling 

Fracture mechanics was originally developed for the analysis of brittle materials 

where flaws in the material initiated the propagation of a single crack (Shah and McGarry 

1971). Such materials are classified as brittle and show linear tension stress-stain 

behavior and the stress suddenly drops to zero when a brittle material fractures.  

Almost all engineering materials contain unavoidable defects. Conventional 

strength-based design methods consider the effect of these defects through consideration 

of a stress concentration factor, 𝐾𝑡. For example, for an infinite plate subject to a uniaxial 

stress field,  𝑁, with a small elliptical hole through its thickness as shown in Figure 3.1, 

the maximum stress along the edge of the hole,     , is 𝐾𝑡  times greater than the free 

field stress,  𝑁. From an elastic stress analysis, the relationship between      and  𝑁 is 

(Shah et al. 1995): 

    = 𝐾𝑡 𝑁 = (1 +
2 1

 2
)  𝑁                                           (3.1) 

where 𝑎1 and 𝑎2 are the long and short radii of the hole, respectively.  

 

 
Figure 3.1 Distribution of internal stress in region of an elliptical hole  

(shah et al. 1995) 
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Factor 𝐾𝑡 theoretically approaches infinity for a very narrow hole or a sharp crack 

(i.e., as a2 approaches 0). Therefore, the conventional analysis method is not valid for a 

sharp crack. The point     → ∞ as 𝑎2 𝑎1⁄ → 0 is the basic idea of linear elastic fracture 

mechanics (LEFM). According to the LEFM, the nominal stress,  𝑁, in the plate in 

Figure 3.1 when 𝑎2= 0 can be expressed as: 

 𝑁 =
𝐾𝐼

√𝜋 1
                                                           (3.2) 

where 𝑎1 is half of the crack length, and 𝐾  is the stress intensity factor. The value of 𝐾  

accounts for the singularity at the crack tip and depends on load, geometry, boundary 

conditions, and crack size. It can serve as a fracture criterion. A crack grows when: 

 𝐾 ≥ 𝐾 𝑐                                                          (3.3) 

where 𝐾 𝑐 is the critical stress intensity factor which is a property of the material based on 

LEFM. Both KI and KIc may be determined experimentally applying Equations 3.2 and 

3.3. 

The value of stress theoretically approaches infinity at the tip of a crack due to the 

singularity. Because no material can withstand infinite stress, a certain size of inelastic 

zone (fracture process zone or FPZ) forms at the crack tip for a real material. If this 

inelastic zone is small compared to the fracture dimensions in a structure, LEFM is an 

appropriate ‘approximate’ method of analysis. Otherwise, energy dissipated in the FPZ 

must be considered. The FPZ uses part of the energy provided by the applied load and 

causes nonlinearity in the response of the structure. Since concrete is not completely 

brittle and is classified as quasi-brittle material, the application of LEFM in concrete 

fracture analysis is limited to large structures such as dams.  

 



33 
 

3.1.1 Fracture Process and Strain Localization of Concrete 

Concrete is weak in tension, having tensile strength that ranges from 8 to 15% of 

its compressive strength. For this reason, the fracture of concrete members is controlled 

by concrete cracking due to tensile stress. The cracks in a concrete member propagate in 

the direction perpendicular to the direction of principal tensile stresses but are also 

affected locally by the composition of the concrete composite material. The mechanical 

behavior of concrete subjected to different loading conditions is governed by the 

initiation and propagation of these cracks. This point leads the researchers to apply 

fracture mechanics for concrete damage analysis.  

The typical stress-displacement curve of a concrete under uniaxial tension can be 

divided into four stages based on initiation and propagation of cracks (Shah et al. 1995) 

as shown in Figure 3.2. The first stage, from the origin to point A, is essentially an un-

cracked linear behavior in which the initiation of internal cracks is negligible. During the 

second stage, from points A to B (at about 80% of maximum tensile capacity) internal 

cracks initiate and propagate. In the third stage, from points B to C, the internal cracks 

start to localize into a major crack. The major crack propagates with increasing load up to 

the peak load-carrying capacity in this stage. This phenomenon is called strain 

localization. The fourth, post-peak stage is after maximum load; in this the major crack 

propagation is unstable and continues with load decreasing. Generally, the concrete 

behaves as a nonlinear quasi-brittle material in tension. The behavior of concrete under 

uniaxial compression has the similar trend. 
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Figure 3.2 Stress-stain behavior of concrete subjected to uniaxial tension stress 

(Shah et al. 1995) 

 

 

3.1.2 Fictitious Crack Model 

As mentioned before, because of the stress concentration at the tip of a crack, the 

FPZ forms around the crack tip. When the crack propagates in concrete, new crack 

surfaces are formed that may be in contact and are tortuous in nature. This causes 

toughening mechanisms in the FPZ such as aggregate bridging. Since new crack surfaces 

are in contact, they may continue to resist some tensile stress that is described by the 

softening branch (Point C to failure in Figure 3.2) of the stress-displacement relationship. 

The fracture behavior of concrete is significantly influenced by the FPZ. Since LEFM 

does not consider the FPZ, it cannot result in accurate analysis of concrete fracture. 

Hillerborg et al. (1976) proposed a fictitious crack model for concrete fracture modeling. 

In this model, the toughening mechanisms in the FPZ are simulated by a cohesive 
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pressure,  𝑤, on the crack surfaces as shown in Figure 3.3. This cohesive pressure has a 

tendency to close the crack and is a function of the crack opening displacement, 𝑤.  

 

 
 

Figure 3.3 Modeling of FPZ by cohesive pressure (Shah et al. 1995) 

Using the fictitious crack model, the post-fracture behavior or softening of 

concrete can be defined by a stress-displacement curve as shown in Figure 3.4. The area 

under this curve is denoted as fracture energy,  𝐹, that is given by: 

  𝐹 = ∫  𝑤 𝑑𝑤
𝑤𝑐

0
                                                          (3.4) 

where 𝑤𝑐 is the critical crack opening displacement when the softening stress is equal to 

zero. The fracture energy,   𝐹, presents the energy absorbed per unit area of concrete and 

is considered a material property if the concrete. The fictitious crack model is the basis 

for the concrete cracking model in this dissertation. 

 

 
 

Figure 3.4 Softening curve of concrete in fictitious crack model 
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3.1.3 Concrete Damaged Plasticity Model 

Concrete damaged plasticity model is a continuum, plasticity-based damage 

model which simulates the constitutive behavior of concrete. It assumes that the two main 

failure mechanisms of concrete are cracking in tension and crushing in compression 

(Lubliner et al. 1989, Lee and Fenves 1998). This model can describe the nonlinear 

behavior of concrete including failures in both tension and compression. The evolution of 

the yield (or failure) surface is controlled by two hardening variables, 𝜀𝑡̃
𝑝𝑙

and 𝜀𝑐̃
𝑝𝑙

, linked 

to the failure mechanisms, which are referred to as equivalent plastic strains in tension 

and compression, respectively. Key aspects of the concrete damaged plasticity model 

provided in the finite element code ABAQUS (version 6.13) are presented in following 

sections. 

 

3.1.3.1 Tensile Behavior of Concrete Modeling 

The response of concrete under uniaxial tension is assumed linear up to the tensile 

strength,  𝑡, as shown in Figure 3.5. For strain softening behavior specification, the post-

failure stress is considered as a function of cracking strain, 𝜀𝑡̃
𝑐𝑘. The cracking strain is 

defined as the total strain minus the elastic strain corresponding to the undamaged 

material; that is, 𝜀𝑡̃
𝑐𝑘 = 𝜀𝑡 − 𝜀𝑡

𝑒𝑙, where 𝜀𝑡
𝑒𝑙 =

𝜎𝑡

𝐸0
, as illustrated in Figure 3.5.  

By assuming no stiffness degradation after the peak stress (as done in this 

dissertation), the model behaves as a plasticity model; consequently, the equivalent 

plastic strain is equal to the cracking strain, 𝜀𝑡̃
𝑝𝑙 = 𝜀𝑡̃

𝑐𝑘. The stress-strain relationship in 

tension may be expressed as: 

http://50.16.176.52/texis/search/hilight2.html/+/usb/pt05ch23s06abm39.html?CDB=v6.13#concrete-crackstrain
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 𝑡 = 𝐸0(𝜀𝑡 − 𝜀𝑡̃
𝑝𝑙
) = 𝐸0(𝜀𝑡 − 𝜀𝑡̃

𝑐𝑘)                                     (3.5) 

 

 
 

Figure 3.5 Tension stress-strain behavior in concrete damaged plasticity model 
(Abaqus/standard User’s Manual 2013) 

 

 

Continuum theories, such as damaged-plasticity, use the formulation of their 

constitutive equations in stress-strain relation forms as shown in Equation 3.5. However, 

this approach causes mesh sensitivity in the finite element analysis of quasi-brittle 

materials such as concrete, in the sense that the finite element analysis does not converge 

to a unique solution as the mesh is refined because mesh refinement leads to narrower 

crack bands. The mesh sensitivity is due to strain localization behavior as described 

before. In addition, the damaged plasticity model needs to re-scale the stress-strain curve 

in terms of plastic strain.  

The fictitious model proposed by Hillerborg et al. (1976) may be used for dealing 

with these two issues. This model defines the energy required to open a unit area of 

crack,   𝐹, as a material parameter. With this approach the concrete tensile behavior is 

characterized by a stress-displacement response (Figure 3.4) rather than a stress-strain 

response. A concrete specimen will crack across some section under tension. After it has 
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been pulled apart sufficiently (most of the stress has been removed so that the undamaged 

elastic strain is small), its length will be determined primarily by the opening at the crack. 

The opening does not depend on the specimen size.  

 

3.1.3.2 Compressive Behavior of Concrete Modeling 

In concrete damaged plasticity model, the stress-strain behavior of concrete in 

uniaxial compression can be defined outside of the elastic range. Also, the strain-stress 

curve can be beyond the ultimate stress as shown in Figure 3.6. Compressive stress is a 

function of inelastic (or crushing) strain, 𝜀𝑐̃
𝑖𝑛. The compressive inelastic strain, 𝜀𝑐̃

𝑖𝑛, is 

defined as the total strain minus the elastic strain corresponding to the undamaged 

material, 𝜀𝑐̃
𝑖𝑛 = 𝜀𝑐 − 𝜀𝑐

𝑒𝑙, where 𝜀𝑐
𝑒𝑙 =

𝜎𝑐

𝐸0
, as illustrated in Figure 3.6.  

Because of the assumption that no stiffness degrades after the peak stress, the 

equivalent plastic strain in compression is equal to the compressive inelastic strain, 

𝜀𝑐̃
𝑝𝑙 = 𝜀𝑐̃

𝑖𝑛. Therefore, the stress-strain relationship in compression may be expressed as: 

 𝑐 = 𝐸0(𝜀𝑐 − 𝜀𝑐̃
𝑝𝑙) = 𝐸0(𝜀𝑐 − 𝜀𝑐̃

𝑖𝑛)                                     (3.6) 

 

 
Figure 3.6 Compressive behavior modeling in concrete damaged plasticity model 

(Abaqus/standard User’s Manual 2013) 

http://50.16.176.52/texis/search/hilight2.html/+/usb/pt05ch23s06abm39.html?CDB=v6.13#concrete-inelstrain
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3.1.3.3 Yield Function and Flow Rule 

The yield function represents a surface that determines the states of failure or 

damage. The yield function in terms of stresses and plastic strains 𝐹( , 𝜀̃𝑝𝑙) is given by 

(Lubliner et al. 1989): 

𝐹( ̃, 𝜀̃𝑝𝑙) =
1

1 − 𝛼
(𝑞 − 3𝛼𝑝 + 𝛽(𝜀̃𝑝𝑙) ̂   − 𝛾〈− ̂   〉) −  ̃𝑐(𝜀𝑐̃

𝑝𝑙) ≤ 0 

𝑝 =
1

3
 ̃:   

𝑞 = √
3

2
𝑆: 𝑆                                                        (3.7) 

𝑆 = 𝑝 +  ̃ 

𝛽(𝜀̃𝑝𝑙) =
 ̃𝑐(𝜀𝑐̃

𝑝𝑙)

 ̃𝑡(𝜀𝑡̃
𝑝𝑙)

(1 − 𝛼) − (1 + 𝛼) 

 

where 𝛼 and 𝛾 are dimensionless material properties, 𝑞 is the Mises equivalent stress, 𝑝 is 

hydrostatic pressure, 𝑆 is the stress deviator,  ̂    is the algebraically maximum principal 

stress, and  ̃𝑐(𝜀𝑐̃
𝑝𝑙) and  ̃𝑡(𝜀𝑡̃

𝑝𝑙) are tensile and compressive cohesion stresses, 

respectively. 

In biaxial compression, with  ̂   = 0 , 𝐹( ̃, 𝜀̃𝑝𝑙) reduces to the well-known 

Drucker-Prager yield condition (Drucker and Prager 1952). In such case, the coefficient α 

can be determined from the initial equibiaxial and uniaxial compressive yield stress, 𝑏0 

and  𝑐0, as: 

𝛼 =
𝜎𝑏0−𝜎𝑐0

2𝜎𝑏0−𝜎𝑐0
                                                       (3.8) 

Typical experimental values of the ratio σb0/σc0 for concrete are in the range 

from 1.10 to 1.16, yielding values of α between 0.08 and 0.12 (Abaqus/standard user’s 

manual 2013). 
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The coefficient 𝛾 enters the yield function only for stress states of triaxial 

compression, when  ̂   < 0. Since plane stress analysis is used in this study, parameter 

γ does not play a role in the yield function. Figure 3.7 presents the damaged plasticity 

yield surface in plane stress analysis. 

 

 
 

Figure 3.7 Yield surface in plane stress (Abaqus/standard user’s manual 2013) 

The damaged plasticity model using non-associated potential flow may be 

presented as: 

𝜀̇𝑝𝑙 = 𝜆̇
𝜕𝐺(𝜎̃)

𝜕𝜎̃
                                                     (3.9) 

Where 𝜀̇𝑝𝑙 is the equivalent plastic strain rate, 𝜀𝑝𝑙 = ∫ 𝜀̇𝑝𝑙𝑑𝑡
𝑡

0
. 

The flow potential   picked for this model is the Drucker-Prager hyperbolic 

function: 

 = √(𝜖 𝑡0𝑡𝑎𝑛𝜓)2 + 𝑞2 − 𝑝𝑡𝑎𝑛𝜓                                 (3.10) 
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where the dilation angle, 𝜓, is measured in the 𝑝 − 𝑞 plane at high confining pressure,  𝑡0 

is the uniaxial tensile stress at failure, and 𝜖 is a parameter referred to as the eccentricity 

that defines the rate at which the function approaches the asymptote. The flow potential 

tends to a straight line as the eccentricity tends to zero (Figure 3.8).  

 
Figure 3.8 Flow potential in 𝒑 − 𝒒 plane (Abaqus/standard user’s manual 2013) 

 

 

3.2 Extended Finite Element Model (XFEM) 

Cracks in a FE model may cause singular stresses and strains close to a crack-tip, 

or a jump in displacement across a crack. For the numerical estimation of these non-

smooth variables, there are two primarily different approaches. The first method is a 

polynomial approximation based on finite element shape functions, and requires the 

element mesh to conform to the discontinuities. In addition, a refined mesh is essential at 

the location close to the crack tip and remeshing is required in order to model the 

evolution of interfaces, e.g., crack propagations. However, an effective remeshing 

procedure can be difficult for complex geometries because the elements must conform to 

the geometry of the discontinuity or projection errors are introduced. Moreover, this is 

computationally expensive and not suitable for developing cracks. The second method is 

based on enriching the polynomial approximation space with discontinuous functions, 
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such that non-smooth solutions can be modeled independent of the mesh. This is a basic 

principle of XFEM, and was pioneered by Melenk and Babuska (1996) and developed by 

Belytschko and Black (1999) and Moës et al. (1999). The principal points of the XFEM 

method provided in the finite element code ABAQUS (version 6.13) are presented in 

following sections. 

 

3.2.1 General Formulation of XFEM 

For the crack modeling, the enrichment functions typically consist of the near-tip 

asymptotic functions that catch the singularity around the crack tip and a discontinuous 

function that characterizes the jump in displacement across the crack surfaces. The 

degree of freedom enrichment is done with special displacement functions as shown in 

Equation 3.11: 

 = ∑  𝑖(𝑥)𝑖 [ 𝑖 + 𝑎𝑖 (𝑥) + ∑ 𝑏𝑖
𝑗
𝐹𝑗(𝑥)

 
𝑗=1 ]                            (3.11) 

where  𝑖(𝑥) are the usual nodal shape functions;  𝑖 is the usual nodal displacement; 𝑎𝑖 

are the enriched degrees of freedom associated with crack separation away from the tip; 

 (𝑥) is the associated discontinuous jump function across the crack; 𝑏𝑖
𝑗
 are the nodal 

enriched degrees of freedom associated with near-tip displacement; and 𝐹𝑗(𝑥) are the 

asymptotic crack tip functions. In the bracket of Equation 3.11, the first term is valid for 

all nodes in the model; the second term is used for nodes whose shape function is cut by 

the crack interior (the part between the old and new crack tips); and the third term is 

applicable only for nodes whose shape function is cut by the new crack tip. 

Figure 3.9 shows normal and tangential coordinates for a smooth crack. The 

discontinuous jump function across the crack surfaces,  (𝑥), is given by: 
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 (𝑥) = {
      1   𝑖  (𝑥 − 𝑥 ). 𝑛 ≥ 0
−1               𝑡   𝑤𝑖𝑠 

                                   (3.12) 

where 𝑥 is a sample (Gauss) point, 𝑥  is the point on the crack closest to 𝑥 , and 𝑛 is the 

unit outward normal vector to the crack at 𝑥 . 

The asymptotic crack tip functions in an isotropic elastic material, 𝐹𝑗(𝑥), are 

given by: 

𝐹𝑗(𝑥) = [√    
 

2
, √    

 

2
, √    

 

2
    , √    

 

2
    ]              (3.13) 

where r and θ are the polar coordinates from the crack tip as shown in Figure 3.9. 

  

 
Figure 3.9 Normal and tangential coordinates for a smooth crack  

(Abaqus/standard user’s manual 2013) 

 

 

3.2.2 Phantom Node Method  

Modeling the crack tip singularity accurately requires continuously keeping track 

of where the crack propagates. It is difficult because the degree of crack singularity 

depends on the location of the crack in a non-isotropic material. Therefore, the 

asymptotic singularity functions are considered only when modeling stationary cracks. 

Moving cracks are modeled using an alternative approach based on traction-separation 

cohesive behavior.  

The XFEM-based cohesive method can be used to model crack initiation and 

propagation along an arbitrary, solution-dependent path since the crack propagation is not 
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tied to the element boundaries in a mesh. The cohesive method is based on the insertion 

of a cohesive segment through an element once a decohesion (damage) criterion is met. 

The segments can be placed at arbitrary locations and in arbitrary directions, allowing for 

the modeling of complex crack patterns. The segment is taken to extend through the 

element to the boundary in which it is inserted. The cohesive behavior is explained in the 

next chapter in details.  

The XFEM-based cohesive method is based on the partition of unity property of 

finite element shape functions and enriching the approximation space with discontinuous 

functions. In this case, the near-tip asymptotic singularity is not needed. The 

displacement jump across a crack is calculated using the Phantom node method.  

Phantom nodes, which are superposed on the original real nodes, are introduced to 

represent the discontinuity of the cracked elements, as shown in Figure 3.10. When the 

element is undamaged, each phantom node is completely tied to its corresponding real 

node. When the element is cut by a crack, the cracked element splits into two parts. Each 

part is formed by a combination of some real and phantom nodes depending on the 

orientation of the crack. Each phantom node and its corresponding real node are no 

longer constrained together and can move separately. 

 

 

Figure 3.10 Principle of the phantom node method  

(Abaqus/standard user’s manual 2013) 

http://50.16.176.52/texis/search/hilight2.html/+/usb/pt04ch10s07at36.html?CDB=v6.13#anl-aenrichment-phantom
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The separation is governed by the traction-separation law until the cohesive 

strength of the cracked element is zero, after which the phantom and the real nodes move 

independently. To have a set of full interpolation bases, the part of the cracked element 

that is in the real domain,   , is extended to the phantom domain,  𝑝. Then the 

displacement in the real domain,   , can be interpolated by using the degrees of freedom 

for the nodes in the phantom domain,  𝑝. The jump in the displacement field is 

calculated by simply integrating only over the area from the side of the real nodes up to 

the crack, i.e.,   
+

and   
−

. This method provides an effective and attractive engineering 

approach and has been used for simulation of the initiation and growth of multiple cracks 

in solids by Song et al. (2006) and Remmers et al. (2008). It has been proven to exhibit 

almost no mesh dependence if the mesh is sufficiently refined. 

 

3.3 Application of Concrete Damaged Plasticity Model in XFEM-Based 

Cohesive Method  

 

 

As described in section 3.1, the concrete damaged plasticity model can simulate 

the constitutive behavior of concrete both in tension and compression. Although the 

application of this method in conventional finite element method is a well-known 

successful method, the concrete cracking in tension cannot be simulated as discrete 

cracks. Actually, the cracks in concrete subjected to tension are modeled as plastic 

displacements due to the continuum behavior assumption. On the other hand, XFEM-

based cohesive model is able to simulate discrete cracks using phantom node method and 

traction-separation law. A crack is modeled as a geometrical discontinuity in 

displacement across the crack. In the specimens used in conducted experimental program 

of this study, concrete is subjected to both tensile and compressive stresses while 

http://50.16.176.52/texis/search/hilight2.html/+/usb/pt04ch10s07at36.html?CDB=v6.13#aenrichment-song2006
http://50.16.176.52/texis/search/hilight2.html/+/usb/pt04ch10s07at36.html?CDB=v6.13#aenrichment-remmers2008
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concrete is cracked in the region close to FRP/concrete interface. Therefore, the 

combination of concrete damaged plasticity model and XFEM-based cohesive method is 

proposed in this research to model the concrete behavior. The compressive behavior of 

concrete is modeled using the concrete damaged plasticity model. The concrete damaged 

plasticity model is used in coordination with the XFEM-based cohesive method to model 

the concrete behavior in tension. The damaged plasticity model is used until the tensile 

crack initiation is detected, at which a cohesive segment is inserted and the XFEM is 

activated. 

The cohesive segments method is based on the fictitious crack using nonlinear 

fracture mechanics. The crack initiation criterion is the maximum principal stress 

criterion, in which a crack is initiated if the maximum principal tensile stress reaches the 

tensile strength of the concrete. The crack propagates perpendicular to the direction of the 

maximum principal tensile stress. The evolution of the crack is governed by the fracture 

energy, which represents the tension-softening behavior of the concrete during cracking. 

This method (application of concrete damaged plasticity model in XFEM-based cohesive 

method) is proposed for concrete modeling in the finite element analysis of the 

experiments of this study as described in Chapters 5 and 6.  
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Chapter 4 Modeling of FRP Debonding Failure in 

FRP/Concrete Joints 

 

 
Since the debonding failure of FRP/concrete joints is due to a moving crack 

within concrete close to and along the FRP/concrete interface, fracture mechanics is more 

appropriate for the analysis. Because of that, fracture mechanics-based approaches to 

study the debonding failure of FRP bonded concrete joints have received attention (Chen 

and Teng 2001). In order to apply fracture mechanics for FRP debonding failure analysis, 

the traction-separation law (i.e. the stress-displacement relationship) is required to be 

defined. Damage modeling can simulate the degradation and eventual failure of the bond 

by using the traction-separation law.  

In this chapter, four different fracture mechanics-based methods are investigated 

to model the FRP debonding in the finite element analysis including: cohesive elements, 

virtual crack closure technique (VCCT), cohesive surface, and XFEM. The finite element 

software ABAQUS is used for the numerical analysis. The results from different methods 

are compared with experimental results to find the most accurate method to model IC 

debonding failure of FRP-strengthened concrete beams. 

 

4.1 Application of Cohesive Elements  

For the first trial, cohesive elements are applied in the finite element models to 

predict IC debonding failure when the FRP/concrete interface is subjected to mixed-mode 

loading (the peeling force (mode I) and the shear force (mode II)). Cohesive elements are 

normally used to model the behavior of adhesive joints, interfaces in composites, and 

other situations where the integrity and strength of interfaces may be of interest. The 
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experimental results obtained from tests conducted by Dai et al. (2009) are used to 

validate the numerical analyses. Dai et al. (2009) developed an experimental test setup 

shown in Figure 4.1 to introduce different stress conditions into the FRP/concrete 

interface through loading the FRP-strengthened RC beams in different ways. As shown in 

the figure, a steel bar connected to the loading system was used to impose dowel force 

vertically onto the FRP sheets through a ball hinge and a stiff plate to create a localized 

mode I stress in the FRP concrete interface. The trapezoid shape was chosen for the void 

block to simulate the direction of actual diagonal flexural/shear cracks. In addition, a 

steel framework provided reactive bending force to the strengthened RC beams. As a 

result, the dowel force was introduced into the FRP sheets and a mode II interfacial stress 

condition was generated in the FRP/concrete interface. The mixed-mode loading 

condition could be achieved by altering the dowel force and bending force ratios. Six RC 

beams that externally bonded with two layers of CFRP sheets were tested. Dimensions of 

the specimens are shown in Figure 4.2. A 20 mm long initial crack (unbounded area) was 

set between the FRP sheets and the concrete beams. Two beams were subjected to dowel 

action and bending action only. Four additional specimens were loaded under mixed-

mode action by a constant level of dowel force (35%, 50%, 75% and 90% of the interface 

dowel force capacity) while bending force was increased from zero to the failure loads of 

the beams. The bending load, dowel load, mid-span deflection, peeling crack opening 

displacement, and the relative displacement (interfacial slip) between the concrete and the 

CFRP sheet at the tip of the initial crack, and strains in FRP at different locations were 

measured during tests.  



49 
 

 
Figure 4.1 Sketch of test set up used by Dai et al. (2009) 

 

 

 
Figure 4.2 Dimensions of test specimens used by Dai et al. (2009) 

 

 

It is observed in many experimental researches that debonding occurs in concrete 

at a few millimeters from the FRP/concrete interface and is essentially parallel to the 

interface. This phenomenon is due to two reasons: first, the penetration of adhesive into 

the concrete and increasing the toughness and the strength of a thin layer of mortar right 

next to the interface (Coronado and Lopez 2008); and second, the concrete substrate is 

the weakest component in FRP/concrete interface with a relatively small tensile strength.  

Based on this experimental observation, a thin damage band exposed to the mixed-mode 
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loading condition is modeled separately along the interface. Cohesive elements are used 

to model this damaged band. 

 

4.1.1 Finite Element Analysis Using Cohesive Elements 

Because of the symmetrical condition, only half of the beam is modeled.  

Concrete and FRP are modeled using 4-node bilinear 2D elements (CPE4R). The steel 

bars embedded in concrete (shown in Figure 4.2) are modeled using two nodes truss 

elements (T2D2). The damage band is modeled using four node two dimensional 

cohesive elements (COH2D4). The typical mesh of the model is shown in Figure 4.3. 

Tied contact is used to connect the FRP sheet to the damage band, and the damage 

band to the rest of the concrete beam. The tied contact can fuse two regions together even 

though the meshes created on the surfaces of the regions are dissimilar. In this approach, 

the nodes on the slave surface have the same displacement as the point on the master 

surface to which it is closest.   

 

 
Figure 4.3 Typical finite element mesh for specimens used by Dai et al. (2009) 

 

 

The behavior of steel is modeled as perfectly elastic-plastic response as shown in 

Figure 4.4a. The behavior of FRP is simulated using a brittle cracking model (Figure 

4.4b); consequently, the stress-strain curve of FRP is assumed to be linear up to when the 
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failure stress is reached. At this point, the material loses all its load-carrying capacity 

suddenly. The concrete damaged plasticity model is used to model the nonlinear behavior 

of concrete. The concrete and damage band modeling are explained in details in the 

following.  

 

 
(a)                                                            (b) 

Figure 4.4 Stress-strain behaviors applied in FE analysis using cohesive element:  

(a) Steel, (b) FRP 

 

 

4.1.2 Concrete Behavior Modeling  

As it is described in the previous chapter, cracking plays an important role in 

concrete behavior. Since the strain localization occurs during cracking in quasi-brittle 

material like concrete, the failure behavior prediction by finite element analysis needs a 

special method. The concrete damaged plasticity model is able to simulate the behavior 

of concrete failure due to cracking both in tension and compression as discussed in the 

previous chapter.    

In order to use the concrete damaged plasticity model, two curves should be 

determined. The first is the softening curve of concrete under uniaxial tension. Many 

different shapes have been proposed in the literature for the concrete softening curve, 
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which includes linear, bilinear, power functions, etc. (Shah et al. 1995). In this study, a 

simple linear stress strain softening curve as shown in Figure 4.5 is used. Two parameters 

are required to define the linear strain softening of concrete: maximum bearing stress, and 

fracture energy that is equal to the area under the softening curve. The concrete tensile 

strength,  𝑡, is considered as maximum stress that is estimated by  𝑡 = 0.62√ 𝑐′ (MPa) 

(ACI 318.R 2013) where  𝑐
′ (MPa) is the concrete compressive strength. Equation 4.1 

proposed by Bazant and Becq-Giraudon (2002) can be used for assessment of the fracture 

energy  𝐹(N/m): 

 𝐹 = 2.5𝛼0 (
 𝑐

 

0.051
)
0. 6

(1 +
 𝑎

11.2 
)
0.22

(
𝑤

𝑐
)
−0.3

                             (4.1) 

where 𝑑  (mm) is the average aggregate diameter, 𝛼0 =1.44 for crushed or angular 

aggregates, and 
𝑤

𝑐
 is the water cement ratio.  

 

 
Figure 4.5 Linear approximation of concrete strain softening curve 

 

 

The second curve needed for the concrete damaged plasticity model is the stress-

strain curve of concrete under uniaxial compression. The concrete compression stress-

strain curve is nonlinear and has a different shape for different concrete. In this study, the 

model proposed by Todeschini et al. (1964) as shown in Figure 4.6 is used to represent 

the concrete behavior under compression. For estimation of concrete Young’s modulus, 
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𝐸𝑐 (MPa), Equation 4.2 (ACI 318.R 2013) is used: 

𝐸𝑐 = 4 00√ 𝑐′                                                             (4.2) 

 

 
Figure 4.6 Compressive behavior model of concrete under uniaxial compression 

(Todeschini et al. 1964)  
 

 

4.1.3 Damage Band Modeling 

A damage band is created separately from the rest of the concrete to simulate the 

FRP/concrete interface subjected to mixed-mode loading along the initial crack. The 

cohesive elements are applied for the mesh of this band. The damage band must be 

discretized with a single layer of cohesive elements through the thickness.   

In order to model the FRP/concrete interface, the constitutive response of 

cohesive elements is defined by a traction-separation law derived from fracture 

mechanics. In this study, a bilinear traction-separation law is assumed to model the bond 

behavior of the interface as shown in Figure 4.7. The failure mechanism consists of two 

components: a damage initiation criterion and a damage evolution law. In the bilinear 

law, the initial response is the ascending linear branch up to the damage initiation 

criterion. The damage initiation criterion uses the maximum traction to define the 

beginning of the interface response degradation. The area under the traction-separation 
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response is assumed equal to the fracture energy required for separating the unit area of 

the interface. The damage evolution law uses the fracture energy concept to describe FPZ 

at the tip of the damage.   

 

 
Figure 4.7 Bilinear traction-separation law in cohesive element 

 

 

In general, cracks may be stressed in three different modes: mode I, the cleavage 

or tensile-opening mode; mode II, the in-plane shear mode; and mode III, the out-of-

plane shear or tearing mode as shown in Figure 4.8. In a two-dimensional (2D) analysis, 

when the interface is subjected to mixed-mode loading, there are both opening (normal) 

and slip (shear) displacements of the crack. The initiation and propagation criteria of the 

traction-separation law can model the mixed-mode loading condition. Figure 4.9 is a 

schematic representation of the dependence of damage initiation and evolution on the 

mixed-mode for a traction-separation response. The figure shows the tractions on the 

vertical axis and the magnitudes of the normal and shear separations along the two 

horizontal axes. The unshaded triangles in the two vertical coordinate planes represent 

the responses under pure normal and shear separations. The shaded vertical planes A and 

B symbolize the damage responses in Mode I and Mode II under mixed-mode conditions, 

respectively, while the shaded triangle C shows the bond behavior of the interface under 
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mixed-mode loading. 𝛿  in this figure is the effective displacement defined as: 

𝛿 = √𝛿𝑛
2 + 𝛿𝑠

2
                                                   (4.3) 

Where 𝛿𝑛 and 𝛿𝑠 are the normal and shear separations, respectively. 

 

 
 

Figure 4.8 Three modes of a crack displacement (Shah et al. 1995) 

 

 

 
 

Figure 4.9 Mixed-mode response in cohesive elements  
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In the present finite element analysis using cohesive elements, damage is assumed 

to initiate when the maximum nominal stress ratio reaches a value of one. This criterion 

can be represented as: 

 𝑎𝑥 {
𝜎

𝜎𝑛
,
 

 𝑠
} = 1                                                 (4.4) 

where  𝑛, and  𝑠 are the normal and shear bond strengths, respectively, and   and   are 

the normal and shear stresses of the cohesive element, respectively. 

The power law model described in Wu and Reuter (1965) can provide mixed-

mode contribution in the behavior of the cohesive element by: 

(
𝐺𝐼

𝐺𝐼 
)
 

+ (
𝐺𝐼𝐼

𝐺𝐼𝐼 
)
 

= 1                                        (4.5) 

where    and     are the fracture energy components of Modes I and II, respectively;     

and      are the critical fracture energies in pure Mode I and pure Mode II loadings, 

respectively. It has been proposed by several researchers (Karbhari and Engineer 1996, 

Dai et al. 2009) that the relationship between the fracture energy components    and     

of the FRP/concrete interface is linear. Therefore, the values of 𝛼 and 𝛽 are assumed to 

be equal to 1 in this study.  

 

4.1.4 Material Properties Applied in FE Analysis Using Cohesive Element 

The material properties used in the present FE model are presented in Table 4.1. 

The tensile and shear strengths of concrete are assigned to the damage band to control the 

initiation of the crack. The values of critical mode I and mode II fracture energies,     

and      assigned to the damaged band are calculated by Dai et al. (2009). 
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Table 4.1 Material properties applied in the FE analysis using cohesive elements 

Properties Concrete Damage Band FRP Steel 
Modulus of Elasticity, E (GPa) 31.5 31.5 230 210 

Tensile Strength, (MPa) 4 4 3550 - 

Compressive Strength,  𝑐
′ , (MPa) 45 45 - - 

Shear Modulus, G, (GPa) 13 13 - - 

Shear Strength,  𝑠, (MPa) 1 1 - - 

Fracture Energy,   , (   ⁄ ) 0.1 
Mode I=0.60 

Mode II=0.99 
- - 

Ultimate Strain >0.003 >0.003 0.015 >0.2 

Poisson’s Ratio 0.2 0.2 0.3 0.3 

 

 

4.1.5 Sensitivity Analysis 

Several parameters can affect the FRP debonding failure. In this part of the study, 

thickness of damaged band and bending stiffness of FRP are selected to study their 

effects on the IC debonding failure of FRP-strengthened RC beams. Two beams from Dai 

et al. (2009), B4 and B6, are chosen to demonstrate the sensitivity analysis of these two 

parameters. Beams B4 and B6 are subjected to 50% and 90% of its dowel force capacity, 

respectively. 

To find the accurate damage band thickness, four thicknesses are used in different 

FE models. They are 2, 4, 7, and 10 mm. The load vs. mid-span deflection curves for B4 

and B6 are shown in Figure 4.10. It can be seen in the figure that the beam behaviors are 

not very sensitive to the damage band thicknesses although the model with 10-mm-thick 

of damage band produces the results closer to the experimental data. In the following 

models, 10 mm is used as the thickness of the damaged band. By comparing Figure 4.10a 

(dowel force is 50% of its capacity) to 4.10b (dowel force is 90% of its capacity), it can 

be seen that the effect of the damage band thickness is smaller when larger dowel force is 

applied. Larger dowel force introduces large mode I force to the FRP/concrete interface. 

Therefore, it can be concluded that the thickness of damage band is not a key parameter 
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when mode I loading dominates the debonding failure. 

 

 
             (a) Beam B4  

 
               (b) Beam B6  

Figure 4.10 Sensitivity to the thickness of damage band 

 

In the experimental program reported by Dai et al. (2009), the CFRP sheets were 

applied to the RC beam by wet lay-up. The flexural stiffness of a CFRP sheet is relatively 
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small and is significantly influenced by the hand layer-up process. Therefore, it is hard to 

obtain the accurate flexural stiffness of CFRP in the beams. Dai et al. (2009) proposed the 

experimental magnitude of EI = 228000 N/mm
2
 for the two layers of CFRP sheets in the 

beams by using the least-square root regression of the dowel force vs. crack tip opening 

displacement relationship. It is assumed that the debonded FRP acted as a cantilever 

beam. Because the crack length kept changing when the load was increased (i.e., the 

length of cantilever beam changed at different loading stages), the slope of dowel force 

vs. the crack tip opening displacement curve might not represent the FRP bending 

stiffness. In this study, three FRP flexural stiffness values, i.e., EI, 2EI and 3EI, where EI 

= 228000 N/mm
2
, are chosen to study the FRP flexural stiffness effects on the beams B4 

and B6. The numerical results are compared to the experimental data as shown in Figure 

4.11. It can be seen that FRP flexural stiffness has a significant effect on the behavior of 

the strengthened beams. The stiffness and ultimate loading capacity of the strengthen 

beam increased with the increase of FRP bending stiffness. The bending stiffness of 3EI = 

684000 N/mm
2
 has the best agreement with the experimental data. Therefore, 684000 

N/mm
2
 is assigned to the FRP bending stiffness in the following models. 

 

4.1.6 Numerical Results of FE Analysis Using Cohesive Element 

Five strengthened beams with IC debonding failure (B2 to B6) are analyzed in the 

FE models by using the parameters discussed in the previous sections. The bending peak 

loads of both numerical and experimental results are presented in Table 4.2. The 

experimental and numerical bending load vs. mid-span deflection curves of the beams are 

shown in Figure 4.12. The change of FRP axial strain with increasing of the bending load, 
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for beam B4 and B6 are shown in Figure 4.13. The FRP strains were obtained on the 

outer surface of the CFRP sheet at the center of the beam. 

 

 
(a) Beam B4 

 

 
(b) Beam B6 

 

Figure 4.11 Sensitivity to the FRP bending stiffness 

 

Table 4.2 Summary of experimental and numerical results of the bending peak load 

Beam Pdowel (N) 
Pbending, max 

Experimental (KN) 

Pbending, max  

Numerical (KN) 
B1 2000 0 - 

B2 0 62 63.6 

B3 700 65.2 62.7 

B4 1000 57.4 60 

B5 1400 53.6 59.4 

B6 1900 55.6 58.6 
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Figure 4.12 Numerical and experimental results for load-deflection behavior 

 

  

  

Figure 4.13 Predicted numerical FRP strain–load curves vs. experimental data 
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It can be seen in Figures 4.12 and 4.13 that the applied FE analysis using cohesive 

elements is able to capture the trend of beam behaviors. However, the numerical results 

of all beams are softer than the experimental data and have larger mid-span deflections. 

This issue is more noticeable in beams with smaller dowel loads. It means that the FE 

model using cohesive elements is not able to capture the stiffness and bearing load during 

the FRP debonding when the interface loading is dominated by Mode II force (shear). 

However, it can predict the peak load well with the mean parentage error of 3.5%.  

The responses of the FE models and the actual beams are almost identical before 

the initial crack starts to propagate (Figure 4.12). However, the models show more 

flexible responses as the crack propagates. When the load increases, the cohesive 

elements continue to deform and therefore the crack propagates continuously in the FE 

models. In the real beams, the crack stops at a stable condition until the fracture energy at 

the crack tip accumulates to the critical fracture energy. Therefore, the crack propagation 

in the real beams is not continuous. It can be seen in Figure 4.12 that the load vs. 

displacement curves are ‘jagged’ for the real beams representing the repeated stable and 

crack propagating stages. In the ultimate stage, the behaviors of FE models and real 

beams become similar again. This is because FRP sheets in both the model and real 

beams have debonded completely from the concrete at this ultimate stage. 

The another disadvantage of using cohesive elements for debonding modeling is 

that it is not possible to track the crack initiation and propagation since there is not a 

‘real’ crack in the model and the behavior of modeling is controlled by cohesive element 

deformation (Figure 4.14). Hence, it is not possible to check the relationship between 

crack length and load. Using the cohesive elements deformation to model the cracking in 
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concrete may also result in the numerical model being more flexible than the 

experimental results.   

 

Figure 4.14 Cohesive element deformation to model cracking in concrete 

 

4.1.7 Conclusion of Cohesive Element Application in FE Analysis  

Two main conclusions are obtained in this part of study: first, FRP flexural 

stiffness has a noticeable effect on the behaviors of the strengthened beams; and second, 

the cohesive elements are not sufficient enough for the numerical analysis of debonding 

failure of FRP-strengthened concrete beams if crack propagation is an objective of study.  

Further study is conducted based on these conclusions to find other methods to model 

FRP debonding behavior in the FE analysis that are presented in the following section.   

 

4.2 Application of VCCT, Cohesive Surface, and XFEM Methods for 

FRP Debonding Modeling 

 

 
In order to find an appropriate numerical technique, three additional methods 

including the virtual crack closure technique (VCCT), cohesive surface, and XFEM are 

studied to investigate their abilities to model the FRP/ concrete interface debonding 
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failure when the interface is subjected to the mixed-mode loading condition. All of these 

methods are fracture mechanics-based models.  

The experimental data obtained from Wan et al. (2004) are used to validate the 

numerical models in this part of study. Wan et al. (2004) developed a modified double 

cantilever beam (MDCB) test as shown in Figure 4.15 to evaluate the bond interfacial 

fracture energies between FRP and a concrete substrate under mixed-mode loading. The 

test frame includes a loading device, a load indicator, an adjustable MDCB holder to 

impose variable loading angles, and a displacement indicator. In this test set up, when the 

support rotates to different angles with respect to the horizontal plane (Figure 4.15b), the 

crack tip is subjected to different mixed-mode (Modes I and II) loading conditions. The 

loading angle 𝛼  wa   ha ged betwee  0˚ and 60˚ during the test. The experimental 

process and analysis of the experimental results can be found in Wan et al. (2004). 

 

 

                    

                            (a)                                                        (b) 
 

Figure 4.15 Schematic of MDCB test: (a) test frame and holder, (b) specimen 

 (Wan et al. 2004) 
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4.2.1 Virtual Crack Closure Technique (VCCT) 

The virtual crack closure technique (VCCT) uses LEFM principles in FE analysis 

and is therefore appropriate for materials in which brittle crack propagation occurs along 

predefined surfaces. In VCCT, it is assumed that the strain energy released when a crack 

is extended by a certain amount is the same as the energy required to close the crack by 

the same amount (Krueger 2004). Figure 4.16 shows the fraction criterion of VCCT for a 

crack extension when bonded surfaces are subjected to Mode I loading. Nodes 2 and 5 in 

this figure start to release when: 

𝐺𝐼

𝐺𝐼 
=

1

2
(
 1,  𝐹 ,2, 

𝑏 
) 

1

𝐺𝐼 
= 1                                          (4.6) 

where    is the Mode I fracture energy,    is the critical Mode I fracture energy, b is the 

width, d is the length of the elements at the crack front,  𝐹 ,2,5 is the vertical force 

between nodes 2 and 5, and  1,6 is the vertical displacement between nodes 1 and 6. 

Assuming that the crack closure is governed by linear elastic behavior, the energy to 

close the crack (and thus the energy to open the crack) is calculated from Equation 4.6. 

The Same equation can be written for Mode II. In the general two dimensional analysis 

involving Mode I and II, the fracture criterion is defined as: 

𝐺     

𝐺      
= 1                                                     (4.7) 

where  𝑒  𝑖  is the equivalent fracture energy calculated at a node, and  𝑒  𝑖   is the 

critical fracture energy. The power law, Equation 4.5, is used to calculate  𝑒  𝑖  . A 

linear fracture criterion for mixed-mode loading is assumed in this study:  

(
𝐺𝐼

𝐺𝐼 
) + (

𝐺𝐼𝐼

𝐺𝐼𝐼 
) = 1                                             (4.8) 

where    and     are the fracture energy components of Modes I and II, respectively;     



66 
 

and      are the critical fracture energies in pure Mode I and pure Mode II loadings, 

respectively.  

 

Figure 4.16 Fraction criterion of VCCT for pure mode I  

(Abaqus/standard user’s manual 2013) 

 

 

4.2.2 Cohesive Surface Method 

The conventional cohesive element method allows the specification of the 

traction-separation behavior for elements to model FRP debonding failure. The cohesive 

surface method uses the same approach for the modeling but specifies the traction-

separation behavior for the predefined surfaces instead of elements. The formulae and 

laws that govern cohesive surface behavior are very similar to those used for cohesive 

elements with traction-separation constitutive behavior. The failure mechanism including 

the degradation and the eventual separation between the two cohesive surfaces consists of 

two components: a damage initiation criterion and a damage evolution law. However, it 

is important to recognize that damage in surface-based cohesive behavior is an interaction 

property, not a material property. Concepts of strain and displacement (used in behavior 

model formulae for cohesive elements) are reinterpreted as contact separations. Contact 
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separations are the relative displacements between the nodes on the predefined bonded 

surfaces along the contact normal and shear directions.  

The damage initiates when the contact stresses and/or contact separations satisfy 

damage initiation criterion. For the present study, an elliptic form for damage initiation 

criterion is considered: 

(
𝜎

𝜎𝑛
)
2

+ (
 

 𝑠
)
2

= 1                                                   (4.9) 

where  𝑛 and  𝑠 are the normal and shear bond strengths of the interface, respectively;   

and   are the normal and shear stresses of the contact under mixed-mode loading, 

respectively. 

The damage evolution law describes the rate at which the cohesive stiffness is 

degraded after the initiation criterion has been reached. Again, a linear fracture criterion 

for mixed- mode loading is assumed as given by Equation 4.8. 

 

4.2.3 Extended Finite Element Model (XFEM) 

Extended finite element model (XFEM) was proposed in the context of fracture 

mechanics by Belytschko and Black (1999). XFEM allows the presence of discontinuities 

(cracks) in an element of the finite element model by enriching the element with 

additional degrees of freedom. This technique can model crack opening and increases the 

accuracy of the approximation near the crack tip.   

Modeling the crack tip singularity accurately requires continuously keeping track 

of where the crack propagates. It is difficult because the degree of crack singularity 

depends on the location of the crack in a non-isotropic material. The alternative approach 

to solve this issue is using cohesive segments within the framework of XFEM. Unlike 
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VCCT and cohesive surface methods, which need to have predefined paths align with 

element boundaries for the crack propagation, the XFEM-based cohesive behavior 

method can model crack initiation and propagation along an arbitrary, solution-dependent 

path in the bulk material, and crack propagation is not tied to the element boundaries in a 

mesh. In the finite element analysis using XFEM-based cohesive model, Equations 4.9 

and 4.8 are used as the damage initiation and damage evolution criteria, respectively.  

 

4.2.4 Comparison of Applied Methods 

VCCT, cohesive surface, and XFEM methods are applied to model the MDCB 

specimen debonding behaviors. The specimen dimensions and typical mesh of the model 

are shown in Figure 4.17.   

 

 

(a)                                                                     (b) 

Figure 4.17 MDCB specimens: (a) specimen dimensions, (b) typical mesh 

 

In XFEM, it is required to define a domain region in which the crack probably 

propagates through. A damage area is created to simulate the concrete close to the 

FRP/concrete interface in the FE model using XFEM. The traction-separation law 
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presented in Equations 4.8 and 4.9 is assigned to this area to predict FRP debonding 

failure.  

Concrete material is modeled using the concrete damaged plasticity model. The 

behaviors of the FRP, epoxy, and aluminum hinge are modeled using a brittle cracking 

model. Since the debonding occurs in the concrete side of the interface, the normal 

strength of the interface,  𝑛, is assumed to be equal to the concrete tensile strength. The 

shear strength,   , and the critical fracture energy in pure mode II,     , of the interface 

are obtained from the bilinear model proposed by Lu et al. (2005) (Equations 2.4a to c). 

The material properties used in the FE models are presented in Table 4.3. The 

concrete fracture energy,  𝐹, is required in order to use the concrete damaged plasticity 

model.  𝐹 is assumed to be equal to 0.15 N/mm regarding to the concrete compressive 

strength; this value is consistent with recommendations of Wittman (2002). Coronado 

and Lopez (2008) indicated that the fracture energy of the interface,    , is higher than 

the plain concrete fracture energy.  Therefore,     is assumed to be equal to 0.2 N/mm for 

the MDCB specimens. 

Table 4.3 Material properties used in FE analysis for the MDCB specimens 

Material Property Concrete FRP Interface Epoxy Hinge 
Young Modulus, E,(GPa) 33.10 217.5 - 3.18 70 

Poison Ratio, υ 0.28 0.20 - 0.34 0.30 

Compressive Strength,  𝑐
′, (MPa) 53 - - - - 

Tensile Strength,  𝑡, (MPa) 4.59 - - - - 

Normal Strength,  𝑛, (MPa) - - 4.59 - - 
 

- - 4.59 - - 

Shear Strength,  𝑠, (MPa) - - 5.13 - - 

Fracture Energy,  𝐹, (N/mm) 0.15 -    =0.20,    =0.37 - - 

 

 

Three FRP-strengthened concrete blocks tested by Wan et al. (2004) with 

different loading angles are analyzed using FE models incorporating VCCT, cohesive 

surface, and XFEM techniques. Figure 4.18 shows the curves of load vs. vertical 
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displacement at the loading end for experimental data and the numerical results. It can be 

seen in the figure, that all three methods are able to predict the trend of specimen 

behaviors and the debonding failure. 

 

(a) Specimen C4B11 (𝛼=0˚)                               (b) Specimen C4B12 (𝛼=30˚) 

 

(c) Specimen C4B13 (𝛼 =60˚) 

Figure 4.18 Load vs. vertical displacement at the loading end curves: 

 

VCCT uses LEFM principles and assumes linear behavior for the materials.  

Therefore, its application is easy and analysis time is the shortest among the three 

methods. However, it is not able to capture the nonlinear behavior of the debonding 

failure resulting in predicted stiffer responses (smaller displacements) in numerical 

analyses compared to the experimental data. VCCT also requires a pre-defined flaw at the 
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beginning of the crack surface and cannot model the crack initiation from a surface that is 

not cracked.  

The maximum loads obtained by the cohesive surface method are less than the 

experimental data. The reason is that the cohesive surface does not consider the thickness 

of the interface. Therefore, it is suitable for situations where the thickness of the interface 

is close to zero. Based on the test observations, the debonding occurs in the concrete side 

of the interface and FRP debonding failure propagates in a band along the FRP/concrete 

interface with variable thickness of attached concrete. Therefore the assumption of zero 

for the thickness of the interface is not correct. On the other hand, since XFEM applies a 

damage domain for the crack propagation, its load predictions are more compatible with 

the experimental results. The mean percentage errors of the peak loads in cohesive 

surface and XFEM methods are 16.9% and 7.4%, respectively.    

XFEM uses the enrichment of degrees of freedom for the elements that the crack 

propagates through. Therefore, XFEM needs a finer mesh and as a result, the 

computational time is the longest.   

Figure 4.19 presents the crack propagation in the models using cohesive surface 

and XFEM, respectively. In the former method, the debonding arises between the epoxy 

layer and the concrete, whereas in the latter method the debonding propagates in the 

concrete layer near the interface which is closer to the reality. Therefore, XFEM is a 

more objective method to predict the FRP debonding failure compared to the other two 

methods.  
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(a) 

 

(b) 

 

Figure 4.19 Debonding failure: (a) cohesive surface method, (b) XFEM 

 

 

4.3. IC Debonding Modeling in FRP-strengthened Concrete Beams             

Using XFEM  

 

 
According to Figure 4.18, the numerical results from traction-separation law-

based methods are stiffer than the experimental ones. Although this is typical when 

modeling concrete structures, the difference between the stiffness of the numerical and 

experimental results increases when the loading angle is increased. On the other hand, as 

the contribution of mode II increases, the accuracy of the stiffness in the numerical model 
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decreases. In the modeling in Section 4.2, the Young’s and shear moduli of concrete are 

assigned to the domain area of cracking. This is acceptable when the interface is under 

pure mode I loading.  However, when the interface is subjected to mode II loading, the 

initial stiffness of the interface,   in Figure 4.7, is less than 
𝐺𝑐

𝑡𝑐
 of the plain concrete 

according to Equation 4.10 (Toutanji et al. 2012): 

 =
𝐺

𝑡
=

1
𝑡𝑎
 𝑎

+
𝑡𝑐
 𝑐

                                              (4.10) 

where Gc, Ga, tc, and ta are shear moduli, and thicknesses of the concrete contribution and 

the adhesive, respectively. In order to obtain a better FE model for the interface subjected 

to Mode II loading, Equation 4.10 for the initial stiffness is used for the FE analysis of 

FRP-strengthened concrete beams. The experimental specimens and data from Harries et 

al. (2012) are used to verify the FE model using the XFEM for IC debonding failure 

analysis. 

A practical standardized beam test method for assessing the FRP-to-concrete bond 

behavior in FRP-strengthened beams is proposed by Harries et al. (2012). The notched 

three-point bending beam specimen, shown in Figure 4.20, used for standardization is 

similar to that used to determine the modulus of rupture of concrete (ASTM C78 2010). 

To capture the IC debonding failure, the beam is notched at mid-span to one half of the 

beam depth to simulate the cracked concrete. Nine specimens reported by Harries et al. 

(2012) are considered in this study (three repetitions of three specimens). The details of 

specimens are presented in Table 4.4.  
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Figure 4.20 Beam test specimen using by Harries et al. (2012) 

 

Table 4.4 Specimen details used by Harries et al. (2012)  

Specimens h=b=L/3 (mm) w (mm) 𝑡  (mm) S (mm) 

G1-A, B and C 152 25 1.9 380 

G2-A, B and C 152 50 1.9 380 

G3-A, B and C 152 75 1.9 380 

 

4.3.1 Finite Element Analysis Using XFEM-Based Cohesive Method 

In order to find the appropriate element size for the FE models for the beam 

specimens, three meshes with different element sizes are formulated. The maximum 

bearing load obtained from the different mesh sizes are compared in Table 4.5. There is 

no significant difference between the results obtained from mesh b and mesh c, so mesh b 

is selected for the following FE models. In XFEM, it is required to define a domain 

region through which the crack probably propagates. The thickness of this area is 

assumed to be equal to 2 mm. Figure 4.21 shows the typical finite element mesh and the 

debonding crack domain (red rectangles). 
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Table 4.5 Mesh size study  

Mesh Elements Numbers      (KN) 

a 8564 30.85 

b 16923 28.75 

c 31845 28.54 

 

 

 

 
 

Figure 4.21 Typical mesh used for finite element analysis using XFEM-based 

cohesive method 

 

 

The properties of material used in the finite element method are presented in 

Table 4.6. Concrete material is modeled using the concrete damaged plasticity model. 

The bilinear traction separation law for mode II loading is assigned to the damage area 

(debonding crack domain). The initial shear stiffness is calculated by Equation 4.10. 

Equations 4.8 and 4.9 are used as the debonding initiation and propagation criteria.  

The maximum shear stress and interfacial mode II fracture energy calculated by 

proposed equations by Dai et al. (2005) (Equations 2.3a to c) and Lu et al. (2005) 

(Equations 2.4a to c) are shown in Table 4.7 for specimen G3. 
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Table 4.6 Material properties used in XFEM  

Material Property Concrete GFRP Adhesive 
Young Modulus, E,(GPa) 26.1 41.37 1.2 

Compressive Strength,  𝑐
′, (MPa) 32 - - 

Tensile Strength,  𝑡, (MPa) 3.5 - - 

Poison Ratio, ν 0.25 0.2 0.3 

Fracture Energy,  𝐹, (N/mm) 0.1 - - 

 

Table 4.7 Predicted values for bond-slip characteristics 

Model  𝑠 (MPa)      (N/mm)      (KN) 

Dai et al. (2005) 4.29 1.565 37.2 

Lu et al. (2005) 5.36 0.585 >42 

 

The numerical analysis shows that application of the maximum shear stress and 

interfacial mode II fracture energy values from the equations proposed by Dai et al. 

(2005) and Lu et al. (2005) result in very high maximum bearing load compared to the 

results from experiments (the average value of the experimental maximum bearing load is 

26.84 KN) as shown in Table 4.7 and Figure 4.22. Due to the high value of  𝑠 proposed 

by Lu et al. (2005), there is no crack initiation in the FE analysis used this value and the 

model exhibits a convergence problem. The values of  𝑠 =1.5 MPa and      = 0.6 N/mm 

result in the best agreement with the experimental results for specimen G3 (blue curve in 

Figure 4.22 with the mean percentage error of 5.6% of the maximum load). It is indicated 

in Harries et al. (2012) that the failure of the most of these specimens was characterized 

as an adhesive failure between the FRP and adhesive at lower loads than anticipated. This 

failure suggests improper preparation of the FRP strips prior to installation although it 

had no impact on the objective of this part of study. 

The applied crack domain properties (debonding properties) in XFEM-based 

cohesive analysis are shown in Table 4.8.   
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Table 4.8 Debonding properties used in XFEM 

Debonding property G1 G2 G3 
Young’s Modulus, E,(GPa) 26.1 26.1 26.1 

Normal Strength,  𝑛, (MPa) 3.56 3.56 3.56 

Shear Strength,  𝑠, (MPa) 0.9 1 1.5 

Fracture Energy Mode I,    , (N/mm) 0.15 0.15 0.15 

Fracture Energy Mode II,     , (N/mm) 0.49 0.56 0.6 

 

 

 

 

Figure 4.22 Load vs. FRP strain curves for specimen G3 

 

Figure 4.23 shows the numerical and experimental load vs. FRP strain curves. 

XFEM method is able to predict the trends of specimen behaviors, and maximum loads 

with mean percentage errors within 5.6-12%. Figure 4.24 presents the crack initiation and 

the debonding failure propagation obtained from the numerical analysis for specimen G1. 

The debonding starts in the first element of the damaged band adjacent to the 

FRP/concrete interface at the tip of notch (Figure 4.24a). As element stresses meet the 

initiation criterion (Equation 4.9), the crack propagates toward the support (Figure 

4.24b). 



78 
 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 4.23 Experimental and numerical load vs. FRP strain curves for beam 

specimens tested by Harries et al. (2012) 
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(a) 

 

 

 
(b) 

 

Figure 4.24 (a) Crack initiation, (b) Crack propagation 

 

 

4.3.2 Sensitivity Analysis to the Damage Band Parameters 

Since the debonding failure typically controls the behavior of FRP-strengthened 

specimens, the damage band geometry and properties play an important role in the 

predicted failure behavior. In this part of the study, the thickness and properties of the 
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damage band are varied to study their effects on the modeling of the FRP debonding from 

concrete in specimen G3. 

The first sensitivity analysis investigates the effects of the mode I properties on 

the debonding failure of the beam specimens. Figure 4.25 presents the results of analyses 

with different normal bond strength,  𝑛, and mode I critical fracture energy,    . As it 

can be seen, the numerical models are insensitive to the mode I properties even when 

they are reduced 50%. It can be concluded that the mode I contribution does not have 

significant effect on the debonding failure initiated at the tip of the notch when the notch 

is placed at the middle of the beam span.  

 

 

Figure 4.25 Sensitivity to the normal (mode I) properties 

Figure 4.26 shows the sensitivity of the analyses to the mode II properties. The 

shear bond strength,  𝑠, and the mode II critical fracture energy,     , are each changed 

50%. As seen in the figure, mode II properties have a significant effect on the debonding 

behavior and the results are very sensitive to these parameters. The ultimate load changes 
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significantly (around 25%) when   𝑠 and      are changed. Therefore, the FRP debonding 

initiated at the tip of a mid-span flexural crack is primarily controlled by mode II or shear 

properties. This also validates the test method proposed by Harries et al. (2012), which 

intends to test the FRP debonding due to mode II (in-plane shear) loading. 

 

 
Figure 4.26 Sensitivity to the shear (mode II) properties 

 

 

For the sensitivity analysis of the numerical results to the damage band thickness, 

the finite element analysis is conducted with damage band thicknesses of 2, 4, and 10 

mm. Numerically obtained load versus mid-span FRP strain curves are shown in Figure 

4.27. When the damage band thickness is increased from 2 to 10 mm (changed 500%), 

the decrease of the ultimate load is less than 10%. So the ultimate load is not very 

sensitive to the damage band thickness. However, a smaller damage band thickness 

results in stiffer behavior. The damage band thickness of 10 mm gives the poorest 

prediction in comparison with the stiffness of the experimental curves; the results for 2 

and 4 mm thicknesses are close to each other. This observation is compatible with the 
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experimental observations that indicate the debonding and horizontal cracking generally 

occur within concrete at 1 to 5 mm from the FRP/concrete interface.  

 

 

Figure 4.27 Sensitivity to the damage band thickness 

4.3.3 Conclusion of Application XFEM-based Cohesive Method to Model IC 

Debonding Failure  

 

 

XFEM-based cohesive method is successfully applied to model FRP debonding 

from a notched concrete beam. This method results in a good agreement between 

numerical prediction and experimental observations. According to the sensitivity 

analysis, the shear (mode II) properties of the damage band including shear strength and 

critical fracture energy controls the FRP debonding initiated at the mid-span notch.  

As discussed in Section 4.3.1, the numerical analyses using smaller the bond 

strength and fracture energy values than those proposed by Dai et al. (2005) and Lu et al. 

(2005) give the good agreements with the experimental results. Since those proposed 
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values are obtained by equations that are found from single shear pullout tests, the 

question raised is: Can the bond-slip behavior obtained from pullout tests be applied to 

beams to model IC debonding failure? To answer this question, both single shear pullout 

and beam tests are performed following this study to investigate the bond–slip behaviors 

of FRP bonded concrete specimens. These tests and related FE analyses are discussed in 

detail in Chapters 5 and 6.  
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Chapter 5 Single Shear Pullout Test 

The bond between the externally bonded FRP and the concrete substrate plays a 

key role in the performance of concrete structures after strengthening. In order to assess 

the bond mechanisms quantitatively, and to numerically simulate the FRP-strengthened 

concrete beams, defining an accurate bond-slip relationship is an important, but 

controversial issue. The conventional method of finding the bond-slip behavior of the 

interface is the single shear pullout test. In this method, a tensile force is applied to the 

FRP plate along the FRP/concrete interface. The bond-slip behavior is obtained by using 

the FRP axial strain distributions along the FRP plate.  

In this chapter, six specimens are tested to find the bond-slip behavior of the 

FRP/concrete interface in the single shear pullout test. The test set-up, concrete mixture 

and its properties, and the FRP properties and bonding procedures are explained in detail.  

The numerical analysis using concrete damaged plasticity model in XFEM is performed 

for the FRP debonding modeling and verified by the experimental results. A sensitivity 

analysis of the boundary condition is also studied. 

 

5.1 Single Shear Pullout Test Set-up  

Since the main purpose of carrying out the pullout test in this part of this study is 

to compare the bond-slip behavior of pullout specimens to the bond-slip behavior of 

FRP-strengthened beam specimens, the pullout specimens are considered as half of the 

beam specimens both in dimensions and boundary conditions. The beam test specimens 

that will be explained in the next chapter and the pullout specimens are shown in Figure 
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5.1 for the comparison. As shown in the figure, the length of the concrete block and the 

FRP plate of the pullout specimen are half of the beam length and the bonded FRP plate 

length in the beam specimen, respectively. The cross section of the concrete substrate and 

FRP width are same in both specimens. In the beam specimens, a half-depth notch is 

located at mid-span to simulate the flexural crack. To mimic the same boundary 

conditions of beam specimens in the pullout specimens, the concrete block is positioned 

on a rigid frame with two steel reaction elements as shown in Figure 5.1b. Element A 

provides the horizontal reactions to simulate the uncracked part of the beam at the top of 

the notch, and element B provides the vertical reactions to simulate the support forces in 

the beam specimens. A 25 mm pre-crack between FRP and concrete is provided in both 

groups of specimens.  

 

 

(a)                                                                 (b) 

Figure 5.1 Experimental specimens: (a) beam specimens, (b) pullout specimens 

 

 

The pullout test is conducted under displacement control with loading rate of 

0.0127 mm /s. To impose the tensile stresses to the FRP plates, the hydraulic single ended 

actuator (model 201.20T) from Minnesota Testing Systems (MTS) Company is used. 

Figure 5.2 shows the schematic of the test set-up (All dimensions are in 
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millimeter). In this figure, parts 1 and 2 are HSS 254 203   .5 (  ) and HSS 

203 254   .5 (  ), respectively. These two steel channels are fixed to the strong 

floor by bolts. Part 3 is designed in a way to fill the room between the two channels to 

prevent their movements relative to each other and also provides an adjustable height for 

the FRP plate. It is inevitable to have some variations of concrete block height and 

adhesive thickness among different specimens. Although these variations are very small, 

they may cause the line of the action of applied tension force to not coincide with the 

center of the FRP in horizontal direction. For this reason, two small wheels sitting on 

thread bars are used to adjust the height of steel plates that hold the FRP plate in order to 

have tension force direction as close as possible to the center of the horizontal FRP plate. 

They also support the steel plates to reduce the bending in the FRP plate due to the 

weight of the steel plates. The wheels are used in order to generate the least friction force 

against steel plate’s horizontal movement during testing. In order to impose uniform 

tensile force to the FRP plate, same toque forces of 81 KN-mm are applied to four bolts to 

bolt the two steel plates holding the FRP plate. To reduce the probability of uneven toque 

on bolts, 27 KN-mm toque is applied to each bolt in the sequence of diagonal pattern (i.e., 

after one bolt is applied torque, the bolt diagonal to the first bolt is applied the torque) 

and the torque on each bolt is increased to 81 KN-mm in the same sequence. The surfaces 

of the steel plates are roughed to prevent the sliding of the FRP plate during the test as 

shown in Figure 5.2. Figure 5.3 shows a picture of the whole set-up.   
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Figure 5.2 Schematics of pullout test set-up 

 

 

Figure 5.3 Shear pullout test set-up 
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5.2 Concrete Mixture for Pullout Specimens  

Concrete compressive strength at 28 days,  𝑐
′, of 31 MPa is the design target. The 

absolute volume method is used to find the mixture proportioning (Kosmatka et al. 2002). 

The proportions of water, cement, coarse and fine aggregates, and air content per cubic 

meter of concrete are presented in Table 5.1. The water to cement ratio is calculated 

based on the standard using compressive strength value and is equal to 0.44. 

 

Table 5.1 Proportions of concrete mixture per cubic meter 
Water (kg) 128 

Cement (kg) 279 

Coarse aggregate (kg) 887 

Fine aggregate (kg) 478 

Air-entraining admixture (g) 164 

 

Two mix batches are used for concrete mixing regarding to applied mixer volume 

(Figure 5.4a). Plastic forms are used for concrete casting (Figure 5.4b). Also cylinder 

specimens are prepared to test the compressive strength (Figure 5.4c). For each batch of 

concrete, three cylinders are prepared and they are named as M1-1 to M1-3 and M2-1 to 

M2-3. Three cylinders are tested at the same time of the pullout specimens and the other 

three are cured in water for testing at 28 days. The slump tests are done during the mixing 

processes in order to obtain 100 ±20 mm slump (Figure 5.4d). After removing the forms, 

the specimens are cured for one week in the lab environment while covered by plastics 

(Figure 5.4e) 

 



89 
 

            

(a)                                                              (b) 

             

                      (c)                                                            (d)  

 

(e) 

Figure 5.4 Preparation processes of concrete specimens for pullout test 

5.3 Strengthening System 

 The surface of concrete to receive the FRP plate for strengthening must be sound 

and prepared for bonding by means of abrasive methods. Typically, light sandblasting, 
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grinding or other approved methods are acceptable. The surface should be free of 

protrusions or cavities. It is important to remove the laitance in the concrete and expose 

some of the concrete aggregate. This is achieved with mechanical grinders using a metal 

sander as shown in Figure 5.5a. 

In this study, the strengthening system for shear pullout test is bonding of Tyfo® 

UC laminate strips by Tyfo® S (Saturate) epoxy as primer and Tyfo® TC (Tack Coat) 

epoxy as adhesive, from FYFE company, on the concrete substrate. The properties of the 

strengthening system components are presented in Table 5.2.  

 

Table 5.2 Proportions of strengthening system components 

Property Tyfo® UC Laminate Strip Tyfo® S Tyfo® TC 
Ultimate tensile strength (MPa) 2790 72.4 22.7 

Elongation at break (%) 1.8 5 1.88 

Tensile Modulus (GPa) 155 3.18 1.2 

Layer Thickness (mm) 1.5 - 1 

 

Tyfo® UC Laminate Strip is a high modulus, high tensile strength, pull-formed, 

epoxy-carbon composite. The Tyfo® S epoxy is a two-component epoxy matrix material 

used as primer in this study including component A and B. For bonding applications, 100 

parts of component A should be mixed with 23.3 parts of component B by weight. Then it 

needs to be mixed thoroughly for five minutes with a low speed mixer at 400-600 RPM 

until uniformly blended (Figure 5.5b). Tyfo® TC epoxy is also a two-component material 

that is used as adhesive between CFRP and concrete. Mix ratio is 100 parts of component 

A to 34.5 parts of component B by weight. It is needed to be mixed in a way as Tyfo® S 

epoxy. 
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(a)         (b) 

 

     

(c)                                                                     (d) 

 

 
 

(e) 

 

Figure 5.5 FRP application processes 
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A roller is used to apply a thin layer of primer to the concrete surface (Figure 

5.5c). The strips should have the bonding face cleaned with acetone to remove any 

foreign debris. First, a thin prime coat of Tyfo S epoxy is applied to the CFRP strips and 

then, a thin layer of Tyfo® TC Epoxy adhesive is applied to the strip (Figure 5.5d). The 

FRP locations are marked by tapes on the concrete specimens. The tape is also used to 

provide 25 mm pre-cracks (unbonded areas between concrete and FRP). After placing the 

CFRP strips on the concrete surfaces (Figure 5.5e), the specimens are left to cure for a 

period of 7 days prior to testing. 

 

5.4 Compressive Strength of Concrete Cylinders 

The ASTM C39 (2010) standard method is used to find the compressive strength 

of concrete. This method consists of applying a compressive axial load to molded 

cylinders at a rate which is within a prescribed range until failure occurs. The 

compressive strength of the specimen is calculated by dividing the maximum load 

attained during the test by the cross-sectional area of the specimen.  

The test machine used in this study is Forney compression testing machine as 

shown in Figure 5.6. The cylinders are 203 mm (8 in) in height and 102 mm (4 in) in 

diameter. The applied loading rate is 0.25 MPa/s. The recorded compressive strengths of 

cylinders (M1-1, M1-2, and M2-1) tested at the day of shear pullout tests, and the 

recorded strengths of cylinders (M1-3, M2-2, and M2-3) tested at 28 days after casting 

are presented in Table 5.3.  

 

http://www.marquette.edu/engineering/civil_environmental/images/EMSTL/IMG_8984.JPG
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Figure 5.6 Forney compression testing machine 

 

Table 5.3 Recorded compressive strengths for concrete cylinders 

Cylinders Age (days) Compressive 

Strength (MPa) 

Average 

Strength (MPa) 

Standard  

Deviation (MPa) 
M1-1  31.61   

M1-2 14 31.77 31.57 0.35 

M2-1  31.27   

M1-3  32.41   

M2-2 28 32.23 32.93 0.87 

M2-3  34.16   

 

 

5.5 Measurements in Shear Pullout Test 

During the test, the applied load, FRP axial strains, and the slippage at the tip of 

pre-crack are recorded.  

The objective of shear pullout test is to find the bond-slip relationship of the 

FRP/concrete interface. The conventional technique to find the bond-slip relation from 

shear pullout tests is using the FRP axial strains. However, it is difficult to apply this 

method because of the difficulty in arranging many gauges in a short effective load 

transfer length. The high scatter nature of local bond-slip relationships is another 

http://www.marquette.edu/engineering/civil_environmental/images/EMSTL/IMG_8984.JPG
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difficulty that is faced. Principally, local bending of the FRP, whose bending stiffness is 

small, presents significant bending strains in FRP, and the coarse aggregates in the 

concrete surface layer are the causes of the scatter. Dai et al. (2005) proposed an indirect 

way to get the bond-slip behavior from shear pullout tests. In this method, there is no 

necessity to record the strain distribution along the FRP plate/sheet. The local interfacial 

bond-slip models can be obtained from the relationships between the FRP strain and slip 

at the tip of pre-crack as indicated in Equation 5.1: 

𝜀 =A (1-  −   )                                                          (5.1) 

After determining the values of parameters A and B from experimental data, the 

interfacial fracture energy (  ) and the bond strength (    ) can be calculated by: 

    =0.5 𝐴2𝐸 𝑡                                                             (5.2) 

    = 0.5𝐵                                                                (5.3) 

where 𝑡  and 𝐸  are the thickness and Young’s modulus of FRP plate, respectively. 

In this study, both conventional method and Dai’s method are used to find the 

bond-slip behavior of the FRP/concrete interface. The FRP strains are obtained by 

attaching strain gauges along the FRP plates. A digital dial gauge is used to measure the 

relative slip between the concrete and FRP at the pre-crack tip as shown in Figure 5.7. 

 

 
 

Figure 5.7 Application of digital dial gauge to obtain the slip at the pre-crack tip 
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5.6 Experimental Observations of Shear Pullout Tests 

Six concrete specimens are used for shear pullout test (CS1-CS6). The numbers of 

applied strain gauges, ultimate bearing load, and the failure type of specimens are 

presented in Table 5.4. All specimens have one strain gauge at the tip of pre-crack. 

Specimens CS2 and CS3 have one more strain gauge 51 mm from the pre-crack tip. 

Specimens CS4, CS5, and CS6 have three more strain gauges that are attached in 51 mm 

intervals from each other (Figure 5.7). After here, strain 1 presents the values obtained by 

strain gauge at the tip of pre-crack, and strain 2, 3 and 4 present the values obtained by 

other strain gauges attached on the FRP surface successively. 

 

Table 5.4 Number of strain gauges, ultimate load, and the failure type of pullout 

specimens 

Specimens Number of strain gages Ultimate load (KN) Failure type 
CS1 1 36.25 Flexural* 

CS2 2 41.51 shear 

CS3 2 26.92 shear 

CS4 4 38.89 Flexural* 

CS5 4 45.60 shear 

CS6 4 47.65 shear 
* “flexural” failure means its failure mode is similar to that in beam specimens. Detail explanation is presented on page 99. 

 

 

As it can be seen in the table, CS3 has the lowest ultimate bearing load. During 

the test for CS3, it was seen that the FRP plate level is lower than holding steel plate’s 

level as shown in Figure 5.8, schematically. It causes some peeling loads on the FRP that 

makes the debonding easier and faster, and in result the ultimate bearing load is less than 

the others. The second strain gauge that is attached 51 mm away from the pre-crack tip 

(strain2) shows some negative strains during the testing as shown in Figure 5.9. It 

confirms that the FRP plate is subjected to a peeling force that causes a positive moment 

and as a result, compressive stresses on the FRP surface. This specimen is not used for 
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the calculation of the bond-slip relationship.  

 

 
Figure 5.8 Schematic of specimen CS3 during pullout test    

 

 

 

Figure 5.9 Strain 2 vs. load curve for specimen CS3 

 

CS1 and CS4 have the similar failure types. The failures are shown in Figure 

5.10. This failure is very similar to those happened in the beam specimens subjected to 

bending load which will be described and discussed in the next chapter. Therefore, this 

failure is called flexural failure in this study. For these specimens, the main failure cracks 

are diagonal cracks that occurred in concrete as shown in the figure. Therefore, the 

debonding does not start at the tip of pre-crack.  
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(a)                                                         (b) 

 

Figure 5.10 Flexural failures: (a) CS1, (b) CS4 

 

 

Figure 5.11a compares the FRP strain at the tip of pre-crack (strain 1) for 

specimen CS4 with flexural failure to that for specimen CS5 with shear failure. As it can 

be seen, the strains and loads are almost identical at the beginning stage of the loading. 

However, strain 1 in CS5 increases much faster than that in CS4. Since in CS4 the 

debonding does not start at the tip of pre-crack, the maximum strain 1 value is very small 

compared to that in CS5. On the other hand, the strains 2 in CS4 are comparable with 

strains 2 in CS5 (Figure 5.11b). In beam specimens, the FRP plate at the tip of 

flexural/shear crack is subjected to local bending load (explained in Chapter 6) that 

causes a failure similar to the flexural failure in these specimens. Thus, it seems that the 

FRP plate in CS4 and CS5 is subjected to a certain level of bending load during testing. It 

means that the steel plate’s level (loading level) is lower than the FRP plate’s level during 

the tests for these two specimens. Because the debonding failures in specimens CS1 and 

CS4 do not follow the typical shear failure, they are not applied to calculate the bond-slip 

behavior from the pullout test.  
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            (a) 

 
(b) 

 

Figure 5.11 Comparison between CS4 and CS5: (a) strain 1, (b) strain 2 

The failure type of Specimens CS2, CS5, and CS6 is shear failure as shown in 

Figure 5.12. However, for specimen CS2, a diagonal crack is seen on the concrete surface 

as shown in Figure 5.12a. Its shape is similar to those in CS1 and CS4. So there is some 

flexural effect in CS2. It also can be seen in Table 5.4 that the ultimate load of specimen 

CS2 is a little less than those of specimens CS5 and CS6.  
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(a)  

 

        
(b)                                                                (c) 

 
Figure 5.12 Shear failures: (a) CS2, (b) CS5, and (c) CS6 

 

 

5.7 Bond-Slip Relationships of Pullout Specimens 

Two methods are used to find the bond-slip relationships from pullout tests: 

conventional method, and Dai’s method. In the conventional method, the bond-slip 

relationship can be calculated by Equations 2.1 and 2.2 using FRP axial strains along the 

FRP surface. Only four strain gages are attached on the FRP. Using recorded strains by 

these four strain gauges and Equations 2.1 and 2.2, the bond-slip curves are calculated 

and presented in Figure 5.13 for specimens CS2, CS5, and CS6.  

In Dai’s method, the FRP strain vs. slip curve at the tip of pre-crack is required to 

be attained by experiments. The obtained curves in this study are presented in Figure 

5.14. The regression is done for function 𝜀 = 𝐴(1 −  −  ) to find parameters A, and B 
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experimentally. The acquired values for A and B are presented in the Table 5.5. Then, 

parameters A and B are used in Equations 5.2 and 5.3 to find the bond strength,      , and 

the interfacial fracture energy,   , that are shown in Table 5.5. The values of       and    

gained by conventional method are also presented in the table for the comparison of two 

methods. The values from both methods are similar while the results of conventional 

method are less than those of Dai’s method. However, since there are only four strain 

records for each specimen, the values obtained by the conventional method are not 

reliable. Therefore, values from Dai’s method are used in the numerical analysis.  

 

  
(a)                                                         (b) 

 

 
(c) 

 

Figure 5.13 Bond-slip curves for specimens: (a) CS2, (b) CS5, and (c) CS6 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5.14 FRP strain vs. slip curve at the tip of pre-crack of specimens: (a) CS2, 

(b) CS5, and (c) CS6 
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Table 5.5 Values of      and 𝑮  obtained by Dai’s method and conventional method 

Specimen 
A 

𝝴 

B 

  −1 

    (MPa) 

Dai 

   (N/mm) 

Dai 

     (MPa) 

conventional 

   (N/mm) 

conventional 

CS2 0.00320 5.1 3.03 1.19 2.81 0.70 

CS5 0.00349 5.2 3.68 1.41 3.26 1.07 

CS6 0.00350 5.1 3.63 1.42 2.95 0.84 

 

 

CS2 has less bond strength and fracture energy compared to CS4, and CS5. The 

reason is the diagonal cracking in concrete discussed in previous section, which may 

cause less FRP strain at the tip of the pre-crack. Therefore, the average values of       

and    of CS5 and CS6 results obtained by Dai’s method are used for the following 

numerical analysis. 

 

5.8 Numerical Analysis of Single Shear Pullout Test 

For the FE analysis, the commercial software ABAQUS 6.13 is used. Plane stress 

elements are applied for the model. Typical finite element mesh is shown in Figure 5.15. 

Concrete damaged plasticity model is applied in XFEM for the modeling of concrete. 

Concrete plasticity model is well known method to model the concrete, but it is not able 

to show the cracking. By application of this method in XFEM instead regular FE method, 

it is possible to take benefit from concrete damage plasticity and cracking modeling 

together. The crack initiation criterion is the maximum principal stress criterion, in which 

a crack is initiated if the maximum principal tensile stress reaches the concrete tensile 

strength. The crack propagates perpendicular to the direction of the maximum principal 

tensile stress. The evolution of the crack is governed by the fracture energy, which 

represents the tension-softening behavior of the concrete during cracking. A linear 

tension-softening curve is assumed for the concrete. FRP and epoxy is modeled using a 
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brittle cracking model. The thicknesses of FRP plate and epoxy are 1.5 mm and 1 mm, 

respectively. 

A damage band is introduced at the tip of pre-crack with thickness 2 mm as shown 

in Figure 5.15. A bilinear traction-separation law is assigned to the damage band. Bond 

strength,     = 3.655   𝑎, and interfacial fracture energy,   = 1.415  /  , are 

assumed according to the findings of experiments (average of CS5 and CS6 results 

obtained by Dai’s method). The Young’s modulus of the damage band is equal to the 

Young’s modulus of concrete. However, the shear modulus of the damage band is 

calculated by Equations 4.10, which is much smaller than the shear modulus of concrete. 

A summary of applied material properties in the FE analysis is presented in Table 5.6.  

 

 

Figure 5.15 Typical FE mesh applied for analysis of shear pullout test specimens 
 

Table 5.6 Material properties applied in FE analysis of shear pullout test specimens 

Properties Concrete Damage Band FRP Epoxy 
Modulus of Elasticity, E (GPa) 30.5 30.5 155 1.2 

Tensile Strength, (MPa) 3.58 3.58 2790 22.7 

Compressive Strength,  
 
  , (MPa) 33.09 - - - 

Shear Modulus, G, (GPa) 12.71 1.29 - - 

Shear Strength,     , (MPa) - 3.655 - - 

Fracture Energy,   , (   ⁄ ) 0.12 1.415 - - 

Poisson Ratio 0.2 0.2 0.25 0.3 
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5.8.1 Results of FE Analysis of Single Shear Pullout Test 

The used FE analysis is able to predict the FRP debonding from concrete 

substrate. The red color in Figure 5.16 shows the debonding cracks in the model. There is 

a very good agreement between numerical and experimental results for FRP strain vs. slip 

curves at the tip of pre-crack as shown in Figure 5.17. The predicted ultimate load by 

numerical analysis is 45.59 KN that is compatible by experimental ultimate loads 

presented in Table 5.4 for specimens CS5 and CS6. The mean parentage error of the 

ultimate load is 2.17%. 

 

 

Figure 5.16 FRP debonding failure predicted by FE analysis 

 

 
Figure 5.17 Numerical and experimental FRP strain vs. slip curves at the tip of pre-

crack 
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5.8.2 Sensitivity Analysis to the Boundary Conditions 

Table 5.7 presents the bond strength,     , and the interfacial fracture energy,   , 

obtained using the analytical equations proposed by Dai et al. (2005) (Equations 2.3a to 

c) and Lu et al. (2005) (Equation 2.4a to c). By comparison between these values and 

experimental ones, it can be seen that the analytical equations predict much higher bond 

strength. 

 

Table 5.7 Predicted values for bond-slip characteristics 

Model      (MPa)    (N/mm) 

Dai et al. (2005) 6.47 1.58 

Lu et al. (2005) 5.92 0.705 

Experiments 3.655 1.415 

 

As mentioned previously, the main objective of carrying out the shear pullout test 

in this study is to compare the obtained bond-slip relationship of shear specimens to the 

bond-slip relationship of the FRP-strengthened concrete beam specimens which will be 

discussed in the next chapter. Therefore, the boundary conditions of the shear test are set 

to simulate the boundary conditions in the half of a FRP-strengthened concrete beam with 

a mid-span half-height notch. In the following, the effect of the boundary condition of the 

pullout test on the bond-slip relationship is studied numerically. 

It is observed in the literature that the FRP/concrete interface is not under pure 

shear stresses in single shear pullout tests (Lu et al. 2005, Baky et al. 2012, Toutanji et al. 

2013). The normal stress components along the interface have a significant effect on the 

bond strength. The boundary conditions may cause different normal stresses in the 

concrete close to the interface. In order to study the sensitivity of the normal stress 

components of interface to the boundary conditions, four different boundary conditions 
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(Figure 5.18) are selected. Boundary condition b is the one used in experiments and 

numerical analysis in this research.  

The normal stress,   , which is in the longitudinal direction, of the element at the 

tip of pre-crack in concrete is presented in Figure 5.19 for four selected boundary 

conditions. The normal stresses in this figure are those in the model before the crack 

initiation criterion is met (starting of the debonding). The normal stress    is sensitive to 

the boundary condition of concrete block at the load side. As the height of constraints are 

increasing at this side, the absolute values of    are increasing as well. Normal stress 

along y direction,   , which is perpendicular to the interface, is small compared to the 

normal stress along x direction,   , and is negligible. 

 

 
(a)                                                                     (b) 

        
(c)                                                                     (d) 

 

Figure 5.18 Sensitivity analysis to boundary conditions 

 

 

Since the FRP debonding failure occurs in concrete close to the FRP/concrete 

interface, it is reasonable to express the bond strength as a function of concrete strength. 

The applied load at the end of the FRP plate is transmitted to the concrete substrate by 

shear stresses. Figure 5.20 shows the concrete substrate surface after FRP debonding. As 
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it can be seen, the debonding actually is initiated with concrete fracture. Thus, when the 

maximum principle stress in the element at the tip of pre-crack reaches to the concrete 

tensile strength,  𝑡, the crack initiates in the element. Based on this assumption and 

regarding that    is negligible; the crack initiation criterion can be defined as: 

 𝑡 =
𝜎 , 𝑎 

2
± √(

𝜎 , 𝑎 

2
)
2

+     
2                                         (5.4) 

Thus, the bond strength,     , as a function of concrete tensile strength and the 

maximum normal stress component in the element can be expressed as: 

    = ±√( 𝑡 −
𝜎 , 𝑎 

2
)
2

− (
𝜎 , 𝑎 

2
)
2

                                   (5.5) 

 

 

Figure 5.19 Normal stress    vs. load of the element at the tip of pre-crack 

 

 

Figure 5.20 Concrete substrate surface after FRP debonding in shear pullout test 
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Since   ,    is compressive stress with negative sign (Figure 5.19), the bond 

strength,     , increases with increasing of   ,   . In summary, changing the boundary 

conditions of concrete block results in changing the maximum normal stress of concrete, 

and therefore changing the measured bond strength. Because the beam specimens have a 

half height notch in the middle span, the boundary condition b in Figure 5.18 is 

appropriate for this study. 
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Chapter 6 Beam Test 

One of the most common failure modes in FRP-strengthened concrete beams is 

caused by the opening of major flexural/shear cracks. In this type of failure, which is 

referred as intermediate crack (IC) debonding failure, the debonding initiates at the tip of 

the major flexural/shear crack and propagates toward the FRP plate end. In order to 

analyze the FRP debonding behavior of strengthened beams, the bond-slip relationship of 

the FRP/concrete interface is required. Although the conventional (direct) method to get 

the bond-slip relation is the single shear pullout test, the stress state of the concrete along 

the FRP/concrete interface in a beam may not be the same as that in a pull out test 

specimen. This is due to the difference of the loading types, boundary conditions, and 

deflections between the beam and the FRP/concrete joint specimens. 

In order to study the bond behavior directly in FRP-strengthened beams, beam 

tests are carried out using FRP-strengthened concrete beam specimens with a mid-span 

notch. The notch represents a major flexural/shear crack that triggers IC debonding 

failure. To investigate the sensitivity of the bond-slip behavior to the location of the 

notch, the notch position in specimens is moved forward to the FRP plate end. Then, FE 

analysis is used to model IC debonding failure verified by the experimental results. Using 

numerical results, the stress state of the FRP/concrete interface is studied to compare the 

bond properties of strengthened beams and single shear pullout specimens.  

The beam experiments were carried out by the collaboration of Marquette 

University and Watkins Haggert Structural Engineering Laboratory at the University of 

Pittsburgh under the supervision of Dr. Kent Harries.  
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6.1 Beam Test Set-up  

The dimensions of beam test specimens with mid-span notch are shown in Figure 

6.1a. The notch positions are changed every 51 mm from the mid-span to the support 

(Figure 6.1b). The notch serves as the major flexural/shear crack. The width of the notch 

is 5 mm and its height is half of the beam height (76 mm). A 25 mm pre-crack between 

FRP and concrete is provided to control the direction of the FRP debonding. The 

Instron® flexure fixture (model 600D) is used to apply flexural force in a mid-span three 

point bending test system. The test is conducted under displacement control. Figure 6.2 

shows a picture of the whole set-up. 

 

 
(a) 

 

 
(b) 

 

Figure 6.1 Beam specimen dimensions: (a) notch at mid-span, (b) notch at locations 

away from mid-span 
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Figure 6.2 Beam test set-up  

 

6.2 FRP Application for Flexural Strengthening of Beam Specimens 

The strengthening system for beam tests is bonding CFRP laminate strips by 

Sikadur ®-30 epoxy resin. The Young’s modulus, ultimate tensile strength, thickness, 

and Poisson’s ratio of the CFRP strips are 155 GPa, 2800 MPa, 1.5 mm, and 0.25, 

respectively. Sikadur ®-30 epoxy that is a two-component structural epoxy is used as the 

adhesive for the FRP bonding. The Young’s modulus, ultimate tensile strength, thickness, 

and Poisson’s ratio, of the epoxy are 4.48 GPa, 24.8 MPa, 1 mm, and 0.3, respectively. 

Before FRP plates are bonded to the beams, notches are created by saw cutting 

(Figure 6.3a). The FRP application on the concrete surface is almost the same as that 

explained in Chapter 5 for the single shear pullout specimens. The surface roughness of 

concrete substrate is obtained by a grinder (Figure 6.3b). Then, water pressure is used to 

remove the loose particles (Figure 6.3c). The FRP layout locations are marked and a 25 

mm wide tape is used to create the pre-crack at the tip of the notches (Figure 6.3d). The 

mix ratio of the two components of Sikadur ®-30 is 3:1 by weight. It is needed to be 

mixed thoroughly for three minutes with a low speed mixer at 400-600 RPM until 
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uniformly blended (Figure 6.3e).  An approximately 1 mm coat of the epoxy is applied on 

the concrete surface and pre-cut strips of FRP (Figure 6.3f). After bonding the FRP strips, 

the specimens are left to cure for at least 14 days. 

 

              
(a)                                                         (b) 

 

             
(c)                                                          (d) 

 

               
                      (e)                                                           (f) 

Figure 6.3 Beam specimen preparation 
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6.3 Concrete Properties of Beam Specimens 

The concrete properties including compressive strength, Young’s modulus, 

Poisson’s ratio, and splitting tensile strength are obtained experimentally using cylinder 

specimens 203  102 mm (standard 8 4 in) by compression test  (ASTM C39 2010) 

and splitting tensile test (ASTM C496 2010 ).  

Six cylinder specimens (C1-C6) are used for the compression test. Sulphur 

capping is applied for the cylinder’s top surfaces in order to have smooth, parallel, 

uniform bearing surfaces that are perpendicular to the applied axial load during 

compressive strength testing (Figure 6.4).  

 

 

Figure 6.4 Sulphur capping for concrete cylinders 

 

To experimentally calculate Poisson’s ratio, 𝜈, and Young’s modulus, 𝐸, of the 

concrete, the cylinders are sited in a collar, which can measure the vertical and lateral 

displacement, before placing in the compression machine, in order to measure the lateral 

and longitudinal expansions during the loading (Figure 6.5). By having lateral and 

longitudinal expansions, the lateral and longitudinal strains can be calculated. The ratio of 

the lateral strains to the longitudinal strains is the Poisson’s ratio. The ratio of 
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compressive stress to the longitudinal strain in linear range of the stress vs. strain curve is 

the Young’s modulus. The experimentally obtained Poisson’s ratio and Young’s modulus 

of cylinders are presented in Table 6.1.  

 

Table 6.1 Compression test results  

Cylinders Compressive Strength 

(MPa) 

Poisson's Ratio 

(ν) 

Young’s Modulus 

(GPa) 
C1 30.81 0.195 24.270 

C2 29.72 0.156 23.103 

C3 27.75 0.251 23.294 

C4 29.89 0.192 22.242 

C5 34.37 0.266 25.144 

C6 29.65 0.119 23.653 

Average  30.37 0.197 23.618 

Standard Deviation 2.01 0.051 0.914 

 

 

 

Figure 6.5 Measurements of lateral and longitudinal expansions of cylinders 

 

The splitting tensile strength of concrete,  𝑡, can be obtained experimentally by 

splitting test. The test consists of applying a compressive line load on a concrete cylinder 

placed with its axis horizontal between the compressive platens of the testing machine 

(Figure 6.6). Six cylinder specimens (S1-S6) are used for the splitting test. A summary of 

test results are presented in Table 6.2.  
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Figure 6.6 Splitting tensile strength test  

 

Table 6.2 Splitting tensile strength test results 

Cylinders Tensile Strength (MPa) 
S1 3.65 

S2 3.57 

S3 3.00 

S4 3.12 

S5 2.85 

S6 2.81 

Average  3.16 

Standard Deviation 0.33 

 

 

6.4 Measurements in Beam Test 

During the beam test, flexural load, axial strains in FRP plate, and deflection at 

the top of the notch are recorded. FRP axial strains are obtained with electrical resistance 

strain gauges of 120 ohm resistance and 6 mm gauge length on the FRP surface.  

 A steel bar is attached to the beam by bolts in support points at half height of the 

beam, and a linear resistance transducer is used to measure the deflection of the beam 

centerline by attaching its one end to the beam and the other to the steel bar as shown in 

Figure 6.7. 
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Figure 6.7 Application of resistance transducer for mid-span deflection 

measurement 

 

6.5 Beam Test Matrix 

Twenty-four (24) specimens are tested in the beam test. Table 6.3 provides a 

summary of the specimen IDs, numbers of specimens, the notch locations, and number of 

strain gauges and their arrangements. South and north in this table serve as the indicators 

for parts of the beam in either sides of the notch. The pre-crack is provided in the south 

direction. The control specimens CC-1, CC-2, and CC-3 have one strain gage at mid-
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span. The strain gauges arrangements in notched-strengthened specimens are different in 

each specimen as shown in the table. However, all of them have one strain gauge at the 

tip of the pre-crack in the south direction. The first strain gauge in the north direction is 

25 mm away from the notch. The distance of strain gauges from each other is 25 mm.  

 

Table 6.3 Beam test matrix 
Specimen ID Description Dimensions Number of Strain gages 

 

C-1 

C-2 

C-3 

 

Control 

No notch 

No FRP 

 

0 

 

C-4 

C-5 

C-6 

 

Control 

No FRP 

 

0 

CC-1 

CC-2 

CC-3 

Control 

No notch  

 

1 

CMC0-1 

CMC0-2 

CMC0-3 

CMC0-4 

CMC0-5 

CMC0-6 

Mid-span notch 

CFRP 

 

2@south,1@north 

2@south,2@north 

3@south,0@north 

1@south,0@north 

11@south,3@north 

11@south,3@north 
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CMC2-1 

CMC2-2 

CMC2-3 

Notch 51 mm 

( 2 in)  away 

from mid-span 

 

2@south,0@north 

2@south,1@north 

2@south,1@north 

CMC4-1 

CMC4-2 

CMC4-3 

Notch 102 mm 

(4 in) away 

from mid-span 

 

2@south,0@north 

2@south,0@north 

2@south,2@north 

CMC6-1 

CMC6-2 

CMC6-3 

Notch 153 mm 

(6 in) away 

from mid-span 

 

1@south 

1@south 

1@south 

 

 

6.6 Experimental Observations of Beam Tests 

In the following, the experimental observations for each group of specimens that 

are shown in Table 6.3 are described in detail. 

 

6.6.1 Control Specimens C-1, C-2, and C-3 

This group of un-notched control specimens is carried out for checking set-up 

function and its calibration. They are also used for calculating the concrete’s modulus of 

rupture.  
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The failure cracking starts at the bottom of the beam where is very close to the 

mid-span, and then propagates to the loading point as shown in Figure 6.8. Figure 6.9 

presents the load vs. mid-span deflection curves. The average value of the maximum 

bearing load is 15.25 KN with a standard deviation of 0.52 KN. The specimens show 

deflections compatible with the theoretical maximum deflection. The theoretical 

maximum deflection is: 

𝑃𝐿3

 8𝐸 
= 

15.25 (91 )3

 8 23.618 (
1 2 1 23

12
)
= 0.23                                  (6.1) 

 

 

Figure 6.8 Failure of beam C-2 

 

 

Figure 6.9 Load vs. mid- span deflection curves for specimens C-1, C-2 and C-3 
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The tensile strength of concrete subjected to flexural loading is named as the 

concrete’s modulus of rupture. It has different value than the split tensile strength of 

concrete,  𝑡, and can be calculated by: 

 𝑟 = 1.5
𝑃𝐿

𝑏ℎ2                                                       (6.2) 

where   is the maximum bending load in a rectangular concrete beam with length of L, 

width of b, and height of h. Using Equation 6.2 and the experimental maximum loads, the 

average value of rupture modules of specimens C-1,  C-2, and C-3 is 5.67 MPa with a 

standard deviation of 0.09 MPa. This value is very high compared to the value from the 

empirical equation for calculation of the concrete’s modulus of rupture in ACI 318:  

 𝑟 = 0.62 √ 𝑐′                                                  (6.3) 

Equation 6.3 results in the magnitude of 3.42 MPa for the concrete’s modulus of rupture. 

It should be noted that concrete properties have large variations, and the ACI equation is 

an empirical equation for design purpose, which is not necessary to be accurate for each 

individual specimen. 

 

6.6.2 Control Specimens C-4, C-5, and C-6 

This group of control specimens is used to study the behavior of concrete cracking at the 

top of the notch. The failure cracking starts at the top of the notch in mid-span and 

propagates to the loading point. The average value of maximum bearing loads of these 

three specimens is 3.06 KN (standard deviation of 0.21 KN) that is about 20% of the 

maximum loads in the beams without notch (C-1, C-2, and C-3). Based on Equation 6.2, 

the maximum load of the beam with 1/2 depth due to the notch should be 25% of those 

beams without notch. The saw cut may introduce some micro-cracks in concrete at the 
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top of the notch, which will reduce the load capacity. The self-weight of the part below 

the half height of the beam is an additional load needed to be resisted by the part at the 

top of the notch. This additional load is not shown in the measured results.  Also, the 

variations of concrete and errors of measurements may also contribute this 5% difference 

between the theoretical prediction and measured results.The results of C-4, C-5, and C-6 

are used to find the fracture energy of plain concrete in numerical analysis that will be 

explained later in this chapter.  

 

6.6.3 Control Specimens CC-1, CC-2, and CC-3 

The specimens CC-1, CC-2, and CC-3 are CFRP-strengthened beams without 

notch. They are used to investigate the behavior of strengthened beams in reality. Failure 

types of all three specimens are IC debonding failure. According to the experimental 

observations and pictures that are taken in each step of loading to follow the debonding 

behavior, the failure processes are: 

1. A major vertical flexural crack starts very close to the mid-span of the concrete 

beam (Figure 6.10a); 

2. A diagonal flexural/shear crack starts close to the first flexural crack, about 25 to 

40 mm from the first one (Figure 6.10b); 

3. FRP debonding along the FRP/concrete interface initiates at the tip of the 

diagonal crack (Figure 6.10c), progressing toward the closer support; 

4. Sudden final failure step includes: the diagonal crack merging to the first flexural 

crack, the merged crack reaching the loading point, and the FRP debonding 

continuing to the end of the FRP plate (Figure 6.10d). 
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The average of maximum loads is 20.25 KN, with a standard deviation of 0.36 

KN, which is about 33% more than the average of maximum loads of un-strengthened 

beams (C-1, C-2, and C-3). It means that the application of CFRP strengthening system 

increases the flexural loading capacity of concrete beams.   

 

      

(a)                                                                  (b)  

     

                      (c)                                                                    (d)  

Figure 6.10 IC debonding failure processes of beam CC-1 

 

6.6.4 CFRP-Strengthened Beams with Mid-span Notch (CMC0-1 to CMC0-6) 

Six beam specimens (CMC0-1 to CMC0-6) are used to study the behavior of IC 

debonding failure when the major flexural/shear crack is at mid-span. The IC debonding 

failure processes in this group of specimens are: 
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1. Cracking starts at the top of the notch (Figure 6.11a); 

2. A diagonal flexural/shear crack starts close to the notch, about 25 mm from the 

notch (Figure 6.11b) randomly in the south or north direction, or even in both 

directions; 

3. FRP debonding along the FRP/concrete interface initiates at the tip of the 

diagonal crack and propagates toward the closer support (Figure 6.11c); 

4. Sudden final failure step includes: the diagonal crack merging to the notch, the 

crack at the top of the notch reaching the loading point, and FRP debonding 

continuing to the end of the FRP plate (Figure 6.11d). 

 

     
 

(a)                                                                      (b)  

      

                 (c)                                                                        (d)  

Figure 6.11 IC debonding failure processes of beam CMC0-5 
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There is a wedge of concrete attached to the FRP plate (Figure 6.11d) that shows 

diagonal cracking inside the concrete. Actually, the debonding cracking does not start at 

the tip of the pre-crack. Instead, it starts at the tip of the diagonal crack in either side of 

the notch, or even in both sides. Therefore, the applied pre-crack does not work as the 

initiation point of the FRP debonding and it does not control which side of the notch to 

start the FRP debonding.  

By comparing Figures 6.10 to 6.11, it can be seen that the failure processes are 

compatible. The notched-strengthened beams follow the debonding behavior of the un-

notched-strengthened beams.  

 

6.6.5 CFRP-Strengthened Beams with Notches Away from Mid-span  

In order to study the sensitivity of IC debonding failure to the location of the 

major flexural/shear crack, the notch location is moved away from the mid-span in 

intervals of 51 mm. In specimens CMC2 and CMC4 (51 and 102 mm away from the mid-

span), the notch triggers the IC debonding failure. The debonding starts close to the tip of 

the notch and propagates in the south direction (Figure 6.12a and b). However, in 

specimens CMC6 (153 mm away from the mid-span), the debonding starts close to the 

flexural crack at the mid-span and propagates in the north direction, which is the part 

without the notch (Figure 6.12c). The failure processes of beams CMC2 and CMC4 are: 

1. Diagonal cracking starts at the top of the notch; 

2. Mid-span flexural crack initiates; 

3. Second diagonal crack starts 25 to 40 mm from the notch in the south direction; 
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4. FRP debonding initiates at the tip of the second diagonal crack along the 

FRP/concrete interface and propagates toward the closer support;  

5. Sudden final failure step includes: the diagonal crack merging to the notch, the 

crack at the top of the notch reaching the loading point, and FRP debonding 

continuing to the end of the FRP plate. 

 

  

(a)                                                              (b)  

 

(c) 

Figure 6.12 Failure of beams: (a) CMC2-1, (b) CMC4-2, and (c) CMC6-3 

 

The failure processes of beam CMC6 are: 

1. Mid-span flexural crack starts; 

2. Diagonal crack initiates 25 to 40 mm from the mid-span crack in the north 

direction; 
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3. FRP debonding starts at the tip of the diagonal crack and propagates along the 

FRP/concrete interface;  

4. Sudden final failure step includes: the diagonal crack merging to the mid-span 

crack, the mid-span crack reaching the loading point, and FRP debonding 

continuing to the end of the FRP plate. There is also a diagonal crack at the top of 

the notch, but it never reaches the loading point, and the FRP under the notch is 

not debonded.  

It is worth mentioning that the concrete wedge attached to the FRP plate is seen in 

all specimens due to the diagonal crack that forms close to the major flexural/shear crack 

or notch. The Comparison of debonding processes of specimens CMC6 and CMC0 

shows that the FRP debonding in both groups of specimens follows the same behavior.  

Therefore, the specimens with the notch 153 mm away from the mid-span essentially 

behave exactly as the specimens without any notch. 

 

6.6.6 Comparison of Experimental Maximum Flexural Loads 

Figure 6.13 compares the load vs. mid-span displacement curves for specimens 

CC and CMC0. Specimens CMC0 are shown by dashed lines and specimens CC are 

shown by solid lines. As it can be seen, specimens CC behave stiffer before the mid-span 

cracking and then behave like specimens CMC0. It is reasonable because specimens CC 

do not have a notch. Once the mid-span crack initiates in specimens CC, their behavior 

becomes very close to the behavior of specimens CMC0, where a notch is cut at the mid-

span. Therefore, specimens CMC0 can simulate the real behavior of FRP-strengthened 

concrete beams (specimens CC) in their ultimate stage. This also verifies the original idea 



127 
 

to evaluate the FRP/concrete bond in real beams when this type of specimen was 

designed by Harries et al. (2012). 

 

 
Figure 6.13 Load vs. mid-span displacement curves of specimens CMC0 and CC 

 

The average and the standard deviation of the maximum applied loads of each 

group of the specimens are presented in Table 6.4. The maximum loads of CC, CMC0 

and CMC6 are almost the same. It is worth mentioning that the failure processes of these 

specimens (CC, CMC0, and CMC6) follow the same behavior as described in the 

previous sections. The FRP debonding failure of CMC6 initiates at the tip of the diagonal 

crack close to the mid-span flexural crack as specimens CC and CMC0 (in specimens 

CMC0, the notch at the mid-span presents the flexural/shear crack at the mid-span). 

The maximum loads of CMC2 and CMC4 are slightly higher (about 1.7 and 

5.4 % higher than that of CMC0) and CMC4 has a maximum load 3.6% larger than that 

of CMC2. It seems that as the major flexural/shear crack is moved away from the mid-

span, but not too far (less than 153 mm in this test), the maximum flexural loading 
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capacity increases slightly. Although the numbers of specimens in each group are too 

small to make a conclusion, this apparent toughening may be explained through the 

findings by numerical analysis that will be discussed in the next section.  

 

Table 6.4 Average of maximum bearing loads of beam specimens 

Specimens Number of specimens Average maximum load 

(KN) 

Standard Deviation 

(KN) 
C  3 15.25 0.52 

CC 3 20.25 0.36 

CMC0 6 20.22 0.95 

CMC2 3 20.57 1.54 

CMC4 3 21.31 0.35 

CMC6 3 20.23 0.42 

 

6.6.7 Bond-Slip Relationships of Beam Specimens 

Specimens CMC0-5 and CMC0-6 have strain gauges along the entire FRP plate in 

the south direction. Using the measured FRP strains and Equations 2.1 and 2.2, the bond-

slip relationships are calculated and presented in Figure 6.14. Since the debonding starts 

beyond the location of the first strain gauge, the second and third strain gauge values are 

applied for the bond stress calculations. The average of the maximum bond strength is 

    = 3.23   𝑎, and the average of the interfacial fracture energy is   = 0.65 /  . 

By comparing these values to the bond strength and fracture energy values of the single 

shear pullout test (    = 3.65   𝑎,   = 1.41  /  ), it can be seen that both bond 

strength and fracture energy are smaller in beams. Numerical analysis is performed in the 

following to find the explanation for the smaller values of the bond-slip behavior of the 

FRP/concrete interface in beam specimens than that in the shear specimens.  
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(a)                                                           (b) 

 

Figure 6.14 Bond-slip curves of specimens: (a) CMC0-5, (b) CMC0-6 

 

 

6.7 Numerical Analysis of Beam Test 

ABAQUS 6.13 is used for the FE analysis of the beam test. The concrete 

damaged plasticity model is applied in XFEM for the modeling of concrete. The crack 

initiation criterion is the maximum principal stress criterion, in which a crack initiates if 

the maximum principal tensile stress reaches the tensile strength of the concrete. The 

crack propagates perpendicular to the direction of the maximum principal tensile stress. 

A linear concrete tension-softening curve is assumed for the crack propagation evolution. 

The results of control specimens C-4, C-5, and C-6 are used to find the fracture energy of 

plain concrete numerically. Figure 6.15 presents the load vs. mid-span deflection of the 

experimental results and the numerical results by using  𝐹 = 0.12  /   in the analysis. 

The average error of the maximum load between numerical and experimental results is 

6.8%.  Since there is a good agreement between numerical and experimental results, 

 𝐹 = 0.12  /   is assumed as the fracture energy of the plain concrete for the beam 

specimens in this study. This value is same as the one used for the concrete fracture 
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energy in the single shear pullout specimen analysis. Therefore, the concrete properties of 

these two types of specimens are similar although they are prepared in different labs with 

different constitutive materials (e.g., cement, sand and aggregate).  

 

 

Figure 6.15 Experimental and numerical load vs. mid-span deflections of control 

beams C-4, C-5, and C-6 

 

 

6.7.1 FE Analysis of Beams CMC0 

Plane stress elements are applied for the modeling. Figure 6.16 shows the typical 

FE mesh. The concrete damaged plasticity model is applied in XFEM for the modeling of 

concrete as described above. FRP and epoxy are modeled using a brittle cracking model. 

The thicknesses of FRP plate and epoxy are 1.5 mm and 1 mm, respectively. 

According to the experimental observations, the tip of the pre-crack does not 

work as the debonding initiation point. Therefore, the pre-crack is not modeled in the 

numerical analysis. The applied method is able to predict the cracking at the top of the 
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notch and also the diagonal crack about 25 mm from the notch. The diagonal crack 

merges to the notch before ultimate failure that is in a very good agreement with the 

experimental observation. Because of the symmetry, the diagonal crack is also seen in the 

other side of the notch in the FE model as shown in Figure 6.16. 

 

 

Figure 6.16 Cracking prediction of specimens CMC0 by FE analysis before 

debonding initiation 
 

It can be seen in Figure 6.16 that the FRP below the notch deflects upward 

relative to the FRP/concrete interface, meaning that the behavior of the beam specimens 
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is different than that of the single shear pullout specimens. In the shear specimens, the 

FRP plate is totally horizontal during the whole test procedure if the experimental error is 

eliminated. However, in the beam specimens, the FRP plate rotates upward when the 

flexural load of the beam is increased. The rotation of the FRP plate at the tip of the notch 

is due to the local moment created by the tension force in the FRP plate and the 

downward movement of the concrete as shown in Figure 6.17. This moment causes a 

different stress state at the FRP/concrete interface in the beam specimens than that in the 

shear specimens. In the shear specimens, there are constraints for the FRP plate to hold it 

horizontal and prevent the local moment effect on the concrete block. Also, there is no 

concrete block movement.  

 

 

Figure 6.17 Comparison of stress state at the interface between pullout and beam 

specimens 

 

 

As described in Chapter 5, in the single shear pullout specimens, the concrete 

element at the tip of the pre-crack is under shear stress, , and longitudinal compression 
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stress,   < 0 , while the absolute value of    is smaller than shear stress, |  | < | | . In 

beam specimens, the concrete element attached to the FRP/concrete interface is under 

shear stress, , and longitudinal tension stress,    0. The longitudinal tension stress is 

larger than shear stress,      (Figure 6.17).  

After the diagonal crack initiation in an element at about 25 mm away from the tip 

of the notch,    disappears in that element, while   continues to increase as shown in 

Figure 6.18. Therefore, the FRP debonding along the FRP/concrete interface in the beam 

specimens initiates at the tip of the diagonal crack in the concrete side. 

 

 
Figure 6.18 Shear and normal stresses vs. applied force for the element cracked by 

the diagonal crack 

 

 

In order to model the horizontal FRP debonding, a damage band with a thickness 

of 5 mm is defined starting at the tip of the diagonal crack along the FRP/concrete 

interface as shown in Figure 6.19. A bilinear traction-separation law is assigned to the 

damage band. Bond strength,     = 3.23   𝑎, and fracture energy,   = 0.65  /  , 

are assumed according to the findings of the experimental results as discussed in section 
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6.6.7. A summary of the applied material properties in the FE analysis is presented in 

Table 6.5. 

 

 
Figure 6.19 Damage band in beam specimens CMC0 

 

Table 6.5 Material properties applied in FE analysis of beam specimens  

Properties Concrete Damage Band FRP Epoxy 
Modulus of Elasticity, E (GPa) 23.62 23.62 155 4.48 

Tensile Strength, 𝑡 (MPa) 3.16 3.16 2800 24.8 

Compressive Strength,  
 
  , (MPa) 30.37 - - - 

Shear Modulus, G, (GPa) 9.84 2.24 - - 

Shear Strength,     , (MPa) - 3.23 - - 

Fracture Energy,   , (   ⁄ ) 0.12 0.65 - - 

Poisson’s Ratio 0.2 0.2 0.25 0.3 

 

6.7.2 Results of FE Analysis of Beam Specimens CMC0 

In the FE analysis, when the element at the top of the notch (Figure 6.20) reaches 

the critical fracture energy of concrete, this element is not able to transfer stress anymore. 

At this stage, the behavior of concrete and the whole model become very unstable. 

Therefore, the analysis is terminated and this stage is considered to be the final failure 

step of the FE analysis. The cracking and deflection of the model around the notch at the 

final step of the numerical analysis are shown in Figure 6.20. The diagonal cracks and 

FRP/concrete interface cracks are also shown in this figure. 

 



135 
 

 

Figure 6.20 Final step of FE analysis of beams CMC0 

 

The pictures of CMC0-1 to 6 that are taken in each step of the loading in the 

experimental tests show that there are diagonal cracks and also partial FRP debonding in 

both sides of the notch in CMC0-1, CMC0-2, and CMC0-3 before final failure as shown 

in Figure 6.21 for CMC0-2. 

 

 

Figure 6.21 Diagonal cracks and FRP debonding in both sides of notch in CMC0-2 

 

It is notable that it is not possible to see the diagonal cracks at both sides of the 

beam in all specimens through the experiments because it originates inside the concrete. 
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For example, no diagonal cracks are seen in CMC0-6 before the final failure during the 

test. However, the concrete wedge attached on the debonded FRP after failure (Figure 

6.22a) indicates that there are also diagonal cracks formed during the test in this 

specimen. The partial FRP debonding is seen in both directions in this specimen before 

the final failure (Figure 6.22b). Therefore, it can be concluded that the diagonal cracks 

and partial debonding occur in both sides of the notch before the final failure although the 

final debonding happens randomly in the north or south directions. 

The FE analysis catches the same failure procedure observed in the experiments. 

There is also a very good agreement for the load vs. mid-span deflection curves between 

the experimental and numerical results as shown in Figure 6.23 (the mean percentage 

error of the maximum load is 2.48%). The comparison of numerical results and 

experimental observations shows that the applied FE method is able to predict the 

behavior of the FRP-strengthened concrete beams.  

 

  
 

(a)                                                       (b) 

Figure 6.22 Failure of specimen CMC0-6: (a) concrete wedge, (b) FRP debonding in 

both sides before final failure 
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Figure 6.23 Load vs. mid-span deflection curves obtained by experiments and 

numerical analysis of specimen CMC0 

 

 

6.7.3 FE Analysis of Beams CMC2, CMC4, and CMC6 

The same material models and material properties used for the modeling of 

CMC0 are applied for CMC2, CMC4, and CMC6, too.  

In specimens CMC2 and CMC4, the finite element analysis shows a diagonal 

cracking at the top of the notch, a mid-span flexural crack, and a diagonal crack at 25 mm 

from the notch in the south direction (the side closer to the support) as presented in 

Figure 6.24. The shear stress,  , and the normal stress,   , of the element cracked by the 

diagonal crack (shown in Figure 6.24) are presented in Figure 6.25. The normal stress, 

  , drops to zero after the diagonal crack formation while the shear stress,  , continues to 

increase after a small drop. This behavior happens in specimen CMC0, too (Figure 6.18). 
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The maximum shear stresses,   , the maximum normal stresses,   , and the 

corresponding load of specimens CMC0, CMC2, and CMC4, when the principal stress of 

the cracked element by the diagonal crack reaches to the tensile strength of concrete, are 

presented in Table 6.6 for the comparison. As can be seen in the table, the maximum 

shear stresses of specimens CMC2 and CMC4 are larger while the maximum normal 

stresses are smaller than those of specimen CMC0. The maximum shear stress and the 

maximum normal stress of specimen CMC4 are also larger than those of specimen 

CMC2. The reason for this phenomenon is that as the notch is moved away from the mid-

span, the tension force in the FRP plate below the notch decreases due to the smaller 

moment at that beam section. As a result, the local moment created by the tension force 

in FRP (described in Figure 6.17) decreases, too. It causes less normal stress,   ; 

therefore, the maximum principal stress reaches the criterion at smaller normal stress but 

larger shear stress,  . The increasing of the corresponding load when the cracked element 

by the diagonal crack reaches the tensile strength of the concrete may be the explanation 

for the slight increase of the maximum bearing flexural load as the notch is moved away 

from the mid-span in the experiments (section 6.6.6). 

 

Table 6.6 Maximum shear stress and normal stress  

Specimen Maximum shear stress 

  (MPa) 

Maximum normal stress 

   (MPa) 

Corresponding load  

(N) 
CMC0 1.32 2.72 7911 

CMC2 1.38 2.62 8188 

CMC4 1.50 2.50 8552 
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(a) 

 
(b) 

 

Figure 6.24 Cracking prediction of specimens: (a) CMC2, (b) CMC4, 

 by FE analysis before debonding initiation 

  
(a)                                                          (b) 

 

Figure 6.25 Stress state of the cracked element: (a) CMC2, (b) CMC4  
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In specimen CMC6, the finite element analysis does not show noticeable diagonal 

cracking at the top of the notch. It predicts a mid-span flexural crack and a diagonal 

flexural crack at 25 mm from the mid-span crack tip in the north direction (the side of the 

beam without the notch) as shown in Figure 6.26. It means that the notch does not work 

as a major flexural shear crack that triggers the IC debonding in this specimen. The 

reason is that the local moment created by the tension force in FRP at the notch is smaller 

than the local moment created at the tip of the mid-span crack. Thus, the diagonal crack 

forms close to the mid-span crack. 

 

 

Figure 6.26 Cracking prediction of specimens CMC6 by FE analysis before 

debonding initiation 

 

6.7.4 Results of FE Analysis of Beam Specimens CMC2, CMC4, and CMC6 

In order to model the horizontal FRP debonding, a damage band with a thickness 

of 5 mm is defined at the tip of the diagonal crack along the FRP/concrete interface in the 

models of CMC2, CMC4 and CMC6. A bilinear traction-separation law is assigned to the 

damage band. The same values used in the FE analysis of CMC0, i.e., bond strength, 



141 
 

    = 3.23   𝑎, and interfacial fracture energy,   = 0.65  /  , are also assigned 

to the damage band in this part of the FE analysis.  

According to the numerical analysis, the failure processes of specimens CMC2 

and CMC4 are: 

1. Diagonal cracking at the top of the notch 

2. Mid-span flexural crack 

3. Diagonal crack close to the notch (25 mm) in the south side 

4. FRP debonding at the tip of the diagonal crack 

5. Final failure when the element at the top of the notch reaches the critical 

fracture energy of concrete 

The failure processes of CMC6 are: 

1. Mid-span flexural crack 

2. Diagonal crack close to the mid-span crack (25 mm) in the north side 

3. FRP debonding at the tip of the diagonal crack 

4. Final failure when the elements at the tip of the mid-span flexural crack 

reach the critical fracture energy of concrete 

Figure 6.27 shows the final step of the FE analyses. By comparing this figure to 

the pictures taken during the experimental test (Figure 6.12), it can be seen that the FE 

analysis predicts the IC debonding failure process very well. The curves of load vs. 

displacement at the top of the notch obtained numerically and experimentally are 

presented in Figure 6.28. The mean percentage error of the maximum flexural loads is 

within 1.5- 4.7 %. Therefore, the FE models successfully predict the behavior of these 

specimens with notches at different locations. 
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(a)                                                          (b) 

 

Figure 6.27 Final step of FE analysis of beams: (a) CMC2, (b) CMC4 

 

 

 
(a)                                                    (b) 

 

 
        (c) 

 

Figure 28 Experimental and numerical Load vs. displacement at the top of notch 

curves: (a) CMC2, (b) CMC4, and (c) CMC6 
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6.8 Discussion on the Numerical and Experimental Results of Beam Test 

In summary, the followings are the findings of the experimental and numerical 

studies of the FRP-strengthened concrete beams: 

1. The local moment at the tip of the notch due to the tension force in the FRP 

plate and the downward displacement of the concrete beam causes a diagonal 

crack in concrete at about 25 mm away from the tip of the notch. This 

behavior does not allow the pre-crack to control the initiation and direction of 

the FRP debonding.  

2. The element at the tip of the diagonal crack is under shear stress and tensile 

stress. This stress state is different than the stress state in the element at the tip 

of the pre-crack in the single shear pullout specimens (shear stress and 

compression stress). Equation 5.5 shows that the bond strength is larger in the 

presence of compression stress (  < 0) than the bond strength in the 

presence of tensile stress (   0). Therefore, the bond strength in the FRP-

strengthened beams is less than the bond strength in single shear pullout 

specimens. The bond-slip obtained from the pullout test does not represent the 

bond-slip relation of the FRP/concrete interface in the FRP-strengthened 

concrete beams. 

3. By comparing the experimental bond-slip curves, it can be seen that the slips 

at the tip of the diagonal crack close to the notch (i.e., the mid-span 

flexural/shear crack) in the beams are smaller than the slips of the FRP plate at 

the tip of the pre-crack in the pullout specimens. Since the bond strength of 

the beam specimens is smaller too, the interfacial fracture energy of the bond 
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(the area under the bond-slip curve) in the beams is less than that in the 

pullout specimens. However, the FE analyses show that the fracture energy 

value does not control the final failure of the beam specimens. The plain 

concrete fracture energy plays the key role for the beam failure.  

4. As the notch is moved away from the mid-span, the diagonal crack close to 

the notch forms at smaller tensile stress and larger shear stress. When the 

notch reaches 153 mm away from the mid-span where the flexural moment is 

much smaller than that in the mid-span, the notch does not trigger the IC 

debonding failure. It can be concluded that the IC debonding failure is 

triggered by the major flexural/shear crack in the zone with the larger 

moment/shear ratio (in this test setup, shear force is constant along the span) 

in a FRP-strengthened concrete beam. 

5. As described in the literature review, there is a group of research on the IC 

debonding failure in the FRP-strengthened concrete beam following the idea 

that the FRP/concrete at the tip of the flexural/shear crack is subjected to 

mixed-mode loading. It is assumed that the relative vertical displacement prior 

to a critical diagonal crack forming between the two faces of the crack 

produces peeling stresses (mode I) on the interface in addition to the shear 

stress (mode II) due to the flexural loading on the beam as shown in Figure 

6.29a. In this study, the FE analysis shows that the local moment at the tip of 

the notch/flexural-shear crack (Figure 6.29b) does not allow the FRP to be 

peeled by the relative vertical displacement. Therefore, mode I stress (  ) at 

the tip of the diagonal crack is negligible compared to the normal stress,   , in 
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longitudinal direction and the shear stress,  . Because of that, the bond-slip 

relationship obtained by CMC0 works well for CMC2 and CMC4.  

 

    
(a)                                                                                (b) 

Figure 6.29 Comparison between mixed-mode assumption and the local moment at 

the flexural/shear crack: (a) typical mixed-mode debonding of FRP /concrete 

interface, (b) local moment at the tip of notch 
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Chapter 7 Prediction of Load Capacity Variation in FRP 

Bonded Concrete Specimens Using Brownian Motion 
 

 

Two key parameters affecting the load carrying capacity of a bonded FRP/ 

concrete joint are FRP stiffness and concrete strength. In this study, pre-cured FRP plates 

are used in the experiments. Pre-cured plates are manufactured in a factory and the 

manufacturing process is normally controlled by computers. Therefore, the variation of 

their stiffness is relatively small. However, there is another common method to apply 

FRP in field, called “wet lay-up”. In wet lay-up process, dry fiber sheets are saturated 

with a polymer and applied to the concrete surface by hand. This causes relatively large 

variation in properties of the cured FRP composite material. It is hard to know the exact 

mechanical properties of the FRP constructed by wet lay-up process. In addition, the 

stiffness of FRP changes during debonding process due to different amount of concrete 

attached to the debonded FRP at different locations. It is also inevitable to have 

considerable variations in the strength of concrete. Therefore, the behaviour of FRP 

bonded concrete members varies among specimens even when the same materials are 

used. The variation of localized FRP stiffness and concrete strength can be combined in a 

single parameter as variation of the localized interfacial fracture energy. In an effort to 

effectively model the effects of the variation of interfacial fracture energy on the load 

versus deflection responses of FRP bonded concrete specimens subjected to Mode I and 

Mode II loading, a random white noise using a one-dimensional standard Brownian 

motion is added to the governing equations, yielding a stochastic differential equation. By 

solving this stochastic equation, the bounds of load carrying capacity variation with 95% 

probability are found for different experimental tests. 
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7.1 Interfacial Fracture Energy Variation Sources 

The stiffness of FRP and compressive concrete strength are the most effective 

parameters on the responses and behaviours of strengthened concrete members (Yuan et 

al. 2004, Lu et al. 2005, Dai et al. 2005). However, there are some variations in FRP 

stiffness (bending stiffness and tension stiffness, hereafter called “stiffness” only unless 

the tension or bending stiffness needs to be emphasized) and concrete strength, 

particularly the localized strength. In the following, the sources of the FRP stiffness and 

concrete strength are briefly explained, respectively. 

One of the common methods to use FRP to strengthen existing concrete structures 

is wet lay-up bonding that consists of installation by hand using unidirectional dry fiber 

sheets or fabrics impregnated with a saturating resin on-site (ACI 440.2R 2008). Since it 

is hard to accurately determine the Young’s modulus of the cured FRP constructed by 

wet lay-up process and there is variation of the cured FRP thickness, it is almost 

impossible to obtain the accurate magnitude of the FRP stiffness. Generally, the 

manufacturers provide the properties of the fibre sheets, such as Young’s modulus and 

design sheet thickness, based on the tests in laboratories. When it is used in field, the 

properties of the cured FRP are affected by the skills of the workers who apply the FRP, 

and also by the curing process and environment in the field. Typically it is difficult to get 

the same level of quality control for wet lay-up FRP as for the FRP plates or strips 

precured in the factory. Therefore, this operation may cause differences between what is 

in the manufacturer’s reports and the actual FRP stiffness achieved in-situ. The FRP 

properties may also be dissimilar at different locations even in the same specimen 

because the fibers may be curved to different extents at different locations. 
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Existing experimental studies have shown that in the vast majority of cases, 

except when a weak adhesive or a high strength concrete is used, debonding failure of an 

FRP-concrete bonded joint is due to the fracture within the concrete at a small distance 

from the concrete-adhesive interface (Chen and Teng 2001). During the debonding 

failure, the concrete crack path continuously changes direction and the thickness of 

substrate concrete layer attached to the FRP varies at different location (Coronado and 

Lopez 2008). This phenomenon causes the stiffness variation during debonding 

propagation. 

Concrete is a mixture of water, cement, aggregate, and air. Variations in the 

properties or proportions of these constituents, as well as variations in the transporting, 

placing, compaction, and curing of the concrete, lead to variations in the strength of the 

finished concrete. In addition, discrepancies in the tests will cause to apparent differences 

in strength (Wight and MacGregor 2012). The concrete near the top of concrete members 

tends to be weaker than the concrete lower down, probably because of increased water to 

cement ratio at the top due to upward water migration after the concrete is placed and by 

greater compaction of concrete near the bottom due to the sinking of aggregates in the 

form during variation (MacGregor and Bartlett 1999). Therefore, there is variation of 

concrete strength at different spots even in same member.   

Since FRP stiffness and concrete strength play important roles in predicting the 

load carrying capacity and failure modes in FRP-strengthened concrete members, it is 

useful to find a way to determine the range of actual values of FRP stiffness and concrete 

strength without testing each of them. The FRP stiffness and concrete strength variations 

can combine together as the interfacial fracture energy variation. Fracture energy is a 
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function of concrete strength and FRP stiffness in FRP concrete bonds (Dai et al. 2005). 

In this study, the concepts of Brownian motion and white noise from probability theory 

are used to find the fracture energy range instead of variations of the FRP stiffness and 

concrete strength separately. Then the calculated fracture energy range is applied to 

predict the load carrying capacity variation of the FRP bonded concrete specimens. 

 

7.2 Brownian Motion and White Noise 

Brownian motion is the macroscopic picture emerging from a particle moving 

randomly in d-dimensional space. The term "Brownian motion" can also refer to the 

mathematical model used to define such random movements. If it is assumed just one 

direction for the movements in an instant of time, then it is named one-dimensional 

Brownian motion.   

In 1828, the Scottish botanist Robert Brown observed irregular movement of 

pollen suspended in water. As explained in Einstein (1905), this random movement is 

caused by the buffeting of the pollen by water molecules and results in dispersal or 

diffusion of the pollen in the water. The first mathematically rigorous construction of 

Brownian motion is credited to Wiener (1923), and Brownian motion is sometimes called 

the Wiener process. Deep studies of Brownian motion and related topics can be found in 

Øksendal (2003). 

A real-valued stochastic process W = {W (t): t ≥ 0} defined on some probability 

space (Ω, F, Ρ) is called a standard Brownian motion, if: 

(i) W (0) = 0; 

(ii) W (t) has continuous sample paths almost surely 
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(iii) for all 0≤ s<t, the increment W(t)-W(s) is independent of 𝐹𝑠:= σ{W(u): 0 ≤ u< 

s} and has Gaussian distribution with: E[W(t)-W(s)]=0, and E[/W(t)-W(s)/
2
]=t-s 

In the above, E is the mathematical expectation with respect to the probability 

measure P, and 𝐹𝑠:= σ{W(u): 0 ≤ u< s} is a σ-algebra. One can think 𝐹𝑠 as all the 

information available to the observer by time s. Note that 𝐹𝑠  𝐹𝑡 for all 0≤ s<t. The 

collection of σ-algebra   𝐹𝑠 𝑠 0 is the natural filtration generated by W. Also, each w   Ω, 

the function t → W(t,w) can be regarded as a sample path or a realization of the Brownian 

motion. 

In a random experiment, for example infinite number of coin tossing, the outcome 

determines the sample path of the Brownian motion. Then W (t) is the value of this path 

at time t, and this value of course depends on which path resulted from the random 

experiment.  

Figure 7.1 presents five different sample paths of a 1-dimensional standard 

Brownian motion obtained by using MATLAB. Generally, MATLAB is an ideal 

environment for this type of treatment because of high level random number generation 

(Higham 2001). 

Even though the Brownian motion W has continuous sample paths, it can be 

shown that W is nowhere differentiable with probability 1, a mathematical fact explaining 

the high irregularity of Brownian motion. This means that the derivative of the function t 

→ W(t,w) does not exist in the ordinary sense for almost all w   Ω. Still, we may 

interpret their time derivative in a distributional sense to get a generalized stochastic 

process called the white noise (Øksendal 2003). White noise generally is a random signal 

that can be applied to model a totally unpredictable process. It can be considered as the 
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derivative of a Brownian motion existing in the stationary sense. Figure 7.2 plots a 

numerical realization of a white noise. 

 
Figure 7.1 Five sample paths of a 1-dimensional standard Brownian motion 

 

 

 
Figure 7.2 Numerical realization of a white noise 

 

 

In this study, a random white noise is added to the fracture energy parameter in 

the governing equations to represent the differences between actual and theoretical values 
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of FRP stiffness and concrete strength. The governing equations for FRP debonding from 

concrete subjected to Mode I and Mode II loading become stochastic differential 

equations, where the driven noise is a one-dimensional standard Brownian motion. By 

solving these equations and comparing the results with the experimental data, the ranges 

of load carrying capacity with 95% probability are determined for the experimental tests 

found in the literature. 

 

7.3 FRP/ Concrete Interface under Mode II Loading Condition 

Figure 7.3 shows an FRP/concrete interface under a pullout action, i.e., the 

specimen is subjected to Mode II loading (single shear pullout test). In this figure, 𝑎0 is 

the initial crack length between the FRP sheet/plate and the concrete substrate, and 𝑎 is 

the crack length during debonding propagation. As it is already mentioned, experimental 

studies suggest that the failure of FRP/concrete joints generally occur in concrete at a few 

millimetres from the FRP/concrete interface. The ultimate load of the joint therefore 

depends strongly on concrete failure behaviour. 

     

 

Figure 7.3 FRP-bonded concrete joint under pullout (Mode II) force  
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For a brittle material, the debonding region does not transfer any stresses. 

Theoretically, there should not be further increasing in load carrying after debonding 

initiation (Yuan et al. 2004). For a quasi-brittle material like concrete, the new crack 

surfaces formed by debonding may be in contact and are tortuous in nature. This leads to 

toughening mechanisms at the tip of the crack that is taken into account by a conceptual 

fracture process zone (FPZ). As a result of FPZ, the newly formed crack surfaces may 

continue to sustain more stresses after debonding initiation, which is characterized by 

traction-separation relationship (Shah et al. 1995). The traction-separation relationship in 

FRP bonded concrete joints in shear test is known as bond-slip behaviour. Figure 7.4 

shows typical bond-slip behaviour of a single shear pullout test specimen. Many existing 

studies indicate that the interfacial fracture energy of FRP/concrete joint is a function of 

concrete strength and FRP stiffness. Therefore, it is assumed that variation of the 

interfacial fracture energy can present the variation of the concrete strength and FRP 

stiffness together.  

   

 

Figure 7.4 Typical bond-slip behaviour in shear test 



The theoretical ultimate interfacial pull-out force in the FRP sheet,   , which is 

equal to the axial force in FRP, can be expressed as: 



154 
 

  = 𝐸 𝑡 𝑏 𝜀                                                        (7.1)   

where 𝐸  is elastic modulus of FRP; 𝑡  is thickness of FRP; 𝑏  is width of FRP sheet; and 

𝜀    is maximum strain of FRP sheets corresponding to the maximum pullout force. On 

the other hand, he interfacial fracture energy can be calculated by (Dai et al. 2005):  

    =
1

2
𝐸 𝑡 𝜀   

2                                                      (7.2)  

By substituting Equation 7.2 into Equation 7.1, the maximum bearing load is a function 

of the interfacial fracture energy as shown in Equation 7.3: 

  = 2    𝑏  
1

  𝑎  
                                                    (7.3) 

Regarding to Figure 7.3, FRP strain at the tip of the initial crack is equal to  =

 1- 2

a
 ,Where  1 is the interfacial slip at the tip of the initial crack and  2 is the interfacial 

slip at the end of the debonding length. In this study, it is assumed that  2 is equal to zero 

since it is very small compared to 𝛿1. This assumption is based on Hillerborg fictitious 

crack model (Hillerborg et al. 1976) for concrete cracking modeling. The fictitious crack 

approach assumes that the energy to initiate debonding is small compared to that required 

to propagate debonding in concrete. Therefore, the energy rate term required to create 

new crack,    (Figure 7.4), vanishes in the fictitious crack model. Using this assumption, 

the FRP strain at the tip of the initial crack is equal to 𝜀 =
 1

 
. 

By substituting 𝜀   =
  𝑎 

  𝑎 
  into Equation 7.3, it can be rewritten as: 

  = 2    𝑏 𝑎    
1

  𝑎  
                                            (7.4) 

where 𝛿    is the maximum interfacial slip at the tip of the initial crack and 𝑎    is the 

maximum crack length in front of the initial crack corresponding to the ultimate pullout 
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force,   , during the interface crack propagation (i.e. macro interface debonding). By 

setting  =
1

  𝑎  
 and 𝐾0 = 2  𝑏 𝑎   , Equation 7.4 in differential equation form is: 

 𝑁 

  
= 𝐾0                                                            (7.5) 

where 𝐾0 is a parameter including interfacial fracture energy which is a function of the 

FRP stiffness and concrete strength. As discussed in the previous section, the actual FRP 

tension stiffness achieved in-situ is not the same as this calculated value. It is inevitably 

subjected to random fluctuations, resulting from the wet lay-up process and different 

amount of concrete attached to the debonded FRP at different locations. Also there are 

some sources for concrete compressive strength variation. In order to find the effect of 

the FRP tension stiffness and concrete strength variations on the ultimate load-carrying 

capacity (i.e. the maximum pullout load) of the specimens, a white noise is added to the 

parameter 𝐾0 as in Equation 7.6: 

𝐾 = 𝐾0 + 𝛼𝑤̇                                             (7.6) 

where 𝛼 is a constant positive value (𝛼  0) that presents the distribution or variation of 

experimental data, and 𝑤̇ is a one-dimensional white noise. Since the measured value of δ 

is a parameter which varies due to the construction process and different amount of 

concrete attached to the debonded FRP at different locations, 𝑤̇ is a function of δ (X 

here). By substituting Equation 7.6 into Equation 7.5, the ultimate axial force can be 

written as: 

𝑑  = 𝐾0𝑑 +  𝛼𝑤̇𝑑                                            (7.7) 

Since white noise can be formally considered as the derivative of a Brownian 

motion, Equation 7.7 can be rewritten as: 

𝑑  = 𝐾0𝑑 + 𝛼𝑑𝑤( )                                          (7.8) 
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where 𝑤( ) is a one-dimensional standard Brownian motion. In this application, a 

Brownian motion is introduced to present the effect of totally unpredictable interfacial 

fracture energy variation on the load vs. deflection responses of the specimens. Equation 

7.8 is a stochastic differential equation and the solution is 

  = 𝐾0 +  𝛼 𝑤( )                                                   (7.9)                                                    

It is well known that if an arbitrary random variable   has Gaussian distribution 

with mean µ and variance σ
2
, then (

 − 

𝜎
) has a standard normal distribution with mean 0 

and variance 1 (Billingsley 1986). Recall that the stochastic process, 𝑤, is a Brownian 

motion having independent and stationary increments (Øksendal 2003), and for each  , 

𝑤( ) is a Gaussian random variable with mean 0 and variance  . Therefore, 
𝑤( ) 

√ 
 has a 

standard normal distribution. According to the probability density function, 95% of the 

observations fall between -1.96 and 1.96 for a variable with the standard normal 

distribution (Billingsley 1986) as shown in Figure 7.5. Therefore, with probability of 

95%, the range of 
𝑤( ) 

√ 
 can be expressed as, 

−1. 6 <
𝑤( ) 

√ 
< 1. 6                                          (7.10) 

By substituting Equation 7.9 into Equation 7.10, the upper and lower bounds can be 

found for the ultimate axial force,   , as 

 −1. 6 <
  − 𝐾0 

𝛼√ 
< 1. 6 

{
  𝑙 𝑤𝑒𝑟 = 𝐾0 − 1. 6 𝛼√ 

   𝑝𝑝𝑒𝑟 = 𝐾0 + 1. 6 𝛼√ 
                                         ( .11) 

In Equation 7.11, the value of constant 𝛼, which represents the distribution of 

experimental data, is needed to determine the lower and upper bounds of the ultimate 
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load. This value has been obtained in this study by using the experimental data from Dai 

et al. (2005). 

 
Figure 7.5 Probability density function for standard Brownian motion 

 

 

Table 7.1 includes the material properties and experimental results of the pullout 

tests conducted by Dai et al. (2005). The width of the FRP sheets, 𝑏 , is 100 mm. In order 

to use data from different tests with different materials, normalized 𝐾0   against 𝐾0√  

curves are drawn in Figure 7.6. In this figure, the thin line represents the theoretical 

response calculated from Equation 7.4, the thick lines are the results from Equation 7.11, 

and * points are the experimental data. By adjusting the value of α in Equation 7.11, the 

band between the lower and upper    values can be changed to involve all experimental 

data. For these test results, 𝛼 = 1200 is a good estimation to cover the experimental data. 

Because    is between   𝑝𝑝𝑒𝑟 and  𝑙 𝑤𝑒𝑟, and 𝜀   =
𝛥 𝑎 

  𝑎 
 , using Equations 

7.4 and 7.11, the bounds of interfacial mode II fracture energy, (    )𝑒 𝑝, with 95% 

probability can be expressed as: 

(    −
1.96 √1/  𝑎 

2𝑏𝑓  𝑎 
) <  (    )𝑒 𝑝 < (    +

1.96 √1/  𝑎 

2𝑏𝑓  𝑎 
)                 (7.12) 
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Table 7.1 Specimens of Dai et al. (2005) and their fracture energy boundaries   

specimen 𝜀    
𝛿    
(mm) 

   
(KN) 

(    ) 

(N/mm) 

(    )   𝑤   

(N/mm) 

(    )  𝑝𝑝   

(N/mm) 
% 

CR1L1 0.00904 0.064 23.4 1.034 0.614 1.454 40.62 

CR1L1 0.01046 0.066 23.1 1.384 0.905 1.863 34.70 

CR1L1 0.00908 0.053 24.9 1.043 0.579 1.507 44.45 

CR1L2 0.00664 0.069 33.5 1.115 0.818 1.412 26.63 

CR1L2 0.00682 0.061 39.3 1.177 0.852 1.502 27.61 

CR1L2 0.00732 0.077 39.3 1.356 1.046 1.667 22.86 

CR1L3 0.00509 0.064 42.9 0.983 0.746 1.212 23.29 

CR1L3 0.00554 0.057 38.4 1.165 0.892 1.438 23.43 

CR1L3 0.00525 0.062 38.4 1.042 0.794 1.290 23.80 

CR1L3 0.00496 0.059 36.9 0.930 0.690 1.170 25.81 

AR1L1 0.01260 0.070 25.5 1.476 0.916 2.036 37.94 

AR1L2 0.00955 0.073 833.6 1.450 1.034 1.856 28.00 

AR1L3 0.00606 0.068 39.9 1.351 1.078 1.624 21.54 

GR1L5 0.00732 0.062 33.4 1.171 0.825 1.517 29.54 

CR2L1 0.01124 0.111 28.1 1.598 1.201 1.995 24.84 

CR2L2 0.00809 0.123 43.2 1.656 1.385 1.927 32.73 

CR2L3 0.00596 0.103 47.4 1.343 1.125 1.561 16.23 

AR2L3 0.00668 0.111 47.1 1.642 1.406 1.878 14.37 

GR2L3 0.00869 0.090 31.0 1.208 0.867 1.548 28.14 

CR3L2 0.00980 0.290 47.7 2.430 2.216 2.644 8.80 

CR3L3 0.00732 0.227 57.6 2.205 2.024 2.386 8.20 

AR3L3 0.00923 0.309 60.9 3.135 2.940 3.330 6.22 
 

   
  Average 

(%) 
25.4 

 

 
Figure 7.6 Application of experimental data from Dai et al. (2005) to find 𝛂 
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Using 𝛼 = 1200 and Equation 7.12, the range of mode II fracture energy bounds 

has been determined. In average, mode II fracture energy for this group of specimens 

falls between 25.4% less or more than the theoretical fracture energy. 

To give an instance, the ultimate load vs. maximum slip for the first specimen in 

Table 7.1 (CR1L1) is shown in Figure 7.7. The thin line is the theoretical one from 

Equation 7.4, and the thick lines are the upper and lower bands of ultimate load based on 

Equation 7.11 with 𝛼 = 1200. Due to the Brownian motion, Equation 7.9 represents a 

stochastic process, which has many different sample paths. The dashed line in Figure 7.7 

plots one of such sample paths.  

 

 
Figure 7.7 Ultimate load vs. maximum slip for specimen CR1L1 

 

 

Figure 7.8 shows the experimental ultimate loads against the theoretical ones.  

Because the relationship between the ultimate load and mode II interfacial fracture 
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energy,     , is linear (Equation 7.4), the ultimate bearing load changes 25.4% when the 

fracture energy changes 25.4%. In Figure 7.8, the thick lines are bands of experimental 

maximum load vs. theoretical one, i.e.  𝑒 = (1 ± 0.254) 𝑡ℎ. This may explain why the 

debonding strength of FRP always exhibits quite large scatter (Mazzotti et al. 2008, 

Toutanji et al. 2012). 

As can be seen in Figure 7.8, all experimental ultimate loads are in the bands.  

Therefore, it confirms that the proposed method is valid to predict the load capacity 

variation of the FRP bonded concrete specimens under mode II loading. 

 

 
 

Figure 7.8 Experimental ultimate load vs. theoretical one for the tests by Dai et al. 

(2005) 
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7.4 FRP/Concrete Interface under Mode I Loading Condition 

The relationship between the load and displacement in a Mode I loading condition 

can be obtained in a similar way of Mode II loading case. Figure 7.9 shows the schematic 

model around the crack tip subjected to a Mode I load, P. If the value of the crack 

(debonded) length, a , is small, the debonded FRP can be assumed as a cantilever beam 

subjected to load P, and the bonded parts of FRP can be assumed as an Euler-Bernoulli 

beam on an elastic Winkler foundation (Pan and Leung 2007, Dai et al 2009). However, 

in this study, the mode I displacement of the bonded parts of FRP, 𝛥1in Figure 7.9, is 

assumed equal to zero as it is done for mode II loading and discussed in the previous 

section. Therefore, the relationship between the ultimate Mode I load,   , and the 

corresponding mode I displacement, 𝛥    , can be obtained as: 

  = [
3𝐸 

  𝑎 
3 ]𝛥                                                      (7.13) 

where EI is the bending stiffness of FRP and 𝑎    is the crack length corresponding to 

the ultimate load.  

 

 

Figure 7.9 Simulation of FRP on the concrete substrate as a beam on elastic 

foundation for Mode I loading 
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Based on the compliance method, the mode I fracture energy can be expressed as 

(Wan et al. 2004, Dai et al. 2009):  

   =
𝑃2

2𝑏𝑓

  

  
                                                            (7.14) 

where C is the compliance of the unbonded/debonded FRP and can be expressed by:  

 =
𝛥

𝑃
                                                   (7.15) 

By substituting Equations 7.14 and 7.15 into Equation 7.13, and setting 𝐾0 = 2𝑏     𝑎 

and  =
1

𝛥 𝑎  
, the ultimate Mode I load,   , can be expressed as: 

  = 𝐾0                                               (7.16) 

To model the unpredictable changes in the m de I   terfa  al fra ture e ergy, 

     , a white noise is added to the parameter 𝐾0, where 𝐾0 is calculated by manufacturer 

reported the FRP material properties and concrete strength. The process is similar to what 

has been done for the Mode II loading case. The upper and lower bounds for ultimate 

Mode I loading,   , with probability 95% are: 

{
 𝑙 𝑤𝑒𝑟 = 𝐾0 − 1. 6𝛼√ 

  𝑝𝑝𝑒𝑟 = 𝐾0 + 1. 6𝛼√ 
                                          (7.17) 

T  f  d the mag  tude  f 𝛼, experimental data from Wan et al. (2004) and Ouyang and 

Wan (2008) are used.  

Wan et al. (2004) used modified double cantilever beam (MDCB) specimens to 

test the energy release rate of FRP debonding from concrete subjected to Mode I loading.  

CFRP sheets were applied to the concrete substrates by wet layup process.  Ouyang and 

Wan (2008) used the MDCB test to measure the interfacial fracture energy of the CFRP 

plate debonding from concrete substrate under Mode I loading. The experimental results 
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of these tests are shown in Tables 7.2 and 7.3. 

The normalized 𝐾0   against 𝐾0√  curves are drawn in Figure 7.10 for the 

specimens in Table 7.2. The appropriate magnitude for α is equal to 200 to cover all 

experimental data in Wan et al. (2004). This value for experimental data in Ouyang and 

Wan (2008) is equal to 240 as shown in Figure 7.11.  

 
Table 7.2 Specimens of Wan et al. (2004) and their fracture energy boundaries   

Specimens     
(N) 

𝛥    
(mm) 

(   ) 

(N/mm) 

(   )   𝑤   

(N/mm) 

(   )  𝑝𝑝   

(N/mm) 

% 

C4B1S1 515.86 0.58 0.545 0.467 0.622 14.13 

C4B1S2 553.09 0.79 0.273 0.191 0.355 30.0 

C4B1S3 518.63 0.87 0.417 0.347 0.467 12.0 

C4B1S4 545.67 0.98 0.436 0.392 0.480 10.1 

C4B1S5 380.97 0.68 0.391 0.342 0.440 12.5 
     Average (%) 15.74 

 

 
Figure 7.10 Application of experimental data from Wan et al. (2004) to find 𝛂 
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Table 7.3 Specimens of Ouyang and Wan (2008) and their fracture energy 

boundaries   

Specimens     
(N) 

𝛥    
(mm) 

(   ) 

(N/mm) 

(   )   𝑤   

(N/mm) 

(   )  𝑝𝑝   

(N/mm) 

% 

Control1 385.4 1.72 0.345 0.181 0.391 13.3 

Control2 260.8 1.45 0.250 0.087 0.312 24.8 

Control3 403.8 1.68 0.229 0.184 0.274 19.6 

Control4 379.9 1.53 0.405 0.388 0.442 9.13 

Control5 420.6 2.06 0.477 0.402 0.552 15.7 

Control6 323.4 1.64 0.422 0.331 0.513 21.5 

Control7 309.8 2.04 0.374 0.306 0.442 18.2 

Control8 411.1 2.15 0.400 0.332 0.468 17.0 
     Average (%) 17.4 

 

 

 
Figure 7.11 Application of experimental data from Ouyang and Wan (2008) to find 𝛂 

 

 
Because    (peak load) is between   𝑝𝑝𝑒𝑟 and  𝑙 𝑤𝑒𝑟 at 𝛥   , using Equations 

7.16 and 7.17, the bounds of interfacial mode I fracture energy, (   )𝑒 𝑝, with 95% 

probability can be expressed as:  

(   −
1.96 √1/𝛥 𝑎 

2𝑏𝑓  𝑎 
) < (   )𝑒 𝑝 < (   −

1.96 √1/𝛥 𝑎 

2𝑏𝑓  𝑎 
)                 (7.18) 

By using Equation 7.18 and the obtained values of 𝛼, the range of the bounds of 
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the mode I interfacial fracture energy has been determined for the applied experimental 

data. They are presented in Tables 7.2 and 7.3. It can be seen that on average, the actual 

fracture energy for test conducted by Wan et al. (2004) falls between 15.7% less or more 

than the theoretical value, while it is 17.4 % for tests conducted by Ouyang and Wan 

(2008). 

According to Equation 7.16, the relationship between ultimate bearing load and 

interfacial mode I fracture energy is linear. Figure 7.12 shows the experimental ultimate 

load against analytical ones for specimens in Wan et al. (2004) and Ouyang and Wan 

(2008). In this figure, the thick lines are bounds of experimental maximum load vs. 

theoretical one, i.e.,  𝑒 = (1 ± 0.1 4) 𝑡ℎ. As it can be seen, all experimental ultimate 

loads are within the bounds. Therefore, it confirms that the proposed method can predict 

the load capacity variation of the specimens subjected to Mode I loading. 

 

 
Figure 7.12 Experimental ultimate load vs. theoretical ones for the tests by Wan et 

al. (2004) and Ouyang and Wan (2008) 
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7.5 Conclusion of Brownian Motion Application 

In this chapter, a systematic method is established to determine the range of 

interfacial fracture energy and load carrying capacity. Experimental data from literatures 

are used to demonstrate the validity of this method. For the experimental data used in this 

research, mode I and mode II interfacial fracture energy and load carrying capacity vary 

±17.4 % and ±25.4%, respectively, away from their theoretical values.  
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Chapter 8 Conclusions and Future Research 

The experimental, numerical and analytical studies are performed in this 

dissertation to model IC debonding failure in FRP-strengthened concrete beams. The 

summary, conclusions and future research are discussed in detail in this chapter. 

 

8.1 Summary 

The works completed in this dissertation include the following:  

1. Proposed the application of the concrete damaged plasticity model in XFEM 

instead of regular FE technique to model the cracking behavior of concrete more 

efficiently; 

2.  Compared different FE methods to model FRP debonding failure of the 

FRP/concrete joints to find the most precise one using concepts of fracture 

mechanics; 

3. Validated the numerical analysis by experimental data to determine the key 

parameters affecting IC debonding failure; 

4. Experimentally studied FRP debonding from concrete substrate using the single 

shear pullout test to obtain the bond-slip relationship for the FRP/concrete 

interface; 

5. Numerically investigated the behavior of the FRP/concrete interface to find 

failure mechanisms and critical stress state of the interface in the single shear 

pullout test; 

6. Experimentally studied IC debonding failure in FRP-strengthened concrete beams 
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to obtain the bond-slip relationships;  

7. Numerically investigated FRP-strengthened concrete beams to find failure 

mechanisms and critical stress state of the FRP/concrete interface; 

8. Experimentally and numerically investigated the sensitivity of the IC debonding 

failure to the location of a major flexural/shear crack that triggers the initiation of 

the FRP debonding; 

9. Numerically studied mixed-mode behavior of the FRP/concrete interface at the tip 

of the major/flexural crack; 

10. And used concepts of Brownian motion and white noise to analytically find the 

load-carrying capacity variation due to the interfacial fracture energy variation in 

FRP/concrete joints. 

 

Based on the experimental results and the corresponding numerical analyses, several 

fundamental conclusions can be made from this research and they will help in advancing 

the current understanding of failure mechanisms and key parameters of FRP debonding 

from cracked concrete beams.   

 

8.2 Conclusions 

Instead of using the concrete damaged plasticity model for the entire model in 

regular FE method, XFEM is also used for the concrete modeling to model its post-

cracking behavior in this study. The concrete damaged plasticity model uses plastic 

theory and cannot model the discontinuities. The tension softening (post-cracking) 

behavior is modeled by enriching degrees of freedom of the elements in XFEM using 

concepts of fracture mechanics. Since the tensile cracking behavior of concrete controls 
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the behavior of concrete beams, using the combination of the concrete damaged plasticity 

model and XFEM helps to model the concrete cracking more efficiently.  

 The comparison of cohesive elements, VCCT, cohesive surface, and XFEM-

based cohesive method for FRP debonding failure modeling shows that XFEM-based 

cohesive is the most practical and accurate method for the purpose of this study. In order 

to use this method, it is necessary to define a damage band as the crack domain and 

assign a traction-separation law to that. Numerical sensitivity analyses show that the FRP 

debonding behavior is sensitive to the FRP stiffness, the assigned traction-separation law 

to the damage band including bond strength, the interfacial fracture energy, and the ratio 

of shear modulus to damage band (FRP/concrete interface) thickness. According to the 

numerical analyses, thicknesses of 1 to 5 mm of damage band give the best agreement 

compared to the experimental results. It is confirmed in the literature, too.  

The single shear pullout test is a common method to determine the bond-slip 

relationship (the traction-separation law in mode II direction) of the FRP/concrete 

interface. The conventional technique to get the bond-slip behavior from the pullout test 

results. However, this procedure results in a big scatter of bond-slip relationship and 

needs many strain gages bonded along the FRP sheet. Another applicable method to find 

the bond-slip from the pullout test results is Dai’s approach that uses only the FRP strain 

and slip values at the tip of the pre-crack. Both of these two methods are applied in 

conducted the shear pullout tests in this study and the bond-slip relationship is obtained.  

A numerical analysis using XFEM-cohesive based method is performed using the 

obtained bond-slip relation to model the single shear pullout test. The numerical results 

have a good agreement with the experimental results. The numerical sensitivity analysis 
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shows that the boundary condition of the concrete block at the force side plays a 

significant role in the bond-slip relationship and stress state of the FRP/concrete interface 

at the tip of the pre-crack in the single shear pullout tests. The single shear pullout test 

set-up in this study is designed in a way to have the closest boundary condition for the 

FRP/concrete interface to that in the beam specimens.  

The main objective of this dissertation is to study failure mechanisms of IC 

debonding failure in FRP-strengthened concrete beams. Therefore, beam tests are carried 

out in order to reach the objective. In the beam specimens, a notch with half high of the 

beam cross section at the mid-span of the beam represents a main flexural/shear crack in 

the real beams in field. The comparison between strengthened control specimens and 

strengthened notched specimens shows that notched specimens can simulate the real 

beams. In all cases, there is a concrete wedge attached to the FRP after debonding failure 

that shows the initiation of debonding because of a diagonal crack formation close to the 

major flexural/shear crack inside the concrete. A 25 mm pre-crack is set at one side of the 

notch by hoping to control the FRP to debond at the pre-crack side. However, the 

debonding occurs randomly in either sides of the notch. This indicates that the pre-crack 

does not control the debonding initiation as assumed. The bond-slip relationship of the 

FRP/concrete interface in the beam specimens is obtained from FRP strain values 

recorded by strain gages.  

FE analysis is performed for the FRP-strengthened concrete beam specimens by 

using the bond-slip relation obtained from the experimental tests. The applied numerical 

method is able to predict load vs. mid-span deflections and debonding processes, which 

are compatible with the experimental observations. According to the numerical analyses, 
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the diagonal crack in concrete is due to upward FRP vertical displacement at the tip of the 

notch. This phenomenon is the reason why the pre-crack does not control the FRP 

debonding initiation in the experimental tests.  

The upward movement of the FRP plate at the tip of the notch is the different 

behavior of beam specimens than single shear pullout specimens. In shear specimens, the 

FRP plate is totally horizontal in the whole test process. However in beam specimens, the 

FRP plate rotates upward. The rotation of the FRP plate at the tip of the notch is due to 

the local moment created by the tension force in the FRP plate and the downward 

displacement of the concrete beam. The stress state at the FRP/concrete interface in beam 

specimens is different from that in shear specimens. Analysis shows that the bond 

strength in the beam specimens is smaller than that in pullout specimens even when the 

same boundary conditions are used.   

In order to study IC debonding failure sensitivity to the location of the major 

flexural/shear crack, the notch is moved away from the mid-span to the supports of the 

beams in intervals of 51 mm. The concrete wedge is also observed after debonding due to 

the diagonal crack formation. When the notch reaches 153 mm away from the mid-span, 

it does not work as a major crack that initiates the FRP debonding. In this case, the 

debonding starts at the tip of a diagonal crack formed close to the mid-span flexural 

crack. 

Numerical analysis shows that the diagonal crack forms in smaller longitudinal 

tensile stress and bigger shear stress as the notch is moved away from the mid-span. This 

is because of the decreasing of the moment/shear ratio when the notch is moved away 

from the mid-span. However, the longitudinal tensile stress drops to zero after the 
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diagonal crack initiation in all cases. Because of this reason, the obtained bond-slip 

relationship from beams with mid-span notch works in modeling IC debonding failure in 

beams with notches away from mid-span. 

Although the FRP plate at the tip of the notch, which is not at the mid-span, has 

relative vertical displacement, the FE results show that FRP is not subjected to the 

assumed peeling stresses at the tip of the notch because of the local moment and upward 

moving of the FRP plate. Therefore, mode II loading still controls the FRP debonding in 

the mixed-mode loading cases.  

According to the literature and numerical analysis in this study, two key 

parameters affecting the load carrying capacity of a bonded FRP/concrete joint are the 

FRP stiffness and concrete strength. In wet lay-up process, fiber sheets are soaked with 

polymer and applied to the concrete surface by hand. This causes relatively large 

variation in properties of the cured FRP composite material. In addition, the stiffness of 

FRP changes during debonding processes due to different amounts of concrete attached to 

the debonded FRP at different locations. It is also inevitable to have some variations in 

the strength of concrete. Therefore, the behavior of FRP-bonded concrete members varies 

among specimens even when the same materials are used. The variation of localized FRP 

stiffness and concrete strength is combined into a single parameter as the variation of 

localized interfacial fracture energy. In this study, the concepts of white noise and 

Brownian motion adopted from the probability theory are used to model the variation of 

interfacial fracture energy in FRP-bonded concrete specimens subjected to mode I and 

mode II loadings. A systematic method is established to determine the range of the 

interfacial fracture energy and load carrying capacity. Experimental data from literature 
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are used to demonstrate the validity of this method. For the experimental data used in this 

research, mode I and mode II interfacial fracture energy and load carrying capacity vary 

±17.4 %and ±25.4%, respectively, away from their theoretical values. 

 

8.3 Future Research  

Since it is very difficult to match the line of the action of the applied tension force 

exactly with the center of the FRP in horizontal in single shear pullout tests in the lab, it 

causes many tested results cannot be used. Therefore, more specimens are needed to be 

tested in order to have more data to obtain more accurate bond-slip behavior.  

Because the FRP debonding does not start from the tip of the major flexural/shear 

crack or notch in the beam specimens, and instead it starts from a diagonal crack close to 

the notch (about 25 mm) in random direction, it is recommended to simulate the diagonal 

crack along with the notch in beam specimens in order to control the debonding initiation 

and direction. It helps to attach the strain gages in locations at the debonding initiation 

points and through the pre-defined direction. The simulation of the diagonal crack along 

the notch can be done by placing steel or wooden plate in the shape that shown in Figure 

8.1 in the forms before concrete pouring.  

 
Figure 8.1 Steel or wooden plate to simulate the diagonal crack along with notch in 

beam specimens 
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Since the diagonal cracks observed in the experiments form inside the concrete 

through the width of the FRP plate, 2D analysis cannot model it efficiently.  Three 

dimensional (3D) extended finite element analysis is able to calculate the strain 

distribution of FRP and stress state through the FRP/concrete interface width and model 

the diagonal cracks. Therefore, using 3D numerical analysis should produce more 

precious FRP debonding failure simulation. However, more calculation power is needed 

for the 3D analysis. Some supercomputing capacity is needed for this in the future 

research. 

FRP is widely used to repair/strengthen concrete bridges, in which fatigue load 

should be considered in design. The models developed in this study are founded on quasi-

static fracture test results. However, it would be interesting to conduct a study that 

focuses on the fatigue characteristics of the bond between FRP and concrete. It is well 

known that fatigue loads are much lower than static failure loads yield failures in 

adhesive joints. Therefore, future studies are needed to identify the primary mechanisms 

and the bond-slip behavior when the specimens are subjected to fatigue load.  

Currently, many design equations or bond-slip models come from experimental 

data regression. Additional data will cause the change of some parameters in such 

equations. Using Brownian motion method proposed in this research, we can find a range 

for the interfacial fracture energy by using limited experimental test data. Then we can 

confidently predict the range of the interfacial fracture energy (with predefined 

confidence level, e.g., 95% in this study) in those untested specimens or in real structure 

using the same materials as those tested specimens. Then we may be able to avoid those 

parameters, which are simply obtained from data regression, in our design equation in 
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future. However, only linear relationship between load and deflection is used in this study 

to derive the governing equations for the Brownie motion. Nonlinear relationship should 

be considered in future research. Standard normal distribution of the data is assumed in 

this research, other distributions (e.g., Weibull distribution) are needed to be examined in 

future to better represent the real world situation. 
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